WO2020196916A1 - Biological signal processing device and biological signal processing program - Google Patents
Biological signal processing device and biological signal processing program Download PDFInfo
- Publication number
- WO2020196916A1 WO2020196916A1 PCT/JP2020/014634 JP2020014634W WO2020196916A1 WO 2020196916 A1 WO2020196916 A1 WO 2020196916A1 JP 2020014634 W JP2020014634 W JP 2020014634W WO 2020196916 A1 WO2020196916 A1 WO 2020196916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- complex
- biological
- biological signal
- complex signal
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
Definitions
- the present invention relates to a biological signal processing device and a biological signal processing program, for example, to analyze a biological signal.
- Vital measurement such as pulse wave measurement is very important for grasping daily health condition and finding signs of illness.
- vital measurement can be easily performed non-invasively (without sticking a needle) and non-contact (without attaching a device) from the desire to easily measure on a daily basis, and is being actively researched and developed.
- a technique for performing such non-invasive and non-contact vital measurement there is a technique using a microwave radar.
- the reflected waves undergo a Doppler shift (frequency transition) due to respiration, heartbeat, body movement, etc., so by detecting this, respiration, heartbeat, and body movement information are included.
- the baseband can be detected.
- Non-Patent Document 1 detects biological signals by IQ demodulation.
- IQ demodulation detects the I signal and the Q signal orthogonal to the I signal from the reflected wave.
- the other is optimal and the other is in the intermediate state.
- the other is also in an intermediate state, so that they can complement each other and alleviate the decrease in sensitivity.
- Various methods have been proposed to detect vital frequency changes by combining IQ channel signals in this way. For example, a method of selecting an IQ channel using principal component analysis, an arctangent composite method, and a complex signal composite method. Laws have been proposed. In the technology of detecting vital components from the human body using these Doppler radars, the phase components of reflection are reproduced using a filter or the like, and further separated by frequency components to obtain biological signals such as respiration and heartbeat. ..
- the reflected wave contains components not only from the human body but also from peripheral fixed objects such as walls and furniture, and in the prior art, there is a problem that these are also reproduced as phase components and an error occurs. .. Although it is possible to detect the respiratory rate and heart rate by the conventional technology and it is useful, there has been a demand to provide a better service by analyzing the signal with higher accuracy.
- An object of the present invention is to detect a biological signal with high accuracy.
- the present invention acquires a complex signal composed of an in-phase signal and an orthogonal signal of a reflected wave of a microwave transmitted to a living body.
- the complex signal acquisition means and the center position of the arc-shaped locus drawn by the acquired complex signal on the complex plane are specified, and the fixed component due to the reflection from the fixed object contained in the complex signal is estimated from the center position.
- a biological signal processing device including means and an output means for outputting the acquired biological signal.
- the correction means sets the position of the origin of the complex plane with respect to the specified center position as an offset amount, and offsets the complex signal by the offset amount in the complex plane.
- the biometric signal processing apparatus according to claim 1, wherein the acquired complex signal is corrected by the above method.
- the biological signal acquisition means acquires a signal corresponding to the pulse wave of the biological signal from the amplitude or phase of the complex signal in the time region. 1 or the biological signal processing apparatus according to claim 2.
- the biological signal acquisition means acquires a signal corresponding to the pulse wave by differentiating the moving average of the waveform of the amplitude.
- the complex signal acquisition function for acquiring a complex signal composed of an in-phase signal and an orthogonal signal of a reflected wave of a microwave transmitted to a living body and the acquired complex signal are From the estimation function that identifies the center position of the arc-shaped locus drawn on the complex plane and estimates the fixed component due to the reflection from the fixed object contained in the complex signal from the center position, and the acquired complex signal, the above A correction function for correcting the acquired complex signal by removing the estimated fixed component, a biological signal acquisition function for acquiring the biological signal of the living body from the corrected complex signal, and an output for outputting the acquired biological signal. It provides a biological signal processing program that realizes functions and on a computer.
- a biological signal can be detected with high accuracy by removing a fixed component from the reflected wave.
- the reflection response of the microwave irradiated to the living body has an amplitude component and a phase component, and ideally, the reflection component hv (t) from the living body is analyzed. do it.
- the reflection response component h (t) includes a reflection component hv (t) from a living body and a reflection component hf (t) from a wall or furniture other than the living body.
- the origin for analysis deviates from the origin O, which becomes a signal error and affects the detection accuracy.
- the signal processing device 4 analyzes the obtained signal to obtain a virtual origin O'which is a reference for analyzing hv (t), and obtains a phase and amplitude component from the virtual origin O'to obtain a conventional filter. It is possible to obtain a signal that matches the phenomenon more than the method using.
- the signal processing device 4 sets the difference between the origin O and the virtual origin O'as an offset amount, and offsets h (t) by this.
- the phase and amplitude components from the virtual origin O' can be analyzed using the phase and amplitude components with respect to the origin O.
- FIG. 1 is a diagram for explaining a configuration of a measuring device 1 for measuring a biological signal (vital sign, vital signal).
- respiration and pulse waves are measured as biological signals.
- the measuring device 1 is composed of a microwave circuit 2, a control device 3, a signal processing device 4, and the like.
- the microwave circuit 2 is composed of a transmitter 21, a distribution phase shift unit 24, mixers (mixers) 26 and 27, a transmitting antenna 23, a receiving antenna 25, and the like.
- a chair for seating the subject 7 of the biological signal measurement is installed in the direction of microwave irradiation by the microwave circuit 2.
- the measuring device 1 since the measuring device 1 is used in the laboratory, the subject 7 is seated on a chair.
- This is an example, and for example, it is mounted on a vehicle to detect the biological signal of the driver. It can be widely used in various usage scenarios, such as detecting the biological signals of these users in hospitals and nursing homes, or installing it on a washbasin at home to detect the biological signals of washers. it can.
- the control device 3 is a control device that controls the drive of the transmitter 21.
- the control device 3 supplies electric power to the transmitter 21 and drives the transmitter 21 to generate microwaves.
- the transmitter 21 includes a device for oscillating microwaves, and generates and transmits microwaves having a predetermined frequency (in the present embodiment, microwaves of 5.018 [GHz] are used).
- the microwave transmitted by the transmitter 21 is transmitted to the transmitting antenna 23 via the transmission path, and a part of the microwave is distributed and transmitted to the distribution phase shift unit 24 as a reference wave.
- the distribution phase shift unit 24 has a distribution function and a phase shift function (for example, it is configured by combining a distributor and a phase shifter), distributes a reference wave into two waves, and one of them is a reference wave. Is input to the mixer 26 in the same phase as, and the other is phase-shifted by a phase amount of 90 ° and input to the mixer 27. In this way, the distribution phase shift unit 24 generates a reference wave having the same phase as the microwave output by the transmitting antenna 23 and a reference wave having a phase orthogonal to the reference wave, and inputs the reference wave to the mixer 26 and the mixer 27, respectively. ..
- the transmitting antenna 23 is composed of a 16-element patch array antenna, and irradiates the subject 7 with the microwave generated by the transmitter 21.
- the receiving antenna 25 is composed of an 8-element patch array antenna, receives the reflected microwave wave transmitted by the transmitting antenna 23, distributes the reflected wave, and transmits the reflected wave to the mixers 26 and 27.
- the transmitting antenna 23 was installed at a height of 0.719 m, and the receiving antenna 25 was installed at a height of 0.975 m. Further, the distance from these patch array antennas to the subject 7 was set to 0.3 m, and the distance between the elements of the patch array antenna was set to 0.5 wavelength of the microwave transmitted by the transmitter 21. As described above, the measuring device 1 employs MIMO (Multiple Input Multiple Output) that transmits and receives with a plurality of antennas, and the figure shows one set of these.
- MIMO Multiple Input Multiple Output
- the direction of microwaves can be fine-tuned to make microscopic areas where pulse waves can be detected well (according to the inventor's experiment, around the heart of subject 7). Can irradiate waves. Even if the subject 7 is dressed or is wearing a futon at a hospital or a nursing care facility, the microwave is transmitted through them. Therefore, the subject 7 is irradiated with the microwave from the transmitting antenna 23, and the subject is subjected to the microwave. The reflected wave reflected on the body surface of No. 7 can be received by the receiving antenna 25.
- the reflected wave of the microwave is Doppler-shifted by this.
- the body surface of the subject 7 repeatedly expands and contracts due to the pulse, which also causes a Doppler shift.
- the reflected wave received by the receiving antenna 25 includes information on respiration and pulse wave.
- the mixer 26 mixes the reflected wave received by the receiving antenna 25 with the in-phase reference wave by the transmitter 21, thereby generating a beat (beat, mixed wave) and outputting it to the signal processing device 4.
- the mixer 27 mixes the reflected wave received by the receiving antenna 25 with the reference wave whose phase has been shifted by 90 °, thereby generating a beat and outputting it to the signal processing device 4.
- the signal processing device 4 is a device that functions as a biological signal processing device.
- the signal processing device 4 includes a detection device that detects the mixed waves output by the mixer 26 and the mixer 27, respectively, and has an I signal of the in-phase component output by the mixer 26 and an orthogonal component output by the mixer 27.
- a complex number signal (complex signal) h (t) I (t) + jQ (t) represented by the equation 22 is generated from the Q signal.
- j is an imaginary unit and t represents time.
- the signal processing device 4 includes a complex signal acquisition means for acquiring a complex signal composed of an in-phase signal (I signal) and an orthogonal signal (Q signal) of the reflected wave of the microwave transmitted to the living body. ing.
- the measuring device 1 can suppress a decrease in sensitivity due to the null detection position, and the subject 7 can use the measuring device 1 without worrying about the positional relationship with the measuring device 1.
- the component hf (t) due to the reflection from the object 50 fixed to the environment such as furniture or a wall is superimposed on h (t).
- the signal processing device 4 estimates hf (t) as follows, corrects it by removing it from h (t), and reproduces hv (t) from h (t).
- h (t) is the sum of hf (t) due to reflection from the object 50 and hv (t) due to reflection from the subject 7 when expressed on the complex plane. It has become a thing.
- the horizontal axis which is the real axis, is the axis of the same phase (in-phase component) as the carrier wave (also called the I axis)
- the vertical axis which is the imaginary axis, is the phase (orthogonal phase component) orthogonal to the carrier wave. It is an axis (also called a Q axis).
- hf (t) Since hf (t) is due to the object 50 fixed to the environment, it is fixed and has fixed components (DC component, DC component). On the other hand, hv (t) changes periodically by the respiration of the subject 7, and is on the arc 61 centered on the virtual origin O'(this point is estimated and is called virtual as described later). Is synchronized with the respiration of the subject 7 to perform a periodic movement back and forth between the clockwise direction and the counterclockwise direction.
- the center of the periodic motion of hv (t) is determined from the position and shape of the arc 61. It is specified by estimating the position of the virtual origin O', which is a point. As a result, hf (t) from the origin O to the virtual origin O'can be estimated.
- the signal processing device 4 specifies the center position of the arcuate locus drawn by the complex signal on the complex plane, and estimates the fixed component due to the reflection from the fixed object contained in the complex signal from the center position. It has an estimation means to do.
- the signal processing device 4 offsets h (t) so that the virtual origin O'consists with the origin O, thereby shifting h (t) from h (t) to hf (t). Make a correction to remove.
- the signal processing device 4 includes a correction means for correcting the complex signal by removing the estimated fixed component from the complex signal. Then, the correction means corrects the complex signal by using the position of the origin of the complex plane with respect to the specified center position as an offset amount and offsetting the complex signal by the offset amount in the complex plane.
- the signal processing device 4 includes a biological signal acquisition means for acquiring a biological signal of a biological body from the corrected complex signal, and an output means for outputting the biological signal.
- FIG. 2 is a diagram for explaining a method of obtaining the virtual origin O'.
- FIG. 2 represents a complex plane, and the signal processing device 4 arranges a large number of search points 75, 75, ... As candidates for the virtual origin O'on the complex plane at predetermined intervals.
- the signal 65 is a plot of the sampled points of h (t) on a complex plane, and is a sum (composite) of the I channel and the Q channel of h (t). Then, the locus of the point of the signal 65 has an arc shape as described above.
- the sampling frequency was set to 200 Hz and the measurement was performed for 70 seconds.
- a diagram in which signals are plotted on a complex plane with the horizontal axis in phase and the vertical axis in orthogonal phases is called a constellation.
- the signal processing device 4 sets the distance r from all the points of the signal 65 (that is, the points obtained by sampling h (t)) to each search point 75. calculate. Then, the search point 75 that minimizes the variance of r is set to the virtual origin O'. Since the distances from the respective points of the signal 65 are approximately the same, the search point 75 having the minimum variance is the most suitable point as the center point of the arc.
- FIG. 3 is a diagram for explaining channel correction.
- FIG. 3A shows the signal 66 due to h (t) before correction, and the virtual origin O'is located at a position away from the origin O in the complex plane. It is presumed that this offset component is due to hf (t). As shown in the figure, this figure is based on the path of the second transmitting antenna 23 and the first receiving antenna 25 of the patch array antenna 90.
- the signal processing device 4 calculates the signal 67 by offsetting (moving) the signal 66 by the difference between the virtual origin O'and the origin O.
- the virtual origin O'of the arc formed by the signal 67 becomes the origin O, and this becomes the component of hv (t) obtained by removing hf (t) from h (t).
