WO2020199006A1 - Group based secondary cell and common bandwidth part configuration - Google Patents

Group based secondary cell and common bandwidth part configuration Download PDF

Info

Publication number
WO2020199006A1
WO2020199006A1 PCT/CN2019/080597 CN2019080597W WO2020199006A1 WO 2020199006 A1 WO2020199006 A1 WO 2020199006A1 CN 2019080597 W CN2019080597 W CN 2019080597W WO 2020199006 A1 WO2020199006 A1 WO 2020199006A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
configuration
common
bandwidth part
bandwidth
Prior art date
Application number
PCT/CN2019/080597
Other languages
French (fr)
Inventor
Peng Cheng
Huichun LIU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/080597 priority Critical patent/WO2020199006A1/en
Publication of WO2020199006A1 publication Critical patent/WO2020199006A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the following relates generally to wireless communications, and more specifically to group based secondary cell (SCell) and common bandwidth part (BWP) configuration.
  • SCell group based secondary cell
  • BWP common bandwidth part
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE in some wireless deployments may communicate over a given system bandwidth or according to parameters associated with a number of cells of the network.
  • a system bandwidth may include a number of BWPs which the UE may use to communicate with the network (e.g., with a base station or other network node) .
  • BWPs or cells configured for signaling, which may increase signaling overhead when configuring a UE for communications leading to increased latency or other communication issues.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support group based secondary cell (SCell) and common bandwidth part (BWP) configuration.
  • SCell group based secondary cell
  • BWP common bandwidth part
  • the described techniques provide for improved communication between a base station and a user equipment (UE) using information common to a number of configured SCells or BWPs supported by the network.
  • UE user equipment
  • a base station may identify multiple BWPs of a system bandwidth, and may identify a common BWP configuration that includes a number of parameters that are the same for the multiple BWPs.
  • a common BWP configuration may be utilized where multiple BWPs of the same type of configuration may be combined into one common BWP configuration (e.g., information and other configuration components common to a number of BWPs may be combined into a single BWP configuration) .
  • the common BWP configuration may in some cases contain information common to a number of BWPs associated with a number of serving cells in a network, common to the full system bandwidth or a given frequency range. The information may be common to a number of BWPs of the serving cell, to all serving cells in one cell group, or to all serving cells in one frequency range.
  • the common BWP configuration may include UE specific information for a UE.
  • the network may indicate a dedicated BWP configuration to a UE, which may be used to override the UE specific information in the common BWP configuration.
  • the base station may transmit the common BWP configuration to the UE, and the UE may receive the BWP, including the information common to the number of BWPs and the UE specific information.
  • the UE may configure one or more BWPs and may communicate with the base station using the configured BWP.
  • a network node may support group common SCell configurations for multiple SCells, a primary SCell (PSCell) , a primary cell (PCell) , or any combination thereof.
  • a group common SCell configuration may include information common to the SCells of the group common SCell configuration as well as UE-specific information.
  • a common SCell configuration may include a BWP configuration for the SCells, which may be the first active BWP configuration for the SCells while other BWP configuration may be indicated to the UE through delta signaling (e.g., via radio resource control (RRC) messaging) .
  • RRC radio resource control
  • a method of wireless communications at a UE is described.
  • the method may include receiving, from a base station, a common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, configuring a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part, and communicating with the base station using the configured bandwidth part.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a base station, a common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, configure a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part, and communicate with the base station using the configured bandwidth part.
  • the apparatus may include means for receiving, from a base station, a common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, configuring a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part, and communicating with the base station using the configured bandwidth part.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to receive, from a base station, a common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, configure a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part, and communicate with the base station using the configured bandwidth part.
  • the information may be common to multiple bandwidth parts of a serving cell.
  • the information may be common to multiple bandwidth parts of all serving cells in one cell group.
  • the information may be common to multiple bandwidth parts of all serving cells in one frequency range.
  • the information common to the set of bandwidth parts includes uplink information and downlink information for a set of UEs including the UE.
  • the UE-specific information includes uplink information and downlink information for the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a dedicated bandwidth part configuration from the base station, the dedicated bandwidth part configuration including UE-specific bandwidth part information for overriding the UE-specific information for the bandwidth part of the received common bandwidth part configuration.
  • the UE-specific information may be common to the set of bandwidth parts.
  • the common bandwidth part configuration may be based on an initial bandwidth part for a serving cell.
  • the common bandwidth part configuration includes information for an initial active bandwidth part of the set of bandwidth parts.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving signaling from the base station indicating information for other bandwidth parts relative to the information for the initial active bandwidth part.
  • the signaling may be received via RRC signaling.
  • receiving the common bandwidth part configuration may include operations, features, means, or instructions for receiving the common bandwidth part configuration via RRC signaling.
  • receiving the common bandwidth part configuration may include operations, features, means, or instructions for receiving the information common to the set of bandwidth parts via system information signaling, and receiving the UE-specific information via RRC signaling.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, a group common secondary cell configuration indicating cell configuration information for a primary cell, a primary secondary cell, a set of secondary cells, or any combination thereof.
  • the group common secondary cell configuration indicates configuration information for a set of secondary cell group configurations and a master cell group configuration.
  • the group common secondary cell configuration may be common to a set of serving cells in one cell group.
  • the group common secondary cell configuration may be common to a set of serving cells in one frequency range.
  • the common bandwidth part configuration may be included in the group common secondary cell configuration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the group common secondary cell configuration via RRC signaling.
  • the common secondary cell configuration includes an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information, secondary cell timer information, common bandwidth part information, dedicated bandwidth part information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
  • the common bandwidth part configuration includes an indication of at least one of a bandwidth part, a bandwidth part location, a bandwidth part bandwidth, a bandwidth part subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space, a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
  • a method of wireless communications at a base station may include identifying a common bandwidth part configuration for a UE, the common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, transmitting, to the UE, the common bandwidth part configuration, and communicating with the UE using a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a common bandwidth part configuration for a UE, the common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, transmit, to the UE, the common bandwidth part configuration, and communicate with the UE using a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part.
  • the apparatus may include means for identifying a common bandwidth part configuration for a UE, the common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, transmitting, to the UE, the common bandwidth part configuration, and communicating with the UE using a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part.
  • a non-transitory computer-readable medium storing code for wireless communications at a base station is described.
  • the code may include instructions executable by a processor to identify a common bandwidth part configuration for a UE, the common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, transmit, to the UE, the common bandwidth part configuration, and communicate with the UE using a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part.
  • the information may be common to multiple bandwidth parts of a serving cell.
  • the information may be common to multiple bandwidth parts of all serving cells in one cell group.
  • the information may be common to multiple bandwidth parts of all serving cells in one frequency range.
  • the information common to the set of bandwidth parts includes uplink information and downlink information for a set of UEs including the UE.
  • the UE-specific information includes uplink information and downlink information for the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a dedicated bandwidth part configuration to the UE, the dedicated bandwidth part configuration including UE-specific bandwidth part information for overriding the UE-specific information for the bandwidth part of the common bandwidth part configuration.
  • the UE-specific information may be common to the set of bandwidth parts.
  • the common bandwidth part configuration may be based on an initial bandwidth part for a serving cell.
  • the common bandwidth part configuration includes information for an initial active bandwidth part of the set of bandwidth parts.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting signaling to the UE indicating information for other bandwidth parts relative to the information for the initial active bandwidth part.
  • the signaling may be transmitted via RRC signaling.
  • transmitting the common bandwidth part configuration may include operations, features, means, or instructions for transmitting the common bandwidth part configuration via RRC signaling.
  • transmitting the common bandwidth part configuration may include operations, features, means, or instructions for transmitting the information common to the set of bandwidth parts via system information signaling, and transmitting the UE-specific information via RRC signaling.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, a group common secondary cell configuration indicating cell configuration information for a primary cell, a primary secondary cell, a set of secondary cells, or any combination thereof.
  • the group common secondary cell configuration indicates configuration information for a set of secondary cell group configurations and a master cell group configuration.
  • the group common secondary cell configuration may be common to a set of serving cells in one cell group.
  • the group common secondary cell configuration may be common to a set of serving cells in one frequency range.
  • the common bandwidth part configuration may be included in the group common secondary cell configuration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the group common secondary cell configuration via RRC signaling.
  • the common secondary cell configuration includes an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information, secondary cell timer information, common bandwidth part information, dedicated bandwidth part information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
  • the common bandwidth part configuration includes an indication of at least one of a bandwidth part, a bandwidth part location, a bandwidth part bandwidth, a bandwidth part subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space, a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
  • FIG. 1 illustrates an example of a wireless communications system that supports group based secondary cell (SCell) and common bandwidth part (BWP) configuration in accordance with aspects of the present disclosure.
  • SCell group based secondary cell
  • BWP common bandwidth part
  • FIG. 2 illustrates an example of a wireless communications system that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIGs. 3A and 3B illustrate examples of tree diagrams that support group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIGs. 4A and 4B illustrate examples of tree diagrams that support group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a tree diagram that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of a tree diagram that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIG. 7 illustrates an example of a process flow that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIGs. 8 and 9 show block diagrams of devices that support group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIG. 10 shows a block diagram of a common configuration manager that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIG. 11 shows a diagram of a system including a device that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIGs. 12 and 13 show block diagrams of devices that support group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIG. 14 shows a block diagram of a common configuration manager that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIG. 15 shows a diagram of a system including a device that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • FIGs. 16 through 20 show flowcharts illustrating methods that support group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the described techniques relate to improved methods, systems, devices, or apparatuses that support group common secondary cell (SCell) configurations and common bandwidth part (BWP) configurations.
  • SCell group common secondary cell
  • BWP bandwidth part
  • the described techniques provide a configuration for multiple BWPs having information (e.g., BWP parameters) common to each of the multiple BWPs.
  • a UE may communicate with a base station using a BWP of a system frequency band.
  • the base station may identify a common BWP configuration based on information for a number of BWPs, and the UE may receive indication of the common BWP configuration.
  • the common BWP configuration may in some cases contain information common to a number of BWPs associated with a number of serving cells in a network. For example, the information may be common to BWPs of all serving cells associated with a single cell group or given frequency range.
  • the common BWP configuration may further include a number of components, for example, a configured BWP may include a cell-specific part (e.g., applied to only one serving cell) and a UE-specific part.
  • a dedicated BWP configuration may be used to override a common BWP configuration containing different parameters for the UE.
  • the network may configure a number of BWPs for a UE (e.g., via Radio Resource Control (RRC) signaling) , and a base station may transmit a common BWP configuration to the UE that indicates information common to the number of BWPs.
  • RRC Radio Resource Control
  • a UE may communicate using one or more frequency bands in a wireless communications network. For instance, a UE may communicate using a first cell (e.g., a primary cell (PCell) ) according to a first frequency and the UE may perform an RRC connection establishment procedure to establish communication with the PCell.
  • a UE may also communicate using an SCell according to a secondary frequency, which may provide additional radio resources to a UE in addition to those provided by the PCell.
  • a UE may operate according to an SCell configuration established via an RRC connection from the PCell.
  • a base station may configure a number of SCell groups and may transmit a message to the UE indicating information related to the configured number of SCell groups.
  • the message may include dedicated parameters for an SCell that the SCell is to be assigned to a given SCell or PCell group.
  • the base station may configure one or more cells in the same RRC reconfiguration message, and may indicate a common SCell configuration to the UE for communicating via an SCell of the SCells associated with the common SCell configuration.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are also described with respect to tree diagrams and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to group based SCell and common BWP configuration.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base
  • Base stations 105 may communicate with the core network 130 and with one another.
  • base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) .
  • Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Stream
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz ISM band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the RRC protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • transport channels may be mapped to physical channels.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) .
  • the more resource elements that a UE 115 receives and the higher the order of the modulation scheme the higher the data rate may be for the UE 115.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
  • UE 115 may communicate using a one or more frequency bands (e.g., BWPs) in wireless communications system 100.
  • UE 115 may communicate using a first cell (e.g., a PCell ) according to a first frequency.
  • a UE 115 may also communicate using a second cell (e.g., a SCell (SCell) ) according to a second frequency, which may provide additional communication resources to UE 115 in addition to those provided by the PCell.
  • SCell SCell
  • UE 115 may operate according to an SCell configuration established via RRC with the primary cell.
  • Base station 105 may configure a number of SCell groups and may transmit a message containing dedicated parameters for the SCell.
  • the message may contain a group index which may indicate a number of groups to assign the SCell.
  • the message may indicate the SCell is to be assigned to the SCell group or the PCell group.
  • base station 105 may configure one or a number of cells in the same RRC reconfiguration message.
  • base station 105 may configure up to 32 SCell configurations for one UE 115 in an RRC reconfiguration message.
  • a number of configurations for the SCell may be similar, and base station 105 may group common SCells (e.g., SCells with the same type of configuration) into a single SCell group.
  • There may be up to a certain number (e.g., 4) common SCell group configurations per RRC message, and a common configuration may be provided for each SCell group.
  • base station 105 may specify a cell group index (e.g., SCell Group Index-r15) , which may indicate a specific SCell group configuration among other parameters.
  • base station 105 may indicate a dedicated SCell configuration to override common parameter configurations in each SCell group.
  • group-specific common SCell parameters may be provided during SCell addition or handover periods.
  • UE 115 may utilize a number bandwidth adaptation techniques. Such bandwidth adaptation may include utilizing a BWP, which may include only as subset of contiguous resource blocks on the given carrier.
  • a BWP may be used for example, in cases where UE 115 has less receiver bandwidth capability than the whole bandwidth. Utilizing a BWP may be advantageous for a number of reasons. For example, UE 115 may not utilize high data rates, but may still operate according to a wide bandwidth, causing higher idling power consumption. As such, UE 115 that is configured to use only parts of the bandwidth may reduce power consumption at UE 115.
  • Each BWP may be limited to a certain frequency per carrier (e.g., 400 MHz per carrier) , which may limit possible power consumption at a given time at UE 115.
  • a network may configure up to a number of BWPs to UE 115 via RRC signaling (e.g., a network may configure up to 4 BWPs in a RRC message for a connected UE 115) .
  • a BWP may be associated with a specific numerology, frequency location, configured bandwidth, among other parameters.
  • the number of configured BWPs may be configured for either downlink (DL) or uplink (UL) communications, and may in some cases overlap in frequency.
  • UE 115 may support up to one active DL BWP, and up to one active UL BWP for a given serving cell.
  • UE 115 may search for a synchronization signal block (SSB) with remaining minimum system information (RMSI) .
  • SSB synchronization signal block
  • RMSI remaining minimum system information
  • UE 115 may indicate the associated BWP as an initial active BWP, or an initial common BWP configuration.
  • UE 115 may use the information included in downlink control information (DCI) or RRC based signaling to perform a number of operations. For example, an RRC message or information received in DCI may configure UE 115 to switch the active BWP from DL to UL (or UL to DL, conversely) within a given serving cell.
  • DCI downlink control information
  • RRC Radio Resource Control
  • UE 115 may perform a first random access procedure on a first active BWP configured in an RRC message (e.g., UE 115 may first perform a random access procedure on the first active BWP) .
  • Configurations of SCells may be different based on a given network deployment.
  • a first network may support carrier aggregation and BWP configurations, while a second network may support carrier aggregation but not BWP configurations.
  • multiple BWPs in a single carrier may be configured to UE 115, and an active BWP (e.g., a BWP that is being used by UE 115) may be switched dynamically or semi-statically, where multiple BWPs may have common configurations.
  • the structure of cells may be different based on a given network deployment.
  • a first network may have a unified (e.g., same) structure for PCell/PSCell and SCells, while a second network may have separate structures configured across cells.
  • a group common SCell configuration may apply only to corresponding SCells, and may not apply to a PCell or a PSCell.
  • base station 105 may identify a number of BWPs at a system bandwidth, and may identify a common BWP configuration based on similar configurations of the number of BWPs.
