WO2020199225A1 - Rate matching for different transmission modes - Google Patents

Rate matching for different transmission modes Download PDF

Info

Publication number
WO2020199225A1
WO2020199225A1 PCT/CN2019/081621 CN2019081621W WO2020199225A1 WO 2020199225 A1 WO2020199225 A1 WO 2020199225A1 CN 2019081621 W CN2019081621 W CN 2019081621W WO 2020199225 A1 WO2020199225 A1 WO 2020199225A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
rate matching
full
duplex portion
channel resource
Prior art date
Application number
PCT/CN2019/081621
Other languages
French (fr)
Inventor
Yuwei REN
Chao Wei
Min Huang
Liangming WU
Qiaoyu Li
Yu Zhang
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/081621 priority Critical patent/WO2020199225A1/en
Publication of WO2020199225A1 publication Critical patent/WO2020199225A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving

Definitions

  • aspects of the present disclosure generally relate to wireless communication, and more particularly to techniques and apparatuses for rate matching for different transmission modes.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a new radio (NR) BS, a 5G Node B, and/or the like.
  • New radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; mapping a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to: the plurality of systematic bits, and a first portion of the plurality of parity bits; and mapping a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
  • a method of wireless communication may include selecting a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits; selecting a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits; mapping the first plurality of rate matching bits to a non-full-duplex portion of a channel resource; and mapping the second plurality of rate matching bits to a full-duplex portion of the channel resource.
  • a method of wireless communication may include selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; mapping the plurality of rate matching bits to a non-full-duplex portion of a channel resource; and mapping a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
  • a transmitter for wireless communication may include one or more memories and one or more processors, communicatively coupled to the one or more memories, configured to select a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits; select a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits; map the first plurality of rate matching bits to a non-full-duplex portion of a channel resource; and map the second plurality of rate matching bits to a full-duplex portion of the channel resource.
  • a transmitter for wireless communication may include one or more memories and one or more processors, communicatively coupled to the one or more memories, configured to select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; map a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to: the plurality of systematic bits, and a first portion of the plurality of parity bits; and map a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
  • a transmitter for wireless communication may include one or more memories and one or more processors, communicatively coupled to the one or more memories, configured to select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; map the plurality of rate matching bits to a non-full-duplex portion of a channel resource; and map a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a transmitter, may cause the one or more processors to select a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits; select a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits; map the first plurality of rate matching bits to a non-full-duplex portion of a channel resource; and map the second plurality of rate matching bits to a full-duplex portion of the channel resource.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a transmitter, may cause the one or more processors to select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; map a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to: the plurality of systematic bits, and a first portion of the plurality of parity bits; and map a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a transmitter, may cause the one or more processors to select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; map the plurality of rate matching bits to a non-full-duplex portion of a channel resource; and map a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
  • an apparatus for wireless communication may include means for selecting a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits; means for selecting a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits; means for mapping the first plurality of rate matching bits to a non-full-duplex portion of a channel resource; and means for mapping the second plurality of rate matching bits to a full-duplex portion of the channel resource.
  • an apparatus for wireless communication may include means for selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; means for mapping a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to: the plurality of systematic bits, and a first portion of the plurality of parity bits; and means for mapping a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
  • an apparatus for wireless communication may include means for selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; means for mapping the plurality of rate matching bits to a non-full-duplex portion of a channel resource; and means for mapping a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 3A is a block diagram conceptually illustrating an example of a frame structure in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 3B is a block diagram conceptually illustrating an example synchronization communication hierarchy in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a block diagram conceptually illustrating an example slot format with a normal cyclic prefix, in accordance with various aspects of the present disclosure.
  • Figs. 5-7 are diagrams illustrating examples of rate matching for different transmission modes, in accordance with various aspects of the present disclosure.
  • Figs. 8-10 are diagrams illustrating example processes performed, for example, by a transmitter, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with rate matching for different transmission modes, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, process 1000 of Fig. 10, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • a transmitter may include means for selecting a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits, means for selecting a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits, means for mapping the first plurality of rate matching bits to a non-full-duplex portion of a channel resource, means for mapping the second plurality of rate matching bits to a full-duplex portion of the channel resource, and/or the like.
  • a transmitter may include means for selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, means for mapping a first subset, of the plurality of rate matching bits, to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to the plurality of systematic bits and a first portion of the plurality of parity bits, means for mapping a second subset, of the plurality of rate matching bits, to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits, and/or the like.
  • a transmitter may include means for selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, means for mapping the plurality of rate matching bits to a non-full-duplex portion of a channel resource, means for mapping a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource, and/or the like.
  • such means may include one or more components of UE 120 and/or base station 110 described in connection with Fig. 2.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3A shows an example frame structure 300 for frequency division duplexing (FDD) in a telecommunications system (e.g., NR) .
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames (sometimes referred to as frames) .
  • Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms) ) and may be partitioned into a set of Z (Z ⁇ 1) subframes (e.g., with indices of 0 through Z-1) .
  • Each subframe may have a predetermined duration (e.g., 1ms) and may include a set of slots (e.g., 2 m slots per subframe are shown in Fig.
  • Each slot may include a set of L symbol periods.
  • each slot may include fourteen symbol periods (e.g., as shown in Fig. 3A) , seven symbol periods, or another number of symbol periods.
  • the subframe may include 2L symbol periods, where the 2L symbol periods in each subframe may be assigned indices of 0 through 2L–1.
  • a scheduling unit for the FDD may be frame-based, subframe-based, slot-based, symbol-based, and/or the like.
  • a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard and/or protocol. Additionally, or alternatively, different configurations of wireless communication structures than those shown in Fig. 3A may be used.
  • a base station may transmit synchronization signals.
  • a base station may transmit a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and/or the like, on the downlink for each cell supported by the base station.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may be used by UEs to determine symbol timing
  • the SSS may be used by UEs to determine a physical cell identifier, associated with the base station, and frame timing.
  • the base station may also transmit a physical broadcast channel (PBCH) .
  • the PBCH may carry some system information, such as system information that supports initial access by UEs.
  • the base station may transmit the PSS, the SSS, and/or the PBCH in accordance with a synchronization communication hierarchy (e.g., a synchronization signal (SS) hierarchy) including multiple synchronization communications (e.g., SS blocks) , as described below in connection with Fig. 3B.
  • a synchronization communication hierarchy e.g., a synchronization signal (SS) hierarchy
  • multiple synchronization communications e.g., SS blocks
  • Fig. 3B is a block diagram conceptually illustrating an example SS hierarchy, which is an example of a synchronization communication hierarchy.
  • the SS hierarchy may include an SS burst set, which may include a plurality of SS bursts (identified as SS burst 0 through SS burst B-1, where B is a maximum number of repetitions of the SS burst that may be transmitted by the base station) .
  • each SS burst may include one or more SS blocks (identified as SS block 0 through SS block (b max_SS-1 ) , where b max_SS-1 is a maximum number of SS blocks that can be carried by an SS burst) .
  • An SS burst set may be periodically transmitted by a wireless node, such as every X milliseconds, as shown in Fig. 3B.
  • an SS burst set may have a fixed or dynamic length, shown as Y milliseconds in Fig. 3B.
  • the SS burst set shown in Fig. 3B is an example of a synchronization communication set, and other synchronization communication sets may be used in connection with the techniques described herein.
  • the SS block shown in Fig. 3B is an example of a synchronization communication, and other synchronization communications may be used in connection with the techniques described herein.
  • an SS block includes resources that carry the PSS, the SSS, the PBCH, and/or other synchronization signals (e.g., a tertiary synchronization signal (TSS) ) and/or synchronization channels.
  • synchronization signals e.g., a tertiary synchronization signal (TSS)
  • multiple SS blocks are included in an SS burst, and the PSS, the SSS, and/or the PBCH may be the same across each SS block of the SS burst.
  • a single SS block may be included in an SS burst.
  • the SS block may be at least four symbol periods in length, where each symbol carries one or more of the PSS (e.g., occupying one symbol) , the SSS (e.g., occupying one symbol) , and/or the PBCH (e.g., occupying two symbols) .
  • the symbols of an SS block are consecutive, as shown in Fig. 3B. In some aspects, the symbols of an SS block are non-consecutive. Similarly, in some aspects, one or more SS blocks of the SS burst may be transmitted in consecutive radio resources (e.g., consecutive symbol periods) during one or more slots. Additionally, or alternatively, one or more SS blocks of the SS burst may be transmitted in non-consecutive radio resources.
  • the SS bursts may have a burst period, whereby the SS blocks of the SS burst are transmitted by the base station according to the burst period. In other words, the SS blocks may be repeated during each SS burst.
  • the SS burst set may have a burst set periodicity, whereby the SS bursts of the SS burst set are transmitted by the base station according to the fixed burst set periodicity. In other words, the SS bursts may be repeated during each SS burst set.
  • the base station may transmit system information, such as system information blocks (SIBs) on a physical downlink shared channel (PDSCH) in certain slots.
  • SIBs system information blocks
  • the base station may transmit control information/data on a physical downlink control channel (PDCCH) in C symbol periods of a slot, where B may be configurable for each slot.
  • the base station may transmit traffic data and/or other data on the PDSCH in the remaining symbol periods of each slot.
  • Figs. 3A and 3B are provided as examples. Other examples may differ from what is described with regard to Figs. 3A and 3B.
  • Fig. 4 shows an example slot format 410 with a normal cyclic prefix.
  • the available time frequency resources may be partitioned into resource blocks.
  • Each resource block may cover a set of subcarriers (e.g., 12 subcarriers) in one slot and may include a number of resource elements.
  • Each resource element may cover one subcarrier in one symbol period (e.g., in time) and may be used to send one modulation symbol, which may be a real or complex value.
  • An interlace structure may be used for each of the downlink and uplink for FDD in certain telecommunications systems (e.g., NR) .
  • Q interlaces with indices of 0 through Q –1 may be defined, where Q may be equal to 4, 6, 8, 10, or some other value.
  • Each interlace may include slots that are spaced apart by Q frames.
  • interlace q may include slots q, q + Q, q + 2Q, etc., where q ⁇ ⁇ 0, ..., Q-1 ⁇ .
  • a UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, and/or the like. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SINR) , or a reference signal received quality (RSRQ) , or some other metric.
  • SINR signal-to-noise-and-interference ratio
  • RSRQ reference signal received quality
  • the UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
  • New radio may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP) ) .
  • OFDM Orthogonal Frequency Divisional Multiple Access
  • IP Internet Protocol
  • NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) and/or SC-FDM on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using time division duplexing (TDD) .
  • TDD time division duplexing
  • NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) and/or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD.
  • CP-OFDM OFDM with a CP
  • DFT-s-OFDM discrete Fourier transform spread orthogonal frequency-division multiplexing
  • NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g., 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) service.
  • eMBB Enhanced Mobile Broadband
  • mmW millimeter wave
  • mMTC massive MTC
  • URLLC ultra reliable low latency communications
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 60 or 120 kilohertz (kHz) over a 0.1 millisecond (ms) duration.
  • Each radio frame may include 40 slots and may have a length of 10 ms. Consequently, each slot may have a length of 0.25 ms.
  • Each slot may indicate a link direction (e.g., DL or UL) for data transmission and the link direction for each slot may be dynamically switched.
  • Each slot may include DL/UL data as well as DL/UL control data.
  • NR may support a different air interface, other than an OFDM-based interface.
  • NR networks may include entities such central units or distributed units.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • a UE and a BS may communicate using various communication modes.
  • the UE and the BS may communicate using a full-duplex mode, such as where the UE and the BS simultaneously communicate on a downlink and an uplink, where the UE simultaneously communicates with the BS and another BS, where the BS simultaneously communicates with the UE and another UE, and/or the like.
  • the UE and the BS may communicate using a non-full-duplex mode, such as where the UE and the BS perform half-duplex communication and/or another type of non-full-duplex communication.
  • the transmitter may perform a channel transport process, which may include adding cyclic redundancy check bits (CRC) to the data (the combination of data and systematic bits may be referred to as systematic bits) , channel coding the systematic bits to generate parity bits for the systematic bits, rate matching the systematic bits and parity bits to a transport block size for a channel resource (e.g., a physical uplink shared channel (PUSCH) in the case of the transmitter being a UE, a physical downlink shared channel (PDSCH) in the case of the transmitter being a BS) , mapping the rate matched systematic bits and parity bits to the channel resource, and/or other techniques.
  • CRC cyclic redundancy check bits
  • Rate matching may include one or more techniques, such as bit selection (e.g., puncturing or removing systematic and/or parity bits if the quantity of systematic and parity bits exceeds the transport block size of the channel resource and/or adding padding bits if the quantity of systematic and parity bits is less than the transport block size of the channel resource) , bit interleaving (e.g., breaking up and/or scattering the sequence of rate matched systematic bits and/or parity bits) , and/or the like.
  • bit selection e.g., puncturing or removing systematic and/or parity bits if the quantity of systematic and parity bits exceeds the transport block size of the channel resource and/or adding padding bits if the quantity of systematic and parity bits is less than the transport block size of the channel resource
  • bit interleaving e.g., breaking up and/or scattering the sequence of rate matched systematic bits and/or parity bits
  • the transmitter may use the same rate matching approach for communication in a full-duplex mode and a non-full-duplex node.
  • self-interference e.g., interference with reception of a communication that is caused by the transmission of another communication
  • SINR signal-to-interference-plus-noise ratio
  • the reduction in SINR in the full-duplex mode may result in decreased decoding performance in the full-duplex mode, which in turn may result in increased decoding errors, increased decoding times, increased retransmissions, and/or the like.
  • a transmitter e.g., a UE or a BS
  • a receiver e.g., a UE or a BS
  • the transmitter may select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, may map a first subset of the plurality of rate matching bits (e.g., corresponding to the plurality of systematic bits and a first portion of the plurality of parity bits) to a non-full-duplex portion of a channel resource, and may map a second subset of the plurality of rate matching bits (e.g., corresponding to a second portion of the plurality of parity bits) to a full-duplex portion of the channel resource.
  • the receiver may decode the first plurality of rate matching bits or both the first plurality of rate matching bits and the second plurality of rate matching bits to ensure decoding performance at the receiver.
  • the transmitter may select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, may map the plurality of rate matching bits to a non-full-duplex portion of a channel resource, and may map a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
  • the receiver may decode the first plurality of rate matching bits or both the first plurality of rate matching bits and the second plurality of rate matching bits to ensure decoding performance at the receiver.
  • the transmitter may be configured to perform various rate matching techniques, described herein, that account for differences in SINR and/or other channel conditions between full-duplex mode and non-full-duplex mode, which may decrease decoding errors, decrease decoding times, decrease retransmissions, and/or the like.
  • Fig. 5 is a diagram illustrating an example 500 of rate matching for different transmission modes, in accordance with various aspects of the present disclosure.
  • example 500 may include a transmitter.
  • the transmitter may include one of various types of wireless communication devices, such as a UE (e.g., UE 120) , a BS (e.g., BS 110) , and/or the like.
