WO2020199183A1 - Sensor data sharing between vehicles - Google Patents

Sensor data sharing between vehicles Download PDF

Info

Publication number
WO2020199183A1
WO2020199183A1 PCT/CN2019/081442 CN2019081442W WO2020199183A1 WO 2020199183 A1 WO2020199183 A1 WO 2020199183A1 CN 2019081442 W CN2019081442 W CN 2019081442W WO 2020199183 A1 WO2020199183 A1 WO 2020199183A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
sensor system
score
sensor
reliability
Prior art date
Application number
PCT/CN2019/081442
Other languages
French (fr)
Inventor
Yiqing Cao
Shuping Chen
Yan Li
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/081442 priority Critical patent/WO2020199183A1/en
Publication of WO2020199183A1 publication Critical patent/WO2020199183A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • B60W2050/046Monitoring control system parameters involving external transmission of data to or from the vehicle, e.g. via telemetry, satellite, Global Positioning System [GPS]

Definitions

  • aspects of the present disclosure generally relate to vehicle sensors, and more particularly to a sensor data sharing system for sharing sensor data between vehicles.
  • a vehicle may include a sensor system that includes one or more sensors to determine characteristics associated with the vehicle and/or characteristics associated with an environment of the vehicle.
  • a sensor system may be configured to detect proximity to an object, a weather condition, a road condition, a vehicle speed, a traffic condition, a location of the vehicle, and/or the like.
  • a method, performed by a device may include receiving information associated with a sensor system of a first vehicle; determining, based on the information, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determining whether the score satisfies a reliability threshold; and enabling, by the device and based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle.
  • a method, performed by a device may include monitoring performance of a sensor system of a first vehicle; determining, based on the performance, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determining whether the score satisfies a reliability threshold; and performing, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated with the sensor system, wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
  • V2V vehicle-to-vehicle
  • a device may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to: receive information associated with a sensor system of a first vehicle; determine, based on the information, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determine whether the score satisfies a reliability threshold; and enable, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle.
  • a device may include a memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to: monitor performance of a sensor system of a first vehicle; determine, based on the performance, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determine whether the score satisfies a reliability threshold; and perform, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated with the sensor system, wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
  • V2V vehicle-to-vehicle
  • a non-transitory computer-readable medium may store one or more instructions.
  • the one or more instructions when executed by one or more processors of a device, may cause the one or more processors to: receive information associated with a sensor system of a first vehicle; determine, based on the information, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determine whether the score satisfies a reliability threshold; and enable, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle.
  • a non-transitory computer-readable medium may store one or more instructions.
  • the one or more instructions when executed by one or more processors of a device, may cause the one or more processors to: monitor performance of a sensor system of a first vehicle; determine, based on the performance, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determine whether the score satisfies a reliability threshold; and perform, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated with the sensor system, wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
  • V2V vehicle-to-vehicle
  • an apparatus may include means for receiving information associated with a sensor system of a first vehicle; means for determining, based on the information, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; means for determining whether the score satisfies a reliability threshold; and means for enabling, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle.
  • an apparatus may include means for monitoring performance of a sensor system of a first vehicle; means for determining, based on the performance, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; means for determining whether the score satisfies a reliability threshold; and means for performing, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated with the sensor system, wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
  • V2V vehicle-to-vehicle
  • Fig. 1 is a diagram conceptually illustrating an example environment in which a sensor data sharing system described herein may be implemented, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram conceptually illustrating example components of one or more devices shown in Fig. 1, in accordance with various aspects of the present disclosure.
  • Figs. 7 and 8 are flowcharts of example processes for sensor data sharing between vehicles.
  • vehicles e.g., via electronic control units (ECUs) of vehicles
  • ECUs electronice control units
  • vehicles may be configured to communicate with each other.
  • V2V vehicle-to-vehicle
  • one or more roadside units (RSUs) of a roadside platform may be configured to facilitate communication between vehicles, receive information associated with and/or from vehicles traveling along a roadway, provide information to and/or associated with vehicles traveling along a roadway, and/or the like.
  • vehicles may be configured to share sensor data that is generated by sensors onboard the respective vehicles.
  • a first vehicle may share sensor data with a second vehicle to enable the second vehicle to detect an object that cannot be sensed by a sensor system of the second vehicle (e.g., due to the object being in a blind spot of the sensor system, due to the second vehicle being out of range of the object, and/or the like) .
  • shared sensor data from a vehicle may not be reliable (e.g., due to one or more sensors of a sensor system being impaired, due to age or usage of the sensor system or vehicle, and/or the like) .
  • using such sensor data may result in catastrophic events (e.g., vehicle collisions) , damage to hardware resources (e.g., damage to one or more vehicles) , and/or wasting of computing resources (e.g., processing resources, memory resources, and/or the like) and/or network resources (e.g., computing resources and/or network resources that are consumed to share the unreliable sensor data) .
  • a sensor data sharing system enables sharing of sensor data (e.g., via V2V communication, via a roadside platform, and/or the like) between vehicles according to determined reliability of the sensor data.
  • the sensor data sharing system may receive information associated with a sensor system of a vehicle, determine a reliability score associated with the sensor system based on the information, determine whether the reliability score satisfies a reliability threshold (e.g., a threshold reliability score) , and enable or prevent use of the sensor data based on whether the reliability score satisfies the reliability threshold.
  • a reliability threshold e.g., a threshold reliability score
  • the sensor data sharing system may be configured within one or more ECUs of the vehicle (e.g., as an onboard system) and/or within a roadside platform that can be communicatively coupled with the vehicles.
  • the information and/or scores associated with the sensor system may be generated and/or provided by a third-party entity (e.g., a trusted sensor monitoring agency, a governmental agency, and/or the like) .
  • the sensor data sharing system may determine reliability of sensor data generated by a sensor system of a vehicle. Accordingly, the sensor data sharing system may detect unreliable sensor data associated with the sensor system and prevent the vehicle from using and/or sharing the unreliable sensor data. Additionally, or alternatively, a sensor data sharing system may compare reliability of received sensor data from another vehicle with sensor data generated onboard the vehicle and use the sensor data that is determined to be more reliable.
  • the sensor data sharing system may ensure that sensor data shared with a vehicle and/or used by the vehicle is the most reliable sensor data available to the vehicle, thus increasing the likelihood that an ECU of the vehicle can most accurately determine a characteristic of the vehicle (e.g., a speed of the vehicle, a proximity of the vehicle to an object, and/or the like) , a characteristic of an environment of the vehicle (e.g., a weather condition, a distance to a particular location or object, and/or the like) , and/or the like.
  • a characteristic of the vehicle e.g., a speed of the vehicle, a proximity of the vehicle to an object, and/or the like
  • a characteristic of an environment of the vehicle e.g., a weather condition, a distance to a particular location or object, and/or the like
  • the sensor data sharing system may prevent the sensor data from being shared, thus avoiding and/or preventing the waste of resources (e.g., computing resources, network resources, and/or the like) associated with sharing unreliable sensor data that should not be used by a receiving vehicle.
  • resources e.g., computing resources, network resources, and/or the like
  • Fig. 1 is a diagram of an example environment 100 in which systems and/or methods described herein may be implemented.
  • environment 100 may include a roadside platform 110 hosted via one or more computing resources 115 (referred to individually as a “computing resource 115” and collectively as “computing resources” ) of a cloud computing environment 120, one or more vehicles 130-1 to 130-N (referred to individually as a “vehicle 130” and collectively as “vehicles 130” ) with corresponding ECUs 132-1 to 132-N (referred to individually as a “ECU 132” and collectively as “ECUs 132” ) , one or more sensor information platforms (referred to individually as a “sensor information platform 140” and collectively as “sensor information platforms 140” ) , and a network 150.
  • computing resources 115 referred to individually as a “computing resource 115” and collectively as “computing resources”
  • vehicles 130-1 to 130-N referred to individually as a “vehicle 130”
  • one or more vehicles 130 in environment 100 may include one or more ECUs 132.
  • Devices of environment 100 may interconnect via wired connections, wireless connections, or a combination of wired and wireless connections.
  • a sensor data sharing system is included in at least one of roadside platform 110 and/or one or more ECUs 132.
  • computing resource 115 may include a group of cloud resources, such as one or more applications ( “APPs” ) 115-1, one or more virtual machines ( “VMs” ) 115-2, virtualized storage ( “VSs” ) 115-3, one or more hypervisors ( “HYPs” ) 115-4, or the like.
  • APPs applications
  • VMs virtual machines
  • VSs virtualized storage
  • HOPs hypervisors
  • the roadside unit and/or the vehicles may receive the sensor information to permit the roadside unit and/or the vehicles to determine a reliability of the sensor systems of the vehicles, as described herein.
  • the sensor data sharing system can determine (e.g., via one or more calculations associated with the scoring system) a reliability score for a sensor system that is representative of a reliability of the sensor system and based on characteristics the scoring system (and/or a vehicle associated with the scoring system) and/or performance of the sensor system.
  • the sensor data sharing system can use the following to determine the reliability score (s ij ) based on parameters a, b, c, ... (which may correspond to characteristics of the sensor system, performance tests of the sensor system, and/or the like) of a sensor system (or representative system) i for a vehicle (or representative vehicle) j:
  • parameters a i , b i , c i may include a value (e.g., a characteristic-specific value (e.g., amount of usage, quantity of sensors, and/or the like) , a test specific value (e.g., a quantity of high graded sensors, a test grade, and/or the like) ) associated with a scale for the respective parameters a i , b i , c i .
  • a value e.g., a characteristic-specific value (e.g., amount of usage, quantity of sensors, and/or the like)
  • a test specific value e.g., a quantity of high graded sensors, a test grade, and/or the like
  • sensor data generated by the sensor system of the first vehicle may be shared with the second vehicle and/or used by the second vehicle to perform an operation (e.g., detect proximity to the first vehicle, detect proximity to an upcoming object in front of the first vehicle and the second vehicle, and/or the like) .
  • the reliability threshold is a standard or universal threshold that corresponds to a scoring system that is used by the sensor information platform, the vehicles, and/or the roadside unit. Accordingly, in such cases, the reliability threshold for the first vehicle may be the same as the reliability threshold for the second vehicle. Furthermore, in some implementations, if a sensor system is associated with a reliability score that is less than such a reliability threshold, a vehicle associated with the sensor system may be prevented from sharing sensor data associated with the sensor system. For example, a sensor data sharing system of a vehicle that has a sensor system with a reliability score below the reliability threshold may prevent sensor data sharing for the sensor system by deactivating outgoing V2V communications involving the sensor system. Additionally, or alternatively, a sensor data sharing system of the roadside unit may intercept sensor data associated with a vehicle that has a sensor system that has a reliability score below the threshold reliability to prevent the vehicle from sharing sensor data associated with the sensor system.
