WO2020199461A1 - Method for synthesizing polypeptide-derived compound - Google Patents

Method for synthesizing polypeptide-derived compound Download PDF

Info

Publication number
WO2020199461A1
WO2020199461A1 PCT/CN2019/101606 CN2019101606W WO2020199461A1 WO 2020199461 A1 WO2020199461 A1 WO 2020199461A1 CN 2019101606 W CN2019101606 W CN 2019101606W WO 2020199461 A1 WO2020199461 A1 WO 2020199461A1
Authority
WO
WIPO (PCT)
Prior art keywords
fmoc
otbu
glu
gly
tbu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2019/101606
Other languages
French (fr)
Chinese (zh)
Inventor
陈友金
尹传龙
宓鹏程
陶安进
袁建成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hybio Pharmaceutical Co Ltd
Original Assignee
Hybio Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hybio Pharmaceutical Co Ltd filed Critical Hybio Pharmaceutical Co Ltd
Publication of WO2020199461A1 publication Critical patent/WO2020199461A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/08General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/20Partition-, reverse-phase or hydrophobic interaction chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention relates to the field of drug synthesis, in particular to a method for synthesizing polypeptide derivative compounds.
  • the preparation prepared from the polypeptide derivative compound is subcutaneously injected once a week, and was approved for marketing by the US FDA on December 5, 2017. Since the fatty chain of the polypeptide derivative compound is longer, the hydrophobicity is increased, and the hydrophilicity is greatly enhanced after the short-chain PEG modification. After PEG modification, it can not only bind tightly to albumin, mask the DPP-4 enzymatic hydrolysis site, but also reduce renal excretion, prolong the biological half-life, and achieve the effect of long circulation.
  • the chemical name of the above peptide derivative compound is N 6,26 - ⁇ 18-[N-(17-carboxyheptadecanoyl)-L- ⁇ -glutamyl]-10-oxo-3,6,12,15-tetraoxa-9,18-diazaocta decanoyl ⁇ -[8-(2-amino-2-propanoic acid),34-L-arginine]human glucagon-like peptide 1(7-37), molecular formula is C 187 H 291 N 45 O 59 , molecular weight is 4113.5775, The sequence is H-His 7 -Aib 8 -Glu 9 -Gly 10 -Thr 11 -Phe 12 -Thr 13 -Ser 14 -Asp 15 -Val 16 -Ser 17 -Ser 18 -Tyr 19 -Leu 20 -Glu 21 -Gly 22 -G ln 23 -Ala 24 -Ala 25 -L
  • CN101133082A provides two methods of solid-phase gradual synthesis and first solid-phase synthesis of the backbone and then liquid-phase modification to obtain polypeptide derivative compounds.
  • the first method is prone to produce a large amount of default impurities and it is difficult to obtain high-quality products.
  • the second method requires The main chain is purified by RP-HPLC first, and the modification reaction is complicated, the cost is high, and the yield is low.
  • CN108059666B uses a large number of short peptide fragments for solid-phase synthesis. These fragments have not been commercialized, and the cost of customization is high, which is not suitable for large-scale production.
  • the present invention adopts Fmoc/tBu solid-phase synthesis method, and uses Fmoc-AEEA-AEEA-OH, Octadecanoic acid(OtBu)-Glu-OtBu, Fmoc-Gln(Trt)-Ala-OH and Fmoc-Aib in some special positions -Glu(OtBu)-OH and other fully protected dipeptide fragments, which not only specifically solve the main default impurities in the product, but also reduce production costs, obtain high-yield and high-quality products, and are suitable for large-scale production.
  • One aspect of the present invention provides a method for synthesizing a polypeptide derivative compound, which includes the following steps:
  • Step 1 Connect Fmoc-Gly-OH to the solid phase synthetic resin to obtain Fmoc-Gly-resin;
  • Step 2 According to the sequence of the peptide derivative compound, Fmoc-Arg 36 (pbf)-OH, Fmoc-Gly 35 -OH, Fmoc-Arg 34 (pbf)-OH, Fmoc-Val 33 -OH are sequentially coupled using Fmoc/tBu strategy , Fmoc-Leu 32 -OH, Fmoc-Trp 31 (Boc)-OH, Fmoc-Ala 30 -OH, Fmoc-Ile 29 -OH, Fmoc-Phe 28 -OH, Fmoc-Glu 27 (OtBu)-OH, Fmoc -Lys 26 (X)-OH, Fmoc-Ala 25 -OH, Fmoc-Gln 23 (Trt)-Ala 24 -OH, Fmoc-Gly 22 -OH, Fmoc-Glu 21 (OtBu)-OH, Fmoc-Leu 20 -OH, Fmoc
  • Step 3 Remove the protective group on Lys 26 , and couple Fmoc-AEEA-AEEA-OH and Octadecanoic acid(OtBu)-Glu-OtBu in sequence to obtain peptide resin of peptide derivative compound;
  • Step 4 Cleavage the peptide resin of the polypeptide derivative compound and simultaneously remove the side chain protecting groups to obtain the crude polypeptide derivative compound;
  • step 5 Purify by RP-HPLC to obtain a pure polypeptide derivative compound.
  • the polypeptide derivative compound has a sequence of H-His 7 -Aib 8 -Glu 9 -Gly 10 -Thr 11 -Phe 12 -Thr 13 -Ser 14 -Asp 15 -Val 16 -Ser 17 -Ser 18 -Tyr 19 -Leu 20 -Glu 21 -Gly 22 -G ln 23 -Ala 24 -Ala 25 -Lys 26 (PEG-PEG- ⁇ -Glu-Octadecanoic acid)-Glu 27 -Phe 28 -Ile 29 -Ala 30 -Trp 31 -Leu 32 -Val 33 -Arg 34 -Gly 35 -Arg 36 -Gly 37 -OH compound.
  • the solid phase synthetic resin used in step 1 is 2-Chlorotrityl resin, Wang resin or Rink Acid resin;
  • the resin substitution degree used in step 1 is 0.3-0.6 mmol/g, preferably 0.4-0.5 mmol/g;
  • the degree of substitution of Fmoc-Gly-resin in step 1 is 0.3-0.5 mmol/g, preferably 0.3-0.4 mmol/g;
  • X of Fmoc-Lys(X)-OH is an ⁇ amino protecting group, which is selected from Mmt, ivDDe, DDe, Mtt or Alloc;
  • Y and Z of Y-His(Z)-OH are both amino protecting groups, and Y-His(Z)-OH is selected from Boc-His(Boc)-OH, Boc-His(trt)-OH or Trt -His(Boc)-OH;
  • Octadecanoic acid (OtBu)-ONB is obtained under the action of HONB and DIC;
  • the crystallization solvent of Octadecanoic acid (OtBu)-Glu-OtBu is methanol, acetonitrile, a combination of acetonitrile and water, a combination of tetrahydrofuran and water, preferably a combination of acetonitrile and water, and the crystallization temperature is 2-8°C;
  • the cleavage time of the peptide resin in step 4 is 2 to 4 hours, preferably 3 to 4 hours;
  • the pyrolysis temperature in step 4 is 18 to 35°C, preferably 25 to 30°C.
  • step 5 The column conditions in step 5 are two-step purification, which specifically includes the following steps:
  • Chromatographic column Chromatographic column with octadecylsilane bonded silica filler as the stationary phase
  • the diameter and length of the column are: 10cm ⁇ 25cm.
  • Mobile phase Phase A: 0.1% phosphoric acid, adjusted to pH 8.5 with triethylamine; Phase B: Acetonitrile solution.
  • Flow rate 190-210ml/min.
  • Detection wavelength 280nm.
  • Gradient The mass percentage concentration of mobile phase B: 30-60%, linear gradient elution, collect the target peak, and then concentrate the target peak for the second step of purification;
  • Chromatographic column Chromatographic column with octadecylsilane bonded silica gel as the stationary phase, the diameter and length of the column: 10cm ⁇ 25cm, mobile phase A: 0.01% phosphoric acid aqueous solution; Phase B: chromatographic purity Acetonitrile solution; flow rate: 190-210ml/min; detection wavelength: 280nm. Gradient: mass percentage concentration of mobile phase B: 35-45%.
  • Octadecanoic acid (OtBu)-Glu-OtBu crystallization process ensures the high quality and supply of raw materials, which is conducive to commercial production.
  • HOBt 1-Hydroxybenzotriazole HONb N-hydroxy-5-norbornene-2,3-dicarboximide DIC N,N'-Diisopropylcarbodiimide Na 2 CO 3 Sodium carbonate Na 2 SO 4 Sodium sulfate THF Tetrahydrofuran DCM
  • Dichloromethane EA Ethyl acetate DMF N,N-Dimethylformamide 20% DBLK 20% piperidine/N,N-dimethylformamide MeOH Methanol
  • Aib 2-aminoisobutyric acid Octadecanoic acid Octadecanedioic acid Octadecanoic acid(OtBu) Octadecanedioic acid mono-tert-butyl ester .
  • Figure 1 shows the mass spectrum of Octadecanoic acid (OtBu)-ONB.
  • FIG. 2 shows the HPLC spectrum of Octadecanoic acid (OtBu)-ONB.
  • Figure 3 shows the mass spectrum of Octadecanoic acid (OtBu)-Glu-OtBu.
  • FIG. 4 shows the HPLC spectrum of Octadecanoic acid (OtBu)-Glu-OtBu.
  • Figure 5 is a crude quality profile of the polypeptide derivative compound of Example 11.
  • Figure 6 is the HPLC spectrum of the crude polypeptide derivative compound of Example 11.
  • Fig. 7 is a pure quality spectrum of the polypeptide derivative compound of Example 14.
  • Figure 8 is the HPLC spectrum of the pure polypeptide derivative compound of Example 14.
  • the THF is concentrated in vacuo, 300ml of water is added to the aqueous phase, and EA is extracted twice, the organic phases are combined, washed with 1M HCl 3 times, and washed 3 times with water , Washed with saturated brine twice, dried with anhydrous Na 2 SO 4 , concentrated in vacuo, and the residue was crystallized with acetonitrile and water at a crystallization temperature of 5 degrees Celsius to obtain 43.686 white solid, yield: 90.32%, purity: 98.55%, MS: 556.12 (M+H + ), 578.31 (M+Na + ).
  • Chromatographic column Chromatographic column with octadecylsilane bonded silica filler as the stationary phase
  • the diameter and length of the column are: 10cm ⁇ 25cm.
  • Mobile phase Phase A: 0.1% phosphoric acid, adjusted to pH 8.5 with triethylamine; Phase B: Acetonitrile solution.
  • Flow rate 190-210ml/min.
  • Detection wavelength 280nm.
  • Gradient The mass percentage concentration of mobile phase B: 30-60%, and the gradient processing time is 60 min.
  • the injection volume is 19.58g;
  • Purification process Rinse the acetonitrile above the chromatographic column and load the sample.
  • the sample load is the sample solution after dissolution and filtration. Linear gradient elution, collect the target peak, the purity is about 90%, put the collected peptide solution in the collection bottle for use;
  • Chromatographic column Chromatographic column with octadecylsilane bonded silica gel as the stationary phase, the diameter and length of the column: 10cm ⁇ 25cm, mobile phase A: 0.01% phosphoric acid aqueous solution; Phase B: chromatographic purity Acetonitrile solution; Flow rate: 190-210ml/min; Detection wavelength: 280nm. Gradient: Mass percentage concentration of mobile phase B: 35-45%, gradient processing time 45-60min; The injection volume is the content after the first purification and concentration 99% sample solution;
  • Purification process Rinse the acetonitrile above the chromatographic column and load the sample.
  • the sample amount is the 90% sample solution after purification and concentration in the first step.
  • Linear gradient elution is used to collect the target peak with a purity of about 99% and it will be collected. Place the peptide solution in the collection bottle for use;
  • Chromatographic column Column with octadecylsilane bonded silica gel as stationary phase, column diameter and length: 10cm ⁇ 25cm, mobile phase A: aqueous solution; phase B: chromatographic pure acetonitrile solution; flow rate: 190-210ml /min; Detection wavelength: 280nm. Gradient: Mass percentage concentration of mobile phase B: 35-45%, gradient processing time 45min;
  • Purification process Rinse the acetonitrile above the chromatographic column and load the sample.
  • the sample amount is 99% of the sample solution after purification and concentration in the second step, linear gradient elution, collect the target peak, and freeze-dry the collected peptide solution; Obtain 6.0 g of refined peptide, purity: 99.84%, total yield: 29.18%, MS: 2057.209 (M+2H + ), 4111.991 (M+H + ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Endocrinology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed is a method for synthesizing a polypeptide-derived compound, comprising the following steps: step 1: attaching Fmoc-Gly-OH to a resin to obtain a Fmoc-Gly resin; step 2: in accordance with a sequence of a peptide-derived compound, sequentially coupling amino acids by a Fmoc/tBu scheme to obtain a peptide resin with a main chain of the polypeptide-derived compound; step 3: removing a protecting group on Lys 26 and sequentially coupling Fmoc-AEEA-AEEA-OH and Octadecanoicacid(OtBu)-Glu-OtBu to obtain a peptide resin with the polypeptide-derived compound; step 4: cleaving the peptide resin with the polypeptide-derived compound and simultaneously removing a side chain protecting group to obtain a crude peptide-derived compound; and selectively, step 5: purifying by RP-HPLC to obtain a pure peptide-derived compound. The method is simple and has high synthesis yield as well as high purity.