  • a common BWP configuration may be utilized where multiple BWPs of the same type of configuration may be combined into one common BWP configuration (e.g., information and other configuration components common to a number of BWPs may be combined into a single BWP) .
  • similar common configuration grouping may be applied to SCell configurations such that base station 105 may transmit a group common SCell configuration to UE 115.
  • the base station 105 may transmit the common BWP configuration to UE 115, and UE 115 may receive the BWP, including the information common to the number of BWPs and the UE specific information.
  • UE 115 may configure a BWP and may communicate with base station 105 using the configured BWP.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communication system 100.
  • Wireless communications system may include a base station 105-a and a UE 115-a, which may be examples of corresponding base station 105 and UE 115 as described herein with reference to FIG. 1.
  • UE 115-a may communicate with base station 105-a using communication link 205 associated with a certain bandwidth.
  • the base station 105-a may identify a common BWP configuration 210 for use at UE 115-a, and UE115-a may receive indication of the BWP.
  • a common BWP configuration may be utilized, where multiple BWPs of the same type of configuration may be combined into one common BWP configuration (e.g., information common to a number of BWPs may be combined into a single BWP) .
  • the common BWP configuration may in some cases contain information common to a number of BWPs associated with a number of serving cells in a network.
  • the information may be common to BWPs of all serving cells associated with a single cell group or given frequency range.
  • the common BWP configuration may further include a number of components, for example, a configured BWP may include a cell-specific part 215 (e.g., applied to only one serving cell) and a UE-specific part 220.
  • a certain BWP configuration e.g., a dedicated BWP configuration
  • the common BWP may be used across different serving cells.
  • a UE 115-a may also receive information related a common SCell configuration. Such common configurations may reduce SCell or master cell group/SCell group (MCG/SCG) configuration signaling for cases where UE 115-a undergoes procedures such as reconfiguration with sync, PCell/SCell addition or handover, and SCell addition or resume.
  • MCG/SCG master cell group/SCell group
  • a group common SCell configuration (which may additionally be used to configure a PCell or a PSCell) may be used to configure the MCG/SCG.
  • the MCG configuration may include a PCell and multiple SCells
  • the SCG configuration may include a PSCell and multiple SCells.
  • the group common SCell configuration may include a cell-common part and a UE-dedicated part.
  • a common SCell configuration may include a first active BWP configuration, where other BWP configurations may be indicated in following signaling events (e.g., the BWP configurations may be indicated using RRC Reconfiguration messages, delta signaling, and so on) .
  • All BWP configurations may be included in a single message.
  • Such configuration messages may include cell-specific and UE-specific parts, where each part may be associated with downlink or uplink communications.
  • the cell-specific part may be indicated through system information (e.g., in a system information block (SIB) ) associated with the PCell or SCell.
  • SIB system information block
  • Group-common SCell parameters may be provided when the SCell group is created, resumed, or during other processes such as reconfiguration with sync.
  • the network may provide an SCell index, which may contain a number of common SCell configurations (e.g., configurations which used to override different SCell parameters) .
  • the initial BWP on the PCell may be indicated as the common BWP configuration.
  • a UE 115-a may acquire an initial BWP to access the network, and may obtain information for an initial DL and UL BWP configuration by using the initial BWP as the common BWP. Additionally, by using the initial BWP as the common BWP, the network may not need to provide UE 115-a with separate system information or RRC messaging.
  • Certain portions of the SCell or BWP configurations may not be configured as common configuration as detailed in FIGs. 5 and 6.
  • the dedicated UL and DL BWP may adjust according to a number of factors, including parameters associated with the common BWP configuration.
  • UE 115-a may receive an RRC configured message containing one common BWP configuration 210, which may further contain a cell-specific part 215 and a UE-specific part 220.
  • the cell specific part may be configured as either downlink or uplink common, and may in some examples be indicated in a SIB of the associated PCell, or via an on-demand SIB.
  • an RRC message may include a cell specific downlink BWP configuration (e.g., BWP-DownlinkCommon) or a cell specific uplink BWP configuration (e.g., BWP-UplinkCommon) .
  • an RRC message may include a UE specific downlink BWP configuration (e.g., BWP-DownlinkDedicated) , or a UE specific uplink BWP configuration (e.g., BWP-UplinkDedicated)
  • a UE specific downlink BWP configuration e.g., BWP-DownlinkDedicated
  • a UE specific uplink BWP configuration e.g., BWP-UplinkDedicated
  • UE 115-a may use the initial BWP configuration of the PCell as a common BWP configuration.
  • the UE-specific part of the common BWP configuration may be configured by an RRC message.
  • the cell-specific part of the common BWP configuration may be indicated in a SIB.
  • a common configuration for a PCell may be conveyed through RRC signaling or in a SIB, and multiple SCells of the same type of configuration may be combined into a single SCell group.
  • a common configuration may be provided for each SCell group.
  • the group common SCell configuration may include a cell common part and a UE specific part.
  • a SCell group index may indicated during SCell configuration, and a dedicated SCell configuration may be used to override common parameter configurations in each SCell group.
  • Some methods may be used to configure add/resume operations for an SCell or an SCG, along with PSCells (MCG and SCG) upon reconfiguration with sync.
  • a common configuration may be indicated during handover and icell addition.
  • reconfiguration with sync (PCell addition or handover) and SCell addition/resume may indicate the common configuration.
  • FIG. 3A illustrates an example of a tree diagram 300-a that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • Tree diagram 300-a illustrates a possible structure for a common downlink BWP configuration in a wireless network.
  • the common downlink BWP configuration may be cell specific, and may be applied for each downlink BWP in each SCell.
  • a common BWP configuration structure may include a number of components.
  • common downlink BWP structure may contain a BWP, and the BWP may further include information regarding relative frequency location (e.g., an offset between the BWP and a reference point as indicated to a UE) , subcarrier spacing (SCS) and indexing information associated with the BWP, cyclic prefix (CP) type, and other information associated with a given numerology.
  • the common downlink BWP configuration may further include a shared channel common configuration (e.g., a physical downlink shared channel (PDSCH) common configuration) and associated timing list, used for scheduling group common PDSCH, reference signal (RS)sequences, BWP configuration, and so on.
  • PDSCH physical downlink shared channel
  • common downlink BWP configuration may include a control channel common configuration (e.g., a physical downlink control channel (PDCCH) common configuration) .
  • the control channel common configuration may include a number of components, including a scheduling assignment for the PDSCH, a control resource set (CORESET) configuration (e.g., CORESET #0 and common CORESET) , a number of common search space assignments, etc.
  • CORESET control resource set
  • FIG. 3B illustrates an example of a tree diagram 300-b that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • Tree diagram 300-b illustrates a possible structure for a dedicated BWP configuration in a wireless network.
  • the common downlink BWP configuration may be UE specific.
  • a dedicated BWP configuration may include a number of components.
  • a dedicated downlink BWP structure may contain a configuration for semi-persistent scheduling (SPS) , which may include periodicity information among other feedback and coding schemes ( HARQ feedback, including #HARQ N1, MCS, etc. ) .
  • SPS semi-persistent scheduling
  • a dedicated downlink BWP structure may contain a shared channel configuration (e.g., a PDSCH dedicated configuration) .
  • the shared channel configuration may include a corresponding demodulation reference signal (DMRS) and a channel state information-reference signal (CSI-RS) , which may support CSI measurements outside of the active BWP. Such CSI measurements may be periodic or aperiodic in a serving cell.
  • the PDSCH configuration may additionally or alternatively include a transmission configuration indication (TCI) , a rate matching (RM) bundle, or other configured information.
  • a dedicated downlink BWP structure may contain a control channel configuration (e.g., a PDCCH dedicated configuration) .
  • control channel configuration may include at least one CORESET synchronization signal (SS) associated with a UE-specific search space, or may include a transmit power control (TPC) preempt command for further power control optimization at the UE.
  • a dedicated downlink BWP structure may further contain a radio link monitoring (RLM) configuration, which may be composed of a RLM RS and a bidirectional forwarding detection (BFD) timer counter, among other components.
  • RLM radio link monitoring
  • BFD bidirectional forwarding detection
  • FIG. 4A illustrates an example of a tree diagram 400-a that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • Tree diagram 400-a illustrates a possible structure for a common uplink BWP configuration present in a wireless network.
  • the common uplink BWP configuration may be cell specific, and may be applied for each uplink BWP in each SCell.
  • a common BWP configuration structure may include a number of components.
  • common uplink BWP structure may contain a BWP, and the BWP may further include information regarding relative frequency location (e.g., an offset between the BWP and a reference point as indicated to a UE) , subcarrier spacing (SCS) and indexing information associated with the BWP, cyclic prefix (CP) type, and other information associated with a given numerology.
  • the common uplink BWP configuration may further include a common configuration for a shared channel (e.g., a physical uplink shared channel (PUSCH) common configuration) and associated timing list, used for scheduling group common PUSCH, RS sequences, BWP configuration, and so on.
  • PUSCH physical uplink shared channel
  • the shared channel common configuration may also contain msg3-delta, P0, and groupHopping components or capabilities.
  • common uplink BWP configuration may include a common configuration for a control channel (e.g., a physical uplink control channel (PUCCH) common configuration) .
  • the control channel common configuration may include a number of components, including a PUCCH common resource or initial BWP indication, frequency hopping capabilities and identifications such as GroupHop, hopIDP0, and so on.
  • Common uplink BWP configuration may further contain a common random access channel (RACH) configuration.
  • the RACH common configuration may contain a SS block specific to the RACH configuration.
  • the RACH configuration may be a generic RACH configuration, which may include msg-1 FrequencyStart, or other information.
  • FIG. 4B illustrates an example of a tree diagram 800-b that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • Tree diagram 400-b illustrates a possible structure for a dedicated uplink BWP configuration present in a wireless network.
  • the dedicated uplink BWP configuration may be UE specific.
  • a dedicated BWP configuration structure may include a number of components.
  • dedicated uplink BWP structure may contain a charging gateway (CG) configuration, which may support offline charging architecture.
  • the CG configuration may further include a time or frequency grant, hop, resource block group (rbg) rep, MCS, or other parameters.
  • the dedicated uplink BWP configuration may further include a dedicated configuration for a shared channel (e.g., a PUSCH dedicated configuration) and associated DMRS code block (CB) .
  • the shared channel dedicated configuration may also contain resource uplink control information (UCI) .
  • dedicated uplink BWP configuration may include a dedicated configuration for a control channel (e.g., a PUCCH dedicated configuration) .
  • the control channel dedicated configuration may include a number of components, including a PUCCH common resource format or spatial information, and so on.
  • the dedicated uplink BWP configuration may further contain a bandwidth frequency reuse (BFR) configuration, which may contain a generic configured RACH, along with a BFR timer beam list, which may indicate certain frequencies or bandwidth components available for reuse to the UE.
  • the dedicated uplink BWP configuration may further contain a sounding reference signal (SRS) configuration to be sent by the UE, which may in some examples contain an SRS resource and TPC components.
  • SRS sounding reference signal
  • FIG. 5 illustrates an example of a tree diagram 500 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • Tree diagram 500 illustrates a possible structure for a common SCell configuration in a wireless network.
  • the common SCell configuration structure may be cell specific, and may be configured for a given wireless network deployment (e.g., NR) .
  • a common SCell configuration structure may include a number of components.
  • the common SCell configuration structure may contain a physical cell identification (e.g., PhysCellId) , which may identify the serving cell in a physical layer of a network.
  • PhysCellId a physical cell identification
  • the configuration may further include a common downlink configuration, containing downlink frequency information (e.g., FrequencyInfoDL) , where the information may include a number of different parameters for transmission and reception, including carrier and band list, point A, and absolute radio-frequency channel number (ARFCN) .
  • the common downlink configuration may include a common (initial) downlink BWP.
  • the SCell configuration structure may also include a number of timing parameters and timing offset parameters (e.g., nTimingAdvanceOffset) , and may include a number of synchronization signal block (SSB) positions, periodicity, and power information relevant to the SCell.
  • SSB synchronization signal block
  • the SCell configuration structure may further include several rate matching components, such as a NR rate matching component and a cell specific reference signal (CRS) rate match component, which may include a number of subcomponents including downlink carrier frequency components, bandwidth information, CRS ports, v-shift components, a multi-broadcast single frequency network (MBSFN) list, and so on, which may further aid communications.
  • the SCell configuration structure may additionally include a common TDD component used in both uplink and downlink communication, and may use a single frequency band and an alternating slotted scheduling structure.
  • the configuration may further include a common uplink configuration or a supplementary common uplink configuration containing uplink frequency information (e.g., FrequencyInfoUL) which may include a number of different parameters for transmission and reception, including carrier and band list, point A, and emission, p-Max, and 7p5 kHz shift components.
  • the common uplink or supplementary uplink configuration may additionally include a common (initial) uplink BWP.
  • the SCell configuration structure may further contain a secondary component carrier (SCC) or multiple SCCs which may in some examples be used in conjunction with a primary component carrier (PCC) established for the network.
  • the SCell configuration structure may additionally include a DMRS and associated mapping type (e.g., type A mapping) .
  • the components described may be associated with a common configuration. In other examples, some components may not be part of a common configuration.
  • FIG. 6 illustrates an example of a tree diagram 600 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • Tree diagram 600 illustrates a possible structure for a common SCell configuration in a wireless network.
  • the common SCell configuration structure may be UE specific, and may be configured for a given wireless network deployment (e.g., NR) .
  • a common SCell configuration structure may include a number of components.
  • the common SCell configuration structure may contain serving cell mobile originating (MO) component (e.g., UE to network directionality) .
  • MO serving cell mobile originating
  • the configuration may also include a downlink BWP, containing a BWP identifier, along with both common and dedicated downlink BWP components.
  • the SCell configuration may include various timing components such as an SCell timer and BWP inactive timer, along with a number of identifier and referencing components (e.g., tag-ID, first active BWP ID, default BWP ID, pathloss reference, etc. ) .
  • the SCell configuration may include a number of scheduling components, such as a cross carrier scheduling component which may contain a scheduling cell ID and carrier indicator field (CIF) for cells deployed on the same carrier frequency or bandwidth.
  • CIF carrier indicator field
  • the configuration may similarly include a dedicated TDD configuration for uplink and downlink communication, and a dedicated part of the initial downlink BWP.
  • the common SCell structure may include an uplink configuration or supplementary uplink configuration along with a number of uplink BWPs (each containing an uplink BWP ID, a common uplink BWP and dedicated uplink BWP) , a dedicated portion of the initial uplink BWP, a PUSCH serving cell (including a code block group (CBG) , rate matching components, and so on) , and a SRS switching component (including a component that switches serving cells, TPC, and cell monitoring components) .
  • CBG code block group
  • SRS switching component including a component that switches serving cells, TPC, and cell monitoring components
  • the SCell structure may also include a means for measuring and configuring CSI, and may further include a number of serving cells, including both a control channel and shared channel (e.g., PDCCH, PDSCH) serving cells.
  • a PDCCH serving cell in some examples, may contain information regarding slot format (including slot format indication radio network temporary identifier (SFI-RNTI) , DCI size, serving cell index (SFIComb) , along with other information) .
  • SFI-RNTI slot format indication radio network temporary identifier
  • SFIComb serving cell index
  • a PDSCH serving cell in some examples, may contain information such as CBG and HARQ feedback and a PUCCH-SCell index.
  • the components described may be associated with a common configuration. In other examples, some components may not be part of a common configuration.
  • FIG. 7 illustrates an example of a process flow 700 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • process flow 700 may implement aspects of wireless communication system 100 and/or 200.
  • Process flow 700 may include a base station 105-b and a UE 115-b, which may be an example of corresponding base stations 105 and UEs 115, as described herein with reference to FIGs 1 and 2.
  • the operations between UE 115-b and base station 105-b may be performed in different orders or at different times. Certain operations may also be left out of the process flow 700, other operations may be added to the process flow 700. It is to be understood that while UE 115-b and base station 105-b are shown performing a number of the operations in process flow 700, any wireless device may perform the operations shown.
  • base station 105-b may identify a common BWP configuration for UE 115-b containing information common to a number of BWPs along with UE specific information for the UE 115-b.
  • the information may be common to a number of BWPs of the serving cell.
  • the information may be common to a number of BWPs of all serving cells in one cell group.
  • the information may be common to a number of BWPs of all serving cells in one frequency range.
  • the information may further contain both uplink and downlink components for a set of UEs, including UE 115-b, where the UE specific information may be included in downlink information.
  • base station 105-b may transmit the common BWP configuration containing information common to a number of BWPs and UE specific information to UE 115-b.
  • UE 115-b may receive the common BWP configuration from base station 105-b, which may include information common to a number of BWPs and UE specific information for UE 115-b.
  • the information common to a number of BWPs may in some examples be common to a number of BWPs of a serving cell, of all serving cells in one cell group, of all serving cells in one frequency range, and so on.
  • the information common to a number of BWPs may further include uplink and downlink information for a set of UEs including UE 115-b.
  • the common BWP configuration may include a number of components, including at least one of a BWP, BWP location, BWP SS, CP type, data channel configuration and timing information, a CORESET, a SPS configuration, a common search space, DMRS information, rate matching information, power control information, RLM information, hopping information, a RACH configuration, a SRS configuration, a beam failure recovery configuration, or any combination thereof.
  • base station 105-b may optionally transmit, and UE 115-b may optionally receive, a dedicated BWP configuration, which may contain UE-specific BWP information.
  • UE specific BWP information may in some examples configure UE 115-b to override the UE specific BWP information for the BWP of the received common BWP configuration.
  • base station 105-b may optionally transmit, and UE 115-b may optionally receive, a group common SCell configuration.
  • the group common SCell configuration may be common to a number of serving cells common to a single cell group.
  • the group common SCell configuration may be common to a number of serving cells in a given frequency range.
  • the group common SCell configuration may in some examples indicate cell configuration information for any combination of a PSCell, a PCell, and a set of SCells.
  • the group common SCell configuration may indicate configuration information for a set of SCG configurations and a set of MCG configurations.
  • UE 115-b may configure a BWP of the number of BWPs based on the information common to the number of BWPs.
  • UE 115-b may in some examples configure the BWP based on UE specific information.
  • UE 115-b may communicate with base station 105-b using the configured BWP.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a UE 115 as described herein.