  • a reliability threshold for the first vehicle may correspond to the reliability score for the sensor system of the first vehicle.
  • the reliability threshold for the second vehicle may correspond to the reliability score of the sensor system of the second vehicle.
  • first reliability score the reliability score for the sensor system of the first vehicle
  • second reliability score the reliability score for the second system
  • the second vehicle may use sensor data received from the first vehicle while the first vehicle may not use sensor data received from the second vehicle.
  • the first vehicle and the second vehicle may include the first reliability score and the second reliability score, respectively, in V2V communications that share sensor data between the vehicles.
  • a sensor data sharing system may be used to determine reliability associated with sensor data of one or more vehicles and permit sharing and/or use of the sensor data based on the determined reliability. Accordingly, the sensor data sharing system may improve safety with respect to operation of the one or more vehicles (e.g., thus preventing injury, damage to hardware resources or vehicles, and/or the like) and/or avoid wasting resources associated with sharing unreliable sensor data, as described herein.
  • Fig. 4 is a diagram conceptually illustrating an example 400 associated with sensor data sharing between vehicles in accordance with various aspects of the present disclosure.
  • Example 400 includes a call flow between a sensor information platform, a roadside unit (shown as “RSU” ) , a first vehicle (shown as “Vehicle 1” ) , and a second vehicle (shown as “Vehicle 2” ) .
  • RSU roadside unit
  • Vehicle 1 first vehicle
  • Vehicle 2 second vehicle
  • the sensor information platform sends sensor information to the roadside unit.
  • the roadside unit may determine reliability scores for the first vehicle and the second vehicle (e.g., reliability scores for respective sensor systems of the first vehicle and the second vehicle) .
  • the roadside unit may provide the reliability score for the first vehicle to the first vehicle (reference number 406) and the reliability score for the second vehicle to the second vehicle (reference number 408) .
  • the roadside unit may broadcast the reliability scores for both the first vehicle and the second vehicle to both the first vehicle and the second vehicle.
  • the first vehicle may adjust the reliability score associated with the sensor data (e.g., because the first vehicle may determine that the sensor data was relatively accurate when the second vehicle compared the sensor data with sensor data of the second vehicle) . Additionally, or alternatively, if the response indicates that the sensor data was not used, the first vehicle may decrease the reliability score associated with the first vehicle (e.g., according to a reliability score associated with the second vehicle) .
  • the first vehicle and the second vehicle may use a reliability score calculated by a roadside unit and provided to the first vehicle and/or second vehicle to permit the first and/or second vehicle to determine whether sensor data is to be used during an operation involving the first vehicle and/or the second vehicle.
  • Fig. 4 is provided merely as one or more examples. Other examples may differ from what is described with regard to Fig. 4.
  • the first vehicle may request, from the roadside unit, sensor information associated with the second vehicle.
  • the roadside unit may determine whether the first vehicle may use the sensor data from the second vehicle (e.g., based on a reliability score of the second vehicle) .
  • the roadside unit may respond based on the reliability score. For example, the response may indicate that the sensor data from the second vehicle is reliable or that the sensor data from the second vehicle is not reliable.
  • the first vehicle may use or disregard the sensor data from the second vehicle according to the response from the roadside unit.
  • the roadside unit may be used to intercept and/or prevent sensor data that is unreliable from being shared between vehicles.
  • Fig. 5 is provided merely as one or more examples. Other examples may differ from what is described with regard to Fig. 5.
  • Fig. 6 is a diagram conceptually illustrating an example 600 associated with sensor data sharing between vehicles in accordance with various aspects of the present disclosure.
  • Example 600 includes a call flow between a sensor information platform, a first vehicle (shown as “Vehicle 1” ) , and a second vehicle (shown as “Vehicle 2” ) .
  • the sensor information platform may provide sensor information to the first vehicle and the second vehicle.
  • the sensor information platform may broadcast the sensor information to the first vehicle and/or the second vehicle.
  • the sensor information may be associated with both the first vehicle and the second vehicle.
  • the sensor information may include reliability scores associated with the first vehicle and the second vehicle (e.g., reliability scores for respective sensor systems of the first vehicle and the second vehicle) .
  • the first vehicle and the second vehicle are engaged in a V2V communication session.
  • the first vehicle may receive sensor data from the second vehicle.
  • the first vehicle may determine whether to use the sensor data from the second vehicle. For example, the first vehicle may compare a reliability score associated with the second vehicle (e.g., as received in the sensor information from the sensor information platform, as indicated by the second vehicle via the V2V communication, and/or the like) .
  • the first vehicle as shown by reference number 612, may use or disregard the sensor data from the second vehicle (e.g., depending on whether a reliability score associated with the second vehicle satisfies a reliability threshold) .
  • the first vehicle may send a response to the second vehicle.
  • a response may acknowledge receipt of the sensor data, indicate whether the sensor data was used, include sensor data and/or a reliability score associated with the first vehicle, and/or the like.
  • one or more vehicles may use sensor information to determine whether sensor data shared between vehicles is to be used to perform an operation associated with the one or more vehicles.
  • Fig. 6 is provided merely as one or more examples. Other examples may differ from what is described with regard to Fig. 6.
  • process 700 may include receiving information associated with a sensor system of a first vehicle (block 710) .
  • the sensor data sharing system e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like
  • process 700 may include determining, based on the information, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system (block 720) .
  • the sensor data sharing system e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like
  • the score is representative of a reliability of the sensor system.
  • process 700 may include enabling, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle (block 740) .
  • the sensor data sharing system e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • a distance between the first vehicle and the second vehicle is within a threshold distance.
  • the first vehicle and the second vehicle are associated with a designated vehicle group and vehicles of the designated vehicle group are capable of utilizing shared sensor data.
  • the first vehicle and the second vehicle are travelling along a same roadway and a distance between the first vehicle and the second vehicle is within a threshold distance.
  • the information and the sensor data are received, from the first vehicle, via a V2V communication.
  • the information and the sensor data are received from a roadside platform.
  • the information is received from a platform associated with a third-party entity and the sensor data is received from the first vehicle.
  • the information identifies at least one of a type of the sensor system, a usage of the sensor system, a date of manufacture of the sensor system, performance information associated with the sensor system, or vehicle information associated with the first vehicle.
  • the performance information identifies at least one of results of testing the sensor system in one or more types of weather, results of testing the sensor system in one or more locations, results of testing the sensor system at one or more altitudes, results of testing the sensor system in an environment with one or more levels of electromagnetic interference, results of testing a representative sensor system, associated with the sensor system, in one or more types of weather, results of testing the representative sensor system, associated with the sensor system, in one or more locations, results of testing the representative sensor system, associated with the sensor system, at one or more altitudes, or results of testing the representative sensor system, associated with the sensor system, in an environment with one or more levels of electromagnetic interference.
  • the score is determined using a weighted average of a plurality of characteristics of the sensor system.
  • the information identifies the plurality of characteristics of the sensor.
  • the weighted average uses weights for corresponding characteristics, of the plurality of characteristics, that are based on a characteristic of the second vehicle.
  • the sensor system comprises at least one of a camera, a LIDAR sensor, or a RADAR sensor.
  • the information identifies the score. In some aspects, the score is calculated by a third-party entity that is different from the first vehicle and the second vehicle.
  • the reliability threshold is associated with the second vehicle.
  • the score is a first score and the sensor system is a first sensor system.
  • the use of the sensor data is enabled via the sensor data being received by an ECU associated with performing the operation.
  • the use of the sensor data is enabled via the sensor data being transmitted, from a roadside platform, to an ECU associated with performing the operation.
  • the sensor data sharing system comprises an ECU of the second vehicle.
  • the sensor data sharing system comprises a device of a roadside platform associated with a third-party entity.
  • the sensor data sharing system may perform, based on determining that the score does not satisfy the reliability threshold, an action associated with disregarding the sensor data.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a flow chart of an example process 800 for sensor data sharing between vehicles.
  • one or more process blocks of Fig. 8 may be performed by a sensor data sharing system (e.g., a sensor data sharing system of roadside platform 110, a sensor data sharing system of ECU 132, and/or the like) .
  • one or more process blocks of Fig. 8 may be performed by another device or a group of devices separate from or including the sensor data sharing system, such as a roadside platform (e.g., roadside platform 110) , an ECU (e.g., ECU 132) , a sensor information platform (e.g., sensor information platform 140) , and/or the like.
  • process 800 may include monitoring a performance of a sensor system of a first vehicle (block 810) .
  • the sensor data sharing system e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like
  • process 800 may include determining, based on the performance, a score associated with the sensor system wherein the score is representative of a reliability of the sensor system (block 820) .
  • the sensor data sharing system e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like
  • process 800 may include determining whether the score satisfies a reliability threshold (block 830) .
  • the sensor data sharing system e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like
  • process 800 may include performing, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing V2V communication associated with the sensor system, wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle (block 840) .
  • the sensor data sharing system e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like
  • the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the sensor data sharing system when performing the action, may prevent transmission of the outgoing V2V communication associated with the sensor system.
  • the performance is monitored based on information received from an onboard diagnostic system of the first vehicle.
  • the score is adjusted to indicate that the sensor system is correspondingly less reliable.
  • the sensor data sharing system when the score is determined to satisfy the reliability threshold, may enable the outgoing V2V communication associated with the sensor system.
  • the sensor data sharing system may transmit, based on the outgoing V2V communication associated with the V2V being enabled, the sensor data to the second vehicle.
  • the sensor data sharing system may receive, from the second vehicle, an indication that the transmitted sensor data is reliable and adjust the score based on the indication to show that the sensor system is relatively more reliable based on receiving the indication.
  • the sensor data sharing system comprises an electronic control unit (ECU) of the first vehicle.
  • the sensor data sharing system comprises a device associated with a third-party entity.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to sensor systems. In some aspects, a method may include receiving information associated with a sensor system of a first vehicle. The method may include determining, based on the information, a score associated with the sensor system. The score may be representative of a reliability of the sensor system. The method may include determining whether the score satisfies a reliability threshold. The method may include enabling, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle. Numerous other aspects are provided.

