WO2020196889A1 - 計画装置、稼働計画の生成方法、水素製造方法、およびプログラム - Google Patents

計画装置、稼働計画の生成方法、水素製造方法、およびプログラム Download PDF

Info

Publication number
WO2020196889A1
WO2020196889A1 PCT/JP2020/014302 JP2020014302W WO2020196889A1 WO 2020196889 A1 WO2020196889 A1 WO 2020196889A1 JP 2020014302 W JP2020014302 W JP 2020014302W WO 2020196889 A1 WO2020196889 A1 WO 2020196889A1
Authority
WO
WIPO (PCT)
Prior art keywords
electricity
operation plan
model
period
unit
Prior art date
Application number
PCT/JP2020/014302
Other languages
English (en)
French (fr)
Inventor
崇弘 北浦
悠 齋藤
豪秀 奈木野
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2021509681A priority Critical patent/JP7219808B2/ja
Publication of WO2020196889A1 publication Critical patent/WO2020196889A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a planning device, an operation plan generation method, a hydrogen production method, and a program.
  • a hydrogen generator or the like that generates hydrogen by electrolyzing water is known.
  • a power supply system in which the charge fluctuates according to the power supply cost such as weather and wind power.
  • the hydrogen generating apparatus compares a fluctuating electricity rate with a threshold value and controls the operating rate according to the comparison result to reduce the manufacturing cost.
  • the amount of hydrogen to be supplied may be determined at regular intervals such as one day. In this case, during the fixed period, a time zone in which the electricity rate is low enough to generate sufficient hydrogen may not occur. Therefore, even if the production equipment is controlled using a threshold value or the like, the amount of hydrogen produced will be insufficient for a certain period of time, or hydrogen will eventually have to be produced during a period of high electricity charges. There was something like that.
  • a planning device uses an electricity rate prediction model that predicts the transition of electricity rates of multiple electricity sources during the target period based on the value of the first factor available before the target period, and uses the electricity rate prediction model of the future electricity rate. It is equipped with an electricity rate prediction unit that predicts changes.
  • the planning device includes an operation plan generation unit that generates an operation plan of the electrolytic device in the first period in the future based on the predicted future transition of the electricity rate.
  • the electricity rate prediction unit may predict the future transition of electricity rates of each of the plurality of electricity sources based on the value of the corresponding first factor.
  • the electricity rate prediction unit may predict future changes in electricity charges of each electricity source by using a plurality of electricity rate prediction models corresponding to each of the plurality of electricity sources.
  • the electricity rate prediction unit may predict the probability distribution of future electricity rates.
  • the electricity rate forecast model includes electricity rates, electricity demand, electricity supply, renewable energy power generation, predicted values of renewable energy power generation, electricity purchases from each electricity source, and electricity purchases before the target period.
  • the transition of electricity charges during the target period may be predicted based on the value of the first factor including at least one of the weather information.
  • the planning device may include a first model update unit that updates the electricity rate prediction model by learning based on the value of the first factor in the past period and the actual transition of the electricity rate after the past period.
  • the operation plan generation unit uses an operation plan generation model that generates an operation plan in the target period based on the value of the second factor available before the target period and the prediction result of the transition of the electricity rate in the target period. Therefore, it may have a first operation plan generation unit that generates an operation plan of the electrolytic apparatus in the first period in the future.
  • the operation plan generation model includes operation data of the electrolyzer, contract conditions with each electricity source, reliability of each electricity source, and at least one fixed electricity rate of multiple electricity sources before the target period. And, based on the value of the second factor including at least one of the product storage amount of the electrolyzer and the prediction result of the transition of the electricity price in the target period, the operation plan of the electrolyzer in the target period may be generated.
  • the planning device uses a power generation prediction model that predicts the transition of the renewable energy power generation amount of the power generation device during the target period based on the values of the power generation amount predictors available before the target period, and is reproducible in the future. It may have a power generation amount prediction unit that predicts a transition of energy power generation amount.
  • the operation plan generation unit may further generate an operation plan based on the predicted future transition of renewable energy power generation.
  • the planning device may include a control unit that controls the operation of the electrolytic device using the operation plan.