  • the transmitter may communicate with a receiver (e.g., another UE 120, another BS 110, and/or the like) using various transmission modes, such as a full-duplex mode, a non-full-duplex mode, and/or the like.
  • the transmitter may communicate with the receiver using a plurality of transmissions modes in a same channel resource (e.g., a PUSCH resource in the case of the transmitter being a UE 120, a PDSCH resource in the case of the transmitter being a BS 110) .
  • the transmitter may communicate with the receiver in a full-duplex portion of the channel resource and in a non-full-duplex portion of the channel resource.
  • the full-duplex portion and the non-full-duplex portion may be time division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a time-domain resource of the channel resource) , may be frequency division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a frequency-domain resource of the channel resource) , and/or the like.
  • the transmitter may be configured to transmit data and/or other information to the receiver using the channel resource and, accordingly, may perform a channel transport process to generate and transmit a communication that includes the data.
  • the channel transport process may include adding CRC bits to the source bits of the data to form systematic bits, channel coding the systematic bits to generate parity bits for the systematic bits, rate matching the systematic bits and parity bits to a transport block size for the channel resource, mapping the rate matched systematic bits and parity bits to the channel resource, and/or other techniques.
  • the transmitter may perform a plurality of bit selection procedures for the channel resource. For example, the transmitter may perform a first bit selection procedure for the non-full-duplex portion of the channel resource and a second bit selection procedure for the full-duplex portion of the channel resource.
  • the transmitter may perform the first bit selection procedure for the non-full-duplex portion of the channel resource.
  • the first bit selection procedure may include selecting a first plurality of rate matching bits for the systematic bits and a first plurality of parity bits.
  • the transmitter may generate a plurality of redundancy versions (or incremental redundancies) of the parity bits that were generated as part of the channel coding process.
  • Each redundancy version may include a bit selection for different combinations of the parity bits.
  • each redundancy version may include rate matching bits in which different combinations of the parity bits may be punctured and/or padding may be added.
  • each redundancy version of rate matching bits may include a different plurality of parity bits that were generated from the parity bits generated as part of the channel coding process.
  • the transmitter may select a redundancy version (e.g., randomly select, select based at least in part on one or more selection rules such as selecting the lowest redundancy version, and/or the like) of the parity bits as part of the first plurality of rate matching bits for the systematic bits and a first plurality of parity bits.
  • a redundancy version e.g., randomly select, select based at least in part on one or more selection rules such as selecting the lowest redundancy version, and/or the like
  • the transmitter may determine a quantity of bits, to include in the first plurality of rate matching bits, based at least in part on a size of the non-full-duplex portion of the channel resource (e.g., the quantity of rate matching bits may be selected to match a quantity of bits that may be represented in the non-full-duplex portion, may be selected to match a length of the non-full-duplex portion, and/or the like) .
  • the transmitter may perform the bit selection of the first plurality of rate matching bits such that the quantity of bits, included in the first plurality of rate matching bits, matches the quantity of bits included in the non-full-duplex portion of the channel resource.
  • the transmitter may perform the second bit selection procedure for the full-duplex portion of the channel resource.
  • the second bit selection procedure may include selecting a second plurality of rate matching bits for a second plurality of parity bits.
  • the transmitter may generate a plurality of redundancy versions of the parity bits that were generated as part of the channel coding process.
  • Each redundancy version may include a quantity of rate matching bits that is based at least in part on a size of the full-duplex portion (e.g., the quantity of rate matching bits may be selected to match a quantity of bits that may be represented in the full-duplex portion, may be selected to match a length of the full-duplex portion, and/or the like) .
  • each redundancy version may include a bit selection for different combinations of the parity bits.
  • each redundancy version may include rate matching bits in which different combinations of the parity bits may be punctured and/or padding may be added.
  • each redundancy version of rate matching bits may include a different plurality of parity bits that were generated from the parity bits generated as part of the channel coding process.
  • the transmitter may select a redundancy version (e.g., randomly select, select based at least in part on one or more selection rules such as selecting the lowest redundancy version, and/or the like) of the parity bits as the second plurality of parity bits for the second plurality of rate matching bits.
  • the redundancy version of the second plurality of bits, selected for the second plurality of rate matching bits may be the same redundancy version or a different redundancy version relative to the first plurality of parity bits selected for the first plurality of rate matching bits.
  • the transmitter may independently and separately perform bit interleaving of the first plurality of rate matching bits and the second plurality of rate matching bits. For example, the transmitter may break up and/or scatter the sequence of the first plurality of rate matching bits, and may break up and/or scatter the sequence of the second plurality of rate matching bits as part of the rate matching process.
  • the transmitter may map the first plurality of rate matching bits (e.g., after performing bit interleaving on the first plurality of rate matching bits) to the non-full-duplex portion of the channel resource. For example, the transmitter may map the first plurality of rate matching bits to the time-domain and/or frequency-domain resources included in the non-full-duplex portion of the channel resource. In this way, the systematic bits and the first plurality of parity bits may be included in the non-full-duplex portion of the channel resource.
  • the transmitter may map the second plurality of rate matching bits (e.g., after performing bit interleaving on the second plurality of rate matching bits) to the full-duplex portion of the channel resource. For example, the transmitter may map the second plurality of rate matching bits to the time-domain and/or frequency-domain resources included in the full-duplex portion of the channel resource. In this way, the second plurality of parity bits may be included in the full-duplex portion of the channel resource.
  • the transmitter may transmit the channel resource in one or more communications (e.g., one or more PUSCH communications, one or more PDSCH communications) to the receiver.
  • the receiver may receive the one or more communications and may decode the one or more communications based at least in part on the first plurality of rate matching bits mapped to the non-full-duplex portion of the channel resource or based at least in part on a combination of the first plurality of rate matching bits mapped to the non-full-duplex portion of the channel resource and the second plurality of rate matching bits mapped to the full-duplex portion of the channel resource.
  • the receiver may attempt to decode the one or more communications based at least in part on the systematic bits and the first plurality of parity bits represented by the first plurality of rate matching bits. If the receiver determines that the decoding performance, of decoding the one or more communications based at least in part on the systematic bits and the first plurality of parity bits represented by the first plurality of rate matching bits, does not satisfy one or more thresholds (e.g., an error rate threshold, a decoding time threshold, and/or the like) , the receiver may attempt to decode the one or more communications based at least in part on the combination of the systematic bits and the first plurality of parity bits represented by the first plurality of rate matching bits and the second plurality of parity bits represented by the second plurality of rate matching bits. In this case, the receiver may attempt to decode the one or more communications by using the first plurality of parity bits and the second plurality of parity bits with the systematic bits.
  • one or more thresholds e.g., an error rate threshold, a decoding time threshold,
  • the transmitter may select a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits, may select a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits, may map the first plurality of rate matching bits to a non-full-duplex portion of a channel resource, and may map the second plurality of rate matching bits to a full-duplex portion of the channel resource.
  • the first plurality of rate matching bits and the second plurality of rate matching bits may be independently and separately selected in that the first plurality of rate matching bits may be selected based at least in part on the non-full-duplex portion of the channel resource and the second plurality of rate matching bits may be selected based at least in part on the full-duplex portion of the channel resource.
  • the receiver may decode the first plurality of rate matching bits or both the first plurality of rate matching bits and the second plurality of rate matching bits to ensure decoding performance at the receiver, which permits the transmitter and receiver to account for differences in SINR and/or other channel conditions between the full-duplex portion and non-full-duplex portion, which may decrease decoding errors, decrease decoding times, decrease retransmissions, and/or the like.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating an example 600 of rate matching for different transmission modes, in accordance with various aspects of the present disclosure.
  • example 600 may include a transmitter.
  • the transmitter may include one of various types of wireless communication devices, such as a UE (e.g., UE 120) , a BS (e.g., BS 110) , and/or the like.
  • the transmitter may communicate with a receiver (e.g., another UE 120, another BS 110, and/or the like) using various transmission modes, such as a full-duplex mode, a non-full-duplex mode, and/or the like.
  • the transmitter may communicate with the receiver using a plurality of transmissions modes in a same channel resource (e.g., a PUSCH resource in the case of the transmitter being a UE 120, a PDSCH resource in the case of the transmitter being a BS 110) .
  • the transmitter may communicate with the receiver in a full-duplex portion of the channel resource and in a non-full-duplex portion of the channel resource.
  • the full-duplex portion and the non-full-duplex portion may be time division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a time-domain resource of the channel resource) , may be frequency division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a frequency-domain resource of the channel resource) , and/or the like.
  • the transmitter may be configured to transmit data and/or other information to the receiver using the channel resource and, accordingly, may perform a channel transport process to generate and transmit a communication that includes the data.
  • the channel transport process may include adding CRC bits to the source bits of the data to form systematic bits, channel coding the systematic bits to generate parity bits for the systematic bits, rate matching the systematic bits and parity bits to a transport block size for the channel resource, mapping the rate matched systematic bits and parity bits to the channel resource, and/or other techniques.
  • the transmitter may perform a single bit selection procedure for the entire channel resource.
  • the bit selection procedure may include selecting a plurality of rate matching bits for the systematic bits and a plurality of parity bits.
  • the transmitter may generate a plurality of redundancy versions (or incremental redundancies) of the parity bits that were generated as part of the channel coding process.
  • Each redundancy version may include a bit selection for different combinations of the parity bits.
  • each redundancy version may include rate matching bits in which different combinations of the parity bits may be punctured and/or padding may be added.
  • each redundancy version of rate matching bits may include a different plurality of parity bits that were generated from the parity bits generated as part of the channel coding process.
  • the transmitter may select a single redundancy version (e.g., randomly select, select based at least in part on one or more selection rules such as selecting the lowest redundancy version, and/or the like) of the parity bits as the plurality of parity bits to be represented by the plurality of rate matching bits.
  • a single redundancy version e.g., randomly select, select based at least in part on one or more selection rules such as selecting the lowest redundancy version, and/or the like
  • the transmitter may determine a quantity of bits, to include in the plurality of rate matching bits, based at least in part on a combined size of the non-full-duplex portion and the full-duplex portion of the channel resource (e.g., the quantity of rate matching bits may be selected to match a quantity of bits that may be represented in the non-full-duplex portion and the full-duplex portion, may be selected to match a combined length of the non-full-duplex portion and the full-duplex portion, and/or the like) .
  • the transmitter may perform the bit selection of the plurality of rate matching bits such that the quantity of bits, included in the plurality of rate matching bits, matches a combined quantity of bits included in the non-full-duplex portion and the full-duplex portion of the channel resource.
  • the transmitter may assign a first subset of rate matching bits, of the plurality of rate matching bits, to the non-full-duplex portion. Moreover, the transmitter may assign a second subset of rate matching bits, of the plurality of rate matching bits, to the non-full-duplex portion.
  • the first subset of rate matching bits may include the rate matching bits corresponding to the systematic bits and a first portion of the plurality of parity bits.
  • the second subset of rate matching bits may include the rate matching bits corresponding to a second portion of the plurality of parity bits.
  • the transmitter may determine the quantity of bits, included in the first subset of rate matching bits, based at least in part on a size of the non-full-duplex portion, and may determine the quantity of bits, included in the second subset of rate matching bits, based at least in part on the size of the full-duplex portion. Since the first subset of rate matching bits includes the systematic bits, the transmitter may determine how to divide the plurality of parity bits among the non-full-duplex portion and the full-duplex portion based at least in part on the respective sizes of the non-full-duplex portion and the full-duplex portion.
  • the transmitter may determine the quantity of parity bits (or quantity of rate matching bits corresponding to the parity bits) to include in the first portion of the plurality of parity bits based at least in part on the size of the non-full-duplex portion, and may determine the quantity of parity bits (or quantity of rate matching bits corresponding to the parity bits) to include in the second portion of the plurality parity bits based at least in part on the size of the full-duplex portion.
  • the transmitter may perform independent and/or separate bit interleaving procedures for the rate matching bits assigned to the non-full-duplex portion and the rate matching bits assigned to the full-duplex portion. For example, the transmitter may break up and/or scatter the sequence of the first subset of the rate matching bits assigned to the non-full-duplex portion, and may break up and/or scatter the sequence of the second subset of the rate matching bits assigned to the full-duplex portion as part of the rate matching process.
  • the transmitter may map the first subset of the rate matching bits (e.g., after performing bit interleaving on the first subset of the rate matching bits) to the non-full-duplex portion of the channel resource. For example, the transmitter may map the first subset of the rate matching bits to the time-domain and/or frequency-domain resources included in the non-full-duplex portion of the channel resource. In this way, the systematic bits and the first portion of the plurality of parity bits may be included in the non-full-duplex portion of the channel resource.
  • the transmitter may map the second subset of the rate matching bits (e.g., after performing bit interleaving on the second subset of the rate matching bits) to the full-duplex portion of the channel resource. For example, the transmitter may map the second subset of the rate matching bits to the time-domain and/or frequency-domain resources included in the full-duplex portion of the channel resource. In this way, the second subset of the rate matching bits may be included in the full-duplex portion of the channel resource.
  • the transmitter may transmit the channel resource in one or more communications (e.g., one or more PUSCH communications, one or more PDSCH communications) to the receiver.
  • the receiver may receive the one or more communications and may decode the one or more communications based at least in part on the first subset of the rate matching bits mapped to the non-full-duplex portion of the channel resource or based at least in part on a combination of the first subset of the rate matching bits mapped to the non-full-duplex portion of the channel resource and the second subset of the rate matching bits mapped to the full-duplex portion of the channel resource.
  • the receiver may attempt to decode the one or more communications based at least in part on the systematic bits and the first portion of the plurality of parity bits represented by the first subset of the rate matching bits. If the receiver determines that the decoding performance, of decoding the one or more communications based at least in part on the systematic bits and the first portion of the plurality of parity bits represented by the first plurality of rate matching bits, does not satisfy one or more thresholds (e.g., an error rate threshold, a decoding time threshold, and/or the like) , the receiver may attempt to decode the one or more communications based at least in part on the combination of the systematic bits and the first portion of the plurality of parity bits represented by the first subset of rate matching bits and the second portion of the plurality of parity bits represented by the second subset of rate matching bits. In this case, the receiver may attempt to decode the one or more communications by combining the first portion of the plurality of parity bits and the second portion of the plurality of parity bits with the systematic bits.
  • the receiver may
  • the transmitter may select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, may map a first subset of the plurality of rate matching bits (e.g., corresponding to the plurality of systematic bits and a first portion of the plurality of parity bits) to a non-full-duplex portion of a channel resource, and may map a second subset of the plurality of rate matching bits (e.g., corresponding to a second portion of the plurality of parity bits) to a full-duplex portion of the channel resource.
  • the plurality of rate matching bits may be selected based at least in part on a combination of the non-full-duplex portion and the full-duplex portion of the channel resource and based at least in part on a single redundancy version.
  • the receiver may decode the first subset of rate matching bits or both the first subset of rate matching bits and the second subset of rate matching bits to ensure decoding performance at the receiver, which permits the transmitter and receiver to account for differences in SINR and/or other channel conditions between the full-duplex portion and non-full-duplex portion, which may decrease decoding errors, decrease decoding times, decrease retransmissions, and/or the like.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