Description

SENSOR DATA SHARING BETWEEN VEHICLES
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to vehicle sensors, and more particularly to a sensor data sharing system for sharing sensor data between vehicles.
BACKGROUND
A vehicle may include a sensor system that includes one or more sensors to determine characteristics associated with the vehicle and/or characteristics associated with an environment of the vehicle. For example, such a sensor system may be configured to detect proximity to an object, a weather condition, a road condition, a vehicle speed, a traffic condition, a location of the vehicle, and/or the like.
SUMMARY
In some aspects, a method, performed by a device, may include receiving information associated with a sensor system of a first vehicle; determining, based on the information, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determining whether the score satisfies a reliability threshold; and enabling, by the device and based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle.
In some aspects, a method, performed by a device, may include monitoring performance of a sensor system of a first vehicle; determining, based on the performance, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determining whether the score satisfies a reliability threshold; and performing, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated with the sensor system, wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
In some aspects, a device may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may  be configured to: receive information associated with a sensor system of a first vehicle; determine, based on the information, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determine whether the score satisfies a reliability threshold; and enable, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle.
In some aspects, a device may include a memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to: monitor performance of a sensor system of a first vehicle; determine, based on the performance, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determine whether the score satisfies a reliability threshold; and perform, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated with the sensor system, wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
In some aspects, a non-transitory computer-readable medium may store one or more instructions. The one or more instructions, when executed by one or more processors of a device, may cause the one or more processors to: receive information associated with a sensor system of a first vehicle; determine, based on the information, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determine whether the score satisfies a reliability threshold; and enable, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle.
In some aspects, a non-transitory computer-readable medium may store one or more instructions. The one or more instructions, when executed by one or more processors of a device, may cause the one or more processors to: monitor performance of a sensor system of a first vehicle; determine, based on the performance, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; determine whether the score satisfies a reliability threshold; and perform, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated  with the sensor system, wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
In some aspects, an apparatus may include means for receiving information associated with a sensor system of a first vehicle; means for determining, based on the information, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; means for determining whether the score satisfies a reliability threshold; and means for enabling, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle.
In some aspects, an apparatus may include means for monitoring performance of a sensor system of a first vehicle; means for determining, based on the performance, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system; means for determining whether the score satisfies a reliability threshold; and means for performing, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated with the sensor system, wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user device, wireless communication device, and processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram conceptually illustrating an example environment in which a sensor data sharing system described herein may be implemented, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram conceptually illustrating example components of one or more devices shown in Fig. 1, in accordance with various aspects of the present disclosure.
Figs. 3-6 are diagrams conceptually illustrating examples associated with sensor data sharing between vehicles in accordance with various aspects of the present disclosure.
Figs. 7 and 8 are flowcharts of example processes for sensor data sharing between vehicles.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should  be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
In some instances, vehicles (e.g., via electronic control units (ECUs) of vehicles) may be configured to communicate with each other. For example, advances in communication technologies have enabled vehicle-to-vehicle (V2V) communication. Furthermore, one or more roadside units (RSUs) of a roadside platform may be configured to facilitate communication between vehicles, receive information associated with and/or from vehicles traveling along a roadway, provide information to and/or associated with vehicles traveling along a roadway, and/or the like. In such cases, vehicles may be configured to share sensor data that is generated by sensors onboard the respective vehicles. For example, a first vehicle may share sensor data with a second vehicle to enable the second vehicle to detect an object that cannot be sensed by a sensor system of the second vehicle (e.g., due to the object being in a blind spot of the sensor system, due to the second vehicle being out of range of the object, and/or the like) .
However, in some instances, shared sensor data from a vehicle may not be reliable (e.g., due to one or more sensors of a sensor system being impaired, due to age or usage of the sensor system or vehicle, and/or the like) . In such cases, using such sensor data may result in catastrophic events (e.g., vehicle collisions) , damage to hardware resources (e.g., damage to one or more vehicles) , and/or wasting of computing resources (e.g., processing resources, memory resources, and/or the like) and/or network resources (e.g., computing resources and/or network resources that are consumed to share the unreliable sensor data) .
According to some aspects described herein, a sensor data sharing system enables sharing of sensor data (e.g., via V2V communication, via a roadside platform, and/or the like) between vehicles according to determined reliability of the sensor data. For example, the sensor data sharing system may receive information associated with a sensor system of a vehicle, determine a reliability score associated with the sensor system based on the information, determine whether the reliability score satisfies a reliability threshold (e.g., a threshold reliability score) , and enable or prevent use of the sensor data based on whether the reliability score satisfies the reliability threshold. The sensor data sharing system may be configured within one or more ECUs of the vehicle (e.g., as an onboard system) and/or within a roadside platform that can be communicatively coupled with the vehicles. In some aspects, the information and/or  scores associated with the sensor system may be generated and/or provided by a third-party entity (e.g., a trusted sensor monitoring agency, a governmental agency, and/or the like) .
In this way, the sensor data sharing system may determine reliability of sensor data generated by a sensor system of a vehicle. Accordingly, the sensor data sharing system may detect unreliable sensor data associated with the sensor system and prevent the vehicle from using and/or sharing the unreliable sensor data. Additionally, or alternatively, a sensor data sharing system may compare reliability of received sensor data from another vehicle with sensor data generated onboard the vehicle and use the sensor data that is determined to be more reliable. In this way, the sensor data sharing system may ensure that sensor data shared with a vehicle and/or used by the vehicle is the most reliable sensor data available to the vehicle, thus increasing the likelihood that an ECU of the vehicle can most accurately determine a characteristic of the vehicle (e.g., a speed of the vehicle, a proximity of the vehicle to an object, and/or the like) , a characteristic of an environment of the vehicle (e.g., a weather condition, a distance to a particular location or object, and/or the like) , and/or the like. Furthermore, if sensor data is determined to be unreliable, the sensor data sharing system may prevent the sensor data from being shared, thus avoiding and/or preventing the waste of resources (e.g., computing resources, network resources, and/or the like) associated with sharing unreliable sensor data that should not be used by a receiving vehicle.
Fig. 1 is a diagram of an example environment 100 in which systems and/or methods described herein may be implemented. As shown in Fig. 1, environment 100 may include a roadside platform 110 hosted via one or more computing resources 115 (referred to individually as a “computing resource 115” and collectively as “computing resources” ) of a cloud computing environment 120, one or more vehicles 130-1 to 130-N (referred to individually as a “vehicle 130” and collectively as “vehicles 130” ) with corresponding ECUs 132-1 to 132-N (referred to individually as a “ECU 132” and collectively as “ECUs 132” ) , one or more sensor information platforms (referred to individually as a “sensor information platform 140” and collectively as “sensor information platforms 140” ) , and a network 150. Although each of vehicles 130 are shown in Fig. 1 with one corresponding ECU 132, one or more vehicles 130 in environment 100 may include one or more ECUs 132. Devices of environment 100 may interconnect via wired connections, wireless connections, or a combination of  wired and wireless connections. As described herein, a sensor data sharing system is included in at least one of roadside platform 110 and/or one or more ECUs 132.
Roadside platform 110 includes one or more computing resources assigned to receive, generate, process, and/or provide information associated with sensor data sharing, as described herein. For example, roadside platform 110 may be a platform implemented by cloud computing environment 120 that may receive sensor information associated with sensors of vehicles 130, and determine reliability scores associated with vehicles 130, associated with one or more sensors of the vehicles 130, associated with one or more sensor systems of the vehicles 130, and/or the like. In some aspects, roadside platform 110 is implemented by computing resources 115 of cloud computing environment 120.
Roadside platform 110 may include a server device or a group of server devices. For example, roadside platform 110 may include one or more roadside units that include one or more server devices. Such roadside units may be configured along a roadway to permit communication with ECUs 132 of vehicles 130. In some aspects, roadside platform 110 may be hosted in cloud computing environment 120. Notably, while aspects described herein may describe roadside platform 110 as being hosted in cloud computing environment 120, in some aspects, roadside platform 110 may be non-cloud-based or may be partially cloud-based.
Cloud computing environment 120 includes an environment that delivers computing as a service, whereby shared resources, services, and/or the like may be provided to ECUs 132 of vehicles 130. Cloud computing environment 120 may provide computation, software, data access, storage, and/or other services that do not require end-user knowledge of a physical location and configuration of a system and/or a device that delivers the services. As shown, cloud computing environment 120 may include computing resources 115. Computing resources 115 may correspond to roadside units of roadside platform 110, as described herein. Computing resources 115 may be configured to form at least part of a sensor data sharing system, as described herein. Accordingly, computing resources 115 of roadside platform 110 may permit one or more capabilities of a sensor data sharing system to be supported in cloud computing environment 120.
Computing resource 115 includes one or more personal computers, workstation computers, server devices, or another type of computation and/or communication device. In some aspects, computing resource 115 may host roadside  platform 110. The cloud resources may include compute instances executing in computing resource 115, storage devices provided in computing resource 115, data transfer devices provided by computing resource 115, and/or the like. In some aspects, computing resource 115 may communicate with other computing resources 115 via wired connections, wireless connections, or a combination of wired and wireless connections.
As further shown in Fig. 1, computing resource 115 may include a group of cloud resources, such as one or more applications ( “APPs” ) 115-1, one or more virtual machines ( “VMs” ) 115-2, virtualized storage ( “VSs” ) 115-3, one or more hypervisors ( “HYPs” ) 115-4, or the like.
Application 115-1 includes one or more software applications (e.g., software applications associated with a sensor data sharing system) that may be provided to or accessed by ECU 132. Application 115-1 may eliminate a need to install and execute the software applications on ECU 132. For example, application 115-1 may include software associated with roadside platform 110 and/or any other software capable of being provided via cloud computing environment 120. In some aspects, one application 115-1 may send/receive information to/from one or more other applications 115-1, via virtual machine 115-2.
Virtual machine 115-2 includes a software aspect of a machine (e.g., a computer) that executes programs like a physical machine. Virtual machine 115-2 may be either a system virtual machine or a process virtual machine, depending upon use and degree of correspondence to any real machine by virtual machine 115-2. A system virtual machine may provide a complete system platform that supports execution of a complete operating system ( “OS” ) . A process virtual machine may execute a single program and may support a single process. In some aspects, virtual machine 115-2 may execute on behalf of a user (e.g., a user associated with vehicle 130) , and may manage infrastructure of cloud computing environment 120, such as data management, synchronization, or long-duration data transfers.
Virtualized storage 115-3 includes one or more storage systems and/or one or more devices that use virtualization techniques within the storage systems or devices of computing resource 115. In some aspects, within the context of a storage system, types of virtualizations may include block virtualization and file virtualization. Block virtualization may refer to abstraction (or separation) of logical storage from physical storage so that the storage system may be accessed without regard to physical storage or  heterogeneous structure. The separation may permit administrators of the storage system flexibility in how the administrators manage storage for end users. File virtualization may eliminate dependencies between data accessed at a file level and a location where files are physically stored. This may enable optimization of storage use, server consolidation, and/or performance of non-disruptive file migrations. In some aspects, virtualized storage 115-3 may store information associated with one or more sensor systems of one or more of vehicles 130 to permit a sensor data sharing system to determine a reliability of the one or more sensor systems based on the information.
Hypervisor 115-4 provides hardware virtualization techniques that allow multiple operating systems (e.g., “guest operating systems” ) to execute concurrently on a host computer, such as computing resource 115. Hypervisor 115-4 may present a virtual operating platform to the guest operating systems and may manage the execution of the guest operating systems. Multiple instances of a variety of operating systems may share virtualized hardware resources.
Vehicle 130 may include any vehicle that includes a sensor system as described herein. For example, vehicle 130 may be a consumer vehicle, an industrial vehicle, a commercial vehicle, and/or the like. Vehicle 130 may be capable of traveling and/or providing transportation via public roadways, may be capable of use in operations associated with a worksite (e.g., a construction site) , and/or the like. Vehicle 130 may be controlled via ECU 132.