  • the control unit will charge a higher electricity rate in the future as the electricity rate of at least one of the multiple electricity sources becomes lower than expected during the period when the electrolyzer is not to be operated in the operation plan.
  • the electrolyzer may be operated during the period instead of operating.
  • the electrolyzer may be a hydrogen generator that produces hydrogen by electrolysis.
  • a planning device In the second aspect of the present invention, a planning device is provided.
  • the planning device predicts the probability distribution of future electricity charges using an electricity price prediction model that predicts the probability distribution of electricity charges in the target period based on the value of the first factor available before the target period. Equipped with an electricity rate prediction unit.
  • the planning device includes an operation plan generation unit that generates an operation plan of the electrolytic device in the first period in the future based on the probability distribution of the predicted future electricity charges.
  • a method for generating an operation plan of an electrolytic device uses an electricity rate prediction model that predicts the transition of electricity rates of multiple electricity sources during the target period based on the value of the first factor available before the target period, and uses the electricity rate prediction model of the future electricity rate. Be prepared to predict transitions.
  • the generation method comprises generating an operation plan of the electrolyzer in the first period in the future based on the predicted future transition of electricity charges.
  • a program for causing a computer to function as a planning device in the first or second aspect is provided.
  • a hydrogen production method uses an electricity rate prediction model in which the electricity rate prediction unit predicts the transition of electricity rates of multiple electricity sources during the target period based on the value of the first factor available before the target period. To predict future changes in electricity prices.
  • the operation plan generation unit generates an operation plan of the hydrogen generation device in the first period in the future based on the predicted future transition of the electricity rate.
  • the hydrogen generator produces hydrogen based on the operation plan.
  • a first configuration example of the planning apparatus 100 according to the present embodiment is shown together with the electrolytic apparatus 1000.
  • a second configuration example of the planning apparatus 100 according to the present embodiment is shown.
  • An example of the operation flow of the planning apparatus 100 of the 2nd configuration example which concerns on this embodiment is shown.
  • a third configuration example of the planning apparatus 100 according to the present embodiment is shown.
  • a fourth configuration example of the planning apparatus 100 according to the present embodiment is shown.
  • a fifth configuration example of the planning apparatus 100 according to the present embodiment is shown.
  • An example of the operation flow of the second operation plan generation unit 510 according to this embodiment is shown.
  • An example of a computer 1200 in which a plurality of aspects of the present invention can be embodied in whole or in part is shown.
  • FIG. 1 shows a configuration example of the planning device 100 according to the present embodiment of the electrolytic device 1000 and a plurality of electricity procurement sources 1010 (1) to 1010 (n) (n ⁇ 2) (hereinafter, simply “electricity procurement source 1010””. Also shown).
  • the planning apparatus 100 generates an operation plan for the first period in the future of the electrolytic apparatus 1000.
  • the planning apparatus 100 operates the electrolytic apparatus 1000 by using the electric power from a plurality of electric sources 1010 according to the generated operation plan, and reduces the manufacturing cost in which the electrolytic apparatus 1000 produces a product.
  • the first period may be a predetermined period such as several days, ten and several days, several weeks, or several tens of days.
  • the electrolyzer 1000 is connected to a plurality of electric sources 1010 via or directly through the power grid of the electric power system.
  • the electrolyzer 1000 may be an apparatus that produces a product using electrical energy from a plurality of electric sources 1010.
  • the electrolytic device 1000 is, for example, a hydrogen generating device that generates hydrogen by electrolysis.
  • the plurality of electricity procurement sources 1010 are, for example, a plurality of electric power companies that supply electric power generated by thermal power generation facilities and the like, power generation devices that supply electric power generated by renewable energy and the like, and power storage devices. Good.
  • the planning device 100 may be a computer such as a personal computer, a tablet computer, a smartphone, a workstation, a server computer, or a general-purpose computer, or may be a computer system in which a plurality of computers are connected.
  • the planning device 100 may generate a plan or the like by processing in the CPU, GPU (Graphics Processing Unit), and / or TPU (Tensor Processing Unit) of the computer. Further, the planning device 100 may perform various processes on the cloud provided by the server computer.
  • the operation plan generated by the planning device 100 is, for example, a table or data describing the state in which the electrolytic device 1000 should be operated in the first period.