Description

一种多肽衍生化合物的合成方法A synthetic method of peptide derivative compound 技术领域Technical field

本发明涉及药物合成领域,具体涉及一种多肽衍生化合物的合成方法。The invention relates to the field of drug synthesis, in particular to a method for synthesizing polypeptide derivative compounds.

背景技术Background technique

由该多肽衍生化合物制备的制剂为每周一次皮下注射,于2017年12月5日获美国FDA批准上市。由于该多肽衍生化合物的脂肪链更长,疏水性增加,且经过短链的PEG修饰,亲水性大大增强。PEG修饰后不但可以与白蛋白紧密结合,掩盖DPP-4酶水解位点,还能降低肾排泄,可延长生物半衰期,达到长循环的效果。The preparation prepared from the polypeptide derivative compound is subcutaneously injected once a week, and was approved for marketing by the US FDA on December 5, 2017. Since the fatty chain of the polypeptide derivative compound is longer, the hydrophobicity is increased, and the hydrophilicity is greatly enhanced after the short-chain PEG modification. After PEG modification, it can not only bind tightly to albumin, mask the DPP-4 enzymatic hydrolysis site, but also reduce renal excretion, prolong the biological half-life, and achieve the effect of long circulation.

上述多肽衍生化合物化学名为N 6,26-{18-[N-(17-carboxyheptadecanoyl)-L-γ-glutamyl]-10-oxo-3,6,12,15-tetraoxa-9,18-diazaocta decanoyl}-[8-(2-amino-2-propanoic acid),34-L-arginine]human glucagon-like peptide 1(7-37),分子式为C 187H 291N 45O 59,分子量为4113.5775,序列为H-His 7-Aib 8-Glu 9-Gly 10-Thr 11-Phe 12-Thr 13-Ser 14-Asp 15-Val 16-Ser 17-Ser 18-Tyr 19-Leu 20-Glu 21-Gly 22-G ln 23-Ala 24-Ala 25-Lys 26(PEG-PEG-γ-Glu-Octadecanoic acid)-Glu 27-Phe 28-Ile 29-Ala 30-Trp 31-Leu 32-Val 33-Arg 34-Gly 35-Arg 36-Gly 37-OH。 The chemical name of the above peptide derivative compound is N 6,26 -{18-[N-(17-carboxyheptadecanoyl)-L-γ-glutamyl]-10-oxo-3,6,12,15-tetraoxa-9,18-diazaocta decanoyl}-[8-(2-amino-2-propanoic acid),34-L-arginine]human glucagon-like peptide 1(7-37), molecular formula is C 187 H 291 N 45 O 59 , molecular weight is 4113.5775, The sequence is H-His 7 -Aib 8 -Glu 9 -Gly 10 -Thr 11 -Phe 12 -Thr 13 -Ser 14 -Asp 15 -Val 16 -Ser 17 -Ser 18 -Tyr 19 -Leu 20 -Glu 21 -Gly 22 -G ln 23 -Ala 24 -Ala 25 -Lys 26 (PEG-PEG-γ-Glu-Octadecanoic acid)-Glu 27 -Phe 28 -Ile 29 -Ala 30 -Trp 31 -Leu 32 -Val 33 -Arg 34 -Gly 35 -Arg 36 -Gly 37 -OH.

CN101133082A提供了固相逐步合成和先固相合成主链再液相修饰得到多肽衍生化合物两种方法,第一种方法容易产生大量的缺省杂质,难以得到高质量的产品,第二种方法需要先RP-HPLC纯化主链,且修饰反应较杂,成本高,收率低。CN108059666B使用了大量的短肽片段进行固相合成,这些片段并没有商业化,定制成本很高,不适合规模化生产。CN101133082A provides two methods of solid-phase gradual synthesis and first solid-phase synthesis of the backbone and then liquid-phase modification to obtain polypeptide derivative compounds. The first method is prone to produce a large amount of default impurities and it is difficult to obtain high-quality products. The second method requires The main chain is purified by RP-HPLC first, and the modification reaction is complicated, the cost is high, and the yield is low. CN108059666B uses a large number of short peptide fragments for solid-phase synthesis. These fragments have not been commercialized, and the cost of customization is high, which is not suitable for large-scale production.

发明内容Summary of the invention

本发明采用Fmoc/tBu固相方法合成,并在一些特殊位置分别使用Fmoc-AEEA-AEEA-OH、Octadecanoic acid(OtBu)-Glu-OtBu、Fmoc-Gln(Trt)-Ala-OH和Fmoc-Aib-Glu(OtBu)-OH等全保护二肽片段,既针对性的解决了产品中的主要缺省杂质,又可以降低生产成本,得到高收率和高质量的产品,适合规模化生产。The present invention adopts Fmoc/tBu solid-phase synthesis method, and uses Fmoc-AEEA-AEEA-OH, Octadecanoic acid(OtBu)-Glu-OtBu, Fmoc-Gln(Trt)-Ala-OH and Fmoc-Aib in some special positions -Glu(OtBu)-OH and other fully protected dipeptide fragments, which not only specifically solve the main default impurities in the product, but also reduce production costs, obtain high-yield and high-quality products, and are suitable for large-scale production.

本发明一个方面提供了一种多肽衍生化合物的合成方法,其包括如下步骤:One aspect of the present invention provides a method for synthesizing a polypeptide derivative compound, which includes the following steps:

步骤1:将Fmoc-Gly-OH连接到固相合成树脂上,得到Fmoc-Gly-树脂;Step 1: Connect Fmoc-Gly-OH to the solid phase synthetic resin to obtain Fmoc-Gly-resin;

步骤2:根据多肽衍生化合物序列,以Fmoc/tBu策略依次偶联Fmoc-Arg 36(pbf)-OH、Fmoc-Gly 35-OH、Fmoc-Arg 34(pbf)-OH、Fmoc-Val 33-OH、Fmoc-Leu 32-OH、Fmoc-Trp 31(Boc)-OH、 Fmoc-Ala 30-OH、Fmoc-Ile 29-OH、Fmoc-Phe 28-OH、Fmoc-Glu 27(OtBu)-OH、Fmoc-Lys 26(X)-OH、Fmoc-Ala 25-OH、Fmoc-Gln 23(Trt)-Ala 24-OH、Fmoc-Gly 22-OH、Fmoc-Glu 21(OtBu)-OH、Fmoc-Leu 20-OH、Fmoc-Tyr 19(tBu)-OH、Fmoc-Ser 18(tBu)-OH、Fmoc-Ser 17(tBu)-OH、Fmoc-Val 16-OH、Fmoc-Asp 15(OtBu)-OH、Fmoc-Ser 14(tBu)-OH、Fmoc-Thr 13(tBu)-OH、Fmoc-Phe 12-OH、Fmoc-Thr 11(tBu)-OH、Fmoc-Gly 10-OH、Fmoc-Aib 8-Glu 9(OtBu)-OH和Y-His 7(Z)-OH,得到多肽衍生化合物主链肽树脂; Step 2: According to the sequence of the peptide derivative compound, Fmoc-Arg 36 (pbf)-OH, Fmoc-Gly 35 -OH, Fmoc-Arg 34 (pbf)-OH, Fmoc-Val 33 -OH are sequentially coupled using Fmoc/tBu strategy , Fmoc-Leu 32 -OH, Fmoc-Trp 31 (Boc)-OH, Fmoc-Ala 30 -OH, Fmoc-Ile 29 -OH, Fmoc-Phe 28 -OH, Fmoc-Glu 27 (OtBu)-OH, Fmoc -Lys 26 (X)-OH, Fmoc-Ala 25 -OH, Fmoc-Gln 23 (Trt)-Ala 24 -OH, Fmoc-Gly 22 -OH, Fmoc-Glu 21 (OtBu)-OH, Fmoc-Leu 20 -OH, Fmoc-Tyr 19 (tBu)-OH, Fmoc-Ser 18 (tBu)-OH, Fmoc-Ser 17 (tBu)-OH, Fmoc-Val 16 -OH, Fmoc-Asp 15 (OtBu)-OH, Fmoc-Ser 14 (tBu)-OH, Fmoc-Thr 13 (tBu)-OH, Fmoc-Phe 12 -OH, Fmoc-Thr 11 (tBu)-OH, Fmoc-Gly 10 -OH, Fmoc-Aib 8 -Glu 9 (OtBu)-OH and Y-His 7 (Z)-OH to obtain the peptide resin of the peptide derivative compound backbone;

步骤3:脱除Lys 26上的保护基,依次偶联Fmoc-AEEA-AEEA-OH和Octadecanoic acid(OtBu)-Glu-OtBu,得到多肽衍生化合物肽树脂; Step 3: Remove the protective group on Lys 26 , and couple Fmoc-AEEA-AEEA-OH and Octadecanoic acid(OtBu)-Glu-OtBu in sequence to obtain peptide resin of peptide derivative compound;

步骤4:裂解多肽衍生化合物肽树脂同时脱除侧链保护基,得到多肽衍生化合物粗品;Step 4: Cleavage the peptide resin of the polypeptide derivative compound and simultaneously remove the side chain protecting groups to obtain the crude polypeptide derivative compound;

任选地,步骤5:以RP-HPLC进行纯化,得到多肽衍生化合物纯品。Optionally, step 5: Purify by RP-HPLC to obtain a pure polypeptide derivative compound.