ECU 132 may include one or more devices capable of receiving, generating, storing, processing, and/or providing information associated with sensor sharing and/or a sensor data sharing system described herein. For example, ECU 132 may include a communication and/or computing device, such as an onboard computer, a control console, an operator station, or a similar type of device. In some aspects, ECU 132 may include and/or be used to implement a sensor data sharing system, as described herein. For example, the ECU 132 may permit the vehicle 130 to have one or more onboard capabilities associated with a sensor data sharing system (e.g., determining reliability of sensor data, determining whether to use shared sensor data from another vehicle 130, determining whether to share sensor data with another vehicle, providing sensor data information to another vehicle 130 or to roadside platform 110, and/or the like) .
Sensor information platform 140 includes one or more devices capable of storing, processing, and/or routing information associated with sensor systems of one or more of vehicles 130 and/or one or more vehicles representative of vehicles 130. In  some aspects, sensor information platform 140 may include a communication interface that allows sensor information platform 140 to receive information from and/or transmit information to other devices in environment 100.
Sensor information platform 140 may include one or more online or web-based platforms associated with a third-party entity. Such a third-party entity may not be associated with one or more entities that are associated with vehicles 130 (e.g., owners of vehicles 130, operators of vehicles 130, manufacturers of vehicles 130, distributors of vehicles 130, and/or the like) . For example, such a third-party entity may be a trusted entity that performs one or more services associated with testing and/or monitoring sensor systems associated with vehicles 130 (e.g., testing and/or monitoring the sensor systems as a whole, testing and/or monitoring individual sensors of the sensor systems, and/or the like) . In some aspects, the third-party entity may test and/or monitor the sensor systems of vehicles 130, may test and/or monitor sensor systems of vehicles that are associated with vehicles 130 (e.g., vehicles that are a same make, model, year of manufacture, and/or the like) , and/or the like. Sensor information platform 140 may provide information (e.g., information corresponding to the testing and/or monitoring of the sensor systems associated with vehicles 130) associated with sensor systems of vehicles 130 to roadside platform 110 and/or ECUs 132. In some aspects, sensor information platform 140 and roadside platform 110 may be associated with (e.g., owned by, operated by, managed by, and/or the like) a same entity.
Network 150 includes one or more wired and/or wireless networks. For example, network 150 may include a cellular network (e.g., a long-term evolution (LTE) network, a code division multiple access (CDMA) network, a 3G network, a 4G network, a 5G network, another type of next generation network, etc. ) , a public land mobile network (PLMN) , a local area network (LAN) , a wide area network (WAN) , a metropolitan area network (MAN) , a telephone network (e.g., the Public Switched Telephone Network (PSTN) ) , a private network, an ad hoc network, an intranet, the Internet, a fiber optic-based network, a cloud computing network, or the like, and/or a combination of these or other types of networks.
The number and arrangement of devices and networks shown in Fig. 1 are provided as one or more examples. In practice, there may be additional devices and/or networks, fewer devices and/or networks, different devices and/or networks, or differently arranged devices and/or networks than those shown in Fig. 1. Furthermore, two or more devices shown in Fig. 1 may be implemented within a single device, or a  single device shown in Fig. 1 may be implemented as multiple, distributed devices. Additionally, or alternatively, a set of devices (e.g., one or more devices) of environment 100 may perform one or more functions described as being performed by another set of devices of environment 100.
Fig. 2 is a diagram of example components of a device 200. Device 200 may correspond to roadside platform 110, computing resource 115, ECU 132, sensor information platform 140, and/or the like. In some aspects, roadside platform 110, computing resource 115, ECU 132, and/or sensor information platform 140 may include one or more devices 200 and/or one or more components of device 200. As shown in Fig. 2, device 200 may include a bus 210, a processor 220, a memory 230, a storage component 240, an input component 250, an output component 260, a communication interface 270, and one or more sensors 280 (referred to individually as a “sensor 280” and collectively as “sensors 280” ) .
Bus 210 includes a component that permits communication among multiple components of device 200. Processor 220 is implemented in hardware, firmware, and/or a combination of hardware and software. Processor 220 is a central processing unit (CPU) , a graphics processing unit (GPU) , an accelerated processing unit (APU) , a microprocessor, a microcontroller, a digital signal processor (DSP) , a field-programmable gate array (FPGA) , an application-specific integrated circuit (ASIC) , or another type of processing component. In some aspects, processor 220 includes one or more processors capable of being programmed to perform a function. Memory 230 includes a random access memory (RAM) , a read only memory (ROM) , and/or another type of dynamic or static storage device (e.g., a flash memory, a magnetic memory, and/or an optical memory) that stores information and/or instructions for use by processor 220.
Storage component 240 stores information and/or software related to the operation and use of device 200. For example, storage component 240 may include a hard disk (e.g., a magnetic disk, an optical disk, and/or a magneto-optic disk) , a solid state drive (SSD) , a compact disc (CD) , a digital versatile disc (DVD) , a floppy disk, a cartridge, a magnetic tape, and/or another type of non-transitory computer-readable medium, along with a corresponding drive.
Input component 250 includes a component that permits device 200 to receive information, such as via user input (e.g., a touch screen display, a keyboard, a keypad, a mouse, a button, a switch, and/or a microphone) . Additionally, or  alternatively, input component 250 may include a component for determining location (e.g., a global positioning system (GPS) component) and/or a sensor (e.g., an accelerometer, a gyroscope, an actuator, another type of positional or environmental sensor, and/or the like) . Output component 260 includes a component that provides output information from device 200 (via, e.g., a display, a speaker, a haptic feedback component, an audio or visual indicator, and/or the like) .
Communication interface 270 includes a transceiver-like component (e.g., a transceiver, a separate receiver, a separate transmitter, and/or the like) that enables device 200 to communicate with other devices, such as via a wired connection, a wireless connection, or a combination of wired and wireless connections. Communication interface 270 may permit device 200 to receive information from another device and/or provide information to another device. For example, communication interface 270 may include an Ethernet interface, an optical interface, a coaxial interface, an infrared interface, a radio frequency (RF) interface, a universal serial bus (USB) interface, a Wi-Fi interface, a cellular network interface, and/or the like.
Device 200 may perform one or more processes described herein. Device 200 may perform these processes based on processor 220 executing software instructions stored by a non-transitory computer-readable medium, such as memory 230 and/or storage component 240. As used herein, the term “computer-readable medium” refers to a non-transitory memory device. A memory device includes memory space within a single physical storage device or memory space spread across multiple physical storage devices.
Software instructions may be read into memory 230 and/or storage component 240 from another computer-readable medium or from another device via communication interface 270. When executed, software instructions stored in memory 230 and/or storage component 240 may cause processor 220 to perform one or more processes described herein. Additionally, or alternatively, hardware circuitry may be used in place of or in combination with software instructions to perform one or more processes described herein. Thus, aspects described herein are not limited to any specific combination of hardware circuitry and software.
Sensor 280 may include one or more devices capable of sensing one or more characteristics of an environment of device 200. For example, sensors 280 may include one or more of a camera, a light detection and ranging (LIDAR) sensor, a radio  detection and ranging (RADAR) sensor, and/or the like. Accordingly, sensors 280 may include any suitable sensors that may be configured within a sensor system to perform one or more operations, generate sensor data to permit one or more operations to be performed, and/or the like. For example, sensors 280 may be configured within a sensor system to detect the presence of one or more objects in an environment of device 200, detect a proximity to one or more objects in the environment of device 200, determine a location of device 200, determine a speed associated with a device 200, and/or the like. As described herein, sensor data generated by sensors 280 may be communicated (e.g., via communication interface 270) to another device to permit the sensor data to be used by the other device to perform one or more operations.
Additionally, or alternatively, sensor 280 may include a magnetometer (e.g., a Hall effect sensor, an anisotropic magnetoresistive (AMR) sensor, a giant magneto-resistive sensor (GMR) , and/or the like) , a location sensor (e.g., a global positioning system (GPS) receiver, a local positioning system (LPS) device (e.g., that uses triangulation, multi-lateration, etc. ) , and/or the like) , a gyroscope (e.g., a micro-electro-mechanical systems (MEMS) gyroscope or a similar type of device) , an accelerometer, a speed sensor, a motion sensor, an infrared sensor, a temperature sensor, a pressure sensor, and/or the like.
In some aspects, device 200 includes means for performing one or more processes described herein and/or means for performing one or more operations of the processes described herein. For example, the means for performing the processes and/or operations described herein may include bus 210, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensors 280, and/or any combination thereof.
The number and arrangement of components shown in Fig. 2 are provided as an example. In practice, device 200 may include additional components, fewer components, different components, or differently arranged components than those shown in Fig. 2. Additionally, or alternatively, a set of components (e.g., one or more components) of device 200 may perform one or more functions described as being performed by another set of components of device 200.
Fig. 3 is a diagram conceptually illustrating an example 300 associated with sensor data sharing between vehicles in accordance with various aspects of the present disclosure. Example 300 includes a first vehicle (shown as “V1” ) and a second vehicle (shown as “V2” ) (which may be referred to herein collectively as “the vehicles” ) , a  sensor information platform (e.g., sensor information platform 140) , a base station (e.g., a base station of network 150) , and a roadside unit (e.g., a roadside unit of roadside platform 110) . The first vehicle and second vehicle may correspond to vehicles 130 of Fig. 1. Accordingly, the first vehicle and second vehicle of example 300 may each include an ECU (corresponding to ECU 132) to facilitate communication with each other (e.g., V2V communication) , with other vehicles, with the base station, with the sensor information platform, and/or with the roadside unit. The first vehicle and the second vehicle may be within a threshold distance of one another that permits V2V communication (e.g., via any suitable communication protocol) . Additionally, or alternatively, the first vehicle and the second vehicle may be associated with one or more designated groups of vehicles (e.g., one or more designated groups of vehicles that are configured to and/or capable of sharing sensor data, determining reliability of shared sensor data, maintaining a threshold reliability of a sensor system, and/or the like) .
As described herein, when referring to a vehicle performing an action (e.g., receiving information, communicating with another entity, determining a reliability of a sensor system, enabling use of sensor data, using sensor data, and/or the like) , it is to be understood that an ECU of the vehicle may be performing the action. In example 300, information from the sensor information platform is used by the vehicles and/or the roadside unit to determine reliability of a sensor system of the first vehicle and/or reliability of a sensor system of the second vehicle to permit the first vehicle and/or the second vehicle to use sensor data associated with the sensor system of the first vehicle and/or sensor data associated with the sensor system of the second vehicle.
As shown in Fig. 3, and by reference number 310, the roadside unit and/or the vehicles receive sensor information from the sensor information platform. In some aspects, the roadside unit may receive the sensor information and provide (or forward) the sensor information to the vehicles.
The sensor information may include any information associated with sensor systems of the vehicles and/or other vehicles that may include a sensor system. Accordingly, the sensor information may include sensor information associated with a sensor system of the first vehicle and sensor information associated with a sensor system of the second vehicle. The sensor information may be associated with the sensor system in that the sensor information was generated specifically based on the sensor information of the vehicles or the sensor information was generated from one or more other sensor systems that are representative of the sensor systems of the vehicles and/or  representative of sensor systems of vehicles that are associated with the vehicles of example 300 (e.g., vehicles that are the same make/model, vehicles that are the same type, vehicles that are the same year of manufacture, and/or the like) . Such sensor information may include information that identifies sensors (e.g., model numbers, serial numbers, and/or the like) of the sensor system, a type of the sensor system (e.g., a purpose of or operation performed by the sensor system, such as weather detection, road condition detection, proximity detection or monitoring, autonomous control system, and/or the like) , a usage of the sensor system (e.g., an amount of use of the sensor system, which can be measured in hours, days, years, and/or the like) , a date of manufacture of the sensor system (e.g., corresponding to a production year of the sensor system or a vehicle of the sensor system) . Correspondingly, the sensor information may include similar information for each individual sensor of a sensor system.
Furthermore, the sensor information may include information that identifies performance information associated with the sensor system. For example, the sensor information may identify how the sensor system (or a representative sensor system) performed under one or more tests. As used herein, when referring to a sensor system being tested or when referring to performance of a sensor system, it should be understood that such testing and/or performance may correspond to or be based on testing or performance of a representative sensor system (e.g., a sensor system of a same or similar vehicle, a sensor system that includes a same set or similar set of sensors, a sensor system that was created and/or assembled by a same entity for a same or similar purpose, a sensor system that has a same or similar usage or year of manufacture, and/or the like) . Accordingly, for example, “results of testing the sensor system of the first vehicle” may correspond to results of testing the sensor system that is installed on the first vehicle or to results of testing a same or similar type of sensor system on a vehicle that is the same make/model as the first vehicle.
