WO2020197085A1 - Bdof 기반의 인터 예측 방법 및 장치 - Google Patents

Bdof 기반의 인터 예측 방법 및 장치 Download PDF

Info

Publication number
WO2020197085A1
WO2020197085A1 PCT/KR2020/001869 KR2020001869W WO2020197085A1 WO 2020197085 A1 WO2020197085 A1 WO 2020197085A1 KR 2020001869 W KR2020001869 W KR 2020001869W WO 2020197085 A1 WO2020197085 A1 WO 2020197085A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
bdof
current block
dmvr
flag information
Prior art date
Application number
PCT/KR2020/001869
Other languages
English (en)
French (fr)
Inventor
박내리
남정학
장형문
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020197085A1 publication Critical patent/WO2020197085A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • This document relates to an image coding technology, and more particularly, to a method and apparatus for performing inter prediction based on a bi-directional optical flow (BDOF).
  • BDOF bi-directional optical flow
  • VR Virtual Reality
  • AR Artificial Realtiy
  • high-efficiency video/video compression technology is required in order to effectively compress, transmit, store, and reproduce information of high-resolution, high-quality video/video having various characteristics as described above.
  • the technical problem of this document is to provide a method and apparatus for increasing image coding efficiency.
  • Another technical problem of this document is to provide an efficient inter prediction method and apparatus.
  • Another technical challenge of this document is to provide a method and apparatus for performing inter prediction based on DMVR (Decoder-side Motion Vector Refinement).
  • Another technical problem of this document is to provide a method and apparatus for performing inter prediction based on a bi-directional optical flow (BDOF).
  • BDOF bi-directional optical flow
  • Another technical problem of this document is to provide a method and apparatus for improving prediction performance by providing a condition for determining whether to apply a DMVR to improve image coding efficiency and/or a condition for determining whether to apply a BDOF. have.
  • an image decoding method performed by a decoding apparatus includes deriving an L0 motion vector and an L1 motion vector of the current block, and derives L1 prediction samples of the current block based on the L0 motion vector and L0 prediction samples of the current block based on the L0 motion vector.
  • Deriving BDOF flag information indicating whether to apply a bi-directional optical flow (BDOF) to the current block when the BDOF flag information indicates to apply BDOF to the current block, Applying BDOF to the current block, deriving prediction samples for the current block based on the L0 prediction samples and the L1 prediction samples, and reconstructing samples for the current block based on the prediction samples Generating, and inducing the BDOF flag information, when the height of the current block is greater than 4, inducing the BDOF flag information by applying a BDOF to the current block.
  • BDOF bi-directional optical flow
  • a video encoding method performed by an encoding device includes deriving an L0 motion vector and an L1 motion vector of the current block, and derives L1 prediction samples of the current block based on the L0 motion vector and L0 prediction samples of the current block based on the L0 motion vector.
  • Deriving BDOF flag information indicating whether to apply a bi-directional optical flow (BDOF) to the current block, when the BDOF flag information indicates to apply BDOF to the current block, Applying BDOF to the current block, deriving prediction samples for the current block based on the L0 prediction samples and the L1 prediction samples, deriving residual samples based on the prediction samples, and And encoding image information including information on the residual samples, and the deriving of the BDOF flag information includes: when the height of the current block is greater than 4, the current block is It is characterized in that the BDOF flag information is derived by applying the BDOF.
  • BDOF flag information is derived by applying the BDOF.
  • FIG. 1 schematically shows an example of a video/image coding system that can be applied to embodiments of this document.
  • FIG. 2 is a diagram schematically illustrating a configuration of a video/video encoding apparatus applicable to embodiments of the present document.
  • FIG. 3 is a diagram schematically illustrating a configuration of a video/video decoding apparatus applicable to embodiments of the present document.
  • FIG. 4 is a diagram for explaining an embodiment of a process of performing a decoder-side motion vector refinement (DMVR) in true pair prediction.
  • DMVR decoder-side motion vector refinement
  • FIG. 5 is a view for explaining an embodiment of a process of performing a decoder-side motion vector refinement (DMVR) using sum of absolute differences (SAD).
  • DMVR decoder-side motion vector refinement
  • SAD sum of absolute differences
  • 6 is an example of a method of performing a decoding process by checking an application condition of DMVR and BDOF.
  • 7 and 8 are other examples showing a method of performing a decoding process by checking an application condition of DMVR and BDOF.
  • FIG. 10 is a flowchart schematically illustrating an encoding method that can be performed by an encoding apparatus according to an embodiment of the present document.
  • FIG. 11 is a flowchart schematically illustrating a decoding method that can be performed by a decoding apparatus according to an embodiment of the present document.
  • FIG. 12 shows an example of a content streaming system to which the embodiments disclosed in this document can be applied.
  • FIG. 13 is a diagram schematically showing an example of a service system including a digital device.
  • FIG. 14 is a block diagram illustrating a configuration of a digital device according to an embodiment.
  • 15 is a block diagram illustrating a configuration of a digital device according to another embodiment.
  • each of the components in the drawings described in this document is independently illustrated for convenience of description of different characteristic functions, and does not mean that each component is implemented as separate hardware or separate software.
  • two or more of the configurations may be combined to form one configuration, or one configuration may be divided into a plurality of configurations.
  • Embodiments in which each configuration is integrated and/or separated are also included in the scope of the rights of this document, unless departing from the essence of this document.
  • VVC versatile video coding
  • EVC essential video coding
  • AV1 AOMedia Video 1
  • AVS2 2nd generation of audio video coding standard
  • next-generation video/ It can be applied to a method disclosed in an image coding standard (ex. H.267 or H.268, etc.).
  • video may mean a set of images over time.
  • a picture generally refers to a unit representing one image in a specific time period, and a slice/tile is a unit constituting a part of a picture in coding.
  • a slice/tile may include one or more coding tree units (CTU).
  • CTU coding tree units
  • One picture may be composed of one or more slices/tiles.
  • One picture may consist of one or more tile groups.
  • One tile group may include one or more tiles.
  • a brick may represent a rectangular region of CTU rows within a tile in a picture.
  • a tile may be partitioned into multiple bricks, each of which consisting of one or more CTU rows within the tile. ).
  • a tile that is not partitioned into multiple bricks may be also referred to as a brick.
  • a brick scan may represent a specific sequential ordering of CTUs partitioning a picture
  • the CTUs may be arranged in a CTU raster scan within a brick
  • bricks in a tile may be sequentially arranged in a raster scan of the bricks of the tile.
  • tiles in a picture may be sequentially aligned by raster scan of the tiles of the picture
  • a brick scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a brick.
  • bricks within a tile are ordered consecutively in a raster scan of the bricks of the tile
  • tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture).
  • a tile is a rectangular region of CTUs within a particular tile column and a particular tile row in a picture.
  • the tile column is a rectangular region of CTUs, the rectangular region has a height equal to the height of the picture, and the width may be specified by syntax elements in a picture parameter set (The tile column is a rectangular region of CTUs having a height equal to the height of the picture and a width specified by syntax elements in the picture parameter set).
  • the tile row is a rectangular region of CTUs, the rectangular region has a width specified by syntax elements in a picture parameter set, and a height may be the same as the height of the picture (The tile row is a rectangular region of CTUs having a height specified by syntax elements in the picture parameter set and a width equal to the width of the picture).
  • a tile scan may represent a specific sequential ordering of CTUs that partition a picture, the CTUs may be sequentially arranged in a CTU raster scan in a tile, and tiles in a picture may be sequentially arranged in a raster scan of the tiles of the picture.
  • a tile scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a tile whereas tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture).
  • a slice may include an integer number of bricks of a picture, and the integer number of bricks may be included in one NAL unit (A slice includes an integer number of bricks of a picture that may be exclusively contained in a single NAL unit).
  • a slice may consist of either a number of complete tiles or only a consecutive sequence of complete bricks of one tile. ).
  • Tile groups and slices can be used interchangeably in this document.
  • the tile group/tile group header may be referred to as a slice/slice header.
  • a pixel or pel may mean a minimum unit constituting one picture (or image).
  • sample' may be used as a term corresponding to a pixel.
  • a sample may generally represent a pixel or a value of a pixel, may represent only a pixel/pixel value of a luma component, or may represent only a pixel/pixel value of a chroma component.
  • the sample may mean a pixel value in the spatial domain, and when such a pixel value is converted to the frequency domain, it may mean a transform coefficient in the frequency domain.
  • a unit may represent a basic unit of image processing.
  • the unit may include at least one of a specific area of a picture and information related to the corresponding area.
  • One unit may include one luma block and two chroma (ex. cb, cr) blocks.
  • the unit may be used interchangeably with terms such as a block or an area depending on the case.
  • the MxN block may include samples (or sample arrays) consisting of M columns and N rows, or a set (or array) of transform coefficients.
  • FIG. 1 schematically shows an example of a video/image coding system that can be applied to embodiments of this document.
  • a video/image coding system may include a first device (a source device) and a second device (a receiving device).
  • the source device may transmit the encoded video/image information or data in a file or streaming form to the receiving device through a digital storage medium or a network.
  • the source device may include a video source, an encoding device, and a transmission unit.
  • the receiving device may include a receiving unit, a decoding device, and a renderer.
  • the encoding device may be referred to as a video/image encoding device, and the decoding device may be referred to as a video/image decoding device.
  • the transmitter may be included in the encoding device.
  • the receiver may be included in the decoding device.
  • the renderer may include a display unit, and the display unit may be configured as a separate device or an external component.
  • the video source may acquire a video/image through a process of capturing, synthesizing, or generating a video/image.
  • the video source may include a video/image capturing device and/or a video/image generating device.
  • the video/image capture device may include, for example, one or more cameras, a video/image archive including previously captured video/images, and the like.
  • the video/image generating device may include, for example, a computer, a tablet and a smartphone, and may (electronically) generate a video/image.
  • a virtual video/image may be generated through a computer or the like, and in this case, a video/image capturing process may be substituted as a process of generating related data.
  • the encoding device may encode the input video/video.
  • the encoding apparatus may perform a series of procedures such as prediction, transformation, and quantization for compression and coding efficiency.
  • the encoded data (encoded video/video information) may be output in the form of a bitstream.
  • the transmission unit may transmit the encoded video/video information or data output in the form of a bitstream to the reception unit of the receiving device through a digital storage medium or a network in a file or streaming form.
  • Digital storage media may include various storage media such as USB, SD, CD, DVD, Blu-ray, HDD, and SSD.
  • the transmission unit may include an element for generating a media file through a predetermined file format, and may include an element for transmission through a broadcast/communication network.
  • the receiver may receive/extract the bitstream and transmit it to the decoding device.
  • the decoding device may decode the video/image by performing a series of procedures such as inverse quantization, inverse transformation, and prediction corresponding to the operation of the encoding device.
  • the renderer can render the decoded video/video.
  • the rendered video/image may be displayed through the display unit.
  • FIG. 2 is a diagram schematically illustrating a configuration of a video/video encoding apparatus applicable to embodiments of the present document.
  • the video encoding device may include an image encoding device.
  • the encoding device 200 includes an image partitioner 210, a predictor 220, a residual processor 230, an entropy encoder 240, and It may be configured to include an adder 250, a filter 260, and a memory 270.
  • the prediction unit 220 may include an inter prediction unit 221 and an intra prediction unit 222.
  • the residual processing unit 230 may include a transform unit 232, a quantizer 233, an inverse quantizer 234, and an inverse transformer 235.
  • the residual processing unit 230 may further include a subtractor 231.
  • the addition unit 250 may be referred to as a reconstructor or a recontructged block generator.
  • the image segmentation unit 210, the prediction unit 220, the residual processing unit 230, the entropy encoding unit 240, the addition unit 250, and the filtering unit 260 described above may include one or more hardware components (for example, it may be configured by an encoder chipset or a processor).
  • the memory 270 may include a decoded picture buffer (DPB), and may be configured by a digital storage medium.
  • the hardware component may further include the memory 270 as an internal/external component.
  • the image segmentation unit 210 may divide an input image (or picture, frame) input to the encoding apparatus 200 into one or more processing units.
  • the processing unit may be referred to as a coding unit (CU).
  • the coding unit is recursively divided according to the QTBTTT (Quad-tree binary-tree ternary-tree) structure from a coding tree unit (CTU) or a largest coding unit (LCU).
  • QTBTTT Quad-tree binary-tree ternary-tree
  • CTU coding tree unit
  • LCU largest coding unit
  • one coding unit may be divided into a plurality of coding units of a deeper depth based on a quad tree structure, a binary tree structure, and/or a ternary structure.
  • a quad tree structure may be applied first, and a binary tree structure and/or a ternary structure may be applied later.
  • the binary tree structure may be applied first.
  • the coding procedure according to this document may be performed based on the final coding unit that is no longer divided. In this case, based on the coding efficiency according to the image characteristics, the maximum coding unit can be directly used as the final coding unit, or if necessary, the coding unit is recursively divided into coding units of lower depth to be optimal. A coding unit of the size of may be used as the final coding unit.
  • the coding procedure may include a procedure such as prediction, transformation, and restoration described later.
  • the processing unit may further include a prediction unit (PU) or a transform unit (TU).
  • the prediction unit and the transform unit may be divided or partitioned from the above-described final coding unit, respectively.
  • the prediction unit may be a unit of sample prediction
  • the transform unit may be a unit for inducing a transform coefficient and/or a unit for inducing a residual signal from the transform coefficient.
  • the unit may be used interchangeably with terms such as a block or an area depending on the case.
  • the MxN block may represent a set of samples or transform coefficients consisting of M columns and N rows.
  • a sample may represent a pixel or a value of a pixel, may represent only a pixel/pixel value of a luminance component, or may represent only a pixel/pixel value of a saturation component.
  • a sample may be used as a term corresponding to one picture (or image) as a pixel or pel.
  • the encoding apparatus 200 subtracts the prediction signal (predicted block, prediction sample array) output from the inter prediction unit 221 or the intra prediction unit 222 from the input video signal (original block, original sample array) to make a residual.
  • a signal residual signal, residual block, residual sample array
  • a unit that subtracts the prediction signal (prediction block, prediction sample array) from the input image signal (original block, original sample array) in the encoder 200 may be referred to as a subtraction unit 231.
  • the prediction unit may perform prediction on a block to be processed (hereinafter, referred to as a current block) and generate a predicted block including prediction samples for the current block.
  • the prediction unit may determine whether intra prediction or inter prediction is applied in units of the current block or CU.
  • the prediction unit may generate various information related to prediction, such as prediction mode information, as described later in the description of each prediction mode, and transmit it to the entropy encoding unit 240.
  • the information on prediction may be encoded by the entropy encoding unit 240 and output in the form of a bitstream.
  • the intra prediction unit 222 may predict the current block by referring to samples in the current picture.
  • the referenced samples may be located in the vicinity of the current block or may be located apart according to the prediction mode.
  • prediction modes may include a plurality of non-directional modes and a plurality of directional modes.
  • the non-directional mode may include, for example, a DC mode and a planar mode (Planar mode).
  • the directional mode may include, for example, 33 directional prediction modes or 65 directional prediction modes according to a detailed degree of the prediction direction. However, this is an example, and more or less directional prediction modes may be used depending on the setting.
  • the intra prediction unit 222 may determine a prediction mode applied to the current block by using the prediction mode applied to the neighboring block.
  • the inter prediction unit 221 may derive a predicted block for the current block based on a reference block (reference sample array) specified by a motion vector on the reference picture.
  • motion information may be predicted in units of blocks, subblocks, or samples based on correlation between motion information between neighboring blocks and the current block.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include inter prediction direction (L0 prediction, L1 prediction, Bi prediction, etc.) information.
  • the neighboring block may include a spatial neighboring block existing in the current picture and a temporal neighboring block existing in the reference picture.
  • the reference picture including the reference block and the reference picture including the temporal neighboring block may be the same or different.
  • the temporal neighboring block may be called a collocated reference block, a co-located CU (colCU), and the like, and a reference picture including the temporal neighboring block may be referred to as a collocated picture (colPic).
  • the inter prediction unit 221 constructs a motion information candidate list based on neighboring blocks, and provides information indicating which candidate is used to derive a motion vector and/or a reference picture index of the current block. Can be generated. Inter prediction may be performed based on various prediction modes.
  • the inter prediction unit 221 may use motion information of a neighboring block as motion information of a current block.
  • a residual signal may not be transmitted.
  • MVP motion vector prediction
  • the motion vector of the current block is calculated by using the motion vector of the neighboring block as a motion vector predictor and signaling a motion vector difference. I can instruct.
  • the prediction unit 220 may generate a prediction signal based on various prediction methods to be described later.
  • the prediction unit may apply intra prediction or inter prediction for prediction of one block, as well as simultaneously apply intra prediction and inter prediction. This can be called combined inter and intra prediction (CIIP).
  • the prediction unit may be based on an intra block copy (IBC) prediction mode or a palette mode to predict a block.
  • IBC intra block copy
  • the IBC prediction mode or the palette mode may be used for content image/video coding such as a game, for example, screen content coding (SCC).
  • SCC screen content coding
  • IBC basically performs prediction in the current picture, but can be performed similarly to inter prediction in that it derives a reference block in the current picture. That is, the IBC may use at least one of the inter prediction techniques described in this document.
  • the palette mode can be viewed as an example of intra coding or intra prediction. When the palette mode is applied, a sample value in a picture may be signaled based on information about a palette table and
  • the prediction signal generated through the prediction unit may be used to generate a reconstructed signal or may be used to generate a residual signal.
  • the transform unit 232 may generate transform coefficients by applying a transform technique to the residual signal.
  • the transformation technique is DCT (Discrete Cosine Transform), DST (Discrete Sine Transform), KLT ( ), GBT (Graph-Based Transform), or CNT (Conditionally Non-linear Transform) may include at least one.
  • GBT refers to the transformation obtained from this graph when the relationship information between pixels is expressed in a graph.
  • CNT refers to a transformation obtained based on generating a prediction signal using all previously reconstructed pixels.
  • the conversion process may be applied to a pixel block having the same size of a square, or may be applied to a block having a variable size other than a square.
  • the quantization unit 233 quantizes the transform coefficients and transmits it to the entropy encoding unit 240, and the entropy encoding unit 240 encodes the quantized signal (information on quantized transform coefficients) and outputs it as a bitstream. have.
  • the information on the quantized transform coefficients may be called residual information.
  • the quantization unit 233 may rearrange the quantized transform coefficients in the form of blocks into a one-dimensional vector form based on a coefficient scan order, and the quantized transform coefficients in the form of the one-dimensional vector It is also possible to generate information about transform coefficients.
  • the entropy encoding unit 240 may perform various encoding methods such as exponential Golomb, context-adaptive variable length coding (CAVLC), and context-adaptive binary arithmetic coding (CABAC).
  • the entropy encoding unit 240 may encode together or separately information necessary for video/image reconstruction (eg, values of syntax elements) in addition to quantized transform coefficients.
  • the encoded information (eg, encoded video/video information) may be transmitted or stored in a bitstream format in units of network abstraction layer (NAL) units.
  • the video/video information may further include information on various parameter sets, such as an adaptation parameter set (APS), a picture parameter set (PPS), a sequence parameter set (SPS), or a video parameter set (VPS).
  • the video/video information may further include general constraint information.
  • information and/or syntax elements transmitted/signaled from the encoding device to the decoding device may be included in the video/video information.
  • the video/video information may be encoded through the above-described encoding procedure and included in the bitstream.
  • the bitstream may be transmitted through a network or may be stored in a digital storage medium.
  • the network may include a broadcasting network and/or a communication network
  • the digital storage medium may include various storage media such as USB, SD, CD, DVD, Blu-ray, HDD, and SSD.
  • a transmission unit for transmitting and/or a storage unit (not shown) for storing may be configured as an internal/external element of the encoding apparatus 200, or the transmission unit It may be included in the entropy encoding unit 240.
  • the quantized transform coefficients output from the quantization unit 233 may be used to generate a prediction signal.
  • a residual signal residual block or residual samples
  • the addition unit 155 adds the reconstructed residual signal to the prediction signal output from the inter prediction unit 221 or the intra prediction unit 222 to obtain a reconstructed signal (restored picture, reconstructed block, reconstructed sample array). Can be created.
  • the predicted block may be used as a reconstructed block.
  • the addition unit 250 may be referred to as a restoration unit or a restoration block generation unit.
  • the generated reconstructed signal may be used for intra prediction of the next processing target block in the current picture, and may be used for inter prediction of the next picture through filtering as described later.
  • LMCS luma mapping with chroma scaling
  • the filtering unit 260 may improve subjective/objective image quality by applying filtering to the reconstructed signal.
  • the filtering unit 260 may apply various filtering methods to the reconstructed picture to generate a modified reconstructed picture, and the modified reconstructed picture may be converted to the memory 270, specifically, the DPB of the memory 270. Can be saved on.
  • the various filtering methods may include, for example, deblocking filtering, sample adaptive offset, adaptive loop filter, bilateral filter, and the like.
  • the filtering unit 260 may generate a variety of filtering information and transmit it to the entropy encoding unit 240 as described later in the description of each filtering method.
  • the filtering information may be encoded by the entropy encoding unit 240 and output in the form of a bitstream.
  • the modified reconstructed picture transmitted to the memory 270 may be used as a reference picture in the inter prediction unit 221.
  • the encoding device may avoid prediction mismatch between the encoding device 100 and the decoding device, and may improve encoding efficiency.
  • the memory 270 DPB may store the modified reconstructed picture for use as a reference picture in the inter prediction unit 221.
  • the memory 270 may store motion information of a block from which motion information in a current picture is derived (or encoded) and/or motion information of blocks in a picture that have already been reconstructed.
  • the stored motion information may be transferred to the inter prediction unit 221 in order to be used as motion information of spatial neighboring blocks or motion information of temporal neighboring blocks.
  • the memory 270 may store reconstructed samples of reconstructed blocks in the current picture, and may be transmitted to the intra prediction unit 222.
  • FIG. 3 is a diagram schematically illustrating a configuration of a video/video decoding apparatus applicable to embodiments of the present document.
  • the decoding apparatus 300 includes an entropy decoder 310, a residual processor 320, a predictor 330, an adder 340, and a filtering unit. It may be configured to include (filter, 350) and memory (memoery) 360.
  • the prediction unit 330 may include an inter prediction unit 331 and an intra prediction unit 332.
  • the residual processing unit 320 may include a dequantizer 321 and an inverse transformer 321.
  • the entropy decoding unit 310, the residual processing unit 320, the prediction unit 330, the addition unit 340, and the filtering unit 350 described above are one hardware component (for example, a decoder chipset or a processor). ) Can be configured.
  • the memory 360 may include a decoded picture buffer (DPB), and may be configured by a digital storage medium.
  • the hardware component may further include the memory 360 as an internal/external component.
  • the decoding apparatus 300 may reconstruct an image in response to a process in which the video/image information is processed by the encoding apparatus of FIG. 2. For example, the decoding apparatus 300 may derive units/blocks based on block division related information obtained from the bitstream.
  • the decoding device 300 may perform decoding using a processing unit applied in the encoding device.
  • the processing unit of decoding may be, for example, a coding unit, and the coding unit may be divided from a coding tree unit or a maximum coding unit along a quad tree structure, a binary tree structure and/or a ternary tree structure.
  • One or more transform units may be derived from the coding unit.
  • the reconstructed image signal decoded and output through the decoding device 300 may be reproduced through the playback device.
  • the decoding apparatus 300 may receive a signal output from the encoding apparatus of FIG. 2 in the form of a bitstream, and the received signal may be decoded through the entropy decoding unit 310.
  • the entropy decoding unit 310 may parse the bitstream to derive information (eg, video/video information) necessary for image restoration (or picture restoration).
  • the video/video information may further include information on various parameter sets, such as an adaptation parameter set (APS), a picture parameter set (PPS), a sequence parameter set (SPS), or a video parameter set (VPS).
  • the video/video information may further include general constraint information.
  • the decoding apparatus may further decode the picture based on the information on the parameter set and/or the general restriction information.
  • Signaled/received information and/or syntax elements described later in this document may be decoded through the decoding procedure and obtained from the bitstream.
  • the entropy decoding unit 310 decodes information in the bitstream based on a coding method such as exponential Golomb coding, CAVLC, or CABAC, and a value of a syntax element required for image restoration, a quantized value of a transform coefficient related to a residual. Can be printed.
  • the CABAC entropy decoding method receives a bin corresponding to each syntax element in a bitstream, and includes information on a syntax element to be decoded and information on a neighboring and decoding target block or information on a symbol/bin decoded in a previous step.
  • a context model is determined using the context model, and a symbol corresponding to the value of each syntax element can be generated by performing arithmetic decoding of the bin by predicting the probability of occurrence of a bin according to the determined context model.
  • the CABAC entropy decoding method may update the context model using information of the decoded symbol/bin for the context model of the next symbol/bin after the context model is determined.
  • information about prediction is provided to a prediction unit (inter prediction unit 332 and intra prediction unit 331), and entropy decoding is performed by the entropy decoding unit 310.
  • the dual value that is, quantized transform coefficients and related parameter information may be input to the residual processing unit 320.
  • the residual processing unit 320 may derive a residual signal (a residual block, residual samples, and a residual sample array).
  • information about filtering among information decoded by the entropy decoding unit 310 may be provided to the filtering unit 350.
  • a receiver (not shown) for receiving a signal output from the encoding device may be further configured as an inner/outer element of the decoding device 300, or the receiver may be a component of the entropy decoding unit 310.
  • the decoding apparatus may be called a video/video/picture decoding apparatus, and the decoding apparatus can be divided into an information decoder (video/video/picture information decoder) and a sample decoder (video/video/picture sample decoder). May be.
  • the information decoder may include the entropy decoding unit 310, and the sample decoder includes the inverse quantization unit 321, an inverse transform unit 322, an addition unit 340, a filtering unit 350, and a memory 360. ), an inter prediction unit 332 and an intra prediction unit 331 may be included.
  • the inverse quantization unit 321 may inverse quantize the quantized transform coefficients and output transform coefficients.
  • the inverse quantization unit 321 may rearrange the quantized transform coefficients in a two-dimensional block shape. In this case, the rearrangement may be performed based on the coefficient scan order performed by the encoding device.
  • the inverse quantization unit 321 may perform inverse quantization on quantized transform coefficients by using a quantization parameter (for example, quantization step size information) and obtain transform coefficients.
  • a quantization parameter for example, quantization step size information
  • the inverse transform unit 322 obtains a residual signal (residual block, residual sample array) by inverse transforming the transform coefficients.
  • the prediction unit may perform prediction on the current block and generate a predicted block including prediction samples for the current block.
  • the prediction unit may determine whether intra prediction or inter prediction is applied to the current block based on the information about the prediction output from the entropy decoding unit 310, and may determine a specific intra/inter prediction mode.
  • the prediction unit 320 may generate a prediction signal based on various prediction methods to be described later.
  • the prediction unit may apply intra prediction or inter prediction for prediction of one block, as well as simultaneously apply intra prediction and inter prediction. This can be called combined inter and intra prediction (CIIP).
  • the prediction unit may be based on an intra block copy (IBC) prediction mode or a palette mode to predict a block.
  • IBC intra block copy
  • the IBC prediction mode or the palette mode may be used for content image/video coding such as a game, for example, screen content coding (SCC).
  • SCC screen content coding
  • IBC basically performs prediction in the current picture, but can be performed similarly to inter prediction in that it derives a reference block in the current picture. That is, the IBC may use at least one of the inter prediction techniques described in this document.
  • the palette mode can be viewed as an example of intra coding or intra prediction. When the palette mode is applied, information about a palette table and a palette index may be included in the video/video information and signale
  • the intra prediction unit 331 may predict the current block by referring to samples in the current picture.
  • the referenced samples may be located in the vicinity of the current block or may be located apart according to the prediction mode.
  • prediction modes may include a plurality of non-directional modes and a plurality of directional modes.
  • the intra prediction unit 331 may determine a prediction mode applied to the current block by using the prediction mode applied to the neighboring block.
  • the inter prediction unit 332 may derive a predicted block for the current block based on a reference block (reference sample array) specified by a motion vector on the reference picture.
  • motion information may be predicted in units of blocks, subblocks, or samples based on correlation between motion information between neighboring blocks and the current block.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include inter prediction direction (L0 prediction, L1 prediction, Bi prediction, etc.) information.
  • the neighboring block may include a spatial neighboring block existing in the current picture and a temporal neighboring block existing in the reference picture.
  • the inter prediction unit 332 may construct a motion information candidate list based on neighboring blocks, and derive a motion vector and/or a reference picture index of the current block based on the received candidate selection information.
  • Inter prediction may be performed based on various prediction modes, and the information about the prediction may include information indicating a mode of inter prediction for the current block.
  • the addition unit 340 is reconstructed by adding the obtained residual signal to the prediction signal (predicted block, prediction sample array) output from the prediction unit (including the inter prediction unit 332 and/or the intra prediction unit 331). Signals (restored pictures, reconstructed blocks, reconstructed sample arrays) can be generated. When there is no residual for a block to be processed, such as when the skip mode is applied, the predicted block may be used as a reconstructed block.
  • the addition unit 340 may be referred to as a restoration unit or a restoration block generation unit.
  • the generated reconstructed signal may be used for intra prediction of the next processing target block in the current picture, may be output through filtering as described later, or may be used for inter prediction of the next picture.
  • LMCS luma mapping with chroma scaling
  • the filtering unit 350 may improve subjective/objective image quality by applying filtering to the reconstructed signal.
  • the filtering unit 350 may generate a modified reconstructed picture by applying various filtering methods to the reconstructed picture, and the modified reconstructed picture may be converted to the memory 360, specifically, the DPB of the memory 360. Can be transferred to.
  • the various filtering methods may include, for example, deblocking filtering, sample adaptive offset, adaptive loop filter, bilateral filter, and the like.
  • the (modified) reconstructed picture stored in the DPB of the memory 360 may be used as a reference picture in the inter prediction unit 332.
  • the memory 360 may store motion information of a block from which motion information in a current picture is derived (or decoded) and/or motion information of blocks in a picture that have already been reconstructed.
  • the stored motion information may be transmitted to the inter prediction unit 332 in order to be used as motion information of spatial neighboring blocks or motion information of temporal neighboring blocks.
  • the memory 360 may store reconstructed samples of reconstructed blocks in the current picture, and may be transmitted to the intra prediction unit 331.
  • the embodiments described in the filtering unit 260, the inter prediction unit 221, and the intra prediction unit 222 of the encoding apparatus 200 are respectively the filtering unit 350 and the inter prediction of the decoding apparatus 300.
  • the same or corresponding to the unit 332 and the intra prediction unit 331 may be applied.
  • a predicted block including prediction samples for a current block as a coding target block may be generated.
  • the predicted block includes prediction samples in the spatial domain (or pixel domain).
  • the predicted block is derived equally from the encoding device and the decoding device, and the encoding device decodes information (residual information) about the residual between the original block and the predicted block, not the original sample value of the original block itself.
  • Video coding efficiency can be improved by signaling to the device.
  • the decoding apparatus may derive a residual block including residual samples based on the residual information, and generate a reconstructed block including reconstructed samples by summing the residual block and the predicted block. A reconstructed picture to be included can be generated.
  • the residual information may be generated through transformation and quantization procedures.
  • the encoding apparatus derives a residual block between the original block and the predicted block, and derives transform coefficients by performing a transformation procedure on residual samples (residual sample array) included in the residual block. And, by performing a quantization procedure on the transform coefficients, quantized transform coefficients may be derived, and related residual information may be signaled to a decoding apparatus (via a bitstream).
  • the residual information may include information such as value information of the quantized transform coefficients, position information, a transform technique, a transform kernel, and a quantization parameter.
  • the decoding apparatus may perform an inverse quantization/inverse transform procedure based on the residual information and derive residual samples (or residual blocks).
  • the decoding apparatus may generate a reconstructed picture based on the predicted block and the residual block.
  • the encoding apparatus may also inverse quantize/inverse transform quantized transform coefficients for reference for inter prediction of a picture to derive a residual block, and generate a reconstructed picture based on this.
  • intra prediction or inter prediction may be applied.
  • inter prediction a case of applying inter prediction to the current block will be described.
  • the prediction unit (more specifically, the inter prediction unit) of the encoding/decoding apparatus may derive prediction samples by performing inter prediction in block units.
  • Inter prediction may represent prediction derived by a method dependent on data elements (eg, sample values, motion information, etc.) of a picture(s) other than the current picture.
  • data elements eg, sample values, motion information, etc.
  • a predicted block (prediction sample array) for the current block is derived based on a reference block (reference sample array) specified by a motion vector on a reference picture indicated by a reference picture index. I can.
  • motion information of the current block may be predicted in units of blocks, subblocks, or samples based on correlation between motion information between neighboring blocks and the current block.
  • the motion information may include a motion vector and a reference picture index.
  • the motion information may further include inter prediction type (L0 prediction, L1 prediction, Bi prediction, etc.) information.
  • the neighboring block may include a spatial neighboring block existing in the current picture and a temporal neighboring block existing in the reference picture.
  • the reference picture including the reference block and the reference picture including the temporal neighboring block may be the same or different.
  • the temporal neighboring block may be called a collocated reference block, a co-located CU (colCU), and the like, and a reference picture including the temporal neighboring block may be referred to as a collocated picture (colPic).
  • a motion information candidate list may be constructed based on neighboring blocks of the current block, and a flag indicating which candidate is selected (used) to derive a motion vector and/or a reference picture index of the current block, or Index information may be signaled.
  • Inter prediction may be performed based on various prediction modes. For example, in the case of a skip mode and a merge mode, motion information of a current block may be the same as motion information of a selected neighboring block.
  • a residual signal may not be transmitted.
  • MVP motion vector prediction
  • a motion vector of a selected neighboring block is used as a motion vector predictor, and a motion vector difference may be signaled.
  • the motion vector of the current block may be derived by using the sum of the motion vector predictor and the motion vector difference.
  • the motion information may include L0 motion information and/or L1 motion information according to an inter prediction type (L0 prediction, L1 prediction, Bi prediction, etc.).
  • the motion vector in the L0 direction may be referred to as an L0 motion vector or MVL0
  • the motion vector in the L1 direction may be referred to as an L1 motion vector or MVL1.
  • the prediction based on the L0 motion vector may be called L0 prediction
  • the prediction based on the L1 motion vector may be called the L1 prediction
  • the prediction based on both the L0 motion vector and the L1 motion vector may be called the pair (Bi) prediction. .
  • the motion vector L0 may represent a motion vector associated with the reference picture list L0 (L0), and the motion vector L1 may represent a motion vector associated with the reference picture list L1 (L1).
  • the reference picture list L0 may include pictures prior to the current picture in an output order as reference pictures, and the reference picture list L1 may include pictures after the current picture in an output order. Previous pictures may be referred to as forward (reference) pictures, and subsequent pictures may be referred to as reverse (reference) pictures.
  • the reference picture list L0 may further include pictures later in an output order than the current picture as reference pictures. In this case, previous pictures in the reference picture list L0 may be indexed first, and pictures afterwards may be indexed next.
  • the reference picture list L1 may further include pictures preceding the current picture in an output order as reference pictures.
  • subsequent pictures may be indexed first, and previous pictures may be indexed next.
  • the output order may correspond to a picture order count (POC) order.
  • POC picture order count
  • inter prediction modes may be used.
  • various modes such as merge mode, skip mode, motion vector prediction (MVP) mode, affine mode, and historical motino vector prediction (HMVP) mode may be used.
  • the MVP mode may also be called an advanced motion vector prediction (AMVP) mode.
  • some modes and/or motion information candidates derived by some modes may be included as one of motion information related candidates of other modes.
  • Prediction mode information indicating the inter prediction mode of the current block may be signaled from the encoding device to the decoding device.
  • the prediction mode information may be included in the bitstream and received by the decoding apparatus.
  • the prediction mode information may include index information indicating one of a plurality of candidate modes.
  • the inter prediction mode may be indicated through hierarchical signaling of flag information.
  • the prediction mode information may include one or more flags. For example, a skip flag is signaled to indicate whether to apply the skip mode, and when the skip mode is not applied, the merge flag is signaled to indicate whether to apply the merge mode, and when the merge mode is not applied, the MVP mode is applied. It may be indicated to be used or a flag for additional classification may be further signaled.
  • the Titane mode may be signaled as an independent mode, or may be signaled as a mode dependent on the merge mode or the MVP mode.
  • the Rane mode may include an An Arte merge mode and an an an an e MVP mode.
  • motion information of the current block may be used.
  • the encoding apparatus may derive optimal motion information for the current block through a motion estimation procedure.
  • the encoding device may search for a similar reference block with high correlation using the original block in the original picture for the current block in units of fractional pixels within a predetermined search range in the reference picture, and derive motion information through this.
  • I can.
  • the similarity of the block can be derived based on the difference between the phase-based sample values.
  • the similarity of blocks may be calculated based on the sum of absolute differences (SAD) between the current block (or the template of the current block) and the reference block (or the template of the reference block).
  • SAD sum of absolute differences
  • motion information may be derived based on the reference block having the smallest SAD in the search area.
  • the derived motion information may be signaled to the decoding apparatus according to various methods based on the inter prediction mode.
  • a predicted block for the current block may be derived based on motion information derived according to the inter prediction mode.
  • the predicted block may include prediction samples (prediction sample array) of the current block.
  • prediction samples prediction sample array
  • an interpolation procedure may be performed, through which prediction samples of the current block may be derived based on the reference samples of the fractional sample unit in the reference picture. I can.
  • prediction samples may be generated based on MV per sample/subblock.
  • prediction samples derived based on L0 prediction i.e., prediction using a reference picture and MVL0 in the reference picture list L0
  • L1 prediction i.e., using a reference picture and MVL1 in the reference picture list L1
  • Prediction samples derived through a weighted sum (according to a phase) or weighted average of prediction samples derived based on prediction) may be used as prediction samples of the current block.
  • the reference picture used for L0 prediction and the reference picture used for L1 prediction are located in different temporal directions with respect to the current picture (i.e., when bi-prediction and bi-prediction correspond) This can be called true bi-prediction.
  • reconstructed samples and reconstructed pictures may be generated based on the derived prediction samples, and then procedures such as in-loop filtering may be performed.
  • the skip mode and/or the merge mode predicts the motion of the current block based on the motion vector of the neighboring block without MVD (Motion Vector Difference), and thus represents a limitation in motion prediction.
  • a motion vector may be refined by applying a decoder-side motion vector refinement (DMVR) or a bi-directional optical flow (BDOF) mode.
  • DMVR decoder-side motion vector refinement
  • BDOF bi-directional optical flow
  • FIG. 4 is a diagram for explaining an embodiment of a process of performing a decoder-side motion vector refinement (DMVR) in true pair prediction.
  • DMVR decoder-side motion vector refinement
  • the DMVR is a method of performing motion prediction by refinement of motion information of neighboring blocks at the decoder side.
  • the decoder may derive refined motion information through cost comparison based on a template generated using motion information of neighboring blocks in a merge/skip mode. In this case, the precision of motion prediction can be improved and compression performance can be improved without additional signaling information.
  • a decoding device is mainly described, but the DMVR according to an embodiment of the present document may be performed in the same manner in the encoding device.
  • the decoding apparatus derives prediction blocks (ie, reference blocks) identified by initial motion vectors (or motion information) (eg, MV0 and MV1) in the list0 and list1 directions, and the derived prediction
  • the blocks may be weighted (eg, averaged) to generate a template (or a bilateral template) (step 1).
  • the initial motion vectors MV0 and MV1 may represent motion vectors derived using motion information of neighboring blocks in the merge/skip mode.
  • the decoding apparatus may derive a motion vector (eg, MV0' and MV1') that minimizes a difference value between a sample region of a template and a reference picture through a template matching operation (step 2).
  • the sample area represents an area surrounding the initial prediction block in the reference picture, and the sample area may be referred to as a surrounding area, a reference area, a search area, a search range, and a search space.
  • the template matching operation may include an operation of calculating a cost measurement value between a template and a sample area of a reference picture.
  • the sum of absolute differences (SAD) can be used to measure cost.
  • a normalized SAD may be used as a cost function.
  • the matching cost may be given as SAD (T-mean(T), 2 * P[x]-2 * mean(P[x])).
  • T represents a template
  • P[x] represents a block in the search area.
  • the motion vector for calculating the minimum template cost for each of the two reference pictures may be considered as an updated motion vector (replaces the initial motion vector).
  • the decoding apparatus may generate a final bidirectional prediction result (ie, a final bidirectional prediction block) using the updated motion vectors MV0' and MV1'.
  • multi-iteration for deriving an updated (or new) motion vector may be used to obtain a final bidirectional prediction result.
  • the decoding apparatus may call the DMVR process to improve the accuracy of initial motion compensation prediction (ie, motion compensation prediction through a conventional merge/skip mode). For example, when the prediction mode of the current block is a merge mode or a skip mode, and a bidirectional bi-prediction in which a bidirectional reference picture is in the opposite direction based on the current picture in display order is applied to the current block, the DMVR process You can do it.
  • FIG. 5 is a view for explaining an embodiment of a process of performing a decoder-side motion vector refinement (DMVR) using sum of absolute differences (SAD).
  • DMVR decoder-side motion vector refinement
  • SAD sum of absolute differences
  • the decoding apparatus may measure matching cost using SAD.
  • SAD mean sum of absolute difference
  • the decoding apparatus derives a pixel adjacent to a pixel (sample) indicated by a motion vector MV0 in the direction of list0 (L0) on an L0 reference picture, and a motion vector MV1 in the direction of list1 (L1).
  • a pixel adjacent to the pixel (sample) indicated by may be derived from the L1 reference picture.
  • the decoding apparatus is identified by an L0 prediction block (i.e., an L0 reference block) identified by a motion vector indicating an adjacent pixel derived from the L0 reference picture and a motion vector indicating an adjacent pixel derived from the L1 reference picture.
  • Matching cost may be measured by calculating the MRSAD between the L1 prediction blocks (ie, L1 reference blocks).
  • the decoding apparatus may select a search point having the least cost (ie, a search region having a minimum SAD between the L0 prediction block and the L1 prediction block) as the refined motion vector pair. That is, the refined motion vector pair is a refined L0 motion vector indicating a pixel position (L0 prediction block) having the least cost in the L0 reference picture and a refined L0 motion vector indicating a pixel position (L1 prediction block) having the least cost in the L1 reference picture. It may contain the L1 motion vector.
  • unidirectional prediction may be performed using a regular 8 tap DCTIF interpolation filter.
  • 16-bit precision may be used for MRSAD calculation, and clipping and/or rounding operations may not be applied prior to MRSAD calculation in consideration of an internal buffer.
  • BDOF may be used to refine the bi-prediction signal.
  • the bi-directional optical flow (BDOF) may be used to calculate improved motion information and generate predictive samples based on this.
  • BDOF can be applied at the 4x4 sub-block level. That is, BDOF may be performed in units of 4x4 subblocks in the current block.
  • BDOF can be applied only to the luma component.
  • BDOF may be applied only to the chroma component, or may be applied to the luma component and the chroma component.
  • the BDOF mode is based on the concept of optical flow, which assumes that the motion of an object is smooth.
  • motion refinement (v x , v y ) may be calculated by minimizing a difference value between L0 and L1 prediction samples. And the motion refinement can be used to adjust the bi-prediction sample values in the 4x4 subblock.
  • horizontal and vertical gradients of L0 prediction samples and L1 prediction samples may be calculated first.
  • the horizontal and vertical gradients may be calculated based on the difference between two neighboring samples located around the predicted samples (i, j), and may be calculated as in Equation 1 below.
  • Is the predicted value at the coordinates (i, j) of the predicted sample in list k (k 0, 1).
  • the motion refinement (v x , v y ) may be calculated using auto-correlation and cross-correlation, and may be calculated as in Equation 4 below.
  • ego ego, ego, ego, Is the floor function.
  • Equation 5 b(x, y) for refinement of the BDOF prediction sample may be calculated as in Equation 5 below based on the gradient and motion refinement.
  • BDOF prediction samples ie, prediction sample values reconstructed by applying BDOF
  • Equation 6 BDOF prediction samples
  • true bi-prediction represents a case of motion prediction/compensation in a reference picture in a different direction based on a picture of the current block. It can be seen that it is a refinement technique of a similar concept in that it is assumed that the motion of an object in a picture is performed at a constant speed and in a constant direction as a technique for performing.
  • true pair prediction since the conditions for applying the DMVR and the conditions for applying the BDOF are different, a process of repeatedly performing condition checks for each technology must be performed several times. Accordingly, this document proposes a method for improving efficiency in terms of decoder complexity and performance by improving the process of performing condition check in determining a prediction mode applied to the current block.
  • Table 1 below shows conditions for applying DMVR in the existing true pair prediction. DMVR can be applied when all of the conditions listed below are satisfied.
  • flag information eg, sps_dmvr_enabled_flag
  • SPS Sequence Parameter Set
  • the flag information may indicate whether the true bi-prediction-based DMVR is enabled. For example, when sps_dmvr_enabled_flag is 1 (that is, when a true bi-prediction-based DMVR is available), it may be determined that the DMVR availability condition is satisfied.
  • Whether to apply DMVR may be determined based on flag information indicating whether inter prediction is performed using the merge mode/skip mode (eg, merge_flag). For example, when the merge_flag is 1 (ie, inter prediction is performed using the merge mode/skip mode), it may be determined that the condition of whether to apply the merge mode/skip mode is satisfied.
  • flag information indicating whether inter prediction is performed using the merge mode/skip mode eg, merge_flag
  • Whether to apply DMVR may be determined based on flag information (eg, mmvd_flag) indicating whether inter prediction is performed using a merge mode with motion vector difference (MMVD) mode. For example, when mmvd_flag is 0 (that is, when the MMVD mode is not used), it may be determined that the condition of whether to apply the MMVD mode is satisfied.
  • flag information eg, mmvd_flag
  • DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0])-DiffPicOrderCnt(currPic, RefPicList1 [refIdxL1]) 0
  • Whether to apply the DMVR may be determined based on whether the current block height is greater than a threshold. For example, when the length of the current block is 8 or more, it may be determined that the current block size (length) condition is satisfied.
  • DMVR determines whether to apply the DMVR based on whether the size of the current block is greater than a threshold. For example, if the size of the current block, that is, length*width, is 64 or more, it may be determined that the current block size (length*width) condition is satisfied.
  • the decoding apparatus may determine whether to apply DMVR according to whether conditions 1) to 7) of Table 1 are satisfied. That is, the decoding apparatus may apply the DMVR when all of the conditions 1) to 7) of Table 1 are satisfied to perform true pair prediction, and when any of the conditions of Table 1 are not satisfied, the DMVR Does not apply.
  • Table 2 below shows conditions for applying BDOF in the conventional true pair prediction. BDOF can be applied when all of the conditions listed below are satisfied.
  • flag information eg, sps_bdof_enabled_flag
  • SPS sequence parameter set
  • the flag information may indicate whether the true pair prediction-based BDOF is enabled. For example, when sps_bdof_enabled_flag is 1 (that is, when a true bi-prediction-based BDOF is available), it may be determined that the condition of whether the BDOF is available is satisfied.
  • the bidirectional prediction may indicate inter prediction performed based on reference pictures existing in different directions based on the current picture. For example, when both predFlagL0 and predFlagL1 are 1, it may be determined that bidirectional prediction is applied, and it may be determined that a condition for bidirectional prediction is satisfied.
  • Whether to apply BDOF may be determined based on flag information (eg, merge_subblock_flag) indicating whether inter prediction in the merge mode is performed on a subblock basis. For example, when the merge_subblock_flag is 0 (that is, when the merge mode is not applied in units of subblocks), it may be determined that the condition of whether or not the subblock-based merge mode is satisfied.
  • flag information eg, merge_subblock_flag
  • GBi index information eg, GbiIdx. For example, when GbiIdx is 0 (that is, when GbiIdx is the default), it may be determined that the GBi condition is satisfied.
  • Whether to apply BDOF may be determined based on whether the current block is a luma block including a luma component. For example, when an index indicating whether a luma block (eg, cIdx) is 0 (ie, a luma block), it may be determined that the condition of whether a luma block is satisfied.
  • an index indicating whether a luma block eg, cIdx
  • a luma block eg, a luma block
  • the decoding apparatus may determine whether to apply BDOF based on whether conditions 1) to 7) of Table 2 are satisfied. That is, the decoding apparatus can perform true pair prediction by applying BDOF when all of the conditions 1) to 7) of Table 2 are satisfied, and if any of the conditions of Table 2 are not satisfied, the BDOF Does not apply.
  • the above-described GBi may represent generalized bi-prediction to which different weights may be applied to L0 prediction and L1 prediction, and may be represented by, for example, GbiIdx.
  • GbiIdx may exist in the case of bi-prediction, and may indicate a bi-prediction weight index.