- the signal processing device 4 calculates the signal 67 by hv (t) by performing the correction for offsetting each point of the signal 66 by h (t) as described above. That is, the signal processing device 4 converts the uncorrected propagation channel represented by the signal 66 into the corrected propagation channel represented by the signal 67.
- FIG. 4 is a diagram for explaining a phase waveform due to the signal (h (t)) before correction.
- the arc indicated by the signal 66 of h (t) is not centered on the origin O, but is centered on the virtual origin O'away from the origin O.
- the phase around the origin O is measured in the angular direction around the origin O indicated by the arrow line in the figure, but since the center of the arc of the signal 66 deviates from the origin O by a fixed component, the origin of the signal 66
- the sine curve is not a beautiful one, but the apex of the sine curve is flattened and distorted.
- this graph shows 10 seconds from 25 seconds to 35 seconds after the start of measurement. The same applies hereinafter.
- the signal 66 before correction is distorted by the amount of the fixed component, it is not suitable for detecting a precise biological signal.
- FIG. 5 is a diagram for explaining a phase waveform based on the corrected signal (hv (t)).
- the signal 67 by hv (t) is reproduced on the complex plane by removing the fixed component by the offset and correcting the signal 66. Since the origin O and the virtual origin O'are the same, the arc indicated by the signal 67 is an arc centered on the origin O. As a result, the time change of the phase around the origin O becomes a beautiful sine curve as shown in FIG. 5 (b). Since the corrected signal is distorted and has a normal waveform, a biological signal (for example, respiration) can be suitably extracted from the signal.
- a biological signal for example, respiration
- FIG. 6 is a diagram for explaining an amplitude waveform due to the signal (h (t)) before correction.
- the arc indicated by the signal 66 of h (t) is not centered on the origin O, but is centered on the virtual origin O'away from the origin O. Therefore, when the amplitude is measured by the distance from the origin O to each point of the signal 66 as shown by the arrow line, the time change is predominantly affected by respiration as shown in the graph of FIG. 6 (b). Although it appears, it becomes a distorted sine curve.
- FIG. 7 is a diagram for explaining an amplitude waveform due to the corrected signal (hv (t)).
- the amplitude direction with respect to the origin O faces the center direction of the arc indicated by the signal 67. From this, when the time change of the amplitude of the signal 67 is graphed, as shown in FIG. 7B, the fine structure hidden by the distortion in the signal 66 before the correction appears as the amplitude change.
- components that are considered to be pulse waves were confirmed in the regions 83, 83, ... Enclosed by the broken line.
- FIG. 8 is a diagram for explaining the relationship between the pulse wave and the amplitude waveform.
- the inventor of the present application attached a blood pressure sensor to the finger of the subject 7, thereby measuring the pulse wave and at the same time measuring h (t) with respect to the body surface of the subject 7 by the microwave.
- FIG. 8A is a pulse wave of the subject 7 from 45 seconds to 55 seconds after the start of the experiment detected by the blood pressure sensor.
- the pulse wave is shown by a broken line.
- a clean waveform was measured.
- a small peak after the pulse peak is a common waveform in the elastic blood vessels of young people.
- FIG. 8B shows a waveform obtained by averaging the amplitude waveform of the signal 67 by a moving average and then differentiating it with respect to time.
- a peak appears near the peak of the pulse wave.
- FIG. 8C shows the pulse wave and the amplitude moving average differential waveform superimposed.
- the peak of the pulse wave and the peak of the amplitude moving average differential waveform coincide with each other. Therefore, it is considered that a pulse wave appears at the signal 67.
- the pulse wave (heartbeat) component is strengthened by adding the corrected amplitude waveforms in all the paths.
- the pulse wave buried in the distortion could be extracted from the complex signal.
- the pulse wave is detected from the amplitude waveform because the pulse wave appears remarkably in the amplitude waveform, and the phase waveform also contains the component due to the pulse wave.
- the biological signal acquisition means included in the signal processing device 4 acquires the signal corresponding to the pulse wave of the biological body from the amplitude or phase of the complex signal in the time domain. Then, the biological signal acquisition means acquires the signal corresponding to the pulse wave by differentiating the moving average of the amplitude waveform. Further, the complex signal acquisition means can strengthen the component of the pulse wave by acquiring the complex signal from the reflected wave propagating in the plurality of paths.
- FIG. 9 is a diagram for explaining the hardware configuration of the signal processing device 4.
- the signal processing device 4 is configured by using a CPU (Central Processing Unit) 41, a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, a detection device 44, an input device 45, an output device 46, a storage device 47, and the like. Has been done.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- the CPU 41 corrects h (t) according to a signal processing program stored in the ROM 42 or the storage device 47, extracts a biological signal from the corrected h (t) (that is, hv (t)), and the like.
- the ROM 42 is a read-only memory that stores basic programs, parameters, and the like that operate the signal processing device 4.
- the RAM 43 is a readable and writable memory, and provides a working memory when the CPU 41 operates according to a signal processing program. More specifically, generation of h (t) from I signal and Q signal, calculation of virtual origin O'from search point 75, correction to signal 67 by offset of signal 66 before correction, phase from signal 67. It provides a memory for calculation when generating waveforms and amplitude waveforms.
- the detection device 44 detects the mixed wave output by the mixers 26 and 27 and outputs an I signal and a Q signal.
- the input device 45 includes, for example, an input device such as a touch panel, a keyboard, and a mouse, and receives an operation from a user of the signal processing device 4.
- the output device 46 includes output devices such as a display, a speaker, and a printer, displays the operation screen of the signal processing device 4 on the display, and outputs the analyzed biological signal to these output devices.
- the storage device 47 includes, for example, a large-capacity medium such as a semiconductor storage device or a hard disk, and a signal processing program for extracting a biological signal such as a pulse wave from the I signal and the Q signal detected by the detection device 44. , Other programs, and data of past measurement values are stored.
- FIG. 10 is a flowchart for explaining a procedure of signal processing performed by the signal processing device 4.
- the following processing is performed by the CPU 41 according to the signal processing program.
- the CPU 41 acquires the data necessary for the analysis (step 5).
- the CPU 41 performs this process by storing the I signal and the Q signal detected by the detection device 44 in the RAM 43.
- the CPU 41 performs an origin correction operation (step 10).
- the CPU 41 generates h (t) and stores the point sequence of the signal 66 in the RAM 43, calculates the variance of the distance r with respect to each search point 75 for all the points of the signal 66, and stores it in the RAM 43. Do it by doing.
- the CPU 41 acquires the virtual origin O'(step 15).
- the CPU 41 performs this process by setting the search point 75, which has the smallest variance stored in the RAM 43, at the virtual origin O'and storing it in the RAM 43.
- the CPU 41 corrects the origin (step 20).
- the CPU 41 estimates hf (t), which is a fixed component, from the displacement of the virtual origin O'with respect to the origin O, and offsets each point of the signal 66 by ⁇ hf (t) to obtain the corrected signal 67. This is done by calculating and storing in the RAM 43.
- the CPU 41 detects the pulse wave (step 25).
- the CPU 41 performs this processing by calculating an amplitude waveform from the signal 67 stored in the RAM 43, moving averaging the amplitude waveform, further differentiating the waveform, and storing the peak time and amplitude in the RAM 43.
- the CPU 41 outputs information about the pulse wave by displaying it on the display of the output device 46, for example, 70 times per minute (step 30). This is the end of the signal processing performed by the signal processing device 4, but since the virtual origin O'changes depending on the surrounding environment, the CPU 41 repeats the above processing at predetermined time intervals to update the virtual origin O'. And the pulse wave will be updated.
- the phase / amplitude measurement with reference to the virtual origin O' was performed by measuring the phase / amplitude with reference to the origin O.
- the phase / amplitude of hv (t) may be measured directly with reference to the virtual origin O'.
- the origin of the biological signal component included in the complex channel can be estimated by utilizing the fact that the biological signal draws an arc on the complex plane.
- the phase and amplitude can be measured from the biological signal with reference to the origin of the estimated biological signal component.
- the correct waveform can be restored by removing the distortion of the phase and amplitude caused by the deviation of the origin.
- the amplitude of the reflected wave was dominated by what was considered to be a respiratory component before the correction, but after the correction, the pulse wave became prominent, and a waveform with a larger amount of information than the conventional method can be obtained.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Cardiology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
The purpose of the present invention is to accurately detect biological signals. The reflected response of a microwave emitted to a living body includes an amplitude component and a phase component. Ideally, it is sufficient that the reflection component hv(t) from the living body is analyzed. However, the reflection response component h(t) includes not only the reflection component hv(t) from the living body but also the reflection components hf(t) from objects other than the living body such as walls and furniture. This causes displacement of the origin point for analysis from the origin point O, and the displacement as a signal error affects the detection accuracy. In view of this, in the present invention a signal processing device 4 determines a virtual origin point O' as a reference for analyzing hv(t) by analyzing an obtained signal, determines the phase component and the amplitude component from the virtual origin point O', and thereby can obtain a signal more suited for a phenomenon than those obtained by conventional methods using a filter. More specifically, in order to determine the phase and amplitude from the virtual origin point O', the signal processing device 4 uses the difference between the origin point O and the virtual origin point O' as an offset amount and offsets h(t) using the amount.
Description
本発明は、生体信号処理装置、及び生体信号処理プログラムに関し、例えば、生体信号を解析するものに関する。
The present invention relates to a biological signal processing device and a biological signal processing program, for example, to analyze a biological signal.
日々の健康状態を把握したり病気の予兆を発見したりするために、脈波の測定などのバイタル測定(生体測定)は、非常に重要である。
特に日常的に手軽に測定したいとの要望から非侵襲(針を刺したりしない)・非接触(装置を装着しない)で手軽に実施できるバイタル測定の需要があり、盛んに研究開発されている。 Vital measurement (biological measurement) such as pulse wave measurement is very important for grasping daily health condition and finding signs of illness.
In particular, there is a demand for vital measurement that can be easily performed non-invasively (without sticking a needle) and non-contact (without attaching a device) from the desire to easily measure on a daily basis, and is being actively researched and developed.
特に日常的に手軽に測定したいとの要望から非侵襲(針を刺したりしない)・非接触(装置を装着しない)で手軽に実施できるバイタル測定の需要があり、盛んに研究開発されている。 Vital measurement (biological measurement) such as pulse wave measurement is very important for grasping daily health condition and finding signs of illness.
In particular, there is a demand for vital measurement that can be easily performed non-invasively (without sticking a needle) and non-contact (without attaching a device) from the desire to easily measure on a daily basis, and is being actively researched and developed.
このような非侵襲・非接触でバイタル測定を行う技術に、マイクロ波レーダを用いるものがある。
当該レーダによって人体にマイクロ波を照射すると、その反射波は、呼吸・心拍・体動などによりドップラーシフト(周波数が遷移)するため、これを検波することによって呼吸・心拍・体動情報が含まれたベースバンドを検出することができる。 As a technique for performing such non-invasive and non-contact vital measurement, there is a technique using a microwave radar.
When the human body is irradiated with microwaves by the radar, the reflected waves undergo a Doppler shift (frequency transition) due to respiration, heartbeat, body movement, etc., so by detecting this, respiration, heartbeat, and body movement information are included. The baseband can be detected.
当該レーダによって人体にマイクロ波を照射すると、その反射波は、呼吸・心拍・体動などによりドップラーシフト(周波数が遷移)するため、これを検波することによって呼吸・心拍・体動情報が含まれたベースバンドを検出することができる。 As a technique for performing such non-invasive and non-contact vital measurement, there is a technique using a microwave radar.
When the human body is irradiated with microwaves by the radar, the reflected waves undergo a Doppler shift (frequency transition) due to respiration, heartbeat, body movement, etc., so by detecting this, respiration, heartbeat, and body movement information are included. The baseband can be detected.
ところで、単にマイクロ波を照射してその反射波を検波した場合、レーダと人体の距離が、使用するマイクロ波の波長の整数倍の位置(ヌル検出位置)にあるとドップラー信号強度が低下するという現象がある。
この現象を改善するため、非特許文献1の技術では、IQ復調による生体信号の検出を行っている。 By the way, when simply irradiating microwaves and detecting the reflected waves, the Doppler signal strength decreases if the distance between the radar and the human body is an integral multiple of the wavelength of the microwave used (null detection position). There is a phenomenon.
In order to improve this phenomenon, the technique of Non-PatentDocument 1 detects biological signals by IQ demodulation.
この現象を改善するため、非特許文献1の技術では、IQ復調による生体信号の検出を行っている。 By the way, when simply irradiating microwaves and detecting the reflected waves, the Doppler signal strength decreases if the distance between the radar and the human body is an integral multiple of the wavelength of the microwave used (null detection position). There is a phenomenon.
In order to improve this phenomenon, the technique of Non-Patent
IQ復調は、反射波からI信号とこれと直交するQ信号を検出するものであり、I信号とQ信号のうち、一方のドップラー信号強度が最低の時、他方が最適となり、一方が中間状態の時、他方も中間状態となるため、相互に補完しあって感度の低下を緩和することができる。
IQ demodulation detects the I signal and the Q signal orthogonal to the I signal from the reflected wave. When one of the I signal and the Q signal has the lowest Doppler signal strength, the other is optimal and the other is in the intermediate state. At this time, the other is also in an intermediate state, so that they can complement each other and alleviate the decrease in sensitivity.