As described herein, a sensor system may be monitored and/or tested to determine a reliability associated with the sensor system. For example, a third-party entity (e.g., a trusted sensor monitoring agency, a governmental agency, and/or the like) may perform a service that involves testing sensor systems of vehicles that may use V2V communication for one or more operations (e.g., proximity detection, weather detection, location detection, speed detection, speed control, autonomous vehicle control, and/or the like) . The third-party entity may test the first vehicle and/or the second vehicle specifically (e.g., based on the first vehicle and/or the second vehicle  visiting a testing facility of the third-party entity) . Additionally, or alternatively, the third-party entity may test one or more vehicles associated with the first vehicle (e.g., one or more vehicles that are a same make/model as the first vehicle) and/or one or more vehicles associated with the second vehicle (e.g., one or more vehicles that are a same make/model as the second vehicle) .
To determine performance information associated with a sensor system, the third-party entity may perform a plurality of tests on a sensor system (and/or individual sensors of the sensor systems) under a plurality of different conditions to measure the performance of the sensor system. For example, the third-party entity may perform one or more tests on a sensor system within various vehicles. More specifically, the various vehicles may be different classes of vehicle (e.g., compact cars, sedans, pickup trucks, sport utility vehicles (SUVs) , semi-tractors, and/or the like) , different makes/models, vehicles with different usage, vehicles with different dates of manufacture, and/or the like. Furthermore, the third-party entity may perform one or more tests on a sensor system under a variety of different environmental conditions. More specifically, the third-party entity may perform one or more tests on a sensor system under various weather conditions (e.g., various temperatures, various humidities, within various levels and/or types of precipitation, within various fog densities, and/or the like) , under various road conditions (e.g., dry pavement, gravel, dirt, snow, ice, and/or the like) , in various locations, at various altitudes, under various levels of electromagnetic interference, and/or the like. The third-party entity may record testing results from the performances of the sensor system (e.g., as grades of a particular performance scale) under the various tests and provide such information to a roadside platform (e.g., a roadside platform associated with the roadside unit) and/or to one or more vehicles (e.g., the vehicles of example 300) . For example, the third-party entity may use the sensor information platform to provide the performance information to the roadside unit and/or the vehicles.
According to some implementations, the third-party entity may determine the reliability of a tested sensor system and/or provide a reliability score associated with the sensor subsystem within the sensor information. For example, the reliability score may be calculated in a similar manner as described below.
In some aspects, the sensor information platform may provide the sensor information directly to the vehicles. For example, the first vehicle may receive sensor information associated with the first vehicle based on the first vehicle undergoing a test  of the sensor system of the first vehicle. Accordingly, the sensor information platform may include a device (e.g., a testing device, a user device, and/or the like) that is used to download and/or log the sensor information with a storage device of the vehicle to permit the first vehicle to determine and/or store data regarding reliability of the sensor system, as determined from the test.
According to some aspects, the sensor information platform may notify the vehicles (e.g., via a message) that the sensor systems are due for testing and/or are past due for testing. For example, the sensor information platform may provide a schedule associated with testing the sensor systems of the vehicles and/or send a notification to the vehicles to indicate that the sensor systems need to be tested. In this way, the vehicles may determine whether sensor information is current or outdated (e.g., if the sensor system has not been tested according to the testing schedule for the sensor system) . Accordingly, if a sensor system of the first vehicle has not been tested, the first vehicle may be prevented from sharing sensor data associated with the sensor system of the first vehicle (e.g., until the sensor system of the first vehicle is tested) . Furthermore, according to the notification an owner or operator of the vehicle may be notified of when the sensor system is to be tested.
In this way, the roadside unit and/or the vehicles may receive the sensor information to permit the roadside unit and/or the vehicles to determine a reliability of the sensor systems of the vehicles, as described herein.
As further shown in Fig. 3, and by reference number 320, the vehicles and/or roadside unit determine reliability scores for the sensor systems of the vehicles. For example, the vehicles and/or the roadside unit may use a sensor data sharing system to determine reliability scores for the sensor systems, as described herein. In some implementations, the vehicles and/or roadside unit may determine the reliability scores by receiving and identifying the reliability scores in the sensor information provided by the sensor information platform (e.g., if a third-party entity provides the reliability scores within the sensor information) . Additionally, or alternatively, the vehicles and/or the roadside unit may determine a reliability score (e.g., estimate the reliability score, calculate the reliability score, and/or the like) to determine whether the sensor systems of the vehicles are reliable (e.g., relative to a reliability threshold of a reliability scoring system, relative to a reliability threshold associated with the first vehicle and/or the second vehicle, and/or the like) .
In some implementations, the sensor data sharing system can utilize a scoring system to determine a reliability score associated with a reliability of a sensor system, based on characteristics of the sensor system, based on measured performance of the sensor system, and/or based on vehicle information associated with a vehicle that utilizes the sensor system. Using such a scoring system, the sensor data sharing system can apply weights (w) to parameters corresponding to values of the characteristics of the sensor system (e.g., type of sensor system, usage of sensor system, date of manufacture of sensor system, and/or the like) and/or performance (or testing results determined) during certain testing scenarios (e.g., testing scenarios under particular weather conditions, testing scenarios corresponding to particular locations, testing scenarios corresponding to particular altitudes, testing scenarios involving one or more levels of electromagnetic interference, and/or the like) . Additionally, or alternatively, the weights may be adjustable based on the vehicle that is utilizing the sensor system. Accordingly, the sensor data sharing system can determine (e.g., via one or more calculations associated with the scoring system) a reliability score for a sensor system that is representative of a reliability of the sensor system and based on characteristics the scoring system (and/or a vehicle associated with the scoring system) and/or performance of the sensor system.
For example, the sensor data sharing system can use the following to determine the reliability score (s ij) based on parameters a, b, c, … (which may correspond to characteristics of the sensor system, performance tests of the sensor system, and/or the like) of a sensor system (or representative system) i for a vehicle (or representative vehicle) j:
s ij = w aja i + w bjb i + w cjc i + …            (1)
where w aj, w bj, w cj, …corresponds to adjusted weights for the parameters a i, b i, c i, …associated with the sensor system i being used in vehicle j. For example, parameters a i, b i, c i may include a value (e.g., a characteristic-specific value (e.g., amount of usage, quantity of sensors, and/or the like) , a test specific value (e.g., a quantity of high graded sensors, a test grade, and/or the like) ) associated with a scale for the respective parameters a i, b i, c i. In some implementations, the adjusted weights w aj, w bj, w cj may be normalized (e.g., where 0 ≤ w aj, w bj, w cj ≤ 1 and w aj + w bj + w cj = 1) .
In this way, the vehicles and/or the roadside unit may determine reliability scores for the sensor systems of the vehicles.
As further shown in Fig. 3, and by reference number 330, the vehicles share and/or use the sensor data based on the reliability scores. As described herein, a vehicle may share and/or use sensor data based on a comparison of a reliability score of a sensor system of the vehicle and a reliability threshold (e.g., a threshold score) . For example, a sensor data sharing system of the vehicle and/or a sensor data sharing system of a roadside unit may compare the determined reliability score with the reliability threshold. In such cases, if the reliability score satisfies the reliability threshold, the sensor data sharing system may permit sensor data associated with the sensor system to be shared with other vehicles and/or may permit sensor data associated with the sensor system to be utilized to perform one or more operations of the vehicle. Therefore, if the sensor data sharing system determines that a reliability score of the first vehicle satisfies the reliability threshold, sensor data generated by the sensor system of the first vehicle may be shared with the second vehicle and/or used by the second vehicle to perform an operation (e.g., detect proximity to the first vehicle, detect proximity to an upcoming object in front of the first vehicle and the second vehicle, and/or the like) .
In some implementations, the reliability threshold is a standard or universal threshold that corresponds to a scoring system that is used by the sensor information platform, the vehicles, and/or the roadside unit. Accordingly, in such cases, the reliability threshold for the first vehicle may be the same as the reliability threshold for the second vehicle. Furthermore, in some implementations, if a sensor system is associated with a reliability score that is less than such a reliability threshold, a vehicle associated with the sensor system may be prevented from sharing sensor data associated with the sensor system. For example, a sensor data sharing system of a vehicle that has a sensor system with a reliability score below the reliability threshold may prevent sensor data sharing for the sensor system by deactivating outgoing V2V communications involving the sensor system. Additionally, or alternatively, a sensor data sharing system of the roadside unit may intercept sensor data associated with a vehicle that has a sensor system that has a reliability score below the threshold reliability to prevent the vehicle from sharing sensor data associated with the sensor system.
In some implementations, the reliability threshold (e.g., a threshold that determines whether a sensor system with a particular reliability score is reliable or not reliable) may be depend upon one or more characteristics of a particular vehicle, and therefore, may be different from vehicle to vehicle. Accordingly, a reliability threshold  for the first vehicle may be different from a reliability threshold of the second vehicle. For example, as shown in Fig. 3, the first vehicle may have relatively more sensors than the second vehicle. In such a case, the sensor system of the first vehicle may be considered to be more reliable than the sensor system of the second vehicle. Accordingly, assuming that a relatively high score is indicative of being more reliable than a relatively low score, the reliability score for the sensor system of the first vehicle may be higher than the reliability score for the sensor system of the second system.
In some implementations, a reliability threshold for the first vehicle may correspond to the reliability score for the sensor system of the first vehicle. Similarly, the reliability threshold for the second vehicle may correspond to the reliability score of the sensor system of the second vehicle. In such cases, assuming that the reliability score for the sensor system of the first vehicle (referred to herein as “first reliability score” ) is higher than the reliability score for the second system (referred to herein as the “second reliability score” ) , the second vehicle may use sensor data received from the first vehicle while the first vehicle may not use sensor data received from the second vehicle. For example, the first vehicle and the second vehicle may include the first reliability score and the second reliability score, respectively, in V2V communications that share sensor data between the vehicles. Accordingly, the first vehicle may compare the received second reliability score with the first reliability score and determine that the sensor data from the sensor system of the first vehicle is to be used for an operation and that the sensor data from the second vehicle may be disregarded. Meanwhile, the second vehicle may compare the received first reliability score with the second reliability score and determine that the sensor data from the sensor system of the first vehicle is to be used for an operation and that the sensor data from the second vehicle may be disregarded.
Additionally, or alternatively, the first vehicle and/or the second vehicle may combine the sensor data, for use during an operation, by weighting the sensor data according to the reliability scores. For example, if the reliability score for the sensor system of the first vehicle is twice the reliability score for the sensor system of the second vehicle, the first vehicle and the second vehicle may apply twice the weight to the sensor data from the first vehicle as the sensor data from the second vehicle.
According to some implementations, a vehicle may monitor performance of a sensor system of the vehicle. For example, the vehicle may monitor (e.g., using an onboard diagnostic system of the vehicle) whether one or more sensors of the sensor  system are impaired, whether the sensor system is experiencing a failure, and/or the like. In some implementations, if the vehicle determines that performance of the sensor system is impaired in any manner, the vehicle may adjust a reliability score associated with the sensor system. In this way, the vehicle may dynamically adjust a reliability score, which may enable a sensor data sharing system to prevent transmission of outgoing V2V communications involving the sensor data if the reliability score does not satisfy a threshold (e.g., to prevent other vehicles from using sensor data from an impaired sensor system) .
In this way, the vehicles may use and/or share sensor data according to the reliability scores associated with sensor systems of the vehicles. Accordingly, as described herein, a sensor data sharing system may be used to determine reliability associated with sensor data of one or more vehicles and permit sharing and/or use of the sensor data based on the determined reliability. Accordingly, the sensor data sharing system may improve safety with respect to operation of the one or more vehicles (e.g., thus preventing injury, damage to hardware resources or vehicles, and/or the like) and/or avoid wasting resources associated with sharing unreliable sensor data, as described herein.
As indicated above, Fig. 3 is provided merely as one or more examples. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram conceptually illustrating an example 400 associated with sensor data sharing between vehicles in accordance with various aspects of the present disclosure. Example 400 includes a call flow between a sensor information platform, a roadside unit (shown as “RSU” ) , a first vehicle (shown as “Vehicle 1” ) , and a second vehicle (shown as “Vehicle 2” ) .
As shown in Fig. 4, and by reference number 402, the sensor information platform sends sensor information to the roadside unit. As shown by reference number 404, the roadside unit may determine reliability scores for the first vehicle and the second vehicle (e.g., reliability scores for respective sensor systems of the first vehicle and the second vehicle) . The roadside unit may provide the reliability score for the first vehicle to the first vehicle (reference number 406) and the reliability score for the second vehicle to the second vehicle (reference number 408) . Additionally, or alternatively, the roadside unit may broadcast the reliability scores for both the first vehicle and the second vehicle to both the first vehicle and the second vehicle.