在本发明的技术方案中,所述的多肽衍生化合物为序列为H-His 7-Aib 8-Glu 9-Gly 10-Thr 11-Phe 12-Thr 13-Ser 14-Asp 15-Val 16-Ser 17-Ser 18-Tyr 19-Leu 20-Glu 21-Gly 22-G ln 23-Ala 24-Ala 25-Lys 26(PEG-PEG-γ-Glu-Octadecanoic acid)-Glu 27-Phe 28-Ile 29-Ala 30-Trp 31-Leu 32-Val 33-Arg 34-Gly 35-Arg 36-Gly 37-OH的化合物。 In the technical scheme of the present invention, the polypeptide derivative compound has a sequence of H-His 7 -Aib 8 -Glu 9 -Gly 10 -Thr 11 -Phe 12 -Thr 13 -Ser 14 -Asp 15 -Val 16 -Ser 17 -Ser 18 -Tyr 19 -Leu 20 -Glu 21 -Gly 22 -G ln 23 -Ala 24 -Ala 25 -Lys 26 (PEG-PEG-γ-Glu-Octadecanoic acid)-Glu 27 -Phe 28 -Ile 29 -Ala 30 -Trp 31 -Leu 32 -Val 33 -Arg 34 -Gly 35 -Arg 36 -Gly 37 -OH compound.

步骤1中使用的固相合成树脂为2-Chlorotrityl resin,Wang resin或者Rink Acid resin;The solid phase synthetic resin used in step 1 is 2-Chlorotrityl resin, Wang resin or Rink Acid resin;

步骤1中使用的树脂替代度为0.3~0.6mmol/g,优选0.4~0.5mmol/g;The resin substitution degree used in step 1 is 0.3-0.6 mmol/g, preferably 0.4-0.5 mmol/g;

步骤1中Fmoc-Gly-树脂的替代度为0.3~0.5mmol/g,优选0.3~0.4mmol/g;The degree of substitution of Fmoc-Gly-resin in step 1 is 0.3-0.5 mmol/g, preferably 0.3-0.4 mmol/g;

步骤1和步骤2中连接Fmoc-Gly-OH以及Fmoc-Arg(pbf)-OH、Fmoc-Gly-OH、Fmoc-Arg(pbf)-OH、Fmoc-Val-OH、Fmoc-Leu-OH、Fmoc-Trp(Boc)-OH、Fmoc-Ala-OH、Fmoc-Ile-OH、Fmoc-Phe-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(X)-OH、Fmoc-Ala-OH、Fmoc-Gln(Trt)-Ala-OH、Fmoc-Gly-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Leu-OH、Fmoc-Tyr(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Val-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Phe-OH、Fmoc-Thr(tBu)-OH、Fmoc-Gly-OH、Fmoc-Aib-Glu(OtBu)-OH和Y-His(Z)-OH的偶联剂为DIC+A或B+A+C,其中A为HOBt或HOAt,B为HBTU、HATU、TBTU或PyBOP,C为DIPEA或TMP。Connect Fmoc-Gly-OH and Fmoc-Arg(pbf)-OH, Fmoc-Gly-OH, Fmoc-Arg(pbf)-OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc in step 1 and step 2. -Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Lys(X)-OH, Fmoc-Ala-OH, Fmoc-Gln(Trt)-Ala-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Phe-OH, Fmoc- The coupling agent of Thr(tBu)-OH, Fmoc-Gly-OH, Fmoc-Aib-Glu(OtBu)-OH and Y-His(Z)-OH is DIC+A or B+A+C, where A is HOBt or HOAt, B is HBTU, HATU, TBTU or PyBOP, and C is DIPEA or TMP.

步骤1中Fmoc-Lys(X)-OH的X是ε氨基保护基,选自Mmt,ivDDe,DDe,Mtt或Alloc;In step 1, X of Fmoc-Lys(X)-OH is an ε amino protecting group, which is selected from Mmt, ivDDe, DDe, Mtt or Alloc;

步骤1中Y-His(Z)-OH的Y和Z都是氨基保护基,Y-His(Z)-OH选自Boc-His(Boc)-OH,Boc-His(trt)-OH或Trt-His(Boc)-OH;In step 1, Y and Z of Y-His(Z)-OH are both amino protecting groups, and Y-His(Z)-OH is selected from Boc-His(Boc)-OH, Boc-His(trt)-OH or Trt -His(Boc)-OH;

步骤3中Octadecanoic acid(OtBu)-Glu-OtBu的合成方法为:The synthesis method of Octadecanoic acid(OtBu)-Glu-OtBu in step 3 is:

3-1)十八烷二酸单叔丁酯在HONB和DIC作用下获得Octadecanoic acid(OtBu)-ONB;3-1) Octadecanoic acid (OtBu)-ONB is obtained under the action of HONB and DIC;

3-2)H-Glu-OtBu和Octadecanoic acid(OtBu)-ONB在碱性水溶液中反应获得Octadecanoic acid(OtBu)-Glu-OtBu,并通过结晶纯化。3-2) H-Glu-OtBu and Octadecanoic acid (OtBu)-ONB are reacted in an alkaline aqueous solution to obtain Octadecanoic acid (OtBu)-Glu-OtBu, which is purified by crystallization.

步骤3中Octadecanoic acid(OtBu)-Glu-OtBu的结晶溶剂为甲醇、乙腈、乙腈和水的组合、四氢呋喃和水的组合,优选为乙腈和水的组合,结晶温度为2~8℃;In step 3, the crystallization solvent of Octadecanoic acid (OtBu)-Glu-OtBu is methanol, acetonitrile, a combination of acetonitrile and water, a combination of tetrahydrofuran and water, preferably a combination of acetonitrile and water, and the crystallization temperature is 2-8°C;

步骤4中肽树脂的裂解时间为2~4h,优选3~4h;The cleavage time of the peptide resin in step 4 is 2 to 4 hours, preferably 3 to 4 hours;

步骤4中裂解温度为18~35℃,优选25~30℃。The pyrolysis temperature in step 4 is 18 to 35°C, preferably 25 to 30°C.

步骤4中的裂解试剂为TFA,苯酚和EDT的水溶液,优选为TFA:苯酚:H 2O:EDT=85-90:3-8:3-8:1-5,v/v。 The lysis reagent in step 4 is an aqueous solution of TFA, phenol and EDT, preferably TFA:phenol:H 2 O:EDT=85-90:3-8:3-8:1-5, v/v.

步骤5中的色谱柱条件为两步纯化,具体包括如下步骤:The column conditions in step 5 are two-step purification, which specifically includes the following steps:

第一步纯化条件:色谱柱:以十八烷基硅烷键合硅胶填料为固定相的色谱柱,Purification conditions for the first step: Chromatographic column: Chromatographic column with octadecylsilane bonded silica filler as the stationary phase,

柱子直径和长度为:10cm×25cm.流动相:A相:0.1%磷酸,用三乙胺调节pH8.5;B相:乙腈溶液。流速:190-210ml/min。检测波长:280nm。梯度:流动相B的质量百分浓度:30-60%,线性梯度洗脱,收集目的峰,目的峰浓缩后进行第二步纯化;The diameter and length of the column are: 10cm×25cm. Mobile phase: Phase A: 0.1% phosphoric acid, adjusted to pH 8.5 with triethylamine; Phase B: Acetonitrile solution. Flow rate: 190-210ml/min. Detection wavelength: 280nm. Gradient: The mass percentage concentration of mobile phase B: 30-60%, linear gradient elution, collect the target peak, and then concentrate the target peak for the second step of purification;

第二步纯化条件:色谱柱:以十八烷基硅烷键合硅胶为固定相的色谱柱,柱子直径和长度为:10cm×25cm,流动相A:0.01%的磷酸水溶液;B相:色谱纯乙腈溶液;流速:190-210ml/min;检测波长:280nm.梯度:流动相B的质量百分浓度:35-45%。Purification conditions for the second step: Chromatographic column: Chromatographic column with octadecylsilane bonded silica gel as the stationary phase, the diameter and length of the column: 10cm×25cm, mobile phase A: 0.01% phosphoric acid aqueous solution; Phase B: chromatographic purity Acetonitrile solution; flow rate: 190-210ml/min; detection wavelength: 280nm. Gradient: mass percentage concentration of mobile phase B: 35-45%.

有益效果Beneficial effect

1、针对关键问题选择性的使用二肽片段,避免了多肽衍生化合物合成过程中缺省杂质Des-Glu 3,Des-Aib 2,Des-AEEA,Des-Gln 23,Des-十八烷二酸,既可以得到高收率高质量的产品,又可以保证原料的商业化、生产成本的降低,适合大规模生产; 1. Selective use of dipeptide fragments for key issues, avoiding the default impurities Des-Glu 3 , Des-Aib 2 , Des-AEEA, Des-Gln 23 and Des-octadecanedioic acid during the synthesis of peptide derivative compounds , Not only can obtain high-yield and high-quality products, but also ensure the commercialization of raw materials and reduce production costs, which is suitable for large-scale production;

2、Octadecanoic acid(OtBu)-Glu-OtBu结晶工艺保证了原料的高质量和供给,利于商业化生产。2. Octadecanoic acid (OtBu)-Glu-OtBu crystallization process ensures the high quality and supply of raw materials, which is conducive to commercial production.