このようにIQチャネル信号を組み合わせてバイタルの周波数変化分を検出する手法は各種提案されており、例えば、主成分分析などを利用してIQチャネルを選択する方法、アークタンジェント複合法、複素信号複合法などが提案されている。
これらドップラーレーダを用いて人体からバイタル成分を検出する技術では、反射の位相成分を、フィルタなどを用いて再生し、更に、周波数成分によって分離して、呼吸や心拍などの生体信号を得ている。 Various methods have been proposed to detect vital frequency changes by combining IQ channel signals in this way. For example, a method of selecting an IQ channel using principal component analysis, an arctangent composite method, and a complex signal composite method. Laws have been proposed.
In the technology of detecting vital components from the human body using these Doppler radars, the phase components of reflection are reproduced using a filter or the like, and further separated by frequency components to obtain biological signals such as respiration and heartbeat. ..
これらドップラーレーダを用いて人体からバイタル成分を検出する技術では、反射の位相成分を、フィルタなどを用いて再生し、更に、周波数成分によって分離して、呼吸や心拍などの生体信号を得ている。 Various methods have been proposed to detect vital frequency changes by combining IQ channel signals in this way. For example, a method of selecting an IQ channel using principal component analysis, an arctangent composite method, and a complex signal composite method. Laws have been proposed.
In the technology of detecting vital components from the human body using these Doppler radars, the phase components of reflection are reproduced using a filter or the like, and further separated by frequency components to obtain biological signals such as respiration and heartbeat. ..
しかし、反射波には、人体によるもののほか、壁や家具などの周辺の固定物からの成分も含まれており、従来技術では、それらも位相成分として再生されて誤差が生じるという問題があった。
従来技術によっても呼吸数や心拍数を検出することが可能であり利用価値はあるが、より高精度に信号を解析することによって、より良いサービスを提供したいとの要望があった。 However, the reflected wave contains components not only from the human body but also from peripheral fixed objects such as walls and furniture, and in the prior art, there is a problem that these are also reproduced as phase components and an error occurs. ..
Although it is possible to detect the respiratory rate and heart rate by the conventional technology and it is useful, there has been a demand to provide a better service by analyzing the signal with higher accuracy.
従来技術によっても呼吸数や心拍数を検出することが可能であり利用価値はあるが、より高精度に信号を解析することによって、より良いサービスを提供したいとの要望があった。 However, the reflected wave contains components not only from the human body but also from peripheral fixed objects such as walls and furniture, and in the prior art, there is a problem that these are also reproduced as phase components and an error occurs. ..
Although it is possible to detect the respiratory rate and heart rate by the conventional technology and it is useful, there has been a demand to provide a better service by analyzing the signal with higher accuracy.
本発明は、高精度に生体信号を検出することを目的とする。
An object of the present invention is to detect a biological signal with high accuracy.
(1)本発明は、前記目的を達成するために、請求項1に記載の発明では、生体に向けて送信されたマイクロ波の反射波の同相信号と直交信号から成る複素信号を取得する複素信号取得手段と、前記取得した複素信号が複素平面上で描く円弧状の軌跡の中心位置を特定し、当該中心位置により、前記複素信号に含まれる固定物からの反射による固定成分を推定する推定手段と、前記取得した複素信号から、前記推定した固定成分を除去することにより前記取得した複素信号を補正する補正手段と、前記補正した複素信号から前記生体の生体信号を取得する生体信号取得手段と、前記取得した生体信号を出力する出力手段と、を具備したことを特徴とする生体信号処理装置を提供する。
(2)請求項2に記載の発明では、前記補正手段が、前記特定した中心位置に対する前記複素平面の原点の位置をオフセット量とし、前記複素信号を前記オフセット量だけ前記複素平面でオフセットすることにより、前記取得した複素信号を補正することを特徴とする請求項1に記載の生体信号処理装置を提供する。
(3)請求項3に記載の発明では、前記生体信号取得手段が、前記複素信号の時間領域における振幅、又は位相から前記生体の脈波に対応する信号を取得することを特徴とする請求項1、又は請求項2に記載の生体信号処理装置を提供する。
(4)請求項4に記載の発明では、前記生体信号取得手段が、前記振幅の波形の移動平均を微分することにより前記脈波に対応する信号を取得することを特徴とする請求項3に記載の生体信号処理装置を提供する。
(5)請求項5に記載の発明では、前記複素信号取得手段が、複数のパスを伝搬してきた反射波から前記複素信号を取得することを特徴とする請求項1から請求項4までの内の何れか1の請求項に記載の生体信号処理装置を提供する。
(6)請求項6に記載の発明では、生体に向けて送信されたマイクロ波の反射波の同相信号と直交信号から成る複素信号を取得する複素信号取得機能と、前記取得した複素信号が複素平面上で描く円弧状の軌跡の中心位置を特定し、当該中心位置により、前記複素信号に含まれる固定物からの反射による固定成分を推定する推定機能と、前記取得した複素信号から、前記推定した固定成分を除去することにより前記取得した複素信号を補正する補正機能と、前記補正した複素信号から前記生体の生体信号を取得する生体信号取得機能と、前記取得した生体信号を出力する出力機能と、をコンピュータで実現する生体信号処理プログラムを提供する。 (1) In order to achieve the above object, in the invention according toclaim 1, the present invention acquires a complex signal composed of an in-phase signal and an orthogonal signal of a reflected wave of a microwave transmitted to a living body. The complex signal acquisition means and the center position of the arc-shaped locus drawn by the acquired complex signal on the complex plane are specified, and the fixed component due to the reflection from the fixed object contained in the complex signal is estimated from the center position. An estimation means, a correction means for correcting the acquired complex signal by removing the estimated fixed component from the acquired complex signal, and a biological signal acquisition for acquiring the biological signal of the living body from the corrected complex signal. Provided is a biological signal processing device including means and an output means for outputting the acquired biological signal.
(2) In the invention according toclaim 2, the correction means sets the position of the origin of the complex plane with respect to the specified center position as an offset amount, and offsets the complex signal by the offset amount in the complex plane. The biometric signal processing apparatus according to claim 1, wherein the acquired complex signal is corrected by the above method.
(3) The invention according toclaim 3, wherein the biological signal acquisition means acquires a signal corresponding to the pulse wave of the biological signal from the amplitude or phase of the complex signal in the time region. 1 or the biological signal processing apparatus according to claim 2.
(4) The invention according toclaim 4, wherein the biological signal acquisition means acquires a signal corresponding to the pulse wave by differentiating the moving average of the waveform of the amplitude. The described biosignal processing apparatus is provided.
(5) The invention according to claim 5, wherein the complex signal acquisition means acquires the complex signal from a reflected wave propagating in a plurality of paths, amongclaims 1 to 4. The biological signal processing apparatus according to any one of the above is provided.
(6) In the invention according to claim 6, the complex signal acquisition function for acquiring a complex signal composed of an in-phase signal and an orthogonal signal of a reflected wave of a microwave transmitted to a living body and the acquired complex signal are From the estimation function that identifies the center position of the arc-shaped locus drawn on the complex plane and estimates the fixed component due to the reflection from the fixed object contained in the complex signal from the center position, and the acquired complex signal, the above A correction function for correcting the acquired complex signal by removing the estimated fixed component, a biological signal acquisition function for acquiring the biological signal of the living body from the corrected complex signal, and an output for outputting the acquired biological signal. It provides a biological signal processing program that realizes functions and on a computer.
(2)請求項2に記載の発明では、前記補正手段が、前記特定した中心位置に対する前記複素平面の原点の位置をオフセット量とし、前記複素信号を前記オフセット量だけ前記複素平面でオフセットすることにより、前記取得した複素信号を補正することを特徴とする請求項1に記載の生体信号処理装置を提供する。
(3)請求項3に記載の発明では、前記生体信号取得手段が、前記複素信号の時間領域における振幅、又は位相から前記生体の脈波に対応する信号を取得することを特徴とする請求項1、又は請求項2に記載の生体信号処理装置を提供する。
(4)請求項4に記載の発明では、前記生体信号取得手段が、前記振幅の波形の移動平均を微分することにより前記脈波に対応する信号を取得することを特徴とする請求項3に記載の生体信号処理装置を提供する。
(5)請求項5に記載の発明では、前記複素信号取得手段が、複数のパスを伝搬してきた反射波から前記複素信号を取得することを特徴とする請求項1から請求項4までの内の何れか1の請求項に記載の生体信号処理装置を提供する。
(6)請求項6に記載の発明では、生体に向けて送信されたマイクロ波の反射波の同相信号と直交信号から成る複素信号を取得する複素信号取得機能と、前記取得した複素信号が複素平面上で描く円弧状の軌跡の中心位置を特定し、当該中心位置により、前記複素信号に含まれる固定物からの反射による固定成分を推定する推定機能と、前記取得した複素信号から、前記推定した固定成分を除去することにより前記取得した複素信号を補正する補正機能と、前記補正した複素信号から前記生体の生体信号を取得する生体信号取得機能と、前記取得した生体信号を出力する出力機能と、をコンピュータで実現する生体信号処理プログラムを提供する。 (1) In order to achieve the above object, in the invention according to
(2) In the invention according to
(3) The invention according to
(4) The invention according to
(5) The invention according to claim 5, wherein the complex signal acquisition means acquires the complex signal from a reflected wave propagating in a plurality of paths, among
(6) In the invention according to claim 6, the complex signal acquisition function for acquiring a complex signal composed of an in-phase signal and an orthogonal signal of a reflected wave of a microwave transmitted to a living body and the acquired complex signal are From the estimation function that identifies the center position of the arc-shaped locus drawn on the complex plane and estimates the fixed component due to the reflection from the fixed object contained in the complex signal from the center position, and the acquired complex signal, the above A correction function for correcting the acquired complex signal by removing the estimated fixed component, a biological signal acquisition function for acquiring the biological signal of the living body from the corrected complex signal, and an output for outputting the acquired biological signal. It provides a biological signal processing program that realizes functions and on a computer.
本発明によれば、反射波から固定成分を除くことによって、高精度に生体信号を検出することができる。
According to the present invention, a biological signal can be detected with high accuracy by removing a fixed component from the reflected wave.
(1)実施形態の概要
図1に示したように、生体に照射したマイクロ波の反射応答には、振幅成分と位相成分があり、理想的には生体からの反射成分hv(t)を解析すればよい。
しかし、反射応答成分h(t)は、生体からの反射成分hv(t)のほか、生体以外の壁や家具などからの反射成分hf(t)を含んでいる。これによって解析するための原点が原点Oからずれ、これが信号誤差となって検出精度に影響する。
そこで信号処理装置4は、得られた信号を解析してhv(t)を解析する基準となる仮想原点O’を求め、当該仮想原点O’からの位相、振幅成分を求めることで従来のフィルタを用いる方式よりも現象にあった信号を得ることができる。 (1) Outline of the Embodiment As shown in FIG. 1, the reflection response of the microwave irradiated to the living body has an amplitude component and a phase component, and ideally, the reflection component hv (t) from the living body is analyzed. do it.
However, the reflection response component h (t) includes a reflection component hv (t) from a living body and a reflection component hf (t) from a wall or furniture other than the living body. As a result, the origin for analysis deviates from the origin O, which becomes a signal error and affects the detection accuracy.
Therefore, thesignal processing device 4 analyzes the obtained signal to obtain a virtual origin O'which is a reference for analyzing hv (t), and obtains a phase and amplitude component from the virtual origin O'to obtain a conventional filter. It is possible to obtain a signal that matches the phenomenon more than the method using.
図1に示したように、生体に照射したマイクロ波の反射応答には、振幅成分と位相成分があり、理想的には生体からの反射成分hv(t)を解析すればよい。
しかし、反射応答成分h(t)は、生体からの反射成分hv(t)のほか、生体以外の壁や家具などからの反射成分hf(t)を含んでいる。これによって解析するための原点が原点Oからずれ、これが信号誤差となって検出精度に影響する。
そこで信号処理装置4は、得られた信号を解析してhv(t)を解析する基準となる仮想原点O’を求め、当該仮想原点O’からの位相、振幅成分を求めることで従来のフィルタを用いる方式よりも現象にあった信号を得ることができる。 (1) Outline of the Embodiment As shown in FIG. 1, the reflection response of the microwave irradiated to the living body has an amplitude component and a phase component, and ideally, the reflection component hv (t) from the living body is analyzed. do it.
However, the reflection response component h (t) includes a reflection component hv (t) from a living body and a reflection component hf (t) from a wall or furniture other than the living body. As a result, the origin for analysis deviates from the origin O, which becomes a signal error and affects the detection accuracy.
Therefore, the
より具体的には、仮想原点O’からの位相、振幅を求めるために、信号処理装置4は、原点Oと仮想原点O’の差をオフセット量とし、h(t)をこれによってオフセットする。
これによって、仮想原点O’が原点Oに一致するため、仮想原点O’からの位相、振幅成分の解析を原点Oを基準とした位相、振幅成分によって行うことができる。 More specifically, in order to obtain the phase and amplitude from the virtual origin O', thesignal processing device 4 sets the difference between the origin O and the virtual origin O'as an offset amount, and offsets h (t) by this.
As a result, since the virtual origin O'matches the origin O, the phase and amplitude components from the virtual origin O'can be analyzed using the phase and amplitude components with respect to the origin O.
これによって、仮想原点O’が原点Oに一致するため、仮想原点O’からの位相、振幅成分の解析を原点Oを基準とした位相、振幅成分によって行うことができる。 More specifically, in order to obtain the phase and amplitude from the virtual origin O', the
As a result, since the virtual origin O'matches the origin O, the phase and amplitude components from the virtual origin O'can be analyzed using the phase and amplitude components with respect to the origin O.