  • the device 805 may include a receiver 810, a common configuration manager 815, and a transmitter 820.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group based SCell and common BWP configuration, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the common configuration manager 815 may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE, configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP, and communicate with the base station using the configured BWP.
  • the common configuration manager 815 may be an example of aspects of the common configuration manager 1110 described herein.
  • the common configuration manager 815, or its sub-components may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the common configuration manager 815, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the common configuration manager 815, or its sub-components may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the common configuration manager 815, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the common configuration manager 815, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 820 may transmit signals generated by other components of the device 805.
  • the transmitter 820 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 820 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a device 805, or a UE 115 as described herein.
  • the device 905 may include a receiver 910, a common configuration manager 915, and a transmitter 935.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group based SCell and common BWP configuration, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the common configuration manager 915 may be an example of aspects of the common configuration manager 815 as described herein.
  • the common configuration manager 915 may include a configuration receiver 920, a BWP configuration module 925, and a communications component 930.
  • the common configuration manager 915 may be an example of aspects of the common configuration manager 1110 described herein.
  • the configuration receiver 920 may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE.
  • the BWP configuration module 925 may configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
  • the communications component 930 may communicate with the base station using the configured BWP.
  • the transmitter 935 may transmit signals generated by other components of the device 905.
  • the transmitter 935 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 935 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 935 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a common configuration manager 1005 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the common configuration manager 1005 may be an example of aspects of a common configuration manager 815, a common configuration manager 915, or a common configuration manager 1110 described herein.
  • the common configuration manager 1005 may include a configuration receiver 1010, a BWP configuration module 1015, a communications component 1020, a dedicated BWP manager 1025, a signaling component 1030, and a SCell configuration manager 1035. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the configuration receiver 1010 may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE.
  • the configuration receiver 1010 may receive the common BWP configuration via RRC signaling.
  • the common BWP configuration is based on an initial BWP for the serving cell.
  • the common BWP configuration includes information for an initial active BWP of the set of BWPs.
  • the BWP configuration module 1015 may configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
  • the information is common to multiple BWPs of a serving cell.
  • the information is common to multiple BWPs of all serving cells in one cell group.
  • the information is common to multiple BWPs of all serving cells in one frequency range.
  • the information common to the set of BWPs includes uplink information and downlink information for a set of UEs including the UE.
  • the UE-specific information includes uplink information and downlink information for the UE.
  • the UE-specific information is common to the set of BWPs.
  • the common BWP configuration includes an indication of at least one of a BWP, a BWP location, a BWP bandwidth, a BWP subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space, a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
  • the communications component 1020 may communicate with the base station using the configured BWP.
  • the dedicated BWP manager 1025 may receive a dedicated BWP configuration from the base station, the dedicated BWP configuration including UE-specific BWP information for overriding the UE-specific information for the BWP of the received common BWP configuration.
  • the signaling component 1030 may receive signaling from the base station indicating information for other BWPs relative to the information for the initial active BWP. In some examples, the signaling component 1030 may receive the information common to the set of BWPs of the serving cell via system information signaling. In some cases, the signaling component 1030 may receive the UE-specific information via RRC signaling. In some aspects, the signaling is received via RRC signaling.
  • the SCell configuration manager 1035 may receive, from the base station, a group common SCell configuration indicating cell configuration information for a primary cell, a primary SCell, a set of SCells, or any combination thereof.
  • the SCell configuration manager 1035 may receive the group common SCell configuration via RRC signaling.
  • the group common SCell configuration indicates configuration information for a set of SCell group configurations and a master cell group configuration.
  • the group common SCell configuration is common to a set of serving cells in one cell group.
  • the group common SCell configuration is common to a set of serving cells in one frequency range.
  • the common BWP configuration is included in the group common SCell configuration.
  • the common SCell configuration includes an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information, SCell timer information, common BWP information, dedicated BWP information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
  • FIG. 1 shows a diagram of a system 1100 including a device 1105 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of or include the components of device 1105, device 905, or a UE 115 as described herein.
  • the device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a common configuration manager 1110, an I/O controller 1115, a transceiver 1120, an antenna 1125, memory 1130, and a processor 1140. These components may be in electronic communication via one or more buses (e.g., bus 1145) .
  • buses e.g., bus 1145
  • the common configuration manager 1110 may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE, configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP, and communicate with the base station using the configured BWP.
  • the I/O controller 1115 may manage input and output signals for the device 1105.
  • the I/O controller 1115 may also manage peripherals not integrated into the device 1105.
  • the I/O controller 1115 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1115 may utilize an operating system such as or another known operating system.
  • the I/O controller 1115 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1115 may be implemented as part of a processor.
  • a user may interact with the device 1105 via the I/O controller 1115 or via hardware components controlled by the I/O controller 1115.
  • the transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the device 1105 may include a single antenna 1125, or the device 1105 may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1130 may include random access memory (RAM) and read only memory (ROM) .
  • the memory 1130 may store computer-readable, computer-executable code 1135 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1130 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1140 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1140.
  • the processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting group based SCell and common BWP configuration) .
  • the code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 12 shows a block diagram 1200 of a device 1205 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of aspects of a base station 105 as described herein.
  • the device 1205 may include a receiver 1210, a common configuration manager 1215, and a transmitter 1220.
  • the device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group based SCell and common BWP configuration, etc. ) . Information may be passed on to other components of the device 1605.
  • the receiver 1210 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15.
  • the receiver 1210 may utilize a single antenna or a set of antennas.
  • the common configuration manager 1215 may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE, transmit, to the UE, the common BWP configuration, and communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
  • the common configuration manager 1215 may be an example of aspects of the common configuration manager 1510 described herein.
  • the common configuration manager 1215, or its sub-components may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the common configuration manager 1215, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate
  • the common configuration manager 1215, or its sub-components may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the common configuration manager 1215, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the common configuration manager 1215, or its sub-components may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • the transmitter 1220 may transmit signals generated by other components of the device 1205.
  • the transmitter 1220 may be collocated with a receiver 1210 in a transceiver module.
  • the transmitter 1220 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15.
  • the transmitter 1220 may utilize a single antenna or a set of antennas.
  • FIG. 13 shows a block diagram 1300 of a device 1305 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the device 1705 may be an example of aspects of a device 1205, or a base station 105 as described herein.
  • the device 1305 may include a receiver 1310, a common configuration manager 1315, and a transmitter 1335.
  • the device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group based SCell and common BWP configuration, etc. ) . Information may be passed on to other components of the device 1305.
  • the receiver 1310 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15.
  • the receiver 1310 may utilize a single antenna or a set of antennas.
  • the common configuration manager 1315 may be an example of aspects of the common configuration manager 1215 as described herein.
  • the common configuration manager 1315 may include a common BWP identifier 1320, a BWP transmitter 1325, and a communications module 1330.
  • the common configuration manager 1315 may be an example of aspects of the common configuration manager 1510 described herein.
  • the common BWP identifier 1320 may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE.
  • the BWP transmitter 1325 may transmit, to the UE, the common BWP configuration.
  • the communications module 1330 may communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
  • the transmitter 1335 may transmit signals generated by other components of the device 1305.
  • the transmitter 1335 may be collocated with a receiver 1310 in a transceiver module.
  • the transmitter 1335 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15.
  • the transmitter 1335 may utilize a single antenna or a set of antennas.
  • FIG. 14 shows a block diagram 1400 of a common configuration manager 1405 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the common configuration manager 1405 may be an example of aspects of a common configuration manager 1215, a common configuration manager 1315, or a common configuration manager 1510 described herein.
  • the common configuration manager 1405 may include a common BWP identifier 1410, a BWP transmitter 1415, a communications module 1420, a dedicated BWP component 1425, a signaling transmitter 1430, and a SCell transmitter 1435. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the common BWP identifier 1410 may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE. In some cases, the information is common to multiple BWPs of a serving cell. In some examples, the information is common to multiple BWPs of all serving cells in one cell group. In some aspects, the information is common to multiple BWPs of all serving cells in one frequency range. In some instances, the information common to the set of BWPs includes uplink information and downlink information for a set of UEs including the UE.
  • the UE-specific information includes uplink information and downlink information for the UE. In some examples, the UE-specific information is common to the set of BWPs. In some aspects, the common BWP configuration is based on an initial BWP for the serving cell. In some instances, the common BWP configuration includes information for an initial active BWP of the set of BWPs.
  • the BWP transmitter 1415 may transmit, to the UE, the common BWP configuration.
  • the BWP transmitter 1415 may transmit the common BWP configuration via RRC signaling.
  • the BWP transmitter 1415 may transmit the information common to the set of BWPs of the serving cell via system information signaling.
  • the BWP transmitter 1415 may transmit the UE-specific information via RRC signaling.
  • the common BWP configuration includes an indication of at least one of a BWP, a BWP location, a BWP bandwidth, a BWP subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space, a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
  • the communications module 1420 may communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
  • the dedicated BWP component 1425 may transmit a dedicated BWP configuration to the UE, the dedicated BWP configuration including UE-specific BWP information for overriding the UE-specific information for the BWP of the common BWP configuration.
  • the signaling transmitter 1430 may transmit signaling to the UE indicating information for other BWPs relative to the information for the initial active BWP. In some cases, the signaling is transmitted via RRC signaling.
  • the SCell transmitter 1435 may transmit, to the UE, a group common SCell configuration indicating cell configuration information for a primary cell, a primary SCell, a set of SCells, or any combination thereof.
  • the SCell transmitter 1435 may transmit the group common SCell configuration via RRC signaling.
  • the group common SCell configuration indicates configuration information for a set of SCell group configurations and a master cell group configuration.
  • the group common SCell configuration is common to a set of serving cells in one cell group. In some instances, the group common SCell configuration is common to a set of serving cells in one frequency range.
  • the common BWP configuration is included in the group common SCell configuration.
  • the common SCell configuration includes an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information, SCell timer information, common BWP information, dedicated BWP information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
  • FIG. 15 shows a diagram of a system 1500 including a device 1505 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the device 1505 may be an example of or include the components of device 1205, device 1305, or a base station 105 as described herein.
  • the device 1505 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a common configuration manager 1910, a network communications manager 1515, a transceiver 1520, an antenna 1525, memory 1530, a processor 1540, and an inter-station communications manager 1545. These components may be in electronic communication via one or more buses (e.g., bus 1550) .
  • buses e.g., bus 1550
  • the common configuration manager 1510 may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE, transmit, to the UE, the common BWP configuration, and communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
  • the network communications manager 1515 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1515 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1520 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 1520 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1520 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the device 1505 may include a single antenna 1525, or the device 1505 may have more than one antenna 1525, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1530 may include RAM, ROM, or a combination thereof.
  • the memory 1530 may store computer-readable code 1535 including instructions that, when executed by a processor (e.g., the processor 1540) cause the device to perform various functions described herein.
  • the memory 1530 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1540 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1540 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1540.
  • the processor 1540 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1530) to cause the device 1505 to perform various functions (e.g., functions or tasks supporting group based SCell and common BWP configuration) .
  • the inter-station communications manager 1545 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1545 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1545 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1535 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1535 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1535 may not be directly executable by the processor 1540 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a common configuration manager as described with reference to FIGs. 8 through 11.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a configuration receiver as described with reference to FIGs. 8 through 11.
  • the UE may configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a BWP configuration module as described with reference to FIGs. 8 through 11.
  • the UE may communicate with the base station using the configured BWP.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a communications component as described with reference to FIGs. 8 through 11.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1700 may be performed by a common configuration manager as described with reference to FIGs. 8 through 11.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a configuration receiver as described with reference to FIGs. 8 through 11.
  • the UE may configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a BWP configuration module as described with reference to FIGs. 8 through 11.
  • the UE may receive a dedicated BWP configuration from the base station, the dedicated BWP configuration including UE-specific BWP information for overriding the UE-specific information for the BWP of the received common BWP configuration.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a dedicated BWP manager as described with reference to FIGs. 8 through 11.
  • the UE may communicate with the base station using the configured BWP.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a communications component as described with reference to FIGs. 8 through 11.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1800 may be performed by a common configuration manager as described with reference to FIGs. 8 through 11.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a configuration receiver as described with reference to FIGs. 8 through 11.
  • the UE may configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a BWP configuration module as described with reference to FIGs. 8 through 11.
  • the UE may receive, from the base station, a group common SCell configuration indicating cell configuration information for a primary cell, a primary SCell, a set of SCells, or any combination thereof.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a SCell configuration manager as described with reference to FIGs. 8 through 11.
  • the UE may communicate with the base station using the configured BWP.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a communications component as described with reference to FIGs. 8 through 11.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1900 may be performed by a common configuration manager as described with reference to FIGs. 12 through 15.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein.
  • a base station may perform aspects of the functions described herein using special-purpose hardware.
  • the base station may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a common BWP identifier as described with reference to FIGs. 12 through 15.
  • the base station may transmit, to the UE, the common BWP configuration.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a BWP transmitter as described with reference to FIGs. 12 through 15.
  • the base station may communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a communications module as described with reference to FIGs. 12 through 15.
  • FIG. 20 shows a flowchart illustrating a method 2000 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
  • the operations of method 2000 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 2000 may be performed by a common configuration manager as described with reference to FIGs. 12 through 15.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein.
  • a base station may perform aspects of the functions described herein using special-purpose hardware.
  • the base station may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE.
  • the operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by a common BWP identifier as described with reference to FIGs. 12 through 15.
  • the base station may transmit, to the UE, the common BWP configuration.
  • the operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by a BWP transmitter as described with reference to FIGs. 12 through 15.
  • the base station may transmit, to the UE, a group common SCell configuration indicating cell configuration information for a primary cell, a primary SCell, a set of SCells, or any combination thereof.
  • the operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by a SCell transmitter as described with reference to FIGs. 12 through 15.
  • the base station may communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
  • the operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by a communications module as described with reference to FIGs. 12 through 15.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GP
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from a base station, a common bandwidth part (BWP) configuration containing UE-specific information and information common to a number of BWPs. The information may be common to the number of BWPs of a serving cell, of all serving cells in one cell group, or of all serving cells in one frequency range. The UE may then configure a BWP for communication based on the information common to the number of BWPs and the UE specific information, and may communicate with the base station using the configured BWP. In some cases, a group common secondary cell (SCell) configuration may be indicated to the UE that includes information common to each of the SCells, a primary cell (PCell), or a primary SCell (PSCell), as well as UE-specific information for the PCell, PSCell, and one or more SCells.