  • Fig. 7 is a diagram illustrating an example 700 of rate matching for different transmission modes, in accordance with various aspects of the present disclosure.
  • example 700 may include a transmitter.
  • the transmitter may include one of various types of wireless communication devices, such as a UE (e.g., UE 120) , a BS (e.g., BS 110) , and/or the like.
  • the transmitter may communicate with a receiver (e.g., another UE 120, another BS 110, and/or the like) using various transmission modes, such as a full-duplex mode, a non-full-duplex mode, and/or the like.
  • the transmitter may communicate with the receiver using a plurality of transmissions modes in a same channel resource (e.g., a PUSCH resource in the case of the transmitter being a UE 120, a PDSCH resource in the case of the transmitter being a BS 110) .
  • the transmitter may communicate with the receiver in a full-duplex portion of the channel resource and in a non-full-duplex portion of the channel resource.
  • the full-duplex portion and the non-full-duplex portion may be time division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a time-domain resource of the channel resource) , may be frequency division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a frequency-domain resource of the channel resource) , and/or the like.
  • the transmitter may be configured to transmit data and/or other information to the receiver using the channel resource and, accordingly, may perform a channel transport process to generate and transmit a communication that includes the data.
  • the channel transport process may include adding CRC bits to the source bits of the data to form systematic bits, channel coding the systematic bits to generate parity bits for the systematic bits, rate matching the systematic bits and parity bits to a transport block size for the channel resource, mapping the rate matched systematic bits and parity bits to the channel resource, and/or other techniques.
  • the transmitter may perform a single bit selection procedure for the entire channel resource.
  • the bit selection procedure may include selecting a plurality of rate matching bits for the systematic bits and a plurality of parity bits.
  • the transmitter may generate a plurality of redundancy versions (or incremental redundancies) of the parity bits that were generated as part of the channel coding process.
  • Each redundancy version may include a bit selection for different combinations of the parity bits.
  • each redundancy version may include rate matching bits in which different combinations of the parity bits may be punctured and/or padding may be added.
  • each redundancy version of rate matching bits may include a different plurality of parity bits that were generated from the parity bits generated as part of the channel coding process.
  • the transmitter may select a single redundancy version (e.g., randomly select, select based at least in part on one or more selection rules such as selecting the lowest redundancy version, and/or the like) of the parity bits as the plurality of parity bits to be represented by the plurality of rate matching bits.
  • a single redundancy version e.g., randomly select, select based at least in part on one or more selection rules such as selecting the lowest redundancy version, and/or the like
  • the transmitter may determine a quantity of bits, to include in the plurality of rate matching bits, based at least in part on a size of the non-full-duplex portion of the channel resource (e.g., the quantity of rate matching bits may be selected to match a quantity of bits that may be represented in the non-full-duplex portion, may be selected to match a length of the non-full-duplex portion, and/or the like) .
  • the transmitter may perform the bit selection of the plurality of rate matching bits such that the quantity of bits, included in the plurality of rate matching bits, matches a quantity of bits included in the non-full-duplex portion of the channel resource.
  • the transmitter may perform a bit interleaving procedure for the plurality of rate matching bits. For example, the transmitter may break up and/or scatter the sequence of the plurality of the rate matching bits as part of the rate matching process.
  • the transmitter may map the subset of the rate matching bits (e.g., after performing bit interleaving on the plurality of rate matching bits) to the non-full-duplex portion of the channel resource.
  • the transmitter may map the plurality of rate matching bits to the time-domain and/or frequency-domain resources included in the non-full-duplex portion of the channel resource.
  • the systematic bits and the plurality of parity bits may be included in the non-full-duplex portion of the channel resource, and the bits mapped to non-full-duplex portion may be referred to as the first subset of the rate matching bits.
  • the transmitter may map a copy, of a subset of the plurality of rate matching bits, to the full-duplex portion of the channel resource.
  • the transmitter may map the copy of the subset of the plurality of rate matching bits to the time-domain and/or frequency-domain resources included in the full-duplex portion of the channel resource, and the bits mapped to full-duplex portion may be referred to as the second subset of the rate matching bits.
  • the subset of the plurality of rate matching bits may correspond to a subset, or the entirety, of the plurality of parity bits represented by the rate matching bits, may correspond to a subset, or the entirety, of the systematic represented by the rate matching bits, and/or the like.
  • the subset of the plurality of rate matching bits may correspond to the rate matching bits included at the beginning of the non-full-duplex portion (e.g., the rate matching bits included in the first four contiguous symbols of the non-full-duplex portion) , may correspond to the rate matching bits included at the end of the non-full-duplex portion (e.g., the rate matching bits included in the last three contiguous symbols of the non-full-duplex portion) , may be randomly selected, and/or the like.
  • the transmitter may cycle through different selections of rate matching bits, for the transmission of respective communications, based at least in part on a rate matching cycling configuration.
  • the rate matching cycling configuration may specify that the transmitter is to shift the subset of the plurality of rate matching bits, that are to be copied to the full-duplex portion, by one or more symbols for subsequent communications.
  • the transmitter may select the rate matching bits, that are included in a first group of contiguous symbols, for a first communication, may select rate matching bits, that are included in a second group of contiguous symbols that is shifted one or more symbols from the first group of contiguous symbols, for a second communication, and so on.
  • the transmitter may determine the quantity of bits, included in the subset of the plurality of rate matching bits that are to be copied to the full-duplex portion, based at least in part on a size of the full-duplex portion. For example, the transmitter may determine the quantity of bits, to include in the subset of the plurality of rate matching bits that are to be copied to the full-duplex portion, such that the quantity of bits matches a quantity of bits that may be represented in the full-duplex portion, such that the quantity of bits matches a length of the full-duplex portion, and/or the like.
  • the transmitter may directly copy the subset of the plurality of rate matching bits to the full-duplex portion. For example, the transmitter may copy the rate matching bits, included in a first symbol of the non-full-duplex portion, to a first symbol of the full-duplex portion without modification, may copy the rate matching bits, included in a second symbol of the non-full-duplex portion, to a second symbol of the full-duplex portion without modification, and so on. In some aspects, the transmitter may copy the subset of the plurality of rate matching bits to the full-duplex portion such that the subset of the plurality of rate matching bits are at least partially interleaved in the full-duplex portion.
  • the transmitter may interleave subset of the plurality of rate matching bits may in the time domain (e.g., such that rate matching bits are included in different symbols between the non-full-duplex portion and the full-duplex portion) . In some aspects, the transmitter may interleave subset of the plurality of rate matching bits may in the frequency domain (e.g., such that rate matching bits are included in different resource elements between the non-full-duplex portion and the full-duplex portion) .
  • the transmitter may interleave subset of the plurality of rate matching bits may in the time domain and frequency domain (e.g., such that rate matching bits are included in different resource elements and symbols between the non-full-duplex portion and the full-duplex portion) .
  • the transmitter may transmit the channel resource in one or more communications (e.g., one or more PUSCH communications, one or more PDSCH communications) to the receiver.
  • the receiver may receive the one or more communications and may decode the one or more communications based at least in part on the plurality of rate matching bits mapped to the non-full-duplex portion of the channel resource or based at least in part on a combination of the plurality of rate matching bits mapped to the non-full-duplex portion of the channel resource and the copy of the subset of the rate matching bits mapped to the full-duplex portion of the channel resource.
  • the receiver may attempt to decode the one or more communications based at least in part on the systematic bits and the plurality of parity bits represented by the plurality of rate matching bits. If the receiver determines that the decoding performance, of decoding the one or more communications based at least in part on the systematic bits and the plurality of parity bits represented by the first plurality of rate matching bits, does not satisfy one or more thresholds (e.g., an error rate threshold, a decoding time threshold, and/or the like) , the receiver may attempt to decode the one or more communications based at least in part on the combination of the plurality of rate matching bits mapped to the non-full-duplex portion and the copy of the subset of the plurality of rate matching bits mapped to the full-duplex portion.
  • one or more thresholds e.g., an error rate threshold, a decoding time threshold, and/or the like
  • the transmitter may select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, may map the plurality of rate matching bits to a non-full-duplex portion of a channel resource, and may map a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
  • the receiver may decode the plurality of rate matching bits or both the plurality of rate matching bits and the copy of the subset of the plurality of rate matching bits to ensure decoding performance at the receiver, which permits the transmitter and receiver to account for differences in SINR and/or other channel conditions between the full-duplex portion and non-full-duplex portion, which may decrease decoding errors, decrease decoding times, decrease retransmissions, and/or the like.
  • Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
  • a transmitter may be configured to implement one or more of the channel transport processes described above in connection with Figs. 5-7, may be instructed to change channel transport processes for the transmission of different communications, and/or the like.
  • a BS may transmit a signaling communication to the UE.
  • the signaling communication may indicate a channel transport process that the UE is to use for one or more communications (e.g., the channel transport process described above in connection with Fig. 5, the channel transport process described above in connection with Fig. 6. the channel transport process described above in connection with Fig. 7, or the like) .
  • the UE may receive the signaling communication and may perform the channel transport process, indicated in the signaling communication, for transmitting the one or more communications in a channel resource.
  • the signaling communication may include a radio resource control (RRC) communication, a medium access control (MAC) control element (MAC-CE) communication, a downlink control information (DCI) communication, and/or the like.
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a transmitter, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where a transmitter (e.g., BS 110, UE 120, and/or the like) performs operations associated with rate matching for different transmission modes.
  • a transmitter e.g., BS 110, UE 120, and/or the like
  • process 800 may include selecting a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits (block 810) .
  • the transmitter e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 800 may include selecting a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits (block 820) .
  • the transmitter e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 800 may include mapping the first plurality of rate matching bits to a non-full-duplex portion of a channel resource (block 830) .
  • the transmitter e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 800 may include mapping the second plurality of rate matching bits to a full-duplex portion of the channel resource (block 840) .
  • the transmitter e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 800 may include additional aspects, such as any single implementation or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the non-full-duplex portion and the full-duplex portion are time division multiplexed in the channel resource.
  • the non-full-duplex portion and the full-duplex portion are frequency division multiplexed in the channel resource.
  • the non-full-duplex portion and the full-duplex portion are time division multiplexed and frequency division multiplexed in the channel resource.
  • the transmitter comprises a UE, and the channel resource comprises a PUSCH resource.
  • the transmitter comprises a BS, and the channel resource comprises a PDSCH resource.
  • the first plurality of parity bits is associated with a first redundancy version and the second plurality of parity bits is associated with a second redundancy version.
  • the first redundancy version and the second redundancy version are different redundancy versions.
  • the first redundancy version and the second redundancy version are a same redundancy version.
  • a first quantity of bits, included in the first plurality of rate matching bits is based at least in part on a size of the non-full-duplex portion
  • a second quantity of bits, included in the second plurality of rate matching bits is based at least in part on a size of the full-duplex portion
  • process 800 further comprises receiving, from a BS, a signaling communication that indicates a channel transport process, selecting the first plurality of rate matching bits comprises selecting the first plurality of rate matching bits based at least in part on the channel transport process, and selecting the second plurality of rate matching bits comprises selecting the second plurality of rate matching bits based at least in part on the channel transport process.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a transmitter, in accordance with various aspects of the present disclosure.
  • Example process 900 is an example where a transmitter (e.g., BS 110, UE 120, and/or the like) performs operations associated with rate matching for different transmission modes.
  • a transmitter e.g., BS 110, UE 120, and/or the like
  • process 900 may include selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits (block 910) .
  • the transmitter e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 900 may include mapping a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to the plurality of systematic bits and a first portion of the plurality of parity bits (block 920) .
  • the transmitter e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the first subset of the plurality of rate matching bits corresponds to the plurality of systematic bits and a first portion of the plurality of parity bits.
  • process 900 may include mapping a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits (block 930) .
  • the transmitter e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
  • Process 900 may include additional aspects, such as any single implementation or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the non-full-duplex portion and the full-duplex portion are time division multiplexed in the channel resource.
  • the non-full-duplex portion and the full-duplex portion are frequency division multiplexed in the channel resource.
  • the non-full-duplex portion and the full-duplex portion are time division multiplexed and frequency division multiplexed in the channel resource.
  • the transmitter comprises a UE, and the channel resource comprises a PUSCH resource.
  • the transmitter comprises a BS, and the channel resource comprises a PDSCH resource.
  • a quantity of bits, included in the plurality of rate matching bits is based at least in part on a combined size of the non-full-duplex portion and the full-duplex portion.
  • the plurality of rate matching bits is based at least in part on a single redundancy version.
  • a first quantity of bits, included in the first subset of the plurality of rate matching bits is based at least in part on a size of the non-full-duplex portion
  • a second quantity of bits, included in the second subset of the plurality of rate matching bits is based at least in part on a size of the full-duplex portion
  • process 900 further comprises receiving, from a BS, a signaling communication that indicates a channel transport process, and selecting the plurality of rate matching bits comprises selecting the first subset of the plurality of rate matching bits based at least in part on the channel transport process and selecting the second subset of the plurality of rate matching bits based at least in part on the channel transport process.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a transmitter, in accordance with various aspects of the present disclosure.
  • Example process 1000 is an example where a transmitter (e.g., BS 110, UE 120, and/or the like) performs operations associated with rate matching for different transmission modes.
  • a transmitter e.g., BS 110, UE 120, and/or the like
  • process 1000 may include selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits (block 1010) .
  • the transmitter e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 1000 may include mapping the plurality of rate matching bits to a non-full-duplex portion of a channel resource (block 1020) .
  • the transmitter e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 1000 may include mapping a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource (block 1030) .
  • the transmitter e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 1000 may include additional aspects, such as any single implementation or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the non-full-duplex portion and the full-duplex portion are time division multiplexed in the channel resource.
  • the non-full-duplex portion and the full-duplex portion are frequency division multiplexed in the channel resource.
  • the non-full-duplex portion and the full-duplex portion are time division multiplexed and frequency division multiplexed in the channel resource.
  • the transmitter comprises a UE, and the channel resource comprises a PUSCH resource.
  • the transmitter comprises a BS, and the channel resource comprises a PDSCH resource.
  • the copy of the subset of the plurality of rate matching bits corresponds to one or more symbols at a beginning of the non-full-duplex portion.
  • the copy of the subset of the plurality of rate matching bits are interleaved in the full-duplex portion.
  • process 1000 further comprises receiving, from a BS, a signaling communication that indicates a channel transport process, and selecting the plurality of rate matching bits comprises selecting the plurality of rate matching bits based at least in part on the channel transport process and selecting the copy of the subset of the plurality of rate matching bits based at least in part on the channel transport process.
  • process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a transmitter may select a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits. The transmitter may select a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits. The transmitter may map the first plurality of rate matching bits to a non-full-duplex portion of a channel resource. The transmitter may map the second plurality of rate matching bits to a full-duplex portion of the channel resource. Numerous other aspects are provided.