(2)実施形態の詳細
図1は、生体信号(バイタルサイン、バイタル信号)を測定する測定装置1の構成を説明するための図である。本実施の形態では、生体信号として呼吸と脈波を測定する。
測定装置1は、マイクロ波回路2、制御装置3、信号処理装置4などから構成されている。
更に、マイクロ波回路2は、発信器21、分配移相部24、混合器(ミキサ)26、27、送信アンテナ23、受信アンテナ25などから構成されている。
また、図示しないがマイクロ波回路2によるマイクロ波照射方向には、生体信号計測の対象者7が着座するための椅子が設置されている。 (2) Details of the Embodiment FIG. 1 is a diagram for explaining a configuration of ameasuring device 1 for measuring a biological signal (vital sign, vital signal). In this embodiment, respiration and pulse waves are measured as biological signals.
Themeasuring device 1 is composed of a microwave circuit 2, a control device 3, a signal processing device 4, and the like.
Further, themicrowave circuit 2 is composed of a transmitter 21, a distribution phase shift unit 24, mixers (mixers) 26 and 27, a transmitting antenna 23, a receiving antenna 25, and the like.
Further, although not shown, a chair for seating the subject 7 of the biological signal measurement is installed in the direction of microwave irradiation by themicrowave circuit 2.
図1は、生体信号(バイタルサイン、バイタル信号)を測定する測定装置1の構成を説明するための図である。本実施の形態では、生体信号として呼吸と脈波を測定する。
測定装置1は、マイクロ波回路2、制御装置3、信号処理装置4などから構成されている。
更に、マイクロ波回路2は、発信器21、分配移相部24、混合器(ミキサ)26、27、送信アンテナ23、受信アンテナ25などから構成されている。
また、図示しないがマイクロ波回路2によるマイクロ波照射方向には、生体信号計測の対象者7が着座するための椅子が設置されている。 (2) Details of the Embodiment FIG. 1 is a diagram for explaining a configuration of a
The
Further, the
Further, although not shown, a chair for seating the subject 7 of the biological signal measurement is installed in the direction of microwave irradiation by the
なお、本実施の形態では、測定装置1を実験室で使用したため、対象者7を椅子に着座させたが、これは一例であって、例えば、車両に搭載してドライバの生体信号を検出したり、病院や介護施設でこれらの利用者の生体信号を検出したり、あるいは、家庭の洗面台に設置して洗面者の生体信号を検出したりなど、各種の利用シーンで広く活用することができる。
In the present embodiment, since the measuring device 1 is used in the laboratory, the subject 7 is seated on a chair. This is an example, and for example, it is mounted on a vehicle to detect the biological signal of the driver. It can be widely used in various usage scenarios, such as detecting the biological signals of these users in hospitals and nursing homes, or installing it on a washbasin at home to detect the biological signals of washers. it can.
制御装置3は、発信器21の駆動を制御する制御装置である。
制御装置3は、発信器21に電力を供給すると共にこれを駆動してマイクロ波を発生させる。
発信器21は、マイクロ波発振用のデバイスを備えており、所定の周波数のマイクロ波(本実施の形態では、5.018[GHz]のマイクロ波を使用した)を生成して送信する。
発信器21が送信したマイクロ波は、送信経路を経由して送信アンテナ23に送出されるほか、一部は参照波として分配移相部24に分配送出される。 Thecontrol device 3 is a control device that controls the drive of the transmitter 21.
Thecontrol device 3 supplies electric power to the transmitter 21 and drives the transmitter 21 to generate microwaves.
Thetransmitter 21 includes a device for oscillating microwaves, and generates and transmits microwaves having a predetermined frequency (in the present embodiment, microwaves of 5.018 [GHz] are used).
The microwave transmitted by thetransmitter 21 is transmitted to the transmitting antenna 23 via the transmission path, and a part of the microwave is distributed and transmitted to the distribution phase shift unit 24 as a reference wave.
制御装置3は、発信器21に電力を供給すると共にこれを駆動してマイクロ波を発生させる。
発信器21は、マイクロ波発振用のデバイスを備えており、所定の周波数のマイクロ波(本実施の形態では、5.018[GHz]のマイクロ波を使用した)を生成して送信する。
発信器21が送信したマイクロ波は、送信経路を経由して送信アンテナ23に送出されるほか、一部は参照波として分配移相部24に分配送出される。 The
The
The
The microwave transmitted by the
分配移相部24は、分配機能と移相機能を有しており(例えば、分配器と移相器を組み合わせて構成してある)、参照波を2波に分配すると共に、一方を参照波と同相で混合器26に入力し、他方を90°の位相量だけ移相して混合器27に入力する。
このようにして分配移相部24は、送信アンテナ23が出力するマイクロ波と同相の参照波と、これと位相が直交する参照波を生成し、それぞれ、混合器26と混合器27に入力する。 The distributionphase shift unit 24 has a distribution function and a phase shift function (for example, it is configured by combining a distributor and a phase shifter), distributes a reference wave into two waves, and one of them is a reference wave. Is input to the mixer 26 in the same phase as, and the other is phase-shifted by a phase amount of 90 ° and input to the mixer 27.
In this way, the distributionphase shift unit 24 generates a reference wave having the same phase as the microwave output by the transmitting antenna 23 and a reference wave having a phase orthogonal to the reference wave, and inputs the reference wave to the mixer 26 and the mixer 27, respectively. ..
このようにして分配移相部24は、送信アンテナ23が出力するマイクロ波と同相の参照波と、これと位相が直交する参照波を生成し、それぞれ、混合器26と混合器27に入力する。 The distribution
In this way, the distribution
送信アンテナ23は、16素子パッチアレーアンテナで構成されており、発信器21が発生したマイクロ波を対象者7に向けて照射する。
受信アンテナ25は、8素子パッチアレーアンテナで構成されており、送信アンテナ23が送信したマイクロ波の反射波を受信して、これを分配して混合器26、27に送出する。 The transmittingantenna 23 is composed of a 16-element patch array antenna, and irradiates the subject 7 with the microwave generated by the transmitter 21.
The receivingantenna 25 is composed of an 8-element patch array antenna, receives the reflected microwave wave transmitted by the transmitting antenna 23, distributes the reflected wave, and transmits the reflected wave to the mixers 26 and 27.
受信アンテナ25は、8素子パッチアレーアンテナで構成されており、送信アンテナ23が送信したマイクロ波の反射波を受信して、これを分配して混合器26、27に送出する。 The transmitting
The receiving
なお、実験では、送信アンテナ23を0.719mの高さに設置し、受信アンテナ25を0.975mの高さに設置した。
また、これらパッチアレーアンテナから対象者7までの距離を0.3mとし、パッチアレーアンテナの素子間の間隔を、発信器21が発信するマイクロ波の0.5波長とした。
このように測定装置1は、複数のアンテナで送受信するMIMO(Multiple Input Multiple Output)を採用しているが、図ではこれらのうちの1セットを示している。 In the experiment, the transmittingantenna 23 was installed at a height of 0.719 m, and the receiving antenna 25 was installed at a height of 0.975 m.
Further, the distance from these patch array antennas to the subject 7 was set to 0.3 m, and the distance between the elements of the patch array antenna was set to 0.5 wavelength of the microwave transmitted by thetransmitter 21.
As described above, the measuringdevice 1 employs MIMO (Multiple Input Multiple Output) that transmits and receives with a plurality of antennas, and the figure shows one set of these.
また、これらパッチアレーアンテナから対象者7までの距離を0.3mとし、パッチアレーアンテナの素子間の間隔を、発信器21が発信するマイクロ波の0.5波長とした。
このように測定装置1は、複数のアンテナで送受信するMIMO(Multiple Input Multiple Output)を採用しているが、図ではこれらのうちの1セットを示している。 In the experiment, the transmitting
Further, the distance from these patch array antennas to the subject 7 was set to 0.3 m, and the distance between the elements of the patch array antenna was set to 0.5 wavelength of the microwave transmitted by the
As described above, the measuring
MIMOにより、マイクロ波の指向性を鋭くすることができるほか、マイクロ波の方向を微調整して、脈波がよく検出できる部位(発明者の実験によると対象者7の心臓部あたり)にマイクロ波を照射することができる。
なお、対象者7が着衣していたり、病院や介護施設で布団をかけている場合でもマイクロ波はこれらを透過するため、対象者7に対して送信アンテナ23からマイクロ波を照射し、対象者7の体表面で反射した反射波を受信アンテナ25で受信することができる。 In addition to being able to sharpen the directivity of microwaves with MIMO, the direction of microwaves can be fine-tuned to make microscopic areas where pulse waves can be detected well (according to the inventor's experiment, around the heart of subject 7). Can irradiate waves.
Even if the subject 7 is dressed or is wearing a futon at a hospital or a nursing care facility, the microwave is transmitted through them. Therefore, the subject 7 is irradiated with the microwave from the transmittingantenna 23, and the subject is subjected to the microwave. The reflected wave reflected on the body surface of No. 7 can be received by the receiving antenna 25.
なお、対象者7が着衣していたり、病院や介護施設で布団をかけている場合でもマイクロ波はこれらを透過するため、対象者7に対して送信アンテナ23からマイクロ波を照射し、対象者7の体表面で反射した反射波を受信アンテナ25で受信することができる。 In addition to being able to sharpen the directivity of microwaves with MIMO, the direction of microwaves can be fine-tuned to make microscopic areas where pulse waves can be detected well (according to the inventor's experiment, around the heart of subject 7). Can irradiate waves.
Even if the subject 7 is dressed or is wearing a futon at a hospital or a nursing care facility, the microwave is transmitted through them. Therefore, the subject 7 is irradiated with the microwave from the transmitting
対象者7の胸付近の体表面は、測定装置1に対して矢線60に示したように呼吸で前後運動しているため、マイクロ波の反射波は、これによりドプラーシフトする。
また、対象者7の体表面は、脈拍によって膨張と縮小を繰り返し、これによってもドプラーシフトが生じる。
このように、受信アンテナ25が受信する反射波には、呼吸と脈波の情報が含まれている。 Since the body surface near the chest of the subject 7 moves back and forth by respiration as shown by thearrow line 60 with respect to the measuring device 1, the reflected wave of the microwave is Doppler-shifted by this.
In addition, the body surface of the subject 7 repeatedly expands and contracts due to the pulse, which also causes a Doppler shift.
As described above, the reflected wave received by the receivingantenna 25 includes information on respiration and pulse wave.
また、対象者7の体表面は、脈拍によって膨張と縮小を繰り返し、これによってもドプラーシフトが生じる。
このように、受信アンテナ25が受信する反射波には、呼吸と脈波の情報が含まれている。 Since the body surface near the chest of the subject 7 moves back and forth by respiration as shown by the
In addition, the body surface of the subject 7 repeatedly expands and contracts due to the pulse, which also causes a Doppler shift.
As described above, the reflected wave received by the receiving
混合器26は、受信アンテナ25が受信した反射波を発信器21による同相の参照波と混合し、これによって、うなり(ビート、混合波)を発生させて信号処理装置4に出力する。
混合器27は、受信アンテナ25が受信した反射波を90°だけ移相した参照波と混合し、これによって、うなりを発生させて信号処理装置4に出力する。 Themixer 26 mixes the reflected wave received by the receiving antenna 25 with the in-phase reference wave by the transmitter 21, thereby generating a beat (beat, mixed wave) and outputting it to the signal processing device 4.
Themixer 27 mixes the reflected wave received by the receiving antenna 25 with the reference wave whose phase has been shifted by 90 °, thereby generating a beat and outputting it to the signal processing device 4.
混合器27は、受信アンテナ25が受信した反射波を90°だけ移相した参照波と混合し、これによって、うなりを発生させて信号処理装置4に出力する。 The
The
信号処理装置4は、生体信号処理装置として機能する装置である。信号処理装置4は、混合器26と混合器27が出力する混合波をそれぞれ検波する検波装置を備えており、混合器26が出力する同相成分のI信号、混合器27が出力する直交成分のQ信号から式22で示した複素数の信号(複素信号)h(t)=I(t)+jQ(t)を生成する。ここで、jは、虚数単位であり、tは時間を表している。
The signal processing device 4 is a device that functions as a biological signal processing device. The signal processing device 4 includes a detection device that detects the mixed waves output by the mixer 26 and the mixer 27, respectively, and has an I signal of the in-phase component output by the mixer 26 and an orthogonal component output by the mixer 27. A complex number signal (complex signal) h (t) = I (t) + jQ (t) represented by the equation 22 is generated from the Q signal. Here, j is an imaginary unit and t represents time.
このように、信号処理装置4は、生体に向けて送信されたマイクロ波の反射波の同相信号(I信号)と直交信号(Q信号)から成る複素信号を取得する複素信号取得手段を備えている。
これにより測定装置1は、ヌル検出位置による感度の低下を抑止することができ、対象者7は、測定装置1との位置関係を気にせずに測定装置1を利用することができる。 As described above, thesignal processing device 4 includes a complex signal acquisition means for acquiring a complex signal composed of an in-phase signal (I signal) and an orthogonal signal (Q signal) of the reflected wave of the microwave transmitted to the living body. ing.
As a result, the measuringdevice 1 can suppress a decrease in sensitivity due to the null detection position, and the subject 7 can use the measuring device 1 without worrying about the positional relationship with the measuring device 1.