Description

GROUP BASED SECONDARY CELL AND COMMON BANDWIDTH PART CONFIGURATION BACKGROUND
The following relates generally to wireless communications, and more specifically to group based secondary cell (SCell) and common bandwidth part (BWP) configuration.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A UE in some wireless deployments may communicate over a given system bandwidth or according to parameters associated with a number of cells of the network. In some examples, a system bandwidth may include a number of BWPs which the UE may use to communicate with the network (e.g., with a base station or other network node) . In some cases, however, there may be multiple BWPs or cells configured for signaling, which may increase signaling overhead when configuring a UE for communications leading to increased latency or other communication issues.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support group based secondary cell (SCell) and common bandwidth part (BWP) configuration. Generally, the described techniques provide for improved  communication between a base station and a user equipment (UE) using information common to a number of configured SCells or BWPs supported by the network. In some examples, a base station may identify multiple BWPs of a system bandwidth, and may identify a common BWP configuration that includes a number of parameters that are the same for the multiple BWPs. In some examples, a common BWP configuration may be utilized where multiple BWPs of the same type of configuration may be combined into one common BWP configuration (e.g., information and other configuration components common to a number of BWPs may be combined into a single BWP configuration) . The common BWP configuration may in some cases contain information common to a number of BWPs associated with a number of serving cells in a network, common to the full system bandwidth or a given frequency range. The information may be common to a number of BWPs of the serving cell, to all serving cells in one cell group, or to all serving cells in one frequency range.
In other examples, the common BWP configuration may include UE specific information for a UE. Additionally or alternatively, the network may indicate a dedicated BWP configuration to a UE, which may be used to override the UE specific information in the common BWP configuration. Upon configuring multiple BWPs according to the common BWP configuration, the base station may transmit the common BWP configuration to the UE, and the UE may receive the BWP, including the information common to the number of BWPs and the UE specific information. Using the information contained in the BWP configuration, the UE may configure one or more BWPs and may communicate with the base station using the configured BWP.
[Rectified under Rule 91, 14.05.2019]
According to some aspects, a network node (e.g., a base station) may support group common SCell configurations for multiple SCells, a primary SCell (PSCell) , a primary cell (PCell) , or any combination thereof. A group common SCell configuration may include information common to the SCells of the group common SCell configuration as well as UE-specific information. In some examples, a common SCell configuration may include a BWP configuration for the SCells, which may be the first active BWP configuration for the SCells while other BWP configuration may be indicated to the UE through delta signaling (e.g., via radio resource control (RRC) messaging) .
A method of wireless communications at a UE is described. The method may include receiving, from a base station, a common bandwidth part configuration including  information common to a set of bandwidth parts and UE-specific information for the UE, configuring a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part, and communicating with the base station using the configured bandwidth part.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a base station, a common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, configure a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part, and communicate with the base station using the configured bandwidth part.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for receiving, from a base station, a common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, configuring a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part, and communicating with the base station using the configured bandwidth part.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to receive, from a base station, a common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, configure a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part, and communicate with the base station using the configured bandwidth part.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the information may be common to multiple bandwidth parts of a serving cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the information may be common to multiple bandwidth parts of all serving cells in one cell group.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the information may be common to multiple bandwidth parts of all serving cells in one frequency range.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the information common to the set of bandwidth parts includes uplink information and downlink information for a set of UEs including the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE-specific information includes uplink information and downlink information for the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a dedicated bandwidth part configuration from the base station, the dedicated bandwidth part configuration including UE-specific bandwidth part information for overriding the UE-specific information for the bandwidth part of the received common bandwidth part configuration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE-specific information may be common to the set of bandwidth parts.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the common bandwidth part configuration may be based on an initial bandwidth part for a serving cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the common bandwidth part configuration includes information for an initial active bandwidth part of the set of bandwidth parts.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  receiving signaling from the base station indicating information for other bandwidth parts relative to the information for the initial active bandwidth part.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the signaling may be received via RRC signaling.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the common bandwidth part configuration may include operations, features, means, or instructions for receiving the common bandwidth part configuration via RRC signaling.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the common bandwidth part configuration may include operations, features, means, or instructions for receiving the information common to the set of bandwidth parts via system information signaling, and receiving the UE-specific information via RRC signaling.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, a group common secondary cell configuration indicating cell configuration information for a primary cell, a primary secondary cell, a set of secondary cells, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the group common secondary cell configuration indicates configuration information for a set of secondary cell group configurations and a master cell group configuration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the group common secondary cell configuration may be common to a set of serving cells in one cell group.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the group common secondary cell configuration may be common to a set of serving cells in one frequency range.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the common bandwidth part configuration may be included in the group common secondary cell configuration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the group common secondary cell configuration via RRC signaling.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the common secondary cell configuration includes an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information, secondary cell timer information, common bandwidth part information, dedicated bandwidth part information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the common bandwidth part configuration includes an indication of at least one of a bandwidth part, a bandwidth part location, a bandwidth part bandwidth, a bandwidth part subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space, a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
A method of wireless communications at a base station is described. The method may include identifying a common bandwidth part configuration for a UE, the common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, transmitting, to the UE, the common bandwidth part configuration, and communicating with the UE using a bandwidth part of the set of  bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part.
An apparatus for wireless communications at a base station is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a common bandwidth part configuration for a UE, the common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, transmit, to the UE, the common bandwidth part configuration, and communicate with the UE using a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part.
Another apparatus for wireless communications at a base station is described. The apparatus may include means for identifying a common bandwidth part configuration for a UE, the common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, transmitting, to the UE, the common bandwidth part configuration, and communicating with the UE using a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part.
A non-transitory computer-readable medium storing code for wireless communications at a base station is described. The code may include instructions executable by a processor to identify a common bandwidth part configuration for a UE, the common bandwidth part configuration including information common to a set of bandwidth parts and UE-specific information for the UE, transmit, to the UE, the common bandwidth part configuration, and communicate with the UE using a bandwidth part of the set of bandwidth parts for communication based on the information common to the set of bandwidth parts and the UE-specific information for the bandwidth part.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the information may be common to multiple bandwidth parts of a serving cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the information may be common to multiple bandwidth parts of all serving cells in one cell group.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the information may be common to multiple bandwidth parts of all serving cells in one frequency range.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the information common to the set of bandwidth parts includes uplink information and downlink information for a set of UEs including the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE-specific information includes uplink information and downlink information for the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a dedicated bandwidth part configuration to the UE, the dedicated bandwidth part configuration including UE-specific bandwidth part information for overriding the UE-specific information for the bandwidth part of the common bandwidth part configuration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE-specific information may be common to the set of bandwidth parts.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the common bandwidth part configuration may be based on an initial bandwidth part for a serving cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the common bandwidth part configuration includes information for an initial active bandwidth part of the set of bandwidth parts.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting signaling to the UE indicating information for other bandwidth parts relative to the information for the initial active bandwidth part.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the signaling may be transmitted via RRC signaling.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the common bandwidth part configuration may include operations, features, means, or instructions for transmitting the common bandwidth part configuration via RRC signaling.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the common bandwidth part configuration may include operations, features, means, or instructions for transmitting the information common to the set of bandwidth parts via system information signaling, and transmitting the UE-specific information via RRC signaling.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, a group common secondary cell configuration indicating cell configuration information for a primary cell, a primary secondary cell, a set of secondary cells, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the group common secondary cell configuration indicates configuration information for a set of secondary cell group configurations and a master cell group configuration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the group common secondary cell configuration may be common to a set of serving cells in one cell group.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the group common secondary cell configuration may be common to a set of serving cells in one frequency range.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the common bandwidth part configuration may be included in the group common secondary cell configuration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the group common secondary cell configuration via RRC signaling.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the common secondary cell configuration includes an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information, secondary cell timer information, common bandwidth part information, dedicated bandwidth part information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the common bandwidth part configuration includes an indication of at least one of a bandwidth part, a bandwidth part location, a bandwidth part bandwidth, a bandwidth part subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space, a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports group based secondary cell (SCell) and common bandwidth part (BWP) configuration in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
FIGs. 3A and 3B illustrate examples of tree diagrams that support group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
FIGs. 4A and 4B illustrate examples of tree diagrams that support group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
FIG. 5 illustrates an example of a tree diagram that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
FIG. 6 illustrates an example of a tree diagram that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
FIG. 7 illustrates an example of a process flow that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
FIGs. 8 and 9 show block diagrams of devices that support group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
FIG. 10 shows a block diagram of a common configuration manager that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
FIG. 11 shows a diagram of a system including a device that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
FIGs. 12 and 13 show block diagrams of devices that support group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
FIG. 14 shows a block diagram of a common configuration manager that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
FIG. 15 shows a diagram of a system including a device that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
FIGs. 16 through 20 show flowcharts illustrating methods that support group based SCell and common BWP configuration in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Attached hereto is additional disclosure contained in Appendix A, the contents of which is incorporated herein by reference in its entirety.
[Rectified under Rule 91, 14.05.2019]
The described techniques relate to improved methods, systems, devices, or apparatuses that support group common secondary cell (SCell) configurations and common bandwidth part (BWP) configurations. Generally, the described techniques provide a configuration for multiple BWPs having information (e.g., BWP parameters) common to each of the multiple BWPs. A UE may communicate with a base station using a BWP of a system frequency band. In some cases, the base station may identify a common BWP configuration based on information for a number of BWPs, and the UE may receive indication of the common BWP configuration. The common BWP configuration may in some cases contain information common to a number of BWPs associated with a number of serving cells in a network. For example, the information may be common to BWPs of all serving cells associated with a single cell group or given frequency range. The common BWP configuration may further include a number of components, for example, a configured BWP may include a cell-specific part (e.g., applied to only one serving cell) and a UE-specific part. In some cases, a dedicated BWP configuration may be used to override a common BWP configuration containing different parameters for the UE.
[Rectified under Rule 91, 14.05.2019]
In some cases, the network may configure a number of BWPs for a UE (e.g., via Radio Resource Control (RRC) signaling) , and a base station may transmit a common BWP configuration to the UE that indicates information common to the number of BWPs. Thus, a UE may communicate using one or more frequency bands in a wireless communications network. For instance, a UE may communicate using a first cell (e.g., a primary cell (PCell) ) according to a first frequency and the UE may perform an RRC connection establishment procedure to establish communication with the PCell. A UE may also communicate using an SCell according to a secondary frequency, which may provide additional radio resources to a UE in addition to those provided by the PCell. A UE may operate according to an SCell configuration established via an RRC connection from the PCell.
In some examples, a base station may configure a number of SCell groups and may transmit a message to the UE indicating information related to the configured number of  SCell groups. For example, the message may include dedicated parameters for an SCell that the SCell is to be assigned to a given SCell or PCell group. In some cases, the base station may configure one or more cells in the same RRC reconfiguration message, and may indicate a common SCell configuration to the UE for communicating via an SCell of the SCells associated with the common SCell configuration.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects are also described with respect to tree diagrams and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to group based SCell and common BWP configuration.
FIG. 1 illustrates an example of a wireless communications system 100 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via  communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
The geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a  terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through  a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a  transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for  subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In some cases, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
[Rectified under Rule 91, 14.05.2019]
In some cases, wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate  over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the RRC protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data. At the Physical layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s = 1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f = 307,200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe  or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of  carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some cases, wireless communications system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration. In some cases, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) . An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
In some cases, an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers. A shorter symbol duration may be associated with increased spacing between adjacent subcarriers. A device, such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others. The flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC  across multiple spectrums. In some examples, NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
[Rectified under Rule 91, 14.05.2019]
UE 115 may communicate using a one or more frequency bands (e.g., BWPs) in wireless communications system 100. In some cases, UE 115 may communicate using a first cell (e.g., a PCell ) according to a first frequency. A UE 115 may also communicate using a second cell (e.g., a SCell (SCell) ) according to a second frequency, which may provide additional communication resources to UE 115 in addition to those provided by the PCell. When communicating over the SCell, UE 115 may operate according to an SCell configuration established via RRC with the primary cell.
Base station 105 may configure a number of SCell groups and may transmit a message containing dedicated parameters for the SCell. In some cases, the message may contain a group index which may indicate a number of groups to assign the SCell. For example, the message may indicate the SCell is to be assigned to the SCell group or the PCell group. In some cases, base station 105 may configure one or a number of cells in the same RRC reconfiguration message. In some cases, base station 105 may configure up to 32 SCell configurations for one UE 115 in an RRC reconfiguration message. In such cases, a number of configurations for the SCell may be similar, and base station 105 may group common SCells (e.g., SCells with the same type of configuration) into a single SCell group. There may be up to a certain number (e.g., 4) common SCell group configurations per RRC message, and a common configuration may be provided for each SCell group.
Upon configuring an SCell, base station 105 may specify a cell group index (e.g., SCell Group Index-r15) , which may indicate a specific SCell group configuration among other parameters. In addition, base station 105 may indicate a dedicated SCell configuration to override common parameter configurations in each SCell group. Such group-specific common SCell parameters may be provided during SCell addition or handover periods.
In some cases, UE 115 may utilize a number bandwidth adaptation techniques. Such bandwidth adaptation may include utilizing a BWP, which may include only as subset of contiguous resource blocks on the given carrier. A BWP may be used for example, in cases where UE 115 has less receiver bandwidth capability than the whole bandwidth. Utilizing a BWP may be advantageous for a number of reasons. For example, UE 115 may not utilize  high data rates, but may still operate according to a wide bandwidth, causing higher idling power consumption. As such, UE 115 that is configured to use only parts of the bandwidth may reduce power consumption at UE 115. Each BWP may be limited to a certain frequency per carrier (e.g., 400 MHz per carrier) , which may limit possible power consumption at a given time at UE 115.
A network may configure up to a number of BWPs to UE 115 via RRC signaling (e.g., a network may configure up to 4 BWPs in a RRC message for a connected UE 115) . In some cases, a BWP may be associated with a specific numerology, frequency location, configured bandwidth, among other parameters. The number of configured BWPs may be configured for either downlink (DL) or uplink (UL) communications, and may in some cases overlap in frequency. In certain cases, UE 115 may support up to one active DL BWP, and up to one active UL BWP for a given serving cell. In the idle and/or inactive state, UE 115 may search for a synchronization signal block (SSB) with remaining minimum system information (RMSI) . In such cases, UE 115 may indicate the associated BWP as an initial active BWP, or an initial common BWP configuration.
In some examples, UE 115 may use the information included in downlink control information (DCI) or RRC based signaling to perform a number of operations. For example, an RRC message or information received in DCI may configure UE 115 to switch the active BWP from DL to UL (or UL to DL, conversely) within a given serving cell. Upon synchronous reconfiguration (e.g., PCell/PSCell or SCell addition or handover) and SCell addition, UE 115 may perform a first random access procedure on a first active BWP configured in an RRC message (e.g., UE 115 may first perform a random access procedure on the first active BWP) .
[Rectified under Rule 91, 14.05.2019]
Configurations of SCells may be different based on a given network deployment. For example, a first network may support carrier aggregation and BWP configurations, while a second network may support carrier aggregation but not BWP configurations. In a first network, multiple BWPs in a single carrier may be configured to UE 115, and an active BWP (e.g., a BWP that is being used by UE 115) may be switched dynamically or semi-statically, where multiple BWPs may have common configurations.
In addition, the structure of cells may be different based on a given network deployment. For example, a first network may have a unified (e.g., same) structure for  PCell/PSCell and SCells, while a second network may have separate structures configured across cells. Further, in some networks, a group common SCell configuration may apply only to corresponding SCells, and may not apply to a PCell or a PSCell.