  • the operation plan may be a table or data that defines the time zone in which the electrolytic device 1000 is operated (not operated) and / or the operating rate of the electrolytic device 1000 in each time zone.
  • the operation plan may further include at least one of the distribution of the power supply of the plurality of power sources 1010 and the timing of the power supply of each power source 1010 during the period in which the electrolyzer 1000 is operated.
  • the planning device 100 includes an acquisition unit 10, a storage unit 20, a model generation unit 30, a learning processing unit 40, an operation plan generation unit 50, and a control unit 60.
  • the acquisition unit 10 acquires parameters used for learning, learning data, and the like.
  • the acquisition unit 10 acquires learning data including, for example, an operation plan of the electrolytic apparatus 1000 to be targeted in a predetermined target period in the future and a value of a factor available before the target period.
  • the target period is a predetermined period in the future.
  • the target period may be a period including the first period.
  • the acquisition unit 10 may acquire parameters related to electricity charges that can be obtained before the target period as the first factor.
  • the acquisition unit 10 may acquire the parameters related to the electrolytic device 1000 that can be obtained before the target period as the second factor.
  • the acquisition unit 10 may be connected to the electrolyzer 1000 and a plurality of electricity procurement sources 1010 and the like to acquire parameters and learning data used for learning.
  • the acquisition unit 10 may be connected to a network or the like and acquire data via the network. When at least a part of the data to be acquired is stored in an external database or the like, the acquisition unit 10 may access the database or the like to acquire the data. Further, the acquisition unit 10 may supply the acquired data to the storage unit 20.
  • the storage unit 20 stores the information acquired by the acquisition unit 10.
  • the storage unit 20 may be able to store the data processed by the planning device 100.
  • the storage unit 20 may store intermediate data, calculation results, parameters, and the like calculated (or used) in the process of generating the operation plan by the planning device 100. Further, the storage unit 20 may supply the stored data to the request source in response to the request of each unit in the planning device 100. As an example, the storage unit 20 supplies the stored data to the model generation unit 30 in response to a request from the model generation unit 30.
  • the model generation unit 30 generates a learning model to be learned by the planning device 100.
  • the model generation unit 30 generates a learning model according to the first factor, the second factor, and the like.
  • the model generation unit 30 may generate one or more learning models.
  • the model generation unit 30 supplies the generated learning model to the learning processing unit 40.
  • the learning processing unit 40 learns the generated learning model based on the acquired learning data.
  • the learning processing unit 40 may execute reinforcement learning to update the learning model.
  • the learning processing unit 40 may update one or more learning models.
  • the learning processing unit 40 supplies the updated learning model to the operation plan generation unit 50.
  • the operation plan generation unit 50 generates an operation plan of the electrolytic apparatus in the first period in the future. For example, in the first period, the operation plan generation unit 50 generates an operation plan that minimizes or reduces the production cost of the product while generating the product in the amount to be generated by the electrolyzer 1000 (the amount of hydrogen in the supply plan). To generate.
  • the operation plan generation unit 50 determines the value of the second factor including at least one of the contract conditions with the electricity procurement source 1010 and the reliability of the electricity procurement source 1010, and the transition of the electricity charge predicted by the electricity charge prediction unit 130. Based on the prediction results, an operation plan may be generated that includes at least one of the distribution of the power supply of the plurality of electricity sources 1010 in the first period in the future and the timing of the power supply of each electricity source.
  • the operation plan generation unit 50 for example, in the first period, while generating an amount of products to be produced by the electrolyzer 1000 (amount of hydrogen in the supply plan). Generate an operational plan that minimizes or reduces the risk of receiving power.
  • the operation plan generation unit 50 can satisfy the demand even if the amount of electricity or the electricity price that can be supplied from the plurality of electricity procurement sources 1010 fluctuates. The likelihood of producing a product can be increased. This is particularly effective when the electricity procurement source 1010 mainly has a power generation source whose power generation amount is unstable, or when the electricity procurement source 1010 has a contract including a plurality of contract conditions.
  • the operation plan generation unit 50 supplies the generated operation plan to the control unit 60.