これにより測定装置1は、ヌル検出位置による感度の低下を抑止することができ、対象者7は、測定装置1との位置関係を気にせずに測定装置1を利用することができる。 As described above, the
As a result, the measuring
h(t)には、対象者7からの反射による成分hv(t)のほか、家具や壁などの環境に固定された物体50からの反射による成分hf(t)が重畳されている。
本来はhv(t)から生体信号を抽出したいが、h(t)にはhf(t)が重畳されているため、hv(t)を用いた精密測定を行う場合、何らかの方法によりこれを除去する必要がある。
そこで、信号処理装置4は、以下のようにしてhf(t)を推定し、これをh(t)から除く補正を行ってh(t)からhv(t)を再生する。 In addition to the component hv (t) due to the reflection from the subject 7, the component hf (t) due to the reflection from theobject 50 fixed to the environment such as furniture or a wall is superimposed on h (t).
Originally, we want to extract a biological signal from hv (t), but since hf (t) is superimposed on h (t), when performing precise measurement using hv (t), this is removed by some method. There is a need to.
Therefore, thesignal processing device 4 estimates hf (t) as follows, corrects it by removing it from h (t), and reproduces hv (t) from h (t).
本来はhv(t)から生体信号を抽出したいが、h(t)にはhf(t)が重畳されているため、hv(t)を用いた精密測定を行う場合、何らかの方法によりこれを除去する必要がある。
そこで、信号処理装置4は、以下のようにしてhf(t)を推定し、これをh(t)から除く補正を行ってh(t)からhv(t)を再生する。 In addition to the component hv (t) due to the reflection from the subject 7, the component hf (t) due to the reflection from the
Originally, we want to extract a biological signal from hv (t), but since hf (t) is superimposed on h (t), when performing precise measurement using hv (t), this is removed by some method. There is a need to.
Therefore, the
図1(b)に示したように、h(t)は、複素平面上で表すと、物体50からの反射によるhf(t)と、対象者7からの反射によるhv(t)を足したものとなっている。
なお、この複素平面は、実軸である横軸を搬送波と同じ位相(同相成分)の軸とし(I軸とも呼ばれる)、虚軸である縦軸を搬送波と直交する位相(直交位相成分)の軸とする(Q軸とも呼ばれる)ものである。 As shown in FIG. 1 (b), h (t) is the sum of hf (t) due to reflection from theobject 50 and hv (t) due to reflection from the subject 7 when expressed on the complex plane. It has become a thing.
In this complex plane, the horizontal axis, which is the real axis, is the axis of the same phase (in-phase component) as the carrier wave (also called the I axis), and the vertical axis, which is the imaginary axis, is the phase (orthogonal phase component) orthogonal to the carrier wave. It is an axis (also called a Q axis).
なお、この複素平面は、実軸である横軸を搬送波と同じ位相(同相成分)の軸とし(I軸とも呼ばれる)、虚軸である縦軸を搬送波と直交する位相(直交位相成分)の軸とする(Q軸とも呼ばれる)ものである。 As shown in FIG. 1 (b), h (t) is the sum of hf (t) due to reflection from the
In this complex plane, the horizontal axis, which is the real axis, is the axis of the same phase (in-phase component) as the carrier wave (also called the I axis), and the vertical axis, which is the imaginary axis, is the phase (orthogonal phase component) orthogonal to the carrier wave. It is an axis (also called a Q axis).
hf(t)は、環境に固定した物体50によるものなので固定しており、固定成分(直流成分、DC成分)となっている。
一方、hv(t)は、対象者7の呼吸によって周期的に変化し、仮想原点O’(後述するようにこの点は推定されるため仮想と呼ぶことにした)を中心とする円弧61上を対象者7の呼吸に同期して時計方向と反時計方向に行ったり来たりの周期運動を行う。 Since hf (t) is due to theobject 50 fixed to the environment, it is fixed and has fixed components (DC component, DC component).
On the other hand, hv (t) changes periodically by the respiration of the subject 7, and is on thearc 61 centered on the virtual origin O'(this point is estimated and is called virtual as described later). Is synchronized with the respiration of the subject 7 to perform a periodic movement back and forth between the clockwise direction and the counterclockwise direction.
一方、hv(t)は、対象者7の呼吸によって周期的に変化し、仮想原点O’(後述するようにこの点は推定されるため仮想と呼ぶことにした)を中心とする円弧61上を対象者7の呼吸に同期して時計方向と反時計方向に行ったり来たりの周期運動を行う。 Since hf (t) is due to the
On the other hand, hv (t) changes periodically by the respiration of the subject 7, and is on the
hf(t)にhv(t)を加えたものがh(t)として複素平面上で観測されるため、h(t)の軌跡は、hf(t)の周期運動の中心が仮想原点O’にずれたものとなる。
このようにh(t)は、原点Oを中心として振動していないため、生体信号の波形が歪んで検出される。 Since hf (t) plus hv (t) is observed as h (t) on the complex plane, the locus of h (t) has the center of the periodic motion of hf (t) as the virtual origin O'. It will be shifted to.
As described above, since h (t) does not vibrate around the origin O, the waveform of the biological signal is distorted and detected.
このようにh(t)は、原点Oを中心として振動していないため、生体信号の波形が歪んで検出される。 Since hf (t) plus hv (t) is observed as h (t) on the complex plane, the locus of h (t) has the center of the periodic motion of hf (t) as the virtual origin O'. It will be shifted to.
As described above, since h (t) does not vibrate around the origin O, the waveform of the biological signal is distorted and detected.
そこで、本実施の形態では、対象者7からの反射波であるhv(t)が円弧を描くという性質があることに着目し、円弧61の位置と形状からhv(t)の周期運動の中心点である仮想原点O’の位置を推定することにより特定する。これによって原点Oから仮想原点O’に至るhf(t)を推定することができる。
このように、信号処理装置4は、複素信号が複素平面上で描く円弧状の軌跡の中心位置を特定し、当該中心位置により、当該複素信号に含まれる固定物からの反射による固定成分を推定する推定手段を備えている。 Therefore, in the present embodiment, paying attention to the property that hv (t), which is a reflected wave from the subject 7, draws an arc, the center of the periodic motion of hv (t) is determined from the position and shape of thearc 61. It is specified by estimating the position of the virtual origin O', which is a point. As a result, hf (t) from the origin O to the virtual origin O'can be estimated.
In this way, thesignal processing device 4 specifies the center position of the arcuate locus drawn by the complex signal on the complex plane, and estimates the fixed component due to the reflection from the fixed object contained in the complex signal from the center position. It has an estimation means to do.
このように、信号処理装置4は、複素信号が複素平面上で描く円弧状の軌跡の中心位置を特定し、当該中心位置により、当該複素信号に含まれる固定物からの反射による固定成分を推定する推定手段を備えている。 Therefore, in the present embodiment, paying attention to the property that hv (t), which is a reflected wave from the subject 7, draws an arc, the center of the periodic motion of hv (t) is determined from the position and shape of the
In this way, the
そして、信号処理装置4は、図1(c)に示したように、仮想原点O’が原点Oと一致するようにh(t)をオフセットすることによりh(t)からhf(t)を除去する補正を行う。
このように、信号処理装置4は、複素信号から、推定した固定成分を除去することにより当該複素信号を補正する補正手段を備えている。
そして、当該補正手段は、特定した中心位置に対する複素平面の原点の位置をオフセット量とし、複素信号を当該オフセット量だけ複素平面でオフセットすることにより、複素信号を補正している。 Then, as shown in FIG. 1 (c), thesignal processing device 4 offsets h (t) so that the virtual origin O'consists with the origin O, thereby shifting h (t) from h (t) to hf (t). Make a correction to remove.
As described above, thesignal processing device 4 includes a correction means for correcting the complex signal by removing the estimated fixed component from the complex signal.
Then, the correction means corrects the complex signal by using the position of the origin of the complex plane with respect to the specified center position as an offset amount and offsetting the complex signal by the offset amount in the complex plane.
このように、信号処理装置4は、複素信号から、推定した固定成分を除去することにより当該複素信号を補正する補正手段を備えている。
そして、当該補正手段は、特定した中心位置に対する複素平面の原点の位置をオフセット量とし、複素信号を当該オフセット量だけ複素平面でオフセットすることにより、複素信号を補正している。 Then, as shown in FIG. 1 (c), the
As described above, the
Then, the correction means corrects the complex signal by using the position of the origin of the complex plane with respect to the specified center position as an offset amount and offsetting the complex signal by the offset amount in the complex plane.
これによってhv(t)(補正後のh(t))が原点Oを中心として円弧62を描くため、原点Oを基準として位相や振幅を測定することができ、より精密な生体信号を検出することができる。
後述するように振幅からは生体信号として脈波を抽出することができ、信号処理装置4は、これをディスプレイなどに出力することができる。
このように、信号処理装置4は、補正した複素信号から生体の生体信号を取得する生体信号取得手段と、当該生体信号を出力する出力手段と、を備えている。 As a result, hv (t) (corrected h (t)) draws anarc 62 centered on the origin O, so that the phase and amplitude can be measured with reference to the origin O, and a more precise biological signal can be detected. be able to.
As will be described later, a pulse wave can be extracted as a biological signal from the amplitude, and thesignal processing device 4 can output this to a display or the like.
As described above, thesignal processing device 4 includes a biological signal acquisition means for acquiring a biological signal of a biological body from the corrected complex signal, and an output means for outputting the biological signal.
後述するように振幅からは生体信号として脈波を抽出することができ、信号処理装置4は、これをディスプレイなどに出力することができる。
このように、信号処理装置4は、補正した複素信号から生体の生体信号を取得する生体信号取得手段と、当該生体信号を出力する出力手段と、を備えている。 As a result, hv (t) (corrected h (t)) draws an
As will be described later, a pulse wave can be extracted as a biological signal from the amplitude, and the
As described above, the
図2は、仮想原点O’を求める方法を説明するための図である。
図2は、複素平面を表しており、信号処理装置4は、複素平面上に仮想原点O’の候補となる探索点75、75、・・・を所定間隔で多数配置している。
信号65は、h(t)をサンプリングした点を複素平面上にプロットしたものであって、h(t)のIチャネルとQチャネルを足し合わせた(合成した)ものとなっている。そして、信号65の点の軌跡は、上述したように円弧状となる。
なお、本実験では、サンプリング周波数は、200Hzとし、70秒間測定した。
横軸を同相とし、縦軸を直交する相とする複素平面に信号をプロットした図は、コンスタレーションと呼ばれる。 FIG. 2 is a diagram for explaining a method of obtaining the virtual origin O'.
FIG. 2 represents a complex plane, and thesignal processing device 4 arranges a large number of search points 75, 75, ... As candidates for the virtual origin O'on the complex plane at predetermined intervals.
Thesignal 65 is a plot of the sampled points of h (t) on a complex plane, and is a sum (composite) of the I channel and the Q channel of h (t). Then, the locus of the point of the signal 65 has an arc shape as described above.
In this experiment, the sampling frequency was set to 200 Hz and the measurement was performed for 70 seconds.
A diagram in which signals are plotted on a complex plane with the horizontal axis in phase and the vertical axis in orthogonal phases is called a constellation.
図2は、複素平面を表しており、信号処理装置4は、複素平面上に仮想原点O’の候補となる探索点75、75、・・・を所定間隔で多数配置している。
信号65は、h(t)をサンプリングした点を複素平面上にプロットしたものであって、h(t)のIチャネルとQチャネルを足し合わせた(合成した)ものとなっている。そして、信号65の点の軌跡は、上述したように円弧状となる。
なお、本実験では、サンプリング周波数は、200Hzとし、70秒間測定した。
横軸を同相とし、縦軸を直交する相とする複素平面に信号をプロットした図は、コンスタレーションと呼ばれる。 FIG. 2 is a diagram for explaining a method of obtaining the virtual origin O'.
FIG. 2 represents a complex plane, and the
The
In this experiment, the sampling frequency was set to 200 Hz and the measurement was performed for 70 seconds.
A diagram in which signals are plotted on a complex plane with the horizontal axis in phase and the vertical axis in orthogonal phases is called a constellation.
信号処理装置4は、このように配置した探索点75、75、・・・において、信号65の全ての点(即ち、h(t)をサンプリングした点)から各探索点75までの距離rを計算する。そして、rの分散が最小となる探索点75を仮想原点O’に設定する。
このように分散が最小となる探索点75は、信号65の各点からの距離が概略等しいため、円弧の中心点として最もふさわしい点となっている。 At the search points 75, 75, ... Arranged in this way, thesignal processing device 4 sets the distance r from all the points of the signal 65 (that is, the points obtained by sampling h (t)) to each search point 75. calculate. Then, the search point 75 that minimizes the variance of r is set to the virtual origin O'.
Since the distances from the respective points of thesignal 65 are approximately the same, the search point 75 having the minimum variance is the most suitable point as the center point of the arc.
このように分散が最小となる探索点75は、信号65の各点からの距離が概略等しいため、円弧の中心点として最もふさわしい点となっている。 At the search points 75, 75, ... Arranged in this way, the
Since the distances from the respective points of the
図3は、チャネルの補正を説明するための図である。
図3(a)は、補正前のh(t)による信号66を表しており、仮想原点O’は、複素平面の原点Oから離れた位置にある。このオフセットされた成分がhf(t)によるものと推定される。
なお、この図は、図示したようにパッチアレーアンテナ90の2番目の送信アンテナ23と1番目の受信アンテナ25のパスによるものである。 FIG. 3 is a diagram for explaining channel correction.
FIG. 3A shows thesignal 66 due to h (t) before correction, and the virtual origin O'is located at a position away from the origin O in the complex plane. It is presumed that this offset component is due to hf (t).