  • the motion information may further include GbiIdx.
  • GbiIdx may be derived from neighboring blocks in the case of the merge mode, or may be signaled from the encoding device to the decoding device through a GbiIdx syntax element (eg, gbi_idx) in the case of the MVP mode.
  • GbiIdx may indicate a weight w applied to L1 prediction, and in this case, a weight of (1-w) may be applied to L0 prediction.
  • GbiIdx may indicate a weight w applied to L0 prediction, and in this case, a weight of (1-w) may be applied to L1 prediction.
  • the weight indicated by GbiIdx may be configured in various ways, for example, may be configured as shown in Tables 3 and 4 below.
  • the weight of w 1 may represent a weight applied to L1 prediction, and a weight w 1 applied to L1 prediction may be indicated through a GbiIdx value.
  • GbiIdx a weight applied to L1 prediction
  • 1/2 weight which is a value of (1-w 1 )
  • the weight of w 1 may indicate a weight applied to L0 prediction, and in this case, the weight w 1 applied to the L0 prediction may be indicated through the GbiIdx value.
  • the merge/skip mode Since the merge/skip mode has relatively low motion accuracy compared to the AMVP mode, it is effective in terms of performance to refine motion information using the DMVR method.
  • the BDOF mode is applied not only to the merge/skip mode but also to the AMVP mode. In this way, when the BDOF is applied in the AMVP mode, the complexity for performing the BDOF compared to the performance may increase. Accordingly, in the present embodiment, similarly to the DMVR, it is proposed to apply the BDOF in the merge/skip mode.
  • the conditions for applying BDOF may include the conditions shown in Table 5 below.
  • whether to apply BDOF may be determined based on flag information (eg, merge_flag) indicating whether inter prediction is performed using a merge mode/skip mode. For example, when the merge_flag is 1 (ie, inter prediction is performed using the merge mode/skip mode), it may be determined that the condition of whether to apply the merge mode/skip mode is satisfied. Accordingly, similarly to the DMVR, the BDOF can be applied in the merge/skip mode.
  • flag information eg, merge_flag
  • conditions applied when BDOF is available in addition to the conditions applied in the merge/skip mode, conditions applied when BDOF is available, conditions applied when bidirectional prediction, conditions applied when true bi-prediction, and word wave Whether to apply BDOF is determined based on the condition applied in the case of non-prediction, the condition applied in the case of the subblock-based merge mode, the condition applied in the case where the GBi index is the default, and the condition applied in the case of the luma block can do.
  • the decoding apparatus may determine whether all conditions listed in Table 5 are satisfied, and if all conditions are satisfied, apply BDOF to perform true pair prediction. If any of the conditions listed in Table 5 is not satisfied, the decoding apparatus may not apply the BDOF. These conditions in Table 5 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the method of performing true pair prediction based on the conditions listed in Table 5 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • the present embodiment proposes a method for refining motion information by applying DMVR in not only the merge/skip mode but also the AMVP mode.
  • the application conditions of the DMVR may include the conditions shown in Table 6 below.
  • a process of determining whether to apply DMVR based on flag information eg, merge_flag
  • flag information eg, merge_flag
  • a condition applied when the DMVR is available, a condition applied when the MMVD mode is not used, a condition applied when a bidirectional prediction is applied, and the current picture and a bidirectional reference picture have the same distance. It is possible to determine whether to apply DMVR based on conditions applied in the case of bi-prediction, conditions applied when the length of the current block is 8 or more, and conditions applied when the size (length * width) of the current block is 64 or more. .
  • the decoding apparatus may determine whether all conditions listed in Table 6 are satisfied, and if all conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 6 is not satisfied, the decoding device may not apply the DMVR. These conditions in Table 6 may also be applied to the encoding device, and may be performed in the encoding device in a manner corresponding to that of the decoding device.
  • the method of performing true pair prediction based on the conditions listed in Table 6 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • both DMVR and BDOF can be applied to a normal merge mode. That is, when the advanced temporal motion vector prediction (ATMVP) mode is not the affine mode, and the CPR is not, DMVR and BDOF can be applied.
  • the DMVR application conditions may include the conditions shown in Table 7 below.
  • a condition applied when the affine mode is not used eg, when MotionModelIdc is 0
  • a condition applied when not in a subblock-based merge mode eg, when merge_subblock_flag is 0.
  • a condition applied when a DMVR is available, a condition applied when a merge mode/skip mode, and an MMVD mode are not used together with the affine mode status condition and the subblock-based merge mode status condition.
  • the decoding apparatus may determine whether all conditions listed in Table 7 are satisfied, and when all conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 7 is not satisfied, the decoding device may not apply the DMVR. These conditions in Table 7 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the subblock-based merge mode application condition (eg, merge_subblock_flag) includes a condition that overlaps existing DMVR application conditions. Accordingly, according to an embodiment of the present document, a condition overlapping with a condition for applying a subblock-based merge mode (eg, merge_subblock_flag) may be removed. In this case, the condition may be removed as suggested in Table 8 below.
  • a condition related to the size of the current block e.g. CbHeight , CbHeight*CbWidth
  • the decoding apparatus may determine whether all the conditions listed in Table 8 are satisfied, and when all the conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 8 is not satisfied, the decoding apparatus may not apply the DMVR. These conditions in Table 8 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the method of performing true pair prediction based on the conditions listed in Table 7 or 8 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • refine techniques such as DMVR and BDOF may not be applied when the block size is small in order to increase the accuracy of motion vectors at low complexity.
  • refine technology is applied when the current block is larger than or equal to 8X8.
  • DMVR applies refine by dividing it by 16X16 units when the current block size is large, so DMVR for blocks smaller than 16X16 May not apply.
  • the DMVR application conditions may include the conditions shown in Table 9 below.
  • DMVR it is possible to prevent DMVR from being applied to a block smaller than 16X16 by changing conditions related to the size of the current block (eg, CbHeight, CbWidth). For example, a condition applied when the current block length (eg CbHeight) is 16 or more and a condition applied when the current block width (eg CbWidth) is 16 or more can be used.
  • the application conditions related to the size of the current block are satisfied (i.e., the size of the current block is 16X16 or more)
  • the DMVR is applied, and the application conditions related to the size of the current block as described above are not satisfied (i.e. If the block size is smaller than 16X16) DMVR may not be applied.
  • the decoding apparatus may determine whether all conditions listed in Table 9 are satisfied, and if all conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 9 is not satisfied, the decoding device may not apply the DMVR. These conditions in Table 9 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the conditions for applying BDOF may include the conditions shown in Table 10 below.
  • BDOF it is possible to prevent BDOF from being applied to a block smaller than 16X16 by changing conditions related to the size of the current block (eg, CbHeight, CbWidth). For example, a condition applied when the current block length (eg CbHeight) is 16 or more and a condition applied when the current block width (eg CbWidth) is 16 or more can be used.
  • the application conditions related to the size of the current block are satisfied (that is, when the size of the current block is 16X16 or more)
  • BDOF is applied, and the application conditions related to the size of the current block as described above are not satisfied (i.e. If the block size is smaller than 16X16) BDOF may not be applied.
  • the decoding apparatus may determine whether all the conditions listed in Table 10 are satisfied, and if all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 10 is not satisfied, the decoding apparatus may not apply BDOF. These conditions of Table 10 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • a method of performing true pair prediction based on the conditions listed in Table 9 or 10 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • this document proposes a method that can apply the condition related to the bidirectional reference picture distance to DMVR and BDOF in order to increase coding efficiency.
  • conditions for applying BDOF may include the conditions shown in Table 11 below.
  • the corresponding condition can be equally applied to the DMVR and the BDOF. For example, by determining whether DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0])-DiffPicOrderCnt(currPic, RefPicList1 [refIdxL1]) is 0, the distance between the current picture and the LO reference picture (ie, the reference picture in the reference picture list L0) And, it may be determined whether the distance between the current picture and the L1 reference picture (ie, the reference picture in the reference picture list L1) is the same.
  • BDOF can be applied only when the distance between the current picture and the bidirectional reference picture is the same.
  • the range of applying the BDOF is limited, and thus decoding complexity can be reduced.
  • the decoding apparatus may determine whether all the conditions listed in Table 11 are satisfied, and if all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 11 is not satisfied, the decoding apparatus may not apply BDOF. These conditions of Table 11 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the application conditions of the DMVR may include the conditions shown in Table 12 below.
  • the corresponding condition may be applied to the DMVR and the BDOF in the same manner. For example, by determining whether DiffPicOrderCnt( currPic, refPicList0[ refIdxL0]) * DiffPicOrderCnt( currPic, refPicList1[ refIdxL1]) is less than 0, bidirectional reference pictures (ie, LO reference pictures and L1 It may be determined whether the reference picture) is a true bi-prediction positioned in different directions.
  • a condition related to a reference picture distance eg, DiffPicOrderCnt
  • the DMVR can always be applied in the case of true bi-prediction. In this way, even when the reference picture distances in both directions are different as the true bi-prediction condition is applied, a motion vector derived in consideration of decoding complexity can be used without scaling.
  • the decoding apparatus may determine whether all the conditions listed in Table 12 are satisfied, and if all the conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 12 is not satisfied, the decoding device may not apply the DMVR. These conditions in Table 12 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • a method of performing true pair prediction based on the conditions listed in Table 11 or Table 12 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • each reference block may perform motion compensation with a weighted sum due to a change in light or the like.
  • the application conditions of DMVR and BDOF can be determined in consideration of GBi or LIC conditions.
  • the application conditions of DMVR may include the conditions shown in Table 13 below.
  • a GBi condition eg, GbiIdx
  • an LIC condition eg, LICFlag
  • the decoding apparatus may determine whether all the conditions listed in Table 13 are satisfied, and when all the conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 13 is not satisfied, the decoding device may not apply the DMVR. These conditions in Table 13 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the conditions for applying BDOF may include the conditions shown in Table 14 below.
  • the decoding apparatus may determine whether all the conditions listed in Table 14 are satisfied, and if all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 14 is not satisfied, the decoding apparatus may not apply the BDOF. These conditions in Table 14 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the method of performing true pair prediction based on the conditions listed in Table 13 or 14 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • this document proposes a method for reducing decoding complexity by enabling it to determine whether to apply DMVR and BDOF using a merge index.
  • the effect of Rafine may be reduced when the motion vector is incorrect. Therefore, this document proposes a method that can be limitedly applied only when the value indicated by the merge index is small in consideration of the efficiency of refine.
  • the merge index may be a syntax element signaled from the encoding device to the decoding device.
  • the encoding/decoding apparatus may configure a merge candidate list based on neighboring blocks of the current block.
  • the encoding device may select an optimal merge candidate from among merge candidates included in the merge candidate list based on a rate-distortion (RD) cost, and may signal merge index information indicating the selected merge candidate to the decoding device.
  • the decoding apparatus may select a merge candidate applied to the current block based on the merge candidate list and merge index information.
  • a method of determining whether to apply DMVR using a merge index may include conditions shown in Table 15 below.
  • whether to apply the DMVR may be determined by adding a merge index condition (eg, merge_idx). For example, when the merge index (eg, merge_idx) is less than 2, it may be determined that the merge index condition is satisfied.
  • merge index threshold is set to 2, but this is only an example and the corresponding value may be changed according to coding efficiency.
  • the decoding apparatus may determine whether all conditions listed in Table 15 are satisfied, and when all conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 15 is not satisfied, the decoding device may not apply the DMVR. These conditions of Table 15 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • a method of determining whether to apply BDOF using a merge index may include conditions shown in Table 16 below.
  • merge_flag a merge mode/skip mode condition
  • merge_idx a merge index condition
  • merge_flag 1 (that is, when inter prediction is performed using merge mode/skip mode)
  • merge_idx 2 or more
  • BDOF is limited only when the merge index value is small. It can be determined that the condition is satisfied.
  • merge_flag is 1 (that is, when inter prediction is performed using a merge mode/skip mode) and merge_idx is less than 2
  • the merge index threshold is set to 2, but this is only an example and the corresponding value may be changed according to coding efficiency.
  • the decoding apparatus may determine whether all conditions listed in Table 16 are satisfied, and if all conditions are satisfied, apply BDOF to perform true pair prediction. If any of the conditions listed in Table 16 is not satisfied, the decoding apparatus may not apply the BDOF. These conditions in Table 16 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the method of performing true pair prediction based on the conditions listed in Table 15 or 16 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • the application conditions of the DMVR may include the conditions shown in Table 17 below.
  • a condition for whether to apply an MMVD mode (eg, mmvd_flag) among the conditions for applying the existing DMVR may be excluded. That is, the process of determining whether mmvd_flag is 0 (that is, when the MMVD mode is not used) may be omitted, and whether to apply DMVR may be determined based on the conditions listed in Table 17.
  • the decoding device determines whether all the conditions listed in Table 17 are satisfied (except for the MMVD mode application condition (eg, mmvd_flag)), and if all the conditions are satisfied, the DMVR is applied to perform true pair prediction. I can. If any of the conditions listed in Table 17 is not satisfied, the decoding apparatus may not apply the DMVR. These conditions in Table 17 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • MMVD mode application condition eg, mmvd_flag
  • this document proposes a method of determining whether to apply BDOF in consideration of the MMVD condition.
  • the conditions for applying BDOF may include the conditions shown in Table 18 below.
  • BDOF may not be applied when motion information is refined through MMVD.
  • a condition for whether to apply an MMVD mode eg, mmvd_flag
  • BDOF may not be applied when motion information is refined through MMVD.
  • mmvd_flag 0 (ie, when the MMVD mode is not used)
  • the decoding apparatus may determine whether all the conditions listed in Table 18 are satisfied, and if all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 18 is not satisfied, the decoding apparatus may not apply BDOF. These conditions of Table 18 may be applied to the encoding device, and may be performed in the encoding device in a manner corresponding to that of the decoding device.
  • a method of performing true pair prediction based on the conditions listed in Table 17 or 18 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • AMVR adaptive motion vector resolution
  • the conditions for applying BDOF may include the conditions shown in Table 19 below.
  • amvr_flag may be information indicating the resolution of the motion vector difference (MVD). For example, if amvr_flag is 0, it indicates that the resolution of MVD is derived in units of 1/4 sample (quarter-luma-sample), and if amvr_flag is not 0, it is in integer-luma-sample units or 4 samples. It may represent that it is derived in units of (four-luma-sample). Or, it may be set as the opposite case. According to an embodiment, as shown in Table 19, if amvr_flag is not 0, the condition may be set as applying BDOF. In other words, when amvr_flag is 0, it is possible to restrict BDOF from being applied.
  • an AMVR condition eg, amvr_flag
  • the decoding apparatus may determine whether all the conditions listed in Table 19 are satisfied, and if all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 19 is not satisfied, the decoding apparatus may not apply the BDOF. These conditions in Table 19 may also be applied to the encoding device, and may be performed in the encoding device in a manner corresponding to that of the decoding device.
  • the DMVR and BDOF as described above may be respectively signaled in a sequence parameter set (SPS) syntax.
  • SPS sequence parameter set
  • Table 20 below shows an example of a syntax element indicating whether the DMVR signaled through the SPS syntax is available and whether the BDOF is available.
  • sps_dmvr_enabled_flag may be signaled in the SPS syntax, and it may indicate whether the true bi-prediction-based DMVR is enabled based on this syntax element. For example, when sps_dmvr_enabled_flag is 1, it may indicate that a true bi-prediction-based DMVR is available, and when sps_dmvr_enabled_flag is 0, it may indicate that a true bi-prediction-based DMVR is not available.
  • sps_bdof_enabled_flag may be signaled in the SPS syntax, and it may indicate whether the true bi-prediction-based BDOF is enabled based on this syntax element. For example, when sps_bdof_enabled_flag is 1, it may indicate that a true bi-prediction-based BDOF is available, and when sps_bdof_enabled_flag is 0, it may indicate that a true bi-prediction-based BDOF is not available.
  • the application conditions of DMVR and BDOF can be checked using a syntax element indicating whether or not DMVR is available (e.g., sps_dmvr_enabled_flag) and a syntax element indicating whether or not BDOF is available (e.g., sps_bdof_enabled_flag).
  • a syntax element indicating whether or not DMVR is available e.g., sps_dmvr_enabled_flag
  • BDOF e.g., sps_bdof_enabled_flag
  • 6 is an example of a method of performing a decoding process by checking an application condition of DMVR and BDOF.
  • the method of FIG. 6 can be applied when using a syntax element indicating whether or not DMVR is available (eg, sps_dmvr_enabled_flag) and a syntax element indicating whether or not BDOF is available (eg, sps_bdof_enabled_flag) as shown in Table 20 above.
  • a syntax element indicating whether or not DMVR is available eg, sps_dmvr_enabled_flag
  • BDOF eg, sps_bdof_enabled_flag
  • the decoding apparatus may derive motion information (eg, a motion vector, a reference picture index, etc.) for a current block (S600).
  • motion information eg, a motion vector, a reference picture index, etc.
  • the decoding device may check the application condition of the DMVR (S610).
  • the application condition of the DMVR may be checked based on a syntax element (eg, sps_dmvr_enabled_flag) indicating whether the DMVR is available. For example, when the DMVR is available (eg, sps_dmvr_enabled_flag is 1), the application condition of the DMVR may be checked.
  • a syntax element eg, sps_dmvr_enabled_flag
  • the decoding apparatus may determine whether to apply the DMVR process according to whether the application condition of the DMVR is satisfied (S620).
  • the decoding apparatus may apply the DMVR process to derive refined motion information (S630). If at least one of the DMVR application conditions is not satisfied, the decoding device may not apply the DMVR process.
  • the decoding apparatus may derive prediction samples of the current block based on refined motion information derived when DMVR is applied or motion information (not refined) derived when DMVR is not applied (S640).
  • the decoding apparatus may check an application condition of the BDOF (S650).
  • the application condition of the BDOF may be checked based on a syntax element (eg, sps_bdof_enabled_flag) indicating whether the BDOF is available. For example, when BDOF is available (eg, when sps_bdof_enabled_flag is 1), a condition for applying the BDOF may be checked.
  • the decoding apparatus may refine the prediction samples by applying the BDOF process (S670). If one or more of the conditions for applying the BDOF are not satisfied, the decoding apparatus may not apply the BDOF process.
  • the decoding apparatus derives residual samples for the current block (S680), and refined prediction samples derived when the residual samples and the BDOF are applied, or derived when the BDOF is not applied (unrefined ) It is possible to derive reconstructed samples based on the prediction samples (S690).
  • information indicating whether refine is applied in a decoding device is signaled in a sequence parameter set (SPS) syntax to perform a process of checking the application condition of DMVR/BDOF.
  • SPS sequence parameter set
  • Table 21 below shows an example of a syntax element (eg, sps_refinement_enabled_flag) indicating whether refine is applied in a decoding device signaled through the SPS syntax.
  • sps_refinement_enabled_flag may be signaled in the SPS syntax, and it may indicate whether refinement is applicable in a decoding device based on this syntax element. For example, when sps_refinement_enabled_flag is present (ie, when sps_refinement_enabled_flag is true), it may be determined that refinement is applicable in the decoding device.
  • the decoding apparatus acquires a syntax element sps_dmvr_enabled_flag indicating whether the DMVR is enabled and a syntax element sps_bdof_enabled_flag indicating whether the BDOF is enabled, and may determine the application condition of the DMVR and BDOF.
  • 7 and 8 are other examples showing a method of performing a decoding process by checking an application condition of DMVR and BDOF.
  • the method of FIG. 7 and the method of FIG. 8 can be applied when using a syntax element (eg, sps_refinement_enabled_flag) indicating whether refinement is applicable in the decoding device as shown in Table 21 above.
  • a syntax element eg, sps_refinement_enabled_flag
  • the decoding apparatus may check a refine application condition.
  • the refinement application condition check may be performed based on sps_refinement_enabled_flag as shown in Table 21 above.
  • sps_refinement_enabled_flag 1
  • a sps_dmvr_enabled_flag syntax element indicating whether or not DMVR is enabled or a sps_bdof_enabled_flag syntax element indicating whether or not BDOF is enabled is obtained, and based on this, the application conditions of DMVR and BDOF You can check.
  • the decoding apparatus may check a refine application condition. Thereafter, in step S850 of FIG. 8, the decoding apparatus may additionally simply perform a check on the application condition of the BDOF having a condition different from the refine application condition.
  • the application of the BDOF to a block having a small length or a small size may be limited as in the application condition of the DMVR.
  • the conditions for applying BDOF may include the conditions shown in Table 22 below.
  • BDOF it is possible to prevent BDOF from being applied to a block smaller than a specific size by adding conditions related to the size of the current block (eg, CbHeight, CbWidth). For example, a condition applied when the length of the current block (eg, CbHeight) is 8 or more, and a condition applied when the size of the current block (eg, CbHeight* CbWidth) is 64 or more can be used. If the application conditions related to the size of the current block are satisfied (i.e., if the length of the current block is 8 or more and the length * width of the current block is 64 or more), BDOF is applied, and the application related to the size of the current block as described above. If the conditions are not satisfied, BDOF may not be applied.
  • the decoding apparatus may determine whether all conditions listed in Table 22 are satisfied, and if all conditions are satisfied, apply BDOF to perform true pair prediction. If any of the conditions listed in Table 22 is not satisfied, the decoding apparatus may not apply the BDOF. These conditions in Table 22 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • motion information may be derived based on information on MMVD (eg, mmvd index).
  • the information on the MMVD may include an index of a base MV, a distance index, a direction index, and the like.
  • the distance index (more specifically, mmvd_distance_index[xCb][yCb]) is used to indicate the distance to the base MV, for example, the distance indexes 0 to 7 are ⁇ 1/4, 1/2, 1, 2, 4, 8, 16, 32 ⁇ and the like.
  • whether or not to refine the motion information is determined in consideration of an adjacent pixel (adjacent sample).
  • this document proposes a method for determining whether to apply DMVR and BDOF according to the distance index (more specifically, mmvd_distance_index[xCb][yCb]).
  • the application conditions of the DMVR may include the conditions shown in Table 23 below.
  • DMVR can be limitedly applied in the MMVD mode. For example, when mmvd_flag is 1 and mmvd_distance_index is greater than 4, it may be determined that the distance index condition of MMVD is satisfied. Therefore, when the MMVD mode is applied, whether to apply the DMVR can be determined according to the value of the distance index (eg, mmvd_distance_index[xCb][yCb]).
  • the threshold for mmvd_distance_index is set to 4, but this is only an example and may be changed to various values according to performance and coding efficiency.
  • DMVR determines whether to apply DMVR based on the remaining application conditions listed in Table 23 along with the MMVD application condition (eg, mmvd_flag) and the MMVD distance index condition (eg, mmvd_distance_index).
  • MMVD application condition eg, mmvd_flag
  • MMVD distance index condition eg, mmvd_distance_index
  • the decoding apparatus may determine whether all conditions listed in Table 23 are satisfied, and when all conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 23 is not satisfied, the decoding device may not apply the DMVR. These conditions in Table 23 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • whether to apply the BDOF may be determined in consideration of the distance index, and in this case, the conditions for applying the BDOF may include conditions shown in Table 24 below.
  • BDOF can be limitedly applied in the MMVD mode. For example, if merge_flag does not exist (i.e., merge_flag is not 1), or merge_flag is 1 and mmvd_flag is 1 and mmvd_distance_index is greater than 4, the condition of restrictively applying BDOF in MMVD mode is satisfied. Can be determined. Therefore, when the MMVD mode is applied, whether to apply the BDOF can be determined according to the distance index (eg, mmvd_distance_index[xCb][yCb]).
  • the distance index eg, mmvd_distance_index[xCb][yCb]
  • the threshold for mmvd_distance_index is set to 4, but this is only an example and may be changed to various values according to performance and coding efficiency.
  • the decoding apparatus may determine whether all the conditions listed in Table 24 are satisfied, and if all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 24 is not satisfied, the decoding apparatus may not apply BDOF. These conditions in Table 24 may also be applied to the encoding device, and may be performed in the encoding device in a manner corresponding to that of the decoding device.
  • the method of performing true pair prediction based on the conditions listed in Table 23 or 24 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • a combined intra-inter prediction (CIIP) mode that simultaneously performs intra prediction and inter prediction may be applied to the current block.
  • the prediction block (inter block) on which the inter prediction has been performed is combined with the intra prediction method to finally generate prediction sample values, prediction accuracy may be improved.
  • DMVR and BDOF are techniques for refining inter-blocks, application of the CIIP mode may not be necessary in terms of performance versus complexity. Therefore, this document proposes a method to determine whether to apply DMVR and BDOF in consideration of CIIP.
  • the application conditions of the DMVR may include the conditions shown in Table 25 below.
  • DMVR can be limitedly applied according to whether or not CIIP is applied. For example, when ciip_flag is 0 (that is, when the CIIP mode is not applied), it is determined that the condition of whether to apply the CIIP mode is satisfied, and the DMVR can be applied.
  • a CIIP mode application condition eg, ciip_flag
  • the decoding apparatus may determine whether all the conditions listed in Table 25 are satisfied, and if all the conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 25 is not satisfied, the decoding device may not apply the DMVR. These conditions in Table 25 may also be applied to the encoding device, and may be performed by the encoding device in a method corresponding to that of the decoding device.
  • the application conditions of the BDOF may include the conditions shown in Table 26 below.
  • BDOF can be limitedly applied according to whether or not CIIP is applied. For example, when ciip_flag is 0 (that is, when the CIIP mode is not applied), it is determined that the condition of whether to apply the CIIP mode is satisfied, and the BDOF can be applied.
  • a CIIP mode application condition eg, ciip_flag
  • the decoding apparatus may determine whether all the conditions listed in Table 26 are satisfied, and when all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any one of the conditions listed in Table 26 is not satisfied, the decoding apparatus may not apply BDOF. These conditions in Table 26 may also be applied to the encoding device, and may be performed by the encoding device in a method corresponding to that of the decoding device.
  • a method of performing true pair prediction based on the conditions listed in Table 25 or 26 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • DMVR or BDOF when DMVR or BDOF is applied, conditions applied in the case of bidirectional prediction, conditions applied when the distance between the current picture and the bidirectional reference picture is the same true bi-prediction, and the MMVD mode is not used.
  • a condition applied to a case a condition applied to a case other than affine prediction, a condition applied to a non-subblock-based merge mode, and a condition applied to a default GBi index may be used. That is, whether to apply DMVR or BDOF can be determined according to whether the above conditions are satisfied.
  • conditions such as determining whether a merge mode is used for DMVR or a luma block for BDOF may be added.
  • the DMVR adopts the SAD function as a cost function instead of the mean-removed SAD (MRSAD) function in consideration of decoding complexity.
  • MRSAD mean-removed SAD
  • the DMVR condition may be fixed in consideration of the GBi index. According to the experimental results, a 0.00% RD-rate change was found with 100% encoding and decoding run-time compared to VTM4.0 (VVC Test Model).
  • the DMVR process may be performed when all of the conditions listed in Table 28 are satisfied.
  • the current DMVR may search for an unmatched block by comparing SADs of reference blocks to be weighted averaged later.
  • the DMVR condition can be determined in consideration of this case.
  • the application conditions of DMVR may be as shown in Table 29 below.
  • a condition for performing DMVR may be added.
  • the value of the GBi index e.g, GbiIdx
  • different weights are applied to two reference blocks (i.e., a reference block referenced for L0 prediction and a reference block referenced for L1 prediction), In this case, it can be restricted not to perform DMVR.
  • BDOF is performed when a current block (ie, a current coding unit; a current CU) satisfies a true pair prediction condition.
  • a current block ie, a current coding unit; a current CU
  • the current true bi-prediction condition is not an optimal condition for applying BDOF. Accordingly, the condition of the BDOF can be fixed in consideration of the distance of the reference picture.
  • VTM4.0 VVC Test Model
  • the BDOF is designed to improve the performance of motion compensation using the optical flow concept.
  • the object moves at a constant speed (constant movement) and the luminance of each pixel does not change while the object is moving.
  • the optical flow equation can be expressed as Equation 7 below.
  • this document proposes a method to apply BDOF when an object has a certain motion, and improves the performance of motion compensation.
  • BDOF in the case where the distance between the LO reference picture (Reference 0 in FIG. 9) and the L1 reference picture (Reference 1 in FIG. 9) is the same as ⁇ t in Equation 7 BDOF can be applied.
  • the conditions for applying BDOF can be changed as shown in Table 30 below.
  • BDOF can be applied only to a case with a constant motion speed. For example, by determining whether DiffPicOrderCnt(currPic, RefPicList[ 0 ][ refIdxL0 ]) and DiffPicOrderCnt( RefPicList[ 1 ][ refIdxL1 ], currPic) are the same, the current picture and the LO reference picture (that is, the reference in the reference picture list L0) It may be determined whether the distance between the pictures) and the distance between the current picture and the L1 reference picture (ie, the reference picture in the reference picture list L1) are the same.
  • BDOF can be applied only when the distance to the LO reference picture and the distance to the L1 reference picture are the same based on the current picture.
  • the condition that the reference picture distances in both directions are the same based on the current picture is used, so that it is possible to determine whether a block is a block including an object moving at a constant speed while being a true pair prediction.
  • the decoding apparatus may determine whether all the conditions listed in Table 30 are satisfied, and when all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 30 is not satisfied, the decoding apparatus may not apply the BDOF. These conditions in Table 30 may also be applied to the encoding device, and may be performed by the encoding device in a method corresponding to that of the decoding device.
  • this document proposes a method of determining whether to apply BDOF according to a block size.
  • Table 31 below shows a case in which the block size limit according to an embodiment of the present document is included as an application condition.
  • the current block size (length * width) (e.g., CbHeight * CbWidth) is 64 or more. Can be added.
  • the decoding apparatus may determine whether all the conditions listed in Table 31 are satisfied, and when all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 31 is not satisfied, the decoding apparatus may not apply BDOF. These conditions in Table 31 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • Table 32 shows an example of a motion vector refinement process based on SAD as an embodiment of this document.
  • the DMVR adopts the SAD function as a cost function instead of the MRSAD (mean-removed SAD) function in consideration of decoding complexity.
  • MRSAD mean-removed SAD
  • the DMVR condition may be fixed in consideration of the GBi index and the weight flag of explicit weighted prediction.
  • the same conditions may be applied to BDOF. According to the experimental results, a 0.00% RD-rate change was found with 100% encoding and decoding run-time compared to VTM4.0 (VVC Test Model).
  • the current DMVR may search for an unmatched block by comparing the SADs of reference blocks weighted later.
  • the DMVR condition can be determined in consideration of this case. According to an embodiment of the present document, it is possible to prevent DMVR from being performed for a block whose GBi index is not the default. In addition, it is possible to prevent DMVR from being performed for a block whose weight flag is not 0 by explicit weighted prediction.
  • An embodiment of this document proposes a method for determining whether to apply DMVR in consideration of whether or not weighted pair prediction is applied.
  • the DMVR application conditions may include the conditions shown in Table 33 below.
  • DMVR can be limitedly applied. In other words, when weighted prediction is not explicitly applied to L0 and L1 prediction, it may be determined to apply DMVR.
  • the bi-prediction using different weights i.e., L0 prediction and L1 prediction
  • the bi-prediction using different weights i.e., L0 prediction and L1 prediction
  • the bi-prediction weight index e.g., GbiIdx
  • a condition indicating whether or not weight is explicitly applied to L0 prediction and L1 prediction eg, luma_weight_l0_flag, luma_weight_l1_flag
  • an index condition indicating weight applied to L0 prediction and L1 prediction eg GbiIdx
  • the decoding apparatus may determine whether all conditions listed in Table 33 are satisfied, and when all conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 33 is not satisfied, the decoding device may not apply the DMVR. These conditions in Table 33 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • this document proposes a method of determining whether to apply BDOF in consideration of the GBi index and the weight flag of explicit weighted prediction.
  • the conditions for applying the BDOF may include the conditions shown in Table 34 below.
  • flag information indicating whether to explicitly weight the L0 prediction e.g. luma_weight_l0_flag
  • flag information indicating whether to explicitly weight the L1 prediction e.g. luma_weight_l1_flag
  • the decoding apparatus may determine whether all the conditions listed in Table 34 are satisfied, and if all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 34 is not satisfied, the decoding apparatus may not apply the BDOF. These conditions in Table 34 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the method of performing true pair prediction based on the conditions listed in Table 33 or 34 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • this document proposes a method of determining whether to apply DMVR and BDOF by considering the weighting factor of the chroma component as well as the weighting factor of the luma component.
  • the application conditions of DMVR are the conditions shown in Table 35 Can include.
  • conditions indicating whether to explicitly apply weights to the luma component (luma prediction value) of L0 prediction and the luma component (luma prediction value) of L1 prediction e.g., luma_weight_l0_flag, luma_weight_l1_flag
  • L0 prediction Conditions indicating whether or not to explicitly weight the chroma component (chroma prediction value) and the chroma component (chroma prediction value) of the L1 prediction e.g.
  • chroma_weight_l0_flag an index condition indicating the weight applied to L0 prediction and L1 prediction
  • adding e.g., GbiIdx
  • flag information indicating whether to explicitly weight the luma component (the luma prediction value) of the L0 prediction for example, luma_weight_l0_flag
  • explicitly weight the luma component the luma prediction value of the L1 prediction.
  • flag information indicating whether to apply eg, luma_weight_l1_flag
  • flag information indicating whether to explicitly weight the chroma component (chroma prediction value) of L0 prediction eg, chroma_weight_l0_flag
  • the chroma component (chroma prediction value) of L1 prediction are explicitly weighted.
  • flag information indicating whether or not eg, chroma_weight_l1_flag
  • the bi-prediction using different weights i.e., L0 prediction and L1 prediction
  • the bi-prediction using different weights i.e., L0 prediction and L1 prediction
  • the bi-prediction weight index e.g., GbiIdx
  • bi-prediction weight index e.g., GbiIdx
  • a bi-prediction weight index e.g. It can be determined whether the value of
  • conditions indicating whether weights are explicitly applied to L0 prediction and L1 prediction of the luma component e.g., luma_weight_l0_flag, luma_weight_l1_flag
  • conditions indicating whether or not weights are explicitly applied to L0 prediction and L1 prediction of the chroma component e.g., chroma_weight_l0_flag, chroma_weight_l1_flag
  • an index condition indicating a weight applied to L0 prediction and L1 prediction eg GbiIdx
  • the decoding apparatus may determine whether all the conditions listed in Table 35 are satisfied, and if all the conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 35 is not satisfied, the decoding device may not apply the DMVR. These conditions in Table 35 may also be applied to the encoding device, and may be performed by the encoding device in a method corresponding to that of the decoding device.
  • conditions indicating whether to explicitly apply weights to the luma component (luma prediction value) of L0 prediction and the luma component (luma prediction value) of L1 prediction e.g., luma_weight_l0_flag, luma_weight_l1_flag
  • L0 prediction By adding a condition (e.g.
  • chroma_weight_l0_flag, chroma_weight_l1_flag to explicitly indicate whether to apply weight to the chroma component (chroma prediction value) and the chroma component (chroma prediction value) of the L1 prediction, the weights for both luma and chroma components ( That is, the BDOF can be limitedly applied only when the weighting factor) is not explicitly applied.
  • the value of the flag information indicating whether to explicitly weight the luma component (the luma prediction value) of the L0 prediction e.g., luma_weight_l0_flag
  • the luma component (the luma prediction value) of the L1 prediction is
  • the value of flag information indicating whether or not weight is explicitly applied e.g., luma_weight_l1_flag
  • flag information eg, chroma_weight_l0_flag
  • flag information indicating whether to explicitly weight the chroma component (chroma prediction value) of L0 prediction is 0, and the chroma component (chroma prediction value) of L1 prediction is specified.
  • the value of flag information indicating whether or not the weight is applied eg, chroma_weight_l1_flag
  • BDOF can be limitedly applied.
  • conditions indicating whether weights are explicitly applied to L0 prediction and L1 prediction of the luma component e.g., luma_weight_l0_flag, luma_weight_l1_flag
  • conditions indicating whether or not weights are explicitly applied to L0 prediction and L1 prediction of the chroma component e.g., chroma_weight_l0_flag, chroma_weight_l1_flag
  • the decoding apparatus may determine whether all the conditions listed in Table 36 are satisfied, and when all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 36 is not satisfied, the decoding apparatus may not apply BDOF. These conditions in Table 36 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the method of performing true pair prediction based on the conditions listed in Table 35 or 36 may be applied independently to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • flag information indicating whether weighted prediction is applied according to the type of the current slice may be signaled from the encoding device to the decoding device through a PPS (Picture Parameter Set) or SPS (Sequence Parameter Set) syntax.
  • PPS Picture Parameter Set
  • SPS Sequence Parameter Set
  • Table 37 shows the flag information signaled through the PPS syntax.
  • weighted_pred_flag and weighted_bipred_flag may be signaled from the encoding device to the decoding device.
  • weighted_pred_flag may be information indicating whether weighted prediction is applied to a P slice
  • weighted_bipred_flag may be information indicating whether weighted prediction is applied to a B slice.
  • weighted_pred_flag 0
  • weighted_pred_flag 1
  • weighted_pred_flag 1
  • weighted_bipred_flag 1
  • the P slice may mean a slice that is decoded based on inter prediction (single) using one motion vector and a reference picture index.
  • a bi-predictive slice may mean a slice that is decoded based on inter prediction using one or more, for example, two motion vectors and a reference picture index.
  • DMVR based on flag information indicating whether weighted prediction is applied to a P slice (eg, weighted_pred_flag) and flag information indicating whether weighted prediction is applied to a B slice (eg, weighted_bipred_flag), DMVR It is possible to determine whether to apply or not, and in this case, the application conditions of DMVR may include the conditions shown in Table 38 below.
  • a condition indicating whether weighted prediction is applied to a P slice eg, weighted_pred_flag
  • a condition indicating whether weighted prediction is applied to a B slice eg, weighted_bipred_flag
  • L0 prediction and L1 prediction By adding an index condition (eg, GbiIdx) indicating a weighted value, the DMVR can be limitedly applied only when weighted prediction is not applied to the P slice and the B slice.
  • DMVR can be applied.
  • the weighted prediction is not applied to the P slice and the weighted prediction is not applied to the B slice, it may be determined that the DMVR is applied.
  • the bi-prediction using different weights i.e., L0 prediction and L1 prediction
  • the bi-prediction using different weights i.e., L0 prediction and L1 prediction
  • the bi-prediction weight index e.g., GbiIdx
  • a condition indicating whether weighted prediction is applied to a P slice e.g., weighted_pred_flag
  • a condition indicating whether weighted prediction is applied to a B slice e.g., weighted_bipred_flag
  • weights applied to L0 prediction and L1 prediction are determined. It may be determined whether to apply DMVR based on the remaining conditions listed in Table 38 together with the indicated index condition (eg, GbiIdx).
  • the decoding apparatus may determine whether all conditions listed in Table 38 are satisfied, and when all conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 38 is not satisfied, the decoding device may not apply the DMVR. These conditions in Table 38 may also be applied to the encoding device, and may be performed by the encoding device in a method corresponding to that of the decoding device.
  • the conditions for applying the BDOF may include the conditions shown in Table 39 below.
  • P slice and B BDOF can be limitedly applied only when weighted prediction is not applied to a slice.
  • weighted_pred_flag when a value of weighted_pred_flag is 1 and not a P slice, and when a value of weighted_bipred_flag is 1 and not a B slice, BDOF can be applied. In other words, if the weighted prediction is not applied to the P slice and the weighted prediction is not applied to the B slice, it may be determined that BDOF is applied.
  • the decoding apparatus may determine whether all the conditions listed in Table 39 are satisfied, and if all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 39 is not satisfied, the decoding apparatus may not apply the BDOF. These conditions in Table 39 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the method of performing true pair prediction based on the conditions listed in Table 38 or 39 may be independently applied to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • bi-prediction it is possible to determine whether to perform bi-prediction or uni-prediction according to the block size. For example, when the size of the current block is small (for example, a block having a size of 4x8 or 8x4), only uni-prediction is possible, and when the size of the current block is large, bi-prediction may be enabled. As described above, when limiting to perform only uni-prediction when the block size is small, DMVR and BDOF performed in the case of bi-prediction must also consider the limiting block size when uni-prediction is performed.
  • bi-prediction when the size of the current block is 4x8 or 8x4, when limiting to possible only uni-prediction, bi-prediction may be performed when at least one of the height or width of the current block is greater than 4. Therefore, in this document, we propose a method of applying DMVR and BDOF in consideration of the block size applied during bi-prediction or uni-prediction.
  • the conditions for applying BDOF may include the conditions shown in Table 40 below.
  • BDOF can be limitedly applied only to blocks larger than a specific size.
  • a condition for applying BDOF can be used.
  • the width of the current block e.g. CbWidth
  • a condition for applying BDOF may be used. If the condition related to the size of the current block (e.g. CbHeight or CbWidth) is satisfied (i.e., the height of the current block is greater than 4), BDOF is applied, and the condition related to the size of the current block is not satisfied. If not (that is, if the height of the current block is less than 4), BDOF may not be applied.
  • bdofFlag may be derived according to whether the conditions listed in Table 40 are satisfied. In this case, when all the conditions listed in Table 40 are satisfied, the value of bdofFlag may be derived as 1 (true), and otherwise, the value of bdofFlag may be derived as 0 (false).
  • bdofFlag may be flag information indicating whether to apply BDOF to the current block.
  • the decoding apparatus may determine whether all the conditions listed in Table 40 are satisfied, and if all the conditions are satisfied, apply the BDOF to perform true pair prediction. If any of the conditions listed in Table 40 is not satisfied, the decoding apparatus may not apply the BDOF. These conditions in Table 40 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the conditions for application of DMVR may include the conditions shown in Table 41 below.
  • DMVR can be limitedly applied only to blocks larger than a specific size.
  • a condition for applying DMVR can be used.
  • the width of the current block e.g. CbWidth
  • a condition for applying DMVR may be used. If the condition related to the size of the current block (e.g.
  • CbHeight or CbWidth is satisfied (i.e., the height of the current block is greater than 4), DMVR is applied, and the condition related to the size of the current block is not satisfied. If not (ie, the current block height is 4 or less), DMVR may not be applied.
  • dmvrFlag may be derived according to whether the conditions listed in Table 41 are satisfied. In this case, when all the conditions listed in Table 41 are satisfied, the value of dmvrFlag may be derived as 1 (true), and otherwise, the value of dmvrFlag may be derived as 0 (false).
  • dmvrFlag may be flag information indicating whether to apply DMVR to the current block.
  • the decoding apparatus may determine whether all conditions listed in Table 41 are satisfied, and if all conditions are satisfied, apply the DMVR to perform true pair prediction. If any of the conditions listed in Table 41 is not satisfied, the decoding device may not apply the DMVR. These conditions in Table 41 may also be applied to the encoding device, and may be performed in a method corresponding to that of the decoding device in the encoding device.
  • the method of performing true pair prediction based on the conditions listed in Table 40 or 41 may be applied independently to DMVR and BDOF, or may be applied as the same conditions for DMVR and BDOF.
  • This document may derive DMVR flag information indicating whether to apply DMVR and BDOF flag information indicating whether to apply BDOF based on the application conditions of Tables 1 to 41 described above.
  • DMVR flag information may be derived based on DMVR application conditions (eg, at least one of the application conditions of Tables 1 to 41 or a combination of application conditions). In this case, when the value of dmvrFlag is 1 (or true), it may indicate that DMVR is applied, and when the value of dmvrFlag is 0 (or false), it may indicate that DMVR is not applied.
  • BDOF flag information eg, bdofFlag
  • BDOF flag information may be derived based on the BDOF application conditions (eg, at least one of the application conditions of Tables 1 to 41 or a combination of application conditions). In this case, when the value of bdofFlag is 1 (or true), it may indicate that BDOF is applied, and when the value of bdofFlag is 0 (or false), it may indicate that BDOF is not applied.
  • FIG. 10 is a flowchart schematically illustrating an encoding method that can be performed by an encoding apparatus according to an embodiment of the present document.
  • the method disclosed in FIG. 10 may be performed by the encoding apparatus 200 disclosed in FIG. 2. Specifically, steps S1000 to S1030 of FIG. 10 may be performed by the prediction unit 220 and the inter prediction unit 221 disclosed in FIG. 2, and step S1040 of FIG. 10 is the residual processing unit 230 disclosed in FIG. 2. It may be performed by, and step S1050 of FIG. 10 may be performed by the entropy encoding unit 240 disclosed in FIG. 2.
  • the method disclosed in FIG. 10 may include the embodiments described above in this document. Accordingly, in FIG. 10, detailed descriptions of contents overlapping with the above-described embodiments will be omitted or simplified.
  • the encoding apparatus may derive an L0 motion vector and an L1 motion vector of a current block (S1000).
  • the encoding apparatus may derive motion information (motion vector, reference picture index, etc.) of the current block. For example, the encoding apparatus searches for a block similar to the current block within a certain area (search area) of reference pictures through motion estimation, and derives a reference block whose difference from the current block is a minimum or less than a certain standard. can do. Based on this, a reference picture index indicating a reference picture in which the reference block is located may be derived, and a motion vector may be derived based on a position difference between the reference block and the current block.
  • motion information motion vector, reference picture index, etc.
  • the encoding apparatus may determine an inter prediction mode applied to the current block among various prediction modes.
  • the encoding apparatus may compare RD costs for various prediction modes and determine an optimal prediction mode for the current block.
  • the encoding device may determine whether to apply the merge mode as an optimal prediction mode for the current block.
  • the encoding apparatus may construct a merge candidate list based on neighboring blocks of the current block and generate merge index information. Specifically, a reference block having a difference from the current block of the reference blocks (ie, neighboring blocks) indicated by the merge candidates included in the merge candidate list may be derived from a minimum or a predetermined reference or less. In this case, a merge candidate associated with the derived reference block is selected, and merge index information indicating the selected merge candidate may be generated and signaled to the decoding apparatus. Motion information of the current block may be derived using motion information of the selected merge candidate.
  • the motion information may include information such as a motion vector and a reference picture index, and may include L0 motion information and/or L1 motion information according to an inter prediction type (L0 prediction, L1 prediction, Bi prediction, etc.).
  • the motion information may include a motion vector in the L0 direction (L0 motion vector) and a motion vector in the L1 direction (L1 motion vector).
  • the motion information includes an L0 reference picture index and an L0 reference picture indicated by an L0 reference picture index in the L0 reference picture list, an L1 reference picture index and an L1 reference indicated by an L1 reference picture index in the L1 reference picture list. It may include a picture.
  • the encoding device can derive the L0 motion vector and the L1 motion vector of the neighboring block indicated by the merge index information among neighboring blocks of the current block, and use these as the L0 and L1 motion vectors of the current block. have.
  • the encoding apparatus may derive L0 prediction samples of the current block based on the L0 motion vector, and may derive L1 prediction samples of the current block based on the L1 motion vector (S1010).
  • the L0 prediction samples may be derived based on reference samples indicated by the L0 motion vector in the L0 reference picture
  • the L1 prediction samples may be derived based on the reference samples indicated by the L1 motion vector in the L1 reference picture.
  • the L0 reference picture is a reference picture indicated by the L0 reference picture index among reference pictures included in the L0 reference picture list
  • the L1 reference picture is an L1 reference picture among reference pictures included in the L1 reference picture list. It may be a reference picture indicated by an index.
  • the encoding apparatus may derive BDOF flag information indicating whether to apply BDOF to the current block (S1020).
  • the encoding apparatus may determine whether to apply BDOF to the current block in consideration of coding efficiency, complexity, and prediction performance. That is, the encoding apparatus may apply the BDOF to the current block based on whether the condition for applying the BDOF to the current block is satisfied.
  • the BDOF application condition may be composed of some (or all) or specific combinations of the various application conditions described in Tables 1 to 41.
  • the encoding device may derive the BDOF flag information according to whether the BDOF application condition is satisfied.
  • the BDOF flag information may be information indicating whether to apply BDOF to the current block (eg, bdofFlag described above).
  • the condition for applying the BDOF may include a condition in which the height of the current block is greater than 4.
  • the encoding apparatus may derive the BDOF flag information by applying the BDOF to the current block.
  • the BDOF flag information may be derived as a value (eg, 1 or true) indicating that the BDOF is applied to the current block.
  • the BDOF flag information may be derived as a value (eg, 0 or false) indicating that BDOF is not applied to the current block.
  • the BDOF flag information may be derived as a value (eg, 0 or false) indicating that BDOF is not applied to the current block.
  • the BDOF application condition may include a condition in which the prediction mode (CIIP mode) in which inter prediction and intra prediction are combined is not applied to the current block.
  • the BDOF flag information is derived by applying the BDOF to the current block. can do.
  • the BDOF flag information may be derived as a value (eg, 1 or true) indicating that BDOF is applied to the current block.