In some examples, base station 105 may identify a number of BWPs at a system bandwidth, and may identify a common BWP configuration based on similar configurations of the number of BWPs. In some examples, a common BWP configuration may be utilized where multiple BWPs of the same type of configuration may be combined into one common BWP configuration (e.g., information and other configuration components common to a number of BWPs may be combined into a single BWP) . Additionally, similar common configuration grouping may be applied to SCell configurations such that base station 105 may transmit a group common SCell configuration to UE 115.
Upon configuring the common BWP configuration, the base station 105 may transmit the common BWP configuration to UE 115, and UE 115 may receive the BWP, including the information common to the number of BWPs and the UE specific information. Using the information contained in the BWP configuration, UE 115 may configure a BWP and may communicate with base station 105 using the configured BWP.
FIG. 2 illustrates an example of a wireless communications system 200 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communication system 100. Wireless communications system may include a base station 105-a and a UE 115-a, which may be examples of corresponding base station 105 and UE 115 as described herein with reference to FIG. 1.
In some cases, UE 115-a may communicate with base station 105-a using communication link 205 associated with a certain bandwidth. The base station 105-a may identify a common BWP configuration 210 for use at UE 115-a, and UE115-a may receive indication of the BWP. In some examples, a common BWP configuration may be utilized, where multiple BWPs of the same type of configuration may be combined into one common BWP configuration (e.g., information common to a number of BWPs may be combined into a single BWP) . The common BWP configuration may in some cases contain information common to a number of BWPs associated with a number of serving cells in a network. For example, the information may be common to BWPs of all serving cells associated with a  single cell group or given frequency range. The common BWP configuration may further include a number of components, for example, a configured BWP may include a cell-specific part 215 (e.g., applied to only one serving cell) and a UE-specific part 220. In some cases, a certain BWP configuration (e.g., a dedicated BWP configuration) may be used to override a common BWP configuration containing different parameters in a serving cell. In other cases, the common BWP may be used across different serving cells.
A UE 115-a may also receive information related a common SCell configuration. Such common configurations may reduce SCell or master cell group/SCell group (MCG/SCG) configuration signaling for cases where UE 115-a undergoes procedures such as reconfiguration with sync, PCell/SCell addition or handover, and SCell addition or resume. A group common SCell configuration (which may additionally be used to configure a PCell or a PSCell) may be used to configure the MCG/SCG. The MCG configuration may include a PCell and multiple SCells, while the SCG configuration may include a PSCell and multiple SCells. Similar to the common BWP configuration, the group common SCell configuration may include a cell-common part and a UE-dedicated part.
A common SCell configuration may include a first active BWP configuration, where other BWP configurations may be indicated in following signaling events (e.g., the BWP configurations may be indicated using RRC Reconfiguration messages, delta signaling, and so on) . In some examples, all BWP configurations may be included in a single message. Such configuration messages may include cell-specific and UE-specific parts, where each part may be associated with downlink or uplink communications. The cell-specific part may be indicated through system information (e.g., in a system information block (SIB) ) associated with the PCell or SCell. Group-common SCell parameters may be provided when the SCell group is created, resumed, or during other processes such as reconfiguration with sync. When the SCell is configured, the network may provide an SCell index, which may contain a number of common SCell configurations (e.g., configurations which used to override different SCell parameters) .
In some cases, the initial BWP on the PCell may be indicated as the common BWP configuration. A UE 115-a may acquire an initial BWP to access the network, and may obtain information for an initial DL and UL BWP configuration by using the initial BWP as  the common BWP. Additionally, by using the initial BWP as the common BWP, the network may not need to provide UE 115-a with separate system information or RRC messaging.
Certain portions of the SCell or BWP configurations may not be configured as common configuration as detailed in FIGs. 5 and 6. The dedicated UL and DL BWP may adjust according to a number of factors, including parameters associated with the common BWP configuration.
In an example, UE 115-a may receive an RRC configured message containing one common BWP configuration 210, which may further contain a cell-specific part 215 and a UE-specific part 220. The cell specific part may be configured as either downlink or uplink common, and may in some examples be indicated in a SIB of the associated PCell, or via an on-demand SIB. In some cases, an RRC message may include a cell specific downlink BWP configuration (e.g., BWP-DownlinkCommon) or a cell specific uplink BWP configuration (e.g., BWP-UplinkCommon) . In other cases, an RRC message may include a UE specific downlink BWP configuration (e.g., BWP-DownlinkDedicated) , or a UE specific uplink BWP configuration (e.g., BWP-UplinkDedicated)
In another example, where the PCell is configured according to a different network (e.g., NR CA or NR standalone or NR DC or NE DC) , UE 115-a may use the initial BWP configuration of the PCell as a common BWP configuration. The UE-specific part of the common BWP configuration may be configured by an RRC message. The cell-specific part of the common BWP configuration may be indicated in a SIB.
As described, a common configuration for a PCell may be conveyed through RRC signaling or in a SIB, and multiple SCells of the same type of configuration may be combined into a single SCell group. A common configuration may be provided for each SCell group. The group common SCell configuration may include a cell common part and a UE specific part. A SCell group index may indicated during SCell configuration, and a dedicated SCell configuration may be used to override common parameter configurations in each SCell group.
Some methods may be used to configure add/resume operations for an SCell or an SCG, along with PSCells (MCG and SCG) upon reconfiguration with sync. In some deployments, a common configuration may be indicated during handover and icell addition.  In other deployments, reconfiguration with sync (PCell addition or handover) and SCell addition/resume may indicate the common configuration.
[Rectified under Rule 91, 14.05.2019]
FIG. 3A illustrates an example of a tree diagram 300-a that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. Tree diagram 300-a illustrates a possible structure for a common downlink BWP configuration in a wireless network. In some cases, the common downlink BWP configuration may be cell specific, and may be applied for each downlink BWP in each SCell. A common BWP configuration structure may include a number of components. In some examples, common downlink BWP structure may contain a BWP, and the BWP may further include information regarding relative frequency location (e.g., an offset between the BWP and a reference point as indicated to a UE) , subcarrier spacing (SCS) and indexing information associated with the BWP, cyclic prefix (CP) type, and other information associated with a given numerology. The common downlink BWP configuration may further include a shared channel common configuration (e.g., a physical downlink shared channel (PDSCH) common configuration) and associated timing list, used for scheduling group common PDSCH, reference signal (RS)sequences, BWP configuration, and so on. In addition, common downlink BWP configuration may include a control channel common configuration (e.g., a physical downlink control channel (PDCCH) common configuration) . The control channel common configuration may include a number of components, including a scheduling assignment for the PDSCH, a control resource set (CORESET) configuration (e.g., CORESET #0 and common CORESET) , a number of common search space assignments, etc.
[Rectified under Rule 91, 14.05.2019]
FIG. 3B illustrates an example of a tree diagram 300-b that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. Tree diagram 300-b illustrates a possible structure for a dedicated BWP configuration in a wireless network. In some cases, the common downlink BWP configuration may be UE specific. A dedicated BWP configuration may include a number of components. In some examples, a dedicated downlink BWP structure may contain a configuration for semi-persistent scheduling (SPS) , which may include periodicity information among other feedback and coding schemes ( HARQ feedback, including #HARQ N1, MCS, etc. ) . A dedicated downlink BWP structure may contain a shared channel configuration (e.g., a PDSCH dedicated configuration) . In some examples, the shared channel configuration may include a corresponding demodulation reference signal (DMRS) and a channel state  information-reference signal (CSI-RS) , which may support CSI measurements outside of the active BWP. Such CSI measurements may be periodic or aperiodic in a serving cell. The PDSCH configuration may additionally or alternatively include a transmission configuration indication (TCI) , a rate matching (RM) bundle, or other configured information. A dedicated downlink BWP structure may contain a control channel configuration (e.g., a PDCCH dedicated configuration) . In some examples, the control channel configuration may include at least one CORESET synchronization signal (SS) associated with a UE-specific search space, or may include a transmit power control (TPC) preempt command for further power control optimization at the UE. A dedicated downlink BWP structure may further contain a radio link monitoring (RLM) configuration, which may be composed of a RLM RS and a bidirectional forwarding detection (BFD) timer counter, among other components.
[Rectified under Rule 91, 14.05.2019]
FIG. 4A illustrates an example of a tree diagram 400-a that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. Tree diagram 400-a illustrates a possible structure for a common uplink BWP configuration present in a wireless network. In some cases, the common uplink BWP configuration may be cell specific, and may be applied for each uplink BWP in each SCell. A common BWP configuration structure may include a number of components. In some examples, common uplink BWP structure may contain a BWP, and the BWP may further include information regarding relative frequency location (e.g., an offset between the BWP and a reference point as indicated to a UE) , subcarrier spacing (SCS) and indexing information associated with the BWP, cyclic prefix (CP) type, and other information associated with a given numerology. The common uplink BWP configuration may further include a common configuration for a shared channel (e.g., a physical uplink shared channel (PUSCH) common configuration) and associated timing list, used for scheduling group common PUSCH, RS sequences, BWP configuration, and so on. The shared channel common configuration may also contain msg3-delta, P0, and groupHopping components or capabilities. In addition, common uplink BWP configuration may include a common configuration for a control channel (e.g., a physical uplink control channel (PUCCH) common configuration) . The control channel common configuration may include a number of components, including a PUCCH common resource or initial BWP indication, frequency hopping capabilities and identifications such as GroupHop, hopIDP0, and so on. Common uplink BWP configuration may further contain a common random access channel (RACH) configuration. The RACH common configuration  may contain a SS block specific to the RACH configuration. In some examples, the RACH configuration may be a generic RACH configuration, which may include msg-1 FrequencyStart, or other information.
[Rectified under Rule 91, 14.05.2019]
FIG. 4B illustrates an example of a tree diagram 800-b that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. Tree diagram 400-b illustrates a possible structure for a dedicated uplink BWP configuration present in a wireless network. In some cases, the dedicated uplink BWP configuration may be UE specific. A dedicated BWP configuration structure may include a number of components. In some examples, dedicated uplink BWP structure may contain a charging gateway (CG) configuration, which may support offline charging architecture. The CG configuration may further include a time or frequency grant, hop, resource block group (rbg) rep, MCS, or other parameters. The dedicated uplink BWP configuration may further include a dedicated configuration for a shared channel (e.g., a PUSCH dedicated configuration) and associated DMRS code block (CB) . The shared channel dedicated configuration may also contain resource uplink control information (UCI) . In addition, dedicated uplink BWP configuration may include a dedicated configuration for a control channel (e.g., a PUCCH dedicated configuration) . The control channel dedicated configuration may include a number of components, including a PUCCH common resource format or spatial information, and so on. The dedicated uplink BWP configuration may further contain a bandwidth frequency reuse (BFR) configuration, which may contain a generic configured RACH, along with a BFR timer beam list, which may indicate certain frequencies or bandwidth components available for reuse to the UE. The dedicated uplink BWP configuration may further contain a sounding reference signal (SRS) configuration to be sent by the UE, which may in some examples contain an SRS resource and TPC components.
[Rectified under Rule 91, 14.05.2019]
FIG. 5 illustrates an example of a tree diagram 500 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. Tree diagram 500 illustrates a possible structure for a common SCell configuration in a wireless network. In some cases, the common SCell configuration structure may be cell specific, and may be configured for a given wireless network deployment (e.g., NR) . A common SCell configuration structure may include a number of components. In some examples, the common SCell configuration structure may contain a physical cell  identification (e.g., PhysCellId) , which may identify the serving cell in a physical layer of a network. The configuration may further include a common downlink configuration, containing downlink frequency information (e.g., FrequencyInfoDL) , where the information may include a number of different parameters for transmission and reception, including carrier and band list, point A, and absolute radio-frequency channel number (ARFCN) . In addition, the common downlink configuration may include a common (initial) downlink BWP. The SCell configuration structure may also include a number of timing parameters and timing offset parameters (e.g., nTimingAdvanceOffset) , and may include a number of synchronization signal block (SSB) positions, periodicity, and power information relevant to the SCell. The SCell configuration structure may further include several rate matching components, such as a NR rate matching component and a cell specific reference signal (CRS) rate match component, which may include a number of subcomponents including downlink carrier frequency components, bandwidth information, CRS ports, v-shift components, a multi-broadcast single frequency network (MBSFN) list, and so on, which may further aid communications. The SCell configuration structure may additionally include a common TDD component used in both uplink and downlink communication, and may use a single frequency band and an alternating slotted scheduling structure. The configuration may further include a common uplink configuration or a supplementary common uplink configuration containing uplink frequency information (e.g., FrequencyInfoUL) which may include a number of different parameters for transmission and reception, including carrier and band list, point A, and emission, p-Max, and 7p5 kHz shift components. The common uplink or supplementary uplink configuration may additionally include a common (initial) uplink BWP. The SCell configuration structure may further contain a secondary component carrier (SCC) or multiple SCCs which may in some examples be used in conjunction with a primary component carrier (PCC) established for the network. The SCell configuration structure may additionally include a DMRS and associated mapping type (e.g., type A mapping) . In some examples, the components described may be associated with a common configuration. In other examples, some components may not be part of a common configuration.
[Rectified under Rule 91, 14.05.2019]
FIG. 6 illustrates an example of a tree diagram 600 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. Tree diagram 600 illustrates a possible structure for a common SCell configuration in a  wireless network. In some cases, the common SCell configuration structure may be UE specific, and may be configured for a given wireless network deployment (e.g., NR) . A common SCell configuration structure may include a number of components. In some examples, the common SCell configuration structure may contain serving cell mobile originating (MO) component (e.g., UE to network directionality) . The configuration may also include a downlink BWP, containing a BWP identifier, along with both common and dedicated downlink BWP components. The SCell configuration may include various timing components such as an SCell timer and BWP inactive timer, along with a number of identifier and referencing components (e.g., tag-ID, first active BWP ID, default BWP ID, pathloss reference, etc. ) . In addition, the SCell configuration may include a number of scheduling components, such as a cross carrier scheduling component which may contain a scheduling cell ID and carrier indicator field (CIF) for cells deployed on the same carrier frequency or bandwidth. The configuration may similarly include a dedicated TDD configuration for uplink and downlink communication, and a dedicated part of the initial downlink BWP. The common SCell structure may include an uplink configuration or supplementary uplink configuration along with a number of uplink BWPs (each containing an uplink BWP ID, a common uplink BWP and dedicated uplink BWP) , a dedicated portion of the initial uplink BWP, a PUSCH serving cell (including a code block group (CBG) , rate matching components, and so on) , and a SRS switching component (including a component that switches serving cells, TPC, and cell monitoring components) . The SCell structure may also include a means for measuring and configuring CSI, and may further include a number of serving cells, including both a control channel and shared channel (e.g., PDCCH, PDSCH) serving cells. A PDCCH serving cell, in some examples, may contain information regarding slot format (including slot format indication radio network temporary identifier (SFI-RNTI) , DCI size, serving cell index (SFIComb) , along with other information) . A PDSCH serving cell, in some examples, may contain information such as CBG and HARQ feedback and a PUCCH-SCell index. In some examples, the components described may be associated with a common configuration. In other examples, some components may not be part of a common configuration.
[Rectified under Rule 91, 14.05.2019]
FIG. 7 illustrates an example of a process flow 700 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. In some examples, process flow 700 may implement aspects of wireless communication  system 100 and/or 200. Process flow 700 may include a base station 105-b and a UE 115-b, which may be an example of corresponding base stations 105 and UEs 115, as described herein with reference to FIGs 1 and 2.
In the following description of the process flow 700, the operations between UE 115-b and base station 105-b may be performed in different orders or at different times. Certain operations may also be left out of the process flow 700, other operations may be added to the process flow 700. It is to be understood that while UE 115-b and base station 105-b are shown performing a number of the operations in process flow 700, any wireless device may perform the operations shown.
At 705, base station 105-b may identify a common BWP configuration for UE 115-b containing information common to a number of BWPs along with UE specific information for the UE 115-b. In some examples, the information may be common to a number of BWPs of the serving cell. In other examples, the information may be common to a number of BWPs of all serving cells in one cell group. In further examples, the information may be common to a number of BWPs of all serving cells in one frequency range. The information may further contain both uplink and downlink components for a set of UEs, including UE 115-b, where the UE specific information may be included in downlink information.
At 710, base station 105-b may transmit the common BWP configuration containing information common to a number of BWPs and UE specific information to UE 115-b.
At 715, UE 115-b may receive the common BWP configuration from base station 105-b, which may include information common to a number of BWPs and UE specific information for UE 115-b. The information common to a number of BWPs may in some examples be common to a number of BWPs of a serving cell, of all serving cells in one cell group, of all serving cells in one frequency range, and so on. The information common to a number of BWPs may further include uplink and downlink information for a set of UEs including UE 115-b. The common BWP configuration may include a number of components, including at least one of a BWP, BWP location, BWP SS, CP type, data channel configuration and timing information, a CORESET, a SPS configuration, a common search space, DMRS information, rate matching information, power control information, RLM  information, hopping information, a RACH configuration, a SRS configuration, a beam failure recovery configuration, or any combination thereof.
At 720, base station 105-b may optionally transmit, and UE 115-b may optionally receive, a dedicated BWP configuration, which may contain UE-specific BWP information. Such UE specific BWP information may in some examples configure UE 115-b to override the UE specific BWP information for the BWP of the received common BWP configuration.
At 725, base station 105-b may optionally transmit, and UE 115-b may optionally receive, a group common SCell configuration. In some examples, the group common SCell configuration may be common to a number of serving cells common to a single cell group. In other examples, the group common SCell configuration may be common to a number of serving cells in a given frequency range. The group common SCell configuration may in some examples indicate cell configuration information for any combination of a PSCell, a PCell, and a set of SCells. Additionally, the group common SCell configuration may indicate configuration information for a set of SCG configurations and a set of MCG configurations.
At 730, UE 115-b may configure a BWP of the number of BWPs based on the information common to the number of BWPs. UE 115-b may in some examples configure the BWP based on UE specific information.
At 735, UE 115-b may communicate with base station 105-b using the configured BWP.
[Rectified under Rule 91, 14.05.2019]
FIG. 8 shows a block diagram 800 of a device 805 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a UE 115 as described herein. The device 805 may include a receiver 810, a common configuration manager 815, and a transmitter 820. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
[Rectified under Rule 91, 14.05.2019]
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group based SCell and common BWP configuration, etc. ) . Information may be passed on to other components of the device 805. The receiver  810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 810 may utilize a single antenna or a set of antennas.
[Rectified under Rule 91, 14.05.2019]
The common configuration manager 815 may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE, configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP, and communicate with the base station using the configured BWP. The common configuration manager 815 may be an example of aspects of the common configuration manager 1110 described herein.
[Rectified under Rule 91, 14.05.2019]
The common configuration manager 815, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the common configuration manager 815, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
[Rectified under Rule 91, 14.05.2019]
The common configuration manager 815, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the common configuration manager 815, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the common configuration manager 815, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
The transmitter 820 may transmit signals generated by other components of the device 805. In some examples, the transmitter 820 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 820 may be an example of aspects of  the transceiver 1120 described with reference to FIG. 11. The transmitter 820 may utilize a single antenna or a set of antennas.
[Rectified under Rule 91, 14.05.2019]
FIG. 9 shows a block diagram 900 of a device 905 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a device 805, or a UE 115 as described herein. The device 905 may include a receiver 910, a common configuration manager 915, and a transmitter 935. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
[Rectified under Rule 91, 14.05.2019]
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group based SCell and common BWP configuration, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 910 may utilize a single antenna or a set of antennas.
[Rectified under Rule 91, 14.05.2019]