缩写及英文含义Abbreviations and English meanings

缩写及英文Abbreviations and English 含义meaning BocBoc 叔丁氧羰基Tert-Butoxycarbonyl TFATFA 三氟乙酸Trifluoroacetate EDTEDT 1,2-乙二硫醇1,2-ethanedithiol tButBu 叔丁基Tert-butyl TrtTrt 三苯甲基Trityl

HOBt 1-羟基苯并三唑 HONb N-羟基-5-降冰片烯-2,3-二甲酰亚胺 DIC N,N’-二异丙基碳二亚胺 Na 2CO 3 碳酸钠 Na 2SO 4 硫酸钠 THF 四氢呋喃 DCM 二氯甲烷 EA 乙酸乙酯 DMF N,N-二甲基甲酰胺 20%DBLK 20%哌啶/N,N-二甲基甲酰胺 MeOH 甲醇 Aib 2-氨基异丁酸 Octadecanoic acid 十八烷二酸 Octadecanoic acid(OtBu) 十八烷二酸单叔丁酯 HOBt 1-Hydroxybenzotriazole HONb N-hydroxy-5-norbornene-2,3-dicarboximide DIC N,N'-Diisopropylcarbodiimide Na 2 CO 3 Sodium carbonate Na 2 SO 4 Sodium sulfate THF Tetrahydrofuran DCM Dichloromethane EA Ethyl acetate DMF N,N-Dimethylformamide 20% DBLK 20% piperidine/N,N-dimethylformamide MeOH Methanol Aib 2-aminoisobutyric acid Octadecanoic acid Octadecanedioic acid Octadecanoic acid(OtBu) Octadecanedioic acid mono-tert-butyl ester .

附图说明Description of the drawings

图1为Octadecanoic acid(OtBu)-ONB的质谱图。Figure 1 shows the mass spectrum of Octadecanoic acid (OtBu)-ONB.

图2为Octadecanoic acid(OtBu)-ONB HPLC的谱图。Figure 2 shows the HPLC spectrum of Octadecanoic acid (OtBu)-ONB.

图3为Octadecanoic acid(OtBu)-Glu-OtBu质谱。Figure 3 shows the mass spectrum of Octadecanoic acid (OtBu)-Glu-OtBu.

图4为Octadecanoic acid(OtBu)-Glu-OtBu HPLC谱图。Figure 4 shows the HPLC spectrum of Octadecanoic acid (OtBu)-Glu-OtBu.

图5为实施例11的多肽衍生化合物粗品质谱。Figure 5 is a crude quality profile of the polypeptide derivative compound of Example 11.

图6为实施例11多肽衍生化合物粗品HPLC谱图。Figure 6 is the HPLC spectrum of the crude polypeptide derivative compound of Example 11.

图7为实施例14的多肽衍生化合物纯品质谱。Fig. 7 is a pure quality spectrum of the polypeptide derivative compound of Example 14.

图8为实施例14多肽衍生化合物纯品HPLC谱图。Figure 8 is the HPLC spectrum of the pure polypeptide derivative compound of Example 14.

具体实施方式detailed description

实施例1:Octadecanoic acid(OtBu)-ONB的合成Example 1: Synthesis of Octadecanoic acid (OtBu)-ONB

Figure PCTCN2019101606-appb-000001
Figure PCTCN2019101606-appb-000001

将十八烷二酸单叔丁酯(37.1g,100mmol)和HONB(2.1.5g,120mmol)溶解在400ml四氢呋喃中,冰盐浴下加入DIC(23.2ml,150mmol),搅拌反应2h,撤掉冰盐浴,室温搅拌反应4h。过滤,滤液真空浓缩,残留物用乙腈结晶,得到48.04白色固体,收率:87.38%,纯度:98.78%,MS:476.23(M-tBu+H +),531.17(M+H +),554.29(M+Na +)。 Dissolve mono-tert-butyl octadecanedioic acid (37.1g, 100mmol) and HONB (2.1.5g, 120mmol) in 400ml of tetrahydrofuran, add DIC (23.2ml, 150mmol) under an ice-salt bath, stir and react for 2h, then remove In an ice salt bath, the reaction was stirred at room temperature for 4h. Filtration, the filtrate was concentrated in vacuo, the residue was crystallized with acetonitrile to obtain 48.04 white solid, yield: 87.38%, purity: 98.78%, MS: 476.23 (M-tBu+H + ), 531.17 (M+H + ), 554.29 ( M+Na + ).

实施例2:Octadecanoic acid(OtBu)-Glu-OtBu的合成Example 2: Synthesis of Octadecanoic acid (OtBu)-Glu-OtBu

将H-Glu-OtBu(18.17g,89.4mmol)和Na 2CO 3(37.9g,357.6mmol)溶解在300ml H 2O中,室温搅拌下缓慢滴加Octadecanoic acid(OtBu)-ONB(47.486g,89.4mmol)的THF(300ml)溶液,滴加完毕后继续反应16h,真空浓缩掉THF,往水相中补加300ml水,EA萃取2次,合并有机相,1M HCl洗3次,水洗3次,饱和食盐水洗2次,无水Na 2SO 4干燥,真空浓缩,残留物用乙腈和水结晶,结晶温度为5摄氏度,得到43.686白色固体,收率:90.32%,纯度:98.55%,MS:556.12(M+H +),578.31(M+Na +)。 Dissolve H-Glu-OtBu (18.17g, 89.4mmol) and Na 2 CO 3 (37.9g, 357.6mmol) in 300ml H 2 O, add Octadecanoic acid(OtBu)-ONB (47.486g, 89.4mmol) in THF (300ml) solution. After the addition is complete, continue the reaction for 16 hours. The THF is concentrated in vacuo, 300ml of water is added to the aqueous phase, and EA is extracted twice, the organic phases are combined, washed with 1M HCl 3 times, and washed 3 times with water , Washed with saturated brine twice, dried with anhydrous Na 2 SO 4 , concentrated in vacuo, and the residue was crystallized with acetonitrile and water at a crystallization temperature of 5 degrees Celsius to obtain 43.686 white solid, yield: 90.32%, purity: 98.55%, MS: 556.12 (M+H + ), 578.31 (M+Na + ).

实施例3:Octadecanoic acid(OtBu)-Glu-OtBu的合成Example 3: Synthesis of Octadecanoic acid(OtBu)-Glu-OtBu

将H-Glu-OtBu(2.03g,10mmol)和Na 2CO 3(4.24g,40mmol)溶解在40ml H 2O中,室温搅拌下缓慢滴加Octadecanoic acid(OtBu)-ONB(5.31g,10mmol)的THF(40ml)溶液,滴加完毕后继续反应16h,真空浓缩掉THF,往水相中补加40ml水,EA萃取2次,合并有机相,1M HCl洗3次,水洗3次,饱和食盐水洗2次,无水Na 2SO 4干燥,真空浓缩,残留物用甲醇结晶,结晶温度为5摄氏度,得到2.54g白色固体,收率:45.8%,纯度:95.32%,MS:556.12(M+H+),578.31(M+Na+)。 Dissolve H-Glu-OtBu (2.03g, 10mmol) and Na 2 CO 3 (4.24g, 40mmol) in 40ml H 2 O, add Octadecanoic acid(OtBu)-ONB (5.31g, 10mmol) slowly while stirring at room temperature THF (40ml) solution, after the dropwise addition, continue to react for 16h, concentrate to remove THF, add 40ml of water to the aqueous phase, extract 2 times with EA, combine the organic phases, wash 3 times with 1M HCl, wash 3 times with water, saturated salt Washed twice with water, dried with anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was crystallized with methanol at a crystallization temperature of 5 degrees Celsius to obtain 2.54 g of white solid. Yield: 45.8%, purity: 95.32%, MS: 556.12 (M+ H+), 578.31 (M+Na+).

实施例4:Octadecanoic acid(OtBu)-Glu-OtBu的合成Example 4: Synthesis of Octadecanoic acid(OtBu)-Glu-OtBu

将H-Glu-OtBu(2.03g,10mmol)和Na 2CO 3(4.24g,40mmol)溶解在40ml H 2O中,室温搅拌下缓慢滴加Octadecanoic acid(OtBu)-ONB(5.31g,10mmol)的THF(40ml)溶液,滴加完毕后继续反应16h,真空浓缩掉THF,往水相中补加40ml水,EA萃取2次,合并有机相,1M HCl洗3次,水洗3次,饱和食盐水洗2次,无水Na 2SO 4干燥,真空浓缩,残留物用乙腈结晶,结晶温度为5摄氏度,得到2.86g白色固体,收率:51.5%,纯度:96.14%,MS:556.12(M+H+),578.31(M+Na+)。 Dissolve H-Glu-OtBu (2.03g, 10mmol) and Na 2 CO 3 (4.24g, 40mmol) in 40ml H 2 O, add Octadecanoic acid(OtBu)-ONB (5.31g, 10mmol) slowly while stirring at room temperature THF (40ml) solution, after the dropwise addition, continue to react for 16h, concentrate to remove THF, add 40ml of water to the aqueous phase, extract 2 times with EA, combine the organic phases, wash 3 times with 1M HCl, wash 3 times with water, saturated salt Washed twice with water, dried with anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was crystallized with acetonitrile at a crystallization temperature of 5 degrees Celsius to obtain 2.86 g of a white solid. Yield: 51.5%, purity: 96.14%, MS: 556.12 (M+ H+), 578.31 (M+Na+).

实施例5:Octadecanoic acid(OtBu)-Glu-OtBu的合成Example 5: Synthesis of Octadecanoic acid(OtBu)-Glu-OtBu

将H-Glu-OtBu(2.03g,10mmol)和Na 2CO 3(4.24g,40mmol)溶解在40ml H 2O中,室温搅拌下缓慢滴加Octadecanoic acid(OtBu)-ONB(5.31g,10mmol)的THF(40ml)溶液,滴加完毕后继续反应16h,真空浓缩掉THF,往水相中补加40ml水,EA萃取2次,合并有机相,1M HCl洗3次,水洗3次,饱和食盐水洗2次,无水Na 2SO 4干燥,真空浓缩,残留物用四氢呋喃和水结晶,结晶温度为5摄氏度,得到3.24g白色固体,收率:58.4%,纯度:96.81%,MS:556.12(M+H+),578.31(M+Na+)。 Dissolve H-Glu-OtBu (2.03g, 10mmol) and Na 2 CO 3 (4.24g, 40mmol) in 40ml H 2 O, add Octadecanoic acid(OtBu)-ONB (5.31g, 10mmol) slowly while stirring at room temperature THF (40ml) solution, after the dropwise addition, continue to react for 16h, concentrate to remove THF, add 40ml of water to the aqueous phase, extract 2 times with EA, combine the organic phases, wash 3 times with 1M HCl, wash 3 times with water, saturated salt Washed twice with water, dried with anhydrous Na 2 SO 4 and concentrated in vacuo. The residue was crystallized with tetrahydrofuran and water at a crystallization temperature of 5 degrees Celsius to obtain 3.24 g of white solid. Yield: 58.4%, purity: 96.81%, MS: 556.12 ( M+H+), 578.31 (M+Na+).