As shown in the figure, this figure is based on the path of thesecond transmitting antenna 23 and the first receiving antenna 25 of the patch array antenna 90.
図3(a)は、補正前のh(t)による信号66を表しており、仮想原点O’は、複素平面の原点Oから離れた位置にある。このオフセットされた成分がhf(t)によるものと推定される。
なお、この図は、図示したようにパッチアレーアンテナ90の2番目の送信アンテナ23と1番目の受信アンテナ25のパスによるものである。 FIG. 3 is a diagram for explaining channel correction.
FIG. 3A shows the
As shown in the figure, this figure is based on the path of the
信号処理装置4は、図3(b)に示したように、仮想原点O’と原点Oの差分だけ信号66をオフセットして(移動して)信号67を計算する。
この補正により、信号67による円弧の仮想原点O’が原点Oとなり、これがh(t)からhf(t)を除いたhv(t)の成分となる。
信号処理装置4は、以上のようにしてh(t)による信号66の各点について、上記オフセットを行う補正を行うことにより、hv(t)による信号67を計算する。
即ち、信号処理装置4は、信号66で表される補正前の伝搬チャネルを信号67で表される補正後の伝搬チャネルに変換する。 As shown in FIG. 3B, thesignal processing device 4 calculates the signal 67 by offsetting (moving) the signal 66 by the difference between the virtual origin O'and the origin O.
By this correction, the virtual origin O'of the arc formed by thesignal 67 becomes the origin O, and this becomes the component of hv (t) obtained by removing hf (t) from h (t).
Thesignal processing device 4 calculates the signal 67 by hv (t) by performing the correction for offsetting each point of the signal 66 by h (t) as described above.
That is, thesignal processing device 4 converts the uncorrected propagation channel represented by the signal 66 into the corrected propagation channel represented by the signal 67.
この補正により、信号67による円弧の仮想原点O’が原点Oとなり、これがh(t)からhf(t)を除いたhv(t)の成分となる。
信号処理装置4は、以上のようにしてh(t)による信号66の各点について、上記オフセットを行う補正を行うことにより、hv(t)による信号67を計算する。
即ち、信号処理装置4は、信号66で表される補正前の伝搬チャネルを信号67で表される補正後の伝搬チャネルに変換する。 As shown in FIG. 3B, the
By this correction, the virtual origin O'of the arc formed by the
The
That is, the
生体信号は、h(t)の位相、振幅として現れるため、これらが補正の前後でどのように改善するか説明する。
図4は、補正前の信号(h(t))による位相波形を説明するための図である。
図4(a)で示すように、h(t)の信号66が示す円弧は、原点Oを中心としておらず、これから離れた仮想原点O’を中心としている。
原点Oの周りの位相は、図の矢線で示した原点Oの周りの角度方向に計測されるが、信号66の円弧の中心は原点Oから固定成分だけずれているため、信号66の原点Oに対する位相の時間変化をグラフにすると図4(b)のように、きれいなサインカーブとはならずに、サインカーブの頂点が扁平となった歪んだものとなる。 Since the biological signal appears as the phase and amplitude of h (t), how these are improved before and after the correction will be described.
FIG. 4 is a diagram for explaining a phase waveform due to the signal (h (t)) before correction.
As shown in FIG. 4A, the arc indicated by thesignal 66 of h (t) is not centered on the origin O, but is centered on the virtual origin O'away from the origin O.
The phase around the origin O is measured in the angular direction around the origin O indicated by the arrow line in the figure, but since the center of the arc of thesignal 66 deviates from the origin O by a fixed component, the origin of the signal 66 When the time change of the phase with respect to O is graphed, as shown in FIG. 4B, the sine curve is not a beautiful one, but the apex of the sine curve is flattened and distorted.
図4は、補正前の信号(h(t))による位相波形を説明するための図である。
図4(a)で示すように、h(t)の信号66が示す円弧は、原点Oを中心としておらず、これから離れた仮想原点O’を中心としている。
原点Oの周りの位相は、図の矢線で示した原点Oの周りの角度方向に計測されるが、信号66の円弧の中心は原点Oから固定成分だけずれているため、信号66の原点Oに対する位相の時間変化をグラフにすると図4(b)のように、きれいなサインカーブとはならずに、サインカーブの頂点が扁平となった歪んだものとなる。 Since the biological signal appears as the phase and amplitude of h (t), how these are improved before and after the correction will be described.
FIG. 4 is a diagram for explaining a phase waveform due to the signal (h (t)) before correction.
As shown in FIG. 4A, the arc indicated by the
The phase around the origin O is measured in the angular direction around the origin O indicated by the arrow line in the figure, but since the center of the arc of the
なお、このグラフは、測定開始後25秒から35秒までの10秒間を表している。以下、同様である。
このように、補正前の信号66は、固定成分の分だけ歪んでいるため、精密な生体信号を検出するのには不向きである。 In addition, this graph shows 10 seconds from 25 seconds to 35 seconds after the start of measurement. The same applies hereinafter.
As described above, since thesignal 66 before correction is distorted by the amount of the fixed component, it is not suitable for detecting a precise biological signal.
このように、補正前の信号66は、固定成分の分だけ歪んでいるため、精密な生体信号を検出するのには不向きである。 In addition, this graph shows 10 seconds from 25 seconds to 35 seconds after the start of measurement. The same applies hereinafter.
As described above, since the
図5は、補正後の信号(hv(t))による位相波形を説明するための図である。
図5(a)で示すように、オフセットによって固定成分を除去して信号66を補正することにより、hv(t)による信号67が複素平面上に再生される。
原点Oと仮想原点O’が一致するため、信号67が示す円弧は、原点Oを中心とする円弧となる。
これにより、原点Oの周りの位相の時間変化は、図5(b)に示したように、きれいなサインカーブとなる。
このように補正後の信号は、歪みがとれて正常な波形となるため、これから生体信号(例えば、呼吸)を好適に抽出することができる。 FIG. 5 is a diagram for explaining a phase waveform based on the corrected signal (hv (t)).
As shown in FIG. 5A, thesignal 67 by hv (t) is reproduced on the complex plane by removing the fixed component by the offset and correcting the signal 66.
Since the origin O and the virtual origin O'are the same, the arc indicated by thesignal 67 is an arc centered on the origin O.
As a result, the time change of the phase around the origin O becomes a beautiful sine curve as shown in FIG. 5 (b).
Since the corrected signal is distorted and has a normal waveform, a biological signal (for example, respiration) can be suitably extracted from the signal.
図5(a)で示すように、オフセットによって固定成分を除去して信号66を補正することにより、hv(t)による信号67が複素平面上に再生される。
原点Oと仮想原点O’が一致するため、信号67が示す円弧は、原点Oを中心とする円弧となる。
これにより、原点Oの周りの位相の時間変化は、図5(b)に示したように、きれいなサインカーブとなる。
このように補正後の信号は、歪みがとれて正常な波形となるため、これから生体信号(例えば、呼吸)を好適に抽出することができる。 FIG. 5 is a diagram for explaining a phase waveform based on the corrected signal (hv (t)).
As shown in FIG. 5A, the
Since the origin O and the virtual origin O'are the same, the arc indicated by the
As a result, the time change of the phase around the origin O becomes a beautiful sine curve as shown in FIG. 5 (b).
Since the corrected signal is distorted and has a normal waveform, a biological signal (for example, respiration) can be suitably extracted from the signal.
図6は、補正前の信号(h(t))による振幅波形を説明するための図である。
図6(a)で示すようにh(t)の信号66が示す円弧は、原点Oを中心としておらず、これから離れた仮想原点O’を中心としている。
そのため、矢線で示したように原点Oから信号66の各点までの距離によって振幅を計測すると、その時間変化は、図6(b)のグラフに示したように、呼吸の影響が優位に現れるものの歪なサインカーブとなる。 FIG. 6 is a diagram for explaining an amplitude waveform due to the signal (h (t)) before correction.
As shown in FIG. 6A, the arc indicated by thesignal 66 of h (t) is not centered on the origin O, but is centered on the virtual origin O'away from the origin O.
Therefore, when the amplitude is measured by the distance from the origin O to each point of thesignal 66 as shown by the arrow line, the time change is predominantly affected by respiration as shown in the graph of FIG. 6 (b). Although it appears, it becomes a distorted sine curve.
図6(a)で示すようにh(t)の信号66が示す円弧は、原点Oを中心としておらず、これから離れた仮想原点O’を中心としている。
そのため、矢線で示したように原点Oから信号66の各点までの距離によって振幅を計測すると、その時間変化は、図6(b)のグラフに示したように、呼吸の影響が優位に現れるものの歪なサインカーブとなる。 FIG. 6 is a diagram for explaining an amplitude waveform due to the signal (h (t)) before correction.
As shown in FIG. 6A, the arc indicated by the
Therefore, when the amplitude is measured by the distance from the origin O to each point of the
図7は、補正後の信号(hv(t))による振幅波形を説明するための図である。
図7(a)で示すように、原点Oと仮想原点O’が一致するため、原点Oに対する振幅方向が信号67の示す円弧の中心方向を向いている。
これから信号67の振幅の時間変化をグラフにすると、図7(b)のように補正前の信号66では歪みによって隠れていた微細な構造が振幅変化として現れた。
図に示したように、破線で囲った領域83、83、・・・には、脈波とみられる成分が確認された。 FIG. 7 is a diagram for explaining an amplitude waveform due to the corrected signal (hv (t)).
As shown in FIG. 7A, since the origin O and the virtual origin O'are coincident with each other, the amplitude direction with respect to the origin O faces the center direction of the arc indicated by thesignal 67.
From this, when the time change of the amplitude of thesignal 67 is graphed, as shown in FIG. 7B, the fine structure hidden by the distortion in the signal 66 before the correction appears as the amplitude change.
As shown in the figure, components that are considered to be pulse waves were confirmed in the regions 83, 83, ... Enclosed by the broken line.
図7(a)で示すように、原点Oと仮想原点O’が一致するため、原点Oに対する振幅方向が信号67の示す円弧の中心方向を向いている。
これから信号67の振幅の時間変化をグラフにすると、図7(b)のように補正前の信号66では歪みによって隠れていた微細な構造が振幅変化として現れた。
図に示したように、破線で囲った領域83、83、・・・には、脈波とみられる成分が確認された。 FIG. 7 is a diagram for explaining an amplitude waveform due to the corrected signal (hv (t)).
As shown in FIG. 7A, since the origin O and the virtual origin O'are coincident with each other, the amplitude direction with respect to the origin O faces the center direction of the arc indicated by the
From this, when the time change of the amplitude of the
As shown in the figure, components that are considered to be pulse waves were confirmed in the
図8は、脈波と振幅波形の関係を説明するための図である。
本願発明者は、対象者7の指に血圧センサを装着し、これによって脈波を測定しながら同時にマイクロ波によって対象者7の体表に対するh(t)を計測した。
図8(a)は、血圧センサによって検出した実験開始後45秒から55秒までの対象者7の脈波である。
図では、脈波を破線で示してある。図に示したように、きれいな波形が計測された。脈波のピークの後に小さいピークが現れるのは、若者の弾力のある血管によくみられる波形である。 FIG. 8 is a diagram for explaining the relationship between the pulse wave and the amplitude waveform.
The inventor of the present application attached a blood pressure sensor to the finger of the subject 7, thereby measuring the pulse wave and at the same time measuring h (t) with respect to the body surface of the subject 7 by the microwave.
FIG. 8A is a pulse wave of the subject 7 from 45 seconds to 55 seconds after the start of the experiment detected by the blood pressure sensor.
In the figure, the pulse wave is shown by a broken line. As shown in the figure, a clean waveform was measured. A small peak after the pulse peak is a common waveform in the elastic blood vessels of young people.
本願発明者は、対象者7の指に血圧センサを装着し、これによって脈波を測定しながら同時にマイクロ波によって対象者7の体表に対するh(t)を計測した。
図8(a)は、血圧センサによって検出した実験開始後45秒から55秒までの対象者7の脈波である。
図では、脈波を破線で示してある。図に示したように、きれいな波形が計測された。脈波のピークの後に小さいピークが現れるのは、若者の弾力のある血管によくみられる波形である。 FIG. 8 is a diagram for explaining the relationship between the pulse wave and the amplitude waveform.
The inventor of the present application attached a blood pressure sensor to the finger of the subject 7, thereby measuring the pulse wave and at the same time measuring h (t) with respect to the body surface of the subject 7 by the microwave.
FIG. 8A is a pulse wave of the subject 7 from 45 seconds to 55 seconds after the start of the experiment detected by the blood pressure sensor.
In the figure, the pulse wave is shown by a broken line. As shown in the figure, a clean waveform was measured. A small peak after the pulse peak is a common waveform in the elastic blood vessels of young people.
図8(b)は、信号67の振幅波形を移動平均によって平均化した後、時間で微分した波形を表している。
図から分かるように、脈波のピークの付近にピークが現れている。
図8(c)は、脈波と、振幅移動平均微分波形を重ねて表したものである。
図から明らかなように、脈波のピークと、振幅移動平均微分波形のピークが一致している。このため信号67には、脈波が現れていると考えられる。
なお、本願発明者の実験によると、補正後の振幅波形を全てのパスで足し合わせると脈波(心拍)の成分が強められることが分かった。 FIG. 8B shows a waveform obtained by averaging the amplitude waveform of thesignal 67 by a moving average and then differentiating it with respect to time.
As can be seen from the figure, a peak appears near the peak of the pulse wave.