The common configuration manager 915 may be an example of aspects of the common configuration manager 815 as described herein. The common configuration manager 915 may include a configuration receiver 920, a BWP configuration module 925, and a communications component 930. The common configuration manager 915 may be an example of aspects of the common configuration manager 1110 described herein.
[Rectified under Rule 91, 14.05.2019]
The configuration receiver 920 may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE.
[Rectified under Rule 91, 14.05.2019]
The BWP configuration module 925 may configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
[Rectified under Rule 91, 14.05.2019]
The communications component 930 may communicate with the base station using the configured BWP.
[Rectified under Rule 91, 14.05.2019]
The transmitter 935 may transmit signals generated by other components of the device 905. In some examples, the transmitter 935 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 935 may be an example of aspects of  the transceiver 1120 described with reference to FIG. 11. The transmitter 935 may utilize a single antenna or a set of antennas.
[Rectified under Rule 91, 14.05.2019]
FIG. 10 shows a block diagram 1000 of a common configuration manager 1005 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The common configuration manager 1005 may be an example of aspects of a common configuration manager 815, a common configuration manager 915, or a common configuration manager 1110 described herein. The common configuration manager 1005 may include a configuration receiver 1010, a BWP configuration module 1015, a communications component 1020, a dedicated BWP manager 1025, a signaling component 1030, and a SCell configuration manager 1035. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
[Rectified under Rule 91, 14.05.2019]
The configuration receiver 1010 may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE. In some examples, the configuration receiver 1010 may receive the common BWP configuration via RRC signaling. In some examples, the common BWP configuration is based on an initial BWP for the serving cell. In some aspects, the common BWP configuration includes information for an initial active BWP of the set of BWPs.
[Rectified under Rule 91, 14.05.2019]
The BWP configuration module 1015 may configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP. In some cases, the information is common to multiple BWPs of a serving cell. In some examples, the information is common to multiple BWPs of all serving cells in one cell group. In some instances, the information is common to multiple BWPs of all serving cells in one frequency range. In some aspects, the information common to the set of BWPs includes uplink information and downlink information for a set of UEs including the UE.
In some cases, the UE-specific information includes uplink information and downlink information for the UE. In some examples, the UE-specific information is common to the set of BWPs. In some examples, the common BWP configuration includes an indication of at least one of a BWP, a BWP location, a BWP bandwidth, a BWP subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space,  a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
[Rectified under Rule 91, 14.05.2019]
The communications component 1020 may communicate with the base station using the configured BWP.
[Rectified under Rule 91, 14.05.2019]
The dedicated BWP manager 1025 may receive a dedicated BWP configuration from the base station, the dedicated BWP configuration including UE-specific BWP information for overriding the UE-specific information for the BWP of the received common BWP configuration.
[Rectified under Rule 91, 14.05.2019]
The signaling component 1030 may receive signaling from the base station indicating information for other BWPs relative to the information for the initial active BWP. In some examples, the signaling component 1030 may receive the information common to the set of BWPs of the serving cell via system information signaling. In some cases, the signaling component 1030 may receive the UE-specific information via RRC signaling. In some aspects, the signaling is received via RRC signaling.
[Rectified under Rule 91, 14.05.2019]
The SCell configuration manager 1035 may receive, from the base station, a group common SCell configuration indicating cell configuration information for a primary cell, a primary SCell, a set of SCells, or any combination thereof. In some examples, the SCell configuration manager 1035 may receive the group common SCell configuration via RRC signaling. In some cases, the group common SCell configuration indicates configuration information for a set of SCell group configurations and a master cell group configuration. In some aspects, the group common SCell configuration is common to a set of serving cells in one cell group. In some instances, the group common SCell configuration is common to a set of serving cells in one frequency range.
In some cases, the common BWP configuration is included in the group common SCell configuration. In some examples, the common SCell configuration includes an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information,  SCell timer information, common BWP information, dedicated BWP information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
[Rectified under Rule 91, 14.05.2019]
FIG. 1 shows a diagram of a system 1100 including a device 1105 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The device 1105 may be an example of or include the components of device 1105, device 905, or a UE 115 as described herein. The device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a common configuration manager 1110, an I/O controller 1115, a transceiver 1120, an antenna 1125, memory 1130, and a processor 1140. These components may be in electronic communication via one or more buses (e.g., bus 1145) .
[Rectified under Rule 91, 14.05.2019]
The common configuration manager 1110 may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE, configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP, and communicate with the base station using the configured BWP.
[Rectified under Rule 91, 14.05.2019]
The I/O controller 1115 may manage input and output signals for the device 1105. The I/O controller 1115 may also manage peripherals not integrated into the device 1105. In some cases, the I/O controller 1115 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1115 may utilize an operating system such as 
Figure PCTCN2019080597-appb-000001
or another known operating system. In other cases, the I/O controller 1115 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1115 may be implemented as part of a processor. In some cases, a user may interact with the device 1105 via the I/O controller 1115 or via hardware components controlled by the I/O controller 1115.
[Rectified under Rule 91, 14.05.2019]
The transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein. For example, the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless  transceiver. The transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
[Rectified under Rule 91, 14.05.2019]
In some cases, the device 1105 may include a single antenna 1125, or the device 1105 may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
[Rectified under Rule 91, 14.05.2019]
The memory 1130 may include random access memory (RAM) and read only memory (ROM) . The memory 1130 may store computer-readable, computer-executable code 1135 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1130 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
[Rectified under Rule 91, 14.05.2019]
The processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1140 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1140. The processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting group based SCell and common BWP configuration) .
[Rectified under Rule 91, 14.05.2019]
The code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
[Rectified under Rule 91, 14.05.2019]
FIG. 12 shows a block diagram 1200 of a device 1205 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The device 1205 may be an example of aspects of a base station 105 as described herein. The device 1205 may include a receiver 1210, a common configuration manager 1215, and a  transmitter 1220. The device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
[Rectified under Rule 91, 14.05.2019]
The receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group based SCell and common BWP configuration, etc. ) . Information may be passed on to other components of the device 1605. The receiver 1210 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15. The receiver 1210 may utilize a single antenna or a set of antennas.
[Rectified under Rule 91, 14.05.2019]
The common configuration manager 1215 may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE, transmit, to the UE, the common BWP configuration, and communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP. The common configuration manager 1215 may be an example of aspects of the common configuration manager 1510 described herein.
[Rectified under Rule 91, 14.05.2019]
The common configuration manager 1215, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the common configuration manager 1215, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
[Rectified under Rule 91, 14.05.2019]
The common configuration manager 1215, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the common configuration manager 1215, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the common configuration manager 1215, or its sub-components, may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing  device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
[Rectified under Rule 91, 14.05.2019]
The transmitter 1220 may transmit signals generated by other components of the device 1205. In some examples, the transmitter 1220 may be collocated with a receiver 1210 in a transceiver module. For example, the transmitter 1220 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15. The transmitter 1220 may utilize a single antenna or a set of antennas.
[Rectified under Rule 91, 14.05.2019]
FIG. 13 shows a block diagram 1300 of a device 1305 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The device 1705 may be an example of aspects of a device 1205, or a base station 105 as described herein. The device 1305 may include a receiver 1310, a common configuration manager 1315, and a transmitter 1335. The device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
[Rectified under Rule 91, 14.05.2019]
The receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group based SCell and common BWP configuration, etc. ) . Information may be passed on to other components of the device 1305. The receiver 1310 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15. The receiver 1310 may utilize a single antenna or a set of antennas.
[Rectified under Rule 91, 14.05.2019]
The common configuration manager 1315 may be an example of aspects of the common configuration manager 1215 as described herein. The common configuration manager 1315 may include a common BWP identifier 1320, a BWP transmitter 1325, and a communications module 1330. The common configuration manager 1315 may be an example of aspects of the common configuration manager 1510 described herein.
[Rectified under Rule 91, 14.05.2019]
The common BWP identifier 1320 may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE.
[Rectified under Rule 91, 14.05.2019]
The BWP transmitter 1325 may transmit, to the UE, the common BWP configuration.
[Rectified under Rule 91, 14.05.2019]
The communications module 1330 may communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
[Rectified under Rule 91, 14.05.2019]
The transmitter 1335 may transmit signals generated by other components of the device 1305. In some examples, the transmitter 1335 may be collocated with a receiver 1310 in a transceiver module. For example, the transmitter 1335 may be an example of aspects of the transceiver 1520 described with reference to FIG. 15. The transmitter 1335 may utilize a single antenna or a set of antennas.
[Rectified under Rule 91, 14.05.2019]
FIG. 14 shows a block diagram 1400 of a common configuration manager 1405 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The common configuration manager 1405 may be an example of aspects of a common configuration manager 1215, a common configuration manager 1315, or a common configuration manager 1510 described herein. The common configuration manager 1405 may include a common BWP identifier 1410, a BWP transmitter 1415, a communications module 1420, a dedicated BWP component 1425, a signaling transmitter 1430, and a SCell transmitter 1435. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
[Rectified under Rule 91, 14.05.2019]
The common BWP identifier 1410 may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE. In some cases, the information is common to multiple BWPs of a serving cell. In some examples, the information is common to multiple BWPs of all serving cells in one cell group. In some aspects, the information is common to multiple BWPs of all serving cells in one frequency range. In some instances, the information common to the set of BWPs includes uplink information and downlink information for a set of UEs including the UE.
In some cases, the UE-specific information includes uplink information and downlink information for the UE. In some examples, the UE-specific information is common to the set of BWPs. In some aspects, the common BWP configuration is based on an initial BWP for the serving cell. In some instances, the common BWP configuration includes information for an initial active BWP of the set of BWPs.
[Rectified under Rule 91, 14.05.2019]
The BWP transmitter 1415 may transmit, to the UE, the common BWP configuration. In some examples, the BWP transmitter 1415 may transmit the common BWP configuration via RRC signaling. In some cases, the BWP transmitter 1415 may transmit the information common to the set of BWPs of the serving cell via system information signaling. In some aspects, the BWP transmitter 1415 may transmit the UE-specific information via RRC signaling. In some instances, the common BWP configuration includes an indication of at least one of a BWP, a BWP location, a BWP bandwidth, a BWP subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space, a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
[Rectified under Rule 91, 14.05.2019]
The communications module 1420 may communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
[Rectified under Rule 91, 14.05.2019]
The dedicated BWP component 1425 may transmit a dedicated BWP configuration to the UE, the dedicated BWP configuration including UE-specific BWP information for overriding the UE-specific information for the BWP of the common BWP configuration.
[Rectified under Rule 91, 14.05.2019]
The signaling transmitter 1430 may transmit signaling to the UE indicating information for other BWPs relative to the information for the initial active BWP. In some cases, the signaling is transmitted via RRC signaling.
[Rectified under Rule 91, 14.05.2019]
The SCell transmitter 1435 may transmit, to the UE, a group common SCell configuration indicating cell configuration information for a primary cell, a primary SCell, a set of SCells, or any combination thereof. In some examples, the SCell transmitter 1435 may transmit the group common SCell configuration via RRC signaling. In some cases, the group common SCell configuration indicates configuration information for a set of SCell group configurations and a master cell group configuration. In some aspects, the group common SCell configuration is common to a set of serving cells in one cell group. In some instances,  the group common SCell configuration is common to a set of serving cells in one frequency range.
In some cases, the common BWP configuration is included in the group common SCell configuration. In some examples, the common SCell configuration includes an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information, SCell timer information, common BWP information, dedicated BWP information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
[Rectified under Rule 91, 14.05.2019]
FIG. 15 shows a diagram of a system 1500 including a device 1505 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The device 1505 may be an example of or include the components of device 1205, device 1305, or a base station 105 as described herein. The device 1505 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a common configuration manager 1910, a network communications manager 1515, a transceiver 1520, an antenna 1525, memory 1530, a processor 1540, and an inter-station communications manager 1545. These components may be in electronic communication via one or more buses (e.g., bus 1550) .
[Rectified under Rule 91, 14.05.2019]
The common configuration manager 1510 may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE, transmit, to the UE, the common BWP configuration, and communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP.
[Rectified under Rule 91, 14.05.2019]
The network communications manager 1515 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1515 may manage the transfer of data communications for client devices, such as one or more UEs 115.
[Rectified under Rule 91, 14.05.2019]
The transceiver 1520 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein. For example, the transceiver 1520 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1520 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
[Rectified under Rule 91, 14.05.2019]
In some cases, the device 1505 may include a single antenna 1525, or the device 1505 may have more than one antenna 1525, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
[Rectified under Rule 91, 14.05.2019]
The memory 1530 may include RAM, ROM, or a combination thereof. The memory 1530 may store computer-readable code 1535 including instructions that, when executed by a processor (e.g., the processor 1540) cause the device to perform various functions described herein. In some cases, the memory 1530 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
[Rectified under Rule 91, 14.05.2019]
The processor 1540 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1540 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1540. The processor 1540 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1530) to cause the device 1505 to perform various functions (e.g., functions or tasks supporting group based SCell and common BWP configuration) .
[Rectified under Rule 91, 14.05.2019]
The inter-station communications manager 1545 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1545 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1545 may  provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
[Rectified under Rule 91, 14.05.2019]
The code 1535 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1535 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1535 may not be directly executable by the processor 1540 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
[Rectified under Rule 91, 14.05.2019]
FIG. 16 shows a flowchart illustrating a method 1600 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a common configuration manager as described with reference to FIGs. 8 through 11. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
[Rectified under Rule 91, 14.05.2019]
At 1605, the UE may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a configuration receiver as described with reference to FIGs. 8 through 11.
[Rectified under Rule 91, 14.05.2019]
At 1610, the UE may configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a BWP configuration module as described with reference to FIGs. 8 through 11.
[Rectified under Rule 91, 14.05.2019]
At 1615, the UE may communicate with the base station using the configured BWP. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a communications component as described with reference to FIGs. 8 through 11.
[Rectified under Rule 91, 14.05.2019]
FIG. 17 shows a flowchart illustrating a method 1700 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1700 may be performed by a common configuration manager as described with reference to FIGs. 8 through 11. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
[Rectified under Rule 91, 14.05.2019]
At 1705, the UE may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a configuration receiver as described with reference to FIGs. 8 through 11.
[Rectified under Rule 91, 14.05.2019]
At 1710, the UE may configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a BWP configuration module as described with reference to FIGs. 8 through 11.
[Rectified under Rule 91, 14.05.2019]
At 1715, the UE may receive a dedicated BWP configuration from the base station, the dedicated BWP configuration including UE-specific BWP information for overriding the UE-specific information for the BWP of the received common BWP configuration. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a dedicated BWP manager as described with reference to FIGs. 8 through 11.
[Rectified under Rule 91, 14.05.2019]
At 1720, the UE may communicate with the base station using the configured BWP. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a communications component as described with reference to FIGs. 8 through 11.
[Rectified under Rule 91, 14.05.2019]
FIG. 18 shows a flowchart illustrating a method 1800 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1800 may be performed by a common configuration manager as described with reference to FIGs. 8 through 11. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
[Rectified under Rule 91, 14.05.2019]
At 1805, the UE may receive, from a base station, a common BWP configuration including information common to a set of BWPs and UE-specific information for the UE. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a configuration receiver as described with reference to FIGs. 8 through 11.
[Rectified under Rule 91, 14.05.2019]
At 1810, the UE may configure a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a BWP configuration module as described with reference to FIGs. 8 through 11.
[Rectified under Rule 91, 14.05.2019]
At 1815, the UE may receive, from the base station, a group common SCell configuration indicating cell configuration information for a primary cell, a primary SCell, a set of SCells, or any combination thereof. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a SCell configuration manager as described with reference to FIGs. 8 through 11.
[Rectified under Rule 91, 14.05.2019]
At 1820, the UE may communicate with the base station using the configured BWP. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a communications component as described with reference to FIGs. 8 through 11.
[Rectified under Rule 91, 14.05.2019]
FIG. 19 shows a flowchart illustrating a method 1900 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The operations of method 1900 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1900 may be performed by a common configuration manager as described with reference to FIGs. 12 through 15. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein. Additionally or alternatively, a base station may perform aspects of the functions described herein using special-purpose hardware.
[Rectified under Rule 91, 14.05.2019]
At 1905, the base station may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a common BWP identifier as described with reference to FIGs. 12 through 15.
[Rectified under Rule 91, 14.05.2019]
At 1910, the base station may transmit, to the UE, the common BWP configuration. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a BWP transmitter as described with reference to FIGs. 12 through 15.
[Rectified under Rule 91, 14.05.2019]
At 1915, the base station may communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP. The operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a communications module as described with reference to FIGs. 12 through 15.
[Rectified under Rule 91, 14.05.2019]
FIG. 20 shows a flowchart illustrating a method 2000 that supports group based SCell and common BWP configuration in accordance with aspects of the present disclosure. The operations of method 2000 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 2000 may be performed by a common configuration manager as described with reference to FIGs. 12 through 15. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein. Additionally or alternatively, a base station may perform aspects of the functions described herein using special-purpose hardware.
[Rectified under Rule 91, 14.05.2019]
At 2005, the base station may identify a common BWP configuration for a UE, the common BWP configuration including information common to a set of BWPs and UE-specific information for the UE. The operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by a common BWP identifier as described with reference to FIGs. 12 through 15.
[Rectified under Rule 91, 14.05.2019]
At 2010, the base station may transmit, to the UE, the common BWP configuration. The operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by a BWP transmitter as described with reference to FIGs. 12 through 15.
[Rectified under Rule 91, 14.05.2019]
At 2015, the base station may transmit, to the UE, a group common SCell configuration indicating cell configuration information for a primary cell, a primary SCell, a set of SCells, or any combination thereof. The operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by a SCell transmitter as described with reference to FIGs. 12 through 15.
[Rectified under Rule 91, 14.05.2019]
At 2020, the base station may communicate with the UE using a BWP of the set of BWPs for communication based on the information common to the set of BWPs and the UE-specific information for the BWP. The operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by a communications module as described with reference to FIGs. 12 through 15.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and  transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk  (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein  means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.
APPENDIX A
Figure PCTCN2019080597-appb-000002
Figure PCTCN2019080597-appb-000003
Figure PCTCN2019080597-appb-000004
Figure PCTCN2019080597-appb-000005
Figure PCTCN2019080597-appb-000006
Figure PCTCN2019080597-appb-000007