实施例6:Fmoc-Gly-Wang树脂的合成Example 6: Synthesis of Fmoc-Gly-Wang resin

将0.4mmol/g的Wang树脂(25g,10mmol)加入固相反应柱,DMF洗涤2次,DMF溶胀30min,DMF洗涤2次,抽干。0.4mmol/g Wang resin (25g, 10mmol) was added to the solid phase reaction column, washed twice with DMF, swelled with DMF for 30min, washed twice with DMF, and drained.

将Fmoc-Gly-OH(8.92g,30mmol)和HOBt(4.86g,36mmol)溶解在50ml DMF中,冰浴条件下加入DIC(4.54g,36mmol),搅拌活化5min,将活化液投入上述装有Wang树脂的固相反应柱,氮气搅拌下加入DMAP(0.37g,0.3mmol),室温反应2h,抽干反应液,DMF洗涤6次,DCM洗涤3次,等摩尔比的Ac 2O/吡啶混合溶液封闭6h,抽干,DCM洗涤6次,甲醇收缩3次(5min+5min+10min),真空干燥,取小样测替代度Sub=0.371mmol/g。 Dissolve Fmoc-Gly-OH (8.92g, 30mmol) and HOBt (4.86g, 36mmol) in 50ml DMF, add DIC (4.54g, 36mmol) under ice bath conditions, stir and activate for 5min, and put the activation solution into the above Solid phase reaction column of Wang resin, add DMAP (0.37g, 0.3mmol) under nitrogen stirring, react at room temperature for 2h, drain the reaction solution, wash 6 times with DMF, wash 3 times with DCM, and mix with Ac 2 O/pyridine in equal molar ratio The solution was sealed for 6h, drained, washed with DCM 6 times, methanol was contracted 3 times (5min+5min+10min), dried in vacuum, and a small sample was taken to measure the degree of substitution Sub=0.371mmol/g.

实施例7:Fmoc-Gly-CTC树脂的合成Example 7: Synthesis of Fmoc-Gly-CTC resin

将0.5mmol/g的2-CTC树脂(20g,10mmol)加入固相反应柱,DMF洗涤2次,DMF溶胀30min,DMF洗涤2次,抽干。0.5mmol/g 2-CTC resin (20g, 10mmol) was added to the solid phase reaction column, DMF washed twice, DMF swelled for 30 minutes, DMF washed twice, and drained.

将Fmoc-Gly-OH(8.92g,30mmol)溶解在50ml DMF中,冰浴条件下加入DIPEA(7.75g,60mmol),搅拌活化5min,将活化液投入上述装有2-CTC树脂的固相反应柱,室温氮气搅拌反应2h,向反应液中加入MeOH(6.41g,0.2mol),继续氮气搅拌反应20min,抽干反应液,DMF洗涤6次,DCM洗涤3次,甲醇收缩3次(5min+5min+10min),真空干燥,取小样测替代度Sub=0.412mmol/g。Dissolve Fmoc-Gly-OH (8.92g, 30mmol) in 50ml DMF, add DIPEA (7.75g, 60mmol) under ice bath conditions, stir and activate for 5 minutes, and put the activation solution into the above solid phase reaction with 2-CTC resin Column, room temperature nitrogen stirred and reacted for 2h, MeOH (6.41g, 0.2mol) was added to the reaction solution, and the reaction was continued to stir for 20min with nitrogen. 5min+10min), vacuum drying, take a small sample to measure the degree of substitution Sub=0.412mmol/g.

实施例8:多肽衍生化合物肽树脂的合成Example 8: Synthesis of peptide resin of peptide derivative compound

将0.371mmol/g的Fmoc-Gly-Wang树脂(13.48g,5mmol)加入固相反应柱,DMF洗涤2次,DMF溶胀30min,DMF洗涤2次,20%DBLK脱保护2次(10min+15min),DMF洗涤6次,抽干待用。Add 0.371mmol/g Fmoc-Gly-Wang resin (13.48g, 5mmol) to the solid phase reaction column, wash 2 times with DMF, swell with DMF 30min, wash 2 times with DMF, and deprotect 2 times with 20% DBLK (10min+15min) , DMF wash 6 times, drain and set aside.

将Fmoc-Arg(pbf)-OH(9.73g,15mmol)和HOBt(2.43g,18mmol)溶解在DMF(25ml)中,冰浴条件下加入DIC(2.27g,18mmol),活化5min,将活化液加入到上述固相反应柱中,室温鼓氮气搅拌反应2h,抽掉反应液,DMF洗涤3次,20%DBLK脱保护2次(5min+7min),DMF洗涤6次。Dissolve Fmoc-Arg(pbf)-OH (9.73g, 15mmol) and HOBt (2.43g, 18mmol) in DMF (25ml), add DIC (2.27g, 18mmol) under ice-bath conditions, activate for 5min, change the activation solution It was added to the solid phase reaction column, stirred with nitrogen at room temperature for 2 hours, the reaction solution was removed, DMF washed 3 times, 20% DBLK deprotected 2 times (5min+7min), DMF washed 6 times.

根据多肽衍生化合物序列,按上述方法依次偶联Fmoc-Gly-OH、Fmoc-Arg(pbf)-OH、Fmoc-Val-OH、Fmoc-Leu-OH、Fmoc-Trp(Boc)-OH、Fmoc-Ala-OH、Fmoc-Ile-OH、Fmoc-Phe-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(Mmt)-OH、Fmoc-Ala-OH、Fmoc-Gln(Trt)-Ala-OH、Fmoc-Gly-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Leu-OH、Fmoc-Tyr(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Val-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Ser(tBu)-OH、 Fmoc-Thr(tBu)-OH、Fmoc-Phe-OH、Fmoc-Thr(tBu)-OH、Fmoc-Gly-OH、Fmoc-Aib-Glu(OtBu)-OH和Boc-His(trt)-OH,得到多肽衍生化合物主链肽树脂。According to the sequence of the peptide derivative compound, Fmoc-Gly-OH, Fmoc-Arg(pbf)-OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Trp(Boc)-OH, Fmoc- Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Lys(Mmt)-OH, Fmoc-Ala-OH, Fmoc-Gln(Trt)-Ala-OH , Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc -Val-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Phe-OH, Fmoc-Thr(tBu)-OH, Fmoc-Gly -OH, Fmoc-Aib-Glu(OtBu)-OH and Boc-His(trt)-OH to obtain the peptide resin of the main chain of the peptide derivative compound.

将上述多肽衍生化合物主链肽树脂用DCM洗涤6次,2%TFA/3%TIS/DCM脱Lys 26的Mmt保护(10min×12),DCM洗涤6次,DMF洗涤3次,依次偶联Fmoc-AEEA-AEEA-OH和Octadecanoic acid(OtBu)-Glu-OtBu,DMF洗涤6次,DCM洗涤6次,甲醇收缩3次(5min+5min+10min),真空干燥得到38.61g多肽衍生化合物肽树脂。 Wash the main chain peptide resin of the above polypeptide derivative compound with DCM 6 times, 2%TFA/3%TIS/DCM to remove Lys 26 Mmt protection (10min×12), DCM wash 6 times, DMF wash 3 times, and then couple Fmoc -AEEA-AEEA-OH and Octadecanoic acid (OtBu)-Glu-OtBu, DMF wash 6 times, DCM wash 6 times, methanol shrinkage 3 times (5min+5min+10min), vacuum drying to obtain 38.61g peptide derivative of peptide resin.

实施例9:多肽衍生化合物肽树脂的合成Example 9: Synthesis of peptide resin of peptide derivative compound

将0.371mmol/g的Fmoc-Gly-Wang树脂(13.48g,5mmol)加入固相反应柱,DMF洗涤2次,DMF溶胀30min,DMF洗涤2次,20%DBLK脱保护2次(10min+15min),DMF洗涤6次,抽干待用。Add 0.371mmol/g Fmoc-Gly-Wang resin (13.48g, 5mmol) to the solid phase reaction column, wash 2 times with DMF, swell with DMF 30min, wash 2 times with DMF, and deprotect 2 times with 20% DBLK (10min+15min) , DMF wash 6 times, drain and set aside.

将Fmoc-Arg(pbf)-OH(9.73g,15mmol)和HOBt(2.43g,18mmol)溶解在DMF(25ml)中,冰浴条件下加入DIC(2.27g,18mmol),活化5min,将活化液加入到上述固相反应柱中,室温鼓氮气搅拌反应2h,抽掉反应液,DMF洗涤3次,20%DBLK脱保护2次(5min+7min),DMF洗涤6次。Dissolve Fmoc-Arg(pbf)-OH (9.73g, 15mmol) and HOBt (2.43g, 18mmol) in DMF (25ml), add DIC (2.27g, 18mmol) under ice-bath conditions, activate for 5min, change the activation solution It was added to the solid phase reaction column, stirred with nitrogen at room temperature for 2 hours, the reaction solution was removed, DMF washed 3 times, 20% DBLK deprotected 2 times (5min+7min), DMF washed 6 times.

根据多肽衍生化合物序列,按上述方法依次偶联Fmoc-Gly-OH、Fmoc-Arg(pbf)-OH、Fmoc-Val-OH、Fmoc-Leu-OH、Fmoc-Trp(Boc)-OH、Fmoc-Ala-OH、Fmoc-Ile-OH、Fmoc-Phe-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(Mmt)-OH、Fmoc-Ala-OH、Fmoc-Ala-OH,Fmoc-Gln(Trt)-OH、Fmoc-Gly-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Leu-OH、Fmoc-Tyr(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Val-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Phe-OH、Fmoc-Thr(tBu)-OH、Fmoc-Gly-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Aib-OH和Boc-His(trt)-OH,得到多肽衍生化合物主链肽树脂。According to the sequence of the peptide derivative compound, Fmoc-Gly-OH, Fmoc-Arg(pbf)-OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Trp(Boc)-OH, Fmoc- Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Lys(Mmt)-OH, Fmoc-Ala-OH, Fmoc-Ala-OH, Fmoc-Gln( Trt)-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser(tBu) -OH, Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Phe-OH, Fmoc-Thr(tBu)-OH , Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Aib-OH and Boc-His(trt)-OH to obtain peptide resins for the main chain of peptide derivatives.