Description

RATE MATCHING FOR DIFFERENT TRANSMISSION MODES
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication, and more particularly to techniques and apparatuses for rate matching for different transmission modes.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a new radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .  NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a transmitter, may include selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; mapping a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to: the plurality of systematic bits, and a first portion of the plurality of parity bits; and mapping a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
In some aspects, a method of wireless communication, performed by a transmitter, may include selecting a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits; selecting a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits; mapping the first plurality of rate matching bits to a non-full-duplex portion of a channel resource; and mapping the second plurality of rate matching bits to a full-duplex portion of the channel resource.
In some aspects, a method of wireless communication, performed by a transmitter, may include selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; mapping the plurality of rate matching bits to a non-full-duplex portion of a channel resource;  and mapping a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
In some aspects, a transmitter for wireless communication may include one or more memories and one or more processors, communicatively coupled to the one or more memories, configured to select a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits; select a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits; map the first plurality of rate matching bits to a non-full-duplex portion of a channel resource; and map the second plurality of rate matching bits to a full-duplex portion of the channel resource.
In some aspects, a transmitter for wireless communication may include one or more memories and one or more processors, communicatively coupled to the one or more memories, configured to select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; map a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to: the plurality of systematic bits, and a first portion of the plurality of parity bits; and map a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
In some aspects, a transmitter for wireless communication may include one or more memories and one or more processors, communicatively coupled to the one or more memories, configured to select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; map the plurality of rate matching bits to a non-full-duplex portion of a channel resource; and map a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a transmitter, may cause the one or more processors to select a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits; select a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits; map the first plurality of rate matching bits to a non-full-duplex portion  of a channel resource; and map the second plurality of rate matching bits to a full-duplex portion of the channel resource.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a transmitter, may cause the one or more processors to select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; map a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to: the plurality of systematic bits, and a first portion of the plurality of parity bits; and map a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a transmitter, may cause the one or more processors to select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; map the plurality of rate matching bits to a non-full-duplex portion of a channel resource; and map a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
In some aspects, an apparatus for wireless communication may include means for selecting a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits; means for selecting a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits; means for mapping the first plurality of rate matching bits to a non-full-duplex portion of a channel resource; and means for mapping the second plurality of rate matching bits to a full-duplex portion of the channel resource.
In some aspects, an apparatus for wireless communication may include means for selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; means for mapping a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to:  the plurality of systematic bits, and a first portion of the plurality of parity bits; and means for mapping a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
In some aspects, an apparatus for wireless communication may include means for selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits; means for mapping the plurality of rate matching bits to a non-full-duplex portion of a channel resource; and means for mapping a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the  description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3A is a block diagram conceptually illustrating an example of a frame structure in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3B is a block diagram conceptually illustrating an example synchronization communication hierarchy in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 4 is a block diagram conceptually illustrating an example slot format with a normal cyclic prefix, in accordance with various aspects of the present disclosure.
Figs. 5-7 are diagrams illustrating examples of rate matching for different transmission modes, in accordance with various aspects of the present disclosure.
Figs. 8-10 are diagrams illustrating example processes performed, for example, by a transmitter, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in  addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It is noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS  or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant  (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE  120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain  input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with rate matching for different transmission modes, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, process 1000 of Fig. 10, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120,  respectively. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, a transmitter (e.g., UE 120 and/or base station 110) may include means for selecting a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits, means for selecting a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits, means for mapping the first plurality of rate matching bits to a non-full-duplex portion of a channel resource, means for mapping the second plurality of rate matching bits to a full-duplex portion of the channel resource, and/or the like. In some aspects, a transmitter (e.g., UE 120 and/or base station 110) may include means for selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, means for mapping a first subset, of the plurality of rate matching bits, to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to the plurality of systematic bits and a first portion of the plurality of parity bits, means for mapping a second subset, of the plurality of rate matching bits, to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits, and/or the like. In some aspects, a transmitter (e.g., UE 120 and/or base station 110) may include means for selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, means for mapping the plurality of rate matching bits to a non-full-duplex portion of a channel resource, means for mapping a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource, and/or the like. In some aspects, such means may include one or more components of UE 120 and/or base station 110 described in connection with Fig. 2.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3A shows an example frame structure 300 for frequency division duplexing (FDD) in a telecommunications system (e.g., NR) . The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames (sometimes referred to as frames) . Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms) ) and may be partitioned into a set of Z (Z ≥ 1) subframes (e.g., with indices of 0 through Z-1) . Each subframe may have a  predetermined duration (e.g., 1ms) and may include a set of slots (e.g., 2 m slots per subframe are shown in Fig. 3A, where m is a numerology used for a transmission, such as 0, 1, 2, 3, 4, and/or the like) . Each slot may include a set of L symbol periods. For example, each slot may include fourteen symbol periods (e.g., as shown in Fig. 3A) , seven symbol periods, or another number of symbol periods. In a case where the subframe includes two slots (e.g., when m = 1) , the subframe may include 2L symbol periods, where the 2L symbol periods in each subframe may be assigned indices of 0 through 2L–1. In some aspects, a scheduling unit for the FDD may be frame-based, subframe-based, slot-based, symbol-based, and/or the like.
While some techniques are described herein in connection with frames, subframes, slots, and/or the like, these techniques may equally apply to other types of wireless communication structures, which may be referred to using terms other than “frame, ” “subframe, ” “slot, ” and/or the like in 5G NR. In some aspects, a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard and/or protocol. Additionally, or alternatively, different configurations of wireless communication structures than those shown in Fig. 3A may be used.
In certain telecommunications (e.g., NR) , a base station may transmit synchronization signals. For example, a base station may transmit a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and/or the like, on the downlink for each cell supported by the base station. The PSS and SSS may be used by UEs for cell search and acquisition. For example, the PSS may be used by UEs to determine symbol timing, and the SSS may be used by UEs to determine a physical cell identifier, associated with the base station, and frame timing. The base station may also transmit a physical broadcast channel (PBCH) . The PBCH may carry some system information, such as system information that supports initial access by UEs.
In some aspects, the base station may transmit the PSS, the SSS, and/or the PBCH in accordance with a synchronization communication hierarchy (e.g., a synchronization signal (SS) hierarchy) including multiple synchronization communications (e.g., SS blocks) , as described below in connection with Fig. 3B.
Fig. 3B is a block diagram conceptually illustrating an example SS hierarchy, which is an example of a synchronization communication hierarchy. As shown in Fig. 3B, the SS hierarchy may include an SS burst set, which may include a plurality of SS bursts (identified as SS burst 0 through SS burst B-1, where B is a  maximum number of repetitions of the SS burst that may be transmitted by the base station) . As further shown, each SS burst may include one or more SS blocks (identified as SS block 0 through SS block (b max_SS-1) , where b max_SS-1 is a maximum number of SS blocks that can be carried by an SS burst) . In some aspects, different SS blocks may be beam-formed differently. An SS burst set may be periodically transmitted by a wireless node, such as every X milliseconds, as shown in Fig. 3B. In some aspects, an SS burst set may have a fixed or dynamic length, shown as Y milliseconds in Fig. 3B.
The SS burst set shown in Fig. 3B is an example of a synchronization communication set, and other synchronization communication sets may be used in connection with the techniques described herein. Furthermore, the SS block shown in Fig. 3B is an example of a synchronization communication, and other synchronization communications may be used in connection with the techniques described herein.
In some aspects, an SS block includes resources that carry the PSS, the SSS, the PBCH, and/or other synchronization signals (e.g., a tertiary synchronization signal (TSS) ) and/or synchronization channels. In some aspects, multiple SS blocks are included in an SS burst, and the PSS, the SSS, and/or the PBCH may be the same across each SS block of the SS burst. In some aspects, a single SS block may be included in an SS burst. In some aspects, the SS block may be at least four symbol periods in length, where each symbol carries one or more of the PSS (e.g., occupying one symbol) , the SSS (e.g., occupying one symbol) , and/or the PBCH (e.g., occupying two symbols) .
In some aspects, the symbols of an SS block are consecutive, as shown in Fig. 3B. In some aspects, the symbols of an SS block are non-consecutive. Similarly, in some aspects, one or more SS blocks of the SS burst may be transmitted in consecutive radio resources (e.g., consecutive symbol periods) during one or more slots. Additionally, or alternatively, one or more SS blocks of the SS burst may be transmitted in non-consecutive radio resources.
In some aspects, the SS bursts may have a burst period, whereby the SS blocks of the SS burst are transmitted by the base station according to the burst period. In other words, the SS blocks may be repeated during each SS burst. In some aspects, the SS burst set may have a burst set periodicity, whereby the SS bursts of the SS burst set are transmitted by the base station according to the fixed burst set periodicity. In other words, the SS bursts may be repeated during each SS burst set.
The base station may transmit system information, such as system information blocks (SIBs) on a physical downlink shared channel (PDSCH) in certain slots. The base station may transmit control information/data on a physical downlink control channel (PDCCH) in C symbol periods of a slot, where B may be configurable for each slot. The base station may transmit traffic data and/or other data on the PDSCH in the remaining symbol periods of each slot.
As indicated above, Figs. 3A and 3B are provided as examples. Other examples may differ from what is described with regard to Figs. 3A and 3B.
Fig. 4 shows an example slot format 410 with a normal cyclic prefix. The available time frequency resources may be partitioned into resource blocks. Each resource block may cover a set of subcarriers (e.g., 12 subcarriers) in one slot and may include a number of resource elements. Each resource element may cover one subcarrier in one symbol period (e.g., in time) and may be used to send one modulation symbol, which may be a real or complex value.
An interlace structure may be used for each of the downlink and uplink for FDD in certain telecommunications systems (e.g., NR) . For example, Q interlaces with indices of 0 through Q –1 may be defined, where Q may be equal to 4, 6, 8, 10, or some other value. Each interlace may include slots that are spaced apart by Q frames. In particular, interlace q may include slots q, q + Q, q + 2Q, etc., where q ∈ {0, …, Q-1} .
A UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, and/or the like. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SINR) , or a reference signal received quality (RSRQ) , or some other metric. The UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
While aspects of the examples described herein may be associated with NR or 5G technologies, aspects of the present disclosure may be applicable with other wireless communication systems. New radio (NR) may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP) ) . In aspects, NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) and/or SC-FDM on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation  using time division duplexing (TDD) . In aspects, NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) and/or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD. NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g., 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) service.
In some aspects, a single component carrier bandwidth of 100 MHZ may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 60 or 120 kilohertz (kHz) over a 0.1 millisecond (ms) duration. Each radio frame may include 40 slots and may have a length of 10 ms. Consequently, each slot may have a length of 0.25 ms. Each slot may indicate a link direction (e.g., DL or UL) for data transmission and the link direction for each slot may be dynamically switched. Each slot may include DL/UL data as well as DL/UL control data.
Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based interface. NR networks may include entities such central units or distributed units.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
In a wireless network, a UE and a BS may communicate using various communication modes. For example, the UE and the BS may communicate using a full-duplex mode, such as where the UE and the BS simultaneously communicate on a downlink and an uplink, where the UE simultaneously communicates with the BS and another BS, where the BS simultaneously communicates with the UE and another UE, and/or the like. As another example, the UE and the BS may communicate using a non-full-duplex mode, such as where the UE and the BS perform half-duplex communication and/or another type of non-full-duplex communication.
When a transmitter (e.g., the UE or the BS) is to transmit data in a communication to a receiver (e.g., the UE or the BS) , the transmitter may perform a channel transport process, which may include adding cyclic redundancy check bits (CRC) to the data (the combination of data and systematic bits may be referred to as systematic bits) , channel coding the systematic bits to generate parity bits for the systematic bits, rate matching the systematic bits and parity bits to a transport block size for a channel resource (e.g., a physical uplink shared channel (PUSCH) in the case of the transmitter being a UE, a physical downlink shared channel (PDSCH) in the case of the transmitter being a BS) , mapping the rate matched systematic bits and parity bits to the channel resource, and/or other techniques.
Rate matching may include one or more techniques, such as bit selection (e.g., puncturing or removing systematic and/or parity bits if the quantity of systematic and parity bits exceeds the transport block size of the channel resource and/or adding padding bits if the quantity of systematic and parity bits is less than the transport block size of the channel resource) , bit interleaving (e.g., breaking up and/or scattering the sequence of rate matched systematic bits and/or parity bits) , and/or the like.
In some cases, the transmitter may use the same rate matching approach for communication in a full-duplex mode and a non-full-duplex node. However, since the transmitter and/or the receiver may transmit and/or receive in the same time-frequency resource in the full-duplex mode, self-interference (e.g., interference with reception of a communication that is caused by the transmission of another communication) may cause a signal-to-interference-plus-noise ratio (SINR) to be lower in the full-duplex mode relative to the non-full-duplex mode. Thus, if the same rate matching approach is used for the full-duplex mode and the non-full-duplex node, the reduction in SINR in the full-duplex mode may result in decreased decoding performance in the full-duplex mode, which in turn may result in increased decoding errors, increased decoding times, increased retransmissions, and/or the like.
Some aspects described herein provide techniques and apparatuses for rate matching for different transmission modes (e.g., full-duplex mode, non-full-duplex mode, and/or the like) . In some aspects, a transmitter (e.g., a UE or a BS) may select a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits, may select a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits, may map the first plurality of rate matching bits to a non-full-duplex portion of a  channel resource, and may map the second plurality of rate matching bits to a full-duplex portion of the channel resource. In this way, a receiver (e.g., a UE or a BS) may decode the first plurality of rate matching bits or both the first plurality of rate matching bits and the second plurality of rate matching bits to ensure decoding performance at the receiver.
In some aspects, the transmitter may select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, may map a first subset of the plurality of rate matching bits (e.g., corresponding to the plurality of systematic bits and a first portion of the plurality of parity bits) to a non-full-duplex portion of a channel resource, and may map a second subset of the plurality of rate matching bits (e.g., corresponding to a second portion of the plurality of parity bits) to a full-duplex portion of the channel resource. In this way, the receiver may decode the first plurality of rate matching bits or both the first plurality of rate matching bits and the second plurality of rate matching bits to ensure decoding performance at the receiver.
In some aspects, the transmitter may select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, may map the plurality of rate matching bits to a non-full-duplex portion of a channel resource, and may map a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource. In this way, the receiver may decode the first plurality of rate matching bits or both the first plurality of rate matching bits and the second plurality of rate matching bits to ensure decoding performance at the receiver.
In this way, the transmitter may be configured to perform various rate matching techniques, described herein, that account for differences in SINR and/or other channel conditions between full-duplex mode and non-full-duplex mode, which may decrease decoding errors, decrease decoding times, decrease retransmissions, and/or the like.
Fig. 5 is a diagram illustrating an example 500 of rate matching for different transmission modes, in accordance with various aspects of the present disclosure. As shown in Fig. 5, example 500 may include a transmitter. The transmitter may include one of various types of wireless communication devices, such as a UE (e.g., UE 120) , a BS (e.g., BS 110) , and/or the like. In some aspects, the transmitter may communicate with a receiver (e.g., another UE 120, another BS 110, and/or the like) using various  transmission modes, such as a full-duplex mode, a non-full-duplex mode, and/or the like.
In some aspects, the transmitter may communicate with the receiver using a plurality of transmissions modes in a same channel resource (e.g., a PUSCH resource in the case of the transmitter being a UE 120, a PDSCH resource in the case of the transmitter being a BS 110) . In this case, the transmitter may communicate with the receiver in a full-duplex portion of the channel resource and in a non-full-duplex portion of the channel resource. In some aspects, the full-duplex portion and the non-full-duplex portion may be time division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a time-domain resource of the channel resource) , may be frequency division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a frequency-domain resource of the channel resource) , and/or the like.