As further shown in Fig. 4, and by reference number 410, the first vehicle and the second vehicle are engaged in a V2V communication session. As shown by reference number 412, the first vehicle may provide the reliability score for the first vehicle and sensor data associated with the first vehicle to the second vehicle. As shown by reference number 414, the second vehicle may determine whether to use the sensor data from the first vehicle (e.g., determine whether the reliability score for the first vehicle satisfies a reliability threshold) . In some implementations, as shown by reference number 416, the second vehicle may send a response to the first vehicle that indicates whether the second vehicle used the sensor data from the first vehicle. In some implementations, if the response indicates that the second vehicle used the sensor data, the first vehicle may adjust the reliability score associated with the sensor data (e.g., because the first vehicle may determine that the sensor data was relatively accurate when the second vehicle compared the sensor data with sensor data of the second vehicle) . Additionally, or alternatively, if the response indicates that the sensor data was not used, the first vehicle may decrease the reliability score associated with the first vehicle (e.g., according to a reliability score associated with the second vehicle) .
In this way, the first vehicle and the second vehicle may use a reliability score calculated by a roadside unit and provided to the first vehicle and/or second vehicle to permit the first and/or second vehicle to determine whether sensor data is to be used during an operation involving the first vehicle and/or the second vehicle.
As indicated above, Fig. 4 is provided merely as one or more examples. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram conceptually illustrating an example 500 associated with sensor data sharing between vehicles in accordance with various aspects of the present disclosure. Example 500 includes a call flow between a sensor information platform, a roadside unit (shown as “RSU” ) , a first vehicle (shown as “Vehicle 1” ) , and a second vehicle (shown as “Vehicle 2” ) .
As shown in Fig. 5, and by reference number 502, the sensor information platform sends sensor information to the roadside unit. As shown by reference number 504, the roadside unit may determine reliability scores for the first vehicle and the second vehicle (e.g., reliability scores for respective sensor systems of the first vehicle and the second vehicle) . As shown by reference number 506, the first vehicle and the second vehicle are engaged in a V2V communication session. As shown by reference number 508, the first vehicle may receive sensor data from the second vehicle.
As further shown in Fig. 5, and by reference number 510, the first vehicle may request, from the roadside unit, sensor information associated with the second vehicle. As shown by reference number 512, the roadside unit may determine whether the first vehicle may use the sensor data from the second vehicle (e.g., based on a reliability score of the second vehicle) . As shown by reference number 514, the roadside unit may respond based on the reliability score. For example, the response may indicate that the sensor data from the second vehicle is reliable or that the sensor data from the second vehicle is not reliable. As shown by reference number 516, the first vehicle may use or disregard the sensor data from the second vehicle according to the response from the roadside unit.
In this way, the roadside unit may be used to intercept and/or prevent sensor data that is unreliable from being shared between vehicles.
As indicated above, Fig. 5 is provided merely as one or more examples. Other examples may differ from what is described with regard to Fig. 5.
Fig. 6 is a diagram conceptually illustrating an example 600 associated with sensor data sharing between vehicles in accordance with various aspects of the present disclosure. Example 600 includes a call flow between a sensor information platform, a first vehicle (shown as “Vehicle 1” ) , and a second vehicle (shown as “Vehicle 2” ) .
As shown in Fig. 6, and by  reference numbers  602 and 604, the sensor information platform may provide sensor information to the first vehicle and the second vehicle. For example, the sensor information platform may broadcast the sensor information to the first vehicle and/or the second vehicle. The sensor information may be associated with both the first vehicle and the second vehicle. In some implementations, the sensor information may include reliability scores associated with the first vehicle and the second vehicle (e.g., reliability scores for respective sensor systems of the first vehicle and the second vehicle) .
As further shown in Fig. 4, and by reference number 606, the first vehicle and the second vehicle are engaged in a V2V communication session. As shown by reference number 608, the first vehicle may receive sensor data from the second vehicle. As shown by reference number 610, the first vehicle may determine whether to use the sensor data from the second vehicle. For example, the first vehicle may compare a reliability score associated with the second vehicle (e.g., as received in the sensor information from the sensor information platform, as indicated by the second vehicle via the V2V communication, and/or the like) . The first vehicle, as shown by reference  number 612, may use or disregard the sensor data from the second vehicle (e.g., depending on whether a reliability score associated with the second vehicle satisfies a reliability threshold) . In some implementations, as shown by reference number 614, the first vehicle may send a response to the second vehicle. Such a response may acknowledge receipt of the sensor data, indicate whether the sensor data was used, include sensor data and/or a reliability score associated with the first vehicle, and/or the like.
In this way, one or more vehicles may use sensor information to determine whether sensor data shared between vehicles is to be used to perform an operation associated with the one or more vehicles.
As indicated above, Fig. 6 is provided merely as one or more examples. Other examples may differ from what is described with regard to Fig. 6.
Fig. 7 is a flow chart of an example process 700 for sensor data sharing between vehicles. In some aspects, one or more process blocks of Fig. 7 may be performed by a sensor data sharing system (e.g., a sensor data sharing system of roadside platform 110, a sensor data sharing system of ECU 132, and/or the like) . In some aspects, one or more process blocks of Fig. 7 may be performed by another device or a group of devices separate from or including the sensor data sharing system, such as a roadside platform (e.g., roadside platform 110) , an ECU (e.g., ECU 132) , a sensor information platform (e.g., sensor information platform 140) , and/or the like.
As shown in Fig. 7, process 700 may include receiving information associated with a sensor system of a first vehicle (block 710) . For example, the sensor data sharing system (e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like) may receive information associated with a sensor system of a first vehicle, as described above.
As further shown in Fig. 7, process 700 may include determining, based on the information, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system (block 720) . For example, the sensor data sharing system (e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like) may determine, based on the information, a score associated with the sensor system, as described above. In some aspects, the score is representative of a reliability of the sensor system.
As further shown in Fig. 7, process 700 may include determining whether the score satisfies a reliability threshold (block 730) . For example, the sensor data sharing system (e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like) may determine whether the score satisfies a reliability threshold, as described above.
As further shown in Fig. 7, process 700 may include enabling, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle (block 740) . For example, the sensor data sharing system (e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like) may enable, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with the second vehicle, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, a distance between the first vehicle and the second vehicle is within a threshold distance. In a second aspect, alone or in combination with the first aspect, the first vehicle and the second vehicle are associated with a designated vehicle group and vehicles of the designated vehicle group are capable of utilizing shared sensor data.
In a third aspect, alone or in combination with one or more of the first and second aspects, the first vehicle and the second vehicle are travelling along a same roadway and a distance between the first vehicle and the second vehicle is within a threshold distance. In a fourth aspect, alone or in combination with one or more of the first through third aspects, the information and the sensor data are received, from the first vehicle, via a V2V communication.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the information and the sensor data are received from a roadside platform. In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the information is received from a platform associated with a third-party entity and the sensor data is received from the first vehicle.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the information identifies at least one of a type of the sensor system, a usage of the sensor system, a date of manufacture of the sensor system, performance information associated with the sensor system, or vehicle information associated with the first vehicle.
In an eighth aspect, alone or in combination with the seventh aspect, the performance information identifies at least one of results of testing the sensor system in one or more types of weather, results of testing the sensor system in one or more locations, results of testing the sensor system at one or more altitudes, results of testing the sensor system in an environment with one or more levels of electromagnetic interference, results of testing a representative sensor system, associated with the sensor system, in one or more types of weather, results of testing the representative sensor system, associated with the sensor system, in one or more locations, results of testing the representative sensor system, associated with the sensor system, at one or more altitudes, or results of testing the representative sensor system, associated with the sensor system, in an environment with one or more levels of electromagnetic interference. In a ninth aspect, alone or in combination with one or more of the seventh and eighth aspects, the vehicle information comprises at least one of a class of the first vehicle, a make/model of the first vehicle, a usage of the first vehicle, or a date of manufacture of the first vehicle.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the score is determined using a weighted average of a plurality of characteristics of the sensor system. In some aspects, the information identifies the plurality of characteristics of the sensor. In an eleventh aspect, alone or in combination with the tenth aspect, the weighted average uses weights for corresponding characteristics, of the plurality of characteristics, that are based on a characteristic of the second vehicle.
In a twelfth aspect, alone or in combination with one or more of the first through eleventh aspects, the sensor system comprises at least one of a camera, a LIDAR sensor, or a RADAR sensor. In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, the information identifies the score. In some aspects, the score is calculated by a third-party entity that is different from the first vehicle and the second vehicle.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, the reliability threshold is associated with the second vehicle. In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, the score is a first score and the sensor system is a first sensor system. In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, the use of the sensor data is enabled via the sensor data being received by an ECU associated with performing the operation.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, the use of the sensor data is enabled via the sensor data being transmitted, from a roadside platform, to an ECU associated with performing the operation. In an eighteenth aspect, alone or in combination with one or more of the first through seventeenth aspects, the sensor data sharing system comprises an ECU of the second vehicle.
In a nineteenth aspect, alone or in combination with one or more of the first through eighteenth aspects, the sensor data sharing system comprises a device of a roadside platform associated with a third-party entity. In some aspects, the sensor data sharing system may perform, based on determining that the score does not satisfy the reliability threshold, an action associated with disregarding the sensor data.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
Fig. 8 is a flow chart of an example process 800 for sensor data sharing between vehicles. In some aspects, one or more process blocks of Fig. 8 may be performed by a sensor data sharing system (e.g., a sensor data sharing system of roadside platform 110, a sensor data sharing system of ECU 132, and/or the like) . In some aspects, one or more process blocks of Fig. 8 may be performed by another device or a group of devices separate from or including the sensor data sharing system, such as a roadside platform (e.g., roadside platform 110) , an ECU (e.g., ECU 132) , a sensor information platform (e.g., sensor information platform 140) , and/or the like.
As shown in Fig. 8, process 800 may include monitoring a performance of a sensor system of a first vehicle (block 810) . For example, the sensor data sharing system (e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication  interface 270, sensor 280 and/or the like) may monitor a performance of a sensor system of a first vehicle, as described above.
As further shown in Fig. 8, process 800 may include determining, based on the performance, a score associated with the sensor system wherein the score is representative of a reliability of the sensor system (block 820) . For example, the sensor data sharing system (e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like) may determine, based on the performance, a score associated with the sensor system, wherein the score is representative of a reliability of the sensor system, as described above.
As further shown in Fig. 8, process 800 may include determining whether the score satisfies a reliability threshold (block 830) . For example, the sensor data sharing system (e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like) may determine whether the score satisfies a reliability threshold, as described above.
As further shown in Fig. 8, process 800 may include performing, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing V2V communication associated with the sensor system, wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle (block 840) . For example, the sensor data sharing system (e.g., using computing resource 115, ECU 132, processor 220, memory 230, storage component 240, input component 250, output component 260, communication interface 270, sensor 280 and/or the like) may perform, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing V2V communication associated with the sensor system, as described above. In some aspects, the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, when the score is determined to not satisfy the reliability threshold, the sensor data sharing system, when performing the action, may prevent transmission of the outgoing V2V communication associated with the sensor system. In  a second aspect, alone or in combination with the first aspect, the performance is monitored based on information received from an onboard diagnostic system of the first vehicle. In a third aspect, alone or in combination with one or more of the first and second aspects, when the performance indicates that a sensor of the sensor system is impaired, the score is adjusted to indicate that the sensor system is correspondingly less reliable.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, when the score is determined to satisfy the reliability threshold, the sensor data sharing system, when performing the action, may enable the outgoing V2V communication associated with the sensor system.
In a fifth aspect, alone or in combination with the fourth aspect, the sensor data sharing system may transmit, based on the outgoing V2V communication associated with the V2V being enabled, the sensor data to the second vehicle. In a sixth aspect, alone or in combination with the fifth aspect, the sensor data sharing system may receive, from the second vehicle, an indication that the transmitted sensor data is reliable and adjust the score based on the indication to show that the sensor system is relatively more reliable based on receiving the indication.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the sensor data sharing system comprises an electronic control unit (ECU) of the first vehicle. In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, the sensor data sharing system comprises a device associated with a third-party entity.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
Some aspects are described herein in connection with thresholds. As used herein, satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (37)