将上述多肽衍生化合物主链肽树脂用DCM洗涤6次,2%TFA/3%TIS/DCM脱Lys26的Mmt保护(10min×12),DCM洗涤6次,DMF洗涤3次,依次偶联Fmoc-AEEA-OH、Fmoc-AEEA-OH、Fmoc-Glu-OtBu和Octadecanoic acid-OtBu,DMF洗涤6次,DCM洗涤6次,甲醇收缩3次(5min+5min+10min),真空干燥得到38.51g多肽衍生化合物肽树脂。Wash the main chain peptide resin of the above polypeptide derivative compound with DCM 6 times, 2%TFA/3%TIS/DCM to remove Lys26 Mmt protection (10min×12), wash 6 times with DCM, wash 3 times with DMF, and then couple Fmoc- AEEA-OH, Fmoc-AEEA-OH, Fmoc-Glu-OtBu and Octadecanoic acid-OtBu, DMF washing 6 times, DCM washing 6 times, methanol shrinkage 3 times (5min+5min+10min), vacuum drying to obtain 38.51g peptide derivative Compound peptide resin.

实施例10:多肽衍生化合物肽树脂的合成Example 10: Synthesis of peptide resin of peptide derivative compound

将0.412mmol/g的Fmoc-Gly-CTC树脂(12.14g,5mmol)加入固相反应柱,DMF洗涤2次,DMF溶胀30min,DMF洗涤2次,20%DBLK脱保护2次(10min+15min),DMF洗涤6次,抽干待用。Add 0.412mmol/g Fmoc-Gly-CTC resin (12.14g, 5mmol) to the solid phase reaction column, wash 2 times with DMF, swell with DMF 30min, wash 2 times with DMF, and deprotect 2 times with 20% DBLK (10min+15min) , DMF wash 6 times, drain and set aside.

将Fmoc-Arg(pbf)-OH(9.73g,15mmol)、PyBOP(7.81g,15mmol)和HOBt(2.43g,18mmol)溶解在DMF(25ml)中,冰浴条件下加入DIPEA(2.58g,20mmol),活化5min,将活化液加入到上述固相反应柱中,室温鼓氮气搅拌反应2h,抽掉反应液,DMF洗涤3次,20%DBLK脱保护2次(5min+7min),DMF洗涤6次。Dissolve Fmoc-Arg(pbf)-OH (9.73g, 15mmol), PyBOP (7.81g, 15mmol) and HOBt (2.43g, 18mmol) in DMF (25ml), add DIPEA (2.58g, 20mmol) under ice bath conditions ), activate for 5min, add the activation solution to the above solid phase reaction column, bubbling nitrogen at room temperature and stirring for 2h, extract the reaction solution, DMF wash 3 times, 20% DBLK deprotection 2 times (5min+7min), DMF wash 6 Times.

根据多肽衍生化合物序列,按上述方法依次偶联Fmoc-Gly-OH、Fmoc-Arg(pbf)-OH、Fmoc-Val-OH、Fmoc-Leu-OH、Fmoc-Trp(Boc)-OH、Fmoc-Ala-OH、Fmoc-Ile-OH、Fmoc-Phe-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(Alloc)-OH、Fmoc-Ala-OH、Fmoc-Gln(Trt)–Ala-OH、Fmoc-Gly-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Leu-OH、Fmoc-Tyr(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Val-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Phe-OH、Fmoc-Thr(tBu)-OH、Fmoc-Gly-OH、Fmoc-Aib-Glu(OtBu)-OH和Boc-His(Boc)-OH,得到多肽衍生化合物主链肽树脂。According to the sequence of the peptide derivative compound, Fmoc-Gly-OH, Fmoc-Arg(pbf)-OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Trp(Boc)-OH, Fmoc- Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Lys(Alloc)-OH, Fmoc-Ala-OH, Fmoc-Gln(Trt)--Ala-OH , Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc -Val-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Phe-OH, Fmoc-Thr(tBu)-OH, Fmoc-Gly -OH, Fmoc-Aib-Glu(OtBu)-OH and Boc-His(Boc)-OH to obtain the peptide resin of the peptide derivative compound backbone.

将上述多肽衍生化合物主链肽树脂用DCM洗涤6次,2%TFA/3%TIS/DCM脱Lys26的Mmt保护(10min×12),DCM洗涤6次,DMF洗涤3次,依次偶联Fmoc-AEEA-AEEA-OH和Octadecanoic acid(OtBu)-Glu-OtBu,DMF洗涤6次,DCM洗涤6次,甲醇收缩3次(5min+5min+10min),真空干燥得到34.59g多肽衍生化合物肽树脂。Wash the main chain peptide resin of the above polypeptide derivative compound with DCM 6 times, 2%TFA/3%TIS/DCM to remove Lys26 Mmt protection (10min×12), wash 6 times with DCM, wash 3 times with DMF, and then couple Fmoc- AEEA-AEEA-OH and Octadecanoic acid (OtBu)-Glu-OtBu were washed with DMF 6 times, DCM washed 6 times, methanol contracted 3 times (5min+5min+10min), and vacuum dried to obtain 34.59g of peptide resin derived from peptides.

实施例11:多肽衍生化合物肽树脂的裂解Example 11: Cleavage of peptide resins of peptide derivatives

将实施例8的38.61g多肽衍生化合物肽树脂加入到500ml的圆底烧瓶中,加入400ml冰冻2~4h裂解液(TFA:Phenol:H 2O:EDT=87.5:5:5:2.5,v/v),18℃下搅拌反应2~4h,过滤,滤液用4L冰冻无水乙醚沉降,离心收集固体,无水乙醚洗涤3次,真空干燥后得到19.58g多肽衍生化合物粗品,收率:95.2%,纯度:72.66%,MS:4111.846(M+H +)。 The 38.61g polypeptide derivative compound peptide resin of Example 8 was added to a 500ml round-bottomed flask, and 400ml of frozen lysis solution (TFA:Phenol:H 2 O:EDT=87.5:5:5:2.5, v/ v) Stir the reaction at 18℃ for 2~4h, filter, settle the filtrate with 4L frozen anhydrous ether, collect the solid by centrifugation, wash 3 times with anhydrous ether, and dry in vacuum to obtain 19.58g crude peptide derivative compound, yield: 95.2% , Purity: 72.66%, MS: 4111.846 (M+H + ).

实施例12:多肽衍生化合物肽树脂的裂解Example 12: Cleavage of peptide resins of peptide derivatives

将实施例9的38.51g多肽衍生化合物肽树脂加入到500ml的圆底烧瓶中,加入400ml冰冻2~4h裂解液(TFA:Phenol:H 2O:EDT=87.5:5:5:2.5,v/v),35℃下搅拌反应2~4h,过滤,滤液用4L冰冻无水乙醚沉降,离心收集固体,无水乙醚洗涤3次,真空干燥后得到19.58g多肽衍生化合物粗品,收率:93.2%,纯度:43.37%,MS:4111.846(M+H +)。 Add 38.51g of the polypeptide derivative compound peptide resin of Example 9 to a 500ml round bottom flask, and add 400ml of frozen lysis solution (TFA:Phenol:H 2 O:EDT=87.5:5:5:2.5, v/ v) Stir the reaction at 35℃ for 2~4h, filter, settle the filtrate with 4L ice-free anhydrous ether, collect the solid by centrifugation, wash 3 times with anhydrous ether, and dry in vacuum to obtain 19.58g crude peptide derivative compound, yield: 93.2% , Purity: 43.37%, MS: 4111.846 (M+H + ).

实施例13:多肽衍生化合物肽树脂的裂解Example 13: Cleavage of peptide resins of peptide derivatives

将实施例10的34.59g多肽衍生化合物肽树脂加入到500ml的圆底烧瓶中,加入350ml冰冻2~4h裂解液(TFA:DTT:H 2O=90:5:5,v/v),30℃下搅拌反应2~4h,过滤,滤液用4L冰冻无水乙醚沉降,离心收集固体,无水乙醚洗涤3次,真空干燥后得到17.69g多肽衍生化合物粗品,收率:86.0%,纯度:70.79%,MS:4111.846(M+H +)。 Add 34.59g of the polypeptide derivative compound peptide resin of Example 10 to a 500ml round bottom flask, add 350ml of frozen lysis solution (TFA:DTT:H 2 O=90:5:5, v/v) for 2 to 4 hours, 30 The reaction was stirred at ℃ for 2~4h, filtered, the filtrate was settled with 4L of ice-free anhydrous ether, the solid was collected by centrifugation, washed with anhydrous ether 3 times, and vacuum dried to obtain 17.69g of crude peptide derivative compound, yield: 86.0%, purity: 70.79 %, MS: 4111.846 (M+H + ).

实施例14:RP-HPLC制备多肽衍生化合物纯品Example 14: Preparation of pure polypeptide derivative compounds by RP-HPLC

取多肽衍生化合物19.58克,用400ml水溶解,用氨水助溶,pH8.0-9.0,样品过0.45μm滤膜后,进行反相纯化。Take 19.58 g of the peptide derivative compound, dissolve it in 400 ml of water, and aid the dissolution with ammonia water, pH 8.0-9.0, the sample is filtered through a 0.45 μm membrane, and then purified by reverse phase.