Claims (92)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    receiving, from a base station, a common bandwidth part configuration comprising information common to a plurality of bandwidth parts and UE-specific information for the UE;
    configuring a bandwidth part of the plurality of bandwidth parts for communication based at least in part on the information common to the plurality of bandwidth parts and the UE-specific information for the bandwidth part; and
    communicating with the base station using the configured bandwidth part.
  2. The method of claim 1, wherein the information is common to multiple bandwidth parts of a serving cell.
  3. The method of claim 1, wherein the information is common to multiple bandwidth parts of all serving cells in one cell group.
  4. The method of claim 1, wherein the information is common to multiple bandwidth parts of all serving cells in one frequency range.
  5. The method of claim 1, wherein the information common to the plurality of bandwidth parts comprises uplink information and downlink information for a set of UEs including the UE.
  6. The method of claim 1, wherein the UE-specific information comprises uplink information and downlink information for the UE.
  7. The method of claim 1, further comprising:
    receiving a dedicated bandwidth part configuration from the base station, the dedicated bandwidth part configuration comprising UE-specific bandwidth part information for overriding the UE-specific information for the bandwidth part of the received common bandwidth part configuration.
  8. The method of claim 1, wherein the UE-specific information is common to the plurality of bandwidth parts.
  9. The method of claim 1, wherein the common bandwidth part configuration is based at least in part on an initial bandwidth part for a serving cell.
  10. The method of claim 1, wherein the common bandwidth part configuration comprises information for an initial active bandwidth part of the plurality of bandwidth parts.
  11. The method of claim 10, further comprising:
    receiving signaling from the base station indicating information for other bandwidth parts relative to the information for the initial active bandwidth part.
  12. The method of claim 11, wherein the signaling is received via radio resource control (RRC) signaling.
  13. The method of claim 1, wherein receiving the common bandwidth part configuration comprises:
    receiving the common bandwidth part configuration via radio resource control (RRC) signaling.
  14. The method of claim 1, wherein receiving the common bandwidth part configuration comprises:
    receiving the information common to the plurality of bandwidth parts via system information signaling; and
    receiving the UE-specific information via radio resource control (RRC) signaling.
  15. The method of claim 1, further comprising:
    receiving, from the base station, a group common secondary cell configuration indicating cell configuration information for a primary cell, a primary secondary cell, a set of secondary cells, or any combination thereof.
  16. The method of claim 15, wherein the group common secondary cell configuration indicates configuration information for a set of secondary cell group configurations and a master cell group configuration.
  17. The method of claim 15, wherein the group common secondary cell configuration is common to a plurality of serving cells in one cell group.
  18. The method of claim 15, wherein the group common secondary cell configuration is common to a plurality of serving cells in one frequency range.
  19. The method of claim 15, wherein the common bandwidth part configuration is included in the group common secondary cell configuration.
  20. The method of claim 15, further comprising:
    receiving the group common secondary cell configuration via radio resource control (RRC) signaling.
  21. The method of claim 15, wherein the common secondary cell configuration comprises an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information, secondary cell timer information, common bandwidth part information, dedicated bandwidth part information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
  22. The method of claim 1, wherein the common bandwidth part configuration comprises an indication of at least one of a bandwidth part, a bandwidth part location, a bandwidth part bandwidth, a bandwidth part subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space, a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping  information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
  23. A method for wireless communications at a base station, comprising:
    identifying a common bandwidth part configuration for a user equipment (UE) , the common bandwidth part configuration comprising information common to a plurality of bandwidth parts and UE-specific information for the UE;
    transmitting, to the UE, the common bandwidth part configuration; and
    communicating with the UE using a bandwidth part of the plurality of bandwidth parts for communication based at least in part on the information common to the plurality of bandwidth parts and the UE-specific information for the bandwidth part.
  24. The method of claim 23, wherein the information is common to multiple bandwidth parts of a serving cell.
  25. The method of claim 23, wherein the information is common to multiple bandwidth parts of all serving cells in one cell group.
  26. The method of claim 23, wherein the information is common to multiple bandwidth parts of all serving cells in one frequency range.
  27. The method of claim 23, wherein the information common to the plurality of bandwidth parts comprises uplink information and downlink information for a set of UEs including the UE.
  28. The method of claim 23, wherein the UE-specific information comprises uplink information and downlink information for the UE.
  29. The method of claim 23, further comprising:
    transmitting a dedicated bandwidth part configuration to the UE, the dedicated bandwidth part configuration comprising UE-specific bandwidth part information for overriding the UE-specific information for the bandwidth part of the common bandwidth part configuration.
  30. The method of claim 23, wherein the UE-specific information is common to the plurality of bandwidth parts.
  31. The method of claim 23, wherein the common bandwidth part configuration is based at least in part on an initial bandwidth part for a serving cell.
  32. The method of claim 23, wherein the common bandwidth part configuration comprises information for an initial active bandwidth part of the plurality of bandwidth parts.
  33. The method of claim 32, further comprising:
    transmitting signaling to the UE indicating information for other bandwidth parts relative to the information for the initial active bandwidth part.
  34. The method of claim 33, wherein the signaling is transmitted via radio resource control (RRC) signaling.
  35. The method of claim 23, wherein transmitting the common bandwidth part configuration comprises:
    transmitting the common bandwidth part configuration via radio resource control (RRC) signaling.
  36. The method of claim 23, wherein transmitting the common bandwidth part configuration comprises:
    transmitting the information common to the plurality of bandwidth parts via system information signaling; and
    transmitting the UE-specific information via radio resource control (RRC) signaling.
  37. The method of claim 23, further comprising:
    transmitting, to the UE, a group common secondary cell configuration indicating cell configuration information for a primary cell, a primary secondary cell, a set of secondary cells, or any combination thereof.
  38. The method of claim 37, wherein the group common secondary cell configuration indicates configuration information for a set of secondary cell group configurations and a master cell group configuration.
  39. The method of claim 37, wherein the group common secondary cell configuration is common to a plurality of serving cells in one cell group.
  40. The method of claim 37, wherein the group common secondary cell configuration is common to a plurality of serving cells in one frequency range.
  41. The method of claim 37, wherein the common bandwidth part configuration is included in the group common secondary cell configuration.
  42. The method of claim 37, further comprising:
    transmitting the group common secondary cell configuration via radio resource control (RRC) signaling.
  43. The method of claim 37, wherein the common secondary cell configuration comprises an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information, secondary cell timer information, common bandwidth part information, dedicated bandwidth part information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
  44. The method of claim 23, wherein the common bandwidth part configuration comprises an indication of at least one of a bandwidth part, a bandwidth part location, a bandwidth part bandwidth, a bandwidth part subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space, a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
  45. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory in electronic communication with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a base station, a common bandwidth part configuration comprising information common to a plurality of bandwidth parts and UE-specific information for the UE;
    configure a bandwidth part of the plurality of bandwidth parts for communication based at least in part on the information common to the plurality of bandwidth parts and the UE-specific information for the bandwidth part; and
    communicate with the base station using the configured bandwidth part.
  46. The apparatus of claim 45, wherein the information is common to multiple bandwidth parts of a serving cell.
  47. The apparatus of claim 45, wherein the information is common to multiple bandwidth parts of all serving cells in one cell group.
  48. The apparatus of claim 45, wherein the information is common to multiple bandwidth parts of all serving cells in one frequency range.
  49. The apparatus of claim 45, wherein the information common to the plurality of bandwidth parts comprises uplink information and downlink information for a set of UEs including the UE.
  50. The apparatus of claim 45, wherein the UE-specific information comprises uplink information and downlink information for the UE.
  51. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a dedicated bandwidth part configuration from the base station, the dedicated bandwidth part configuration comprising UE-specific bandwidth part information  for overriding the UE-specific information for the bandwidth part of the received common bandwidth part configuration.
  52. The apparatus of claim 45, wherein the UE-specific information is common to the plurality of bandwidth parts.
  53. The apparatus of claim 45, wherein the common bandwidth part configuration is based at least in part on an initial bandwidth part for a serving cell.
  54. The apparatus of claim 45, wherein the common bandwidth part configuration comprises information for an initial active bandwidth part of the plurality of bandwidth parts.
  55. The apparatus of claim 54, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive signaling from the base station indicating information for other bandwidth parts relative to the information for the initial active bandwidth part.
  56. The apparatus of claim 55, wherein the signaling is received via radio resource control (RRC) signaling.
  57. The apparatus of claim 45, wherein the instructions to receive the common bandwidth part configuration are executable by the processor to cause the apparatus to:
    receive the common bandwidth part configuration via radio resource control (RRC) signaling.
  58. The apparatus of claim 45, wherein the instructions to receive the common bandwidth part configuration are executable by the processor to cause the apparatus to:
    receive the information common to the plurality of bandwidth parts via system information signaling; and
    receive the UE-specific information via radio resource control (RRC) signaling.
  59. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the base station, a group common secondary cell configuration indicating cell configuration information for a primary cell, a primary secondary cell, a set of secondary cells, or any combination thereof.
  60. The apparatus of claim 59, wherein the group common secondary cell configuration indicates configuration information for a set of secondary cell group configurations and a master cell group configuration.
  61. The apparatus of claim 59, wherein the group common secondary cell configuration is common to a plurality of serving cells in one cell group.
  62. The apparatus of claim 59, wherein the group common secondary cell configuration is common to a plurality of serving cells in one frequency range.
  63. The apparatus of claim 59, wherein the common bandwidth part configuration is included in the group common secondary cell configuration.
  64. The apparatus of claim 59, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive the group common secondary cell configuration via radio resource control (RRC) signaling.
  65. The apparatus of claim 59, wherein the common secondary cell configuration comprises an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information, secondary cell timer information, common bandwidth part information, dedicated bandwidth part information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
  66. The apparatus of claim 45, wherein the common bandwidth part configuration comprises an indication of at least one of a bandwidth part, a bandwidth part location, a bandwidth part bandwidth, a bandwidth part subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space, a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
  67. An apparatus for wireless communications at a base station, comprising:
    a processor,
    memory in electronic communication with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a common bandwidth part configuration for a user equipment (UE) , the common bandwidth part configuration comprising information common to a plurality of bandwidth parts and UE-specific information for the UE;
    transmit, to the UE, the common bandwidth part configuration; and
    communicate with the UE using a bandwidth part of the plurality of bandwidth parts for communication based at least in part on the information common to the plurality of bandwidth parts and the UE-specific information for the bandwidth part.
  68. The apparatus of claim 67, wherein the information is common to multiple bandwidth parts of a serving cell.
  69. The apparatus of claim 67, wherein the information is common to multiple bandwidth parts of all serving cells in one cell group.
  70. The apparatus of claim 67, wherein the information is common to multiple bandwidth parts of all serving cells in one frequency range.
  71. The apparatus of claim 67, wherein the information common to the plurality of bandwidth parts comprises uplink information and downlink information for a set of UEs including the UE.
  72. The apparatus of claim 67, wherein the UE-specific information comprises uplink information and downlink information for the UE.
  73. The apparatus of claim 67, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a dedicated bandwidth part configuration to the UE, the dedicated bandwidth part configuration comprising UE-specific bandwidth part information for overriding the UE-specific information for the bandwidth part of the common bandwidth part configuration.
  74. The apparatus of claim 67, wherein the UE-specific information is common to the plurality of bandwidth parts.
  75. The apparatus of claim 67, wherein the common bandwidth part configuration is based at least in part on an initial bandwidth part for a serving cell.
  76. The apparatus of claim 67, wherein the common bandwidth part configuration comprises information for an initial active bandwidth part of the plurality of bandwidth parts.
  77. The apparatus of claim 76, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit signaling to the UE indicating information for other bandwidth parts relative to the information for the initial active bandwidth part.
  78. The apparatus of claim 77, wherein the signaling is transmitted via radio resource control (RRC) signaling.
  79. The apparatus of claim 67, wherein the instructions to transmit the common bandwidth part configuration are executable by the processor to cause the apparatus to:
    transmit the common bandwidth part configuration via radio resource control (RRC) signaling.
  80. The apparatus of claim 67, wherein the instructions to transmit the common bandwidth part configuration are executable by the processor to cause the apparatus to:
    transmit the information common to the plurality of bandwidth parts via system information signaling; and
    transmit the UE-specific information via radio resource control (RRC) signaling.
  81. The apparatus of claim 67, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the UE, a group common secondary cell configuration indicating cell configuration information for a primary cell, a primary secondary cell, a set of secondary cells, or any combination thereof.
  82. The apparatus of claim 81, wherein the group common secondary cell configuration indicates configuration information for a set of secondary cell group configurations and a master cell group configuration.
  83. The apparatus of claim 81, wherein the group common secondary cell configuration is common to a plurality of serving cells in one cell group.
  84. The apparatus of claim 81, wherein the group common secondary cell configuration is common to a plurality of serving cells in one frequency range.
  85. The apparatus of claim 81, wherein the common bandwidth part configuration is included in the group common secondary cell configuration.
  86. The apparatus of claim 81, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit the group common secondary cell configuration via radio resource control (RRC) signaling.
  87. The apparatus of claim 81, wherein the common secondary cell configuration comprises an indication of at least one of a downlink configuration, a timing advance, a synchronization signal block configuration, cell reference signal information, a rate matching configuration, a time division duplexing configuration, an uplink configuration, secondary component carrier information, demodulation reference signal information, cross carrier scheduling information, secondary cell timer information, common bandwidth part information, dedicated bandwidth part information, a channel state information measurement configuration, downlink control channel serving cell information, downlink shared data channel serving cell information, or any combination thereof.
  88. The apparatus of claim 67, wherein the common bandwidth part configuration comprises an indication of at least one of a bandwidth part, a bandwidth part location, a bandwidth part bandwidth, a bandwidth part subcarrier spacing, a cyclic prefix type, a shared data channel configuration, shared data channel timing information, a control channel configuration, a control resource set, a common search space, a semi-persistent scheduling configuration, demodulation reference signal information, rate matching information, power control information, radio link management configuration, hopping information, a random access configuration, a sounding reference signal configuration, or a beam failure recovery configuration, or any combination thereof.
  89. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for receiving, from a base station, a common bandwidth part configuration comprising information common to a plurality of bandwidth parts and UE-specific information for the UE;
    means for configuring a bandwidth part of the plurality of bandwidth parts for communication based at least in part on the information common to the plurality of bandwidth parts and the UE-specific information for the bandwidth part; and
    means for communicating with the base station using the configured bandwidth part.
  90. An apparatus for wireless communications at a base station, comprising:
    means for identifying a common bandwidth part configuration for a user equipment (UE) , the common bandwidth part configuration comprising information common to a plurality of bandwidth parts and UE-specific information for the UE;
    means for transmitting, to the UE, the common bandwidth part configuration; and
    means for communicating with the UE using a bandwidth part of the plurality of bandwidth parts for communication based at least in part on the information common to the plurality of bandwidth parts and the UE-specific information for the bandwidth part.
  91. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, from a base station, a common bandwidth part configuration comprising information common to a plurality of bandwidth parts and UE-specific information for the UE;
    configure a bandwidth part of the plurality of bandwidth parts for communication based at least in part on the information common to the plurality of bandwidth parts and the UE-specific information for the bandwidth part; and
    communicate with the base station using the configured bandwidth part.
  92. A non-transitory computer-readable medium storing code for wireless communications at a base station, the code comprising instructions executable by a processor to:
    identify a common bandwidth part configuration for a user equipment (UE) , the common bandwidth part configuration comprising information common to a plurality of bandwidth parts and UE-specific information for the UE;
    transmit, to the UE, the common bandwidth part configuration; and
    communicate with the UE using a bandwidth part of the plurality of bandwidth parts for communication based at least in part on the information common to the plurality of bandwidth parts and the UE-specific information for the bandwidth part.
PCT/CN2019/080597 2019-03-29 2019-03-29 Group based secondary cell and common bandwidth part configuration WO2020199006A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080597 WO2020199006A1 (en) 2019-03-29 2019-03-29 Group based secondary cell and common bandwidth part configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080597 WO2020199006A1 (en) 2019-03-29 2019-03-29 Group based secondary cell and common bandwidth part configuration