  1. A method, comprising:
    receiving, by a device, information associated with a sensor system of a first vehicle;
    determining, by the device and based on the information, a score associated with the sensor system,
    wherein the score is representative of a reliability of the sensor system;
    determining, by the device, whether the score satisfies a reliability threshold; and
    enabling, by the device and based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with a second vehicle.
  2. The method of claim 1, wherein a distance between the first vehicle and the second vehicle is within a threshold distance.
  3. The method of claim 1, wherein the first vehicle and the second vehicle are associated with a designated vehicle group,
    wherein vehicles of the designated vehicle group are capable of utilizing shared sensor data.
  4. The method of claim 1, wherein the first vehicle and the second vehicle are travelling along a same roadway and a distance between the first vehicle and the second vehicle is within a threshold distance.
  5. The method of claim 1, wherein the information and the sensor data are received, from the first vehicle, via a vehicle-to-vehicle (V2V) communication.
  6. The method of claim 1, wherein the information and the sensor data are received from a roadside platform,
    wherein the roadside platform is associated with a third-party entity.
  7. The method of claim 1, wherein the information is received from a platform associated with a third-party entity and the sensor data is received from the first vehicle.
  8. The method of claim 1, wherein the information identifies at least one of:
    information identifying sensors of the sensor system,
    a type of the sensor system,
    a usage of the sensor system,
    a date of manufacture of the sensor system,
    performance information associated with the sensor system, or
    vehicle information associated with the first vehicle.
  9. The method of claim 8, wherein the performance information identifies at least one of:
    results of testing the sensor system in one or more types of weather,
    results of testing the sensor system in one or more locations,
    results of testing the sensor system at one or more altitudes,
    results of testing the sensor system in an environment with one or more levels of electromagnetic interference,
    results of testing a representative sensor system, associated with the sensor system, in one or more types of weather,
    results of testing the representative sensor system, associated with the sensor system, sensor system in one or more locations,
    results of testing the representative sensor system, associated with the sensor system, sensor system at one or more altitudes, or
    results of testing the representative sensor system, associated with the sensor system, sensor system in an environment with one or more levels of electromagnetic interference.
  10. The method of claim 8, wherein the vehicle information comprises at least one of:
    a class of the first vehicle,
    a make/model of the first vehicle,
    a usage of the first vehicle, or
    a date of manufacture of the first vehicle.
  11. The method of claim 1, wherein the score is determined using a weighted average of a plurality of characteristics of the sensor system,
    wherein the information identifies the plurality of characteristics of the sensor.
  12. The method of claim 11, wherein the weighted average uses weights for corresponding characteristics, of the plurality of characteristics, that are based on a characteristic of the second vehicle.
  13. The method of claim 1, wherein the sensor system comprises at least one of:
    a camera,
    a light detection and ranging (LIDAR) sensor, or
    a radio detection and ranging (RADAR) sensor.
  14. The method of claim 1, wherein the information identifies the score,
    wherein the score is calculated by a third-party entity that is different from the first vehicle and the second vehicle.
  15. The method of claim 1, wherein the reliability threshold is associated with the second vehicle.
  16. The method of claim 1, wherein the score is a first score and the sensor system is a first sensor system,
    wherein the reliability threshold is a second score associated with a second sensor system of the second vehicle,
    wherein the second score is representative of a reliability of the second vehicle.
  17. The method of claim 1, wherein the use of the sensor data is enabled via the sensor data being received by an electronic control unit (ECU) associated with performing the operation.
  18. The method of claim 1, wherein the use of the sensor data is enabled via the sensor data being transmitted, from a roadside platform, to an electronic control unit (ECU) associated with performing the operation.
  19. The method of claim 1, wherein the device comprises an electronic control unit (ECU) of the second vehicle.
  20. The method of claim 1, wherein the device comprises a device of a roadside platform associated with a third-party entity.
  21. The method of claim 1, further comprising:
    performing, based on determining that the score does not satisfy the reliability threshold, an action associated with disregarding the sensor data.
  22. A method comprising:
    monitoring, by a device, a performance of a sensor system of a first vehicle;
    determining, by the device and based on the performance, a score associated with the sensor system,
    wherein the score is representative of a reliability of the sensor system;
    determining, by the device, whether the score satisfies a reliability threshold; and
    performing, by the device and based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated with the sensor system,
    wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
  23. The method of claim 22, wherein, when the score is determined to not satisfy the reliability threshold, performing the action comprises:
    preventing transmission of the outgoing V2V communication associated with the sensor system.
  24. The method of claim 22, wherein the performance is monitored based on information received from an onboard diagnostic system of the first vehicle.
  25. The method of claim 22, wherein when the performance indicates that a sensor of the sensor system is impaired, the score is adjusted to indicate that the sensor system is correspondingly less reliable.
  26. The method of claim 22, wherein, when the score is determined to satisfy the reliability threshold, performing the action comprises:
    enabling the outgoing V2V communication associated with the sensor system.
  27. The method of claim 26, further comprising:
    transmitting, based on the outgoing V2V communication associated with the V2V being enabled, the sensor data to the second vehicle.
  28. The method of claim 27, further comprising:
    receiving, from the second vehicle, an indication that the transmitted sensor data is reliable; and
    adjusting the score based on the indication,
    wherein the score is adjusted to show that the sensor system is relatively more reliable based on receiving the indication.
  29. The method of claim 22, wherein the device comprises an electronic control (ECU) of the first vehicle.
  30. The method of claim 22, wherein the device comprises a device associated with a third-party entity,
    wherein the third-party entity is associated with a roadside platform that facilitates the outgoing V2V communication.
  31. A device, comprising:
    one or more memories; and
    one or more processors communicatively coupled to the one or more memories, configured to:
    receive information associated with a sensor system of a first vehicle;
    determine, based on the information, a score associated with the sensor system,
    wherein the score is representative of a reliability of the sensor system;
    determine whether the score satisfies a reliability threshold; and
    enable, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with a second vehicle.
  32. A device, comprising:
    one or more memories; and
    one or more processors communicatively coupled to the one or more memories, configured to:
    monitor performance of a sensor system of a first vehicle;
    determine, based on the performance, a score associated with the sensor system,
    wherein the score is representative of a reliability of the sensor system;
    determine whether the score satisfies a reliability threshold; and
    perform, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated with the sensor system,
    wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
  33. A non-transitory computer-readable medium storing instructions, the instructions comprising:
    one or more instructions that, when executed by one or more processors, cause the one or more processors to:
    receive information associated with a sensor system of a first vehicle;
    determine, based on the information, a score associated with the sensor system,
    wherein the score is representative of a reliability of the sensor system;
    determine whether the score satisfies a reliability threshold; and
    enable, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with a second vehicle.
  34. A non-transitory computer-readable medium storing instructions, the instructions comprising:
    one or more instructions that, when executed by one or more processors, cause the one or more processors to:
    monitor performance of a sensor system of a first vehicle;
    determine, based on the performance, a score associated with the sensor system,
    wherein the score is representative of a reliability of the sensor system;
    determine whether the score satisfies a reliability threshold; and
    perform, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated with the sensor system,
    wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
  35. An apparatus, comprising:
    means for receiving information associated with a sensor system of a first vehicle;
    means for determining, based on the information, a score associated with the sensor system,
    wherein the score is representative of a reliability of the sensor system;
    means for determining whether the score satisfies a reliability threshold; and
    means for enabling, based on determining that the score satisfies the reliability threshold, use of sensor data, associated with the sensor system, for an operation associated with a second vehicle.
  36. An apparatus, comprising:
    means for monitoring performance of a sensor system of a first vehicle;
    means for determining, based on the performance, a score associated with the sensor system,
    wherein the score is representative of a reliability of the sensor system;
    means for determining whether the score satisfies a reliability threshold; and
    means for performing, based on whether the score is determined to satisfy the reliability threshold, an action associated with an outgoing vehicle-to-vehicle (V2V) communication associated with the sensor system,
    wherein the outgoing V2V communication is associated with sharing sensor data associated with the first vehicle with a second vehicle.
  37. A method, device, apparatus, computer program product, non-transitory computer-readable medium, user equipment, computer device, wireless communication device, electronic control unit, vehicle, platform, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
PCT/CN2019/081442 2019-04-04 2019-04-04 Sensor data sharing between vehicles WO2020199183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081442 WO2020199183A1 (en) 2019-04-04 2019-04-04 Sensor data sharing between vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081442 WO2020199183A1 (en) 2019-04-04 2019-04-04 Sensor data sharing between vehicles