第一步纯化条件:色谱柱:以十八烷基硅烷键合硅胶填料为固定相的色谱柱,Purification conditions for the first step: Chromatographic column: Chromatographic column with octadecylsilane bonded silica filler as the stationary phase,

柱子直径和长度为:10cm×25cm.流动相:A相:0.1%磷酸,用三乙胺调节pH8.5;B相:乙腈溶液。流速:190-210ml/min。检测波长:280nm。梯度:流动相B的质量百分浓度:30-60%,梯度处理时间60min。进样量为19.58g;The diameter and length of the column are: 10cm×25cm. Mobile phase: Phase A: 0.1% phosphoric acid, adjusted to pH 8.5 with triethylamine; Phase B: Acetonitrile solution. Flow rate: 190-210ml/min. Detection wavelength: 280nm. Gradient: The mass percentage concentration of mobile phase B: 30-60%, and the gradient processing time is 60 min. The injection volume is 19.58g;

纯化过程:色谱柱以上的乙腈冲洗干净后上样,上样量为溶解过滤之后的样品溶液。线性梯度洗脱,收集目的峰,纯度为90%左右,将收集好的肽溶液放置收集瓶中备用;Purification process: Rinse the acetonitrile above the chromatographic column and load the sample. The sample load is the sample solution after dissolution and filtration. Linear gradient elution, collect the target peak, the purity is about 90%, put the collected peptide solution in the collection bottle for use;

第二步纯化条件:色谱柱:以十八烷基硅烷键合硅胶为固定相的色谱柱,柱子直径和长度为:10cm×25cm,流动相A:0.01%的磷酸水溶液;B相:色谱纯乙腈溶液;流速:190-210ml/min;检测波长:280nm.梯度:流动相B的质量百分浓度:35-45%,梯度处理时间45-60min;进样量为第一步纯化浓缩之后含量99%的样品溶液;Purification conditions for the second step: Chromatographic column: Chromatographic column with octadecylsilane bonded silica gel as the stationary phase, the diameter and length of the column: 10cm×25cm, mobile phase A: 0.01% phosphoric acid aqueous solution; Phase B: chromatographic purity Acetonitrile solution; Flow rate: 190-210ml/min; Detection wavelength: 280nm. Gradient: Mass percentage concentration of mobile phase B: 35-45%, gradient processing time 45-60min; The injection volume is the content after the first purification and concentration 99% sample solution;

纯化过程:将色谱柱以上的乙腈冲洗干净后上样,上样量为第一步纯化浓缩之后含量90%的样品溶液,线性梯度洗脱,收集目的峰,纯度为99%左右,将收集好的肽溶液放置收集瓶中备用;Purification process: Rinse the acetonitrile above the chromatographic column and load the sample. The sample amount is the 90% sample solution after purification and concentration in the first step. Linear gradient elution is used to collect the target peak with a purity of about 99% and it will be collected. Place the peptide solution in the collection bottle for use;

脱盐:色谱柱:以十八烷基硅烷键合硅胶为固定相的色谱柱,柱子直径和长度为:10cm×25cm,流动相A:水溶液;B相:色谱纯乙腈溶液;流速:190-210ml/min;检测波长:280nm.梯度:流动相B的质量百分浓度:35-45%,梯度处理时间45min;Desalination: Chromatographic column: Column with octadecylsilane bonded silica gel as stationary phase, column diameter and length: 10cm×25cm, mobile phase A: aqueous solution; phase B: chromatographic pure acetonitrile solution; flow rate: 190-210ml /min; Detection wavelength: 280nm. Gradient: Mass percentage concentration of mobile phase B: 35-45%, gradient processing time 45min;

纯化过程:将色谱柱以上的乙腈冲洗干净后上样,上样量为第二步纯化浓缩之后含量99%的样品溶液,线性梯度洗脱,收集目的峰,将收集好的肽溶液冻干;得到精肽6.0克,纯度:99.84%,总收率:29.18%,MS:2057.209(M+2H +),4111.991(M+H +)。 Purification process: Rinse the acetonitrile above the chromatographic column and load the sample. The sample amount is 99% of the sample solution after purification and concentration in the second step, linear gradient elution, collect the target peak, and freeze-dry the collected peptide solution; Obtain 6.0 g of refined peptide, purity: 99.84%, total yield: 29.18%, MS: 2057.209 (M+2H + ), 4111.991 (M+H + ).

Claims (10)

一种多肽衍生化合物的合成方法,其包括如下步骤:A method for synthesizing polypeptide derivative compounds, which includes the following steps: 步骤1:将Fmoc-Gly-OH连接到固相合成树脂上,得到Fmoc-Gly-树脂;Step 1: Connect Fmoc-Gly-OH to the solid phase synthetic resin to obtain Fmoc-Gly-resin; 步骤2:根据多肽衍生化合物序列,以Fmoc/tBu策略依次偶联Fmoc-Arg(pbf)-OH、Fmoc-Gly-OH、Fmoc-Arg(pbf)-OH、Fmoc-Val-OH、Fmoc-Leu-OH、Fmoc-Trp(Boc)-OH、Fmoc-Ala-OH、Fmoc-Ile-OH、Fmoc-Phe-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Lys(X)-OH、Fmoc-Ala-OH、Fmoc-Gln(Trt)-Ala-OH、Fmoc-Gly-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Leu-OH、Fmoc-Tyr(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Val-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Phe-OH、Fmoc-Thr(tBu)-OH、Fmoc-Gly-OH、Fmoc-Aib-Glu(OtBu)-OH和Y-His(Z)-OH,得到多肽衍生化合物主链肽树脂;Step 2: According to the sequence of the peptide derivative compound, Fmoc-Arg(pbf)-OH, Fmoc-Gly-OH, Fmoc-Arg(pbf)-OH, Fmoc-Val-OH, Fmoc-Leu are sequentially coupled with Fmoc/tBu strategy -OH, Fmoc-Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Lys(X)-OH, Fmoc- Ala-OH, Fmoc-Gln(Trt)-Ala-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Ser(tBu )-OH, Fmoc-Ser(tBu)-OH, Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Phe- OH, Fmoc-Thr(tBu)-OH, Fmoc-Gly-OH, Fmoc-Aib-Glu(OtBu)-OH and Y-His(Z)-OH to obtain peptide resins of peptide derivatives; 步骤3:脱除Lys 26上的保护基,依次偶联Fmoc-AEEA-AEEA-OH和Octadecanoic acid(OtBu)-Glu-OtBu,得到多肽衍生化合物肽树脂; Step 3: Remove the protective group on Lys 26 , and couple Fmoc-AEEA-AEEA-OH and Octadecanoic acid(OtBu)-Glu-OtBu in sequence to obtain peptide resin of peptide derivative compound; 步骤4:裂解多肽衍生化合物肽树脂同时脱除侧链保护基,得到多肽衍生化合物粗品;Step 4: Cleavage the peptide resin of the polypeptide derivative compound and simultaneously remove the side chain protecting groups to obtain the crude polypeptide derivative compound; 任选地,步骤5:以RP-HPLC进行纯化,得到多肽衍生化合物纯品;Optionally, Step 5: Purify by RP-HPLC to obtain a pure product of the polypeptide derivative compound; 其中X,Y和Z为独立选择的氨基保护基;Wherein X, Y and Z are independently selected amino protecting groups; 所述的多肽衍生化合物为序列为H-His 7-Aib 8-Glu 9-Gly 10-Thr 11-Phe 12-Thr 13-Ser 14-Asp 15-Val 16-Ser 17-Ser 18-Tyr 19-Leu 20-Glu 21-Gly 22-Gln 23-Ala 24-Ala 25-Lys 26(PEG-PEG-γ-Glu-Octadecanoic acid)-Glu 27-Phe 28-Ile 29-Ala 30-Trp 31-Leu 32-Val 33-Arg 34-Gly 35-Arg 36-Gly 37-OH的化合物。 The polypeptide derivative compound has a sequence of H-His 7 -Aib 8 -Glu 9 -Gly 10 -Thr 11 -Phe 12 -Thr 13 -Ser 14 -Asp 15 -Val 16 -Ser 17 -Ser 18 -Tyr 19- Leu 20 -Glu 21 -Gly 22 -Gln 23 -Ala 24 -Ala 25 -Lys 26 (PEG-PEG-γ-Glu-Octadecanoic acid)-Glu 27 -Phe 28 -Ile 29 -Ala 30 -Trp 31 -Leu 32 -Val 33 -Arg 34 -Gly 35 -Arg 36 -Gly 37 -OH compound. 根据权利要求1所述的合成方法,步骤1中使用的固相合成树脂选自2-Chlorotrityl resin,Wang resin或者Rink Acid resin,优选地,固相合成树脂替代度为0.3~0.6mmol/g,更优选为0.4~0.5mmol/g。The synthesis method according to claim 1, wherein the solid phase synthetic resin used in step 1 is selected from 2-Chlorotrityl resin, Wang resin or Rink Acid resin. Preferably, the solid phase synthetic resin substitution degree is 0.3-0.6 mmol/g, More preferably, it is 0.4 to 0.5 mmol/g. 根据权利要求1-2任一项所述的合成方法,X选自Mmt,ivDDe,DDe,Mtt或Alloc;The synthesis method according to any one of claims 1-2, X is selected from Mmt, ivDDe, DDe, Mtt or Alloc; Y-His(Z)-OH选自Boc-His(Boc)-OH,Boc-His(trt)-OH或Trt-His(Boc)-OH。Y-His(Z)-OH is selected from Boc-His(Boc)-OH, Boc-His(trt)-OH or Trt-His(Boc)-OH. 根据权利要求1-3任一项所述的合成方法,步骤1和步骤2中连接Fmoc-Gly-OH以及Fmoc-Arg(pbf)-OH、Fmoc-Gly-OH、Fmoc-Arg(pbf)-OH、Fmoc-Val-OH、Fmoc-Leu-OH、Fmoc-Trp(Boc)-OH、Fmoc-Ala-OH、Fmoc-Ile-OH、Fmoc-Phe-OH、Fmoc-Glu(OtBu)-OH、 Fmoc-Lys(X)-OH、Fmoc-Ala-OH、Fmoc-Gln(Trt)-Ala-OH、Fmoc-Gly-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Leu-OH、Fmoc-Tyr(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Val-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Phe-OH、Fmoc-Thr(tBu)-OH、Fmoc-Gly-OH、Fmoc-Aib-Glu(OtBu)-OH和Y-His(Z)-OH的偶联剂为DIC+A或B+A+C,其中A为HOBt或HOAt,B为HBTU、HATU、TBTU或PyBOP,C为DIPEA或TMP。The synthesis method according to any one of claims 1 to 3, wherein Fmoc-Gly-OH and Fmoc-Arg(pbf)-OH, Fmoc-Gly-OH, Fmoc-Arg(pbf)- OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Trp(Boc)-OH, Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Lys(X)-OH, Fmoc-Ala-OH, Fmoc-Gln(Trt)-Ala-OH, Fmoc-Gly-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Tyr (tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Val-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc- Coupling of Thr(tBu)-OH, Fmoc-Phe-OH, Fmoc-Thr(tBu)-OH, Fmoc-Gly-OH, Fmoc-Aib-Glu(OtBu)-OH and Y-His(Z)-OH The agent is DIC+A or B+A+C, where A is HOBt or HOAt, B is HBTU, HATU, TBTU or PyBOP, and C is DIPEA or TMP. 根据权利要求1-4任一项所述的合成方法,步骤3中Octadecanoic acid(OtBu)-Glu-OtBu的合成方法为:The synthesis method according to any one of claims 1-4, the synthesis method of Octadecanoic acid (OtBu)-Glu-OtBu in step 3 is: 3-1)十八烷二酸单叔丁酯在HONB和DIC作用下获得Octadecanoic acid(OtBu)-ONB;3-1) Octadecanoic acid (OtBu)-ONB is obtained under the action of HONB and DIC; 3-2)H-Glu-OtBu和Octadecanoic acid(OtBu)-ONB在碱性水溶液中反应获得Octadecanoic acid(OtBu)-Glu-OtBu,并通过结晶纯化。3-2) H-Glu-OtBu and Octadecanoic acid (OtBu)-ONB are reacted in an alkaline aqueous solution to obtain Octadecanoic acid (OtBu)-Glu-OtBu, which is purified by crystallization. 根据权利要求1-5任一项所述的合成方法,步骤3中Octadecanoic acid(OtBu)-Glu-OtBu的结晶溶剂为甲醇、乙腈、乙腈和水的组合、四氢呋喃和水的组合,优选为乙腈和水的组合,结晶温度为2~8℃。The synthesis method according to any one of claims 1 to 5, in step 3, the crystallization solvent of Octadecanoic acid (OtBu)-Glu-OtBu is methanol, acetonitrile, a combination of acetonitrile and water, a combination of tetrahydrofuran and water, preferably acetonitrile When combined with water, the crystallization temperature is 2~8℃. 根据权利要求1-6任一项所述的合成方法,步骤4中的裂解时间为2~4h,优选3~4h。According to the synthesis method of any one of claims 1-6, the lysis time in step 4 is 2 to 4 hours, preferably 3 to 4 hours. 根据权利要求1-7任一项所述的合成方法,步骤4中的裂解温度为18~35℃,优选25~30℃。The synthesis method according to any one of claims 1-7, the cracking temperature in step 4 is 18-35°C, preferably 25-30°C. 根据权利要求1-8任一项所述的合成方法,步骤4中的裂解试剂为TFA,苯酚和EDT的水溶液,优选为TFA:苯酚:H 2O:EDT=85-90:3-8:3-8:1-5,v/v。 The synthesis method according to any one of claims 1-8, the lysis reagent in step 4 is an aqueous solution of TFA, phenol and EDT, preferably TFA:phenol:H 2 O:EDT=85-90:3-8: 3-8:1-5, v/v. 根据权利要求1-9任一项所述的合成方法,步骤5中的色谱柱条件为两步纯化,具体包括如下步骤:According to the synthesis method of any one of claims 1-9, the chromatographic column conditions in step 5 are two-step purification, which specifically includes the following steps: 第一步纯化条件:色谱柱:以十八烷基硅烷键合硅胶填料为固定相的色谱柱,Purification conditions for the first step: Chromatographic column: Chromatographic column with octadecylsilane bonded silica filler as the stationary phase, 柱子直径和长度为:10cm×25cm.流动相:A相:0.1%磷酸,用三乙胺调节pH8.5;B相:乙腈溶液,流速:190-210ml/min,检测波长:280nm,梯度:流动相B的质量百分浓度:30-60%,线性梯度洗脱,收集目的峰,目的峰浓缩后进行第二步纯化;The diameter and length of the column are: 10cm×25cm. Mobile phase: Phase A: 0.1% phosphoric acid, pH 8.5 adjusted with triethylamine; Phase B: Acetonitrile solution, flow rate: 190-210ml/min, detection wavelength: 280nm, gradient: The mass percentage concentration of mobile phase B: 30-60%, linear gradient elution, collect the target peak, the target peak is concentrated and then purified in the second step; 第二步纯化条件:色谱柱:以十八烷基硅烷键合硅胶为固定相的色谱柱,柱子直径和长度为:10cm×25cm,流动相A:0.01%的磷酸水溶液;B相:色谱纯乙腈溶液;流速:190-210ml/min;检测波长:280nm.梯度:流动相B的质量百分浓度:35-45%。Purification conditions for the second step: Chromatographic column: Chromatographic column with octadecylsilane bonded silica gel as the stationary phase, the diameter and length of the column: 10cm×25cm, mobile phase A: 0.01% phosphoric acid aqueous solution; Phase B: chromatographic purity Acetonitrile solution; flow rate: 190-210ml/min; detection wavelength: 280nm. Gradient: mass percentage concentration of mobile phase B: 35-45%.
PCT/CN2019/101606 2019-03-29 2019-08-20 Method for synthesizing polypeptide-derived compound Ceased WO2020199461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910249711.5 2019-03-29
CN201910249711.5A CN111748019A (en) 2019-03-29 2019-03-29 Synthetic method of polypeptide derivative compound