  • ciip_flag is 1, the BDOF flag information may be derived as a value (eg, 0 or false) indicating that BDOF is not applied to the current block.
  • the BDOF application condition may include a condition in which the first picture order count (POC) difference between the current picture and the L0 reference picture and the second POC difference between the current picture and the L1 reference picture are the same.
  • the encoding device satisfies the case where the first POC difference (eg, DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0])) and the second POC difference (eg DiffPicOrderCnt(currPic, RefPicList1 [refIdxL1] )) are the same, the current block is BDOF flag information can be derived by applying the BDOF to the target.
  • the first POC difference eg, DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0]
  • the second POC difference eg DiffPicOrderCnt(currPic, RefPicList1 [refI
  • the BDOF flag information is derived as a value indicating that BDOF is applied to the current block (eg 1 or true). Can be. Otherwise, the BDOF flag information may be derived as a value indicating that the BDOF is not applied to the current block (eg, 0 or false).
  • the BDOF application condition may include a condition when values of the L0 luma weighted prediction flag information and the L1 luma weighted prediction flag information are all 0s. At this time, if the encoding device satisfies the case where the values of the L0 luma weighted prediction flag information (eg, luma_weight_l0_flag) and the L1 luma weighted prediction flag information (eg, luma_weight_l1_flag) are 0, the BDOF flag is applied to the current block. Information can be derived.
  • the BDOF flag information may be derived as a value (eg, 1 or true) indicating that BDOF is applied to the current block. Otherwise, the BDOF flag information may be derived as a value indicating that the BDOF is not applied to the current block (eg, 0 or false).
  • the L0 luma weighted prediction flag information is information indicating whether a weight factor of L0 prediction exists for the luma component of the current block
  • the L1 luma weighted prediction flag information is L1 for the luma component of the current block. This may be information indicating whether a weighting factor of prediction exists. For example, if the value of the L0 luma weighted prediction flag information is 0, it indicates that there is no weighting factor for the luma component of the L0 prediction, and if the value of the L0 luma weighted prediction flag information is 1, the L0 prediction luma It may indicate that there is a weighting factor for the component.
  • the value of the L1 luma weighted prediction flag information when the value of the L1 luma weighted prediction flag information is 0, it indicates that there is no weighting factor for the luma component of the L1 prediction, and when the value of the L1 luma weighted prediction flag information is 1, it is Can indicate that a weighting factor exists for
  • a condition for applying BDOF is a condition in which BDOF-based inter prediction is enabled, and a bi-prediction performed based on an L0 reference picture and an L1 reference picture is applied to the current block. If this is the case, the current block's bi-prediction weight index is 0, the current block's affine mode is not applied, and the current block has a subblock-based merge mode.
  • a condition in which the current block is a luma component may be included.
  • the encoding apparatus may include at least one of the above-described BDOF application conditions, and may derive BDOF flag information based on the BDOF application conditions. In this case, when one or more conditions are included as the BDOF application condition, the encoding apparatus may derive the value of the BDOF flag information as true or 1 when all the BDOF application conditions are satisfied. It can be induced with flase or zero.
  • the BDOF application conditions listed above are only an example, and the conditions of Tables 1 to 41 described above may be used in various combinations.
  • the encoding apparatus applies BDOF to the current block, and L0 prediction samples and L1 Prediction samples for the current block may be derived based on the prediction samples (S1030).
  • the encoding apparatus may calculate a first gradient for L0 prediction samples and a second gradient for L1 prediction samples. Further, the encoding apparatus may derive prediction samples for the current block based on the L0 prediction samples, the L1 prediction samples, the first gradient, and the second gradient. For example, a process of deriving prediction samples by applying BDOF may use calculations such as Equations 1 to 6 described above.
  • the encoding device may determine whether to apply the DMVR to the current block in consideration of coding efficiency, complexity, prediction performance, and the like. That is, the encoding device may apply the DMVR to the current block based on whether the conditions for applying the DMVR to the current block are satisfied.
  • the application conditions of the DMVR may be composed of some (or all) or specific combinations of the various application conditions described in Tables 1 to 41.
  • the encoding device may derive DMVR flag information according to whether the application condition of the DMVR is satisfied.
  • the DMVR flag information may be information indicating whether to apply the DMVR to the current block (eg, dmvrFlag described above).
  • the DMVR application condition may include a condition in which the height of the current block is greater than 4.
  • the encoding device may derive the DMVR flag information by applying the DMVR to the current block if the case where the height of the current block is greater than 4 is satisfied. For example, when the height of the current block is greater than 4, the DMVR flag information may be derived as a value (eg, 1 or true) indicating that the DMVR is applied to the current block. Otherwise (that is, when the height of the current block is 4 or less), the DMVR flag information may be derived as a value (eg, 0 or false) indicating that the DMVR is not applied to the current block. For example, when the height x width of the current block is 4x8, the DMVR flag information may be derived as a value (eg, 0 or false) indicating that the DMVR is not applied to the current block.
  • the application condition of the DMVR may include a condition in which the prediction mode (CIIP mode) in which inter prediction and intra prediction are combined is not applied to the current block.
  • the DMVR flag information is derived by applying the DMVR to the current block. can do.
  • the DMVR flag information may be derived as a value (eg, 1 or true) indicating that the DMVR is applied to the current block.
  • the DMVR flag information may be derived as a value (eg, 0 or false) indicating that DMVR is not applied to the current block.
  • the application condition of the DMVR may include a condition when values of the L0 luma weighted prediction flag information and the L1 luma weighted prediction flag information are all 0s.
  • the encoding device applies the DMVR to the current block when the values of the L0 luma weighted prediction flag information (eg, luma_weight_l0_flag) and the L1 luma weighted prediction flag information (eg, luma_weight_l1_flag) are all 0.
  • Information can be derived.
  • the DMVR flag information may be derived as a value (eg, 1 or true) indicating that DMVR is applied to the current block. Otherwise, the DMVR flag information may be derived as a value (eg, 0 or false) indicating that the DMVR is not applied to the current block.
  • the application condition of the DMVR may include a condition when the value of the bi-prediction weight index information of the current block is 0.
  • the encoding device may derive the DMVR flag information by applying the DMVR to the current block.
  • the DMVR flag information may be derived as a value (eg, 1 or true) indicating that the DMVR is applied to the current block.
  • the DMVR flag information may be derived as a value (eg, 0 or false) indicating that the DMVR is not applied to the current block.
  • the value of the bi-prediction weight index information (eg, GbiIdx) is 0, it may be a default case in which different weights are not applied to the L0 prediction and the L1 prediction.
  • the value of the bi-prediction weight index information when the value of the bi-prediction weight index information is 0, it may be a case in which 1/2 weight is applied to L0 prediction and L1 prediction, respectively.
  • the application condition of the DMVR is a condition in which DMVR-based inter bi-prediction is enabled, a bi-prediction performed based on an L0 reference picture and an L1 reference picture in the current block.
  • the condition when (bi-prediction) is applied the condition when the distance from the L0 reference picture and the distance from the L1 reference picture are the same based on the current picture, the condition when the merge mode is applied to the current block, the current A condition in which the merge mode with motion vector difference (MMVD) mode is not applied to the block may be included.
  • the encoding device may include at least one of the above-described DMVR application conditions, and may derive DMVR flag information based on the application conditions of the DMVR. In this case, if more than one condition is included as the DMVR application condition, the encoding device may derive the value of the DMVR flag information as true or 1 when all of the DMVR application conditions are satisfied. It can be induced with flase or zero.
  • the DMVR application conditions listed above are only an example, and the conditions of Tables 1 to 41 described above may be used in various combinations.
  • the encoding device applies the DMVR to the current block, and the refined L0 motion vector And a refined L1 motion vector.
  • the encoding apparatus includes reference samples in the L0 reference picture derived based on the L0 motion vector (i.e., L0 prediction samples) and reference samples in the L1 reference picture derived based on the L1 motion vector. , L1 prediction samples), the minimum SAD (Sum of Absolute Differences) may be calculated.
  • the encoding apparatus may derive a refined L0 motion vector for the L0 motion vector and a refined L1 motion vector for the L1 motion vector based on a sample position corresponding to the minimum SAD.
  • the refined L0 motion vector may be a motion vector indicating a sample position corresponding to the minimum SAD in the L0 reference picture
  • the refined L1 motion vector may be a motion vector indicating a sample position corresponding to the minimum SAD in the L1 reference picture.
  • the encoding apparatus may derive prediction samples based on the refined L0 motion vector and the refined L1 motion vector. That is, in step S1010, the L0 prediction samples may be derived based on the refined L0 motion vector, and the L1 prediction samples may be derived based on the refined L1 motion vector. Accordingly, in step S1030, finally refined prediction samples may be generated using L0 prediction samples derived based on the refined L0 motion vector and L1 prediction samples derived based on the L1 motion vector.
  • the encoding apparatus may derive residual samples for the current block based on the prediction samples (S1040), and encode image information including information on the residual samples (S1050).
  • the encoding apparatus may derive residual samples based on the original samples for the current block and the predicted samples for the current block.
  • the encoding device may generate information on residual samples.
  • the information on the residual samples may include information such as value information of quantized transform coefficients derived by performing transformation and quantization on the residual samples, position information, transformation technique, transformation kernel, quantization parameter, etc. have.
  • the encoding device may encode information on the residual samples and output it as a bitstream, and transmit it to the decoding device through a network or a storage medium.
  • the encoding apparatus may encode the image information derived in steps S1000 to S1050 described above and output the encoded image information as a bitstream. For example, merge flag information, merge index information, L0 reference picture index, L1 reference picture index, L0 luma weighted prediction flag information, L1 luma weighted prediction flag information, bi-prediction weight index information, etc. will be included in the video information and be encoded. And the encoded image information may be signaled to the decoding device.
  • FIG. 11 is a flowchart schematically illustrating a decoding method that can be performed by a decoding apparatus according to an embodiment of the present document.
  • the method disclosed in FIG. 11 may be performed by the decoding apparatus 300 disclosed in FIG. 3. Specifically, steps S1100 to S1130 of FIG. 11 may be performed by the prediction unit 330 and the inter prediction unit 332 disclosed in FIG. 3, and step S1140 of FIG. 11 is performed by the addition unit 340 disclosed in FIG. 3. Can be done by In addition, the method disclosed in FIG. 11 may include the embodiments described above in this document. Accordingly, in FIG. 11, detailed descriptions of content overlapping with the above-described embodiments will be omitted or simplified.
  • the decoding apparatus may derive an L0 motion vector and an L1 motion vector of a current block (S1100).
  • the decoding device may determine a prediction mode for the current block based on prediction information signaled from the encoding device.
  • the decoding apparatus may derive motion information (motion vector, reference picture index, etc.) of the current block based on the prediction mode.
  • the prediction mode may include a skip mode, a merge mode, and (A)MVP mode.
  • the decoding apparatus may configure a merge candidate list based on neighboring blocks of the current block and select one merge candidate from among merge candidates included in the merge candidate list.
  • one merge candidate may be selected from the merge candidate list based on the above-described merge index information.
  • the decoding apparatus may derive motion information of the current block by using motion information of the selected merge candidate. That is, motion information of a merge candidate selected by a merge index among merge candidates included in the merge candidate list may be used as motion information of the current block.
  • the motion information may include information such as a motion vector and a reference picture index, and may include L0 motion information and/or L1 motion information according to an inter prediction type (L0 prediction, L1 prediction, Bi prediction, etc.).
  • the motion information may include a motion vector in the L0 direction (L0 motion vector) and a motion vector in the L1 direction (L1 motion vector).
  • the motion information includes an L0 reference picture index and an L0 reference picture indicated by an L0 reference picture index in the L0 reference picture list, an L1 reference picture index and an L1 reference indicated by an L1 reference picture index in the L1 reference picture list. It may include a picture.
  • the decoding apparatus can derive the L0 motion vector and the L1 motion vector of the neighboring block indicated by the merge index information among neighboring blocks of the current block, and use these as the L0 and L1 motion vectors of the current block. have.
  • the decoding apparatus may derive L0 prediction samples of the current block based on the L0 motion vector, and may derive L1 prediction samples of the current block based on the L1 motion vector (S1110).
  • the L0 prediction samples may be derived based on reference samples indicated by the L0 motion vector in the L0 reference picture
  • the L1 prediction samples may be derived based on the reference samples indicated by the L1 motion vector in the L1 reference picture.
  • the L0 reference picture is a reference picture indicated by the L0 reference picture index among reference pictures included in the L0 reference picture list
  • the L1 reference picture is an L1 reference picture among reference pictures included in the L1 reference picture list. It may be a reference picture indicated by an index.
  • the decoding apparatus may derive BDOF flag information indicating whether to apply BDOF to the current block (S1120).
  • the decoding apparatus may determine whether to apply BDOF to the current block in consideration of coding efficiency, complexity, and prediction performance. That is, the decoding apparatus may apply the BDOF to the current block based on whether the condition for applying the BDOF to the current block is satisfied.
  • the BDOF application condition may be composed of some (or all) or specific combinations of the various application conditions described in Tables 1 to 41.
  • the decoding apparatus may derive the BDOF flag information according to whether the BDOF application condition is satisfied.
  • the BDOF flag information may be information indicating whether to apply BDOF to the current block (eg, bdofFlag described above).
  • the condition for applying the BDOF may include a condition in which the height of the current block is greater than 4.
  • the decoding apparatus may derive the BDOF flag information by applying the BDOF to the current block.
  • the BDOF flag information may be derived as a value (eg, 1 or true) indicating that the BDOF is applied to the current block.
  • the BDOF flag information may be derived as a value (eg, 0 or false) indicating that BDOF is not applied to the current block.
  • the BDOF flag information may be derived as a value (eg, 0 or false) indicating that BDOF is not applied to the current block.
  • the BDOF application condition may include a condition in which the prediction mode (CIIP mode) in which inter prediction and intra prediction are combined is not applied to the current block.
  • the BDOF flag information is derived by applying BDOF to the current block. can do.
  • the BDOF flag information may be derived as a value (eg, 1 or true) indicating that BDOF is applied to the current block.
  • the BDOF flag information may be derived as a value (eg, 0 or false) indicating that BDOF is not applied to the current block.
  • the BDOF application condition may include a condition in which the first picture order count (POC) difference between the current picture and the L0 reference picture and the second POC difference between the current picture and the L1 reference picture are the same.
  • the decoding apparatus satisfies the case where the first POC difference (eg, DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0])) and the second POC difference (eg DiffPicOrderCnt(currPic, RefPicList1 [refIdxL1] )) are the same, the current block is BDOF flag information can be derived by applying the BDOF to the target.
  • the first POC difference eg, DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0]
  • the second POC difference eg DiffPicOrderCnt(currPic, RefPicList1 [refId
  • the BDOF flag information is derived as a value indicating that BDOF is applied to the current block (eg 1 or true). Can be. Otherwise, the BDOF flag information may be derived as a value indicating that the BDOF is not applied to the current block (eg, 0 or false).
  • the BDOF application condition may include a condition when values of the L0 luma weighted prediction flag information and the L1 luma weighted prediction flag information are all 0s.
  • the decoding apparatus applies the BDOF to the current block when the values of the L0 luma weighted prediction flag information (eg, luma_weight_l0_flag) and the L1 luma weighted prediction flag information (eg, luma_weight_l1_flag) are all 0.
  • Information can be derived.
  • the BDOF flag information may be derived as a value (eg, 1 or true) indicating that BDOF is applied to the current block. Otherwise, the BDOF flag information may be derived as a value indicating that the BDOF is not applied to the current block (eg, 0 or false).
  • the L0 luma weighted prediction flag information is information indicating whether a weight factor of L0 prediction exists for the luma component of the current block
  • the L1 luma weighted prediction flag information is L1 for the luma component of the current block. This may be information indicating whether a weighting factor of prediction exists. For example, if the value of the L0 luma weighted prediction flag information is 0, it indicates that there is no weighting factor for the luma component of the L0 prediction, and if the value of the L0 luma weighted prediction flag information is 1, the L0 prediction luma It may indicate that there is a weighting factor for the component.
  • the value of the L1 luma weighted prediction flag information when the value of the L1 luma weighted prediction flag information is 0, it indicates that there is no weighting factor for the luma component of the L1 prediction, and when the value of the L1 luma weighted prediction flag information is 1, it is Can indicate that a weighting factor exists for
  • a condition for applying BDOF is a condition in which BDOF-based inter prediction is enabled, and a bi-prediction performed based on an L0 reference picture and an L1 reference picture is applied to the current block. If this is the case, the current block's bi-prediction weight index is 0, the current block's affine mode is not applied, and the current block has a subblock-based merge mode.
  • a condition in which the current block is a luma component may be included.
  • the decoding apparatus may include at least one of the above-described BDOF application conditions, and may derive BDOF flag information based on the BDOF application conditions. In this case, when one or more conditions are included as the BDOF application condition, the encoding apparatus may derive the value of the BDOF flag information as true or 1 when all the BDOF application conditions are satisfied. It can be induced with flase or zero.
  • the BDOF application conditions listed above are only an example, and the conditions of Tables 1 to 41 described above may be used in various combinations.
  • the decoding apparatus applies BDOF to the current block, and L0 prediction samples and L1 Prediction samples for the current block may be derived based on the prediction samples (S1130).
  • the decoding apparatus may calculate a first gradient for L0 prediction samples and a second gradient for L1 prediction samples. Further, the decoding apparatus may derive prediction samples for the current block based on the L0 prediction samples, the L1 prediction samples, the first gradient, and the second gradient. For example, a process of deriving prediction samples by applying BDOF may use calculations such as Equations 1 to 6 described above.
  • the decoding apparatus may determine whether to apply the DMVR to the current block in consideration of coding efficiency, complexity, prediction performance, and the like. That is, the decoding apparatus may apply the DMVR to the current block based on whether the application condition of the DMVR to the current block is satisfied.
  • the application conditions of the DMVR may be composed of some (or all) or specific combinations of the various application conditions described in Tables 1 to 41.
  • the decoding device may derive DMVR flag information according to whether the application condition of the DMVR is satisfied.
  • the DMVR flag information may be information indicating whether to apply the DMVR to the current block (eg, dmvrFlag described above).
  • the DMVR application condition may include a condition in which the height of the current block is greater than 4.
  • the decoding apparatus may derive the DMVR flag information by applying the DMVR to the current block.
  • the DMVR flag information may be derived as a value (eg, 1 or true) indicating that the DMVR is applied to the current block.
  • the DMVR flag information may be derived as a value (eg, 0 or false) indicating that the DMVR is not applied to the current block.
  • the DMVR flag information may be derived as a value (eg, 0 or false) indicating that the DMVR is not applied to the current block.
  • the application condition of the DMVR may include a condition in which the prediction mode (CIIP mode) in which inter prediction and intra prediction are combined is not applied to the current block.
  • the DMVR flag information is derived by applying the DMVR to the current block. can do.
  • the DMVR flag information may be derived as a value (eg, 1 or true) indicating that the DMVR is applied to the current block.
  • the DMVR flag information may be derived as a value (eg, 0 or false) indicating that DMVR is not applied to the current block.
  • the application condition of the DMVR may include a condition when values of the L0 luma weighted prediction flag information and the L1 luma weighted prediction flag information are all 0s.
  • the decoding device applies the DMVR to the current block when the values of the L0 luma weighted prediction flag information (eg, luma_weight_l0_flag) and the L1 luma weighted prediction flag information (eg, luma_weight_l1_flag) are all 0.
  • Information can be derived.
  • the DMVR flag information may be derived as a value (eg, 1 or true) indicating that DMVR is applied to the current block. Otherwise, the DMVR flag information may be derived as a value (eg, 0 or false) indicating that the DMVR is not applied to the current block.
  • the application condition of the DMVR may include a condition when the value of the bi-prediction weight index information of the current block is 0.
  • the decoding apparatus may derive the DMVR flag information by applying the DMVR to the current block.
  • the DMVR flag information may be derived as a value (eg, 1 or true) indicating that the DMVR is applied to the current block.
  • the DMVR flag information may be derived as a value (eg, 0 or false) indicating that the DMVR is not applied to the current block.
  • the value of the bi-prediction weight index information (eg, GbiIdx) is 0, it may be a default case in which different weights are not applied to the L0 prediction and the L1 prediction.
  • the value of the bi-prediction weight index information when the value of the bi-prediction weight index information is 0, it may be a case in which 1/2 weight is applied to L0 prediction and L1 prediction, respectively.
  • the application condition of the DMVR is a condition in which DMVR-based inter bi-prediction is enabled, a bi-prediction performed based on an L0 reference picture and an L1 reference picture in the current block.
  • the condition when (bi-prediction) is applied the condition when the distance from the L0 reference picture and the distance from the L1 reference picture are the same based on the current picture, the condition when the merge mode is applied to the current block, the current A condition in which the merge mode with motion vector difference (MMVD) mode is not applied to the block may be included.
  • the decoding apparatus may include at least one of the above-described DMVR application conditions, and may derive DMVR flag information based on the application conditions of the DMVR. In this case, when one or more conditions are included as the DMVR application condition, the decoding device may derive the value of the DMVR flag information as true or 1 when all the DMVR application conditions are satisfied, and otherwise, the value of the DMVR flag information It can be induced with flase or zero.
  • the DMVR application conditions listed above are only an example, and the conditions of Tables 1 to 41 described above may be used in various combinations.
  • the decoding apparatus applies the DMVR to the current block, and the refined L0 motion vector And a refined L1 motion vector.
  • the decoding apparatus includes reference samples in the L0 reference picture derived based on the L0 motion vector (i.e., L0 prediction samples) and reference samples in the L1 reference picture derived based on the L1 motion vector , L1 prediction samples), the minimum SAD (Sum of Absolute Differences) may be calculated.
  • the decoding apparatus may derive a refined L0 motion vector for the L0 motion vector and a refined L1 motion vector for the L1 motion vector based on a sample position corresponding to the minimum SAD.
  • the refined L0 motion vector may be a motion vector indicating a sample position corresponding to the minimum SAD in the L0 reference picture
  • the refined L1 motion vector may be a motion vector indicating a sample position corresponding to the minimum SAD in the L1 reference picture.
  • the decoding apparatus may derive prediction samples based on the refined L0 motion vector and the refined L1 motion vector. That is, in step S1010, the L0 prediction samples may be derived based on the refined L0 motion vector, and the L1 prediction samples may be derived based on the refined L1 motion vector.
  • the decoding apparatus may generate reconstructed samples for the current block based on the prediction samples (S1140).
  • the decoding apparatus may directly use prediction samples as reconstructed samples according to a prediction mode, or may generate reconstructed samples by adding residual samples to the prediction samples.
  • the decoding apparatus may receive information about the residual for the current block.
  • the information on the residual may include transform coefficients on the residual samples.
  • the decoding apparatus may derive residual samples (or residual sample array) for the current block based on the residual information.
  • the decoding apparatus may generate reconstructed samples based on prediction samples and residual samples, and may derive a reconstructed block or a reconstructed picture based on the reconstructed samples.
  • the above-described method according to this document may be implemented in a software form, and the encoding device and/or decoding device according to this document performs image processing such as a TV, computer, smartphone, set-top box, display device, etc. Can be included in the device.
  • the above-described method may be implemented as a module (process, function, etc.) performing the above-described functions.
  • the modules are stored in memory and can be executed by the processor.
  • the memory may be inside or outside the processor, and may be connected to the processor by various well-known means.
  • the processor may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and/or a data processing device.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and/or other storage device. That is, the embodiments described in this document may be implemented and performed on a processor, microprocessor, controller, or chip.
  • the functional units illustrated in each drawing may be implemented and executed on a computer, processor, microprocessor, controller, or chip. In this case, information for implementation (ex. information on instructions) or an algorithm may be stored in a digital storage medium.
  • decoding devices and encoding devices to which this document is applied include multimedia broadcasting transmission/reception devices, mobile communication terminals, home cinema video devices, digital cinema video devices, surveillance cameras, video chat devices, real-time communication devices such as video communications, and mobile streaming.
  • Devices storage media, camcorders, video-on-demand (VoD) service providers, OTT video (Over the top video) devices, Internet streaming service providers, three-dimensional (3D) video devices, virtual reality (VR) devices, AR (argumente) reality) devices, video telephony video devices, transportation means terminals (ex.vehicle (including autonomous vehicles) terminals, airplane terminals, ship terminals, etc.) and medical video devices, and can be used to process video signals or data signals.
  • an OTT video (Over the top video) device may include a game console, a Blu-ray player, an Internet-connected TV, a home theater system, a smartphone, a tablet PC, and a digital video recorder (DVR).
  • DVR digital video recorder
  • the processing method to which the present document is applied may be produced in the form of a program executed by a computer, and may be stored in a computer-readable recording medium.
  • Multimedia data having the data structure according to this document can also be stored in a computer-readable recording medium.
  • the computer-readable recording medium includes all kinds of storage devices and distributed storage devices in which computer-readable data is stored.
  • the computer-readable recording medium includes, for example, Blu-ray disk (BD), universal serial bus (USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, magnetic tape, floppy disk, and optical It may include a data storage device.
  • the computer-readable recording medium includes media implemented in the form of a carrier wave (for example, transmission through the Internet).
  • the bitstream generated by the encoding method may be stored in a computer-readable recording medium or transmitted through a wired or wireless communication network.
  • an embodiment of this document may be implemented as a computer program product using a program code, and the program code may be executed in a computer according to the embodiment of this document.
  • the program code may be stored on a carrier readable by a computer.
  • FIG. 12 shows an example of a content streaming system to which the embodiments disclosed in this document can be applied.
  • a content streaming system applied to embodiments of the present document may largely include an encoding server, a streaming server, a web server, a media storage device, a user device, and a multimedia input device.
  • the encoding server serves to generate a bitstream by compressing content input from multimedia input devices such as smartphones, cameras, camcorders, etc. into digital data, and transmits it to the streaming server.
  • multimedia input devices such as smartphones, cameras, camcorders, etc. directly generate bitstreams
  • the encoding server may be omitted.
  • the bitstream may be generated by an encoding method or a bitstream generation method applied to the embodiments of the present document, and the streaming server may temporarily store the bitstream while transmitting or receiving the bitstream. .
  • the streaming server transmits multimedia data to a user device based on a user request through a web server, and the web server serves as an intermediary for notifying the user of a service.
  • the web server transmits it to the streaming server, and the streaming server transmits multimedia data to the user.
  • the content streaming system may include a separate control server, and in this case, the control server serves to control commands/responses between devices in the content streaming system.
  • the streaming server may receive content from a media storage and/or encoding server. For example, when content is received from the encoding server, the content may be received in real time. In this case, in order to provide a smooth streaming service, the streaming server may store the bitstream for a predetermined time.
  • Examples of the user device include a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation system, a slate PC, and Tablet PC, ultrabook, wearable device, for example, smartwatch, smart glass, head mounted display (HMD)), digital TV, desktop There may be computers, digital signage, etc.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • HMD head mounted display
  • TV desktop
  • desktop There may be computers, digital signage, etc.
  • Each server in the content streaming system may be operated as a distributed server, and in this case, data received from each server may be distributedly processed.
  • a decoding device and an encoding device to which the embodiments of the present document are applied may be included in a digital device.
  • the term "digital device" includes, for example, all digital devices capable of transmitting, receiving, processing, and outputting data, content, and services.
  • processing of data, content, service, etc. by the digital device includes an operation of encoding and/or decoding data, content, service, and the like.
  • These digital devices transmit and receive data by pairing or connecting with other digital devices, external servers, etc. (hereinafter referred to as'pairing') through a wired/wireless network. It converts accordingly.
  • Digital devices are, for example, network TV (network TV), HBBTV (Hybrid Broadcast Broadband TV), smart TV (Smart TV), IPTV (internet protocol television), PC (Personal Computer), such as a fixed device (standing device) and , PDA (Personal Digital Assistant), a smart phone (Smart Phone), a tablet PC (Tablet PC), a laptop, a mobile device (mobile device or handheld device) such as VR/AR devices.
  • the digital device includes a multimedia broadcasting transmission/reception device, a mobile communication terminal, a home cinema video device, a digital cinema video device, a surveillance camera, a video chat device, a real-time communication device such as video communication, a mobile streaming device, a storage medium, a camcorder, Video-on-demand (VoD) service providing device, OTT video (Over the top video) device, Internet streaming service providing device, 3D (3D) video device, VR (virtual reality) device, AR (argumente reality) device, video phone video It may include a device, a vehicle terminal (ex. a vehicle (including an autonomous vehicle) terminal, an airplane terminal, a ship terminal, etc.) and a medical video device.
  • a vehicle terminal ex. a vehicle (including an autonomous vehicle) terminal, an airplane terminal, a ship terminal, etc.
  • a medical video device a medical video device.
  • wired/wireless network collectively refers to a communication network that supports various communication standards or protocols for interconnection or/and data transmission/reception between digital devices or digital devices and an external server.
  • These wired/wireless networks can include both a communication network to be supported now or in the future by the standard and a communication protocol for the same.
  • USB Universal Serial Bus
  • CVBS Compposite Video Banking Sync
  • component S-Video Communication standards or protocols for wired connection such as (Analog), DVI (Digital Visual Interface), HDMI (High Definition Multimedia Interface), RGB, D-SUB, Bluetooth, Radio Frequency Identification (RFID), infrared communication (IrDA, infrared Data Association), UWB (Ultra Wideband), ZigBee, DLNA (Digital Living Network Alliance), WLAN (Wireless LAN) (Wi-Fi), Wibro (Wireless broadband), Wimax (World Interoperability for Microwave) Access), High Speed Downlink Packet Access (HSDPA), Long Term Evolution (LTE), and Wi-Fi Direct.
  • RFID Radio Frequency Identification
  • IrDA infrared Data Association
  • UWB User Wideband
  • ZigBee Ultra Wideband
  • ZigBee Universal Network Alliance
  • WLAN Wireless LAN
  • Wibro Wireless broadband
  • Wimax Worldwide Interoperability for Microwave
  • HSDPA High Speed Downlink Pack
  • a digital device when simply referred to as a digital device in this document, it may mean a fixed device or a mobile device or both may be included depending on the context.
  • a digital device is an intelligent device that supports, for example, a broadcast reception function, a computer function or support, and at least one external input, and includes e-mail and web browsing (e-mail) and web browsing through the above-described wired/wireless network. web browsing), banking, game, application, etc. can be supported.
  • the digital device may include an interface for supporting at least one input or control means (hereinafter, input means) such as a handwritten input device, a touch screen, and a spatial remote control.
  • input means such as a handwritten input device, a touch screen, and a spatial remote control.
  • Digital devices can use a standardized general purpose OS (operating system). For example, digital devices can add, delete, amending, and update various applications on a general-purpose OS kernel.
  • a user-friendly environment can be configured and provided.
  • the external input described in this document includes all input means or digital devices that are connected to an external input device, that is, the above-described digital device by wire/wireless connection and transmit/receive related data through the device.
  • the external input is, for example, HDMI (High Definition Multimedia Interface), a game device such as a play station or an X-Box, a smart phone, a tablet PC, a printer, or a digital digital TV such as a smart TV. Includes all devices.
  • server includes all digital devices or systems that supply data to a client, that is, the digital device described above, and is also referred to as a processor. do.
  • Such servers include, for example, a portal server that provides web pages or web content, an advertising server that provides advertising data, a content server that provides content, and SNS ( Social Network Service) may include an SNS server providing services, a service server or manufacturing server provided by a manufacturer, and the like.
  • the term "channel" described herein refers to a path, means, etc. for transmitting and receiving data, and may be a broadcasting channel.
  • the broadcast channel is expressed in terms of a physical channel, a virtual channel, and a logical channel according to the activation of digital broadcasting.
  • the broadcast channel can be called a broadcast network.
  • a broadcast channel refers to a channel for providing broadcast content provided by a broadcasting station or for accessing from a receiver, and the broadcast content is mainly referred to as a live channel because it is based on real-time broadcasting. .
  • non-real time broadcasting is also active in addition to real-time broadcasting. Live channels are not only real-time broadcasting, but also broadcasting including non-real-time broadcasting in some cases. It can also be understood as a term that means the entire channel.
  • a "arbitrary channel” is further defined in relation to a channel other than the above-described broadcasting channel.
  • the arbitrary channel may be provided with a service guide such as an EPG (Electronic Program Guide) together with a broadcast channel, or a service guide, a GUI (Graphic User Interface), or an On-Screen Display (OSD) screen with only an arbitrary channel. screen) may be configured/provided.
  • EPG Electronic Program Guide
  • GUI Graphic User Interface
  • OSD On-Screen Display
  • a random channel is a channel randomly assigned by a receiver, and a channel number that does not basically overlap with a channel number for expressing the broadcast channel is assigned.
  • a receiver tunes a specific broadcast channel, it receives a broadcast signal for transmitting broadcast content and signaling information for the broadcast content through the tuned channel.
  • the receiver parses channel information from the signaling information, configures a channel browser, EPG, and the like based on the parsed channel information, and provides it to the user.
  • the receiver responds to it.
  • the broadcast channel is a content previously promised between the transmitting and receiving end, it is preferable not to allocate a duplicate as described above, because if an arbitrary channel is overlapped with a broadcast channel, it may cause confusion or confusion of users. .
  • the random channel number is not duplicated with the broadcast channel number as described above, there is still a concern of confusion in the user's channel surfing process. Accordingly, it is required to allocate the random channel number in consideration of this. This is because an arbitrary channel according to an embodiment of the present document can be implemented to be accessed like a broadcast channel by responding in the same manner according to a user's channel switching request through an input means, similar to a conventional broadcast channel.
  • the arbitrary channel number is a form in which letters are added together, such as random channel-1, random channel-2, etc., rather than a number type like a broadcast channel, for convenience of user accessing a random channel and distinguishing or identifying a broadcast channel number. It can be defined and marked as On the other hand, in this case, although the arbitrary channel number is displayed in the form of a letter like the arbitrary channel-1, the receiver can be recognized and implemented in a numeric form like the broadcasting channel number. In addition, the arbitrary channel number may be provided in numeric form like a broadcast channel, and channel numbers can be defined and displayed in various ways that can be distinguished from broadcast channels such as video channel-1, title-1, and video-1. have.
  • the digital device provides various types of web pages to users by executing a web browser for web service.
  • the web page also includes a web page including a video content.
  • the video is processed separately or independently from the web page.
  • the separated video can be implemented so that the above-described arbitrary channel number is allocated, provided through a service guide, etc., and output according to a channel change request by a user during a service guide or a broadcast channel viewing process.
  • predetermined content, images, audio, items, etc. are independently processed separately from the broadcast content, game, and application itself, and for playback, processing, etc. Any channel number can be assigned and implemented as described above.
  • FIG. 13 is a diagram schematically showing an example of a service system including a digital device.
  • a service system including a digital device includes a content provider (CP) 1310, a service provider (SP) 1320, a network provider (NP) 1330, and a home network end user (HNED). )(Customer)(1340).
  • the HNED 1340 is, for example, a client 1300, that is, a digital device.
  • the content provider 1310 produces and provides various types of content.
  • a content provider 1310 as shown in FIG. 13, a terrestrial broadcaster, a cable broadcaster (Cable SO (System Operator)) or MSO (Multiple SO), a satellite broadcaster , Various Internet broadcasters, personal content providers (Private CPs), and the like may be exemplified. Meanwhile, the content provider 1310 provides various applications in addition to broadcast content.
  • the service provider 1320 provides a service package of content provided by the content provider 1310 to the HNED 1340.
  • the service provider 1320 of FIG. 13 packages a first terrestrial broadcast, a second terrestrial broadcast, a cable MSO, a satellite broadcast, various Internet broadcasts, and applications, and provides them to the HNED 1340.
  • the service provider 1320 provides a service to the client 1300 in a uni-cast or multi-cast method. Meanwhile, the service provider 1320 may transmit data to a plurality of pre-registered clients 1300 at once, and for this purpose, an Internet Group Management Protocol (IGMP) protocol or the like may be used.
  • IGMP Internet Group Management Protocol
  • the content provider 1310 and the service provider 1320 described above may be the same entity (same or single entity).
  • the content produced by the content provider 1310 may be packaged as a service and provided to the HNED 1340 to perform the function of the service provider 1320 or vice versa.
  • the network provider 1330 provides a network network for data exchange between the content provider 1310 or/and the service provider 1320 and the client 1300.
  • the client 1300 may transmit and receive data by establishing a home network.
  • the content provider 1310 or/and the service provider 1320 in the service system may use conditional access or content protection means to protect transmitted content.
  • the client 1300 may use a processing means such as a cable card (POD) or a downloadable CAS (DCAS) in response to the conditional reception or content protection.
  • a processing means such as a cable card (POD) or a downloadable CAS (DCAS) in response to the conditional reception or content protection.
  • the client 1300 may also use a two-way service through a network network (or communication network). In this case, rather, the client 1300 may perform the function of a content provider, and the existing service provider 1320 may receive it and transmit it back to another client.
  • a network network or communication network
  • FIG. 14 is a block diagram illustrating a configuration of a digital device according to an embodiment.
  • FIG. 14 may correspond to the client 1300 of FIG. 13, for example, and refers to the aforementioned digital device.
  • the digital device 1400 includes a network interface 1401, a TCP/IP manager 1402, a service delivery manager 1403, an SI decoder 1404, Demux (1405), Audio Decoder (1406), Video Decoder (1407), Display (Display A/V and OSD Module) (1408), Service Control Manager (Service Control Manager (1409), Service Discovery Manager (1410), SI & Metadata DB (1411), Metadata Manager (1412), Service Manager (1413), UI It includes a manager 1414 and the like.
  • the network interface unit 1401 receives or transmits IP packets (internet protocol (IP) packets) through a network network. That is, the network interface unit 1401 receives a service, content, etc. from the service provider 1320 through a network network.
  • IP internet protocol
  • the TCP/IP manager 1402 for IP packets received by the digital device 1400 and IP packets transmitted by the digital device 1400, that is, for packet delivery between a source and a destination. Get involved.
  • the TCP/IP manager 1402 classifies the received packet(s) to correspond to an appropriate protocol, and the service delivery manager 1405, the service discovery manager 1410, the service control manager 1409, and the metadata manager 1412 ), and so on.
  • the service delivery manager 1403 is responsible for controlling received service data.
  • the service delivery manager 1403 may use RTP/RTCP when controlling real-time streaming data.
  • the service delivery manager 1403 parses the received data packet according to the RTP and transmits it to the demultiplexer 1405 or controlled by the service manager 1413. According to the SI & metadata database 1411. In addition, the service delivery manager 1403 feeds back the network reception information to a server providing a service using RTCP.
  • the demultiplexer 1405 demultiplexes the received packet into audio, video, system information (SI) data, and the like, and transmits it to the audio/video decoder 1406/1407 and the SI decoder 1404, respectively.
  • SI system information
  • the SI decoder 1404 decodes service information, such as Program Specific Information (PSI), Program and System Information Protocol (PSIP), and Digital Video Broadcasting-Service Information (DVB-SI), for example.
  • PSI Program Specific Information
  • PSIP Program and System Information Protocol
  • DVB-SI Digital Video Broadcasting-Service Information
  • the SI decoder 1404 stores decoded service information, for example, in the SI & metadata database 1411.
  • the service information stored in this way may be read and used by a corresponding configuration at a request of a user, for example.
  • the audio/video decoder 1406/1407 decodes each audio data and video data demultiplexed by the demultiplexer 1405.
  • the decoded audio data and video data are provided to the user through the display unit 1408.
  • the application manager may include, for example, a UI manager 1414 and a service manager 1413.
  • the application manager may manage the overall state of the digital device 1400, provide a user interface, and manage other managers.
  • the UI manager 1414 provides a GUI (Graphic User Interface) for a user using an On Screen Display (OSD) or the like, and receives a key input from the user and performs a device operation according to the input. For example, when the UI manager 1414 receives a key input for channel selection from a user, the UI manager 1414 transmits the key input signal to the service manager 1413.
  • GUI Graphic User Interface
  • OSD On Screen Display
  • the service manager 1413 controls managers associated with a service, such as a service delivery manager 1403, a service discovery manager 1410, a service control manager 1409, and a metadata manager 1412.
  • the service manager 1413 creates a channel map and selects a channel using the channel map according to a key input received from the user interface manager 1414.
  • the service manager 1413 receives channel service information from the SI decoder 1404 and sets an audio/video packet identifier (PID) of the selected channel to the demultiplexer 1405.
  • PID audio/video packet identifier
  • the PID set in this way is used in the demultiplexing process described above. Accordingly, the demultiplexer 1405 filters audio data, video data, and SI data using the PID.
  • the service discovery manager 1410 provides information necessary to select a service provider that provides a service. Upon receiving a signal regarding channel selection from the service manager 1413, the service discovery manager 1410 searches for a service using the information.
  • the service control manager 1409 is responsible for service selection and control.
  • the service control manager 1409 uses IGMP or RTSP when a user selects a live broadcasting service such as an existing broadcasting method, and selects a service such as VOD (Video on Demand).
  • RTSP is used to select and control services.
  • the RTSP protocol may provide a trick mode for real-time streaming.
  • the service control manager 1409 may initialize and manage a session through the IMS gateway 1450 using IMS (IP Multimedia Subsystem) and SIP (Session Initiation Protocol).
  • IMS IP Multimedia Subsystem
  • SIP Session Initiation Protocol
  • the metadata manager 1412 manages metadata associated with a service and stores the metadata in the SI & metadata database 1411.
  • the SI & metadata database 1411 contains service information decoded by the SI decoder 1404, metadata managed by the metadata manager 1412, and information necessary to select a service provider provided by the service discovery manager 1410. Save it.
  • the SI & metadata database 1411 may store set-up data and the like for the system.
  • the SI & metadata database 1411 may be implemented using non-volatile memory (NVRAM) or flash memory.
  • the IMS gateway 1450 is a gateway that collects functions necessary for accessing an IMS-based IPTV service.
  • FIG. 15 is a block diagram illustrating a configuration of a digital device according to another embodiment.
  • FIG. 15 is a block diagram illustrating a configuration of a mobile device as another embodiment of a digital device.
  • the mobile device 1500 includes a wireless communication unit 1510, an audio/video (A/V) input unit 1520, a user input unit 1530, a sensing unit 1540, an output unit 1550, and A memory 1560, an interface unit 1570, a control unit 1580, a power supply unit 1590, and the like may be included. Since the components shown in FIG. 15 are not essential, a mobile device having more components or fewer components may be implemented.
  • A/V audio/video
  • the wireless communication unit 1510 may include one or more modules that enable wireless communication between the mobile device 1500 and a wireless communication system or between the mobile device and a network in which the mobile device is located.
  • the wireless communication unit 1510 may include a broadcast reception module 1511, a mobile communication module 1512, a wireless Internet module 1513, a short-range communication module 1514, a location information module 1515, and the like. .
  • the broadcast reception module 1511 receives a broadcast signal and/or broadcast-related information from an external broadcast management server through a broadcast channel.
  • the broadcast channel may include a satellite channel and a terrestrial channel.
  • the broadcast management server may mean a server that generates and transmits a broadcast signal and/or broadcast-related information, or a server that receives and transmits a previously-generated broadcast signal and/or broadcast-related information to a terminal.
  • the broadcast signal may include not only a TV broadcast signal, a radio broadcast signal, and a data broadcast signal, but also a broadcast signal in a form in which a data broadcast signal is combined with a TV broadcast signal or a radio broadcast signal.
  • Broadcast-related information may mean information related to a broadcast channel, a broadcast program, or a broadcast service provider.
  • the broadcast-related information may also be provided through a mobile communication network. In this case, it may be received by the mobile communication module 1512.
  • Broadcast-related information may exist in various forms, for example, in the form of an electronic program guide (EPG) or an electronic service guide (ESG).
  • EPG electronic program guide
  • ESG electronic service guide
  • the broadcast receiving module 1511 is, for example, ATSC, DVB-T (Digital Video Broadcasting-Terrestrial), DVB-S (Satellite), MediaFLO (Media Forward Link Only), DVB-H (Handheld), ISDB-T (Integrated Services Digital Broadcast-Terrestrial) and other digital broadcasting systems can be used to receive digital broadcasting signals.
  • the broadcast receiving module 1511 may be configured to be suitable for not only the digital broadcasting system described above, but also other broadcasting systems.
  • the broadcast signal and/or broadcast related information received through the broadcast receiving module 1511 may be stored in the memory 1560.
  • the mobile communication module 1512 transmits and receives a radio signal with at least one of a base station, an external terminal, and a server on a mobile communication network.
  • the wireless signal may include a voice signal, a video call signal, or various types of data according to transmission/reception of text/multimedia messages.
  • the wireless Internet module 1513 may be built into or external to the mobile device 1500, including a module for wireless Internet access.
  • WLAN Wireless LAN
  • Wibro Wireless broadband
  • Wimax Worldwide Interoperability for Microwave Access
  • HSDPA High Speed Downlink Packet Access
  • the short-range communication module 1514 refers to a module for short-range communication.
  • Bluetooth RFID (Radio Frequency Identification), infrared data association (IrDA), UWB (Ultra Wideband), ZigBee, RS-232, RS-485, etc. can be used. I can.
  • the location information module 1515 is a module for obtaining location information of the mobile device 1500, and may be a Global Position System (GPS) module as an example.
  • GPS Global Position System
  • the A/V input unit 1520 is for inputting audio or/and video signals, and may include a camera 1521 and a microphone 1522.
  • the camera 1521 processes an image frame such as a still image or a moving picture obtained by an image sensor in a video call mode or a photographing mode.
  • the processed image frame may be displayed on the display unit 1551.
  • the image frames processed by the camera 1521 may be stored in the memory 1560 or transmitted to the outside through the wireless communication unit 1510. Two or more cameras 1521 may be provided depending on the use environment.
  • the microphone 1522 receives an external sound signal by a microphone in a call mode, a recording mode, a voice recognition mode, or the like, and processes it as electrical voice data.
  • the processed voice data may be converted into a form capable of being transmitted to a mobile communication base station through the mobile communication module 1512 and then output.
  • Various noise removal algorithms may be implemented in the microphone 1522 for removing noise generated in a process of receiving an external sound signal.
  • the user input unit 1530 generates input data for the user to control the operation of the terminal.
  • the user input unit 1530 may include a key pad, a dome switch, a touch pad (positive pressure/power failure), a jog wheel, a jog switch, and the like.
  • the sensing unit 1540 monitors the current state of the mobile device 1500, such as an open/closed state of the mobile device 1500, a location of the mobile device 1500, whether a user is in contact, the orientation of the mobile device, and acceleration/deceleration of the mobile device. It detects and generates a sensing signal for controlling the operation of the mobile device 1500. For example, when the mobile device 1500 is moved or tilted, the position or tilt of the mobile device may be sensed. In addition, whether the power supply unit 1590 supplies power or whether the interface unit 1570 is coupled to an external device may be sensed. Meanwhile, the sensing unit 1540 may include a proximity sensor 1541 including Near Field Communication (NFC).
  • NFC Near Field Communication
  • the output unit 1550 is for generating an output related to visual, auditory or tactile sense, and may include a display unit 1551, a sound output module 1552, an alarm unit 1535, and a haptic module 1554. have.
  • the display unit 1551 displays (outputs) information processed by the mobile device 1500. For example, when the mobile device is in a call mode, a user interface (UI) or a graphical user interface (GUI) related to a call is displayed. When the mobile device 1500 is in a video call mode or a photographing mode, a photographed or/and received image, a UI, or a GUI is displayed.
  • UI user interface
  • GUI graphical user interface
  • the display unit 1551 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display ( flexible display) and a 3D display.
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • flexible display flexible display and a 3D display.
  • Some of these displays may be configured as a transparent type or a light-transmitting type so that the outside can be seen through them. This may be referred to as a transparent display, and a representative example of the transparent display is TOLED (Transparant OLED).
  • the rear structure of the display unit 1551 may also be configured as a light transmission type structure. With this structure, the user can see an object located behind the terminal body through an area occupied by the display unit 1551 of the terminal body.
  • Two or more display units 1551 may exist depending on the implementation form of the mobile device 1500.
  • a plurality of display units may be spaced apart or integrally disposed on one surface, or may be disposed on different surfaces, respectively.
  • the display unit 1551 and a sensor (hereinafter referred to as a'touch sensor') for detecting a touch motion form a mutual layer structure (hereinafter, referred to as a'touch screen')
  • the display unit 1551 provides input in addition to the output device. It can also be used as a device.
  • the touch sensor may have, for example, a touch film, a touch sheet, a touch pad, or the like.
  • the touch sensor may be configured to convert a change in pressure applied to a specific portion of the display unit 1551 or a capacitance generated at a specific portion of the display unit 1551 into an electrical input signal.
  • the touch sensor may be configured to detect not only a touched position and area, but also a pressure at the time of touch.
  • a signal(s) corresponding thereto is transmitted to the touch controller.
  • the touch controller processes the signal(s) and then transmits the corresponding data to the controller 1580.