Publications (1)

Publication Number Publication Date
WO2020199183A1 true WO2020199183A1 (en) 2020-10-08

Family

ID=72664791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081442 WO2020199183A1 (en) 2019-04-04 2019-04-04 Sensor data sharing between vehicles

Country Status (1)

Country Link
WO (1) WO2020199183A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114969502B (en) * 2021-06-21 2023-10-27 中移互联网有限公司 Vehicle information exchange method and system and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105678021A (en) * 2016-02-22 2016-06-15 上海科梁信息工程股份有限公司 Parameter determination method and system for vehicle model
US20170160110A1 (en) * 2015-12-04 2017-06-08 International Business Machines Corporation Sensor data segmentation and virtualization
US20180357493A1 (en) * 2015-08-19 2018-12-13 Sony Corporation Information processing apparatus, information processing method, and program
WO2018236736A1 (en) * 2017-06-19 2018-12-27 Qualcomm Incorporated Interactive sharing of vehicle sensor information
CN109507998A (en) * 2017-09-15 2019-03-22 通用汽车环球科技运作有限责任公司 System and method for the cooperation between autonomous vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180357493A1 (en) * 2015-08-19 2018-12-13 Sony Corporation Information processing apparatus, information processing method, and program
US20170160110A1 (en) * 2015-12-04 2017-06-08 International Business Machines Corporation Sensor data segmentation and virtualization
CN105678021A (en) * 2016-02-22 2016-06-15 上海科梁信息工程股份有限公司 Parameter determination method and system for vehicle model
WO2018236736A1 (en) * 2017-06-19 2018-12-27 Qualcomm Incorporated Interactive sharing of vehicle sensor information
CN109507998A (en) * 2017-09-15 2019-03-22 通用汽车环球科技运作有限责任公司 System and method for the cooperation between autonomous vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114969502B (en) * 2021-06-21 2023-10-27 中移互联网有限公司 Vehicle information exchange method and system and computer readable storage medium

Similar Documents

Publication Publication Date Title
US9815475B2 (en) Analytics platform for identifying a roadway anomaly
US11796654B2 (en) Distributed sensor calibration and sensor sharing using cellular vehicle-to-everything (CV2X) communication
US11315428B2 (en) Management of mobile objects
US10210751B1 (en) Identification of traffic control mechanisms using machine learning
US10661795B1 (en) Collision detection platform
US10585180B2 (en) Management of mobile objects
US10176711B2 (en) Analyzing big data to manage traffic flow
US20180314258A1 (en) Vehicle control for reducing road wear
WO2021155570A1 (en) Vehicle to vehicle communication control for vehicles in platoon
US10553041B2 (en) Method and apparatus for vehicle system wear prediction
US11769403B2 (en) Systems and methods for fiber optic based vehicle-direction detection
US20200098258A1 (en) Providing map fragments to a device
WO2020199183A1 (en) Sensor data sharing between vehicles
US11498580B2 (en) Method and device for facilitating manual operation of a vehicle
US20190371165A1 (en) Grouping of moving objects
US20210097302A1 (en) Vehicle behavior detection system
US20200193827A1 (en) Identification of a poorly parked vehicle and performance of a first group of actions to cause one or more other devices to perform a second group of actions
US10953877B2 (en) Road condition prediction
US11548523B2 (en) Systems and methods for improved driver safety analytics
WO2021155568A1 (en) Configuration for prioritizing vehicle to everything communications
US10805764B1 (en) Object location tracking based on point-in-polygon analysis
US11391573B2 (en) Object location tracking
US20230377384A1 (en) Systems and methods for determining vehicle component health status
CN110362086B (en) Method and device for controlling an autonomous vehicle
US20220292955A1 (en) Calculating traffic flow changes due to traffic events

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922519

Country of ref document: EP

Kind code of ref document: A1