  • the operation plan generation unit 50 may calculate the power supply risk indicating the risk of receiving power supply from a plurality of electricity procurement sources 1010. In this case, the operation plan generation unit 50 may calculate the power supply risk for each of the plurality of electricity procurement sources 1010, or collectively supply power to at least a part of the plurality of electricity procurement sources. You may calculate the risk. Further, when a contract including a plurality of contract conditions is concluded with the electricity procurement source 1010, the power supply risk may be calculated for each contract condition.
  • the operation plan generation unit 50 may calculate the power supply risk by calculating the probability distribution of the power supply amount.
  • the operation plan generation unit 50 sets the probability distribution of the power supply amount as one or more contract conditions with the electricity source 1010, the area where the electricity source 1010 exists, the total power generation capacity, and the amount of change in the power generation amount. It may be calculated based on at least one of the power generation and the like. Further, the operation plan generation unit 50 has the possibility of supplying the required electric energy in addition to or in place of these, the ratio of the electric energy that could not be supplied to the electric energy requested in the past, and the like. The probability distribution of electric energy may be calculated based on at least one of them.
  • the operation plan generation unit 50 may use data published by each electricity procurement source or data independently recorded by the user as the data used for calculating the probability distribution of the power supply amount. ..
  • the operation plan generation unit 50 uses the teacher data including these data and the power supply amount from the electricity procurement source 1010, and the probability distribution of the power supply amount by the acquisition unit 10, the storage unit 20, and the model generation unit 30 described above. You may generate a learning model that outputs.
  • the electricity procurement source 1010 may be used as data by assigning a number to a country or region, for example, "1: Germany, 2: France".
  • the possibility that the electricity procurement source 1010 can supply the required electric energy is, for example, "100% supply possibility: 80%, 80% supply possibility: 85%, 60% supply possibility: 90%, 40% supply possibility.
  • a power source such as “1: wind power, 2: geothermal”, which is assigned a number for each type of power source, may be used.
  • the operation plan generation unit 50 may calculate the supply continuity of a plurality of power procurement sources 1010 in addition to or instead of the probability distribution of the power supply amount as the power supply risk.
  • the operation plan generation unit 50 may calculate the supply continuity based on at least one of the business scale, sales, profit, electricity charges, and the like of the plurality of electric power procurement sources 1010.
  • the business scale for example, the number of employees, capital, etc. may be used.
  • the operation plan generation unit 50 may output an operation plan satisfying a predetermined standard from the operation plans satisfying the constraints to the control unit 60. Further, the operation plan generation unit 50 may have an operation plan selection unit that selectively outputs at least one operation plan satisfying the constraint condition as an operation plan candidate. The operation plan selection unit may output the operation plan selected by the user or the like from the operation plan candidates to the control unit 60.
  • the operation plan generation unit 50 may have a constraint condition specification unit that specifies the constraints to be satisfied when generating the operation plan.
  • the constraint condition specification unit may specify the constraint condition in an adjustable manner according to the input from the user or the like.
  • the constraint condition designation unit can specify any one of the power purchase amount, the hydrogen generation amount, the electricity charge, the power supply risk, the fluctuation range of the electricity charge, and the like.
  • the fluctuation range of the electricity rate may be calculated based on the probability distribution of the electricity rate predicted by the electricity rate prediction unit 130.
  • the constraint condition designation unit may use the standard deviation of the probability distribution of the electricity rate as the fluctuation range of the electricity rate.
  • the constraint condition specification unit may specify a range of these numerical values (including the case where only the upper limit and the lower limit are specified) as the above constraint condition. Further, the constraint condition designation unit may specify a number or symbol assigned in advance to the range of each condition, for example, "A: 10 or more and less than 30 and B: 30 or more and less than 50". Further, the constraint condition designation unit may specify different conditions step by step, for example, "10 or more, preferably 30 or more and less than 50". In addition, the constraint condition specification unit may specify an acceptable ratio or numerical value as the constraint condition.
  • the constraint condition designation unit may specify the width with respect to the constraint condition, for example, as "plus or minus 10% of the specified value" as the allowable fluctuation range of the electricity rate or the power supply risk. Further, the constraint condition designation unit may separately specify, as the above-mentioned constraint condition, an essential condition that must be satisfied and a target condition that does not necessarily have to be satisfied. In addition, the constraint condition specification unit may specify a priority for each constraint condition. Further, the constraint condition specification unit may accept the designation of the above constraint condition from the user through an input function such as a text box, a slider bar, or a drop-down list.