  • the control unit 1580 can know which area of the display unit 1551 has been touched.
  • a proximity sensor 1541 may be disposed in an inner area of the mobile device surrounded by the touch screen or near the touch screen.
  • the proximity sensor refers to a sensor that detects the presence or absence of an object approaching a predetermined detection surface or an object existing in the vicinity using the force of an electromagnetic field or infrared rays without mechanical contact.
  • Proximity sensors have a longer lifespan and higher utilization than contact sensors.
  • the proximity sensor examples include a transmission type photoelectric sensor, a direct reflection type photoelectric sensor, a mirror reflection type photoelectric sensor, a high frequency oscillation type proximity sensor, a capacitive type proximity sensor, a magnetic type proximity sensor, an infrared proximity sensor, and the like.
  • the touch screen When the touch screen is capacitive, it is configured to detect the proximity of the pointer by a change in an electric field according to the proximity of the pointer. In this case, the touch screen (touch sensor) may be classified as a proximity sensor.
  • proximity touch an action of allowing the pointer to be recognized as being positioned on the touch screen by approaching the touch screen without contacting the pointer
  • contact touch an action of actually touching the pointer on the screen
  • a position at which a proximity touch is performed by a pointer on the touch screen means a position at which the pointer corresponds vertically to the touch screen when the pointer is touched.
  • the proximity sensor detects a proximity touch and a proximity touch pattern (eg, a proximity touch distance, a proximity touch direction, a proximity touch speed, a proximity touch time, a proximity touch position, a proximity touch movement state, etc.).
  • a proximity touch and a proximity touch pattern eg, a proximity touch distance, a proximity touch direction, a proximity touch speed, a proximity touch time, a proximity touch position, a proximity touch movement state, etc.
  • Information corresponding to the sensed proximity touch operation and proximity touch pattern may be output on the touch screen.
  • the sound output module 1552 may output audio data received from the wireless communication unit 1510 or stored in the memory 1560 in a call signal reception, a call mode or a recording mode, a voice recognition mode, a broadcast reception mode, or the like.
  • the sound output module 1552 may also output sound signals related to functions (eg, call signal reception sound, message reception sound, etc.) performed by the mobile device 1500.
  • the sound output module 1552 may include a receiver, a speaker, a buzzer, and the like.
  • the alarm unit 1553 outputs a signal for notifying the occurrence of an event of the mobile device 1500. Examples of events occurring in mobile devices include call signal reception, message reception, key signal input, and touch input.
  • the alarm unit 1553 may output a signal for notifying the occurrence of an event in a form other than a video signal or an audio signal, such as vibration.
  • the video signal or audio signal may also be output through the display unit 1551 or the audio output module 1552, so they may be classified as part of the alarm unit 1552.
  • the haptic module 1554 generates various tactile effects that a user can feel.
  • a typical example of the tactile effect generated by the haptic module 1554 is vibration.
  • the intensity and pattern of vibration generated by the haptic module 1554 can be controlled. For example, different vibrations may be synthesized and output or may be sequentially output.
  • the haptic module 1554 in addition to vibration, is used for stimulation such as an arrangement of pins vertically moving with respect to the contact skin surface, the blowing force or suction force of air through the injection or inlet, grazing against the skin surface, contact of the electrode, and electrostatic force. It can generate various tactile effects, such as the effect by the effect of the heat absorption and the effect by reproducing the feeling of cooling and warming using an element capable of heat absorption or heat generation.
  • the haptic module 1554 may not only deliver a tactile effect through direct contact, but may also be implemented so that a user can feel the tactile effect through muscle sensations such as a finger or an arm. Two or more haptic modules 1554 may be provided depending on the configuration aspect of the mobile device 1500.
  • the memory 1560 may store a program for the operation of the controller 1580 and may temporarily store input/output data (eg, a phone book, a message, a still image, a video, etc.).
  • the memory 1560 may store data regarding vibrations and sounds of various patterns output when a touch input on the touch screen is performed.
  • the memory 1560 is a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (eg, SD or XD memory, etc.), RAM (Random Access Memory, RAM), SRAM (Static Random Access Memory), ROM (Read-Only Memory, ROM), EEPROM (Electrically Erasable Programmable Read-Only Memory), PROM (Programmable Read-Only Memory), magnetic memory, It may include at least one type of storage medium among magnetic disks and optical disks.
  • the mobile device 1500 may operate in connection with a web storage that performs a storage function of the memory 1560 over the Internet.
  • the interface unit 1570 serves as a passage for all external devices connected to the mobile device 1500.
  • the interface unit 1570 receives data from an external device, receives power and transmits it to each component inside the mobile device 1500, or transmits data inside the mobile device 1500 to an external device.
  • a wired/wireless headset port, an external charger port, a wired/wireless data port, a memory card port, a port for connecting a device equipped with an identification module, an audio input/output (I/O) port, A video I/O port, an earphone port, and the like may be included in the interface unit 1570.
  • the identification module is a chip that stores various types of information for authenticating the usage rights of the mobile device 1500, and includes a user identification module (UIM), a subscriber identification module (SIM), and a universal user authentication module ( Universal Subscriber Identity Module, USIM), etc. may be included.
  • a device equipped with an identification module (hereinafter,'identification device') may be manufactured in the form of a smart card. Accordingly, the identification device may be connected to the terminal 1400 through the port.
  • the interface unit 1570 serves as a path through which power from the cradle is supplied to the mobile terminal 1500, or various types of input from the cradle by a user. It may be a path through which the command signal is transmitted to the mobile terminal. Various command signals or the power input from the cradle may be operated as signals for recognizing that the mobile terminal is correctly mounted on the cradle.
  • the controller 1580 typically controls the overall operation of the mobile device. For example, it performs related control and processing for voice calls, data communication, video calls, and the like.
  • the controller 1580 may also include a multimedia module 1581 for playing multimedia.
  • the multimedia module 1581 may be implemented in the control unit 1580 or separately from the control unit 1580.
  • the control unit 1580, in particular, the multimedia module 1581 may include the above-described encoding device and/or decoding device.
  • the controller 1580 may perform a pattern recognition process capable of recognizing a handwriting input or a drawing input performed on the touch screen as characters and images, respectively.
  • the power supply unit 1590 receives external power and internal power under the control of the control unit 1580 and supplies power necessary for operation of each component.
  • Various embodiments described herein may be implemented in a recording medium that can be read by a computer or a similar device using, for example, software, hardware, or a combination thereof.
  • the embodiments described herein include application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), It may be implemented using at least one of a processor, a controller, a micro-controller, a microprocessor, or an electrical unit for performing other functions. 1580) can be implemented by itself.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • embodiments such as procedures and functions described in the present specification may be implemented as separate software modules.
  • Each of the software modules may perform one or more functions and operations described herein.
  • the software code can be implemented as a software application written in an appropriate programming language.
  • the software code may be stored in the memory 1560 and executed by the controller 1580.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 문서에 따른 영상 디코딩 방법은 현재 블록의 L0 움직임 벡터 및 L1 움직임 벡터를 도출하고, L0 움직임 벡터를 기반으로 현재 블록의 L0 예측 샘플들 및 L1 움직임 벡터를 기반으로 현재 블록의 L1 예측 샘플들을 도출하고, 현재 블록에 대해 BDOF(Bi-directional optical flow)를 적용할지 여부를 지시하는 BDOF 플래그 정보를 유도하고, BDOF 플래그 정보가 현재 블록에 대해 BDOF를 적용하는 것으로 지시하는 경우, 현재 블록에 대해 BDOF를 적용하여 L0 예측 샘플들 및 L1 예측 샘플들을 기반으로 현재 블록의 예측 샘플들을 도출하고, 예측 샘플들을 기반으로 현재 블록의 복원 샘플들을 생성하며, BDOF 플래그 정보를 유도하는 단계는, 현재 블록의 높이(Height)가 4보다 큰 경우, 현재 블록에 대해 BDOF를 적용하는 것으로 BDOF 플래그 정보를 유도하는 것을 특징으로 한다.

Description

BDOF 기반의 인터 예측 방법 및 장치
본 문서는 영상 코딩 기술에 관한 것으로서, 보다 상세하게는 BDOF(Bi-directional optical flow)에 기반하여 인터 예측을 수행하는 방법 및 장치에 관한 것이다.
최근 4K 또는 8K 이상의 UHD(Ultra High Definition) 영상/비디오와 같은 고해상도, 고품질의 영상/비디오에 대한 수요가 다양한 분야에서 증가하고 있다. 영상/비디오 데이터가 고해상도, 고품질이 될수록 기존의 영상/비디오 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상/비디오 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
또한, 최근 VR(Virtual Reality), AR(Artificial Realtiy) 컨텐츠나 홀로그램 등의 실감 미디어(Immersive Media)에 대한 관심 및 수요가 증가하고 있으며, 게임 영상과 같이 현실 영상과 다른 영상 특성을 갖는 영상/비디오에 대한 방송이 증가하고 있다.
이에 따라, 상기와 같은 다양한 특성을 갖는 고해상도 고품질의 영상/비디오의 정보를 효과적으로 압축하여 전송하거나 저장하고, 재생하기 위해 고효율의 영상/비디오 압축 기술이 요구된다.
본 문서의 기술적 과제는 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 다른 기술적 과제는 효율적인 인터 예측 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 DMVR(Decoder-side Motion Vector Refinement)에 기반하여 인터 예측을 수행하는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 BDOF(Bi-directional optical flow)에 기반하여 인터 예측을 수행하는 방법 및 장치를 제공함에 있다.
본 문서의 또 다른 기술적 과제는 영상 코딩 효율을 향상시키기 위한 DMVR의 적용 여부를 결정하기 위한 조건 및/또는 BDOF의 적용 여부를 결정하기 위한 조건을 제공함으로써 예측 성능을 향상시키는 방법 및 장치를 제공함에 있다.
본 문서의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 영상 디코딩 방법이 제공된다. 상기 방법은 현재 블록의 L0 움직임 벡터 및 L1 움직임 벡터를 도출하는 단계, 상기 L0 움직임 벡터를 기반으로 상기 현재 블록의 L0 예측 샘플들 및 상기 L1 움직임 벡터를 기반으로 상기 현재 블록의 L1 예측 샘플들을 도출하는 단계, 상기 현재 블록에 대해 BDOF(Bi-directional optical flow)를 적용할지 여부를 지시하는 BDOF 플래그 정보를 유도하는 단계, 상기 BDOF 플래그 정보가 상기 현재 블록에 대해 BDOF를 적용하는 것으로 지시하는 경우, 상기 현재 블록에 대해 BDOF를 적용하여, 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들을 기반으로 상기 현재 블록에 대한 예측 샘플들을 도출하는 단계, 및 상기 예측 샘플들을 기반으로 상기 현재 블록에 대한 복원 샘플들을 생성하는 단계를 포함하며, 상기 BDOF 플래그 정보를 유도하는 단계는, 상기 현재 블록의 높이(Height)가 4보다 큰 경우, 상기 현재 블록에 대해 BDOF를 적용하는 것으로 상기 BDOF 플래그 정보를 유도하는 것을 특징으로 한다.
본 문서의 다른 일 실시예에 따르면, 인코딩 장치에 의하여 수행되는 영상 인코딩 방법이 제공된다. 상기 방법은 현재 블록의 L0 움직임 벡터 및 L1 움직임 벡터를 도출하는 단계, 상기 L0 움직임 벡터를 기반으로 상기 현재 블록의 L0 예측 샘플들 및 상기 L1 움직임 벡터를 기반으로 상기 현재 블록의 L1 예측 샘플들을 도출하는 단계, 상기 현재 블록에 대해 BDOF(Bi-directional optical flow)를 적용할지 여부를 지시하는 BDOF 플래그 정보를 유도하는 단계, 상기 BDOF 플래그 정보가 상기 현재 블록에 대해 BDOF를 적용하는 것으로 지시하는 경우, 상기 현재 블록에 대해 BDOF를 적용하여, 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들을 기반으로 상기 현재 블록에 대한 예측 샘플들을 도출하는 단계, 상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출하는 단계, 및 상기 레지듀얼 샘플들에 관한 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하며, 상기 BDOF 플래그 정보를 유도하는 단계는, 상기 현재 블록의 높이(Height)가 4보다 큰 경우, 상기 현재 블록에 대해 BDOF를 적용하는 것으로 상기 BDOF 플래그 정보를 유도하는 것을 특징으로 한다.
본 문서에 따르면 전반적인 영상/비디오 압축 효율을 높일 수 있다.
본 문서에 따르면 효율적인 인터 예측을 통하여 계산 복잡도를 줄일 수 있고, 전반적인 코딩 효율을 향상시킬 수 있다.
본 문서에 따르면 움직임 보상 과정에서 움직임 정보를 리파인먼트하는 DMVR 및/또는 BDOF를 적용함에 있어 다양한 적용 조건들을 제안함으로써, 복잡도 및 성능 면에서의 효율성을 향상시킬 수 있다.
도 1은 본 문서의 실시예들에 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 2는 본 문서의 실시예들에 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 문서의 실시예들에 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 4는 true 쌍예측에서 DMVR(Decoder-side Motion Vector Refinement)을 수행하는 과정의 일 실시예를 설명하기 위한 도면이다.
도 5는 SAD(sum of absolute differences)를 사용하여 DMVR(Decoder-side Motion Vector Refinement)을 수행하는 과정의 일 실시예를 설명하기 위한 도면이다.
도 6은 DMVR 및 BDOF의 적용 조건을 체크하여 디코딩 과정을 수행하는 방법을 나타내는 일 예이다.
도 7 및 도 8은 DMVR 및 BDOF의 적용 조건을 체크하여 디코딩 과정을 수행하는 방법을 나타내는 다른 예이다.
도 9는 BDOF의 개념을 설명하기 위해 도시된 도면이다.
도 10은 본 문서의 일 실시예에 따른 인코딩 장치에 의하여 수행될 수 있는 인코딩 방법을 개략적으로 나타내는 흐름도이다.
도 11은 본 문서의 일 실시예에 따라 디코딩 장치에 의하여 수행될 수 있는 디코딩 방법을 개략적으로 나타내는 흐름도이다.
도 12는 본 문서에서 개시된 실시예들이 적용될 수 있는 컨텐츠 스트리밍 시스템의 예를 나타낸다.
도 13은 디지털 기기를 포함한 서비스 시스템(service system)의 일 예를 개략적으로 나타낸 도면이다.
도 14는 디지털 기기의 일 실시예를 설명하기 위해 도시한 구성 블록도이다.
도 15는 디지털 기기의 다른 실시예를 설명하기 위해 도시한 구성 블록도이다.
본 문서는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 문서를 특정 실시예에 한정하려고 하는 것이 아니다. 본 명세서에서 상용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 문서의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 문서에서 설명되는 도면상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 문서의 본질에서 벗어나지 않는 한 본 문서의 권리범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 문서의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략될 수 있다.
이 문서는 비디오/영상 코딩에 관한 것이다. 예를 들어 이 문서에서 개시된 방법/실시예는 VVC (versatile video coding) 표준, EVC (essential video coding) 표준, AV1 (AOMedia Video 1) 표준, AVS2 (2nd generation of audio video coding standard) 또는 차세대 비디오/영상 코딩 표준(ex. H.267 or H.268 등)에 개시되는 방법에 적용될 수 있다.
이 문서에서는 비디오/영상 코딩에 관한 다양한 실시예들을 제시하며, 다른 언급이 없는 한 상기 실시예들은 서로 조합되어 수행될 수도 있다.
이 문서에서 비디오(video)는 시간의 흐름에 따른 일련의 영상(image)들의 집합을 의미할 수 있다. 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)/타일(tile)는 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 슬라이스/타일은 하나 이상의 CTU(coding tree unit)을 포함할 수 있다. 하나의 픽처는 하나 이상의 슬라이스/타일로 구성될 수 있다. 하나의 픽처는 하나 이상의 타일 그룹으로 구성될 수 있다. 하나의 타일 그룹은 하나 이상의 타일들을 포함할 수 있다. 브릭은 픽처 내 타일 이내의 CTU 행들의 사각 영역을 나타낼 수 있다(a brick may represent a rectangular region of CTU rows within a tile in a picture). 타일은 다수의 브릭들로 파티셔닝될 수 있고, 각 브릭은 상기 타일 내 하나 이상의 CTU 행들로 구성될 수 있다(A tile may be partitioned into multiple bricks, each of which consisting of one or more CTU rows within the tile). 다수의 브릭들로 파티셔닝되지 않은 타일은 또한 브릭으로 불릴 수 있다(A tile that is not partitioned into multiple bricks may be also referred to as a brick). 브릭 스캔은 픽처를 파티셔닝하는 CTU들의 특정한 순차적 오더링을 나타낼 수 있으며, 상기 CTU들은 브릭 내에서 CTU 래스터 스캔으로 정렬될 수 있고, 타일 내 브릭들은 상기 타일의 상기 브릭들의 래스터 스캔으로 연속적으로 정렬될 수 있고, 그리고 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A brick scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a brick, bricks within a tile are ordered consecutively in a raster scan of the bricks of the tile, and tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 타일은 특정 타일 열 및 특정 타일 열 이내의 CTU들의 사각 영역이다(A tile is a rectangular region of CTUs within a particular tile column and a particular tile row in a picture). 상기 타일 열은 CTU들의 사각 영역이고, 상기 사각 영역은 상기 픽처의 높이와 동일한 높이를 갖고, 너비는 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시될 수 있다(The tile column is a rectangular region of CTUs having a height equal to the height of the picture and a width specified by syntax elements in the picture parameter set). 상기 타일 행은 CTU들의 사각 영역이고, 상기 사각 영역은 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시되는 너비를 갖고, 높이는 상기 픽처의 높이와 동일할 수 있다(The tile row is a rectangular region of CTUs having a height specified by syntax elements in the picture parameter set and a width equal to the width of the picture). 타일 스캔은 픽처를 파티셔닝하는 CTU들의 특정 순차적 오더링을 나타낼 수 있고, 상기 CTU들은 타일 내 CTU 래스터 스캔으로 연속적으로 정렬될 수 있고, 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A tile scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a tile whereas tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 슬라이스는 픽처의 정수개의 브릭들을 포함할 수 있고, 상기 정수개의 브릭들은 하나의 NAL 유닛에 포함될 수 있다(A slice includes an integer number of bricks of a picture that may be exclusively contained in a single NAL unit). 슬라이스는 다수의 완전한 타일들로 구성될 수 있고, 또는 하나의 타일의 완전한 브릭들의 연속적인 시퀀스일 수도 있다(A slice may consists of either a number of complete tiles or only a consecutive sequence of complete bricks of one tile). 이 문서에서 타일 그룹과 슬라이스는 혼용될 수 있다. 예를 들어 본 문서에서 tile group/tile group header는 slice/slice header로 불리 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 또는 샘플은 공간 도메인에서의 픽셀값을 의미할 수도 있고, 이러한 픽셀값이 주파수 도메인으로 변환되면 주파수 도메인에서의 변환 계수를 의미할 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 하나의 유닛은 하나의 루마 블록 및 두개의 크로마(ex. cb, cr) 블록을 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
이 문서에서 "/"와 ","는 "및/또는"으로 해석된다. 예를 들어, "A/B"는 "A 및/또는 B"로 해석되고, "A, B"는 "A 및/또는 B"로 해석된다. 추가적으로, "A/B/C"는 "A, B 및/또는 C 중 적어도 하나"를 의미한다. 또한, "A, B, C"도 "A, B 및/또는 C 중 적어도 하나"를 의미한다. (In this document, the term "/" and "," should be interpreted to indicate "and/or." For instance, the expression "A/B" may mean "A and/or B." Further, "A, B" may mean "A and/or B." Further, "A/B/C" may mean "at least one of A, B, and/or C." Also, "A/B/C" may mean "at least one of A, B, and/or C.")
추가적으로, 본 문서에서 "또는"는 "및/또는"으로 해석된다. 예를 들어, "A 또는 B"은, 1) "A" 만을 의미하고, 2) "B" 만을 의미하거나, 3) "A 및 B"를 의미할 수 있다. 달리 표현하면, 본 문서의 "또는"은 "추가적으로 또는 대체적으로(additionally or alternatively)"를 의미할 수 있다. (Further, in the document, the term "or" should be interpreted to indicate "and/or." For instance, the expression "A or B" may comprise 1) only A, 2) only B, and/or 3) both A and B. In other words, the term "or" in this document should be interpreted to indicate "additionally or alternatively.")
도 1은 본 문서의 실시예들에 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 1을 참조하면, 비디오/영상 코딩 시스템은 제1 장치(소스 디바이스) 및 제2 장치(수신 디바이스)를 포함할 수 있다. 소스 디바이스는 인코딩된 비디오(video)/영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스로 전달할 수 있다.
상기 소스 디바이스는 비디오 소스, 인코딩 장치, 전송부를 포함할 수 있다. 상기 수신 디바이스는 수신부, 디코딩 장치 및 렌더러를 포함할 수 있다. 상기 인코딩 장치는 비디오/영상 인코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 비디오/영상 디코딩 장치라고 불릴 수 있다. 송신기는 인코딩 장치에 포함될 수 있다. 수신기는 디코딩 장치에 포함될 수 있다. 렌더러는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
인코딩 장치는 입력 비디오/영상을 인코딩할 수 있다. 인코딩 장치는 압축 및 코딩 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 인코딩된 데이터(인코딩된 비디오/영상 정보)는 비트스트림(bitstream) 형태로 출력될 수 있다.
전송부는 비트스트림 형태로 출력된 인코딩된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스의 수신부로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부는 미리 정해진 파일 포멧을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부는 상기 비트스트림을 수신/추출하여 디코딩 장치로 전달할 수 있다.
디코딩 장치는 인코딩 장치의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 디코딩할 수 있다.
렌더러는 디코딩된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
도 2는 본 문서의 실시예들에 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다. 이하 비디오 인코딩 장치라 함은 영상 인코딩 장치를 포함할 수 있다.
도 2를 참조하면, 인코딩 장치(200)는 영상 분할부(image partitioner, 210), 예측부(predictor, 220), 레지듀얼 처리부(residual processor, 230), 엔트로피 인코딩부(entropy encoder, 240), 가산부(adder, 250), 필터링부(filter, 260) 및 메모리(memory, 270)를 포함하여 구성될 수 있다. 예측부(220)는 인터 예측부(221) 및 인트라 예측부(222)를 포함할 수 있다. 레지듀얼 처리부(230)는 변환부(transformer, 232), 양자화부(quantizer 233), 역양자화부(dequantizer 234), 역변환부(inverse transformer, 235)를 포함할 수 있다. 레지듀얼 처리부(230)은 감산부(subtractor, 231)를 더 포함할 수 있다. 가산부(250)는 복원부(reconstructor) 또는 복원 블록 생성부(recontructged block generator)로 불릴 수 있다. 상술한 영상 분할부(210), 예측부(220), 레지듀얼 처리부(230), 엔트로피 인코딩부(240), 가산부(250) 및 필터링부(260)는 실시예에 따라 하나 이상의 하드웨어 컴포넌트(예를 들어 인코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(270)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(270)을 내/외부 컴포넌트로 더 포함할 수도 있다.
영상 분할부(210)는 인코딩 장치(200)에 입력된 입력 영상(또는, 픽쳐, 프레임)를 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBTTT (Quad-tree binary-tree ternary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조, 및/또는 터너리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 문서에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)을 더 포함할 수 있다. 이 경우 상기 예측 유닛 및 상기 변환 유닛은 각각 상술한 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 샘플은 하나의 픽처(또는 영상)을 픽셀(pixel) 또는 펠(pel)에 대응하는 용어로서 사용될 수 있다.
인코딩 장치(200)는 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)를 감산하여 레지듀얼 신호(residual signal, 잔여 블록, 잔여 샘플 어레이)를 생성할 수 있고, 생성된 레지듀얼 신호는 변환부(232)로 전송된다. 이 경우 도시된 바와 같이 인코더(200) 내에서 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 예측 신호(예측 블록, 예측 샘플 어레이)를 감산하는 유닛은 감산부(231)라고 불릴 수 있다. 예측부는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 각 예측모드에 대한 설명에서 후술하는 바와 같이 예측 모드 정보 등 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(222)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(222)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(221)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 인터 예측부(221)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(221)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)을 시그널링함으로써 현재 블록의 움직임 벡터를 지시할 수 있다.
예측부(220)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보를 기반으로 픽처 내 샘플 값을 시그널링할 수 있다.
상기 예측부 (인터 예측부(221) 및/또는 상기 인트라 예측부(222) 포함)를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 변환부(232)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)를 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT(
Figure PCTKR2020001869-appb-I000001
), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 중 적어도 하나를 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)를 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 또한, 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(233)는 변환 계수들을 양자화하여 엔트로피 인코딩부(240)로 전송되고, 엔트로피 인코딩부(240)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(233)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다. 엔트로피 인코딩부(240)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(240)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 본 문서에서 인코딩 장치에서 디코딩 장치로 전달/시그널링되는 정보 및/또는 신택스 요소들은 비디오/영상 정보에 포함될 수 있다. 상기 비디오/영상 정보는 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(240)로부터 출력된 신호는 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 인코딩 장치(200)의 내/외부 엘리먼트로서 구성될 수 있고, 또는 전송부는 엔트로피 인코딩부(240)에 포함될 수도 있다.
양자화부(233)로부터 출력된 양자화된 변환 계수들은 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(234) 및 역변환부(235)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다. 가산부(155)는 복원된 레지듀얼 신호를 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)가 생성될 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(250)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편 픽처 인코딩 및/또는 복원 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(260)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(260)은 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(270), 구체적으로 메모리(270)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(260)은 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 필터링 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(270)에 전송된 수정된 복원 픽처는 인터 예측부(221)에서 참조 픽처로 사용될 수 있다. 인코딩 장치는 이를 통하여 인터 예측이 적용되는 경우, 인코딩 장치(100)와 디코딩 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(270) DPB는 수정된 복원 픽처를 인터 예측부(221)에서의 참조 픽처로 사용하기 위해 저장할 수 있다. 메모리(270)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(221)에 전달할 수 있다. 메모리(270)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(222)에 전달할 수 있다.
도 3은 본 문서의 실시예들에 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3을 참조하면, 디코딩 장치(300)는 엔트로피 디코딩부(entropy decoder, 310), 레지듀얼 처리부(residual processor, 320), 예측부(predictor, 330), 가산부(adder, 340), 필터링부(filter, 350) 및 메모리(memoery, 360)를 포함하여 구성될 수 있다. 예측부(330)는 인터 예측부(331) 및 인트라 예측부(332)를 포함할 수 있다. 레지듀얼 처리부(320)는 역양자화부(dequantizer, 321) 및 역변환부(inverse transformer, 321)를 포함할 수 있다. 상술한 엔트로피 디코딩부(310), 레지듀얼 처리부(320), 예측부(330), 가산부(340) 및 필터링부(350)는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(360)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(360)을 내/외부 컴포넌트로 더 포함할 수도 있다.
비디오/영상 정보를 포함하는 비트스트림이 입력되면, 디코딩 장치(300)는 도 2의 인코딩 장치에서 비디오/영상 정보가 처리된 프로세스에 대응하여 영상을 복원할 수 있다. 예를 들어, 디코딩 장치(300)는 상기 비트스트림으로부터 획득한 블록 분할 관련 정보를 기반으로 유닛들/블록들을 도출할 수 있다. 디코딩 장치(300)는 인코딩 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있고, 코딩 유닛은 코딩 트리 유닛 또는 최대 코딩 유닛으로부터 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 따라서 분할될 수 있다. 코딩 유닛으로부터 하나 이상의 변환 유닛이 도출될 수 있다. 그리고, 디코딩 장치(300)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치를 통해 재생될 수 있다.
디코딩 장치(300)는 도 2의 인코딩 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있고, 수신된 신호는 엔트로피 디코딩부(310)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(310)는 상기 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(ex. 비디오/영상 정보)를 도출할 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 디코딩 장치는 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 더 기반으로 픽처를 디코딩할 수 있다. 본 문서에서 후술되는 시그널링/수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩되어 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(310)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(310)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(인터 예측부(332) 및 인트라 예측부(331))로 제공되고, 엔트로피 디코딩부(310)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 레지듀얼 처리부(320)로 입력될 수 있다. 레지듀얼 처리부(320)는 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플들, 레지듀얼 샘플 어레이)를 도출할 수 있다. 또한, 엔트로피 디코딩부(310)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(350)으로 제공될 수 있다. 한편, 인코딩 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 디코딩 장치(300)의 내/외부 엘리먼트로서 더 구성될 수 있고, 또는 수신부는 엔트로피 디코딩부(310)의 구성요소일 수도 있다. 한편, 본 문서에 따른 디코딩 장치는 비디오/영상/픽처 디코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및 샘플 디코더(비디오/영상/픽처 샘플 디코더)로 구분할 수도 있다. 상기 정보 디코더는 상기 엔트로피 디코딩부(310)를 포함할 수 있고, 상기 샘플 디코더는 상기 역양자화부(321), 역변환부(322), 가산부(340), 필터링부(350), 메모리(360), 인터 예측부(332) 및 인트라 예측부(331) 중 적어도 하나를 포함할 수 있다.
역양자화부(321)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(321)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 인코딩 장치에서 수행된 계수 스캔 순서를 기반하여 재정렬을 수행할 수 있다. 역양자화부(321)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)를 획득할 수 있다.
역변환부(322)에서는 변환 계수들를 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득하게 된다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(310)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드를 결정할 수 있다.
예측부(320)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보가 상기 비디오/영상 정보에 포함되어 시그널링될 수 있다.
인트라 예측부(331)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 인트라 예측부(331)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(332)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(332)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드를 지시하는 정보를 포함할 수 있다.
가산부(340)는 획득된 레지듀얼 신호를 예측부(인터 예측부(332) 및/또는 인트라 예측부(331) 포함)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다.
가산부(340)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 출력될 수도 있고 또는 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편, 픽처 디코딩 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(350)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(350)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(360), 구체적으로 메모리(360)의 DPB에 전송할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(360)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(332)에서 참조 픽쳐로 사용될 수 있다. 메모리(360)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(332)에 전달할 수 있다. 메모리(360)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(331)에 전달할 수 있다.
본 명세서에서, 인코딩 장치(200)의 필터링부(260), 인터 예측부(221) 및 인트라 예측부(222)에서 설명된 실시예들은 각각 디코딩 장치(300)의 필터링부(350), 인터 예측부(332) 및 인트라 예측부(331)에도 동일 또는 대응되도록 적용될 수 있다.
상술한 바와 같이 비디오 코딩을 수행함에 있어 압축 효율을 높이기 위하여 예측을 수행한다. 이를 통하여 코딩 대상 블록인 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록을 생성할 수 있다. 여기서 상기 예측된 블록은 공간 도메인(또는 픽셀 도메인)에서의 예측 샘플들을 포함한다. 상기 예측된 블록은 인코딩 장치 및 디코딩 장치에서 동일하게 도출되며, 상기 인코딩 장치는 원본 블록의 원본 샘플 값 자체가 아닌 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼에 대한 정보(레지듀얼 정보)를 디코딩 장치로 시그널링함으로써 영상 코딩 효율을 높일 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 레지듀얼 샘플들을 포함하는 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록과 상기 예측된 블록을 합하여 복원 샘플들을 포함하는 복원 블록을 생성할 수 있고, 복원 블록들을 포함하는 복원 픽처를 생성할 수 있다.
상기 레지듀얼 정보는 변환 및 양자화 절차를 통하여 생성될 수 있다. 예를 들어, 인코딩 장치는 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록에 포함된 레지듀얼 샘플들(레지듀얼 샘플 어레이)에 변환 절차를 수행하여 변환 계수들을 도출하고, 상기 변환 계수들에 양자화 절차를 수행하여 양자화된 변환 계수들을 도출하여 관련된 레지듀얼 정보를 (비트스트림을 통하여) 디코딩 장치로 시그널링할 수 있다. 여기서 상기 레지듀얼 정보는 상기 양자화된 변환 계수들의 값 정보, 위치 정보, 변환 기법, 변환 커널, 양자화 파라미터 등의 정보를 포함할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 역양자화/역변환 절차를 수행하고 레지듀얼 샘플들(또는 레지듀얼 블록)을 도출할 수 있다. 디코딩 장치는 예측된 블록과 상기 레지듀얼 블록을 기반으로 복원 픽처를 생성할 수 있다. 인코딩 장치는 또한 이후 픽처의 인터 예측을 위한 참조를 위하여 양자화된 변환 계수들을 역양자화/역변환하여 레지듀얼 블록을 도출하고, 이를 기반으로 복원 픽처를 생성할 수 있다.
한편, 상술한 바와 같이 현재 블록에 대한 예측을 수행함에 있어 인트라 예측 또는 인터 예측을 적용할 수 있다. 이하에서는 현재 블록에 인터 예측을 적용하는 경우에 관하여 설명한다.
인코딩/디코딩 장치의 예측부(보다 구체적으로 인터 예측부)는 블록 단위로 인터 예측을 수행하여 예측 샘플들을 도출할 수 있다. 인터 예측은 현재 픽처 이외의 픽처(들)의 데이터 요소들(예: 샘플값들, 또는 움직임 정보 등)에 의존적인 방법으로 도출되는 예측을 나타낼 수 있다. 현재 블록에 인터 예측이 적용되는 경우, 참조 픽처 인덱스가 가리키는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록(예측 샘플 어레이)을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 현재 블록의 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 움직임 정보는 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측이 적용되는 경우, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 현재 블록의 주변 블록들을 기반으로 움직임 정보 후보 리스트가 구성될 수 있고, 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 선택(사용)되는지를 지시하는 플래그 또는 인덱스 정보가 시그널링될 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 현재 블록의 움직임 정보는 선택된 주변 블록의 움직임 정보와 같을 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 선택된 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)은 시그널링될 수 있다. 이 경우 상기 움직임 벡터 예측자 및 움직임 벡터 차분의 합을 이용하여 현재 블록의 움직임 벡터를 도출할 수 있다.
상기 움직임 정보는 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등)에 따라 L0 움직임 정보 및/또는 L1 움직임 정보를 포함할 수 있다. L0 방향의 움직임 벡터는 L0 움직임 벡터 또는 MVL0라고 불릴 수 있고, L1 방향의 움직임 벡터는 L1 움직임 벡터 또는 MVL1이라고 불릴 수 있다. L0 움직임 벡터에 기반한 예측은 L0 예측이라고 불릴 수 있고, L1 움직임 벡터에 기반한 예측을 L1 예측이라고 불릴 수 있고, L0 움직임 벡터 및 L1 움직임 벡터 둘 다에 기반한 예측을 쌍(Bi) 예측이라고 불릴 수 있다. 여기서 L0 움직임 벡터는 참조 픽처 리스트 L0 (L0)에 연관된 움직임 벡터를 나타낼 수 있고, L1 움직임 벡터는 참조 픽처 리스트 L1 (L1)에 연관된 움직임 벡터를 나타낼 수 있다. 참조 픽처 리스트 L0는 현재 픽처보다 출력 순서상 이전 픽처들을 참조 픽처들로 포함할 수 있고, 참조 픽처 리스트 L1은 현재 픽처보다 출력 순서상 이후 픽처들을 포함할 수 있다. 이전 픽처들은 순방향 (참조) 픽처라고 불릴 수 있고, 이후 픽처들은 역방향 (참조) 픽처라고 불릴 수 있다. 참조 픽처 리스트 L0은 현재 픽처보다 출력 순서상 이후 픽처들을 참조 픽처들로 더 포함할 수 있다. 이 경우 참조 픽처 리스트 L0 내에서 이전 픽처들이 먼저 인덱싱되고 이후 픽처들은 그 다음에 인덱싱될 수 있다. 참조 픽처 리스트 L1은 현재 픽처보다 출력 순서상 이전 픽처들을 참조 픽처들로 더 포함할 수 있다. 이 경우 참조 픽처 리스트 L1 내에서 이후 픽처들이 먼저 인덱싱되고 이전 픽처들은 그 다음에 인덱싱 될 수 있다. 여기서 출력 순서는 POC(picture order count) 순서(order)에 대응될 수 있다.
또한, 현재 블록에 인터 예측을 적용함에 있어, 다양한 인터 예측 모드가 사용될 수 있다. 예를 들어, 머지 모드, 스킵 모드, MVP(motion vector prediction) 모드, 어파인(Affine) 모드, HMVP(historical motino vector prediction) 모드 등 다양한 모드가 사용될 수 있다. DMVR (Decoder side motion vector refinement) 모드, AMVR(adaptive motion vector resolution) 모드, Bi-directional optical flow (BDOF) 등이 부수적인 모드로 더 사용될 수 있다. 어파인 모드는 어파인 움직임 예측(affine motion prediction) 모드라고 불릴 수도 있다. MVP 모드는 AMVP(advanced motion vector prediction) 모드라고 불릴 수도 있다. 본 문서에서 일부 모드 및/또는 일부 모드에 의하여 도출된 움직임 정보 후보는 다른 모드의 움직임 정보 관련 후보들 중 하나로 포함될 수도 있다.
현재 블록의 인터 예측 모드를 가리키는 예측 모드 정보가 인코딩 장치로부터 디코딩 장치로 시그널링될 수 있다. 이때, 예측 모드 정보는 비트스트림에 포함되어 디코딩 장치에 수신될 수 있다. 예측 모드 정보는 다수의 후보 모드들 중 하나를 지시하는 인덱스 정보를 포함할 수 있다. 또는, 플래그 정보의 계층적 시그널링을 통하여 인터 예측 모드를 지시할 수도 있다. 이 경우 예측 모드 정보는 하나 이상의 플래그들을 포함할 수 있다. 예를 들어, 스킵 플래그를 시그널링하여 스킵 모드 적용 여부를 지시하고, 스킵 모드가 적용 되지 않는 경우에 머지 플래그를 시그널링하여 머지 모드 적용 여부를 지시하고, 머지 모드가 적용 되지 않는 경우에 MVP 모드가 적용되는 것으로 지시하거나 추가적인 구분을 위한 플래그를 더 시그널링할 수도 있다. 어파인 모드는 독립적인 모드로 시그널링될 수도 있고, 또는 머지 모드 또는 MVP 모드 등에 종속적인 모드로 시그널링될 수도 있다. 예를 들어, 어파인 모드는 어파인 머지 모드 및 어파인 MVP 모드를 포함할 수 있다.
또한, 현재 블록에 인터 예측을 적용함에 있어, 현재 블록의 움직임 정보를 이용할 수 있다. 인코딩 장치는 움직임 추정(motion estimation) 절차를 통하여 현재 블록에 대한 최적의 움직임 정보를 도출할 수 있다. 예를 들어, 인코딩 장치는 현재 블록에 대한 원본 픽처 내 원본 블록을 이용하여 상관성이 높은 유사한 참조 블록을 참조 픽처 내의 정해진 탐색 범위 내에서 분수 픽셀 단위로 탐색할 수 있고, 이를 통하여 움직임 정보를 도출할 수 있다. 블록의 유사성은 위상(phase) 기반 샘플 값들의 차를 기반으로 도출할 수 있다. 예를 들어, 블록의 유사성은 현재 블록(or 현재 블록의 템플릿)과 참조 블록(or 참조 블록의 템플릿) 간 SAD(sum of absolute differences)를 기반으로 계산될 수 있다. 이 경우 탐색 영역 내 SAD가 가장 작은 참조 블록을 기반으로 움직임 정보를 도출할 수 있다. 도출된 움직임 정보는 인터 예측 모드 기반으로 여러 방법에 따라 디코딩 장치로 시그널링될 수 있다.
상기와 같이 인터 예측 모드에 따라 도출된 움직임 정보를 기반으로 현재 블록에 대한 예측된 블록을 도출할 수 있다. 예측된 블록은 현재 블록의 예측 샘플들(예측 샘플 어레이)를 포함할 수 있다. 현재 블록의 움직임 벡터(MV)가 분수 샘플 단위를 가리키는 경우, 보간(interpolation) 절차가 수행될 수 있으며, 이를 통하여 참조 픽처 내에서 분수 샘플 단위의 참조 샘플들을 기반으로 현재 블록의 예측 샘플들이 도출될 수 있다. 현재 블록에 어파인(Affine) 인터 예측이 적용되는 경우, 샘플/서브블록 단위 MV를 기반으로 예측 샘플들을 생성할 수 있다. 쌍예측이 적용되는 경우, L0 예측(즉, 참조 픽처 리스트 L0 내 참조 픽처와 MVL0를 이용한 예측)을 기반으로 도출된 예측 샘플들과 L1 예측(즉, 참조 픽처 리스트 L1 내 참조 픽처와 MVL1을 이용한 예측)을 기반으로 도출된 예측 샘플들의 (위상에 따른) 가중합 또는 가중평균을 통하여 도출된 예측 샘플들이 현재 블록의 예측 샘플들로 이용될 수 있다. 쌍예측이 적용되는 경우, L0 예측에 이용된 참조 픽처와 L1 예측에 이용된 참조 픽처가 현재 픽처를 기준으로 서로 다른 시간적 방향에 위치하는 경우, (즉, 쌍예측이면서 양방향 예측에 해당하는 경우) 이를 true 쌍예측이라고 부를 수 있다.
도출된 예측 샘플들을 기반으로 복원 샘플들 및 복원 픽처가 생성될 수 있고, 이후 인루프 필터링 등의 절차가 수행될 수 있음은 전술한 바와 같다.
한편, 스킵 모드 및/또는 머지 모드는 MVD(Motion Vector Difference) 없이 주변 블록의 움직임 벡터를 기반으로 현재 블록의 움직임을 예측하므로, 움직임 예측에 있어서 한계를 나타낸다. 스킵 모드 및/또는 머지 모드의 한계를 개선하기 위해, DMVR(Decoder-side Motion Vector Refinement), BDOF(Bi-directional optical flow) 모드 등을 적용하여 움직임 벡터를 리파인(refine)할 수 있다. DMVR, BDOF 모드는 현재 블록에 true 쌍예측이 적용되는 경우에 사용될 수 있다.
도 4는 true 쌍예측에서 DMVR(Decoder-side Motion Vector Refinement)을 수행하는 과정의 일 실시예를 설명하기 위한 도면이다.
DMVR은 디코더 측에서 주변 블록의 움직임 정보를 리파인(refinement)하여 움직임 예측을 수행하는 방법이다. DMVR이 적용되는 경우, 디코더는 머지(merge)/스킵(skip) 모드에서 주변 블록의 움직임 정보을 이용하여 생성된 템플릿(template)을 기반으로 cost 비교를 통해 리파인된 움직임 정보를 유도할 수 있다. 이 경우, 부가적인 시그널링 정보 없이 움직임 예측의 정밀도를 높이고 압축 성능을 향상시킬 수 있다.
본 문서에서, 설명의 편의를 위해 디코딩 장치를 위주로 설명하나, 본 문서의 실시예에 따른 DMVR은 인코딩 장치에서도 동일한 방법으로 수행될 수 있다.
도 4를 참조하면, 디코딩 장치는 list0 및 list1 방향의 초기 움직임 벡터(또는 움직임 정보)(예: MV0 및 MV1)에 의해 식별되는 예측 블록들(즉, 참조 블록들)을 도출하고, 도출된 예측 블록들을 가중합(예컨대, 평균)하여 템플릿(또는 bilateral template)을 생성할 수 있다(step 1). 여기서, 초기 움직임 벡터(MV0 및 MV1)는 머지/스킵 모드에서 주변 블록의 움직임 정보를 이용하여 유도된 움직임 벡터를 나타낼 수 있다.
그리고, 디코딩 장치는 템플릿 매칭(template matching) 동작을 통해 템플릿과 참조 픽처의 샘플 영역간 차분값을 최소화하는 움직임 벡터(예: MV0' 및 MV1')를 유도할 수 있다(step 2). 여기서, 샘플 영역은 참조 픽쳐 내에서 초기 예측 블록의 주변 영역을 나타내며, 샘플 영역은 주변 영역, 참조 영역, 탐색 영역, 탐색 범위, 탐색 공간 등으로 지칭될 수 있다. 템플릿 매칭 동작은 템플릿과 참조 픽처의 샘플 영역간의 cost 측정 값을 계산하는 동작을 포함할 수 있다. 예를 들어, cost 측정에는 SAD(sum of absolute differences)가 이용될 수 있다. 일 예로, cost 함수로서 정규화된 SAD가 사용될 수 있다. 이때, matching cost는 SAD(T - mean(T), 2 * P[x] - 2 * mean(P[x]))로 주어질 수 있다. 여기서 T는 템플릿을 나타내고, P[x]는 탐색영역 내 블록을 나타낸다. 그리고, 2개의 참조 픽처 각각에 대하여 최소 템플릿 cost를 산출하는 움직임 벡터는 갱신된 움직임 벡터(초기 움직임 벡터를 대체하는)로서 고려될 수 있다. 도 4에 도시된 바와 같이, 디코딩 장치는 갱신된 움직임 벡터 MV0' 및 MV1'를 이용하여 최종 양방향 예측 결과(즉, 최종 양방향 예측 블록)를 생성할 수 있다. 일 실시예로서, 갱신된(또는 새로운) 움직임 벡터 유도를 위한 multi-iteration이 최종 양방향 예측 결과 획득에 사용될 수 있다.
일 실시예에서, 디코딩 장치는 초기 움직임 보상 예측(즉, 종래의 머지/스킵 모드를 통한 움직임 보상 예측)의 정확도를 향상시키기 위하여 DMVR 프로세스를 호출할 수 있다. 예를 들어, 디코딩 장치는 현재 블록의 예측 모드가 머지 모드 또는 스킵 모드이고, 현재 블록에 디스플레이 순서상 현재 픽처를 기준으로 양방향의 참조 픽처가 반대 방향에 있는 양방향 쌍예측이 적용되는 경우, DMVR 프로세스를 수행할 수 있다.
도 5는 SAD(sum of absolute differences)를 사용하여 DMVR(Decoder-side Motion Vector Refinement)을 수행하는 과정의 일 실시예를 설명하기 위한 도면이다.
상술한 바와 같이 디코딩 장치는 DMVR을 수행함에 있어서, SAD를 이용하여 matching cost를 측정할 수 있다. 일 실시예로, 도 5에서는 템플릿을 생성하지 않고 두 참조 픽처 내 예측 샘플간 MRSAD(Mean Sum of Absolute Difference)를 계산하여 움직임 벡터를 리파인하는 방법을 설명한다. 즉, 도 5의 방법은 MRSAD를 이용하는 양방향 매칭(bilateral matching)의 일 실시예를 나타낸다.
도 5를 참조하면, 디코딩 장치는 list0(L0) 방향의 움직임 벡터(MV0)에 의해 지시되는 화소(샘플)의 인접 화소를 L0 참조 픽처 상에서 도출하고, list1(L1) 방향의 움직임 벡터(MV1)에 의해 지시되는 화소(샘플)의 인접 화소를 L1 참조 픽처 상에서 도출할 수 있다. 그리고, 디코딩 장치는 L0 참조 픽처 상에서 도출된 인접 화소를 지시하는 움직임 벡터에 의해 식별되는 L0 예측 블록(즉, L0 참조 블록)과, L1 참조 픽처 상에서 도출된 인접 화소를 지시하는 움직임 벡터에 의해 식별되는 L1 예측 블록(즉, L1 참조 블록) 간의 MRSAD를 계산하여 matching cost를 측정할 수 있다. 이때, 디코딩 장치는 최소 cost를 갖는 탐색 지점(즉, L0 예측 블록과 L1 예측 블록 간의 최소 SAD를 갖는 탐색 영역)을 리파인된 움직임 벡터 쌍으로 선택할 수 있다. 즉, 리파인된 움직임 벡터 쌍은 L0 참조 픽처에서 최소 cost를 갖는 화소 위치(L0 예측 블록)를 가리키는 리파인된 L0 움직임 벡터와, L1 참조 픽처에서 최소 cost를 갖는 화소 위치(L1 예측 블록)를 가리키는 리파인된 L1 움직임 벡터를 포함할 수 있다.
실시예로, matching cost를 계산함에 있어, 참조 픽처의 탐색 영역이 설정된 후 단방향 예측은 regular 8 tap DCTIF interpolation filter를 사용하여 수행될 수 있다. 또한, 일 예로, MRSAD 계산은 16 비트 정밀도가 사용될 수 있고, 내부 버퍼를 고려하여 MRSAD 계산 이전에 클리핑 및/또는 반올림 연산이 적용되지 않을 수 있다.