As explained above, the transmitter may be configured to transmit data and/or other information to the receiver using the channel resource and, accordingly, may perform a channel transport process to generate and transmit a communication that includes the data. The channel transport process may include adding CRC bits to the source bits of the data to form systematic bits, channel coding the systematic bits to generate parity bits for the systematic bits, rate matching the systematic bits and parity bits to a transport block size for the channel resource, mapping the rate matched systematic bits and parity bits to the channel resource, and/or other techniques.
In some aspects, for the rate matching portion of the channel transport process, the transmitter may perform a plurality of bit selection procedures for the channel resource. For example, the transmitter may perform a first bit selection procedure for the non-full-duplex portion of the channel resource and a second bit selection procedure for the full-duplex portion of the channel resource.
As shown in Fig. 5, and by reference number 502, the transmitter may perform the first bit selection procedure for the non-full-duplex portion of the channel resource. The first bit selection procedure may include selecting a first plurality of rate matching bits for the systematic bits and a first plurality of parity bits.
In some aspects, when performing bit selection as part of a rate matching procedure, the transmitter may generate a plurality of redundancy versions (or incremental redundancies) of the parity bits that were generated as part of the channel coding process. Each redundancy version may include a bit selection for different  combinations of the parity bits. In other words, each redundancy version may include rate matching bits in which different combinations of the parity bits may be punctured and/or padding may be added. As a result, each redundancy version of rate matching bits may include a different plurality of parity bits that were generated from the parity bits generated as part of the channel coding process. The transmitter may select a redundancy version (e.g., randomly select, select based at least in part on one or more selection rules such as selecting the lowest redundancy version, and/or the like) of the parity bits as part of the first plurality of rate matching bits for the systematic bits and a first plurality of parity bits.
In some aspects, when selecting the first plurality of rate matching bits, the transmitter may determine a quantity of bits, to include in the first plurality of rate matching bits, based at least in part on a size of the non-full-duplex portion of the channel resource (e.g., the quantity of rate matching bits may be selected to match a quantity of bits that may be represented in the non-full-duplex portion, may be selected to match a length of the non-full-duplex portion, and/or the like) . In this way, the transmitter may perform the bit selection of the first plurality of rate matching bits such that the quantity of bits, included in the first plurality of rate matching bits, matches the quantity of bits included in the non-full-duplex portion of the channel resource.
As further shown in Fig. 5, and by reference number 504, the transmitter may perform the second bit selection procedure for the full-duplex portion of the channel resource. The second bit selection procedure may include selecting a second plurality of rate matching bits for a second plurality of parity bits.
In some aspects, when selecting the second plurality of rate matching bits for the second plurality of parity bits, the transmitter may generate a plurality of redundancy versions of the parity bits that were generated as part of the channel coding process. Each redundancy version may include a quantity of rate matching bits that is based at least in part on a size of the full-duplex portion (e.g., the quantity of rate matching bits may be selected to match a quantity of bits that may be represented in the full-duplex portion, may be selected to match a length of the full-duplex portion, and/or the like) . Moreover, each redundancy version may include a bit selection for different combinations of the parity bits. In other words, each redundancy version may include rate matching bits in which different combinations of the parity bits may be punctured and/or padding may be added. As a result, each redundancy version of rate matching  bits may include a different plurality of parity bits that were generated from the parity bits generated as part of the channel coding process.
The transmitter may select a redundancy version (e.g., randomly select, select based at least in part on one or more selection rules such as selecting the lowest redundancy version, and/or the like) of the parity bits as the second plurality of parity bits for the second plurality of rate matching bits. The redundancy version of the second plurality of bits, selected for the second plurality of rate matching bits, may be the same redundancy version or a different redundancy version relative to the first plurality of parity bits selected for the first plurality of rate matching bits.
In some aspects, once the first plurality of rate matching bits has been selected for the non-full-duplex portion, and the second plurality of rate matching bits has been selected for the full-duplex portion, the transmitter may independently and separately perform bit interleaving of the first plurality of rate matching bits and the second plurality of rate matching bits. For example, the transmitter may break up and/or scatter the sequence of the first plurality of rate matching bits, and may break up and/or scatter the sequence of the second plurality of rate matching bits as part of the rate matching process.
As further shown in Fig. 5, and by reference number 506, the transmitter may map the first plurality of rate matching bits (e.g., after performing bit interleaving on the first plurality of rate matching bits) to the non-full-duplex portion of the channel resource. For example, the transmitter may map the first plurality of rate matching bits to the time-domain and/or frequency-domain resources included in the non-full-duplex portion of the channel resource. In this way, the systematic bits and the first plurality of parity bits may be included in the non-full-duplex portion of the channel resource.
As further shown in Fig. 5, and by reference number 508, the transmitter may map the second plurality of rate matching bits (e.g., after performing bit interleaving on the second plurality of rate matching bits) to the full-duplex portion of the channel resource. For example, the transmitter may map the second plurality of rate matching bits to the time-domain and/or frequency-domain resources included in the full-duplex portion of the channel resource. In this way, the second plurality of parity bits may be included in the full-duplex portion of the channel resource.
After bit mapping the first plurality rate matching bits and the second plurality of rate matching bits (and any other channel transport procedures) , the transmitter may transmit the channel resource in one or more communications (e.g., one  or more PUSCH communications, one or more PDSCH communications) to the receiver. The receiver may receive the one or more communications and may decode the one or more communications based at least in part on the first plurality of rate matching bits mapped to the non-full-duplex portion of the channel resource or based at least in part on a combination of the first plurality of rate matching bits mapped to the non-full-duplex portion of the channel resource and the second plurality of rate matching bits mapped to the full-duplex portion of the channel resource.
For example, the receiver may attempt to decode the one or more communications based at least in part on the systematic bits and the first plurality of parity bits represented by the first plurality of rate matching bits. If the receiver determines that the decoding performance, of decoding the one or more communications based at least in part on the systematic bits and the first plurality of parity bits represented by the first plurality of rate matching bits, does not satisfy one or more thresholds (e.g., an error rate threshold, a decoding time threshold, and/or the like) , the receiver may attempt to decode the one or more communications based at least in part on the combination of the systematic bits and the first plurality of parity bits represented by the first plurality of rate matching bits and the second plurality of parity bits represented by the second plurality of rate matching bits. In this case, the receiver may attempt to decode the one or more communications by using the first plurality of parity bits and the second plurality of parity bits with the systematic bits.
In this way, the transmitter may select a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits, may select a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits, may map the first plurality of rate matching bits to a non-full-duplex portion of a channel resource, and may map the second plurality of rate matching bits to a full-duplex portion of the channel resource. The first plurality of rate matching bits and the second plurality of rate matching bits may be independently and separately selected in that the first plurality of rate matching bits may be selected based at least in part on the non-full-duplex portion of the channel resource and the second plurality of rate matching bits may be selected based at least in part on the full-duplex portion of the channel resource.
In this way, the receiver may decode the first plurality of rate matching bits or both the first plurality of rate matching bits and the second plurality of rate matching bits to ensure decoding performance at the receiver, which permits the transmitter and  receiver to account for differences in SINR and/or other channel conditions between the full-duplex portion and non-full-duplex portion, which may decrease decoding errors, decrease decoding times, decrease retransmissions, and/or the like.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
Fig. 6 is a diagram illustrating an example 600 of rate matching for different transmission modes, in accordance with various aspects of the present disclosure. As shown in Fig. 6, example 600 may include a transmitter. The transmitter may include one of various types of wireless communication devices, such as a UE (e.g., UE 120) , a BS (e.g., BS 110) , and/or the like. In some aspects, the transmitter may communicate with a receiver (e.g., another UE 120, another BS 110, and/or the like) using various transmission modes, such as a full-duplex mode, a non-full-duplex mode, and/or the like.
In some aspects, the transmitter may communicate with the receiver using a plurality of transmissions modes in a same channel resource (e.g., a PUSCH resource in the case of the transmitter being a UE 120, a PDSCH resource in the case of the transmitter being a BS 110) . In this case, the transmitter may communicate with the receiver in a full-duplex portion of the channel resource and in a non-full-duplex portion of the channel resource. In some aspects, the full-duplex portion and the non-full-duplex portion may be time division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a time-domain resource of the channel resource) , may be frequency division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a frequency-domain resource of the channel resource) , and/or the like.
As explained above, the transmitter may be configured to transmit data and/or other information to the receiver using the channel resource and, accordingly, may perform a channel transport process to generate and transmit a communication that includes the data. The channel transport process may include adding CRC bits to the source bits of the data to form systematic bits, channel coding the systematic bits to generate parity bits for the systematic bits, rate matching the systematic bits and parity bits to a transport block size for the channel resource, mapping the rate matched systematic bits and parity bits to the channel resource, and/or other techniques.
As shown in Fig. 6, and by reference number 602, for the rate matching portion of the channel transport process, the transmitter may perform a single bit  selection procedure for the entire channel resource. The bit selection procedure may include selecting a plurality of rate matching bits for the systematic bits and a plurality of parity bits.
In some aspects, when performing bit selection as part of a rate matching procedure, the transmitter may generate a plurality of redundancy versions (or incremental redundancies) of the parity bits that were generated as part of the channel coding process. Each redundancy version may include a bit selection for different combinations of the parity bits. In other words, in each redundancy version may include rate matching bits in which different combinations of the parity bits may be punctured and/or padding may be added. As a result, each redundancy version of rate matching bits may include a different plurality of parity bits that were generated from the parity bits generated as part of the channel coding process. The transmitter may select a single redundancy version (e.g., randomly select, select based at least in part on one or more selection rules such as selecting the lowest redundancy version, and/or the like) of the parity bits as the plurality of parity bits to be represented by the plurality of rate matching bits.
In some aspects, when selecting the plurality of rate matching bits, the transmitter may determine a quantity of bits, to include in the plurality of rate matching bits, based at least in part on a combined size of the non-full-duplex portion and the full-duplex portion of the channel resource (e.g., the quantity of rate matching bits may be selected to match a quantity of bits that may be represented in the non-full-duplex portion and the full-duplex portion, may be selected to match a combined length of the non-full-duplex portion and the full-duplex portion, and/or the like) . In this way, the transmitter may perform the bit selection of the plurality of rate matching bits such that the quantity of bits, included in the plurality of rate matching bits, matches a combined quantity of bits included in the non-full-duplex portion and the full-duplex portion of the channel resource.
In some aspects, once the plurality of rate matching bits has been selected for the channel resource, the transmitter may assign a first subset of rate matching bits, of the plurality of rate matching bits, to the non-full-duplex portion. Moreover, the transmitter may assign a second subset of rate matching bits, of the plurality of rate matching bits, to the non-full-duplex portion. The first subset of rate matching bits may include the rate matching bits corresponding to the systematic bits and a first portion of  the plurality of parity bits. The second subset of rate matching bits may include the rate matching bits corresponding to a second portion of the plurality of parity bits.
In some aspects, the transmitter may determine the quantity of bits, included in the first subset of rate matching bits, based at least in part on a size of the non-full-duplex portion, and may determine the quantity of bits, included in the second subset of rate matching bits, based at least in part on the size of the full-duplex portion. Since the first subset of rate matching bits includes the systematic bits, the transmitter may determine how to divide the plurality of parity bits among the non-full-duplex portion and the full-duplex portion based at least in part on the respective sizes of the non-full-duplex portion and the full-duplex portion. Accordingly, the transmitter may determine the quantity of parity bits (or quantity of rate matching bits corresponding to the parity bits) to include in the first portion of the plurality of parity bits based at least in part on the size of the non-full-duplex portion, and may determine the quantity of parity bits (or quantity of rate matching bits corresponding to the parity bits) to include in the second portion of the plurality parity bits based at least in part on the size of the full-duplex portion.
In some aspects, the transmitter may perform independent and/or separate bit interleaving procedures for the rate matching bits assigned to the non-full-duplex portion and the rate matching bits assigned to the full-duplex portion. For example, the transmitter may break up and/or scatter the sequence of the first subset of the rate matching bits assigned to the non-full-duplex portion, and may break up and/or scatter the sequence of the second subset of the rate matching bits assigned to the full-duplex portion as part of the rate matching process.
As further shown in Fig. 6, and by reference number 604, the transmitter may map the first subset of the rate matching bits (e.g., after performing bit interleaving on the first subset of the rate matching bits) to the non-full-duplex portion of the channel resource. For example, the transmitter may map the first subset of the rate matching bits to the time-domain and/or frequency-domain resources included in the non-full-duplex portion of the channel resource. In this way, the systematic bits and the first portion of the plurality of parity bits may be included in the non-full-duplex portion of the channel resource.
As further shown in Fig. 6, and by reference number 606, the transmitter may map the second subset of the rate matching bits (e.g., after performing bit interleaving on the second subset of the rate matching bits) to the full-duplex portion of  the channel resource. For example, the transmitter may map the second subset of the rate matching bits to the time-domain and/or frequency-domain resources included in the full-duplex portion of the channel resource. In this way, the second subset of the rate matching bits may be included in the full-duplex portion of the channel resource.
After bit mapping the first subset of the rate matching bits and the second subset of the rate matching bits (and any other channel transport procedures) , the transmitter may transmit the channel resource in one or more communications (e.g., one or more PUSCH communications, one or more PDSCH communications) to the receiver. The receiver may receive the one or more communications and may decode the one or more communications based at least in part on the first subset of the rate matching bits mapped to the non-full-duplex portion of the channel resource or based at least in part on a combination of the first subset of the rate matching bits mapped to the non-full-duplex portion of the channel resource and the second subset of the rate matching bits mapped to the full-duplex portion of the channel resource.
For example, the receiver may attempt to decode the one or more communications based at least in part on the systematic bits and the first portion of the plurality of parity bits represented by the first subset of the rate matching bits. If the receiver determines that the decoding performance, of decoding the one or more communications based at least in part on the systematic bits and the first portion of the plurality of parity bits represented by the first plurality of rate matching bits, does not satisfy one or more thresholds (e.g., an error rate threshold, a decoding time threshold, and/or the like) , the receiver may attempt to decode the one or more communications based at least in part on the combination of the systematic bits and the first portion of the plurality of parity bits represented by the first subset of rate matching bits and the second portion of the plurality of parity bits represented by the second subset of rate matching bits. In this case, the receiver may attempt to decode the one or more communications by combining the first portion of the plurality of parity bits and the second portion of the plurality of parity bits with the systematic bits.
In this way, the transmitter may select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, may map a first subset of the plurality of rate matching bits (e.g., corresponding to the plurality of systematic bits and a first portion of the plurality of parity bits) to a non-full-duplex portion of a channel resource, and may map a second subset of the plurality of rate matching bits (e.g., corresponding to a second portion of the plurality of parity  bits) to a full-duplex portion of the channel resource. The plurality of rate matching bits may be selected based at least in part on a combination of the non-full-duplex portion and the full-duplex portion of the channel resource and based at least in part on a single redundancy version.
In this way, the receiver may decode the first subset of rate matching bits or both the first subset of rate matching bits and the second subset of rate matching bits to ensure decoding performance at the receiver, which permits the transmitter and receiver to account for differences in SINR and/or other channel conditions between the full-duplex portion and non-full-duplex portion, which may decrease decoding errors, decrease decoding times, decrease retransmissions, and/or the like.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
Fig. 7 is a diagram illustrating an example 700 of rate matching for different transmission modes, in accordance with various aspects of the present disclosure. As shown in Fig. 7, example 700 may include a transmitter. The transmitter may include one of various types of wireless communication devices, such as a UE (e.g., UE 120) , a BS (e.g., BS 110) , and/or the like. In some aspects, the transmitter may communicate with a receiver (e.g., another UE 120, another BS 110, and/or the like) using various transmission modes, such as a full-duplex mode, a non-full-duplex mode, and/or the like.
In some aspects, the transmitter may communicate with the receiver using a plurality of transmissions modes in a same channel resource (e.g., a PUSCH resource in the case of the transmitter being a UE 120, a PDSCH resource in the case of the transmitter being a BS 110) . In this case, the transmitter may communicate with the receiver in a full-duplex portion of the channel resource and in a non-full-duplex portion of the channel resource. In some aspects, the full-duplex portion and the non-full-duplex portion may be time division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a time-domain resource of the channel resource) , may be frequency division multiplexed in the channel resource (e.g., the full-duplex portion and the non-full-duplex portion may be divided among a frequency-domain resource of the channel resource) , and/or the like.