Publications (1)

Publication Number Publication Date
WO2020199006A1 true WO2020199006A1 (en) 2020-10-08

Family

ID=72664379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080597 WO2020199006A1 (en) 2019-03-29 2019-03-29 Group based secondary cell and common bandwidth part configuration

Country Status (1)

Country Link
WO (1) WO2020199006A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309550A (en) * 2017-07-26 2019-02-05 维沃移动通信有限公司 A kind of control method of BWP, relevant device and system
US20190044689A1 (en) * 2017-09-28 2019-02-07 Intel IP Corporation Bandwidth part signaling and measurement handling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309550A (en) * 2017-07-26 2019-02-05 维沃移动通信有限公司 A kind of control method of BWP, relevant device and system
US20190044689A1 (en) * 2017-09-28 2019-02-07 Intel IP Corporation Bandwidth part signaling and measurement handling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "BWP and random access", 3GPP TSG-RAN WG1 91, R1-1721425, 1 December 2017 (2017-12-01), XP051363879, DOI: 20191218124541A *

Similar Documents

Publication Publication Date Title
US11848874B2 (en) Virtual search spaces for beam indication
US11425714B2 (en) Resolving slot format conflicts for wireless systems
US10757583B2 (en) Uplink-based positioning reference signaling in multi-beam systems
US11722351B2 (en) Interference mitigation for full-duplex communication
EP3662607B1 (en) Slot structure linkage in wireless systems
WO2020033901A1 (en) Multiple timing advance design for multiple transmit receive points
US11202308B2 (en) Resource allocation pattern signaling for mini-slots
US11722181B2 (en) Default quasi co-location assumption for cross carrier reference signal triggering
US11172457B2 (en) Transmission configuration indication state ordering for an initial control resource set
US10554448B2 (en) Dynamic scheduling of data patterns for shortened transmission time intervals
US11509447B2 (en) Enhanced carrier aggregation management
WO2021129594A1 (en) Determining whether an uplink switching gap is to be applied between changes in radio frequency status of a user equipment
US20200351987A1 (en) Methods, apparatuses and systems for dynamic spectrum sharing between legacy and next generation networks
US11489638B2 (en) Measurement report triggering techniques for multiple component carriers
US11363493B2 (en) Carrier aggregation configurations in wireless systems
WO2020199006A1 (en) Group based secondary cell and common bandwidth part configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923525

Country of ref document: EP

Kind code of ref document: A1