상술한 바와 같이 현재 블록에 true 쌍예측이 적용되는 경우, 쌍예측 신호를 리파인하기 위하여 BDOF가 사용될 수 있다. BDOF(Bi-directional optical flow)는 현재 블록에 쌍예측이 적용되는 경우 개선된 움직임 정보를 계산하고 이를 기반으로 예측 샘플들을 생성하기 위해 사용될 수 있다. 예를 들어, BDOF는 4x4 서브블록(sub-block) 레벨에서 적용될 수 있다. 즉, BDOF는 현재 블록 내 4x4 서브블록 단위로 수행될 수 있다. 또는, BDOF는 루마 성분에 대하여만 적용될 수 있다. 또는, BDOF는 크로마 성분에 대하여만 적용될 수도 있고, 루마 성분 및 크로마 성분에 대하여 적용될 수도 있다.
BDOF 모드는 그 명칭에서 나타내는 바와 같이 오브젝트의 움직임이 smooth하다고 가정하는 광학 흐름(optical flow) 개념을 기반으로 한다. 4x4 서브블록 각각에 대해, L0 및 L1 예측 샘플들 간의 차이값을 최소화함으로써 움직임 리파인먼트 (vx, vy)가 계산될 수 있다. 그리고 움직임 리파인먼트는 4x4 서브블록에서 쌍예측 샘플 값들을 조정하기 위해 사용될 수 있다.
보다 구체적으로, BDOF를 적용하여 예측 신호를 리파인먼트함에 있어서, 먼저 L0 예측 샘플들 및 L1 예측 샘플들의 수평 및 수직 그라디언트(gradient)를 계산할 수 있다. 이때, 수평 및 수직 그라디언트는 예측 샘플 (i, j)의 주변에 위치한 2개의 주변 샘플들 간의 차이를 기반으로 계산될 수 있고, 다음 수학식 1과 같이 계산될 수 있다.
Figure PCTKR2020001869-appb-M000001
여기서,
Figure PCTKR2020001869-appb-I000002
는 수평 그라디언트이고,
Figure PCTKR2020001869-appb-I000003
는 수직 그라디언트이다. 또한,
Figure PCTKR2020001869-appb-I000004
는 리스트 k (k= 0, 1)에서 예측 샘플의 좌표 (i, j)에서의 예측 값이다.
다음으로, 수평 및 수직 그라디언트의 auto-correlation과 cross-correlation을 다음 수학식 2 및 수학식 3과 같이 계산할 수 있다.
Figure PCTKR2020001869-appb-M000002
Figure PCTKR2020001869-appb-M000003
여기서,
Figure PCTKR2020001869-appb-I000005
는 4x4 서브블록 주변의 6x6 윈도우이다.
다음으로, 움직임 리파인먼트 (vx, vy)가 auto-correlation과 cross-correlation을 이용하여 계산될 수 있고, 다음 수학식 4와 같이 계산될 수 있다.
Figure PCTKR2020001869-appb-M000004
여기서,
Figure PCTKR2020001869-appb-I000006
이고,
Figure PCTKR2020001869-appb-I000007
이고,
Figure PCTKR2020001869-appb-I000008
이고,
Figure PCTKR2020001869-appb-I000009
은 바닥 함수(floor function)이다.
다음으로, 상기 그라디언트와 움직임 리파인먼트를 기반으로 다음 수학식 5에서와 같이 BDOF 예측 샘플의 리파인먼트를 위한 b(x, y)가 계산될 수 있다.
Figure PCTKR2020001869-appb-M000005
그리고 마지막으로, BDOF 예측 샘플들(즉, BDOF를 적용하여 리파된 예측 샘플 값들)이 다음 수학식 6과 같이 계산될 수 있다.
Figure PCTKR2020001869-appb-M000006
한편, 상술한 DMVR 및 BDOF은 true 쌍예측을 적용하는 경우 (이때, true 쌍예측은 현재 블록의 픽처를 기준으로 다른 방향의 참조 픽처에서 움직임 예측/보상하는 경우를 나타낸다) 움직임 정보를 리파인하여 예측을 수행하는 기술로서, 픽처 내 오브젝트의 움직임이 일정 속도, 일정한 방향으로 이루어지는 경우를 가정하고 있다는 점에서 유사한 개념의 리파인먼트 기술임을 알 수 있다. 다만, true 쌍예측이 수행되는 경우, DMVR을 적용하기 위한 조건과 BDOF를 적용하기 위한 조건이 다르기 때문에, 각 기술별로 반복적으로 여러 번의 조건 체크를 수행하는 과정을 거쳐야 한다. 이에, 본 문서에서는 현재 블록에 적용되는 예측 모드를 결정함에 있어서 조건 체크를 수행하는 과정을 개선함으로써, 디코더 복잡도 및 성능 면에서 효율을 향상시킬 수 있는 방법을 제안한다.
다음 표 1은 기존의 true 쌍예측 시에 DMVR을 적용하기 위한 조건을 나타낸 것이다. 아래 나열한 조건들을 모두 만족할 때 DMVR을 적용할 수 있다.
Figure PCTKR2020001869-appb-T000001
상기 표 1을 참조하면, 1) SPS(Sequence Parameter Set) 신택스에서 시그널링되는 플래그 정보(예: sps_dmvr_enabled_flag)를 기반으로 DMVR 적용 여부를 결정할 수 있다. 여기서, 플래그 정보(예: sps_dmvr_enabled_flag)는 true 쌍예측 기반 DMVR이 가용(enable)한지 여부를 나타낼 수 있다. 예컨대, sps_dmvr_enabled_flag가 1인 경우 (즉, true 쌍예측 기반 DMVR이 가용한 경우), DMVR 가용 여부 조건을 만족하는 것으로 판단할 수 있다.
2) 머지 모드/스킵 모드를 사용하여 인터 예측을 수행하는지를 나타내는 플래그 정보(예: merge_flag)를 기반으로 DMVR 적용 여부를 결정할 수 있다. 예컨대, merge_flag가 1인 경우 (즉, 머지 모드/스킵 모드를 사용하여 인터 예측을 수행하는 경우), 머지 모드/스킵 모드 적용 여부 조건을 만족하는 것으로 판단할 수 있다.
3) MMVD(merge mode with motion vector difference) 모드를 사용하여 인터 예측을 수행하는지 여부를 나타내는 플래그 정보(예: mmvd_flag)를 기반으로 DMVR 적용 여부를 결정할 수 있다. 예컨대, mmvd_flag가 0인 경우 (즉, MMVD 모드를 사용하지 않는 경우), MMVD 모드 적용 여부 조건을 만족하는 것으로 판단할 수 있다.
4) 양방향 예측(쌍예측)을 사용하는지 여부를 기반으로 DMVR 적용 여부를 결정할 수 있다. 여기서, 양방향 예측은 현재 픽처를 기준으로 서로 다른 방향에 존재하는 참조 픽처들을 기반으로 수행되는 인터 예측을 나타낼 수 있다. 예를 들어, predFlagL0[0][0]=1이고 predFlagL0[1][1]=1인 경우 양방향 예측이 적용되는 것으로 판단할 수 있고, 양방향 예측 여부 조건을 만족하는 것으로 판단할 수 있다.
5) true 쌍예측이고 현재 픽처와 양방향의 참조 픽처 간의 거리가 상호 동일한지 여부를 기반으로 DMVR 적용 여부를 결정할 수 있다. 즉, 현재 픽처와 LO 참조 픽처(즉, 참조 픽처 리스트 L0 내의 참조 픽처) 간의 거리와, 현재 픽처와 L1 참조 픽처(즉, 참조 픽처 리스트 L1 내의 참조 픽처) 간의 거리가 상호 동일한지 여부를 판단할 수 있다. 예를 들어, DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0]) - DiffPicOrderCnt(currPic, RefPicList1 [ refIdxL1 ] ) = 0인 경우, true 쌍예측이고 현재 픽처와 양방향의 참조 픽처 간의 거리가 상호 동일하다고 판단하여, 양방향의 참조 픽처 거리가 동일한지 여부 조건을 만족하는 것으로 판단할 수 있다.
6) 현재 블록의 길이(Height)가 임계값(threshold)보다 큰지 여부를 기반으로 DMVR 적용 여부를 결정할 수 있다. 예를 들어, 현재 블록의 길이가 8 이상인 경우, 현재 블록 크기(길이) 조건을 만족하는 것으로 판단할 수 있다.
7) 현재 블록의 크기가 임계값(threshold)보다 큰지 여부를 기반으로 DMVR 적용 여부를 결정할 수 있다. 예를 들어, 현재 블록의 크기, 즉 길이(Height)*너비(Width)가 64 이상인 경우, 현재 블록 크기(길이*너비) 조건을 만족하는 것으로 판단할 수 있다.
디코딩 장치는 상기 표 1의 조건들 1) 내지 7)을 만족하는지 여부에 따라 DMVR 적용 여부를 결정할 수 있다. 즉, 디코딩 장치는 상기 표 1의 조건들 1) 내지 7)이 모두 만족되는 경우에 DMVR을 적용하여 true 쌍예측을 수행할 수 있고, 상기 표 1의 조건들 중 하나라도 만족되지 못하는 경우에 DMVR을 적용하지 않는다.
다음 표 2는 기존의 true 쌍예측 시에 BDOF를 적용하기 위한 조건을 나타낸 것이다. 아래 나열한 조건들을 모두 만족할 때 BDOF를 적용할 수 있다.
Figure PCTKR2020001869-appb-T000002
상기 표 2를 참조하면, 1) SPS(Sequence Parameter Set) 신택스에서 시그널링되는 플래그 정보(예: sps_bdof_enabled_flag)를 기반으로 BDOF 적용 여부를 결정할 수 있다. 여기서, 플래그 정보(예: sps_bdof_enabled_flag)는 true 쌍예측 기반 BDOF가 가용(enable)한지 여부를 나타낼 수 있다. 예컨대, sps_bdof_enabled_flag가 1인 경우 (즉, true 쌍예측 기반 BDOF이 가용한 경우), BDOF 가용 여부 조건을 만족하는 것으로 판단할 수 있다.
2) 양방향 예측을 사용하는지 여부를 기반으로 BDOF 적용 여부를 결정할 수 있다. 여기서, 양방향 예측은 현재 픽처를 기준으로 서로 다른 방향에 존재하는 참조 픽처들을 기반으로 수행되는 인터 예측을 나타낼 수 있다. 예를 들어, predFlagL0 및 predFlagL1이 모두 1인 경우 양방향 예측이 적용되는 것으로 판단할 수 있고, 양방향 예측 여부 조건을 만족하는 것으로 판단할 수 있다.
3) true 쌍예측인지 여부를 기반으로 BDOF 적용 여부를 결정할 수 있다. 즉, 현재 픽처를 기준으로 LO 참조 픽처(즉, 참조 픽처 리스트 L0 내의 참조 픽처)와 L1 참조 픽처(즉, 참조 픽처 리스트 L1 내의 참조 픽처)가 시간적으로 서로 다른 방향에 위치하는지 여부를 판단할 수 있다. 예를 들어, DiffPicOrderCnt( currPic, refPicList0[refIdxL0] ) * DiffPicOrderCnt( currPic, refPicList1[refIdxL1] )가 0보다 작은 경우, 현재 픽처를 기준으로 양방향의 참조 픽처가 서로 다른 방향에 위치하는 것으로 판단하여, true 쌍예측 여부 조건을 만족하는 것으로 판단할 수 있다.
4) 어파인 모드가 사용되는지 여부를 기반으로 BDOF 적용 여부를 결정할 수 있다. 여기서, 어파인 모드가 사용되는지 여부는 MotionModelIdc를 유도함으로써 판단할 수 있다. 예를 들어, 유도된 MotionModelIdc가 0인 경우 어파인 모드가 사용되지 않는 것으로 판단할 수 있고, 이 경우 어파인 모드 적용 여부 조건을 만족하는 것으로 판단할 수 있다.
5) 머지 모드에서의 인터 예측이 서브블록 단위로 수행되는지 여부를 나타내는 플래그 정보(예: merge_subblock_flag)를 기반으로 BDOF 적용 여부를 결정할 수 있다. 예컨대, merge_subblock_flag가 0인 경우 (즉, 서브블록 단위로 머지 모드가 적용되지 않는 경우), 서브블록 기반 머지 모드 여부 조건을 만족하는 것으로 판단할 수 있다.
6) GBi가 존재하는지 여부를 기반으로 BDOF 적용 여부를 결정할 수 있다. 여기서, GBi가 존재하는지 여부는 GBi 인덱스 정보(예: GbiIdx)를 기반으로 판단할 수 있다. 예를 들어, GbiIdx가 0인 경우 (즉, GbiIdx가 디폴트인 경우), GBi 여부 조건을 만족하는 것으로 판단할 수 있다.
7) 현재 블록이 루마(Luma) 성분을 포함하는 루마 블록인지 여부를 기반으로 BDOF 적용 여부를 결정할 수 있다. 예컨대, 루마 블록인지를 나타내는 인덱스(예: cIdx)가 0인 경우 (즉, 루마 블록인 경우), 루마 블록 여부 조건을 만족하는 것으로 판단할 수 있다.
디코딩 장치는 상기 표 2의 조건들 1) 내지 7)을 만족하는지 여부에 따라 BDOF 적용 여부를 결정할 수 있다. 즉, 디코딩 장치는 상기 표 2의 조건들 1) 내지 7)이 모두 만족되는 경우에 BDOF을 적용하여 true 쌍예측을 수행할 수 있고, 상기 표 2의 조건들 중 하나라도 만족되지 못하는 경우에 BDOF을 적용하지 않는다.
여기서, 상술한 GBi는 L0 예측 및 L1 예측에 다른 가중치(weight)를 적용할 수 있는 일반적인 쌍예측(generalized bi-prediction)를 나타낼 수 있으며, 예컨대 GbiIdx를 사용하여 나타낼 수 있다. GbiIdx는 쌍예측인 경우에 존재할 수 있으며, 쌍예측 가중치 인덱스(bi-prediction weight index)를 나타낼 수 있다. 본 문서에서 움직임 정보는 GbiIdx를 더 포함할 수 있다. 예를 들어, GbiIdx는 머지 모드의 경우에 주변 블록으로부터 도출될 수 있고, 또는 MVP 모드의 경우 GbiIdx 신택스 요소(예: gbi_idx)를 통하여 인코딩 장치에서 디코딩 장치로 시그널링될 수 있다. 일례로, GbiIdx는 L1 예측에 적용되는 가중치 w를 지시할 수 있고, 이 경우 L0 예측에는 (1-w)의 가중치가 적용될 수 있다. 다른 예로, GbiIdx는 L0 예측에 적용되는 가중치 w를 지시할 수 있고, 이 경우 L1 예측에는 (1-w)의 가중치가 적용될 수 있다. GbiIdx가 가리키는 가중치는 다양하게 구성될 수 있으며, 예를 들어 다음 표 3 및 표 4와 같이 구성될 수 있다.
Figure PCTKR2020001869-appb-T000003
Figure PCTKR2020001869-appb-T000004
상기 표 3 및 상기 표 4를 참조하면, w1의 가중치는 L1 예측에 적용되는 가중치를 나타낼 수 있으며, GbiIdx 값을 통해 L1 예측에 적용되는 가중치 w1를 지시할 수 있다. 예를 들어, 표 3의 실시예에 따르면, GbiIdx의 값이 0을 나타내는 경우, L1 예측에는 1/2 가중치를 적용하고, L0 예측에는 (1 - w1) 의 값인 1/2 가중치를 적용할 수 있다. 실시예에 따라, w1의 가중치는 L0 예측에 적용되는 가중치를 나타낼 수도 있으며, 이 경우 GbiIdx 값을 통해 L0 예측에 적용되는 가중치 w1를 지시할 수 있다.
상술한 바와 같이, DMVR과 BDOF의 적용 조건이 일부는 동일하고 일부는 유사하거나 다르다. 기존의 방식에서는 조건이 동일한 경우에도 각 기술별로 조건 체크를 수행하게 되므로, 쌍예측 수행을 위한 복잡도가 증가하게 된다. 이에, 본 문서에서는 쌍예측 시에 DMVR과 BDOF을 적용하기 위한 효율적인 조건을 제안한다.
머지/스킵 모드는 AMVP 모드와 비교할 때 상대적으로 움직임 정확도가 낮으므로, DMVR 방법을 이용하여 움직임 정보를 리파인하는 것이 성능 면에서 효과적이다. 그러나, BDOF 모드는 DMVR과 달리 머지/스킵 모드뿐만 아니라 AMVP 모드일 때도 적용하고 있는데, 이와 같이 AMVP 모드에서 BDOF를 적용하는 경우 성능 대비 BDOF 수행을 위한 복잡도가 증가할 수 있다. 따라서, 본 실시예에서는 DMVR과 동일하게 BDOF의 경우도 머지/스킵 모드에서 적용하는 방안을 제안한다.
이 경우 본 문서에서 제안하는 일 실시예로, BDOF의 적용 조건은 다음 표 5에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000005
상기 표 5를 참조하면, 머지 모드/스킵 모드를 사용하여 인터 예측을 수행하는지를 나타내는 플래그 정보(예: merge_flag)를 기반으로 BDOF 적용 여부를 결정할 수 있다. 예컨대, merge_flag가 1인 경우 (즉, 머지 모드/스킵 모드를 사용하여 인터 예측을 수행하는 경우), 머지 모드/스킵 모드 적용 여부 조건을 만족하는 것으로 판단할 수 있다. 따라서, DMVR과 동일하게 BDOF의 경우도 머지/스킵 모드일 때 적용될 수 있다.
즉, 본 실시예에서는 상기 머지/스킵 모드인 경우에 적용하는 조건과 함께, BDOF가 가용한 경우에 적용하는 조건, 양방향 예측인 경우에 적용하는 조건, true 쌍예측인 경우에 적용하는 조건, 어파인 예측이 아닌 경우에 적용하는 조건, 서브블록 기반 머지 모드가 아닌 경우에 적용하는 조건, GBi 인덱스가 디폴트인 경우에 적용하는 조건, 루마 블록인 경우에 적용하는 조건을 기반으로 BDOF 적용 여부를 판단할 수 있다.
따라서, 디코딩 장치는 상기 표 5에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 5에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 5의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 5에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
한편, 본 실시예에서 나열한 조건들 중 상기 표 1 및 표 2에서 설명한 조건과 동일한 경우에는 구체적인 동작이나 의미가 동일하게 적용되므로, 각 조건에 대한 구체적인 설명을 생략하도록 한다. 또한 후술하는 실시예들에서도 중복되는 내용은 생략하도록 한다.
인코딩/디코딩 장치의 경우 다양한 하드웨어를 사용하여 구성될 수 있으며, 성능 대비 복잡도 비율의 선호가 다를 수 있다. 이에, 본 실시예에서는 머지/스킵 모드뿐만 아니라 AMVP 모드에서도 DMVR을 적용하여 움직임 정보를 리파인할 수 있는 방안을 제안한다.
이 경우 본 문서에서 제안하는 일 실시예로, DMVR의 적용 조건은 다음 표 6에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000006
상기 표 6을 참조하면, 머지 모드/스킵 모드를 사용하여 인터 예측을 수행하는지를 나타내는 플래그 정보(예: merge_flag)를 기반으로 DMVR 적용 여부를 결정하는 과정이 생략될 수 있다. 이와 같이, 머지 모드/스킵 모드의 적용 여부 조건을 생략함으로써, 머지 모드/스킵 모드인 경우뿐만 아니라 AMVP 모드에서도 DMVR을 적용할 수 있다.
상기 표 6에 따르면, DMVR이 가용한 경우에 적용하는 조건, MMVD 모드가 사용되지 않는 경우에 적용하는 조건, 양방향 예측인 경우에 적용하는 조건, 현재 픽처와 양방향 참조 픽처와의 거리가 상호 동일한 true 쌍예측인 경우에 적용하는 조건, 현재 블록의 길이가 8이상인 경우에 적용하는 조건, 현재 블록의 크기(길이*너비)가 64 이상인 경우에 적용하는 조건을 기반으로 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 6에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 6에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 6의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 6에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
한편, 본 문서의 일 실시예로, DMVR 및 BDOF는 모두 일반적인 머지(normal merge) 모드에 적용될 수 있다. 즉, ATMVP(advanced temporal motion vector prediction) 모드가 아니고 어파인 모드가 아니고 CPR이 아닌 경우 DMVR 및 BDOF을 적용할 수 있다. 이 경우 DMVR의 적용 조건은 다음 표 7에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000007
상기 표 7을 참조하면, 어파인 모드가 사용되지 않는 경우에 적용하는 조건(예: MotionModelIdc가 0인 경우), 서브블록 기반 머지 모드가 아닌 경우에 적용하는 조건(예: merge_subblock_flag가 0인 경우)을 만족하는지를 판단함으로써, DMVR을 일반적인 머지 모드인 경우에 한해 적용할 수 있다.
또한, 본 실시예에서는 상기 어파인 모드 여부 조건, 서브블록 기반 머지 모드 여부 조건과 함께, DMVR이 가용한 경우에 적용하는 조건, 머지 모드/스킵 모드인 경우에 적용하는 조건, MMVD 모드가 사용되지 않는 경우에 적용하는 조건, 양방향 예측인 경우에 적용하는 조건, 현재 픽처와 양방향 참조 픽처와의 거리가 상호 동일한 true 쌍예측인 경우에 적용하는 조건, 현재 블록의 길이가 8이상인 경우에 적용하는 조건, 현재 블록의 크기(길이*너비)가 64 이상인 경우에 적용하는 조건을 기반으로 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 7에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 7에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 7의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 7의 적용 조건들 중에서 서브블록 기반 머지 모드 적용 여부 조건(예: merge_subblock_flag)은 기존의 DMVR 적용 조건들 중 중복되는 조건을 포함하고 있다. 따라서, 본 문서의 일 실시예로, 서브블록 기반 머지 모드 적용 여부 조건(예: merge_subblock_flag)과 중복되는 조건을 제거할 수 있다. 이 경우 다음 표 8에 제안된 것과 같이 해당 조건이 제거될 수 있다.
Figure PCTKR2020001869-appb-T000008
상기 표 8을 참조하면, 서브블록 기반 머지 모드는 현재 블록의 크기가 8X8 이상인 경우에 적용될 수 있다. 따라서, 서브블록 기반 머지 모드 적용 여부 조건(예: merge_subblock_flag = 0)은 현재 블록의 크기와 관련된 조건을 포함하고 있는 것이므로, 기존의 DMVR의 적용 조건들 중에서 현재 블록의 크기와 관련된 조건(예: CbHeight, CbHeight*CbWidth)을 제외시킬 수 있다. 예를 들어, 현재 블록의 길이가 8 이상인지 여부 조건, 현재 블록의 길이*너비가 64 이상인지 여부 조건은 생략하고 상기 표 8에 나열된 나머지 조건들을 이용하여 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 8에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 8에 나열된 조건들 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 8의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 7 또는 상기 표 8에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
본 문서의 일 실시예로, 저복잡도에서 움직임 벡터의 정확도를 높이기 위해서 블록의 크기가 작은 경우에는 DMVR 및 BDOF와 같은 리파인 기술을 적용하지 않을 수 있다. 기존의 방식에서는 현재 블록이 8X8보다 크거나 같은 블록인 경우에 리파인 기술을 적용하고 있는데, 이 중 DMVR의 경우 현재 블록의 크기가 클 때 16X16 단위로 나누어 리파인을 적용하므로 16X16보다 작은 블록에 대해서는 DMVR을 적용하지 않을 수 있다. 이 경우 DMVR의 적용 조건은 다음 표 9에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000009
상기 표 9를 참조하면, 현재 블록의 크기와 관련된 조건들(예: CbHeight, CbWidth)을 변경함으로써, 16X16보다 작은 블록에 대해서 DMVR을 적용하지 않도록 할 수 있다. 예를 들어, 현재 블록의 길이(예: CbHeight)가 16 이상인 경우에 적용하는 조건과 현재 블록의 너비(예: CbWidth)가 16 이상인 경우에 적용하는 조건을 사용할 수 있다. 이러한 현재 블록의 크기와 관련된 적용 조건들을 만족한 경우 (즉, 현재 블록의 크기가 16X16 이상인 경우) DMVR을 적용하고, 상기와 같은 현재 블록의 크기와 관련된 적용 조건들을 만족하지 않는 경우 (즉, 현재 블록의 크기가 16X16 보다 작은 경우) DMVR을 적용하지 않을 수 있다.
또한, 본 실시예에서는 현재 블록의 크기와 관련된 조건들(예: CbHeight, CbWidth)과 함께, 상기 표 9에서 나열된 나머지 적용 조건들을 기반으로 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 9에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 9에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 9의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
본 문서의 일 실시예로, 현재 블록이 16X16보다 작은 블록인 경우 DMVR뿐만 아니라 BDOF를 적용하지 않을 수 있다. 이 경우 BDOF의 적용 조건은 다음 표 10에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000010
상기 표 10을 참조하면, 현재 블록의 크기와 관련된 조건들(예: CbHeight, CbWidth)을 변경함으로써, 16X16보다 작은 블록에 대해서 BDOF을 적용하지 않도록 할 수 있다. 예를 들어, 현재 블록의 길이(예: CbHeight)가 16 이상인 경우에 적용하는 조건과 현재 블록의 너비(예: CbWidth)가 16 이상인 경우에 적용하는 조건을 사용할 수 있다. 이러한 현재 블록의 크기와 관련된 적용 조건들을 만족한 경우 (즉, 현재 블록의 크기가 16X16 이상인 경우) BDOF을 적용하고, 상기와 같은 현재 블록의 크기와 관련된 적용 조건들을 만족하지 않는 경우 (즉, 현재 블록의 크기가 16X16 보다 작은 경우) BDOF을 적용하지 않을 수 있다.
또한, 본 실시예에서는 현재 블록의 크기와 관련된 조건들(예: CbHeight, CbWidth)과 함께, 상기 표 10에서 나열된 나머지 적용 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 10에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 10에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 10의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 9 또는 상기 표 10에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
상술한 바와 같이 DMVR은 현재 픽처와 양방향의 참조 픽처간의 거리가 상호 동일한 경우에 적용하는 반면, BDOF는 현재 픽처와 양방향의 참조 픽처간의 거리가 다르더라도 true 쌍예측인 경우 항상 적용된다. 따라서, 본 문서에서는 코딩 효율을 높이기 위해 상기 양방향의 참조 픽처 거리와 관련된 조건을 DMVR 및 BDOF에 통일하여 적용할 수 있는 방안을 제안한다.
본 문서의 일 실시예로, BDOF의 적용 조건은 다음 표 11에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000011
상기 표 11을 참조하면, BDOF의 적용 조건들 중 참조 픽처 거리와 관련된 조건(예: DiffPicOrderCnt)을 변경함으로써, DMVR과 BDOF에 해당 조건을 동일하게 적용할 수 있다. 예를 들어, DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0]) - DiffPicOrderCnt(currPic, RefPicList1 [ refIdxL1 ] )이 0인지 여부를 판단함으로써, 현재 픽처와 LO 참조 픽처(즉, 참조 픽처 리스트 L0 내의 참조 픽처) 간의 거리와, 현재 픽처와 L1 참조 픽처(즉, 참조 픽처 리스트 L1 내의 참조 픽처) 간의 거리가 상호 동일한지 여부를 결정할 수 있다. 즉, 현재 픽처와 양방향의 참조 픽처간의 거리가 상호 동일한 경우에 한해 BDOF를 적용할 수 있다. 이와 같이, true 쌍예측이면서 양방향의 참조 픽처 거리가 동일한 조건이 추가됨에 따라, BDOF 적용 범위가 제한되므로 디코딩 복잡도를 절감할 수 있다.
또한, 본 실시예에서는 참조 픽처 거리와 관련된 조건(예: DiffPicOrderCnt)과 함께, 상기 표 11에서 나열된 나머지 적용 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 11에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 11에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 11의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
본 문서의 일 실시예로, DMVR의 적용 조건은 다음 표 12에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000012
상기 표 12를 참조하면, DMVR의 적용 조건들 중 참조 픽처 거리와 관련된 조건(예: DiffPicOrderCnt)을 변경함으로써, DMVR과 BDOF에 해당 조건을 동일하게 적용할 수 있다. 예를 들어, DiffPicOrderCnt( currPic, refPicList0[ refIdxL0 ] ) * DiffPicOrderCnt( currPic, refPicList1[ refIdxL1 ] )이 0보다 작은지 여부를 판단함으로써, 현재 픽처를 기준으로 양방향의 참조 픽처(즉, LO 참조 픽처 및 L1 참조 픽처)가 서로 다른 방향에 위치하는 true 쌍예측인지를 결정할 수 있다. 즉, 현재 픽처와 양방향의 참조 픽처간의 거리가 동일하지 않더라도 true 쌍예측인 경우에는 항상 DMVR을 적용할 수 있다. 이와 같이, true 쌍예측 여부 조건이 적용됨에 따라 양방향의 참조 픽처 거리가 다른 경우에도 디코딩 복잡도를 고려하여 유도된 움직임 벡터는 스케일링(scaling) 하지 않고 사용할 수 있다.
또한, 본 실시예에서는 참조 픽처 거리와 관련된 조건(예: DiffPicOrderCnt)과 함께, 상기 표 12에서 나열된 나머지 적용 조건들을 기반으로 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 12에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 12에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 12의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 11 또는 상기 표 12에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
한편, 각 참조 블록은 빛의 변화 등에 의해 가중합(weighted sum)으로 움직임 보상을 하는 경우가 발생할 수 있다. 이때 GBi나 LIC(local illumination compensation)로 그 현상을 파악할 수 있으므로, GBi나 LIC 조건을 고려하여 DMVR과 BDOF의 적용 조건을 정할 수 있다.
본 문서의 일 실시예로, GBi 및 LIC 조건을 고려하여 DMVR의 적용 여부를 결정하는 방안을 제안한다. 이 경우 DMVR의 적용 조건은 다음 표 13에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000013
상기 표 13을 참조하면, GBi 조건(예: GbiIdx) 및 LIC 조건(예: LICFlag)을 추가하여 DMVR의 적용 여부를 결정할 수 있다. 예를 들어, GbiIdx가 0인 경우 (즉, GbiIdx가 디폴트인 경우), GBi 여부 조건을 만족하는 것으로 정하고, LICFlag가 0인 경우 (즉, LIC가 존재하는 경우), LIC 여부 조건을 만족하는 것으로 정할 수 있다.
또한, 본 실시예에서는 GBi 조건(예: GbiIdx) 및 LIC 조건(예: LICFlag)과 함께, 상기 표 13에 나열된 나머지 적용 조건들을 기반으로 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 13에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 13에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 13의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
본 문서의 일 실시예로, GBi 및 LIC 조건을 고려하여 BDOF의 적용 여부를 결정하는 방안을 제안한다. 이 경우 BDOF의 적용 조건은 다음 표 14에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000014
상기 표 14에 따르면, 기존의 GBi 조건(예: GbiIdx)과 함께 LIC 조건(예: LICFlag)을 추가하여 BDOF의 적용 여부를 결정할 수 있다. 예를 들어, GbiIdx가 0인 경우 (즉, GbiIdx가 디폴트인 경우), GBi 여부 조건을 만족하는 것으로 정하고, LICFlag가 0인 경우 (즉, LIC가 존재하는 경우), LIC 여부 조건을 만족하는 것으로 정할 수 있다.
따라서, 본 실시예에서는 GBi 조건(예: GbiIdx) 및 LIC 조건(예: LICFlag)과 함께, 상기 표 14에 나열된 나머지 적용 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 14에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 14에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 14의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 13 또는 상기 표 14에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
한편, DMVR과 BDOF는 디코딩 장치에서 리파인먼트 과정을 통해 움직임 정보를 유도하므로, 디코딩 복잡도 문제가 발생한다. 따라서, 본 문서에서는 머지 인덱스를 사용하여 DMVR 및 BDOF의 적용 여부를 결정할 수 있게 함으로써, 디코딩 복잡도를 줄일 수 있는 방법을 제안한다. 이때, DMVR과 BDOF는 모두 제한적인 범위 내에서 움직임 벡터의 리파인을 수행하므로 움직임 벡터가 부정확한 경우 라파인의 효과가 줄어들 수 있다. 따라서, 본 문서에서는 리파인의 효율을 고려하여 머지 인덱스가 나타내는 값이 작은 경우에만 제한적으로 적용할 수 있는 방안을 제안한다.
여기서, 머지 인덱스는 인코딩 장치에서 디코딩 장치로 시그널링되는 신택스 요소일 수 있다. 예를 들어, 인코딩/디코딩 장치는 현재 블록에 머지 모드/스킵 모드가 적용되는 경우 현재 블록의 주변 블록들을 기반으로 머지 후보 리스트를 구성할 수 있다. 이때, 인코딩 장치는 RD(rate-distortion) cost 기반으로 머지 후보 리스트에 포함된 머지 후보들 중 최적의 머지 후보를 선택하고, 선택된 머지 후보를 가리키는 머지 인덱스 정보를 디코딩 장치로 시그널링할 수 있다. 디코딩 장치는 머지 후보 리스트 및 머지 인덱스 정보를 기반으로 현재 블록에 적용되는 머지 후보를 선택할 수 있다.
본 문서의 일 실시예로, 머지 인덱스를 사용하여 DMVR의 적용 여부를 결정하는 방법은 다음 표 15에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000015
상기 표 15를 참조하면, 머지 인덱스 조건(예: merge_idx)을 추가하여 DMVR의 적용 여부를 결정할 수 있다. 예를 들어, 머지 인덱스(예: merge_idx)가 2보다 작은 경우, 머지 인덱스 조건을 만족하는 것으로 정할 수 있다. 여기서 머지 인덱스의 값(threshold)을 2로 설정하였으나, 이는 하나의 예시일 뿐이며 코딩 효율에 따라 해당 값은 변경될 수 있다.
따라서, 본 실시예에서는 머지 인덱스 조건(예: merge_idx)과 함께, 상기 표 15에 나열된 나머지 적용 조건들을 기반으로 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 15에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 15에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 15의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
본 문서의 일 실시예로, 머지 인덱스를 사용하여 BDOF의 적용 여부를 결정하는 방법은 다음 표 16에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000016
상기 표 16을 참조하면, 머지 모드/스킵 모드 여부 조건(예: merge_flag)과 머지 인덱스 조건(예: merge_idx)을 추가하여 BDOF의 적용 여부를 결정할 수 있다. 예를 들어, merge_flag가 1이고 (즉, 머지 모드/스킵 모드를 사용하여 인터 예측을 수행하는 경우) merge_idx가 2 이상인 경우에 해당하지 않으면, 머지 인덱스의 값이 작은 경우에만 제한적으로 BDOF를 적용하는 조건을 만족하는 것으로 정할 수 있다. 다시 말해, merge_flag가 1이고 (즉, 머지 모드/스킵 모드를 사용하여 인터 예측을 수행하는 경우) merge_idx가 2보다 작은 경우, 머지 인덱스 조건을 만족하는 것으로 판단하고 BDOF를 적용할 수 있다. 여기서 머지 인덱스의 값(threshold)을 2로 설정하였으나, 이는 하나의 예시일 뿐이며 코딩 효율에 따라 해당 값은 변경될 수 있다.
즉, 본 실시예에서는 머지 모드/스킵 모드 여부 조건(예: merge_flag), 머지 인덱스 조건(예: merge_idx)과 함께, 상기 표 16에 나열된 나머지 적용 조건들을 기반으로 BDOF의 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 16에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 16에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 16의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 15 또는 상기 표 16에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
한편, 머지/스킵 모드에서 MMVD를 통해 움직임 정보를 리파인할 수 있는데, 이 경우 디코더 복잡도가 증가하므로 MMVD가 적용될 때 DMVR을 수행하지 않도록 하고 있다. 그러나, MMVD를 고려하지 않고 적용되는 경우 성능 향상을 고려하여 MMVD 조건 없이도 DMVR을 적용할 수 있다. 이 경우 본 문서의 일 실시예에 따르면, DMVR의 적용 조건은 다음 표 17에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000017
상기 표 17을 참조하면, 기존의 DMVR의 적용 조건들 중 MMVD 모드 적용 여부 조건(예: mmvd_flag)을 제외시킬 수 있다. 즉, mmvd_flag가 0인 경우 (즉, MMVD 모드를 사용하지 않는 경우)인지를 판단하는 과정을 생략하고, 상기 표 17에 나열된 조건들을 기반으로 DMVR의 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 (MMVD 모드 적용 여부 조건(예: mmvd_flag)을 제외한) 상기 표 17에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 17에 나열된 조건들 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 17의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
또한, 상술한 표 17의 실시예에서와 반대로, 머지/스킵 모드에서 MMVD를 통해 움직임 정보를 리파인할 때, 디코더 복잡도를 고려하여 BDOF의 수행 여부를 결정할 수 있다. 따라서, 본 문서에서는 MMVD 조건을 고려하여 BDOF의 적용 여부를 결정하는 방법을 제안한다. 이 경우 본 문서의 일 실시예에 따르면, BDOF의 적용 조건은 다음 표 18에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000018
상기 표 18을 참조하면, MMVD 모드 적용 여부 조건(예: mmvd_flag)을 추가함으로써, MMVD를 통해 움직임 정보를 리파인하는 경우 BDOF를 적용하지 않을 수 있다. 예를 들어, mmvd_flag가 0인 경우 (즉, MMVD 모드를 사용하지 않는 경우), MMVD 모드 적용 여부 조건을 만족하는 것으로 판단할 수 있다.
따라서, 본 실시예에서는 MMVD 모드 적용 여부 조건(예: mmvd_flag)과 함께, 상기 표 18에 나열된 나머지 적용 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 18에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 18에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 18의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 17 또는 상기 표 18에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
한편, AMVP 모드일 때 AMVR(Adaptive Motion Vector Resolution) 기술이 적용될 수 있다. 이때, 움직임 벡터의 해상도(resolution)가 큰 경우, 즉 정수 샘플 단위 라운딩(integer-pel rounding), 4 샘플 단위 라운딩(4 integer-pel rounding)을 갖는 경우, 제한된 영역 내에서 리파인을 수행하는 BDOF의 경우 이러한 기술을 적용하기 적합하지 않을 수 있다. 따라서, 본 문서에서는 AMVR 조건에 따라 BDOF의 수행을 결정할 수 있는 방안을 제안한다. 이 경우 본 문서의 일 실시예에 따르면, BDOF의 적용 조건은 다음 표 19에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000019
상기 표 19를 참조하면, AMVR 조건(예: amvr_flag)을 추가하여 BDOF의 적용 여부를 결정할 수 있다. 여기서, amvr_flag는 움직임 벡터 차이(MVD)의 해상도를 나타내는 정보일 수 있다. 예를 들어, amvr_flag가 0인 경우 MVD의 해상도가 1/4 샘플(quarter-luma-sample) 단위로 유도되는 것을 나타내고, amvr_flag가 0이 아닌 경우 정수 샘플(integer-luma-sample) 단위 또는 4 샘플(four-luma-sample) 단위로 유도되는 것을 나타낼 수 있다. 또는, 그 반대의 경우로 정해질 수도 있다. 실시예에 따라, 상기 표 19에 제시된 바와 같이, amvr_flag가 0이 아닌 경우 BDOF가 적용되는 것으로 조건을 설정할 수 있다. 다시 말해, amvr_flag가 0인 경우 BDOF가 적용되지 않도록 제한할 수 있다.
따라서, 본 실시예에서는 AMVR 조건(예: amvr_flag)과 함께, 상기 표 19에 나열된 나머지 조건들을 기반으로 BDOF의 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 19에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 19에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 19의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
한편, 상술한 바와 같은 DMVR과 BDOF는 SPS(Sequence Parameter Set) 신택스에서 각각 시그널링될 수 있다. 다음 표 20은 SPS 신택스를 통해 시그널링되는 DMVR이 가용한지 여부와 BDOF가 가용한지 여부를 나타내는 신택스 요소의 일 예를 나타낸다.
Figure PCTKR2020001869-appb-T000020
상기 표 20을 참조하면, SPS 신택스에서 sps_dmvr_enabled_flag를 시그널링할 수 있고, 이 신택스 요소를 기반으로 true 쌍예측 기반 DMVR이 가용(enable)한지 여부를 나타낼 수 있다. 예컨대, sps_dmvr_enabled_flag가 1인 경우 true 쌍예측 기반 DMVR이 가용한 것을 나타내고, sps_dmvr_enabled_flag가 0인 경우 true 쌍예측 기반 DMVR이 가용하지 않은 것을 나타낼 수 있다.
또한, SPS 신택스에서 sps_bdof_enabled_flag를 시그널링할 수 있고, 이 신택스 요소를 기반으로 true 쌍예측 기반 BDOF가 가용(enable)한지 여부를 나타낼 수 있다. 예컨대, sps_bdof_enabled_flag가 1인 경우 true 쌍예측 기반 BDOF이 가용한 것을 나타내고, sps_bdof_enabled_flag가 0인 경우 true 쌍예측 기반 BDOF이 가용하지 않은 것을 나타낼 수 있다.
상기 표 20에서와 같이 DMVR의 가용 여부를 나타내는 신택스 요소(예: sps_dmvr_enabled_flag)와 BDOF의 가용 여부를 나타내는 신택스 요소(예: sps_bdof_enabled_flag)를 이용하여 DMVR 및 BDOF의 적용 조건을 체크할 수 있다.
도 6은 DMVR 및 BDOF의 적용 조건을 체크하여 디코딩 과정을 수행하는 방법을 나타내는 일 예이다.
도 6의 방법은 상기 표 20에서와 같이 DMVR의 가용 여부를 나타내는 신택스 요소(예: sps_dmvr_enabled_flag)와 BDOF의 가용 여부를 나타내는 신택스 요소(예: sps_bdof_enabled_flag)를 이용하는 경우에 적용될 수 있다.
도 6을 참조하면, 디코딩 장치는 현재 블록에 대한 움직임 정보(예: 움직임 벡터, 참조 픽처 인덱스 등)를 유도할 수 있다(S600).
디코딩 장치는 DMVR의 적용 조건을 체크할 수 있다(S610). 이때 DMVR의 가용 여부를 나타내는 신택스 요소(예: sps_dmvr_enabled_flag)를 기반으로 DMVR의 적용 조건을 체크할 수 있다. 예를 들어, DMVR이 가용한 경우(예컨대, sps_dmvr_enabled_flag가 1인 경우)에 DMVR의 적용 조건을 체크할 수 있다.
디코딩 장치는 DMVR의 적용 조건을 만족하는지 여부에 따라 DMVR 과정을 적용할지를 판단할 수 있다(S620).
DMVR의 적용 조건을 모두 만족한 경우, 디코딩 장치는 DMVR 과정을 적용하여 리파인된 움직임 정보를 도출할 수 있다(S630). DMVR의 적용 조건 중 하나 이상 만족하지 못한 경우, 디코딩 장치는 DMVR 과정을 적용하지 않을 수 있다.
디코딩 장치는 DMVR을 적용한 경우에 도출된 리파인된 움직임 정보 또는 DMVR을 적용하지 않은 경우에 도출된 (리파인되지 않은) 움직임 정보를 기반으로 현재 블록의 예측 샘플들을 유도할 수 있다(S640).
그리고, 디코딩 장치는 BDOF의 적용 조건을 체크할 수 있다(S650). 이때, BDOF의 가용 여부를 나타내는 신택스 요소(예: sps_bdof_enabled_flag)를 기반으로 BDOF의 적용 조건을 체크할 수 있다. 예를 들어, BDOF이 가용한 경우(예컨대, sps_bdof_enabled_flag가 1인 경우)에 BDOF의 적용 조건을 체크할 수 있다.
BDOF의 적용 조건을 모두 만족한 경우, 디코딩 장치는 BDOF 과정을 적용하여 예측 샘플들에 대해 리파인을 수행할 수 있다(S670). BDOF의 적용 조건 중 하나 이상 만족하지 못한 경우, 디코딩 장치는 BDOF 과정을 적용하지 않을 수 있다.
디코딩 장치는 현재 블록에 대한 레지듀얼 샘플들을 유도하고(S680), 상기 레지듀얼 샘플들과 상기 BDOF를 적용한 경우에 도출된 리파인된 예측 샘플들 또는 BDOF를 적용하지 않은 경우에 도출된 (리파인되지 않은) 예측 샘플들을 기반으로 복원된 샘플들을 유도할 수 있다(S690).
본 문서에서는 상술한 바와 같이 DMVR과 BDOF를 적용함에 있어 상호 간의 적용 조건을 일치(harmonization)시켜 코딩 효율을 향상시키고 복잡도를 감소시킬 수 있는 다양한 실시예들을 제안한 바 있다. 이와 같은 본 문서의 실시예들에 따른 DMVR과 BDOF의 적용 조건을 체크하여 디코딩 과정에 적용함에 있어, 각각의 조건을 따로 체크하여 적용할 수도 있으나 코딩 효율을 향상시키기 위해서 한번에 적용 조건을 체크할 수도 있다. 즉, 본 문서에서는 DMVR과 BDOF의 적용 조건을 한번에 통합하여 체크할 수 있는 방안을 제안한다.
본 문서의 일 실시예로, SPS(Sequence Parameter Set) 신택스에서 디코딩 장치에서의 리파인 적용 여부를 나타내는 정보(예: sps_refinement_enabled_flag)를 시그널링함으로써 DMVR/BDOF의 적용 조건 체크 과정을 수행할 수 있다. 다음 표 21은 SPS 신택스를 통해 시그널링되는 디코딩 장치에서의 리파인 적용 여부를 나타내는 신택스 요소(예: sps_refinement_enabled_flag)의 일 예를 나타낸다.
Figure PCTKR2020001869-appb-T000021
상기 표 21을 참조하면, SPS 신택스에서 sps_refinement_enabled_flag를 시그널링할 수 있고, 이 신택스 요소를 기반으로 디코딩 장치에서의 리파인 적용이 가능한지 여부를 나타낼 수 있다. 예컨대, sps_refinement_enabled_flag가 존재할 때 (즉, sps_refinement_enabled_flag가 true인 경우), 디코딩 장치에서의 리파인 적용이 가능한 것으로 판단될 수 있다. 이 경우, 디코딩 장치는 DMVR이 가용(enable)한지 여부를 나타내는 sps_dmvr_enabled_flag 신택스 요소 및 BDOF가 가용(enable)한지 여부를 나타내는 sps_bdof_enabled_flag 신택스 요소를 획득하여, DMVR과 BDOF의 적용 조건을 판단할 수 있다.
도 7 및 도 8은 DMVR 및 BDOF의 적용 조건을 체크하여 디코딩 과정을 수행하는 방법을 나타내는 다른 예이다.
도 7의 방법 및 도 8의 방법은 상기 표 21에서와 같이 디코딩 장치에서의 리파인 적용이 가능한지 여부를 나타내는 신택스 요소(예: sps_refinement_enabled_flag)를 이용하는 경우에 적용될 수 있다. 또한, 도 7 및 도 8은 상술한 도 6과 중복되는 내용에 관해서는 설명을 생략한다.
도 7을 참조하면, 상기 도 6의 과정과 비교하여 DMVR 및 BDOF의 적용 조건을 각각 체크하지 않고, 앞 단에서 한번에 체크하는 것을 알 수 있다. 일 실시예로, 도 7의 단계 S710에서, 디코딩 장치는 리파인 적용 조건을 체크할 수 있다. 이때, 리파인 적용 조건 체크는, 상기 표 21에서와 같은 sps_refinement_enabled_flag를 기반으로 수행될 수 있다. 예를 들어, sps_refinement_enabled_flag가 1인 경우, DMVR이 가용(enable)한지 여부를 나타내는 sps_dmvr_enabled_flag 신택스 요소 또는 BDOF가 가용(enable)한지 여부를 나타내는 sps_bdof_enabled_flag 신택스 요소를 획득하고, 이를 기반으로 DMVR 및 BDOF의 적용 조건을 체크할 수 있다.
또한, 도 8을 참조하면, 상기 도 6의 과정과 비교하여 DMVR 및 BDOF의 적용 조건을 각각 체크하지 않고, 앞 단에서 한번에 체크하되 다른 조건에 대해서는 간단한 체크 과정(BDOF의 적용 조건)을 수행할 수 있다. 일 실시예로, 도 8의 단계 S810에서, 디코딩 장치는 리파인 적용 조건을 체크할 수 있다. 이후 도 8의 단계 S850에서, 디코딩 장치는 상기 리파인 적용 조건과 다른 조건을 가지는 BDOF의 적용 조건에 대해서 추가적으로 간단히 체크를 수행할 수 있다.