As explained above, the transmitter may be configured to transmit data and/or other information to the receiver using the channel resource and, accordingly, may perform a channel transport process to generate and transmit a communication that  includes the data. The channel transport process may include adding CRC bits to the source bits of the data to form systematic bits, channel coding the systematic bits to generate parity bits for the systematic bits, rate matching the systematic bits and parity bits to a transport block size for the channel resource, mapping the rate matched systematic bits and parity bits to the channel resource, and/or other techniques.
As shown in Fig. 7, and by reference number 702, for the rate matching portion of the channel transport process, the transmitter may perform a single bit selection procedure for the entire channel resource. The bit selection procedure may include selecting a plurality of rate matching bits for the systematic bits and a plurality of parity bits.
In some aspects, when performing bit selection as part of a rate matching procedure, the transmitter may generate a plurality of redundancy versions (or incremental redundancies) of the parity bits that were generated as part of the channel coding process. Each redundancy version may include a bit selection for different combinations of the parity bits. In other words, in each redundancy version may include rate matching bits in which different combinations of the parity bits may be punctured and/or padding may be added. As a result, each redundancy version of rate matching bits may include a different plurality of parity bits that were generated from the parity bits generated as part of the channel coding process. The transmitter may select a single redundancy version (e.g., randomly select, select based at least in part on one or more selection rules such as selecting the lowest redundancy version, and/or the like) of the parity bits as the plurality of parity bits to be represented by the plurality of rate matching bits.
In some aspects, when selecting the plurality of rate matching bits, the transmitter may determine a quantity of bits, to include in the plurality of rate matching bits, based at least in part on a size of the non-full-duplex portion of the channel resource (e.g., the quantity of rate matching bits may be selected to match a quantity of bits that may be represented in the non-full-duplex portion, may be selected to match a length of the non-full-duplex portion, and/or the like) . In this way, the transmitter may perform the bit selection of the plurality of rate matching bits such that the quantity of bits, included in the plurality of rate matching bits, matches a quantity of bits included in the non-full-duplex portion of the channel resource.
In some aspects, once the plurality of rate matching bits has been selected for the channel resource, the transmitter may perform a bit interleaving procedure for the  plurality of rate matching bits. For example, the transmitter may break up and/or scatter the sequence of the plurality of the rate matching bits as part of the rate matching process.
As further shown in Fig. 7, and by reference number 704, the transmitter may map the subset of the rate matching bits (e.g., after performing bit interleaving on the plurality of rate matching bits) to the non-full-duplex portion of the channel resource. For example, the transmitter may map the plurality of rate matching bits to the time-domain and/or frequency-domain resources included in the non-full-duplex portion of the channel resource. In this way, the systematic bits and the plurality of parity bits may be included in the non-full-duplex portion of the channel resource, and the bits mapped to non-full-duplex portion may be referred to as the first subset of the rate matching bits.
As further shown in Fig. 7, and by reference number 706, the transmitter may map a copy, of a subset of the plurality of rate matching bits, to the full-duplex portion of the channel resource. The transmitter may map the copy of the subset of the plurality of rate matching bits to the time-domain and/or frequency-domain resources included in the full-duplex portion of the channel resource, and the bits mapped to full-duplex portion may be referred to as the second subset of the rate matching bits.
In some aspects, the subset of the plurality of rate matching bits may correspond to a subset, or the entirety, of the plurality of parity bits represented by the rate matching bits, may correspond to a subset, or the entirety, of the systematic represented by the rate matching bits, and/or the like. In some aspects, the subset of the plurality of rate matching bits may correspond to the rate matching bits included at the beginning of the non-full-duplex portion (e.g., the rate matching bits included in the first four contiguous symbols of the non-full-duplex portion) , may correspond to the rate matching bits included at the end of the non-full-duplex portion (e.g., the rate matching bits included in the last three contiguous symbols of the non-full-duplex portion) , may be randomly selected, and/or the like.
In some aspects, the transmitter may cycle through different selections of rate matching bits, for the transmission of respective communications, based at least in part on a rate matching cycling configuration. The rate matching cycling configuration may specify that the transmitter is to shift the subset of the plurality of rate matching bits, that are to be copied to the full-duplex portion, by one or more symbols for subsequent communications. In this case, the transmitter may select the rate matching  bits, that are included in a first group of contiguous symbols, for a first communication, may select rate matching bits, that are included in a second group of contiguous symbols that is shifted one or more symbols from the first group of contiguous symbols, for a second communication, and so on.
In some aspects, the transmitter may determine the quantity of bits, included in the subset of the plurality of rate matching bits that are to be copied to the full-duplex portion, based at least in part on a size of the full-duplex portion. For example, the transmitter may determine the quantity of bits, to include in the subset of the plurality of rate matching bits that are to be copied to the full-duplex portion, such that the quantity of bits matches a quantity of bits that may be represented in the full-duplex portion, such that the quantity of bits matches a length of the full-duplex portion, and/or the like.
In some aspects, the transmitter may directly copy the subset of the plurality of rate matching bits to the full-duplex portion. For example, the transmitter may copy the rate matching bits, included in a first symbol of the non-full-duplex portion, to a first symbol of the full-duplex portion without modification, may copy the rate matching bits, included in a second symbol of the non-full-duplex portion, to a second symbol of the full-duplex portion without modification, and so on. In some aspects, the transmitter may copy the subset of the plurality of rate matching bits to the full-duplex portion such that the subset of the plurality of rate matching bits are at least partially interleaved in the full-duplex portion. In some aspects, the transmitter may interleave subset of the plurality of rate matching bits may in the time domain (e.g., such that rate matching bits are included in different symbols between the non-full-duplex portion and the full-duplex portion) . In some aspects, the transmitter may interleave subset of the plurality of rate matching bits may in the frequency domain (e.g., such that rate matching bits are included in different resource elements between the non-full-duplex portion and the full-duplex portion) . In some aspects, the transmitter may interleave subset of the plurality of rate matching bits may in the time domain and frequency domain (e.g., such that rate matching bits are included in different resource elements and symbols between the non-full-duplex portion and the full-duplex portion) .
After bit mapping the first subset of the rate matching bits and the second subset of the rate matching bits (and any other channel transport procedures) , the transmitter may transmit the channel resource in one or more communications (e.g., one or more PUSCH communications, one or more PDSCH communications) to the receiver. The receiver may receive the one or more communications and may decode  the one or more communications based at least in part on the plurality of rate matching bits mapped to the non-full-duplex portion of the channel resource or based at least in part on a combination of the plurality of rate matching bits mapped to the non-full-duplex portion of the channel resource and the copy of the subset of the rate matching bits mapped to the full-duplex portion of the channel resource.
For example, the receiver may attempt to decode the one or more communications based at least in part on the systematic bits and the plurality of parity bits represented by the plurality of rate matching bits. If the receiver determines that the decoding performance, of decoding the one or more communications based at least in part on the systematic bits and the plurality of parity bits represented by the first plurality of rate matching bits, does not satisfy one or more thresholds (e.g., an error rate threshold, a decoding time threshold, and/or the like) , the receiver may attempt to decode the one or more communications based at least in part on the combination of the plurality of rate matching bits mapped to the non-full-duplex portion and the copy of the subset of the plurality of rate matching bits mapped to the full-duplex portion.
In this way, the transmitter may select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, may map the plurality of rate matching bits to a non-full-duplex portion of a channel resource, and may map a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource. In this way, the receiver may decode the plurality of rate matching bits or both the plurality of rate matching bits and the copy of the subset of the plurality of rate matching bits to ensure decoding performance at the receiver, which permits the transmitter and receiver to account for differences in SINR and/or other channel conditions between the full-duplex portion and non-full-duplex portion, which may decrease decoding errors, decrease decoding times, decrease retransmissions, and/or the like.
As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with respect to Fig. 7.
In some aspects, a transmitter may be configured to implement one or more of the channel transport processes described above in connection with Figs. 5-7, may be instructed to change channel transport processes for the transmission of different communications, and/or the like. For example, if the transmitter is a UE, a BS may transmit a signaling communication to the UE. The signaling communication may indicate a channel transport process that the UE is to use for one or more  communications (e.g., the channel transport process described above in connection with Fig. 5, the channel transport process described above in connection with Fig. 6. the channel transport process described above in connection with Fig. 7, or the like) . The UE may receive the signaling communication and may perform the channel transport process, indicated in the signaling communication, for transmitting the one or more communications in a channel resource. The signaling communication may include a radio resource control (RRC) communication, a medium access control (MAC) control element (MAC-CE) communication, a downlink control information (DCI) communication, and/or the like.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a transmitter, in accordance with various aspects of the present disclosure. Example process 800 is an example where a transmitter (e.g., BS 110, UE 120, and/or the like) performs operations associated with rate matching for different transmission modes.
As shown in Fig. 8, in some aspects, process 800 may include selecting a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits (block 810) . For example, the transmitter (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may select a first plurality of rate matching bits for a plurality of systematic bits and a first plurality of parity bits associated with the systematic bits, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include selecting a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits (block 820) . For example, the transmitter (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may select a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include mapping the first plurality of rate matching bits to a non-full-duplex portion of a channel resource (block 830) . For example, the transmitter (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or  the like) may map the first plurality of rate matching bits to a non-full-duplex portion of a channel resource, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include mapping the second plurality of rate matching bits to a full-duplex portion of the channel resource (block 840) . For example, the transmitter (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may map the second plurality of rate matching bits to a full-duplex portion of the channel resource, as described above.
Process 800 may include additional aspects, such as any single implementation or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the non-full-duplex portion and the full-duplex portion are time division multiplexed in the channel resource. In a second aspect, the non-full-duplex portion and the full-duplex portion are frequency division multiplexed in the channel resource. In a third aspect, the non-full-duplex portion and the full-duplex portion are time division multiplexed and frequency division multiplexed in the channel resource. In a fourth aspect, alone or in combination with one or more of the first through third aspects, the transmitter comprises a UE, and the channel resource comprises a PUSCH resource. In a fifth aspect, alone or in combination with one or more of the first through third aspects, the transmitter comprises a BS, and the channel resource comprises a PDSCH resource.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the first plurality of parity bits is associated with a first redundancy version and the second plurality of parity bits is associated with a second redundancy version. In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the first redundancy version and the second redundancy version are different redundancy versions. In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the first redundancy version and the second redundancy version are a same redundancy version.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, a first quantity of bits, included in the first plurality of rate matching bits, is based at least in part on a size of the non-full-duplex portion, and a second quantity of bits, included in the second plurality of rate matching bits, is based at  least in part on a size of the full-duplex portion. In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, process 800 further comprises receiving, from a BS, a signaling communication that indicates a channel transport process, selecting the first plurality of rate matching bits comprises selecting the first plurality of rate matching bits based at least in part on the channel transport process, and selecting the second plurality of rate matching bits comprises selecting the second plurality of rate matching bits based at least in part on the channel transport process.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a transmitter, in accordance with various aspects of the present disclosure. Example process 900 is an example where a transmitter (e.g., BS 110, UE 120, and/or the like) performs operations associated with rate matching for different transmission modes.
As shown in Fig. 9, in some aspects, process 900 may include selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits (block 910) . For example, the transmitter (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include mapping a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource, wherein the first subset of the plurality of rate matching bits corresponds to the plurality of systematic bits and a first portion of the plurality of parity bits (block 920) . For example, the transmitter (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may map a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource, as described above. In some aspects, the first subset of the plurality  of rate matching bits corresponds to the plurality of systematic bits and a first portion of the plurality of parity bits.
As further shown in Fig. 9, in some aspects, process 900 may include mapping a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource, wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits (block 930) . For example, the transmitter (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may map a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource, as described above. In some aspects, the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
Process 900 may include additional aspects, such as any single implementation or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the non-full-duplex portion and the full-duplex portion are time division multiplexed in the channel resource. In a second aspect, the non-full-duplex portion and the full-duplex portion are frequency division multiplexed in the channel resource. In a third aspect, the non-full-duplex portion and the full-duplex portion are time division multiplexed and frequency division multiplexed in the channel resource.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the transmitter comprises a UE, and the channel resource comprises a PUSCH resource. In a fifth aspect, alone or in combination with one or more of the first through third aspects, the transmitter comprises a BS, and the channel resource comprises a PDSCH resource. In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, a quantity of bits, included in the plurality of rate matching bits, is based at least in part on a combined size of the non-full-duplex portion and the full-duplex portion. In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the plurality of rate matching bits is based at least in part on a single redundancy version.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, a first quantity of bits, included in the first subset of the plurality of rate matching bits, is based at least in part on a size of the non-full-duplex  portion, and a second quantity of bits, included in the second subset of the plurality of rate matching bits, is based at least in part on a size of the full-duplex portion.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 900 further comprises receiving, from a BS, a signaling communication that indicates a channel transport process, and selecting the plurality of rate matching bits comprises selecting the first subset of the plurality of rate matching bits based at least in part on the channel transport process and selecting the second subset of the plurality of rate matching bits based at least in part on the channel transport process.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a transmitter, in accordance with various aspects of the present disclosure. Example process 1000 is an example where a transmitter (e.g., BS 110, UE 120, and/or the like) performs operations associated with rate matching for different transmission modes.
As shown in Fig. 10, in some aspects, process 1000 may include selecting a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits (block 1010) . For example, the transmitter (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may select a plurality of rate matching bits for a plurality of systematic bits and a plurality of parity bits associated with the systematic bits, as described above.
As further shown in Fig. 10, in some aspects, process 1000 may include mapping the plurality of rate matching bits to a non-full-duplex portion of a channel resource (block 1020) . For example, the transmitter (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may map the plurality of rate matching bits to a non-full-duplex portion of a channel resource, as described above.
As further shown in Fig. 10, in some aspects, process 1000 may include mapping a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource (block 1030) . For example, the transmitter (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may map a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource, as described above.
Process 1000 may include additional aspects, such as any single implementation or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the non-full-duplex portion and the full-duplex portion are time division multiplexed in the channel resource. In a second aspect, the non-full-duplex portion and the full-duplex portion are frequency division multiplexed in the channel resource. In a third aspect, the non-full-duplex portion and the full-duplex portion are time division multiplexed and frequency division multiplexed in the channel resource. In a fourth aspect, alone or in combination with one or more of the first through third aspects, the transmitter comprises a UE, and the channel resource comprises a PUSCH resource. In a fifth aspect, alone or in combination with one or more of the first through third aspects, the transmitter comprises a BS, and the channel resource comprises a PDSCH resource.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the copy of the subset of the plurality of rate matching bits corresponds to one or more symbols at a beginning of the non-full-duplex portion. In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the copy of the subset of the plurality of rate matching bits are interleaved in the full-duplex portion.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, one or more symbols of the non-full-duplex portion, to which the copy of the subset of the plurality of rate matching bits corresponds, is based at least in part on a rate matching cycling configuration. In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 1000 further comprises receiving, from a BS, a signaling communication that indicates a channel transport process, and selecting the plurality of rate matching bits comprises selecting the plurality of rate matching bits based at least in part on the channel transport process  and selecting the copy of the subset of the plurality of rate matching bits based at least in part on the channel transport process.
Although Fig. 10 shows example blocks of process 1000, in some aspects, process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
Some aspects are described herein in connection with thresholds. As used herein, satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least  one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (40)