FIG. 8C shows the pulse wave and the amplitude moving average differential waveform superimposed.
As is clear from the figure, the peak of the pulse wave and the peak of the amplitude moving average differential waveform coincide with each other. Therefore, it is considered that a pulse wave appears at thesignal 67.
According to the experiment of the inventor of the present application, it was found that the pulse wave (heartbeat) component is strengthened by adding the corrected amplitude waveforms in all the paths.
図から分かるように、脈波のピークの付近にピークが現れている。
図8(c)は、脈波と、振幅移動平均微分波形を重ねて表したものである。
図から明らかなように、脈波のピークと、振幅移動平均微分波形のピークが一致している。このため信号67には、脈波が現れていると考えられる。
なお、本願発明者の実験によると、補正後の振幅波形を全てのパスで足し合わせると脈波(心拍)の成分が強められることが分かった。 FIG. 8B shows a waveform obtained by averaging the amplitude waveform of the
As can be seen from the figure, a peak appears near the peak of the pulse wave.
FIG. 8C shows the pulse wave and the amplitude moving average differential waveform superimposed.
As is clear from the figure, the peak of the pulse wave and the peak of the amplitude moving average differential waveform coincide with each other. Therefore, it is considered that a pulse wave appears at the
According to the experiment of the inventor of the present application, it was found that the pulse wave (heartbeat) component is strengthened by adding the corrected amplitude waveforms in all the paths.
このように、信号66を原点移動により補正することにより、歪みの中に埋もれていた脈波を複素信号から取り出すことができた。
なお、本実施の形態では、振幅波形から脈波を検出したが、これは、振幅波形に脈波が顕著に表れるためであり、位相波形にも脈波による成分は含まれている。 By correcting thesignal 66 by moving the origin in this way, the pulse wave buried in the distortion could be extracted from the complex signal.
In the present embodiment, the pulse wave is detected from the amplitude waveform because the pulse wave appears remarkably in the amplitude waveform, and the phase waveform also contains the component due to the pulse wave.
なお、本実施の形態では、振幅波形から脈波を検出したが、これは、振幅波形に脈波が顕著に表れるためであり、位相波形にも脈波による成分は含まれている。 By correcting the
In the present embodiment, the pulse wave is detected from the amplitude waveform because the pulse wave appears remarkably in the amplitude waveform, and the phase waveform also contains the component due to the pulse wave.
このように、信号処理装置4が備える生体信号取得手段は、複素信号の時間領域における振幅、又は位相から生体の脈波に対応する信号を取得している。
そして、当該生体信号取得手段は、振幅の波形の移動平均を微分することにより脈波に対応する信号を取得している。
更に、複素信号取得手段は、複数のパスを伝搬してきた反射波から複素信号を取得することにより脈波の成分を強めることができる。 As described above, the biological signal acquisition means included in thesignal processing device 4 acquires the signal corresponding to the pulse wave of the biological body from the amplitude or phase of the complex signal in the time domain.
Then, the biological signal acquisition means acquires the signal corresponding to the pulse wave by differentiating the moving average of the amplitude waveform.
Further, the complex signal acquisition means can strengthen the component of the pulse wave by acquiring the complex signal from the reflected wave propagating in the plurality of paths.
そして、当該生体信号取得手段は、振幅の波形の移動平均を微分することにより脈波に対応する信号を取得している。
更に、複素信号取得手段は、複数のパスを伝搬してきた反射波から複素信号を取得することにより脈波の成分を強めることができる。 As described above, the biological signal acquisition means included in the
Then, the biological signal acquisition means acquires the signal corresponding to the pulse wave by differentiating the moving average of the amplitude waveform.
Further, the complex signal acquisition means can strengthen the component of the pulse wave by acquiring the complex signal from the reflected wave propagating in the plurality of paths.
図9は、信号処理装置4のハードウェア的な構成を説明するための図である。
FIG. 9 is a diagram for explaining the hardware configuration of the signal processing device 4.
信号処理装置4は、CPU(Central Processing Unit)41、ROM(Read Only Memory)42、RAM(Random Access Memory)43、検波装置44、入力装置45、出力装置46、記憶装置47などを用いて構成されている。
The signal processing device 4 is configured by using a CPU (Central Processing Unit) 41, a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, a detection device 44, an input device 45, an output device 46, a storage device 47, and the like. Has been done.
CPU41は、ROM42や記憶装置47が記憶する信号処理プログラムに従ってh(t)の補正処理や、補正後のh(t)(即ち、hv(t))から生体信号を抽出したりなどする。
ROM42は、信号処理装置4を動作させる基本的なプログラムやパラメータなどを記憶している読み取り専用のメモリである。 TheCPU 41 corrects h (t) according to a signal processing program stored in the ROM 42 or the storage device 47, extracts a biological signal from the corrected h (t) (that is, hv (t)), and the like.
TheROM 42 is a read-only memory that stores basic programs, parameters, and the like that operate the signal processing device 4.
ROM42は、信号処理装置4を動作させる基本的なプログラムやパラメータなどを記憶している読み取り専用のメモリである。 The
The
RAM43は、読み書きが可能なメモリであって、CPU41が信号処理プログラムに従って動作する際のワーキングメモリを提供する。
より詳細には、I信号とQ信号からのh(t)の生成、探索点75からの仮想原点O’の計算、補正前の信号66のオフセットによる信号67への補正、信号67からの位相波形や振幅波形の生成などを行う際の計算のためのメモリを提供する。 TheRAM 43 is a readable and writable memory, and provides a working memory when the CPU 41 operates according to a signal processing program.
More specifically, generation of h (t) from I signal and Q signal, calculation of virtual originO'from search point 75, correction to signal 67 by offset of signal 66 before correction, phase from signal 67. It provides a memory for calculation when generating waveforms and amplitude waveforms.
より詳細には、I信号とQ信号からのh(t)の生成、探索点75からの仮想原点O’の計算、補正前の信号66のオフセットによる信号67への補正、信号67からの位相波形や振幅波形の生成などを行う際の計算のためのメモリを提供する。 The
More specifically, generation of h (t) from I signal and Q signal, calculation of virtual origin
検波装置44は、混合器26、27が出力する混合波を検波してI信号とQ信号を出力する。
入力装置45は、例えば、タッチパネル、キーボード、マウスなどの入力デバイスを備えており、信号処理装置4のユーザからの操作を受け付けるなどする。
出力装置46は、例えば、ディスプレイ、スピーカ、プリンタなどの出力デバイスを備えており、信号処理装置4の操作画面をディスプレイに表示したり、解析した生体信号をこれら出力デバイスに出力する。 Thedetection device 44 detects the mixed wave output by the mixers 26 and 27 and outputs an I signal and a Q signal.
Theinput device 45 includes, for example, an input device such as a touch panel, a keyboard, and a mouse, and receives an operation from a user of the signal processing device 4.
Theoutput device 46 includes output devices such as a display, a speaker, and a printer, displays the operation screen of the signal processing device 4 on the display, and outputs the analyzed biological signal to these output devices.
入力装置45は、例えば、タッチパネル、キーボード、マウスなどの入力デバイスを備えており、信号処理装置4のユーザからの操作を受け付けるなどする。
出力装置46は、例えば、ディスプレイ、スピーカ、プリンタなどの出力デバイスを備えており、信号処理装置4の操作画面をディスプレイに表示したり、解析した生体信号をこれら出力デバイスに出力する。 The
The
The
記憶装置47は、例えば、半導体記憶装置やハードディスクなどの大容量の媒体を備えており、検波装置44が検波したI信号とQ信号から脈波などの生体信号を抽出するための信号処理プログラムや、その他のプログラム、及び過去の測定値のデータなどを記憶している。
The storage device 47 includes, for example, a large-capacity medium such as a semiconductor storage device or a hard disk, and a signal processing program for extracting a biological signal such as a pulse wave from the I signal and the Q signal detected by the detection device 44. , Other programs, and data of past measurement values are stored.
図10は、信号処理装置4が行う信号処理の手順を説明するためのフローチャートである。
以下の処理は、CPU41が信号処理プログラムに従って行うものである。
まず、CPU41は、解析に必要なデータを取得する(ステップ5)。
CPU41は、この処理を検波装置44が検波したI信号とQ信号をRAM43に記憶することにより行う。 FIG. 10 is a flowchart for explaining a procedure of signal processing performed by thesignal processing device 4.
The following processing is performed by theCPU 41 according to the signal processing program.
First, theCPU 41 acquires the data necessary for the analysis (step 5).
TheCPU 41 performs this process by storing the I signal and the Q signal detected by the detection device 44 in the RAM 43.
以下の処理は、CPU41が信号処理プログラムに従って行うものである。
まず、CPU41は、解析に必要なデータを取得する(ステップ5)。
CPU41は、この処理を検波装置44が検波したI信号とQ信号をRAM43に記憶することにより行う。 FIG. 10 is a flowchart for explaining a procedure of signal processing performed by the
The following processing is performed by the
First, the
The
次に、CPU41は、原点補正演算を行う(ステップ10)。
CPU41は、この処理を、h(t)を生成して信号66の点列をRAM43に記憶し、信号66の全ての点について、各探索点75に対する距離rの分散を計算してRAM43に記憶することにより行う。 Next, theCPU 41 performs an origin correction operation (step 10).
TheCPU 41 generates h (t) and stores the point sequence of the signal 66 in the RAM 43, calculates the variance of the distance r with respect to each search point 75 for all the points of the signal 66, and stores it in the RAM 43. Do it by doing.
CPU41は、この処理を、h(t)を生成して信号66の点列をRAM43に記憶し、信号66の全ての点について、各探索点75に対する距離rの分散を計算してRAM43に記憶することにより行う。 Next, the
The
次に、CPU41は、仮想原点O’を取得する(ステップ15)。
CPU41は、この処理をRAM43に記憶した分散が最も小さくなる探索点75を仮想原点O’に設定して、これをRAM43に記憶することにより行う。 Next, theCPU 41 acquires the virtual origin O'(step 15).
TheCPU 41 performs this process by setting the search point 75, which has the smallest variance stored in the RAM 43, at the virtual origin O'and storing it in the RAM 43.
CPU41は、この処理をRAM43に記憶した分散が最も小さくなる探索点75を仮想原点O’に設定して、これをRAM43に記憶することにより行う。 Next, the
The
次に、CPU41は、原点補正を行う(ステップ20)。
CPU41は、この処理を原点Oに対する仮想原点O’の変位から固定成分であるhf(t)を推定し、-hf(t)だけ信号66の各点をオフセットすることにより補正後の信号67を計算してRAM43に記憶することにより行う。 Next, theCPU 41 corrects the origin (step 20).
TheCPU 41 estimates hf (t), which is a fixed component, from the displacement of the virtual origin O'with respect to the origin O, and offsets each point of the signal 66 by −hf (t) to obtain the corrected signal 67. This is done by calculating and storing in the RAM 43.
CPU41は、この処理を原点Oに対する仮想原点O’の変位から固定成分であるhf(t)を推定し、-hf(t)だけ信号66の各点をオフセットすることにより補正後の信号67を計算してRAM43に記憶することにより行う。 Next, the
The
次に、CPU41は、脈波を検出する(ステップ25)。
CPU41は、この処理をRAM43に記憶した信号67から振幅波形を計算し、これを移動平均して更に微分し、そのピークの時刻や振幅をRAM43に記憶することにより行う。 Next, theCPU 41 detects the pulse wave (step 25).
TheCPU 41 performs this processing by calculating an amplitude waveform from the signal 67 stored in the RAM 43, moving averaging the amplitude waveform, further differentiating the waveform, and storing the peak time and amplitude in the RAM 43.
CPU41は、この処理をRAM43に記憶した信号67から振幅波形を計算し、これを移動平均して更に微分し、そのピークの時刻や振幅をRAM43に記憶することにより行う。 Next, the
The
次に、CPU41は、例えば、1分間に70回など、脈波に関する情報を出力装置46のディスプレイに表示するなどして出力する(ステップ30)。
以上で、信号処理装置4が行う信号処理は終わりであるが、仮想原点O’は、周囲環境によって変化するので、CPU41は、所定時間ごとに上記の処理を繰り返し、仮想原点O’の更新、及び脈波の更新を行っていく。 Next, theCPU 41 outputs information about the pulse wave by displaying it on the display of the output device 46, for example, 70 times per minute (step 30).
This is the end of the signal processing performed by thesignal processing device 4, but since the virtual origin O'changes depending on the surrounding environment, the CPU 41 repeats the above processing at predetermined time intervals to update the virtual origin O'. And the pulse wave will be updated.
以上で、信号処理装置4が行う信号処理は終わりであるが、仮想原点O’は、周囲環境によって変化するので、CPU41は、所定時間ごとに上記の処理を繰り返し、仮想原点O’の更新、及び脈波の更新を行っていく。 Next, the
This is the end of the signal processing performed by the
以上に説明した実施の形態では、仮想原点O’を原点Oに移動することにより仮想原点O’を基準とする位相・振幅の測定を原点Oを基準とする位相・振幅の測定で行ったが、これは、一例であって、複素平面上での仮想原点O’の位置が分かるため、直接仮想原点O’を基準としてhv(t)の位相・振幅を測定してもよい。
In the embodiment described above, by moving the virtual origin O'to the origin O, the phase / amplitude measurement with reference to the virtual origin O'was performed by measuring the phase / amplitude with reference to the origin O. This is just an example, and since the position of the virtual origin O'on the complex plane can be known, the phase / amplitude of hv (t) may be measured directly with reference to the virtual origin O'.