한편, 현재 블록의 길이(Height) 또는 크기(Height*Width)가 특정 길이 또는 특정 크기보다 작은 경우, 움직임 보상(Motion Compensation)을 위한 multiplication/addition의 계산 비율이 증가하게 된다. 따라서, 본 문서의 일 실시예에서는 worst case를 줄이기 위해 DMVR의 적용 조건에서와 같이, 작은 길이 또는 작은 크기의 블록에 대해 BDOF의 적용을 제한할 수 있다. 이 경우 BDOF의 적용 조건은 다음 표 22에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000022
상기 표 22를 참조하면, 현재 블록의 크기와 관련된 조건들(예: CbHeight, CbWidth)을 추가함으로써, 특정 크기보다 작은 블록에 대해서 BDOF을 적용하지 않도록 할 수 있다. 예를 들어, 현재 블록의 길이(예: CbHeight)가 8 이상인 경우에 적용하는 조건과, 현재 블록의 크기(예: CbHeight* CbWidth)가 64 이상인 경우에 적용하는 조건을 사용할 수 있다. 이러한 현재 블록의 크기와 관련된 적용 조건들을 만족한 경우 (즉, 현재 블록의 길이가 8 이상이고 현재 블록의 길이*너비가 64 이상인 경우) BDOF을 적용하고, 상기와 같은 현재 블록의 크기와 관련된 적용 조건들을 만족하지 않는 경우 BDOF을 적용하지 않을 수 있다.
또한, 본 실시예에서는 현재 블록의 크기와 관련된 조건들(예: CbHeight, CbHeight*CbWidth)과 함께, 상기 표 22에서 나열된 나머지 적용 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 22에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 22에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 22의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
한편, 현재 블록에 MMVD가 적용되는 경우 MMVD에 대한 정보(예: mmvd index)를 기반으로 움직임 정보를 유도할 수 있다. 여기서, MMVD에 대한 정보는 베이스(base) MV의 인덱스, 거리 인덱스(distance index), 방향 인덱스(direction index) 등을 포함할 수 있다. 특히, 거리 인덱스(보다 구체적으로, mmvd_distance_index[xCb][yCb])는 베이스 MV와의 거리를 나타내기 위해 사용되는데, 예를 들어 거리 인덱스 0 내지 7은 각각 {1/4, 1/2, 1, 2, 4, 8, 16, 32} 등으로 나타낼 수 있다. DMVR 및 BDOF에서 움직임 정보의 리파인먼트를 결정함에 있어, 인접 픽셀(인접 샘플)을 고려하여 리파인먼트 여부를 결정하는데, 이때 인접 픽셀과 베이스 MV와의 거리가 먼 경우 거리 인덱스의 값도 커지게 된다. 이와 같은 경우 인접 픽셀을 고려하는 것이 DMVR 및 BDOF의 성능 향상에 도움을 주기 어렵다. 따라서, 본 문서에서는 거리 인덱스(보다 구체적으로, mmvd_distance_index[xCb][yCb]) 값에 따라 DMVR 및 BDOF의 적용 여부를 결정할 수 있는 방안을 제안한다.
본 문서의 일 실시예로, 거리 인덱스를 고려하여 DMVR의 적용 여부를 결정할 수 있으며, 이 경우 DMVR의 적용 조건은 다음 표 23에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000023
상기 표 23을 참조하면, DMVR의 적용 조건들 중 MMVD과 관련된 조건(예: mmvd_flag)을 변경함으로써, MMVD 모드 시에 제한적으로 DMVR을 적용할 수 있다. 예를 들어, mmvd_flag가 1이고 mmvd_distance_index가 4보다 큰 경우, MMVD의 거리 인덱스 조건을 만족하는 것으로 정할 수 있다. 따라서, MMVD 모드가 적용될 때 거리 인덱스(예: mmvd_distance_index[xCb][yCb]) 값에 따라 DMVR의 적용 여부를 결정할 수 있다.
여기서 mmvd_distance_index를 위한 임계값(threshold)을 4로 설정하였으나, 이는 하나의 예시일 뿐이며 성능 및 코딩 효율에 따라 다양한 수치로 변경될 수 있다.
따라서, 본 실시예에서는 MMVD 적용 여부 조건(예: mmvd_flag), MMVD의 거리 인덱스 조건(예: mmvd_distance_index)과 함께, 상기 표 23에 나열된 나머지 적용 조건들을 기반으로 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 23에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 23에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 23의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
또한, 본 문서의 일 실시예로, 거리 인덱스를 고려하여 BDOF의 적용 여부를 결정할 수 있으며, 이 경우 BDOF의 적용 조건은 다음 표 24에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000024
상기 표 24를 참조하면, 머지 모드/스킵 모드 여부 조건(예: merge_flag), MMVD과 관련된 조건(예: mmvd_flag, mmvd_distance_index)을 추가함으로써, MMVD 모드 시에 제한적으로 BDOF을 적용할 수 있다. 예를 들어, merge_flag가 존재하지 않거나 (즉, merge_flag가 1이 아닌 경우), 또는 merge_flag가 1이고 mmvd_flag가 1이고 mmvd_distance_index가 4보다 큰 경우, MMVD 모드 시에 제한적으로 BDOF을 적용하는 조건을 만족하는 것으로 정할 수 있다. 따라서, MMVD 모드가 적용될 때 거리 인덱스(예: mmvd_distance_index[xCb][yCb]) 값에 따라 BDOF의 적용 여부를 결정할 수 있다.
여기서 mmvd_distance_index를 위한 임계값(threshold)을 4로 설정하였으나, 이는 하나의 예시일 뿐이며 성능 및 코딩 효율에 따라 다양한 수치로 변경될 수 있다.
따라서, 본 실시예에서는 머지 모드/스킵 모드 여부 조건(예: merge_flag), MMVD과 관련된 조건(예: mmvd_flag, mmvd_distance_index)과 함께, 상기 표 24에 나열된 나머지 적용 조건들을 기반으로 BDOF의 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 24에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 24에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 24의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 23 또는 상기 표 24에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
한편, 상술한 바와 같이 현재 블록에 인트라 예측과 인터 예측을 동시에 수행하는 CIIP(Combined intra-inter prediction) 모드가 적용될 수 있다. 이 경우, 인터 예측이 수행된 예측 블록(인터 블록)은 인트라 예측 방법과 결합(combine)되어 최종적으로 예측 샘플 값들이 생성되므로, 예측 정확도가 향상될 수 있다. 그러나, DMVR 및 BDOF는 인터 블록에 대해 리파인먼트하는 기술이므로, 복잡도 대비 성능 면에서 CIIP 모드의 적용이 필요하지 않을 수 있다. 따라서, 본 문서에서는 CIIP를 고려하여 DMVR 및 BDOF의 적용 여부를 결정할 수 있는 방안을 제안한다.
본 문서의 일 실시예로, CIIP을 고려하여 DMVR의 적용 여부를 결정할 수 있으며, 이 경우 DMVR의 적용 조건은 다음 표 25에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000025
상기 표 25를 참조하면, CIIP 모드 적용 여부 조건(예: ciip_flag)을 추가함으로써, CIIP 적용 여부에 따라 DMVR을 제한적으로 적용할 수 있다. 예를 들어, ciip_flag가 0인 경우 (즉, CIIP 모드가 적용되지 않는 경우), CIIP 모드 적용 여부 조건을 만족하는 것으로 판단하여 DMVR을 적용할 수 있다.
따라서, 본 실시예에서는 CIIP 모드 적용 여부 조건(예: ciip_flag)과 함께, 상기 표 25에 나열된 나머지 적용 조건들을 기반으로 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 25에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 25에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 25의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
또한, 본 문서의 일 실시예로, CIIP을 고려하여 BDOF의 적용 여부를 결정할 수 있으며, 이 경우 BDOF의 적용 조건은 다음 표 26에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000026
상기 표 26을 참조하면, CIIP 모드 적용 여부 조건(예: ciip_flag)을 추가함으로써, CIIP 적용 여부에 따라 BDOF을 제한적으로 적용할 수 있다. 예를 들어, ciip_flag가 0인 경우 (즉, CIIP 모드가 적용되지 않는 경우), CIIP 모드 적용 여부 조건을 만족하는 것으로 판단하여 BDOF을 적용할 수 있다.
따라서, 본 실시예에서는 CIIP 모드 적용 여부 조건(예: ciip_flag)과 함께, 상기 표 26에 나열된 나머지 적용 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 26에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 26에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 26의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 25 또는 상기 표 26에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
상술한 본 문서의 실시예에 따른 표 5 내지 표 26에서 나열된 방법은 조합하여 적용될 수 있다. 즉, 리파인 적용 조건을 체크함으로써 DMVR 및 BDOF의 적용 여부를 판단할 수 있으며, 다음 표 27에서과 같은 조건들을 적용할 수 있다.
Figure PCTKR2020001869-appb-T000027
상기 표 27을 참조하면, DMVR 또는 BDOF가 적용될 때 양방향 예측인 경우에 적용하는 조건, 현재 픽처와 양방향 참조 픽처와의 거리가 상호 동일한 true 쌍예측인 경우에 적용하는 조건, MMVD 모드가 사용되지 않는 경우에 적용하는 조건, 어파인 예측이 아닌 경우에 적용하는 조건, 서브블록 기반 머지 모드가 아닌 경우에 적용하는 조건, GBi 인덱스가 디폴트인 경우에 적용하는 조건을 이용할 수 있다. 즉, 상기 조건들을 만족하는지 여부에 따라 DMVR 또는 BDOF의 적용 여부를 판단할 수 있다.
또한, 상술하였듯 DMVR을 위해 머지 모드인지 여부를 판단하거나, BDOF를 위해 루마 블록인지 여부를 판단하는 등의 조건이 추가될 수도 있다.
상기 표 27에서 나열된 적용 조건들은 하나의 예시이며, 전술한 실시예들(상기 표 5 내지 표 26의 실시예들)에서 나열한 다양한 조건들을 조합하여 사용될 수 있음은 자명하다.
한편, DMVR에서는 디코딩 복잡도를 고려하여 MRSAD(mean-removed SAD) 함수 대신 SAD 함수를 비용 함수로 채택하고 있다. 그러나, GBi 인덱스가 디폴트(예: GbiIdx가 0인 경우)가 아닌 경우 두 개의 참조 블록이 서로 다른 가중치(weighting factor)를 가질 수 있기 때문에, SAD를 사용하는 DMVR은 바람직하지 않을 수 있다. 따라서, GBi 인덱스를 고려하여 DMVR의 조건이 고정될 수 있다. 실험 결과에 따르면 VTM4.0(VVC Test Model)과 비교하여 100% 인코딩 및 디코딩 런타임(run-time)으로 0.00% RD-rate 변화가 나타났다.
VVC(versatile video coding)의 경우 DMVR 과정은 다음 표 28에 나열된 조건들이 모두 충족될 때 수행될 수 있다.
Figure PCTKR2020001869-appb-T000028
현재 DMVR은, 나중에 가중 평균될 참조 블록들의 SAD를 비교하여 매칭되지 않는 블록을 검색할 수 있다. 본 문서에서는 두 개의 참조 블록이 서로 다른 가중치를 가질 수 있기 때문에, 이러한 경우를 고려하여 DMVR의 조건을 정할 수 있다. 본 문서의 일 실시예에 따르면, GBi 인덱스가 디폴트가 아닌 블록에 대해서는 DMVR을 수행하지 않도록 할 수 있다. 이 경우 DMVR의 적용 조건은 다음 표 29와 같을 수 있다.
Figure PCTKR2020001869-appb-T000029
상기 표 29에서와 같이, GBi 인덱스(예: GbiIdx)의 값이 0인 경우 DMVR을 수행하는 조건을 추가할 수 있다. 다시 말해, GBi 인덱스(예: GbiIdx)의 값이 0이 아닌 경우에는 두 개의 참조 블록(즉, L0 예측에 참조되는 참조 블록과 L1 예측에 참조되는 참조 블록)에 서로 다른 가중치가 적용되기 때문에, 이 경우 DMVR을 수행하지 않도록 제한할 수 있다.
한편, BDOF는 현재 블록(즉, 현재 코딩 유닛; 현재 CU)이 true 쌍예측 조건을 만족하는 경우에 수행된다. 광학 흐름 수식(optical flow equation)은 일정한 속도(즉, 운동량)로 움직이는 오브젝트의 움직임을 예측하기 위해 설계되었다는 점을 고려할 때, 현재 true 쌍예측 조건은 BDOF를 적용하기 위한 최적의 조건은 아니다. 따라서, 참조 픽처의 거리를 고려하여 BDOF의 조건이 고정될 수 있다. 실험 결과에 따르면 VTM4.0(VVC Test Model)과 비교하여 100% 인코딩 및 디코딩 런타임(run-time)으로 0.01% RD-rate 변화가 나타났다.
도 9는 BDOF의 개념을 설명하기 위해 도시된 도면이다.
상술한 바와 같이 BDOF는 광학 흐름 개념을 사용하여 움직임 보상(motion compensation)의 성능을 향상시키도록 설계되었다. BDOF에 따르면, 도 9에 도시된 바와 같이, 오브젝트가 일정한 속도(일정한 움직임)로 움직이고 또한 오브젝트가 움직이는 동안 각 픽셀의 휘도는 변하지 않는다고 가정할 수 있다. 이러한 가정을 할 경우 광학 흐름의 수식은 다음 수학식 7과 같이 나타낼 수 있다.
Figure PCTKR2020001869-appb-M000007
상술하였듯, 현재 CU가 true 쌍예측 조건을 만족하는 경우에 BDOF가 수행된다. 그러나, 이 true 쌍예측 조건이 오브젝트가 일정한 속도로 움직이는 경우를 의미하는 것은 아니다. 따라서, 본 문서에서는 오브젝트가 일정한 움직임을 가지는 경우에 BDOF를 적용할 수 있도록 하는 방안을 제안하고, 움직임 보상의 성능을 향상시킬 수 있도록 한다.
본 문서의 일 실시예에 따르면, 상기 수학식 7에서 δt로서 현재 픽처를 기준으로 LO 참조 픽처(도 9의 Reference 0)와의 거리와 L1 참조 픽처(도 9의 Reference 1)와의 거리가 서로 동일한 경우 BDOF를 적용할 수 있다. 이 경우 BDOF의 적용 조건은 다음 표 30과 같이 변경될 수 있다.
Figure PCTKR2020001869-appb-T000030
상기 표 30을 참조하면, BDOF의 적용 조건들 중 참조 픽처 거리와 관련된 조건(예: DiffPicOrderCnt)을 변경함으로써, 일정한 움직임 속도를 가진 경우에 한정하여 BDOF를 적용할 수 있다. 예를 들어, DiffPicOrderCnt( currPic, RefPicList[ 0 ][ refIdxL0 ])과 DiffPicOrderCnt( RefPicList[ 1 ][ refIdxL1 ], currPic )이 동일한지를 판단함으로써, 현재 픽처와 LO 참조 픽처(즉, 참조 픽처 리스트 L0 내의 참조 픽처) 간의 거리와, 현재 픽처와 L1 참조 픽처(즉, 참조 픽처 리스트 L1 내의 참조 픽처) 간의 거리가 상호 동일한지 여부를 판단할 수 있다. 즉, 현재 픽처를 기준으로 LO 참조 픽처와의 거리와 L1 참조 픽처와의 거리가 서로 동일한 경우에 한해 BDOF를 적용할 수 있다. 이와 같이, 현재 픽처를 기준으로 양방향의 참조 픽처 거리가 동일한 조건이 사용됨으로써, true 쌍예측이면서 일정 속도로 움직이고 있는 오브젝트를 포함하고 있는 블록인지를 판별할 수 있다. 이러한 조건을 만족하는 블록에 대해 BDOF를 적용함으로써, 보다 향상된 움직임 정보 리파인먼트 결과를 얻을 수 있다.
또한, 본 실시예에서는 참조 픽처 거리와 관련된 조건(예: DiffPicOrderCnt)과 함께, 상기 표 30에서 나열된 나머지 적용 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 30에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 30에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 30의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
한편, 본 문서는 블록 크기에 따라 BDOF의 적용 여부를 결정하는 방안을 제안한다. 다음 표 31은 본 문서의 일실시예에 따른 블록 크기 제한을 적용 조건으로 포함하는 경우를 나타낸다.
Figure PCTKR2020001869-appb-T000031
상기 표 31을 참조하면, BDOF를 적용함에 있어, 현재 블록의 길이(예: CbHeight)가 8 이상인 경우, 현재 블록의 크기(길이*너비)(예: CbHeight* CbWidth)가 64 이상인 경우를 조건으로 추가할 수 있다.
따라서, 본 실시예에서는 현재 블록의 길이가 8 이상인 조건, 현재 블록의 길이*너비가 64 이상인 조건과 함께, 상기 표 31에 나열된 나머지 적용 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 31에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 31에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 31의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
본 문서에서 전술된 DMVR 과정은 다음 표 32과 같은 스펙(spec)에 따라 구현될 수 있다. 다음 표 32는 본 문서의 일 실시예로 SAD를 기반으로 움직임 벡터 리파인먼트 과정의 일례를 나타낸다.
Figure PCTKR2020001869-appb-T000032
Figure PCTKR2020001869-appb-I000010
한편, 상술한 바와 같이 DMVR에서는 디코딩 복잡도를 고려하여 MRSAD(mean-removed SAD) 함수 대신 SAD 함수를 비용 함수로 채택하고 있다. 그러나, GBi 인덱스가 디폴트(예: GbiIdx가 0인 경우)가 아니고 명시적 가중 예측(explicit weighted prediction)에 의한 가중치 플래그(weighting flag)가 0이 아닌 경우, SAD를 사용하는 DMVR은 바람직하지 않을 수 있다. 따라서, GBi 인덱스와 명시적 가중 예측의 가중치 플래그를 고려하여 DMVR의 조건이 고정될 수 있다. 또한, BDOF에도 동일한 조건이 적용될 수 있다. 실험 결과에 따르면 VTM4.0(VVC Test Model)과 비교하여 100% 인코딩 및 디코딩 런타임(run-time)으로 0.00% RD-rate 변화가 나타났다.
현재 DMVR은, 나중에 가중 평균되는 참조 블록들의 SAD를 비교하여 매칭되지 않는 블록을 검색할 수 있다. 본 문서에서는 두 개의 참조 블록이 서로 다른 가중치를 가질 수 있기 때문에, 이러한 경우를 고려하여 DMVR의 조건을 정할 수 있다. 본 문서의 일 실시예에 따르면, GBi 인덱스가 디폴트가 아닌 블록에 대해서는 DMVR을 수행하지 않도록 할 수 있다. 또한, 명시적 가중 예측에 의한 가중치 플래그가 0이 아닌 블록에 대해서는 DMVR을 수행하지 않도록 할 수 있다.
본 문서의 일 실시예에서는 가중 쌍예측 여부를 고려하여 DMVR의 적용 여부를 결정할 수 있는 방안을 제안한다. 이 경우 DMVR의 적용 조건은 다음 표 33에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000033
상기 표 33을 참조하면, L0 예측 및 L1 예측에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: luma_weight_l0_flag, luma_weight_l1_flag), L0 예측 및 L1 예측에 적용되는 가중치를 나타내는 인덱스 조건(예: GbiIdx)을 추가함으로써, 가중 쌍예측 여부에 따라 DMVR을 적용할지를 결정할 수 있다.
예를 들어, L0 예측에 대해 명시적으로 가중치를 적용할지 여부를 나타내는 플래그 정보(예: luma_weight_l0_flag) 및 L1 예측에 대해 명시적으로 가중치를 적용할지 여부를 나타내는 플래그 정보(예: luma_weight_l1_flag)를 기반으로, 현재 블록에 명시적 가중 예측이 적용되는지 여부를 판단할 수 있다. 즉, luma_weight_l0_flag의 값이 0이고 luma_weight_l1_flag의 값이 0인 경우, 제한적으로 DMVR을 적용할 수 있다. 다시 말해, L0 및 L1 예측에 대해 명시적으로 가중 예측을 적용하지 않는 경우, DMVR을 적용하는 것으로 결정할 수 있다.
또한, L0 예측 및 L1 예측에 적용되는 가중치를 나타내는 쌍예측 가중치 인덱스(예: GbiIdx)의 값을 기반으로, 현재 블록에 서로 다른 가중치를 사용하는 쌍예측(즉, L0 예측 및 L1 예측)이 적용되는지를 판단할 수 있다. 즉, 쌍예측 가중치 인덱스(예: GbiIdx)의 값이 0인 경우는 상기 표 3의 실시예에서 설명한 바와 같이 L0 예측 및 L1 예측에 서로 다른 가중치가 적용되지 않는 디폴트인 경우일 수 있다. 따라서, 쌍예측 가중치 인덱스(예: GbiIdx)의 값이 0일 때, 제한적으로 DMVR을 적용할 수 있다.
실시예에 따라, L0 및 L1 예측에 대해 명시적으로 가중 예측을 적용하지 않는 경우 (luma_weight_l0_flag의 값이 0이고 luma_weight_l1_flag의 값이 0인 경우), 쌍예측 가중치 인덱스(예: GbiIdx) 정보를 더 획득하여 쌍예측 가중치 인덱스(예: GbiIdx)의 값이 0인지를 판단할 수 있다.
본 실시에에서는 L0 예측 및 L1 예측에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: luma_weight_l0_flag, luma_weight_l1_flag), L0 예측 및 L1 예측에 적용되는 가중치를 나타내는 인덱스 조건(예: GbiIdx)과 함께, 상기 표 33에 나열된 나머지 조건들을 기반으로 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 33에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 33에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 33의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
한편 BDOF의 경우, GBi 인덱스는 고려되고 있으나 명시적 가중 예측의 가중치 플래그는 고려되지 않고 있다. 따라서, 본 문서에서는 BDOF에 대해서도 GBi 인덱스와 명시적 가중 예측의 가중치 플래그를 고려하여 적용 여부를 결정하는 방안을 제안한다.
본 문서의 일 실시예로, 가중 쌍예측 여부를 고려하여 BDOF의 적용 여부를 결정할 수 있도록 하며, 이 경우 BDOF의 적용 조건은 다음 표 34에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000034
상기 표 34를 참조하면, L0 예측 및 L1 예측에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: luma_weight_l0_flag, luma_weight_l1_flag)을 추가함으로써, 가중 쌍예측 여부에 따라 BDOF을 적용할지를 결정할 수 있다.
예를 들어, L0 예측에 대해 명시적으로 가중치를 적용할지 여부를 나타내는 플래그 정보(예: luma_weight_l0_flag) 및 L1 예측에 대해 명시적으로 가중치를 적용할지 여부를 나타내는 플래그 정보(예: luma_weight_l1_flag)를 기반으로, 현재 블록에 명시적 가중 예측이 적용되는지 여부를 판단할 수 있다. 즉, luma_weight_l0_flag의 값이 0이고 luma_weight_l1_flag의 값이 0인 경우, 제한적으로 BDOF을 적용할 수 있다. 다시 말해, L0 및 L1 예측에 대해 명시적으로 가중 예측을 적용하지 않는 경우, BDOF을 적용하는 것으로 결정할 수 있다.
본 실시에에서는 L0 예측 및 L1 예측에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: luma_weight_l0_flag, luma_weight_l1_flag)과 함께, 상기 표 34에 나열된 나머지 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 34에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 34에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 34의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 33 또는 상기 표 34에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
상술한 바와 같이 GBi 인덱스뿐만 아니라 명시적 가중 예측의 가중 인자(weight factor)를 고려하여 DMVR 및 BDOF의 적용 여부를 판단할 수 있다. 이때, 명시적 가중 예측의 적용 여부를 판단하기 위해, luma_weight_lX_flag(여기서, X는 0 또는 1)를 이용하여 루마 성분에 대해 가중 예측 여부를 고려하였으나, 크로마 성분에 대해서도 가중 예측 여부를 고려할 수 있다. 따라서, 본 문서에서는 루마 성분의 가중 인자뿐만 아니라 크로마 성분의 가중 인자를 함께 고려하여 DMVR 및 BDOF의 적용 여부를 판단하는 방안을 제안한다.
본 문서의 일 실시예로, 현재 블록의 루마 성분 및 크로마 성분에 대해 명시적 가중 예측의 가중 인자를 고려하여 DMVR의 적용 여부를 결정할 수 있으며, 이 경우 DMVR의 적용 조건은 다음 표 35에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000035
상기 표 35를 참조하면, L0 예측의 루마 성분(루마 예측 값) 및 L1 예측의 루마 성분(루마 예측 값)에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: luma_weight_l0_flag, luma_weight_l1_flag), L0 예측의 크로마 성분(크로마 예측 값) 및 L1 예측의 크로마 성분(크로마 예측 값)에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: chroma_weight_l0_flag, chroma_weight_l1_flag), L0 예측 및 L1 예측에 적용되는 가중치를 나타내는 인덱스 조건(예: GbiIdx)을 추가함으로써, 루마 및 크로마 성분 둘 다에 대해 가중치(즉, 가중 인자)가 명시적으로 적용되지 않는 경우에 한해 제한적으로 DMVR을 적용하도록 할 수 있다.
예를 들어, L0 예측의 루마 성분(루마 예측 값)에 대해 명시적으로 가중치를 적용하는지 여부를 나타내는 플래그 정보(예: luma_weight_l0_flag) 및 L1 예측의 루마 성분(루마 예측 값)에 대해 명시적으로 가중치를 적용하는지 여부를 나타내는 플래그 정보(예: luma_weight_l1_flag)를 기반으로, 현재 블록의 루마 성분에 대해 명시적 가중 예측의 가중 인자가 적용되는지 여부를 판단할 수 있다.
또한, L0 예측의 크로마 성분(크로마 예측 값)에 대해 명시적으로 가중치를 적용하는지 여부를 나타내는 플래그 정보(예: chroma_weight_l0_flag) 및 L1 예측의 크로마 성분(크로마 예측 값)에 대해 명시적으로 가중치를 적용하는지 여부를 나타내는 플래그 정보(예: chroma_weight_l1_flag)를 기반으로, 현재 블록의 크로마 성분에 대해 명시적 가중 예측의 가중 인자가 적용되는지 여부를 판단할 수 있다.
즉, luma_weight_l0_flag의 값이 0이고 luma_weight_l1_flag의 값이 0인 경우 루마 성분에 대해 명시적으로 가중 인자가 존재하지 않음을 판단할 수 있고, chroma_weight_l0_flag의 값이 0이고 chroma_weight_l1_flag의 값이 0인 경우 크로마 성분에 대해 명시적으로 가중 인자가 존재하지 않음을 판단할 수 있다. 이와 같이 루마 성분 및 크로마 성분 둘 다에 대해 명시적 가중 인자가 존재하지 않는 경우, 제한적으로 DMVR을 적용할 수 있다.
또한, L0 예측 및 L1 예측에 적용되는 가중치를 나타내는 쌍예측 가중치 인덱스(예: GbiIdx)의 값을 기반으로, 현재 블록에 서로 다른 가중치를 사용하는 쌍예측(즉, L0 예측 및 L1 예측)이 적용되는지를 판단할 수 있다. 즉, 쌍예측 가중치 인덱스(예: GbiIdx)의 값이 0인 경우는 상기 표 3의 실시예에서 설명한 바와 같이 L0 예측 및 L1 예측에 서로 다른 가중치가 적용되지 않는 디폴트인 경우일 수 있다. 따라서, 쌍예측 가중치 인덱스(예: GbiIdx)의 값이 0일 때, 제한적으로 DMVR을 적용할 수 있다.
실시예에 따라, 루마 성분의 L0 및 L1 예측에 대해 명시적으로 가중 예측을 적용하지 않는 경우 (luma_weight_l0_flag의 값이 0이고 luma_weight_l1_flag의 값이 0인 경우)와, 크로마 성분의 L0 및 L1 예측에 대해 명시적으로 가중 예측을 적용하지 않는 경우 (chroma_weight_l0_flag의 값이 0이고 chroma_weight_l1_flag의 값이 0인 경우)일 때, 쌍예측 가중치 인덱스(예: GbiIdx) 정보를 더 획득하여 쌍예측 가중치 인덱스(예: GbiIdx)의 값이 0인지를 판단할 수 있다.
본 실시에에서는 루마 성분의 L0 예측 및 L1 예측에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: luma_weight_l0_flag, luma_weight_l1_flag), 크로마 성분의 L0 예측 및 L1 예측에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: chroma_weight_l0_flag, chroma_weight_l1_flag), L0 예측 및 L1 예측에 적용되는 가중치를 나타내는 인덱스 조건(예: GbiIdx)과 함께, 상기 표 35에 나열된 나머지 조건들을 기반으로 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 35에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 35에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 35의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
또한, 본 문서의 일 실시예로, 현재 블록의 루마 성분 및 크로마 성분에 대해 명시적 가중 예측의 가중 인자를 고려하여 BDOF의 적용 여부를 결정할 수 있으며, 이 경우 BDOF의 적용 조건은 다음 표 36에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000036
상기 표 36을 참조하면, L0 예측의 루마 성분(루마 예측 값) 및 L1 예측의 루마 성분(루마 예측 값)에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: luma_weight_l0_flag, luma_weight_l1_flag), L0 예측의 크로마 성분(크로마 예측 값) 및 L1 예측의 크로마 성분(크로마 예측 값)에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: chroma_weight_l0_flag, chroma_weight_l1_flag)을 추가함으로써, 루마 및 크로마 성분 둘 다에 대해 가중치(즉, 가중 인자)가 명시적으로 적용되지 않는 경우에 한해 제한적으로 BDOF을 적용하도록 할 수 있다.
예를 들어, L0 예측의 루마 성분(루마 예측 값)에 대해 명시적으로 가중치를 적용하는지 여부를 나타내는 플래그 정보(예: luma_weight_l0_flag)의 값이 0이고, L1 예측의 루마 성분(루마 예측 값)에 대해 명시적으로 가중치를 적용하는지 여부를 나타내는 플래그 정보(예: luma_weight_l1_flag)의 값이 0인 경우, 현재 블록의 루마 성분에 대한 L0 예측 및 L1 예측의 가중 인자가 명시적으로 존재하지 않음을 판단할 수 있다.
또한, L0 예측의 크로마 성분(크로마 예측 값)에 대해 명시적으로 가중치를 적용하는지 여부를 나타내는 플래그 정보(예: chroma_weight_l0_flag)의 값이 0이고, L1 예측의 크로마 성분(크로마 예측 값)에 대해 명시적으로 가중치를 적용하는지 여부를 나타내는 플래그 정보(예: chroma_weight_l1_flag)의 값이 0인 경우, 현재 블록의 크로마 성분에 대한 L0 예측 및 L1 예측의 가중 인자가 명시적으로 존재하지 않음을 판단할 수 있다.
이와 같이 루마 성분 및 크로마 성분 둘 다에 대해 L0 예측 및 L1 예측 시에 가중 인자가 존재하지 않는 경우, 제한적으로 BDOF을 적용할 수 있다.
본 실시에에서는 루마 성분의 L0 예측 및 L1 예측에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: luma_weight_l0_flag, luma_weight_l1_flag), 크로마 성분의 L0 예측 및 L1 예측에 대해 명시적으로 가중치 적용 여부를 나타내는 조건(예: chroma_weight_l0_flag, chroma_weight_l1_flag)과 함께, 상기 표 36에 나열된 나머지 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 36에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 36에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 36의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 35 또는 상기 표 36에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
한편, 상술한 바와 같이 본 문서의 실시예들에 따르면 명시적 가중 예측을 고려하여 DMVR 및 BDOF의 적용 여부를 판단할 수 있다. 이때, 명시적 가중 예측의 적용 여부를 판단하기 위해, 슬라이스의 종류를 고려할 수 있다. 따라서, 본 문서에서는 슬라이스 종류와 그에 따른 가중 예측의 적용 여부를 고려하여 DMVR 및 BDOF의 적용 여부를 판단하는 방안을 제안한다.
본 문서의 일 실시예로, 현재 슬라이스의 종류에 따라 가중 예측의 적용 여부를 나타내는 플래그 정보를 이용하여 DMVR 및 BDOF의 적용 여부를 판단할 수 있다. 여기서, 현재 슬라이스의 종류에 따라 가중 예측의 적용 여부를 나타내는 플래그 정보는 PPS(Picture Parameter Set) 또는 SPS(Sequence Parameter Set) 신택스를 통해 인코딩 장치에서 디코딩 장치로 시그널링될 수 있다. 일례로, 다음 표 37은 PPS 신택스를 통해 시그널링되는 상기 플래그 정보를 나타낸다.
Figure PCTKR2020001869-appb-T000037
상기 표 37을 참조하면, weighted_pred_flag 및 weighted_bipred_flag가 인코딩 장치에서 디코딩 장치로 시그널링될 수 있다. 여기서, weighted_pred_flag는 가중 예측이 P 슬라이스에 적용되는지 여부를 나타내는 정보이고, weighted_bipred_flag는 가중 예측이 B 슬라이스에 적용되는지 여부를 나타내는 정보일 수 있다.
예를 들어, weighted_pred_flag의 값이 0이면 가중 예측이 P 슬라이스에 적용되지 않음을 나타내고, weighted_pred_flag의 값이 1이면 가중 예측이 P 슬라이스에 적용됨을 나타낼 수 있다. 또한, weighted_bipred_flag의 값이 0이면 가중 예측이 B 슬라이스에 적용되지 않음을 나타내고, weighted_bipred_flag의 값이 1이면 가중 예측이 B 슬라이스에 적용됨을 나타낼 수 있다.
여기서, P 슬라이스(predictive slice)라 함은 하나의 움직임 벡터 및 참조 픽처 인덱스를 이용한 인터 예측(단)을 기반으로 디코딩되는 슬라이스를 의미할 수 있다. B 슬라이스(bi-predictive slice)라 함은 하나 이상, 예컨대 두개의 움직임 벡터 및 참조 픽처 인덱스를 이용한 인터 예측을 기반으로 디코딩되는 슬라이스를 의미할 수 있다.
본 문서의 일 실시예로, 가중 예측이 P 슬라이스에 적용되는지 여부를 나타내는 플래그 정보(예: weighted_pred_flag) 및 가중 예측이 B 슬라이스에 적용되는지 여부를 나타내는 플래그 정보(예: weighted_bipred_flag)를 기반으로, DMVR의 적용 여부를 결정할 수 있으며, 이 경우 DMVR의 적용 조건은 다음 표 38에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000038
상기 표 38을 참조하면, 가중 예측이 P 슬라이스에 적용되는지 여부를 나타내는 조건(예: weighted_pred_flag), 가중 예측이 B 슬라이스에 적용되는지 여부를 나타내는 조건(예: weighted_bipred_flag), L0 예측 및 L1 예측에 적용되는 가중치를 나타내는 인덱스 조건(예: GbiIdx)을 추가함으로써, P 슬라이스 및 B 슬라이스에 대해 가중 예측이 적용되지 않는 경우에 한해 제한적으로 DMVR을 적용하도록 할 수 있다.
예를 들어, weighted_pred_flag의 값이 1이면서 P 슬라이스인 경우가 아니고, 또한 weighted_bipred_flag의 값이 1이면서 B 슬라이스인 경우가 아닐 때, DMVR을 적용할 수 있다. 다시 말해, P 슬라이스에 가중 예측이 적용되지 않고 B 슬라이스에 가중 예측이 적용되지 않는 경우, DMVR을 적용하는 것으로 판단할 수 있다.
또한, L0 예측 및 L1 예측에 적용되는 가중치를 나타내는 쌍예측 가중치 인덱스(예: GbiIdx)의 값을 기반으로, 현재 블록에 서로 다른 가중치를 사용하는 쌍예측(즉, L0 예측 및 L1 예측)이 적용되는지를 판단할 수 있다. 즉, 쌍예측 가중치 인덱스(예: GbiIdx)의 값이 0인 경우는 상기 표 3의 실시예에서 설명한 바와 같이 L0 예측 및 L1 예측에 서로 다른 가중치가 적용되지 않는 디폴트인 경우일 수 있다. 따라서, 쌍예측 가중치 인덱스(예: GbiIdx)의 값이 0일 때, 제한적으로 DMVR을 적용할 수 있다.
본 실시예에서는 가중 예측이 P 슬라이스에 적용되는지 여부를 나타내는 조건(예: weighted_pred_flag), 가중 예측이 B 슬라이스에 적용되는지 여부를 나타내는 조건(예: weighted_bipred_flag), L0 예측 및 L1 예측에 적용되는 가중치를 나타내는 인덱스 조건(예: GbiIdx)과 함께, 상기 표 38에 나열된 나머지 조건들을 기반으로 DMVR 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 38에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 38에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 38의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
또한, 본 문서의 일 실시예로, 가중 예측이 P 슬라이스에 적용되는지 여부를 나타내는 플래그 정보(예: weighted_pred_flag) 및 가중 예측이 B 슬라이스에 적용되는지 여부를 나타내는 플래그 정보(예: weighted_bipred_flag)를 기반으로, BDOF의 적용 여부를 결정할 수 있으며, 이 경우 BDOF의 적용 조건은 다음 표 39에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000039
상기 표 39를 참조하면, 가중 예측이 P 슬라이스에 적용되는지 여부를 나타내는 조건(예: weighted_pred_flag), 가중 예측이 B 슬라이스에 적용되는지 여부를 나타내는 조건(예: weighted_bipred_flag)을 추가함으로써, P 슬라이스 및 B 슬라이스에 대해 가중 예측이 적용되지 않는 경우에 한해 제한적으로 BDOF을 적용하도록 할 수 있다.
예를 들어, weighted_pred_flag의 값이 1이면서 P 슬라이스인 경우가 아니고, 또한 weighted_bipred_flag의 값이 1이면서 B 슬라이스인 경우가 아닐 때, BDOF을 적용할 수 있다. 다시 말해, P 슬라이스에 가중 예측이 적용되지 않고 B 슬라이스에 가중 예측이 적용되지 않는 경우, BDOF을 적용하는 것으로 판단할 수 있다.
본 실시예에서는 가중 예측이 P 슬라이스에 적용되는지 여부를 나타내는 조건(예: weighted_pred_flag), 가중 예측이 B 슬라이스에 적용되는지 여부를 나타내는 조건(예: weighted_bipred_flag)과 함께, 상기 표 39에 나열된 나머지 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다.
즉, 디코딩 장치는 상기 표 39에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 39에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 39의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 38 또는 상기 표 39에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
한편, 블록 사이즈에 따라 쌍예측(bi-prediction) 또는 단예측(uni-prediction)을 수행할지 여부를 결정할 수 있다. 예를 들어, 현재 블록의 사이즈가 작은 경우(예: 4x8 또는 8x4 크기의 블록)에는 단예측만 가능하도록 제한하고, 현재 블록의 사이즈가 큰 경우에는 쌍예측이 가능하도록 할 수 있다. 이와 같이 블록 사이즈가 작은 경우 단예측만 수행하도록 제한할 경우, 쌍예측인 경우에 수행되는 DMVR 및 BDOF 역시 단예측 시 제한되는 블록 사이즈를 고려하여야 한다. 예컨대, 현재 블록의 크기가 4x8 또는 8x4인 경우 단예측만 가능하도록 제한할 경우, 현재 블록의 높이 또는 너비 중 적어도 하나가 4보다 큰 경우에 쌍예측이 수행될 수 있다. 따라서, 본 문서에서는 쌍예측 또는 단예측 시에 적용되는 블록 사이즈를 고려하여 DMVR 및 BDOF를 적용하는 방안을 제안한다.
본 문서의 일 실시예로, 현재 블록의 높이(및/또는 너비)를 고려하여 BDOF의 적용 여부를 결정하는 방안을 제안한다. 이 경우 BDOF의 적용 조건은 다음 표 40에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000040
상기 표 40을 참조하면, 현재 블록의 높이(및/또는 너비)와 관련된 조건들(예: cbHeight)을 변경함으로써, 특정 크기보다 큰 블록에 대해서만 제한적으로 BDOF를 적용할 수 있다. 예를 들어, 현재 블록의 높이(예: CbHeight)가 4보다 큰 경우에 BDOF를 적용하는 조건을 사용할 수 있다. 또는 현재 블록의 너비(예: CbWidth)가 4보다 큰 경우에 BDOF를 적용하는 조건을 사용할 수도 있다. 이러한 현재 블록의 크기(예: CbHeight 또는 CbWidth)와 관련된 조건을 만족한 경우 (즉, 현재 블록의 높이가 4보다 큰 경우) BDOF를 적용하고, 상기와 같은 현재 블록의 크기와 관련된 조건을 만족하지 않는 경우 (즉, 현재 블록의 높이가 4 이하인 경우) BDOF를 적용하지 않을 수 있다.
또한, 본 실시예에서는 현재 블록의 크기와 관련된 조건들(예: CbHeight, CbWidth)과 함께, 상기 표 40에서 나열된 나머지 조건들을 기반으로 BDOF 적용 여부를 판단할 수 있다. 이때, 상기 표 40에 나열된 조건들을 만족하는지 여부에 따라 bdofFlag를 유도할 수 있다. 이때, 상기 표 40에 나열된 조건들을 모두 만족한 경우, bdofFlag의 값은 1(true)로 유도되고, 그렇지 않은 경우 bdofFlag이 값은 0(false)로 유도될 수 있다. 여기서, bdofFlag는 현재 블록에 대한 BDOF를 적용하는지 여부를 나타내는 플래그 정보일 수 있다.
즉, 디코딩 장치는 상기 표 40에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 BDOF을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 40에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 BDOF을 적용하지 않을 수 있다. 이러한 상기 표 40의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
또한, 본 문서의 일 실시예로, 현재 블록의 높이(및/또는 너비)를 고려하여 DMVR의 적용 여부를 결정하는 방안을 제안한다. 이 경우 DMVR의 적용 조건은 다음 표 41에 제시된 조건들을 포함할 수 있다.
Figure PCTKR2020001869-appb-T000041
상기 표 41을 참조하면, 현재 블록의 높이(및/또는 너비)와 관련된 조건들(예: cbHeight)을 변경함으로써, 특정 크기보다 큰 블록에 대해서만 제한적으로 DMVR를 적용할 수 있다. 예를 들어, 현재 블록의 높이(예: CbHeight)가 4보다 큰 경우에 DMVR를 적용하는 조건을 사용할 수 있다. 또는 현재 블록의 너비(예: CbWidth)가 4보다 큰 경우에 DMVR를 적용하는 조건을 사용할 수도 있다. 이러한 현재 블록의 크기(예: CbHeight 또는 CbWidth)와 관련된 조건을 만족한 경우 (즉, 현재 블록의 높이가 4보다 큰 경우) DMVR를 적용하고, 상기와 같은 현재 블록의 크기와 관련된 조건을 만족하지 않는 경우 (즉, 현재 블록의 높이가 4 이하인 경우) DMVR를 적용하지 않을 수 있다.
또한, 본 실시예에서는 현재 블록의 크기와 관련된 조건들(예: CbHeight, CbWidth)과 함께, 상기 표 41에서 나열된 나머지 조건들을 기반으로 DMVR 적용 여부를 판단할 수 있다. 이때, 상기 표 41에 나열된 조건들을 만족하는지 여부에 따라 dmvrFlag를 유도할 수 있다. 이때, 상기 표 41에 나열된 조건들을 모두 만족한 경우, dmvrFlag의 값은 1(true)로 유도되고, 그렇지 않은 경우 dmvrFlag이 값은 0(false)로 유도될 수 있다. 여기서, dmvrFlag는 현재 블록에 대한 DMVR를 적용하는지 여부를 나타내는 플래그 정보일 수 있다.
즉, 디코딩 장치는 상기 표 41에 나열된 모든 조건들이 만족되는지 여부를 결정하고, 모든 조건들이 만족되는 경우 DMVR을 적용하여 true 쌍예측을 수행할 수 있다. 만일 상기 표 41에 나열된 조건 중 하나라도 만족되지 못하는 경우, 디코딩 장치는 DMVR을 적용하지 않을 수 있다. 이러한 상기 표 41의 조건들은 인코딩 장치에서도 적용될 수 있으며, 인코딩 장치에서는 디코딩 장치에서와 대응되는 방법으로 수행될 수 있다.
상기 표 40 또는 상기 표 41에서 나열된 조건들을 기반으로 true 쌍예측을 수행하는 방법은 DMVR 및 BDOF에 독립적으로 적용될 수 있으며, 또는 DMVR 및 BDOF을 위한 동일 조건으로 적용될 수 있다.
본 문서는 상술한 표 1 내지 표 41의 적용 조건들을 기반으로 DMVR의 적용 여부를 나타내는 DMVR 플래그 정보 및 BDOF의 적용 여부를 나타내는 BDOF 플래그 정보를 유도할 수 있다.
예를 들어, DMVR의 적용 조건들(예컨대, 표 1 내지 표 41의 적용 조건들 중 적어도 하나 또는 적용 조건들의 조합)을 기반으로 DMVR 플래그 정보(예: dmvrFlag)를 유도할 수 있다. 이때, dmvrFlag의 값이 1(또는 true)인 경우 DMVR이 적용됨을 지시하고, dmvrFlag의 값이 0(또는 false)인 경우 DMVR이 적용되지 않음을 지시할 수 있다. 또한, BDOF의 적용 조건들(예컨대, 표 1 내지 표 41의 적용 조건들 중 적어도 하나 또는 적용 조건들의 조합)을 기반으로 BDOF 플래그 정보(예: bdofFlag)를 유도할 수 있다. 이때, bdofFlag의 값이 1(또는 true)인 경우 BDOF가 적용됨을 지시하고, bdofFlag의 값이 0(또는 false)인 경우 BDOF가 적용되지 않음을 지시할 수 있다.
도 10은 본 문서의 일 실시예에 따른 인코딩 장치에 의하여 수행될 수 있는 인코딩 방법을 개략적으로 나타내는 흐름도이다.
도 10에 개시된 방법은 도 2에서 개시된 인코딩 장치(200)에 의하여 수행될 수 있다. 구체적으로, 도 10의 단계 S1000 ~ S1030은 도 2에 개시된 예측부(220) 및 인터 예측부(221)에 의하여 수행될 수 있고, 도 10의 단계 S1040은 도 2에 개시된 레지듀얼 처리부(230)에 의하여 수행될 수 있고, 도 10의 단계 S1050은 도 2에 개시된 엔트로피 인코딩부(240)에 의하여 수행될 수 있다. 또한, 도 10에서 개시된 방법은 본 문서에서 상술한 실시예들을 포함할 수 있다. 따라서, 도 10에서는 상술한 실시예들과 중복되는 내용에 관해서 구체적인 설명을 생략하거나 간단히 하기로 한다.
도 10을 참조하면, 인코딩 장치는 현재 블록의 L0 움직임 벡터 및 L1 움직임 벡터를 도출할 수 있다(S1000).
일 실시예로, 현재 블록에 대해 인터 예측을 수행하는 경우, 인코딩 장치는 현재 블록의 움직임 정보(움직임 벡터, 참조 픽처 인덱스 등)를 도출할 수 있다. 예를 들어, 인코딩 장치는 움직임 추정(motion estimation)을 통하여 참조 픽처들의 일정 영역(서치 영역) 내에서 현재 블록과 유사한 블록을 서치하고, 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이를 기반으로 참조 블록이 위치하는 참조 픽처를 가리키는 참조 픽처 인덱스를 도출하고, 참조 블록과 현재 블록의 위치 차이를 기반으로 움직임 벡터를 도출할 수 있다.
또한, 인코딩 장치는 다양한 예측 모드들 중 현재 블록에 대하여 적용되는 인터 예측 모드를 결정할 수 있다. 인코딩 장치는 다양한 예측 모드들에 대한 RD cost를 비교하고 현재 블록에 대한 최적의 예측 모드를 결정할 수 있다.
예를 들어, 인코딩 장치는 현재 블록에 대한 최적의 예측 모드로서 머지 모드를 적용할지 여부를 판단할 수 있다. 인코딩 장치는 현재 블록에 머지 모드를 적용하는 경우, 현재 블록의 주변 블록들을 기반으로 머지 후보 리스트를 구성하고, 머지 인덱스 정보를 생성할 수 있다. 구체적으로, 머지 후보 리스트에 포함된 머지 후보들이 가리키는 참조 블록들(즉, 주변 블록들) 중 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이 경우 도출된 참조 블록과 연관된 머지 후보가 선택되며, 선택된 머지 후보를 가리키는 머지 인덱스 정보가 생성되어 디코딩 장치로 시그널링될 수 있다. 선택된 머지 후보의 움직임 정보를 이용하여 현재 블록의 움직임 정보가 도출될 수 있다.
여기서, 움직임 정보는 움직임 벡터, 참조 픽처 인덱스 등의 정보를 포함할 수 있고, 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등)에 따라 L0 움직임 정보 및/또는 L1 움직임 정보를 포함할 수 있다. 현재 블록에 쌍예측(Bi 예측)이 적용되는 경우, 움직임 정보는 L0 방향의 움직임 벡터(L0 움직임 벡터) 및 L1 방향의 움직임 벡터(L1 움직임 벡터)를 포함할 수 있다. 또한, 움직임 정보는 L0 참조 픽처 인덱스 및 L0 참조 픽처 리스트 내에서 L0 참조 픽처 인덱스에 의해 지시되는 L0 참조 픽처와, L1 참조 픽처 인덱스 및 L1 참조 픽처 리스트 내에서 L1 참조 픽처 인덱스에 의해 지시되는 L1 참조 픽처를 포함할 수 있다.