  1. A method of wireless communication performed by a transmitter, comprising:
    selecting a first plurality of rate matching bits for:
    a plurality of systematic bits, and
    a first plurality of parity bits associated with the systematic bits;
    selecting a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits;
    mapping the first plurality of rate matching bits to a non-full-duplex portion of a channel resource; and
    mapping the second plurality of rate matching bits to a full-duplex portion of the channel resource.
  2. The method of claim 1, wherein the non-full-duplex portion and the full-duplex portion are time division multiplexed in the channel resource.
  3. The method of claim 1, wherein the non-full-duplex portion and the full-duplex portion are frequency division multiplexed in the channel resource.
  4. The method of claim 1, wherein the non-full-duplex portion and the full-duplex portion are time division multiplexed and frequency division multiplexed in the channel resource.
  5. The method of claim 1, wherein the transmitter comprises:
    a user equipment (UE) ; and
    wherein the channel resource comprises:
    a physical uplink shared channel (PUSCH) resource.
  6. The method of claim 1, wherein the transmitter comprises:
    a base station (BS) ; and
    wherein the channel resource comprises:
    a physical downlink shared channel (PDSCH) resource.
  7. The method of claim 1, wherein the first plurality of parity bits is associated with a first redundancy version; and
    wherein the second plurality of parity bits is associated with a second redundancy version.
  8. The method of claim 7, wherein the first redundancy version and the second redundancy version are different redundancy versions.
  9. The method of claim 7, wherein the first redundancy version and the second redundancy version are a same redundancy version.
  10. The method of claim 1, wherein a first quantity of bits, included in the first plurality of rate matching bits, is based at least in part on a size of the non-full-duplex portion; and
    wherein a second quantity of bits, included in the second plurality of rate matching bits, is based at least in part on a size of the full-duplex portion.
  11. The method of claim 1, further comprising:
    receiving, from a base station (BS) , a signaling communication that indicates a channel transport process;
    wherein selecting the first plurality of rate matching bits comprises:
    selecting the first plurality of rate matching bits based at least in part on the channel transport process; and
    wherein selecting the second plurality of rate matching bits comprises:
    selecting the second plurality of rate matching bits based at least in part on the channel transport process.
  12. A method of wireless communication performed by a transmitter, comprising:
    selecting a plurality of rate matching bits for:
    a plurality of systematic bits, and
    a plurality of parity bits associated with the systematic bits;
    mapping a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource,
    wherein the first subset of the plurality of rate matching bits corresponds to:
    the plurality of systematic bits, and
    a first portion of the plurality of parity bits; and
    mapping a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource,
    wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
  13. The method of claim 12, wherein the non-full-duplex portion and the full-duplex portion are time division multiplexed in the channel resource.
  14. The method of claim 12, wherein the non-full-duplex portion and the full-duplex portion are frequency division multiplexed in the channel resource.
  15. The method of claim 12, wherein the non-full-duplex portion and the full-duplex portion are time division multiplexed and frequency division multiplexed in the channel resource.
  16. The method of claim 12, wherein the transmitter comprises:
    a user equipment (UE) ; and
    wherein the channel resource comprises:
    a physical uplink shared channel (PUSCH) resource.
  17. The method of claim 12, wherein the transmitter comprises:
    a base station (BS) ; and
    wherein the channel resource comprises:
    a physical downlink shared channel (PDSCH) resource.
  18. The method of claim 12, wherein a quantity of bits, included in the plurality of rate matching bits, is based at least in part on a combined size of the non-full-duplex portion and the full-duplex portion.
  19. The method of claim 12, wherein the plurality of rate matching bits is based at least in part on a single redundancy version.
  20. The method of claim 12, wherein a first quantity of bits, included in the first subset of the plurality of rate matching bits, is based at least in part on a size of the non-full-duplex portion; and
    wherein a second quantity of bits, included in the second subset of the plurality of rate matching bits, is based at least in part on a size of the full-duplex portion.
  21. The method of claim 12, further comprising:
    receiving, from a base station (BS) , a signaling communication that indicates a channel transport process; and
    wherein selecting the plurality of rate matching bits comprises:
    selecting the first subset of the plurality of rate matching bits based at least in part on the channel transport process; and
    selecting the second subset of the plurality of rate matching bits based at least in part on the channel transport process.
  22. A method of wireless communication performed by a transmitter, comprising:
    selecting a plurality of rate matching bits for:
    a plurality of systematic bits, and
    a plurality of parity bits associated with the systematic bits;
    mapping the plurality of rate matching bits to a non-full-duplex portion of a channel resource; and
    mapping a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
  23. The method of claim 22, wherein the non-full-duplex portion and the full-duplex portion are time division multiplexed in the channel resource.
  24. The method of claim 22, wherein the non-full-duplex portion and the full-duplex portion are frequency division multiplexed in the channel resource.
  25. The method of claim 22, wherein the non-full-duplex portion and the full-duplex portion are time division multiplexed and frequency division multiplexed in the channel resource.
  26. The method of claim 22, wherein the transmitter comprises:
    a user equipment (UE) ; and
    wherein the channel resource comprises:
    a physical uplink shared channel (PUSCH) resource.
  27. The method of claim 22, wherein the transmitter comprises:
    a base station (BS) ; and
    wherein the channel resource comprises:
    a physical downlink shared channel (PDSCH) resource.
  28. The method of claim 22, wherein the copy of the subset of the plurality of rate matching bits corresponds to one or more symbols at a beginning of the non-full-duplex portion.
  29. The method of claim 22, wherein the copy of the subset of the plurality of rate matching bits are interleaved in the full-duplex portion.
  30. The method of claim 22, wherein one or more symbols of the non-full-duplex portion, to which the copy of the subset of the plurality of rate matching bits corresponds, is based at least in part on a rate matching cycling configuration.
  31. The method of claim 22, further comprising:
    receiving, from a base station (BS) , a signaling communication that indicates a channel transport process; and
    wherein selecting the plurality of rate matching bits comprises:
    selecting the plurality of rate matching bits based at least in part on the channel transport process; and
    selecting the copy of the subset of the plurality of rate matching bits based at least in part on the channel transport process.
  32. A transmitter, comprising:
    one or more memories; and
    one or more processors communicatively coupled to the one or more memories, configured to:
    select a first plurality of rate matching bits for:
    a plurality of systematic bits, and
    a first plurality of parity bits associated with the systematic bits;
    select a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits;
    map the first plurality of rate matching bits to a non-full-duplex portion of a channel resource; and
    map the second plurality of rate matching bits to a full-duplex portion of the channel resource.
  33. A transmitter, comprising:
    one or more memories; and
    one or more processors communicatively coupled to the one or more memories, configured to:
    select a plurality of rate matching bits for:
    a plurality of systematic bits, and
    a plurality of parity bits associated with the systematic bits;
    map a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource,
    wherein the first subset of the plurality of rate matching bits corresponds to:
    the plurality of systematic bits, and
    a first portion of the plurality of parity bits; and
    map a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource,
    wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
  34. A transmitter, comprising:
    one or more memories; and
    one or more processors communicatively coupled to the one or more memories, configured to:
    select a plurality of rate matching bits for:
    a plurality of systematic bits, and
    a plurality of parity bits associated with the systematic bits;
    map the plurality of rate matching bits to a non-full-duplex portion of a channel resource; and
    map a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
  35. A non-transitory computer-readable medium storing instructions, the instructions comprising:
    one or more instructions that, when executed by one or more processors, cause the one or more processors to:
    select a first plurality of rate matching bits for:
    a plurality of systematic bits, and
    a first plurality of parity bits associated with the systematic bits;
    select a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits;
    map the first plurality of rate matching bits to a non-full-duplex portion of a channel resource; and
    map the second plurality of rate matching bits to a full-duplex portion of the channel resource.
  36. A non-transitory computer-readable medium storing instructions, the instructions comprising:
    one or more instructions that, when executed by one or more processors, cause the one or more processors to:
    select a plurality of rate matching bits for:
    a plurality of systematic bits, and
    a plurality of parity bits associated with the systematic bits;
    map a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource,
    wherein the first subset of the plurality of rate matching bits corresponds to:
    the plurality of systematic bits, and
    a first portion of the plurality of parity bits; and
    map a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource,
    wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
  37. A non-transitory computer-readable medium storing instructions, the instructions comprising:
    one or more instructions that, when executed by one or more processors, cause the one or more processors to:
    select a plurality of rate matching bits for:
    a plurality of systematic bits, and
    a plurality of parity bits associated with the systematic bits;
    map the plurality of rate matching bits to a non-full-duplex portion of a channel resource; and
    map a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
  38. An apparatus, comprising:
    means for selecting a first plurality of rate matching bits for:
    a plurality of systematic bits, and
    a first plurality of parity bits associated with the systematic bits;
    means for selecting a second plurality of rate matching bits for a second plurality of parity bits associated with the systematic bits;
    means for mapping the first plurality of rate matching bits to a non-full-duplex portion of a channel resource; and
    means for mapping the second plurality of rate matching bits to a full-duplex portion of the channel resource.
  39. An apparatus, comprising:
    means for selecting a plurality of rate matching bits for:
    a plurality of systematic bits, and
    a plurality of parity bits associated with the systematic bits;
    means for mapping a first subset of the plurality of rate matching bits to a non-full-duplex portion of a channel resource,
    wherein the first subset of the plurality of rate matching bits corresponds to:
    the plurality of systematic bits, and
    a first portion of the plurality of parity bits; and
    means for mapping a second subset of the plurality of rate matching bits to a full-duplex portion of the channel resource,
    wherein the second subset of the plurality of rate matching bits corresponds to a second portion of the plurality of parity bits.
  40. An apparatus, comprising:
    means for selecting a plurality of rate matching bits for:
    a plurality of systematic bits, and
    a plurality of parity bits associated with the systematic bits;
    means for mapping the plurality of rate matching bits to a non-full-duplex portion of a channel resource; and
    means for mapping a copy, of a subset of the plurality of rate matching bits, to a full-duplex portion of the channel resource.
PCT/CN2019/081621 2019-04-05 2019-04-05 Rate matching for different transmission modes WO2020199225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081621 WO2020199225A1 (en) 2019-04-05 2019-04-05 Rate matching for different transmission modes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081621 WO2020199225A1 (en) 2019-04-05 2019-04-05 Rate matching for different transmission modes