Publications (1)

Publication Number Publication Date
WO2020199461A1 true WO2020199461A1 (en) 2020-10-08

Family

ID=72664738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101606 Ceased WO2020199461A1 (en) 2019-03-29 2019-08-20 Method for synthesizing polypeptide-derived compound

Country Status (2)

Country Link
CN (1) CN111748019A (en)
WO (1) WO2020199461A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986440A (en) * 2021-03-02 2021-06-18 吉尔多肽生物制药(大连市)有限公司 Detection method of Fmoc-Cys (trt) -OH related substances
WO2024112617A3 (en) * 2022-11-21 2024-06-27 Eli Lilly And Company Process for preparing a gip/glp1 dual agonist

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946130A (en) * 2021-02-03 2021-06-11 江苏沿海化学品检测技术服务有限公司 Method for detecting Fmoc-Ser (tbu) -OH related substances based on high performance liquid chromatography
CN113759048B (en) * 2021-10-14 2022-06-21 成都普康唯新生物科技有限公司 A kind of test method of octadecanedioic acid mono-tert-butyl ester

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101133082A (en) * 2005-03-18 2008-02-27 诺和诺德公司 Acylated GLP-1 compounds
CN108059666A (en) * 2018-02-10 2018-05-22 润辉生物技术(威海)有限公司 A kind of method that solid-liquid combination prepares Suo Malu peptides
CN108359006A (en) * 2018-05-25 2018-08-03 扬子江药业集团四川海蓉药业有限公司 A kind of preparation method of Suo Malu peptides
CN108676087A (en) * 2018-07-24 2018-10-19 杭州诺泰澳赛诺医药技术开发有限公司 A kind of synthetic method of Suo Malu peptides
CN109180801A (en) * 2018-11-01 2019-01-11 山东汉泰生物科技有限公司 A method of synthesis Suo Malu peptide
CN109369798A (en) * 2018-12-25 2019-02-22 苏州天马医药集团天吉生物制药有限公司 A method of synthesis Suo Malu peptide
CN109456401A (en) * 2018-12-03 2019-03-12 成都诺和晟泰生物科技有限公司 A kind of synthetic method of Suo Malu peptide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20140100479A (en) * 2014-09-23 2016-05-05 Novetide, Ltd., Synthesis of liraglutide
CN105753964A (en) * 2014-12-16 2016-07-13 深圳翰宇药业股份有限公司 Preparation method of semaglutide and intermediate of semaglutide
CN106928343A (en) * 2015-12-30 2017-07-07 深圳翰宇药业股份有限公司 The preparation method of Suo Malu peptides
CN107286234B (en) * 2016-03-31 2021-06-08 深圳翰宇药业股份有限公司 Method for reducing and/or removing default peptide in polypeptide solid phase synthesis

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101133082A (en) * 2005-03-18 2008-02-27 诺和诺德公司 Acylated GLP-1 compounds
CN104402989A (en) * 2005-03-18 2015-03-11 诺和诺德公司 Acylated glp-1 compounds
CN108059666A (en) * 2018-02-10 2018-05-22 润辉生物技术(威海)有限公司 A kind of method that solid-liquid combination prepares Suo Malu peptides
CN108359006A (en) * 2018-05-25 2018-08-03 扬子江药业集团四川海蓉药业有限公司 A kind of preparation method of Suo Malu peptides
CN108676087A (en) * 2018-07-24 2018-10-19 杭州诺泰澳赛诺医药技术开发有限公司 A kind of synthetic method of Suo Malu peptides
CN109180801A (en) * 2018-11-01 2019-01-11 山东汉泰生物科技有限公司 A method of synthesis Suo Malu peptide
CN109456401A (en) * 2018-12-03 2019-03-12 成都诺和晟泰生物科技有限公司 A kind of synthetic method of Suo Malu peptide
CN109369798A (en) * 2018-12-25 2019-02-22 苏州天马医药集团天吉生物制药有限公司 A method of synthesis Suo Malu peptide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALBERICIO, F. ET AL.: "Choosing the Right Coupling Reagent for Peptides: A Twenty-Five-Year Journey.", ORG. PROCESS RES. DEV., vol. 22, 21 June 2018 (2018-06-21), XP055739706, DOI: 20191203105742A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986440A (en) * 2021-03-02 2021-06-18 吉尔多肽生物制药(大连市)有限公司 Detection method of Fmoc-Cys (trt) -OH related substances
WO2024112617A3 (en) * 2022-11-21 2024-06-27 Eli Lilly And Company Process for preparing a gip/glp1 dual agonist

Also Published As

Publication number Publication date
CN111748019A (en) 2020-10-09

Similar Documents

Publication Publication Date Title
EP3398960B1 (en) Method for preparing semaglutide
US11518794B2 (en) Synthesis method for liraglutide with low racemate impurity
CN106699871B (en) Preparation method of liraglutide
CN103864918B (en) A kind of solid phase synthesis process of Arg34Lys26-(N-EPSILON-(N-ALPHA-Palmitoyl-L-GAMMA-glutamyl))-GLP-1[7-37]
WO2020199461A1 (en) Method for synthesizing polypeptide-derived compound
WO2017114382A1 (en) Method for synthesizing c-terminal modified peptide
CN112010961B (en) Solid-liquid synthesis method of somalupeptide
CN104910269B (en) A method of synthesis Teriparatide
WO2023089594A1 (en) Process for the preparation of tirzepatide or pharmaceutically acceptable salt thereof
KR20100036326A (en) Process for the production of pramlintide
WO2021143073A1 (en) Preparation method for semaglutide
CN115181174A (en) Preparation method of Tirzepatide
CN113754753A (en) Synthetic method of somaglutide
CN107022021A (en) A kind of solid-phase synthesis of Liraglutide
CN111087462B (en) Solid-phase synthesis method of abamectin
CN114685645B (en) A synthetic method of semaglutide
CN112321699A (en) Synthesis method of semaglutide
CN114249810B (en) A synthetic method of semaglutide
CN110642936B (en) Method for preparing teriparatide
CN112876541B (en) Solid-phase synthesis method of degarelix
CN114230653B (en) Preparation method of chlorotoxin
WO2020077781A1 (en) Preparation method for synthesis of polypeptide containing two pairs of disulfide bonds and kit thereof, and method for preparing plecanatide
CN111233980B (en) Fragment method synthesis method of goserelin
CN116836258A (en) Solid phase synthesis method of liraglutide
CN113173987B (en) Method for synthesizing linatide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922507

Country of ref document: EP

Kind code of ref document: A1