즉, 인코딩 장치는 머지 모드가 적용될 경우 현재 블록의 주변 블록들 중 머지 인덱스 정보에 의해 지시되는 주변 블록의 L0 움직임 벡터 및 L1 움직임 벡터를 도출하고, 이를 현재 블록의 L0 및 L1 움직임 벡터로 사용할 수 있다.
인코딩 장치는 L0 움직임 벡터를 기반으로 현재 블록의 L0 예측 샘플들을 도출하고, L1 움직임 벡터를 기반으로 현재 블록의 L1 예측 샘플들을 도출할 수 있다(S1010).
여기서, L0 예측 샘플들은 L0 참조 픽처에서 L0 움직임 벡터에 의해 지시되는 참조 샘플들을 기반으로 도출되고, L1 예측 샘플들은 L1 참조 픽처에서 L1 움직임 벡터에 의해 지시되는 참조 샘플들을 기반으로 도출될 수 있다. 상술한 바와 같이, L0 참조 픽처는 L0 참조 픽처 리스트 내에 포함된 참조 픽처들 중에서 L0 참조 픽처 인덱스에 의해 지시되는 참조 픽처이고, L1 참조 픽처는 L1 참조 픽처 리스트 내에 포함된 참조 픽처들 중에서 L1 참조 픽처 인덱스에 의해 지시되는 참조 픽처일 수 있다.
인코딩 장치는 현재 블록에 대해 BDOF를 적용할지 여부를 지시하는 BDOF 플래그 정보를 유도할 수 있다(S1020).
인코딩 장치는 코딩 효율, 복잡도, 예측 성능 등을 고려하여 현재 블록에 대해 BDOF를 적용할지 여부를 결정할 수 있다. 즉, 인코딩 장치는 현재 블록에 대해 BDOF의 적용 조건을 만족하는지 여부를 기반으로, 현재 블록에 BDOF를 적용할 수 있다. 여기서, BDOF의 적용 조건은 상기 표 1 내지 표 41에서 설명한 다양한 적용 조건들 중 일부(또는 전부) 혹은 특정 조합들로 구성될 수 있다. 또한, 인코딩 장치는 BDOF의 적용 조건을 만족하는지 여부에 따라 BDOF 플래그 정보를 유도할 수 있다. BDOF 플래그 정보는 현재 블록에 대해 BDOF를 적용할지 여부를 나타내는 정보(예컨대, 상술한 bdofFlag)일 수 있다.
일 실시예로, BDOF의 적용 조건은 현재 블록의 높이(Height)가 4보다 큰 경우인 조건을 포함할 수 있다. 이 경우, 인코딩 장치는 현재 블록의 높이가 4보다 큰 경우를 만족하면, 현재 블록에 대해 BDOF를 적용하는 것으로 BDOF 플래그 정보를 유도할 수 있다. 예컨대, 현재 블록의 높이가 4보다 큰 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우(즉, 현재 블록의 높이가 4 이하인 경우), BDOF 플래그 정보는 현재 블록에 BDOF를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다. 일례로, 현재 블록의 높이x너비가 4x8인 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, BDOF의 적용 조건은 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드(CIIP 모드)가 적용되지 않는 경우인 조건을 포함할 수 있다. 이때, 인코딩 장치는 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드가 적용되지 않는 경우(예: ciip_flag가 0인 경우)를 만족하면, 현재 블록에 대해 BDOF를 적용하는 것으로 BDOF 플래그 정보를 유도할 수 있다. 예컨대, ciip_flag가 0인 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. ciip_flag가 1인 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, BDOF의 적용 조건은 현재 픽처와 L0 참조 픽처 간의 제1 POC(picture order count) 차이와 현재 픽처와 L1 참조 픽처 간의 제2 POC 차이가 동일한 경우인 조건을 포함할 수 있다. 이때, 인코딩 장치는 제1 POC 차이(예: DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0]))와 제2 POC 차이(예: DiffPicOrderCnt(currPic, RefPicList1 [ refIdxL1 ] ))가 동일한 경우를 만족하면, 현재 블록에 대해 BDOF를 적용하는 것으로 BDOF 플래그 정보를 유도할 수 있다. 예컨대, DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0]) - DiffPicOrderCnt(currPic, RefPicList1 [ refIdxL1 ] )가 0인 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, BDOF의 적용 조건은 L0 루마 가중 예측 플래그 정보 및 L1 루마 가중 예측 플래그 정보의 값이 모두 0인 경우 조건을 포함할 수 있다. 이때, 인코딩 장치는 L0 루마 가중 예측 플래그 정보(예: luma_weight_l0_flag) 및 L1 루마 가중 예측 플래그 정보(예: luma_weight_l1_flag)의 값이 모두 0인 경우를 만족하면, 현재 블록에 대해 BDOF를 적용하는 것으로 BDOF 플래그 정보를 유도할 수 있다. 예컨대, luma_weight_l0_flag 및 luma_weight_l1_flag가 모두 0인 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
여기서, L0 루마 가중 예측 플래그 정보는 현재 블록의 루마 성분에 대한 L0 예측의 가중 팩터(weight factor)가 존재하는지 여부를 지시하는 정보이고, L1 루마 가중 예측 플래그 정보는 현재 블록의 루마 성분에 대한 L1 예측의 가중 팩터가 존재하는지 여부를 지시하는 정보일 수 있다. 예를 들어, L0 루마 가중 예측 플래그 정보의 값이 0인 경우는 L0 예측의 루마 성분에 대해 가중 팩터가 존재하지 않음을 나타내고, L0 루마 가중 예측 플래그 정보의 값이 1인 경우는 L0 예측의 루마 성분에 대해 가중 팩터가 존재함을 나타낼 수 있다. 또한, L1 루마 가중 예측 플래그 정보의 값이 0인 경우는 L1 예측의 루마 성분에 대해 가중 팩터가 존재하지 않음을 나타내고, L1 루마 가중 예측 플래그 정보의 값이 1인 경우는 L1 예측의 루마 성분에 대해 가중 팩터가 존재함을 나타낼 수 있다.
또한, 실시예에 따라, BDOF의 적용 조건은 BDOF 기반 인터 예측이 가용한(enable) 경우인 조건, 현재 블록에 L0 참조 픽처 및 L1 참조 픽처를 기반으로 수행되는 쌍예측(bi-prediction)이 적용되는 경우인 조건, 현재 블록의 쌍예측 가중치 인덱스(bi-prediction weight index) 정보의 값이 0인 조건, 현재 블록에 어파인 모드가 적용되지 않는 경우인 조건, 현재 블록에 서브블록 기반 머지 모드가 적용되지 않는 경우인 조건, 현재 블록이 루마 성분인 조건 등을 포함할 수 있다.
인코딩 장치는 상술한 BDOF의 적용 조건들 중 적어도 하나를 포함할 수 있으며, 이러한 BDOF의 적용 조건들을 기반으로 BDOF 플래그 정보를 유도할 수 있다. 이때, BDOF 적용 조건으로서 하나 이상의 조건을 포함하는 경우, 인코딩 장치는 BDOF의 적용 조건을 모두 만족하는 경우 BDOF 플래그 정보의 값을 true 또는 1로 유도할 수 있고, 그렇지 않은 경우 BDOF 플래그 정보의 값을 flase 또는 0으로 유도할 수 있다.
여기서, BDOF 플래그 정보를 유도함에 있어, 상기 나열된 BDOF 적용 조건들은 하나의 예시일 뿐이며, 전술한 표 1 내지 표 41의 조건들을 다양하게 조합하여 사용할 수 있다.
BDOF 플래그 정보가 현재 블록에 BDOF를 적용하는 것으로 지시하는 경우(예컨대, BDOF 플래그 정보가 true 또는 1 값으로 유도된 경우), 인코딩 장치는 현재 블록에 대해 BDOF를 적용하여, L0 예측 샘플들 및 L1 예측 샘플들을 기반으로 현재 블록에 대한 예측 샘플들을 도출할 수 있다(S1030).
일 실시예로, 인코딩 장치는 L0 예측 샘플들에 대한 제1 그라디언트(gradient) 및 L1 예측 샘플들에 대한 제2 그라디언트(gradient)를 계산할 수 있다. 그리고, 인코딩 장치는 L0 예측 샘플들, L1 예측 샘플들, 제1 그라디언트, 제2 그라디언트를 기반으로 현재 블록에 대한 예측 샘플들을 도출할 수 있다. 일례로, BDOF를 적용하여 예측 샘플들을 도출하는 과정은 상술한 수학식 1 내지 수학식 6과 같은 계산을 이용할 수 있다.
또한, 실시예에 따라, 인코딩 장치는 코딩 효율, 복잡도, 예측 성능 등을 고려하여 현재 블록에 대해 DMVR을 적용할지 여부를 결정할 수 있다. 즉, 인코딩 장치는 현재 블록에 대해 DMVR의 적용 조건을 만족하는지 여부를 기반으로, 현재 블록에 DMVR을 적용할 수 있다. 여기서, DMVR의 적용 조건은 상기 표 1 내지 표 41에서 설명한 다양한 적용 조건들 중 일부(또는 전부) 혹은 특정 조합들로 구성될 수 있다. 또한, 인코딩 장치는 DMVR의 적용 조건을 만족하는지 여부에 따라 DMVR 플래그 정보를 유도할 수 있다. DMVR 플래그 정보는 현재 블록에 대해 DMVR을 적용할지 여부를 나타내는 정보(예컨대, 상술한 dmvrFlag)일 수 있다.
일 실시예로, DMVR의 적용 조건은 현재 블록의 높이(Height)가 4보다 큰 경우인 조건을 포함할 수 있다. 이 경우, 인코딩 장치는 현재 블록의 높이가 4보다 큰 경우를 만족하면, 현재 블록에 대해 DMVR을 적용하는 것으로 DMVR 플래그 정보를 유도할 수 있다. 예컨대, 현재 블록의 높이가 4보다 큰 경우, DMVR 플래그 정보는 현재 블록에 DMVR을 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우(즉, 현재 블록의 높이가 4 이하인 경우), DMVR 플래그 정보는 현재 블록에 DMVR을 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다. 일례로, 현재 블록의 높이x너비가 4x8인 경우, DMVR 플래그 정보는 현재 블록에 DMVR을 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, DMVR의 적용 조건은 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드(CIIP 모드)가 적용되지 않는 경우인 조건을 포함할 수 있다. 이때, 인코딩 장치는 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드가 적용되지 않는 경우(예: ciip_flag가 0인 경우)를 만족하면, 현재 블록에 대해 DMVR를 적용하는 것으로 DMVR 플래그 정보를 유도할 수 있다. 예컨대, ciip_flag가 0인 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. ciip_flag가 1인 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, DMVR의 적용 조건은 L0 루마 가중 예측 플래그 정보 및 L1 루마 가중 예측 플래그 정보의 값이 모두 0인 경우 조건을 포함할 수 있다. 이때, 인코딩 장치는 L0 루마 가중 예측 플래그 정보(예: luma_weight_l0_flag) 및 L1 루마 가중 예측 플래그 정보(예: luma_weight_l1_flag)의 값이 모두 0인 경우를 만족하면, 현재 블록에 대해 DMVR를 적용하는 것으로 DMVR 플래그 정보를 유도할 수 있다. 예컨대, luma_weight_l0_flag 및 luma_weight_l1_flag가 모두 0인 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, DMVR의 적용 조건은 현재 블록의 쌍예측 가중치 인덱스(bi-prediction weight index) 정보의 값이 0인 경우 조건을 포함할 수 있다. 이때, 인코딩 장치는 쌍예측 가중치 인덱스 정보(예: GbiIdx)의 값이 0인 경우를 만족하면, 현재 블록에 대해 DMVR를 적용하는 것으로 DMVR 플래그 정보를 유도할 수 있다. 예컨대, GbiIdx가 0인 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다. 여기서, 쌍예측 가중치 인덱스 정보(예: GbiIdx)의 값이 0인 경우는 L0 예측 및 L1 예측에 서로 다른 가중치를 적용하지 않는 디폴트인 경우일 수 있다. 일례로, 상기 표 3에 나타난 바와 같이, 쌍예측 가중치 인덱스 정보의 값이 0인 경우, L0 예측 및 L1 예측에 각각 1/2 가중치를 적용하는 경우일 수 있다.
또한, 실시예에 따라, DMVR의 적용 조건은 DMVR 기반 인터 쌍예측(inter bi-prediction)이 가용한(enable) 경우인 조건, 현재 블록에 L0 참조 픽처 및 L1 참조 픽처를 기반으로 수행되는 쌍예측(bi-prediction)이 적용되는 경우인 조건, 현재 픽처를 기준으로 L0 참조 픽처와의 거리와 L1 참조 픽처와의 거리가 서로 동일한 경우인 조건, 현재 블록에 머지 모드가 적용되는 경우인 조건, 현재 블록에 MMVD(merge mode with motion vector difference) 모드가 적용되지 않는 경우인 조건 등을 포함할 수 있다.
인코딩 장치는 상술한 DMVR의 적용 조건들 중 적어도 하나를 포함할 수 있으며, 이러한 DMVR의 적용 조건들을 기반으로 DMVR 플래그 정보를 유도할 수 있다. 이때, DMVR 적용 조건으로서 하나 이상의 조건을 포함하는 경우, 인코딩 장치는 DMVR의 적용 조건을 모두 만족하는 경우 DMVR 플래그 정보의 값을 true 또는 1로 유도할 수 있고, 그렇지 않은 경우 DMVR 플래그 정보의 값을 flase 또는 0으로 유도할 수 있다.
여기서, DMVR 플래그 정보를 유도함에 있어, 상기 나열된 DMVR 적용 조건들은 하나의 예시일 뿐이며, 전술한 표 1 내지 표 41의 조건들을 다양하게 조합하여 사용할 수 있다.
DMVR 플래그 정보가 현재 블록에 대해 DMVR을 적용하는 것으로 지시하는 경우(예컨대, DMVR 플래그 정보가 true 또는 1 값으로 유도된 경우), 인코딩 장치는 현재 블록에 대해 DMVR을 적용하여, 리파인된 L0 움직임 벡터 및 리파인된 L1 움직임 벡터를 도출할 수 있다.
일 실시예로, 인코딩 장치는 L0 움직임 벡터를 기반으로 도출되는 L0 참조 픽처 내 참조 샘플들(즉, L0 예측 샘플들)과, L1 움직임 벡터를 기반으로 도출되는 L1 참조 픽처 내 참조 샘플들(즉, L1 예측 샘플들)을 기반으로 최소 SAD(Sum of Absolute Differences)를 계산할 수 있다. 그리고, 인코딩 장치는 최소 SAD에 대응하는 샘플 위치를 기반으로, L0 움직임 벡터에 대한 리파인된 L0 움직임 벡터 및 L1 움직임 벡터에 대한 리파인된 L1 움직임 벡터를 도출할 수 있다.
즉, 리파인된 L0 움직임 벡터는 L0 참조 픽처에서 최소 SAD에 대응하는 샘플 위치를 가리키는 움직임 벡터일 수 있고, 리파인된 L1 움직임 벡터는 L1 참조 픽처에서 최소 SAD에 대응하는 샘플 위치를 가리키는 움직임 벡터일 수 있다. DMVR을 적용하여 리파인된 움직임 벡터를 도출하는 과정은 도 4 및 도 5에서 상세히 설명한바 있으므로, 여기서는 설명을 생략하도록 한다.
상술한 바와 같이, 현재 블록에 대해 DMVR을 적용한 경우, 인코딩 장치는 리파인된 L0 움직임 벡터 및 리파인된 L1 움직임 벡터를 기반으로 예측 샘플들을 도출할 수 있다. 즉, 단계 S1010에서, L0 예측 샘플들은 리파인된 L0 움직임 벡터를 기반으로 도출될 수 있고, L1 예측 샘플들은 리파인된 L1 움직임 벡터를 기반으로 도출될 수 있다. 이에, 단계 S1030에서는 리파인된 L0 움직임 벡터를 기반으로 도출된 L0 예측 샘플들 및 L1 움직임 벡터를 기반으로 도출된 L1 예측 샘플들을 이용하여 최종적으로 리파인된 예측 샘플들이 생성될 수 있다.
인코딩 장치는 예측 샘플들을 기반으로 현재 블록에 대한 레지듀얼 샘플들을 도출하고(S1040), 레지듀얼 샘플들에 관한 정보를 포함하는 영상 정보를 인코딩할 수 있다(S1050).
즉, 인코딩 장치는 현재 블록에 대한 원본 샘플들과 현재 블록의 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출할 수 있다. 그리고, 인코딩 장치는 레지듀얼 샘플들에 대한 정보를 생성할 수 있다. 여기서, 레지듀얼 샘플들에 대한 정보는, 레지듀얼 샘플들에 변환 및 양자화를 수행하여 도출된 양자화된 변환 계수들의 값 정보, 위치 정보, 변환 기법, 변환 커널, 양자화 파라미터 등의 정보를 포함할 수 있다.
인코딩 장치는 레지듀얼 샘플들에 관한 정보를 인코딩하여 비트스트림으로 출력하고, 이를 네트워크 또는 저장매체를 통하여 디코딩 장치로 전송할 수 있다.
또한, 인코딩 장치는 상술한 단계 S1000 내지 S1050에서 도출된 영상 정보를 인코딩하여 비트스트림으로 출력할 수 있다. 예를 들어, 머지 플래그 정보, 머지 인덱스 정보, L0 참조 픽처 인덱스, L1 참조 픽처 인덱스, L0 루마 가중 예측 플래그 정보, L1 루마 가중 예측 플래그 정보, 쌍예측 가중치 인덱스 정보 등이 영상 정보에 포함되어 인코딩될 수 있고, 이러한 인코딩된 영상 정보는 디코딩 장치로 시그널링될 수 있다.
도 11은 본 문서의 일 실시예에 따라 디코딩 장치에 의하여 수행될 수 있는 디코딩 방법을 개략적으로 나타내는 흐름도이다.
도 11에 개시된 방법은 도 3에서 개시된 디코딩 장치(300)에 의하여 수행될 수 있다. 구체적으로, 도 11의 단계 S1100 ~ S1130은 도 3에 개시된 예측부(330) 및 인터 예측부(332)에 의하여 수행될 수 있고, 도 11의 단계 S1140은 도 3에 개시된 가산부(340)에 의하여 수행될 수 있다. 또한, 도 11에서 개시된 방법은 본 문서에서 상술한 실시예들을 포함할 수 있다. 따라서, 도 11에서는 상술한 실시예들과 중복되는 내용에 관해서 구체적인 설명을 생략하거나 간단히 하기로 한다.
도 11을 참조하면, 디코딩 장치는 현재 블록의 L0 움직임 벡터 및 L1 움직임 벡터를 도출할 수 있다(S1100).
일 실시예로, 디코딩 장치는 인코딩 장치로부터 시그널링되는 예측 정보를 기반으로 현재 블록에 대한 예측 모드를 결정할 수 있다. 그리고, 디코딩 장치는 예측 모드를 기반으로 현재 블록의 움직임 정보(움직임 벡터, 참조 픽처 인덱스 등)를 도출할 수 있다. 여기서 예측 모드는 스킵 모드, 머지 모드, (A)MVP 모드 등을 포함할 수 있다.
예를 들어, 디코딩 장치는 현재 블록에 머지 모드가 적용되는 경우, 현재 블록의 주변 블록들을 기반으로 머지 후보 리스트를 구성하고, 머지 후보 리스트에 포함된 머지 후보들 중 하나의 머지 후보를 선택할 수 있다. 이때, 상술한 머지 인덱스 정보(merge index)를 기반으로 머지 후보 리스트에서 하나의 머지 후보가 선택될 수 있다. 디코딩 장치는 선택된 머지 후보의 움직임 정보를 이용하여 현재 블록의 움직임 정보를 도출할 수 있다. 즉, 머지 후보 리스트에 포함된 머지 후보들 중 머지 인덱스에 의해 선택된 머지 후보의 움직임 정보가 현재 블록의 움직임 정보로 이용될 수 있다.
여기서, 움직임 정보는 움직임 벡터, 참조 픽처 인덱스 등의 정보를 포함할 수 있고, 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등)에 따라 L0 움직임 정보 및/또는 L1 움직임 정보를 포함할 수 있다. 현재 블록에 쌍예측(Bi 예측)이 적용되는 경우, 움직임 정보는 L0 방향의 움직임 벡터(L0 움직임 벡터) 및 L1 방향의 움직임 벡터(L1 움직임 벡터)를 포함할 수 있다. 또한, 움직임 정보는 L0 참조 픽처 인덱스 및 L0 참조 픽처 리스트 내에서 L0 참조 픽처 인덱스에 의해 지시되는 L0 참조 픽처와, L1 참조 픽처 인덱스 및 L1 참조 픽처 리스트 내에서 L1 참조 픽처 인덱스에 의해 지시되는 L1 참조 픽처를 포함할 수 있다.
즉, 디코딩 장치는 머지 모드가 적용될 경우 현재 블록의 주변 블록들 중 머지 인덱스 정보에 의해 지시되는 주변 블록의 L0 움직임 벡터 및 L1 움직임 벡터를 도출하고, 이를 현재 블록의 L0 및 L1 움직임 벡터로 사용할 수 있다.
디코딩 장치는 L0 움직임 벡터를 기반으로 현재 블록의 L0 예측 샘플들을 도출하고, L1 움직임 벡터를 기반으로 현재 블록의 L1 예측 샘플들을 도출할 수 있다(S1110).
여기서, L0 예측 샘플들은 L0 참조 픽처에서 L0 움직임 벡터에 의해 지시되는 참조 샘플들을 기반으로 도출되고, L1 예측 샘플들은 L1 참조 픽처에서 L1 움직임 벡터에 의해 지시되는 참조 샘플들을 기반으로 도출될 수 있다. 상술한 바와 같이, L0 참조 픽처는 L0 참조 픽처 리스트 내에 포함된 참조 픽처들 중에서 L0 참조 픽처 인덱스에 의해 지시되는 참조 픽처이고, L1 참조 픽처는 L1 참조 픽처 리스트 내에 포함된 참조 픽처들 중에서 L1 참조 픽처 인덱스에 의해 지시되는 참조 픽처일 수 있다.
디코딩 장치는 현재 블록에 대해 BDOF를 적용할지 여부를 지시하는 BDOF 플래그 정보를 유도할 수 있다(S1120).
디코딩 장치는 코딩 효율, 복잡도, 예측 성능 등을 고려하여 현재 블록에 대해 BDOF를 적용할지 여부를 결정할 수 있다. 즉, 디코딩 장치는 현재 블록에 대해 BDOF의 적용 조건을 만족하는지 여부를 기반으로, 현재 블록에 BDOF를 적용할 수 있다. 여기서, BDOF의 적용 조건은 상기 표 1 내지 표 41에서 설명한 다양한 적용 조건들 중 일부(또는 전부) 혹은 특정 조합들로 구성될 수 있다. 또한, 디코딩 장치는 BDOF의 적용 조건을 만족하는지 여부에 따라 BDOF 플래그 정보를 유도할 수 있다. BDOF 플래그 정보는 현재 블록에 대해 BDOF를 적용할지 여부를 나타내는 정보(예컨대, 상술한 bdofFlag)일 수 있다.
일 실시예로, BDOF의 적용 조건은 현재 블록의 높이(Height)가 4보다 큰 경우인 조건을 포함할 수 있다. 이 경우, 디코딩 장치는 현재 블록의 높이가 4보다 큰 경우를 만족하면, 현재 블록에 대해 BDOF를 적용하는 것으로 BDOF 플래그 정보를 유도할 수 있다. 예컨대, 현재 블록의 높이가 4보다 큰 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우(즉, 현재 블록의 높이가 4 이하인 경우), BDOF 플래그 정보는 현재 블록에 BDOF를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다. 일례로, 현재 블록의 높이x너비가 4x8인 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, BDOF의 적용 조건은 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드(CIIP 모드)가 적용되지 않는 경우인 조건을 포함할 수 있다. 이때, 디코딩 장치는 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드가 적용되지 않는 경우(예: ciip_flag가 0인 경우)를 만족하면, 현재 블록에 대해 BDOF를 적용하는 것으로 BDOF 플래그 정보를 유도할 수 있다. 예컨대, ciip_flag가 0인 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. ciip_flag가 1인 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, BDOF의 적용 조건은 현재 픽처와 L0 참조 픽처 간의 제1 POC(picture order count) 차이와 현재 픽처와 L1 참조 픽처 간의 제2 POC 차이가 동일한 경우인 조건을 포함할 수 있다. 이때, 디코딩 장치는 제1 POC 차이(예: DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0]))와 제2 POC 차이(예: DiffPicOrderCnt(currPic, RefPicList1 [ refIdxL1 ] ))가 동일한 경우를 만족하면, 현재 블록에 대해 BDOF를 적용하는 것으로 BDOF 플래그 정보를 유도할 수 있다. 예컨대, DiffPicOrderCnt(currPic, RefPicList0 [refIdxL0]) - DiffPicOrderCnt(currPic, RefPicList1 [ refIdxL1 ] )가 0인 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, BDOF의 적용 조건은 L0 루마 가중 예측 플래그 정보 및 L1 루마 가중 예측 플래그 정보의 값이 모두 0인 경우 조건을 포함할 수 있다. 이때, 디코딩 장치는 L0 루마 가중 예측 플래그 정보(예: luma_weight_l0_flag) 및 L1 루마 가중 예측 플래그 정보(예: luma_weight_l1_flag)의 값이 모두 0인 경우를 만족하면, 현재 블록에 대해 BDOF를 적용하는 것으로 BDOF 플래그 정보를 유도할 수 있다. 예컨대, luma_weight_l0_flag 및 luma_weight_l1_flag가 모두 0인 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우, BDOF 플래그 정보는 현재 블록에 BDOF를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
여기서, L0 루마 가중 예측 플래그 정보는 현재 블록의 루마 성분에 대한 L0 예측의 가중 팩터(weight factor)가 존재하는지 여부를 지시하는 정보이고, L1 루마 가중 예측 플래그 정보는 현재 블록의 루마 성분에 대한 L1 예측의 가중 팩터가 존재하는지 여부를 지시하는 정보일 수 있다. 예를 들어, L0 루마 가중 예측 플래그 정보의 값이 0인 경우는 L0 예측의 루마 성분에 대해 가중 팩터가 존재하지 않음을 나타내고, L0 루마 가중 예측 플래그 정보의 값이 1인 경우는 L0 예측의 루마 성분에 대해 가중 팩터가 존재함을 나타낼 수 있다. 또한, L1 루마 가중 예측 플래그 정보의 값이 0인 경우는 L1 예측의 루마 성분에 대해 가중 팩터가 존재하지 않음을 나타내고, L1 루마 가중 예측 플래그 정보의 값이 1인 경우는 L1 예측의 루마 성분에 대해 가중 팩터가 존재함을 나타낼 수 있다.
또한, 실시예에 따라, BDOF의 적용 조건은 BDOF 기반 인터 예측이 가용한(enable) 경우인 조건, 현재 블록에 L0 참조 픽처 및 L1 참조 픽처를 기반으로 수행되는 쌍예측(bi-prediction)이 적용되는 경우인 조건, 현재 블록의 쌍예측 가중치 인덱스(bi-prediction weight index) 정보의 값이 0인 조건, 현재 블록에 어파인 모드가 적용되지 않는 경우인 조건, 현재 블록에 서브블록 기반 머지 모드가 적용되지 않는 경우인 조건, 현재 블록이 루마 성분인 조건 등을 포함할 수 있다.
디코딩 장치는 상술한 BDOF의 적용 조건들 중 적어도 하나를 포함할 수 있으며, 이러한 BDOF의 적용 조건들을 기반으로 BDOF 플래그 정보를 유도할 수 있다. 이때, BDOF 적용 조건으로서 하나 이상의 조건을 포함하는 경우, 인코딩 장치는 BDOF의 적용 조건을 모두 만족하는 경우 BDOF 플래그 정보의 값을 true 또는 1로 유도할 수 있고, 그렇지 않은 경우 BDOF 플래그 정보의 값을 flase 또는 0으로 유도할 수 있다.
여기서, BDOF 플래그 정보를 유도함에 있어, 상기 나열된 BDOF 적용 조건들은 하나의 예시일 뿐이며, 전술한 표 1 내지 표 41의 조건들을 다양하게 조합하여 사용할 수 있다.
BDOF 플래그 정보가 현재 블록에 BDOF를 적용하는 것으로 지시하는 경우(예컨대, BDOF 플래그 정보가 true 또는 1 값으로 유도된 경우), 디코딩 장치는 현재 블록에 대해 BDOF를 적용하여, L0 예측 샘플들 및 L1 예측 샘플들을 기반으로 현재 블록에 대한 예측 샘플들을 도출할 수 있다(S1130).
일 실시예로, 디코딩 장치는 L0 예측 샘플들에 대한 제1 그라디언트(gradient) 및 L1 예측 샘플들에 대한 제2 그라디언트(gradient)를 계산할 수 있다. 그리고, 디코딩 장치는 L0 예측 샘플들, L1 예측 샘플들, 제1 그라디언트, 제2 그라디언트를 기반으로 현재 블록에 대한 예측 샘플들을 도출할 수 있다. 일례로, BDOF를 적용하여 예측 샘플들을 도출하는 과정은 상술한 수학식 1 내지 수학식 6과 같은 계산을 이용할 수 있다.
또한, 실시예에 따라, 디코딩 장치는 코딩 효율, 복잡도, 예측 성능 등을 고려하여 현재 블록에 대해 DMVR을 적용할지 여부를 결정할 수 있다. 즉, 디코딩 장치는 현재 블록에 대해 DMVR의 적용 조건을 만족하는지 여부를 기반으로, 현재 블록에 DMVR을 적용할 수 있다. 여기서, DMVR의 적용 조건은 상기 표 1 내지 표 41에서 설명한 다양한 적용 조건들 중 일부(또는 전부) 혹은 특정 조합들로 구성될 수 있다. 또한, 디코딩 장치는 DMVR의 적용 조건을 만족하는지 여부에 따라 DMVR 플래그 정보를 유도할 수 있다. DMVR 플래그 정보는 현재 블록에 대해 DMVR을 적용할지 여부를 나타내는 정보(예컨대, 상술한 dmvrFlag)일 수 있다.
일 실시예로, DMVR의 적용 조건은 현재 블록의 높이(Height)가 4보다 큰 경우인 조건을 포함할 수 있다. 이 경우, 디코딩 장치는 현재 블록의 높이가 4보다 큰 경우를 만족하면, 현재 블록에 대해 DMVR을 적용하는 것으로 DMVR 플래그 정보를 유도할 수 있다. 예컨대, 현재 블록의 높이가 4보다 큰 경우, DMVR 플래그 정보는 현재 블록에 DMVR을 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우(즉, 현재 블록의 높이가 4 이하인 경우), DMVR 플래그 정보는 현재 블록에 DMVR을 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다. 일례로, 현재 블록의 높이x너비가 4x8인 경우, DMVR 플래그 정보는 현재 블록에 DMVR을 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, DMVR의 적용 조건은 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드(CIIP 모드)가 적용되지 않는 경우인 조건을 포함할 수 있다. 이때, 디코딩 장치는 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드가 적용되지 않는 경우(예: ciip_flag가 0인 경우)를 만족하면, 현재 블록에 대해 DMVR를 적용하는 것으로 DMVR 플래그 정보를 유도할 수 있다. 예컨대, ciip_flag가 0인 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. ciip_flag가 1인 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, DMVR의 적용 조건은 L0 루마 가중 예측 플래그 정보 및 L1 루마 가중 예측 플래그 정보의 값이 모두 0인 경우 조건을 포함할 수 있다. 이때, 디코딩 장치는 L0 루마 가중 예측 플래그 정보(예: luma_weight_l0_flag) 및 L1 루마 가중 예측 플래그 정보(예: luma_weight_l1_flag)의 값이 모두 0인 경우를 만족하면, 현재 블록에 대해 DMVR를 적용하는 것으로 DMVR 플래그 정보를 유도할 수 있다. 예컨대, luma_weight_l0_flag 및 luma_weight_l1_flag가 모두 0인 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다.
또한, 실시예에 따라, DMVR의 적용 조건은 현재 블록의 쌍예측 가중치 인덱스(bi-prediction weight index) 정보의 값이 0인 경우 조건을 포함할 수 있다. 이때, 디코딩 장치는 쌍예측 가중치 인덱스 정보(예: GbiIdx)의 값이 0인 경우를 만족하면, 현재 블록에 대해 DMVR를 적용하는 것으로 DMVR 플래그 정보를 유도할 수 있다. 예컨대, GbiIdx가 0인 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하는 것으로 지시하는 값(예: 1 또는 true)으로 유도될 수 있다. 그렇지 않은 경우, DMVR 플래그 정보는 현재 블록에 DMVR를 적용하지 않는 것으로 지시하는 값(예: 0 또는 false)으로 유도될 수 있다. 여기서, 쌍예측 가중치 인덱스 정보(예: GbiIdx)의 값이 0인 경우는 L0 예측 및 L1 예측에 서로 다른 가중치를 적용하지 않는 디폴트인 경우일 수 있다. 일례로, 상기 표 3에 나타난 바와 같이, 쌍예측 가중치 인덱스 정보의 값이 0인 경우, L0 예측 및 L1 예측에 각각 1/2 가중치를 적용하는 경우일 수 있다.
또한, 실시예에 따라, DMVR의 적용 조건은 DMVR 기반 인터 쌍예측(inter bi-prediction)이 가용한(enable) 경우인 조건, 현재 블록에 L0 참조 픽처 및 L1 참조 픽처를 기반으로 수행되는 쌍예측(bi-prediction)이 적용되는 경우인 조건, 현재 픽처를 기준으로 L0 참조 픽처와의 거리와 L1 참조 픽처와의 거리가 서로 동일한 경우인 조건, 현재 블록에 머지 모드가 적용되는 경우인 조건, 현재 블록에 MMVD(merge mode with motion vector difference) 모드가 적용되지 않는 경우인 조건 등을 포함할 수 있다.
디코딩 장치는 상술한 DMVR의 적용 조건들 중 적어도 하나를 포함할 수 있으며, 이러한 DMVR의 적용 조건들을 기반으로 DMVR 플래그 정보를 유도할 수 있다. 이때, DMVR 적용 조건으로서 하나 이상의 조건을 포함하는 경우, 디코딩 장치는 DMVR의 적용 조건을 모두 만족하는 경우 DMVR 플래그 정보의 값을 true 또는 1로 유도할 수 있고, 그렇지 않은 경우 DMVR 플래그 정보의 값을 flase 또는 0으로 유도할 수 있다.
여기서, DMVR 플래그 정보를 유도함에 있어, 상기 나열된 DMVR 적용 조건들은 하나의 예시일 뿐이며, 전술한 표 1 내지 표 41의 조건들을 다양하게 조합하여 사용할 수 있다.
DMVR 플래그 정보가 현재 블록에 대해 DMVR을 적용하는 것으로 지시하는 경우(예컨대, DMVR 플래그 정보가 true 또는 1 값으로 유도된 경우), 디코딩 장치는 현재 블록에 대해 DMVR을 적용하여, 리파인된 L0 움직임 벡터 및 리파인된 L1 움직임 벡터를 도출할 수 있다.
일 실시예로, 디코딩 장치는 L0 움직임 벡터를 기반으로 도출되는 L0 참조 픽처 내 참조 샘플들(즉, L0 예측 샘플들)과, L1 움직임 벡터를 기반으로 도출되는 L1 참조 픽처 내 참조 샘플들(즉, L1 예측 샘플들)을 기반으로 최소 SAD(Sum of Absolute Differences)를 계산할 수 있다. 그리고, 디코딩 장치는 최소 SAD에 대응하는 샘플 위치를 기반으로, L0 움직임 벡터에 대한 리파인된 L0 움직임 벡터 및 L1 움직임 벡터에 대한 리파인된 L1 움직임 벡터를 도출할 수 있다.
즉, 리파인된 L0 움직임 벡터는 L0 참조 픽처에서 최소 SAD에 대응하는 샘플 위치를 가리키는 움직임 벡터일 수 있고, 리파인된 L1 움직임 벡터는 L1 참조 픽처에서 최소 SAD에 대응하는 샘플 위치를 가리키는 움직임 벡터일 수 있다. DMVR을 적용하여 리파인된 움직임 벡터를 도출하는 과정은 도 4 및 도 5에서 상세히 설명한바 있으므로, 여기서는 설명을 생략하도록 한다.
상술한 바와 같이, 현재 블록에 대해 DMVR을 적용한 경우, 디코딩 장치는 리파인된 L0 움직임 벡터 및 리파인된 L1 움직임 벡터를 기반으로 예측 샘플들을 도출할 수 있다. 즉, 단계 S1010에서, L0 예측 샘플들은 리파인된 L0 움직임 벡터를 기반으로 도출될 수 있고, L1 예측 샘플들은 리파인된 L1 움직임 벡터를 기반으로 도출될 수 있다.
디코딩 장치는 예측 샘플들을 기반으로 현재 블록에 대한 복원 샘플들을 생성할 수 있다(S1140).
일 실시예로, 디코딩 장치는 예측 모드에 따라 예측 샘플들을 바로 복원 샘플들로 이용할 수도 있고, 또는 상기 예측 샘플들에 레지듀얼 샘플들을 더하여 복원 샘플들을 생성할 수도 있다.
디코딩 장치는 현재 블록에 대한 레지듀얼 샘플이 존재하는 경우, 현재 블록에 대한 레지듀얼에 관한 정보를 수신할 수 있다. 레지듀얼에 관한 정보는 레지듀얼 샘플들에 관한 변환 계수를 포함할 수 있다. 디코딩 장치는 레지듀얼 정보를 기반으로 현재 블록에 대한 레지듀얼 샘플들(또는 레지듀얼 샘플 어레이)을 도출할 수 있다. 디코딩 장치는 예측 샘플들과 레지듀얼 샘플들을 기반으로 복원 샘플들을 생성할 수 있고, 상기 복원 샘플들을 기반으로 복원 블록 또는 복원 픽처를 도출할 수 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 문서의 실시예들은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 문서의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 본 문서에 따른 방법은 소프트웨어 형태로 구현될 수 있으며, 본 문서에 따른 인코딩 장치 및/또는 디코딩 장치는 예를 들어 TV, 컴퓨터, 스마트폰, 셋톱박스, 디스플레이 장치 등의 영상 처리를 수행하는 장치에 포함될 수 있다.
본 문서에서 실시예들이 소프트웨어로 구현될 때, 상술한 방법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 즉, 본 문서에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 이 경우 구현을 위한 정보(ex. information on instructions) 또는 알고리즘이 디지털 저장 매체에 저장될 수 있다.
또한, 본 문서가 적용되는 디코딩 장치 및 인코딩 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, VR(virtual reality) 장치, AR(argumente reality) 장치, 화상 전화 비디오 장치, 운송 수단 단말 (ex. 차량(자율주행차량 포함) 단말, 비행기 단말, 선박 단말 등) 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recoder) 등을 포함할 수 있다.
또한, 본 문서가 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 문서에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다.
또한, 본 문서의 실시예는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 문서의 실시예에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독가능한 캐리어 상에 저장될 수 있다.
도 12는 본 문서에서 개시된 실시예들이 적용될 수 있는 컨텐츠 스트리밍 시스템의 예를 나타낸다.
도 12를 참조하면, 본 문서의 실시예들에 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다.
상기 비트스트림은 본 문서의 실시예들에 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하게 되는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다.
상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.
한편, 본 문서의 실시예가 적용되는 디코딩 장치 및 인코딩 장치는 디지털 기기(digital device)에 포함될 수 있다. "디지털 기기(digital device)"라 함은 예를 들어, 데이터, 컨텐트, 서비스 등을 송신, 수신, 처리 및 출력 중 적어도 하나를 수행 가능한 모든 디지털 기기를 포함한다. 여기서, 디지털 기기가 데이터, 컨텐트, 서비스 등을 처리하는 것은, 데이터, 컨텐트, 서비스 등을 인코딩 및/또는 디코딩하는 동작을 포함한다. 이러한 디지털 기기는, 유/무선 네트워크(wire/wireless network)를 통하여 다른 디지털 기기, 외부 서버(external server) 등과 페어링 또는 연결(pairing or connecting)(이하 '페어링')되어 데이터를 송수신하며, 필요에 따라 변환(converting)한다.
디지털 기기는 예를 들어, 네트워크 TV(network TV), HBBTV(Hybrid Broadcast Broadband TV), 스마트 TV(Smart TV), IPTV(internet protocol television), PC(Personal Computer) 등과 같은 고정형 기기(standing device)와, PDA(Personal Digital Assistant), 스마트 폰(Smart Phone), 태블릿 PC(Tablet PC), 노트북, VR/AR 기기 등과 같은 모바일 기기(mobile device or handheld device)를 모두 포함한다. 또한, 상기 디지털 기기는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, VR(virtual reality) 장치, AR(argumente reality) 장치, 화상 전화 비디오 장치, 운송 수단 단말 (ex. 차량(자율주행차량 포함) 단말, 비행기 단말, 선박 단말 등) 및 의료용 비디오 장치 등을 포함할 수 있다.
한편, 본 문서에서 기술되는 "유/무선 네트워크"라 함은, 디지털 기기들 또는 디지털 기기와 외부 서버 사이에서 상호 연결 또는/및 데이터 송수신을 위해 다양한 통신 규격 내지 프로토콜을 지원하는 통신 네트워크를 통칭한다. 이러한 유/무선 네트워크는 규격에 의해 현재 또는 향후 지원될 통신 네트워크와 그를 위한 통신 프로토콜을 모두 포함할 수 있는바 예컨대, USB(Universal Serial Bus), CVBS(Composite Video Banking Sync), 컴포넌트, S-비디오(아날로그), DVI(Digital Visual Interface), HDMI(High Definition Multimedia Interface), RGB, D-SUB와 같은 유선 연결을 위한 통신 규격 내지 프로토콜과, 블루투스(Bluetooth), RFID(Radio Frequency Identification), 적외선 통신(IrDA, infrared Data Association), UWB(Ultra Wideband), 지그비(ZigBee), DLNA(Digital Living Network Alliance), WLAN(Wireless LAN)(Wi-Fi), Wibro(Wireless broadband), Wimax(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access), LTE(Long Term Evolution), Wi-Fi 다이렉트(Direct)와 같은 무선 연결을 위한 통신 규격에 의하여 형성될 수 있다.
이하 본 문서에서 단지 디지털 기기로 명명하는 경우에는 문맥에 따라 고정형 기기 또는 모바일 기기를 의미하거나 양자를 모두 포함하는 의미일 수도 있다.
한편, 디지털 기기는 예컨대, 방송 수신 기능, 컴퓨터 기능 내지 지원, 적어도 하나의 외부 입력(external input)을 지원하는 지능형 기기로서, 상술한 유/무선 네트워크를 통해 이메일(e-mail), 웹 브라우징(web browsing), 뱅킹(banking), 게임(game), 애플리케이션(application) 등을 지원할 수 있다. 더불어, 상기 디지털 기기는, 수기 방식의 입력 장치, 터치 스크린(touch screen), 공간 리모콘 등 적어도 하나의 입력 또는 제어 수단(이하 입력수단)을 지원하기 위한 인터페이스(interface)를 구비할 수 있다. 디지털 기기는, 표준화된 범용 OS(operating system)를 이용할 수 있다. 예를 들어, 디지털 기기는 범용의 OS 커널(kernel) 상에 다양한 애플리케이션(application)을 추가(adding), 삭제(deleting), 수정(amending), 업데이트(updating) 등을 할 수 있으며, 그를 통해 더욱 사용자 친화적인(user-friendly) 환경을 구성하여 제공할 수 있다.
한편, 본 문서에서 기술되는 외부 입력은, 외부 입력 기기 즉, 상술한 디지털 기기와 유/무선으로 연결되어 그를 통해 관련 데이터를 송/수신하여 처리 가능한 모든 입력 수단 내지 디지털 기기를 포함한다. 여기서, 상기 외부 입력은 예를 들어, HDMI(High Definition Multimedia Interface), 플레이 스테이션(play station)이나 엑스 박스(X-Box)와 같은 게임 기기, 스마트 폰, 태블릿 PC, 프린터기, 스마트 TV와 같은 디지털 기기들을 모두 포함한다.
또한, 본 문서에서 기술되는 "서버(server)"라 함은, 클라이언트(client) 즉, 상술한 디지털 기기로 데이터를 공급하는 모든 디지털 기기 내지 시스템을 포함하는 의미로, 프로세서(processor)로 불리기도 한다. 이러한 서버로는 예컨대, 웹 페이지 내지 웹 컨텐트를 제공하는 포털 서버(portal server), 광고 데이터(advertising data)를 제공하는 광고 서버(advertising server), 컨텐트를 제공하는 컨텐트 서버(content server), SNS(Social Network Service) 서비스를 제공하는 SNS 서버(SNS server), 제조업체에서 제공하는 서비스 서버(service server or manufacturing server) 등이 포함될 수 있다.
그 밖에, 본 명세서 기술되는 "채널(channel)"이라 함은, 데이터를 송수신하기 위한 경로(path), 수단(means) 등을 의미하는 것으로, 방송 채널(broadcasting channel)을 예로 들 수 있다. 여기서, 방송 채널은 디지털 방송의 활성화에 따라 피지컬 채널(physical channel), 가상 채널(virtual channel), 논리 채널(logical channel)등의 용어로 표현된다. 방송 채널은 방송망이라 불릴 수 있다. 이와 같이, 방송 채널은 방송국에서 제공하는 방송 컨텐트를 제공 또는 수신기에서 접근하기 위한 채널을 말하는 것으로, 상기 방송 컨텐트는 주로 실시간 방송(real-time broadcasting)에 기초하는바 라이브 채널(live channel)이라고도 한다. 다만, 최근에는 방송을 위한 매체(medium)가 더욱 다양화되어 실시간 방송 이외에 비실시간(non-real time) 방송도 활성화되고 있어 라이브 채널은 단지 실시간 방송뿐만 아니라 경우에 따라서는 비실시간 방송을 포함한 방송 채널 전체를 의미하는 용어로 이해될 수도 있다.
본 문서에서는 상술한 방송 채널 이외에 채널과 관련하여 "임의 채널(arbitrary channel)"를 더 정의한다. 상기 임의 채널은, 방송 채널과 함께 EPG(Electronic Program Guide)와 같은 서비스 가이드(service guide)와 함께 제공될 수도 있고, 임의 채널만으로 서비스 가이드, GUI(Graphic User Interface) 또는 OSD 화면(On-Screen Display screen)를 구성/제공될 수도 있다.
한편, 송수신기 사이에 미리 약속된 채널 넘버를 가지는 방송 채널과 달리, 임의 채널은 수신기에서 임의로 할당하는 채널로서 상기 방송 채널을 표현하기 위한 채널 넘버와는 기본적으로 중복되지 않는 채널 넘버가 할당된다. 예컨대, 수신기는 특정 방송 채널을 튜닝하면, 튜닝된 채널을 통하여 방송 컨텐트와 그를 위한 시그널링 정보(signaling information)를 전송하는 방송 신호를 수신한다. 여기서, 수신기는 상기 시그널링 정보로부터 채널 정보를 파싱(parsing)하고, 파싱된 채널 정보에 기초하여 채널 브라우저(channel browser), EPG 등을 구성하여 사용자에게 제공한다. 사용자는 입력 수단을 통해 채널 전환 요청을 하면, 수신기는 그에 대응하는 방식이다.
이와 같이, 방송 채널은 송수신단 사이에 미리 약속된 내용이므로, 임의 채널을 방송 채널과 중복 할당하는 경우에는 사용자의 혼동을 초래하거나 혼동 가능성이 존재하므로, 전술한 바와 같이 중복 할당하지 않는 것이 바람직하다. 한편, 상기와 같이 임의 채널 넘버를 방송 채널 넘버와 중복 할당하지 않더라도 사용자의 채널 서핑 과정에서 여전히 혼동 우려가 있는바, 이를 고려하여 임의 채널 넘버를 할당하는 것이 요구된다. 왜냐하면, 본 문서의 실시예에 따른 임의 채널 역시, 종래 방송 채널과 동일하게 입력 수단을 통한 사용자의 채널 전환 요청에 따라 동일한 방식으로 대응하여 방송 채널처럼 접근되도록 구현할 수 있기 때문이다. 따라서, 임의 채널 넘버는, 사용자의 임의 채널 접근 편의와 방송 채널 넘버와의 구분 내지 식별 편의를 위하여, 방송 채널과 같이 숫자 형태가 아닌 임의 채널-1, 임의 채널-2 등과 같이 문자가 병기된 형태로 정의하고 표시할 수 있다. 한편, 이 경우, 비록 임의 채널 넘버의 표시는 임의 채널-1과 같이 문자가 병기된 형태이나 수신기 내부적으로는 상기 방송 채널의 넘버와 같이 숫자 형태로 인식하고 구현될 수 있다. 그 밖에, 임의 채널 넘버는, 방송 채널과 같이 숫자 형태로 제공될 수도 있으며, 동영상 채널-1, 타이틀-1, 비디오-1 등과 같이 방송 채널과 구분 가능한 다양한 방식으로 채널 넘버를 정의하고 표시할 수도 있다.