以上に説明した実施の形態により、次のような効果を得ることができる。
(1)生体信号が複素平面上で円弧を描くことを利用して、複素チャネルに含まれる生体信号成分の原点を推定することができる。
(2)推定した生体信号成分の原点を基準として生体信号から位相と振幅を計測することができる。
(3)生体の反射波から変動部分以外の固定反射波による固定成分を除くことにより、原点のずれから生じる位相と振幅の歪みを除いて正しい波形を復元することができる。
(4)非侵襲・非接触で脈波測定と同等な情報を含んだ波形を計測することができる。
(5)反射波の振幅は、補正前は呼吸成分と考えられるものが支配的であったが、補正後は脈波が顕著化し、従来方法よりも情報量の多い波形が得られる。 According to the embodiment described above, the following effects can be obtained.
(1) The origin of the biological signal component included in the complex channel can be estimated by utilizing the fact that the biological signal draws an arc on the complex plane.
(2) The phase and amplitude can be measured from the biological signal with reference to the origin of the estimated biological signal component.
(3) By removing the fixed component due to the fixed reflected wave other than the fluctuating part from the reflected wave of the living body, the correct waveform can be restored by removing the distortion of the phase and amplitude caused by the deviation of the origin.
(4) It is possible to measure a waveform containing information equivalent to pulse wave measurement in a non-invasive and non-contact manner.
(5) The amplitude of the reflected wave was dominated by what was considered to be a respiratory component before the correction, but after the correction, the pulse wave became prominent, and a waveform with a larger amount of information than the conventional method can be obtained.
(1)生体信号が複素平面上で円弧を描くことを利用して、複素チャネルに含まれる生体信号成分の原点を推定することができる。
(2)推定した生体信号成分の原点を基準として生体信号から位相と振幅を計測することができる。
(3)生体の反射波から変動部分以外の固定反射波による固定成分を除くことにより、原点のずれから生じる位相と振幅の歪みを除いて正しい波形を復元することができる。
(4)非侵襲・非接触で脈波測定と同等な情報を含んだ波形を計測することができる。
(5)反射波の振幅は、補正前は呼吸成分と考えられるものが支配的であったが、補正後は脈波が顕著化し、従来方法よりも情報量の多い波形が得られる。 According to the embodiment described above, the following effects can be obtained.
(1) The origin of the biological signal component included in the complex channel can be estimated by utilizing the fact that the biological signal draws an arc on the complex plane.
(2) The phase and amplitude can be measured from the biological signal with reference to the origin of the estimated biological signal component.
(3) By removing the fixed component due to the fixed reflected wave other than the fluctuating part from the reflected wave of the living body, the correct waveform can be restored by removing the distortion of the phase and amplitude caused by the deviation of the origin.
(4) It is possible to measure a waveform containing information equivalent to pulse wave measurement in a non-invasive and non-contact manner.
(5) The amplitude of the reflected wave was dominated by what was considered to be a respiratory component before the correction, but after the correction, the pulse wave became prominent, and a waveform with a larger amount of information than the conventional method can be obtained.
1 測定装置
2 マイクロ波回路
3 制御装置
4 信号処理装置
7 対象者
21 発信器
22 式
23 送信アンテナ
24 分配移相部
25 受信アンテナ
26、27 混合器
41 CPU
42 ROM
43 RAM
44 検波装置
45 入力装置
46 出力装置
47 記憶装置
60 矢線
61、62 円弧
65、66、67 信号
75 探索点
83 領域
90 パッチアレーアンテナ 1 Measuringdevice 2 Microwave circuit 3 Control device 4 Signal processing device 7 Target person 21 Transmitter 22 type 23 Transmitting antenna 24 Distribution phase shift part 25 Receiving antenna 26, 27 Mixer 41 CPU
42 ROM
43 RAM
44Detection device 45 Input device 46 Output device 47 Storage device 60 Arrow line 61, 62 Arc 65, 66, 67 Signal 75 Search point 83 Area 90 Patch array antenna
2 マイクロ波回路
3 制御装置
4 信号処理装置
7 対象者
21 発信器
22 式
23 送信アンテナ
24 分配移相部
25 受信アンテナ
26、27 混合器
41 CPU
42 ROM
43 RAM
44 検波装置
45 入力装置
46 出力装置
47 記憶装置
60 矢線
61、62 円弧
65、66、67 信号
75 探索点
83 領域
90 パッチアレーアンテナ 1 Measuring
42 ROM
43 RAM
44
Claims (6)
- 生体に向けて送信されたマイクロ波の反射波の同相信号と直交信号から成る複素信号を取得する複素信号取得手段と、
前記取得した複素信号が複素平面上で描く円弧状の軌跡の中心位置を特定し、当該中心位置により、前記複素信号に含まれる固定物からの反射による固定成分を推定する推定手段と、
前記取得した複素信号から、前記推定した固定成分を除去することにより前記取得した複素信号を補正する補正手段と、
前記補正した複素信号から前記生体の生体信号を取得する生体信号取得手段と、
前記取得した生体信号を出力する出力手段と、
を具備したことを特徴とする生体信号処理装置。 A complex signal acquisition means for acquiring a complex signal consisting of an in-phase signal and an orthogonal signal of a reflected microwave wave transmitted to a living body, and
An estimation means for identifying the center position of an arcuate locus drawn by the acquired complex signal on the complex plane and estimating a fixed component due to reflection from a fixed object contained in the complex signal based on the center position.
A correction means for correcting the acquired complex signal by removing the estimated fixed component from the acquired complex signal, and
A biological signal acquisition means for acquiring the biological signal of the living body from the corrected complex signal, and
An output means for outputting the acquired biological signal and
A biological signal processing device characterized by being provided with. - 前記補正手段は、前記特定した中心位置に対する前記複素平面の原点の位置をオフセット量とし、前記複素信号を前記オフセット量だけ前記複素平面でオフセットすることにより、前記取得した複素信号を補正することを特徴とする請求項1に記載の生体信号処理装置。 The correction means corrects the acquired complex signal by setting the position of the origin of the complex plane with respect to the specified center position as an offset amount and offsetting the complex signal by the offset amount in the complex plane. The biometric signal processing apparatus according to claim 1.
- 前記生体信号取得手段は、前記複素信号の時間領域における振幅、又は位相から前記生体の脈波に対応する信号を取得することを特徴とする請求項1、又は請求項2に記載の生体信号処理装置。 The biological signal processing according to claim 1 or 2, wherein the biological signal acquisition means acquires a signal corresponding to the pulse wave of the biological signal from the amplitude or phase of the complex signal in the time domain. apparatus.
- 前記生体信号取得手段は、前記振幅の波形の移動平均を微分することにより前記脈波に対応する信号を取得することを特徴とする請求項3に記載の生体信号処理装置。 The biological signal processing device according to claim 3, wherein the biological signal acquisition means acquires a signal corresponding to the pulse wave by differentiating the moving average of the waveform of the amplitude.
- 前記複素信号取得手段は、複数のパスを伝搬してきた反射波から前記複素信号を取得することを特徴とする請求項1から請求項4までの内の何れか1の請求項に記載の生体信号処理装置。 The biological signal according to any one of claims 1 to 4, wherein the complex signal acquisition means acquires the complex signal from a reflected wave propagating in a plurality of paths. Processing equipment.
- 生体に向けて送信されたマイクロ波の反射波の同相信号と直交信号から成る複素信号を取得する複素信号取得機能と、
前記取得した複素信号が複素平面上で描く円弧状の軌跡の中心位置を特定し、当該中心位置により、前記複素信号に含まれる固定物からの反射による固定成分を推定する推定機能と、
前記取得した複素信号から、前記推定した固定成分を除去することにより前記取得した複素信号を補正する補正機能と、
前記補正した複素信号から前記生体の生体信号を取得する生体信号取得機能と、
前記取得した生体信号を出力する出力機能と、
をコンピュータで実現する生体信号処理プログラム。 A complex signal acquisition function that acquires a complex signal consisting of in-phase signals and orthogonal signals of microwave reflected waves transmitted to a living body, and
An estimation function that identifies the center position of the arcuate locus drawn by the acquired complex signal on the complex plane and estimates the fixed component due to reflection from the fixed object contained in the complex signal based on the center position.
A correction function for correcting the acquired complex signal by removing the estimated fixed component from the acquired complex signal, and
A biological signal acquisition function that acquires the biological signal of the living body from the corrected complex signal, and
The output function that outputs the acquired biological signal and
A biological signal processing program that realizes the above with a computer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-062747 | 2019-03-28 | ||
JP2019062747A JP7217011B2 (en) | 2019-03-28 | 2019-03-28 | BIOLOGICAL SIGNAL PROCESSING DEVICE AND BIOLOGICAL SIGNAL PROCESSING PROGRAM |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020196916A1 true WO2020196916A1 (en) | 2020-10-01 |
Family
ID=72611063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/014634 WO2020196916A1 (en) | 2019-03-28 | 2020-03-30 | Biological signal processing device and biological signal processing program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7217011B2 (en) |
WO (1) | WO2020196916A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4226846A1 (en) * | 2020-10-09 | 2023-08-16 | Sakura Tech Corporation | Portable contactless biosignal detection device, driver monitor device, visitor screening system, and household healthcare system |
KR20230123794A (en) * | 2022-02-17 | 2023-08-24 | 주식회사 아이센스 | Method for compensating calibration factor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011015887A (en) * | 2009-07-10 | 2011-01-27 | Mitsubishi Electric Corp | Biological state acquisition device, biological state acquisition program, and equipment and air conditioner provided with the biological state acquisition device |
JP2011519288A (en) * | 2008-04-03 | 2011-07-07 | カイ メディカル、 インコーポレイテッド | Non-contact physiological motion sensor and method of use thereof |
WO2013037399A1 (en) * | 2011-09-12 | 2013-03-21 | Ficomirrors, S.A. | System and method for detecting a vital-related signal pattern |
JP2018064642A (en) * | 2016-10-17 | 2018-04-26 | オムロンオートモーティブエレクトロニクス株式会社 | Biological sensor |
-
2019
- 2019-03-28 JP JP2019062747A patent/JP7217011B2/en active Active
-
2020
- 2020-03-30 WO PCT/JP2020/014634 patent/WO2020196916A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011519288A (en) * | 2008-04-03 | 2011-07-07 | カイ メディカル、 インコーポレイテッド | Non-contact physiological motion sensor and method of use thereof |
JP2011015887A (en) * | 2009-07-10 | 2011-01-27 | Mitsubishi Electric Corp | Biological state acquisition device, biological state acquisition program, and equipment and air conditioner provided with the biological state acquisition device |
WO2013037399A1 (en) * | 2011-09-12 | 2013-03-21 | Ficomirrors, S.A. | System and method for detecting a vital-related signal pattern |
JP2018064642A (en) * | 2016-10-17 | 2018-04-26 | オムロンオートモーティブエレクトロニクス株式会社 | Biological sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2020157000A (en) | 2020-10-01 |
JP7217011B2 (en) | 2023-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dai et al. | Enhancement of remote vital sign monitoring detection accuracy using multiple-input multiple-output 77 GHz FMCW radar | |
EP3424418B1 (en) | A method and a system for detecting a vital sign of a subject | |
He et al. | Novel signal processing method for vital sign monitoring using FMCW radar | |
Wang et al. | SonarBeat: Sonar phase for breathing beat monitoring with smartphones | |
Sakamoto et al. | Feature-based correlation and topological similarity for interbeat interval estimation using ultrawideband radar | |
Zakrzewski et al. | Comparison of center estimation algorithms for heart and respiration monitoring with microwave Doppler radar | |
US7753849B2 (en) | Doppler radar cardiopulmonary sensor and signal processing system and method for use therewith | |
Morgan et al. | Novel signal processing techniques for Doppler radar cardiopulmonary sensing | |
JP2019132850A (en) | program | |
WO2020196916A1 (en) | Biological signal processing device and biological signal processing program | |
Kazemi et al. | Cyclostationary approach to Doppler radar heart and respiration rates monitoring with body motion cancelation using Radar Doppler System | |
CN103919527B (en) | Motion/disturbance signal detection system and method | |
JP2014018663A (en) | Automatic doppler gate disposition in spectral doppler ultrasonic imaging | |
KR101939644B1 (en) | Diffraction source compensation in medical diagnostic ultrasound viscoelastic imaging | |
Ren et al. | Vital sign detection in any orientation using a distributed radar network via modified independent component analysis | |
Salmi et al. | Continuous wave radar based vital sign estimation: Modeling and experiments | |
JP2020109389A (en) | Estimation method, estimation device, and program | |
Beltrão et al. | Adaptive nonlinear least squares framework for contactless vital sign monitoring | |
Rong et al. | Smart homes: See multiple heartbeats through wall using wireless signals | |
Eder et al. | Sparsity-based multi-person non-contact vital signs monitoring via FMCW radar | |
Lee et al. | Heart rate tracking using a Doppler radar with the reassigned joint time-frequency transform | |
Gouveia et al. | Evaluation of heartbeat signal extraction methods using a 5.8 GHz Doppler radar system in a real application scenario | |
Lv et al. | Time-domain Doppler biomotion detections immune to unavoidable DC offsets | |
Baboli et al. | Parametric study of antennas for long range Doppler radar heart rate detection | |
Wang et al. | Df-sense: Multi-user acoustic sensing for heartbeat monitoring with dualforming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20777064 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20777064 Country of ref document: EP Kind code of ref document: A1 |