Publications (1)

Publication Number Publication Date
WO2020199225A1 true WO2020199225A1 (en) 2020-10-08

Family

ID=72664575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081621 WO2020199225A1 (en) 2019-04-05 2019-04-05 Rate matching for different transmission modes

Country Status (1)

Country Link
WO (1) WO2020199225A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105610551A (en) * 2007-03-27 2016-05-25 高通股份有限公司 Circular buffer based rate matching
WO2016162162A1 (en) * 2015-04-10 2016-10-13 Sony Corporation Infrastructure equipment, communications device and methods
WO2018148742A1 (en) * 2017-02-13 2018-08-16 Qualcomm Incorporated Low density parity check (ldpc) circular buffer rate matching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105610551A (en) * 2007-03-27 2016-05-25 高通股份有限公司 Circular buffer based rate matching
WO2016162162A1 (en) * 2015-04-10 2016-10-13 Sony Corporation Infrastructure equipment, communications device and methods
WO2018148742A1 (en) * 2017-02-13 2018-08-16 Qualcomm Incorporated Low density parity check (ldpc) circular buffer rate matching

Similar Documents

Publication Publication Date Title
US11683709B2 (en) Indicating a user equipment capability for crosslink interference measurement
AU2019210203B2 (en) System information monitoring
AU2019221649B2 (en) Physical resource block bundle size selection
EP3857957A1 (en) Transmit parameter control
EP3711221A2 (en) Code block group retransmission
EP3785387A1 (en) Uplink control information payload size
WO2019094686A1 (en) Techniques and apparatuses for removing ambiguity on the size of control information with leading zeroes
EP3963810A2 (en) Physical uplink control channel resource configuration
WO2021022301A1 (en) Construction and mapping of compact uplink control information (uci) over physical uplink shared channel (pusch)
WO2019195537A1 (en) Downlink control channel beam sweeping
WO2021026551A1 (en) Transmission configuration indicator determination for mixed mode operation
EP3837784A1 (en) Fractally enhanced kernel polar coding
WO2020164463A1 (en) Differential reporting mode for amplitude and/or co-phase
WO2020076541A1 (en) Multi-channel listen before talk with wideband transmission in new radio in unlicensed spectrum
EP3701654A1 (en) Techniques and apparatuses for implicit uplink control information beta value determination in new radio
WO2019136632A1 (en) Techniques and apparatuses for redundancy scheme selection
EP3777364A1 (en) Loop index for group power control
WO2020199225A1 (en) Rate matching for different transmission modes
WO2020207289A1 (en) Sounding reference signal resource determination for physical uplink shared channel with configured grant
WO2021120139A1 (en) Frequency diversity in uplink transmissions with frequency hopping
EP4042585A1 (en) Resolution of collisions between beam failure recovery requests and uplink communications
WO2021092609A1 (en) Power saving based on a combined timing indication and search space set group indication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922830

Country of ref document: EP

Kind code of ref document: A1