디지털 기기는, 웹 서비스(web service)를 위해 웹 브라우저(web browser)를 실행하여 다양한 형태의 웹 페이지(web page)를 사용자에게 제공한다. 여기서, 상기 웹 페이지에는 동영상(video content)이 포함된 웹 페이지도 포함되는데, 본 문서의 실시예에서는 동영상을 웹 페이지로부터 별도로 또는 독립적으로 분리하여 처리한다. 그리고 상기 분리되는 동영상은, 전술한 임의 채널 넘버를 할당하고, 서비스 가이드 등을 통해 제공하고, 사용자가 서비스 가이드나 방송 채널 시청 과정에서 채널 전환 요청에 따라 출력되도록 구현할 수 있다. 그 밖에, 웹 서비스 이외에도 방송 컨텐트, 게임, 애플리케이션 등의 서비스에 대해서도, 소정 컨텐트, 이미지, 오디오, 항목 등을 상기 방송 컨텐트, 게임, 애플리케이션 자체로부터 독립적으로 분리 처리하고, 그 재생, 처리 등을 위해 임의 채널 넘버를 할당하고 상술한 바와 같이, 구현할 수 있다.
도 13은 디지털 기기를 포함한 서비스 시스템(service system)의 일 예를 개략적으로 나타낸 도면이다.
디지털 기기를 포함한 서비스 시스템은, 컨텐트 제공자(Content Provider; CP)(1310), 서비스 제공자(Service Provider; SP)(1320), 네트워크 제공자(Network Provider; NP)(1330) 및 HNED(Home Network End User)(Customer)(1340)를 포함한다. 여기서, HNED(1340)는 예를 들어, 클라이언트(1300) 즉, 디지털 기기이다. 컨텐트 제공자(1310)는, 각종 컨텐트를 제작하여 제공한다. 이러한 컨텐트 제공자(1310)로 도 13에 도시된 바와 같이, 지상파 방송 송출자(terrestrial broadcaster), 케이블 방송 사업자(cable SO (System Operator)) 또는 MSO (Multiple SO), 위성 방송 송출자(satellite broadcaster), 다양한 인터넷 방송 송출자(Internet broadcaster), 개인 컨텐트 제공자들(Private CPs) 등을 예시할 수 있다. 한편, 컨텐트 제공자(1310)는, 방송 컨텐트 외에도 다양한 애플리케이션 등을 제공한다.
서비스 제공자(1320)는, 컨텐트 제공자(1310)가 제공하는 컨텐트를 서비스 패키지화하여 HNED(1340)로 제공한다. 예를 들어, 도 13의 서비스 제공자(1320)는, 제1 지상파 방송, 제2 지상파 방송, 케이블 MSO, 위성 방송, 다양한 인터넷 방송, 애플리케이션 등을 패키지화하여 HNED(1340)에게 제공한다.
서비스 제공자(1320)는, 유니-캐스트(uni-cast) 또는 멀티-캐스트(multi-cast) 방식으로 클라이언트(1300)에 서비스를 제공한다. 한편, 서비스 제공자(1320)는 데이터를 미리 등록된 다수의 클라이언트(1300)로 한꺼번에 전송할 수 있는데, 이를 위해 IGMP(Internet Group Management Protocol) 프로토콜 등을 이용할 수 있다.
상술한 컨텐트 제공자(1310)와 서비스 제공자(1320)는, 동일한 개체(same or single entity)일 수 있다. 예를 들어, 컨텐트 제공자(1310)가 제작한 컨텐트를 서비스 패키지화하여 HNED(1340)로 제공함으로써 서비스 제공자(1320)의 기능도 함께 수행하거나 그 반대일 수도 있다.
네트워크 제공자(1330)는, 컨텐트 제공자(1310) 또는/및 서비스 제공자(1320)와 클라이언트(1300) 사이의 데이터 교환을 위한 네트워크 망을 제공한다.
클라이언트(1300)는, 홈 네트워크를 구축하여 데이터를 송수신할 수 있다.
한편, 서비스 시스템 내 컨텐트 제공자(1310) 또는/및 서비스 제공자(1320)는 전송되는 컨텐트의 보호를 위해 제한 수신(conditional access) 또는 컨텐트 보호(content protection) 수단을 이용할 수 있다. 이 경우, 클라이언트(1300)는 상기 제한 수신이나 컨텐트 보호에 대응하여 케이블카드(CableCARD)(POD: Point of Deployment), DCAS(Downloadable CAS) 등과 같은 처리 수단을 이용할 수 있다.
그 밖에, 클라이언트(1300)도 네트워크 망(또는 통신 망)을 통해, 양방향 서비스를 이용할 수 있다. 이러한 경우, 오히려 클라이언트(1300)가 컨텐트 제공자의 기능을 수행할 수도 있으며, 기존 서비스 제공자(1320)는 이를 수신하여 다시 다른 클라이언트로 전송할 수도 있다.
도 14는 디지털 기기의 일 실시예를 설명하기 위해 도시한 구성 블록도이다. 여기서, 도 14는 예를 들어, 도 13의 클라이언트(1300)에 해당할 수 있으며, 전술한 디지털 기기를 의미한다.
디지털 기기(1400)는, 네트워크 인터페이스부(Network Interface)(1401), TCP/IP 매니저(TCP/IP Manager)(1402), 서비스 전달 매니저(Service Delivery Manager)(1403), SI 디코더(1404), 역다중화부(Demux)(1405), 오디오 디코더(Audio Decoder)(1406), 비디오 디코더(Video Decoder)(1407), 디스플레이부(Display A/V and OSD Module)(1408), 서비스 제어 매니저(Service Control Manager)(1409), 서비스 디스커버리 매니저(Service Discovery Manager)(1410), SI & 메타데이터 데이터베이스(SI&Metadata DB)(1411), 메타데이터 매니저(Metadata Manager)(1412), 서비스 매니저(1413), UI 매니저(1414) 등을 포함하여 구성된다.
네트워크 인터페이스부(1401)는, 네트워크 망을 통하여 IP 패킷들(internet protocol (IP) packets)을 수신하거나 전송한다. 즉, 네트워크 인터페이스부(1401)는 네트워크 망을 통해 서비스 제공자(1320)로부터 서비스, 컨텐트 등을 수신한다.
TCP/IP 매니저(1402)는, 디지털 기기(1400)로 수신되는 IP 패킷들과 디지털 기기(1400)가 전송하는 IP 패킷들에 대하여 즉, 소스(source)와 목적지(destination) 사이의 패킷 전달에 관여한다. 그리고 TCP/IP 매니저(1402)는 수신된 패킷(들)을 적절한 프로토콜에 대응되도록 분류하고, 서비스 전달 매니저(1405), 서비스 디스커버리 매니저(1410), 서비스 제어 매니저(1409), 메타데이터 매니저(1412) 등으로 분류된 패킷(들)을 출력한다. 서비스 전달 매니저(1403)는, 수신되는 서비스 데이터의 제어를 담당한다. 예를 들어, 서비스 전달 매니저(1403)는 실시간 스트리밍(real-time streaming) 데이터를 제어하는 경우에는 RTP/RTCP를 사용할 수 있다. 상기 실시간 스트리밍 데이터를 RTP를 사용하여 전송하는 경우, 서비스 전달 매니저(1403)는 상기 수신된 데이터 패킷을 RTP에 따라 파싱(parsing)하여 역다중화부(1405)에 전송하거나 서비스 매니저(1413)의 제어에 따라 SI & 메타데이터 데이터베이스(1411)에 저장한다. 그리고 서비스 전달 매니저(1403)는 RTCP를 이용하여 상기 네트워크 수신 정보를 서비스를 제공하는 서버 측에 피드백(feedback) 한다. 역다중화부(1405)는, 수신된 패킷을 오디오, 비디오, SI(System Information) 데이터 등으로 역다중화하여 각각 오디오/비디오 디코더(1406/1407), SI 디코더(1404)에 전송한다.
SI 디코더(1404)는 예를 들어, PSI(Program Specific Information), PSIP(Program and System Information Protocol), DVB-SI(Digital Video Broadcasting-Service Information) 등의 서비스 정보를 디코딩한다.
또한, SI 디코더(1404)는, 디코딩된 서비스 정보들을 예를 들어, SI & 메타데이터 데이터베이스(1411)에 저장한다. 이렇게 저장된 서비스 정보는 예를 들어, 사용자의 요청 등에 의해 해당 구성에 의해 독출되어 이용될 수 있다.
오디오/비디오 디코더(1406/1407)는, 역다중화부(1405)에서 역다중화된 각 오디오 데이터와 비디오 데이터를 디코딩한다. 이렇게 디코딩된 오디오 데이터 및 비디오 데이터는 디스플레이부(1408)를 통하여 사용자에게 제공된다.
애플리케이션 매니저는 예를 들어, UI 매니저(1414)와 서비스 매니저(1413)를 포함하여 구성될 수 있다. 애플리케이션 매니저는, 디지털 기기(1400)의 전반적인 상태를 관리하고 사용자 인터페이스를 제공하며, 다른 매니저를 관리할 수 있다.
UI 매니저(1414)는, 사용자를 위한 GUI(Graphic User Interface)를 OSD(On Screen Display) 등을 이용하여 제공하며, 사용자로부터 키 입력을 받아 상기 입력에 따른 기기 동작을 수행한다. 예를 들어, UI 매니저(1414)는 사용자로부터 채널 선택에 관한 키 입력을 받으면 상기 키 입력 신호를 서비스 매니저(1413)에 전송한다.
서비스 매니저(1413)는, 서비스 전달 매니저(1403), 서비스 디스커버리 매니저(1410), 서비스 제어 매니저(1409), 메타데이터 매니저(1412) 등 서비스와 연관된 매니저를 제어한다.
또한, 서비스 매니저(1413)는, 채널 맵(channel map)을 만들고 사용자 인터페이스 매니저(1414)로부터 수신한 키 입력에 따라 상기 채널 맵을 이용하여 채널을 선택하다. 그리고 상기 서비스 매니저(1413)는 SI 디코더(1404)로부터 채널의 서비스 정보를 전송받아 선택된 채널의 오디오/비디오 PID(Packet Identifier)를 역다중화부(1405)에 설정한다. 이렇게 설정되는 PID는 상술한 역다중화 과정에 이용된다. 따라서, 역다중화부(1405)는 상기 PID를 이용하여 오디오 데이터, 비디오 데이터 및 SI 데이터를 필터링(filtering) 한다.
서비스 디스커버리 매니저(1410)는, 서비스를 제공하는 서비스 제공자를 선택하는데 필요한 정보를 제공한다. 상기 서비스 매니저(1413)로부터 채널 선택에 관한 신호를 수신하면, 서비스 디스커버리 매니저(1410)는 상기 정보를 이용하여 서비스를 찾는다.
서비스 제어 매니저(1409)는, 서비스의 선택과 제어를 담당한다. 예를 들어, 서비스 제어 매니저(1409)는 사용자가 기존의 방송 방식과 같은 생방송(live broadcasting) 서비스를 선택하는 경우 IGMP 또는 RTSP 등을 사용하고, VOD(Video on Demand)와 같은 서비스를 선택하는 경우에는 RTSP를 사용하여 서비스의 선택, 제어를 수행한다. 상기 RTSP 프로토콜은 실시간 스트리밍에 대해 트릭 모드(trick mode)를 제공할 수 있다. 또한, 서비스 제어 매니저(1409)는 IMS(IP Multimedia Subsystem), SIP(Session Initiation Protocol)를 이용하여 IMS 게이트웨이(1450)를 통하는 세션을 초기화하고 관리할 수 있다. 상기 프로토콜들은 일 실시 예이며, 구현 예에 따라 다른 프로토콜을 사용할 수도 있다.
메타데이터 매니저(1412)는, 서비스와 연관된 메타데이터를 관리하고 상기 메타데이터를 SI & 메타데이터 데이터 베이스(1411)에 저장한다.
SI & 메타데이터 데이터베이스(1411)는, SI 디코더(1404)가 디코딩한 서비스 정보, 메타데이터 매니저(1412)가 관리하는 메타데이터 및 서비스 디스커버리 매니저(1410)가 제공하는 서비스 제공자를 선택하는데 필요한 정보를 저장한다. 또한, SI & 메타데이터 데이터베이스(1411)는 시스템에 대한 세트-업 데이터 등을 저장할 수 있다.
SI & 메타데이터 데이터베이스(1411)는, 비휘발성 메모리(Non-Volatile RAM: NVRAM) 또는 플래시 메모리(flash memory) 등을 사용하여 구현될 수도 있다.
한편, IMS 게이트웨이(1450)는, IMS 기반의 IPTV 서비스에 접근하기 위해 필요한 기능들을 모아 놓은 게이트웨이이다.
도 15는 디지털 기기의 다른 실시예를 설명하기 위해 도시한 구성 블록도이다. 특히, 도 15는 디지털 기기의 다른 실시예로서 모바일 기기의 구성 블록도를 예시한 것이다.
도 15를 참조하면, 모바일 기기(1500)는, 무선 통신부(1510), A/V(Audio/Video) 입력부(1520), 사용자 입력부(1530), 센싱부(1540), 출력부(1550), 메모리(1560), 인터페이스부(1570), 제어부(1580) 및 전원 공급부(1590) 등을 포함할 수 있다. 도 15에 도시된 구성요소들이 필수적인 것은 아니어서, 그보다 많은 구성요소들을 갖거나 그보다 적은 구성요소들을 갖는 모바일 기기가 구현될 수도 있다.
무선 통신부(1510)는, 모바일 기기(1500)와 무선 통신 시스템 사이 또는 모바일 기기와, 모바일 기기가 위치한 네트워크 사이의 무선 통신을 가능하게 하는 하나 또는 그 이상의 모듈을 포함할 수 있다. 예를 들어, 무선 통신부(1510)는 방송 수신 모듈(1511), 이동통신 모듈(1512), 무선 인터넷 모듈(1513), 근거리 통신 모듈(1514) 및 위치 정보 모듈(1515) 등을 포함할 수 있다.
방송 수신 모듈(1511)은, 방송 채널을 통하여 외부의 방송 관리 서버로부터 방송 신호 및/또는 방송 관련된 정보를 수신한다. 여기서, 방송 채널은 위성 채널, 지상파 채널을 포함할 수 있다. 상기 방송 관리 서버는, 방송 신호 및/또는 방송 관련 정보를 생성하여 송신하는 서버 또는 기 생성된 방송 신호 및/또는 방송 관련 정보를 제공받아 단말기에 송신하는 서버를 의미할 수 있다. 상기 방송 신호는, TV 방송 신호, 라디오 방송 신호, 데이터 방송 신호를 포함할 뿐만 아니라, TV 방송 신호 또는 라디오 방송 신호에 데이터 방송 신호가 결합한 형태의 방송 신호도 포함할 수 있다.
방송 관련 정보는, 방송 채널, 방송 프로그램 또는 방송 서비스 제공자에 관련한 정보를 의미할 수 있다. 상기 방송 관련 정보는, 이동통신망을 통하여도 제공될 수 있다. 이러한 경우에는 상기 이동통신 모듈(1512)에 의해 수신될 수 있다.
방송 관련 정보는 다양한 형태 예를 들어, EPG(Electronic Program Guide) 또는 ESG(Electronic Service Guide) 등의 형태로 존재할 수 있다.
방송 수신 모듈(1511)은 예를 들어, ATSC, DVB-T(Digital Video Broadcasting-Terrestrial), DVB-S(Satellite), MediaFLO(Media Forward Link Only), DVB-H(Handheld), ISDB-T(Integrated Services Digital Broadcast-Terrestrial) 등 디지털 방송 시스템을 이용하여 디지털 방송 신호를 수신할 수 있다. 물론, 방송 수신 모듈(1511)은, 상술한 디지털 방송 시스템뿐만 아니라 다른 방송 시스템에 적합하도록 구성될 수도 있다.
방송 수신 모듈(1511)을 통해 수신된 방송 신호 및/또는 방송 관련 정보는, 메모리(1560)에 저장될 수 있다.
이동통신 모듈(1512)은, 이동 통신망 상에서 기지국, 외부 단말, 서버 중 적어도 하나와 무선 신호를 송수신한다. 무선 신호는, 음성 신호, 화상 통화 신호 또는 문자/멀티미디어 메시지 송수신에 따른 다양한 형태의 데이터를 포함할 수 있다.
무선 인터넷 모듈(1513)은, 무선 인터넷 접속을 위한 모듈을 포함하여, 모바일 기기(1500)에 내장되거나 외장될 수 있다. 무선 인터넷 기술로는 WLAN(Wireless LAN)(Wi-Fi), Wibro(Wireless broadband), Wimax(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access) 등이 이용될 수 있다.
근거리 통신 모듈(1514)은, 근거리 통신을 위한 모듈을 말한다. 근거리 통신(short range communication) 기술로 블루투스(Bluetooth), RFID(Radio Frequency Identification), 적외선 통신(IrDA, infrared Data Association), UWB(Ultra Wideband), ZigBee, RS-232, RS-485 등이 이용될 수 있다.
위치정보 모듈(1515)은, 모바일 기기(1500)의 위치정보 획득을 위한 모듈로서, GPS(Global Position System) 모듈을 예로 할 수 있다.
A/V 입력부(1520)는, 오디오 또는/및 비디오 신호 입력을 위한 것으로, 이에는 카메라(1521)와 마이크(1522) 등이 포함될 수 있다. 카메라(1521)는, 화상통화 모드 또는 촬영 모드에서 이미지 센서에 의해 얻어지는 정지영상 또는 동영상 등의 화상 프레임을 처리한다. 처리된 화상 프레임은 디스플레이부(1551)에 표시될 수 있다.
카메라(1521)에서 처리된 화상 프레임은, 메모리(1560)에 저장되거나 무선 통신부(1510)를 통하여 외부로 전송될 수 있다. 카메라(1521)는, 사용 환경에 따라 2개 이상이 구비될 수도 있다.
마이크(1522)는, 통화 모드 또는 녹음 모드, 음성인식 모드 등에서 마이크로폰(Microphone)에 의해 외부의 음향 신호를 입력받아 전기적인 음성 데이터로 처리한다. 처리된 음성 데이터는, 통화 모드인 경우 이동통신 모듈(1512)을 통하여 이동통신 기지국으로 송신 가능한 형태로 변환되어 출력될 수 있다. 마이크(1522)에는 외부의 음향 신호를 입력받는 과정에서 발생하는 잡음(noise)을 제거하기 위한 다양한 잡음 제거 알고리즘이 구현될 수 있다.
사용자 입력부(1530)는, 사용자가 단말기의 동작 제어를 위한 입력 데이터를 발생시킨다. 사용자 입력부(1530)는, 키 패드(key pad), 돔 스위치 (dome switch), 터치 패드(정압/정전), 조그 휠(jog wheel), 조그 스위치(jog switch) 등으로 구성될 수 있다.
센싱부(1540)는, 모바일 기기(1500)의 개폐 상태, 모바일 기기(1500)의 위치, 사용자 접촉 유무, 모바일 기기의 방위, 모바일 기기의 가속/감속 등과 같이 모바일 기기(1500)의 현재 상태를 감지하여 모바일 기기(1500)의 동작 제어를 위한 센싱 신호를 발생시킨다. 예를 들어, 모바일 기기(1500)가 이동되거나 기울어진 경우 모바일 기기의 위치 내지 기울기 등을 센싱할 수 있다. 또한, 전원 공급부(1590)의 전원 공급 여부, 인터페이스부(1570)의 외부 기기 결합 여부 등도 센싱할 수도 있다. 한편, 센싱부(1540)는, NFC(Near Field Communication)를 포함한 근접 센서(1541)를 포함할 수 있다.
출력부(1550)는, 시각, 청각 또는 촉각 등과 관련된 출력을 발생시키기 위한 것으로, 디스플레이부(1551), 음향 출력 모듈(1552), 알람부(1553), 및 햅틱 모듈(1554) 등이 포함될 수 있다.
디스플레이부(1551)는, 모바일 기기(1500)에서 처리되는 정보를 표시(출력)한다. 예를 들어, 모바일 기기가 통화 모드인 경우 통화와 관련된 UI(User Interface) 또는 GUI(Graphic User Interface)를 표시한다. 모바일 기기(1500)가 화상 통화 모드 또는 촬영 모드인 경우에는, 촬영 또는/및 수신된 영상 또는 UI, GUI를 표시한다.
디스플레이부(1551)는, 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉시블 디스플레이(flexible display), 3차원 디스플레이(3D display) 중에서 적어도 하나를 포함할 수 있다.
이들 중 일부 디스플레이는 그를 통해 외부를 볼 수 있도록 투명형 또는 광투과형으로 구성될 수 있다. 이는 투명 디스플레이라 호칭될 수 있는데, 상기 투명 디스플레이의 대표적인 예로는 TOLED(Transparant OLED) 등이 있다. 디스플레이부(1551)의 후방 구조 또한 광 투과형 구조로 구성될 수 있다. 이러한 구조에 의하여, 사용자는 단말기 바디의 디스플레이부(1551)가 차지하는 영역을 통해 단말기 바디(body)의 후방에 위치한 사물을 볼 수 있다.
모바일 기기(1500)의 구현 형태에 따라 디스플레이부(1551)가 2개 이상 존재할 수 있다. 예를 들어, 모바일 기기(1500)에는 복수의 디스플레이부들이 하나의 면에 이격되거나 일체로 배치될 수 있고, 또한 서로 다른 면에 각각 배치될 수도 있다.
디스플레이부(1551)와 터치 동작을 감지하는 센서(이하 '터치 센서'라 함)가 상호 레이어 구조를 이루는 경우(이하, '터치 스크린'이라 함)에, 디스플레이부(1551)는 출력 장치 이외에 입력 장치로도 사용될 수 있다. 터치 센서는, 예를 들어, 터치 필름, 터치 시트, 터치 패드 등의 형태를 가질 수 있다.
터치 센서는 디스플레이부(1551)의 특정 부위에 가해진 압력 또는 디스플레이부(1551)의 특정 부위에 발생하는 정전 용량 등의 변화를 전기적인 입력신호로 변환하도록 구성될 수 있다. 터치 센서는 터치 되는 위치 및 면적뿐만 아니라, 터치 시의 압력까지도 검출할 수 있도록 구성될 수 있다.
터치 센서에 대한 터치 입력이 있는 경우, 그에 대응하는 신호(들)는 터치 제어기로 보내진다. 터치 제어기는 그 신호(들)를 처리한 다음 대응하는 데이터를 제어부(1580)로 전송한다. 이로써, 제어부(1580)는 디스플레이부(1551)의 어느 영역이 터치 되었는지 여부 등을 알 수 있게 된다.
터치스크린에 의해 감싸지는 모바일 기기의 내부 영역 또는 상기 터치 스크린의 근처에 근접 센서(1541)가 배치될 수 있다. 상기 근접 센서는 소정의 검출면에 접근하는 물체, 혹은 근방에 존재하는 물체의 유무를 전자계의 힘 또는 적외선을 이용하여 기계적 접촉이 없이 검출하는 센서를 말한다. 근접 센서는 접촉식 센서보다는 그 수명이 길며 그 활용도 또한 높다.
상기 근접 센서의 예로는 투과형 광전 센서, 직접 반사형 광전 센서, 미러 반사형 광전 센서, 고주파 발진형 근접 센서, 정전용량형 근접 센서, 자기형 근접 센서, 적외선 근접 센서 등이 있다. 상기 터치스크린이 정전식인 경우에는 상기 포인터의 근접에 따른 전계의 변화로 상기 포인터의 근접을 검출하도록 구성된다. 이 경우 상기 터치 스크린(터치 센서)은 근접 센서로 분류될 수도 있다.
이하에서는 설명의 편의를 위해, 상기 터치스크린 상에 포인터가 접촉되지 않으면서 근접되어 상기 포인터가 상기 터치스크린 상에 위치함이 인식되도록 하는 행위를 "근접 터치(proximity touch)"라고 칭하고, 상기 터치스크린 상에 포인터가 실제로 접촉되는 행위를 "접촉 터치(contact touch)"라고 칭한다. 상기 터치스크린 상에서 포인터로 근접 터치가 되는 위치라 함은, 상기 포인터가 근접 터치될 때 상기 포인터가 상기 터치스크린에 대해 수직으로 대응되는 위치를 의미한다.
상기 근접 센서는, 근접 터치와, 근접 터치 패턴(예를 들어, 근접 터치 거리, 근접 터치 방향, 근접 터치 속도, 근접 터치 시간, 근접 터치 위치, 근접 터치 이동 상태 등)을 감지한다. 상기 감지된 근접 터치 동작 및 근접 터치 패턴에 상응하는 정보는 터치 스크린상에 출력될 수 있다.
음향 출력 모듈(1552)은, 호신호 수신, 통화 모드 또는 녹음 모드, 음성인식 모드, 방송수신 모드 등에서 무선 통신부(1510)로부터 수신되거나 메모리(1560)에 저장된 오디오 데이터를 출력할 수 있다. 음향 출력 모듈(1552)은 모바일 기기(1500)에서 수행되는 기능(예를 들어, 호신호 수신음, 메시지 수신음 등)과 관련된 음향 신호를 출력하기도 한다. 이러한 음향 출력 모듈(1552)에는 리시버(receiver), 스피커(speaker), 버저(buzzer) 등이 포함될 수 있다.
알람부(1553)는, 모바일 기기(1500)의 이벤트 발생을 알리기 위한 신호를 출력한다. 모바일 기기에서 발생 되는 이벤트의 예로는 호 신호 수신, 메시지 수신, 키 신호 입력, 터치 입력 등이 있다. 알람부(1553)는, 비디오 신호나 오디오 신호 이외에 다른 형태, 예를 들어 진동으로 이벤트 발생을 알리기 위한 신호를 출력할 수도 있다.
상기 비디오 신호나 오디오 신호는 디스플레이부(1551)나 음성 출력 모듈(1552)을 통해서도 출력될 수 있어서, 그들(1551,1552)은 알람부(1553)의 일부로 분류될 수도 있다.
햅틱 모듈(haptic module)(1554)은, 사용자가 느낄 수 있는 다양한 촉각 효과를 발생시킨다. 햅틱 모듈(1554)이 발생시키는 촉각 효과의 대표적인 예로는 진동이 있다. 햅택 모듈(1554)이 발생하는 진동의 세기와 패턴 등은 제어 가능하다. 예를 들어, 서로 다른 진동을 합성하여 출력하거나 순차적으로 출력할 수도 있다.
햅틱 모듈(1554)은, 진동 외에도, 접촉 피부면에 대해 수직 운동하는 핀 배열, 분사구나 흡입구를 통한 공기의 분사력이나 흡입력, 피부 표면에 대한 스침, 전극(eletrode)의 접촉, 정전기력 등의 자극에 의한 효과와, 흡열이나 발열 가능한 소자를 이용한 냉온감 재현에 의한 효과 등 다양한 촉각 효과를 발생시킬 수 있다.
햅틱 모듈(1554)은, 직접적인 접촉을 통해 촉각 효과의 전달할 수 있을 뿐만 아니라, 사용자가 손가락이나 팔 등의 근 감각을 통해 촉각 효과를 느낄 수 있도록 구현할 수도 있다. 햅틱 모듈(1554)은, 모바일 기기(1500)의 구성 태양에 따라 2개 이상이 구비될 수 있다.
메모리(1560)는, 제어부(1580)의 동작을 위한 프로그램을 저장할 수 있고, 입/출력되는 데이터들(예를 들어, 폰북, 메시지, 정지영상, 동영상 등)을 임시 저장할 수도 있다. 상기 메모리(1560)는 상기 터치스크린 상의 터치 입력시 출력되는 다양한 패턴의 진동 및 음향에 관한 데이터를 저장할 수 있다.
메모리(1560)는, 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 모바일 기기(1500)는 인터넷(internet)상에서 상기 메모리(1560)의 저장 기능을 수행하는 웹 스토리지(web storage)와 관련되어 동작할 수도 있다.
인터페이스부(1570)는, 모바일 기기(1500)에 연결되는 모든 외부기기와의 통로 역할을 한다. 인터페이스부(1570)는 외부 기기로부터 데이터를 전송받거나, 전원을 공급받아 모바일 기기(1500) 내부의 각 구성 요소에 전달하거나, 모바일 기기(1500) 내부의 데이터가 외부 기기로 전송되도록 한다. 예를 들어, 유/무선 헤드셋 포트, 외부 충전기 포트, 유/무선 데이터 포트, 메모리 카드(memory card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트, 오디오 I/O(Input/Output) 포트, 비디오 I/O 포트, 이어폰 포트 등이 인터페이스부(1570)에 포함될 수 있다.
식별 모듈은 모바일 기기(1500)의 사용 권한을 인증하기 위한 각종 정보를 저장한 칩으로서, 사용자 인증 모듈(User Identify Module, UIM), 가입자 인증 모듈(Subscriber Identify Module, SIM), 범용 사용자 인증 모듈(Universal Subscriber Identity Module, USIM) 등을 포함할 수 있다. 식별 모듈이 구비된 장치(이하 '식별 장치')는, 스마트 카드(smart card) 형식으로 제작될 수 있다. 따라서 식별 장치는 포트를 통하여 단말기(1400)와 연결될 수 있다.
인터페이스부(1570)는, 이동단말기(1500)가 외부 크래들(cradle)과 연결될 때, 상기 크래들로부터의 전원이 상기 이동단말기(1500)에 공급되는 통로가 되거나, 사용자에 의해 상기 크래들에서 입력되는 각종 명령 신호가 상기 이동단말기로 전달되는 통로가 될 수 있다. 크래들로부터 입력되는 각종 명령 신호 또는 상기 전원은, 이동단말기가 상기 크래들에 정확히 장착되었음을 인지하기 위한 신호로 동작될 수도 있다.
제어부(1580)는, 통상적으로 모바일 기기의 전반적인 동작을 제어한다. 예를 들어, 음성 통화, 데이터 통신, 화상 통화 등을 위한 관련된 제어 및 처리를 수행한다. 제어부(1580)는, 멀티 미디어 재생을 위한 멀티미디어 모듈(1581)을 구비할 수도 있다. 멀티미디어 모듈(1581)은, 제어부(1580) 내에 구현될 수도 있고, 제어부(1580)와 별도로 구현될 수도 있다. 제어부(1580), 특히 멀티미디어 모듈(1581)은 전술한 인코딩 장치 및/또는 디코딩 장치를 포함할 수 있다.
제어부(1580)는, 터치스크린 상에서 행해지는 필기 입력 또는 그림 그리기 입력을 각각 문자 및 이미지로 인식할 수 있는 패턴 인식 처리를 행할 수 있다.
전원 공급부(1590)는, 제어부(1580)의 제어에 의해 외부의 전원, 내부의 전원을 인가받아 각 구성요소들의 동작에 필요한 전원을 공급한다.
여기에 설명되는 다양한 실시예는 예를 들어, 소프트웨어, 하드웨어 또는 이들의 조합된 것을 이용하여 컴퓨터 또는 이와 유사한 장치로 읽을 수 있는 기록매체 내에서 구현될 수 있다.
하드웨어적인 구현에 의하면, 여기에 설명되는 실시예는 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays, 프로세서, 제어기, 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적인 유닛 중 적어도 하나를 이용하여 구현될수 있다. 일부의 경우에 본 명세서에서 설명되는 실시예들이 제어부(1580) 자체로 구현될 수 있다.
소프트웨어적인 구현에 의하면, 본 명세서에서 설명되는 절차 및 기능과 같은 실시예들은 별도의 소프트웨어 모듈들로 구현될 수 있다. 소프트웨어 모듈들 각각은 본 명세서에서 설명되는 하나 이상의 기능 및 작동을 수행할 수 있다. 적절한 프로그램 언어로 쓰여진 소프트웨어 애플리케이션으로 소프트웨어 코드가 구현될 수 있다. 여기서, 소프트웨어 코드는, 메모리(1560)에 저장되고, 제어부(1580)에 의해 실행될 수 있다.

Claims (19)

  1. 디코딩 장치에 의해 수행되는 영상 디코딩 방법에 있어서,
    현재 블록의 L0 움직임 벡터 및 L1 움직임 벡터를 도출하는 단계;
    상기 L0 움직임 벡터를 기반으로 상기 현재 블록의 L0 예측 샘플들 및 상기 L1 움직임 벡터를 기반으로 상기 현재 블록의 L1 예측 샘플들을 도출하는 단계;
    상기 현재 블록에 대해 BDOF(Bi-directional optical flow)를 적용할지 여부를 지시하는 BDOF 플래그 정보를 유도하는 단계;
    상기 BDOF 플래그 정보가 상기 현재 블록에 대해 BDOF를 적용하는 것으로 지시하는 경우, 상기 현재 블록에 대해 BDOF를 적용하여, 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들을 기반으로 상기 현재 블록에 대한 예측 샘플들을 도출하는 단계; 및
    상기 예측 샘플들을 기반으로 상기 현재 블록에 대한 복원 샘플들을 생성하는 단계를 포함하며,
    상기 BDOF 플래그 정보를 유도하는 단계는,
    상기 현재 블록의 높이(Height)가 4보다 큰 경우, 상기 현재 블록에 대해 BDOF를 적용하는 것으로 상기 BDOF 플래그 정보를 유도하는 것을 특징으로 하는 영상 디코딩 방법.
  2. 제1항에 있어서,
    상기 BDOF 플래그 정보를 유도하는 단계는,
    상기 현재 블록의 높이x너비가 4x8인 경우, 상기 현재 블록에 대해 BDOF를 적용하지 않는 것으로 상기 BDOF 플래그 정보를 유도하는 것을 특징으로 하는 영상 디코딩 방법.
  3. 제1항에 있어서,
    상기 BDOF 플래그 정보를 유도하는 단계는,
    상기 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드가 적용되지 않는 경우, 상기 현재 블록에 대해 BDOF를 적용하는 것으로 상기 BDOF 플래그 정보를 유도하는 것을 특징으로 하는 영상 디코딩 방법.
  4. 제1항에 있어서,
    상기 BDOF 플래그 정보를 유도하는 단계는,
    현재 픽처와 L0 참조 픽처 간의 제1 POC(picture order count) 차이와 상기 현재 픽처와 L1 참조 픽처 간의 제2 POC 차이가 동일한 경우, 상기 현재 블록에 대해 BDOF를 적용하는 것으로 상기 BDOF 플래그 정보를 유도하는 것을 특징으로 하는 영상 디코딩 방법.
  5. 제1항에 있어서,
    상기 BDOF 플래그 정보를 유도하는 단계는,
    L0 루마 가중 예측 플래그 정보 및 L1 루마 가중 예측 플래그 정보의 값이 모두 0인 경우, 상기 현재 블록에 대해 BDOF를 적용하는 것으로 상기 BDOF 플래그 정보를 유도하되,
    상기 L0 루마 가중 예측 플래그 정보의 값이 0인 경우는, L0 예측의 루마 성분에 대해 가중 팩터(weight factor)가 존재하지 않음을 나타내고,
    상기 L1 루마 가중 예측 플래그 정보의 값이 0인 경우는, L1 예측의 루마 성분에 대해 가중 팩터(weight factor)가 존재하지 않음을 나타내는 것을 특징으로 하는 영상 디코딩 방법.
  6. 제1항에 있어서,
    상기 예측 샘플들을 도출하는 단계는,
    상기 L0 예측 샘플들에 대한 제1 그라디언트(gradient) 및 상기 L1 예측 샘플들에 대한 제2 그라디언트(gradient)를 계산하는 단계; 및
    상기 L0 예측 샘플들, 상기 L1 예측 샘플들, 상기 제1 그라디언트, 및 상기 제2 그라디언트를 기반으로 상기 예측 샘플들을 도출하는 단계를 포함하는 것을 특징으로 하는 영상 디코딩 방법.
  7. 제1항에 있어서,
    상기 현재 블록에 대해 DMVR(Decoder-side Motion Vector Refinement)을 적용할지 여부를 지시하는 DMVR 플래그 정보를 유도하는 단계; 및
    상기 DMVR 플래그 정보가 상기 현재 블록에 대해 DMVR을 적용하는 것으로 지시하는 경우, 상기 현재 블록에 대해 DMVR을 적용하여, 상기 현재 블록에 대한 리파인된 L0 움직임 벡터 및 리파인된 L1 움직임 벡터를 도출하는 단계를 포함하는 것을 특징으로 하는 영상 디코딩 방법.
  8. 제7항에 있어서,
    상기 DMVR 플래그 정보를 유도하는 단계는,
    상기 현재 블록의 높이(Height)가 4보다 큰 경우, 상기 현재 블록에 대해 DMVR을 적용하는 것으로 상기 DMVR 플래그 정보를 유도하는 것을 특징으로 하는 영상 디코딩 방법.
  9. 제7항에 있어서,
    상기 DMVR 플래그 정보를 유도하는 단계는,
    상기 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드가 적용되지 않는 경우, L0 루마 가중 예측 플래그 정보 및 L1 루마 가중 예측 플래그 정보의 값이 모두 0인 경우, 또는 상기 현재 블록의 쌍예측 가중치 인덱스(bi-prediction weight index) 정보의 값이 0인 경우 중 적어도 하나의 조건을 기반으로, 상기 DMVR 플래그 정보를 유도하는 것을 특징으로 하는 영상 디코딩 방법.
  10. 제7항에 있어서,
    상기 리파인된 L0 움직임 벡터 및 상기 리파인된 L1 움직임 벡터를 도출하는 단계는,
    상기 L0 예측 샘플들 및 상기 L1 예측 샘플들을 기반으로 최소 SAD(Sum of Absolute Differences)를 도출하는 단계; 및
    상기 최소 SAD에 대응하는 샘플 위치를 기반으로, 상기 L0 움직임 벡터에 대한 상기 리파인된 L0 움직임 벡터 및 상기 L1 움직임 벡터에 대한 상기 리파인된 L1 움직임 벡터를 도출하는 단계를 포함하는 것을 특징으로 하는 영상 디코딩 방법.
  11. 제7항에 있어서,
    상기 현재 블록에 대해 DMVR을 적용한 경우,
    상기 L0 예측 샘플들은 상기 리파인된 L0 움직임 벡터를 기반으로 도출되며, 상기 L1 예측 샘플들은 상기 리파인된 L1 움직임 벡터를 기반으로 도출되는 것을 특징으로 하는 영상 디코딩 방법.
  12. 인코딩 장치에 의해 수행되는 영상 인코딩 방법에 있어서,
    현재 블록의 L0 움직임 벡터 및 L1 움직임 벡터를 도출하는 단계;
    상기 L0 움직임 벡터를 기반으로 상기 현재 블록의 L0 예측 샘플들 및 상기 L1 움직임 벡터를 기반으로 상기 현재 블록의 L1 예측 샘플들을 도출하는 단계;
    상기 현재 블록에 대해 BDOF(Bi-directional optical flow)를 적용할지 여부를 지시하는 BDOF 플래그 정보를 유도하는 단계;
    상기 BDOF 플래그 정보가 상기 현재 블록에 대해 BDOF를 적용하는 것으로 지시하는 경우, 상기 현재 블록에 대해 BDOF를 적용하여, 상기 L0 예측 샘플들 및 상기 L1 예측 샘플들을 기반으로 상기 현재 블록에 대한 예측 샘플들을 도출하는 단계;
    상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출하는 단계; 및
    상기 레지듀얼 샘플들에 관한 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하며,
    상기 BDOF 플래그 정보를 유도하는 단계는,
    상기 현재 블록의 높이(Height)가 4보다 큰 경우, 상기 현재 블록에 대해 BDOF를 적용하는 것으로 상기 BDOF 플래그 정보를 유도하는 것을 특징으로 하는 영상 인코딩 방법.
  13. 제12항에 있어서,
    상기 BDOF 플래그 정보를 유도하는 단계는,
    상기 현재 블록의 높이x너비가 4x8인 경우, 상기 현재 블록에 대해 BDOF를 적용하지 않는 것으로 상기 BDOF 플래그 정보를 유도하는 것을 특징으로 하는 영상 인코딩 방법.
  14. 제12항에 있어서,
    상기 BDOF 플래그 정보를 유도하는 단계는,
    상기 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드가 적용되지 않는 경우, 상기 현재 블록에 대해 BDOF를 적용하는 것으로 상기 BDOF 플래그 정보를 유도하는 것을 특징으로 하는 영상 인코딩 방법.
  15. 제12항에 있어서,
    상기 BDOF 플래그 정보를 유도하는 단계는,
    현재 픽처와 L0 참조 픽처 간의 제1 POC(picture order count) 차이와 상기 현재 픽처와 L1 참조 픽처 간의 제2 POC 차이가 동일한 경우, 상기 현재 블록에 대해 BDOF를 적용하는 것으로 상기 BDOF 플래그 정보를 유도하는 것을 특징으로 하는 영상 인코딩 방법.
  16. 제12항에 있어서,
    상기 BDOF 플래그 정보를 유도하는 단계는,
    L0 루마 가중 예측 플래그 정보 및 L1 루마 가중 예측 플래그 정보의 값이 모두 0인 경우, 상기 현재 블록에 대해 BDOF를 적용하는 것으로 상기 BDOF 플래그 정보를 유도하되,
    상기 L0 루마 가중 예측 플래그 정보의 값이 0인 경우는, L0 예측의 루마 성분에 대해 가중 팩터(weight factor)가 존재하지 않음을 나타내고,
    상기 L1 루마 가중 예측 플래그 정보의 값이 0인 경우는, L1 예측의 루마 성분에 대해 가중 팩터(weight factor)가 존재하지 않음을 나타내는 것을 특징으로 하는 영상 인코딩 방법.
  17. 제1항에 있어서,
    상기 현재 블록에 대해 DMVR(Decoder-side Motion Vector Refinement)을 적용할지 여부를 지시하는 DMVR 플래그 정보를 유도하는 단계; 및
    상기 DMVR 플래그 정보가 상기 현재 블록에 대해 DMVR을 적용하는 것으로 지시하는 경우, 상기 현재 블록에 대해 DMVR을 적용하여, 상기 현재 블록에 대한 리파인된 L0 움직임 벡터 및 리파인된 L1 움직임 벡터를 도출하는 단계를 포함하는 것을 특징으로 하는 영상 인코딩 방법.
  18. 제17항에 있어서,
    상기 DMVR 플래그 정보를 유도하는 단계는,
    상기 현재 블록의 높이(Height)가 4보다 큰 경우, 상기 현재 블록에 대해 DMVR을 적용하는 것으로 상기 DMVR 플래그 정보를 유도하는 것을 특징으로 하는 영상 인코딩 방법.
  19. 제17항에 있어서,
    상기 DMVR 플래그 정보를 유도하는 단계는,
    상기 현재 블록에 인터 예측과 인트라 예측이 결합된 예측 모드가 적용되지 않는 경우, L0 루마 가중 예측 플래그 정보 및 L1 루마 가중 예측 플래그 정보의 값이 모두 0인 경우, 또는 상기 현재 블록의 쌍예측 가중치 인덱스(bi-prediction weight index) 정보의 값이 0인 경우 중 적어도 하나의 조건을 기반으로, 상기 DMVR 플래그 정보를 유도하는 것을 특징으로 하는 영상 인코딩 방법.
PCT/KR2020/001869 2019-03-22 2020-02-11 Bdof 기반의 인터 예측 방법 및 장치 WO2020197085A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962822719P 2019-03-22 2019-03-22
US62/822,719 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020197085A1 true WO2020197085A1 (ko) 2020-10-01

Family

ID=72608566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001869 WO2020197085A1 (ko) 2019-03-22 2020-02-11 Bdof 기반의 인터 예측 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2020197085A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3957066A4 (en) * 2019-04-19 2022-06-29 Tencent America LLC Method and apparatus for video coding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018113658A1 (en) * 2016-12-22 2018-06-28 Mediatek Inc. Method and apparatus of motion refinement for video coding
US20180199057A1 (en) * 2017-01-12 2018-07-12 Mediatek Inc. Method and Apparatus of Candidate Skipping for Predictor Refinement in Video Coding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018113658A1 (en) * 2016-12-22 2018-06-28 Mediatek Inc. Method and apparatus of motion refinement for video coding
US20180199057A1 (en) * 2017-01-12 2018-07-12 Mediatek Inc. Method and Apparatus of Candidate Skipping for Predictor Refinement in Video Coding

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NAERI PARK, JANG HYEONGMUN, NAM JUNGHAK, LIM JAEHYUN: "Non-CE9 : Mismatch between text specification and reference software on BDOF and DMVR", JVET-N0444, JOINT VIDEO EXPERTS TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11 14TH MEETING, no. N0444, 19 March 2019 (2019-03-19), Geneva, pages 1 - 3, XP055743487 *
PARK N; JANG H; NAM J; LIM J; KIM S: "Non-CE9: Conditions fix for DMVR and BDOF", JVET-N0442, JO INT VIDEO EXPERTS TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11 14TH MEETING, no. N0442, 13 March 2019 (2019-03-13), Geneva, XP030254921 *
XIU XIAOYU, HE YUWEN, YE YAN: "CE9-related: Complexity reduction and bit-width control for bi-directional optical flow (BIO)", JVET-L0256_V2, JOINT VIDEO EXPERTS TEA M (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11 12TH MEETING, no. L0256_v2, 7 May 2020 (2020-05-07), Ma cao, XP030266676 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3957066A4 (en) * 2019-04-19 2022-06-29 Tencent America LLC Method and apparatus for video coding
US11575917B2 (en) 2019-04-19 2023-02-07 Tencent America LLC Method and apparatus for video coding

Similar Documents

Publication Publication Date Title
WO2020197083A1 (ko) Dmvr 및 bdof 기반의 인터 예측 방법 및 장치
WO2020122640A1 (ko) 히스토리 기반 모션 벡터 예측을 기반으로 비디오 신호를 처리하기 위한 방법 및 장치
WO2020141914A1 (ko) 히스토리 기반 모션 벡터 예측을 기반으로 비디오 신호를 처리하기 위한 방법 및 장치
WO2020060376A1 (ko) 인터 예측을 기반으로 비디오 신호를 처리하기 위한 방법 및 장치
WO2020197084A1 (ko) Dmvr 기반의 인터 예측 방법 및 장치
WO2020117018A1 (ko) 인터 예측을 기반으로 비디오 신호를 처리하기 위한 방법 및 장치
WO2020171444A1 (ko) Dmvr 기반의 인터 예측 방법 및 장치
WO2020189893A1 (ko) Bdof 기반의 인터 예측 방법 및 장치
WO2021040481A1 (ko) 크로스 컴포넌트 필터링 기반 영상 코딩 장치 및 방법
WO2020184848A1 (ko) Dmvr 기반의 인터 예측 방법 및 장치
WO2016117930A1 (ko) 인터 레이어 비디오 복호화 방법 및 그 장치 및 인터 레이어 비디오 부호화 방법 및 그 장치
WO2020184847A1 (ko) Dmvr 및 bdof 기반의 인터 예측 방법 및 장치
WO2020117016A1 (ko) 인터 예측을 기반으로 비디오 신호를 처리하기 위한 방법 및 장치
WO2020262931A1 (ko) 비디오/영상 코딩 시스템에서 머지 데이터 신택스의 시그널링 방법 및 장치
WO2020071871A1 (ko) 영상 서비스 처리 방법 및 그 장치
WO2020184964A1 (ko) 인터 예측을 위한 비디오 신호의 처리 방법 및 장치
WO2020251269A1 (ko) 영상 디코딩 방법 및 그 장치
WO2020262930A1 (ko) 머지 데이터 신택스에서 중복적인 신택스의 제거 방법 및 장치
WO2020256400A1 (ko) 루마 맵핑 및 크로마 스케일링 기반 비디오 또는 영상 코딩
WO2020251258A1 (ko) 쌍 예측이 적용되는 경우 가중 평균을 위한 가중치 인덱스 정보를 도출하는 영상 디코딩 방법 및 그 장치
WO2020141913A1 (ko) 인터 예측을 기반으로 비디오 신호를 처리하기 위한 방법 및 장치
WO2020204418A1 (ko) 비디오 또는 영상 코딩 방법 및 그 장치
WO2020060374A1 (ko) 어파인 예측을 이용하여 비디오 신호를 처리하기 위한 방법 및 장치
WO2020262929A1 (ko) 비디오/영상 코딩 시스템에서 신택스 시그널링 방법 및 장치
WO2020251268A1 (ko) 크로마 성분에 대한 영상 디코딩 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778251

Country of ref document: EP

Kind code of ref document: A1