  • the control unit 60 controls the operation of the electrolytic device 1000 by using the operation plan of the electrolytic device 1000 in the first period.
  • the control unit 60 may operate each of the plurality of electrolytic devices 1000. Further, the control unit 60 may instruct to stop and start the operation of the electrolytic device 1000 when the operation of the electrolytic device 1000 and the storage amount of the generation unit are in a range different from the assumption. Further, the control unit 60 may instruct the operation of the electrolytic device 1000 to be stopped and started when the electricity rate fluctuates significantly.
  • the planning apparatus 100 of the present embodiment described above it is possible to generate an operation plan of the electrolytic apparatus 1000 according to fluctuations in the electricity charges of the plurality of electricity procurement sources 1010, and a product of a predetermined amount or more can be generated. , Can be produced at lower manufacturing cost.
  • a more specific configuration example of such a planning device 100 will be described below.
  • FIG. 2 shows a second configuration example of the planning device 100 according to the present embodiment.
  • the planning device 100 of the second configuration example those substantially the same as the operation of the planning device 100 according to the present embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 2 shows a configuration in which the acquisition unit 10 of the planning device 100 is omitted.
  • the planning device 100 of the second configuration example includes a plurality of first model generation units 110, a plurality of first model update units 120, and a plurality of electricity charge prediction units 130, respectively, corresponding to the plurality of electricity procurement sources 1010. Forecast future changes in electricity prices for each electricity supplier 1010. Further, the planning device 100 of the second configuration example includes a second model generation unit 210, a second model update unit 220, and a first operation plan generation unit 230, and is subject to future electrolysis based on the predicted transition of electricity charges. Generate an operation plan for device 1000.
  • the model generation unit 30 may have the first model generation unit 110 and the second model generation unit 210
  • the learning processing unit 40 has the first model update unit 120, the electricity charge prediction unit 130, and the second model generation unit 40. It may have a model update unit 220.
  • the storage unit 20 of the second configuration example stores the first factor and the second factor acquired by the acquisition unit 10.
  • the first factor is the electricity rate, electricity demand, electricity supply, renewable energy power generation, predicted value of renewable energy power generation, electricity purchase from each electricity source 1010, and electricity purchase amount before the target period. Includes at least one of the weather information.
  • the electricity charge may be the actual electricity charge for the electric power supplied to the electrolyzer 1000 at the place where the electrolyzer 1000 is installed. Predicted values of power demand, power supply, renewable energy power generation, and renewable energy power generation are directly connected to the power plant that supplies power to the area where the electrolyzer 1000 is installed, or to the electrolyzer 1000. Information such as a power generation device that supplies electric power may be used.
  • the amount of electricity purchased from each electricity source 1010 may include the total amount of electricity purchased from each electricity source 1010 for each time zone and the total amount of electricity purchased from each electricity source 1010 in a predetermined period.
  • the weather information may be information on the area where each power source 1010 has a power plant, a power generation device, or the like.
  • the first factor may include information that affects the electricity charges for the electric power consumed by the electrolyzer 1000, in addition to the information on the past electricity charges of the plurality of electricity procurement sources 1010.
  • the first factor may be time-series information at substantially regular time intervals.
  • the first factor may contain various information in different periods.
  • the first factor may include information acquired by the acquisition unit 10 from a plurality of electricity procurement sources 1010 and an external device or the like. The first factor may be associated with each of the plurality of electricity procurement sources 1010 and stored in the storage unit 20.
  • the second factor is the operation data of the electrolytic device 1000, the contract conditions with each electric source 1010, the reliability of each electric source 1010, the amount of power generated by the power generation device, and the plurality of electric sources 1010 before the target period. Includes at least one fixed electricity rate and at least one of the hydrogen storage of the electrolyzer 1000. Further, the second factor may include the amount of products to be produced by the electrolytic apparatus 1000 during the target period (the amount of hydrogen in the supply plan), and the operation plan of the electrolytic apparatus 1000 produced by the planning apparatus 100 in the past. In addition, the second factor may include virtual data calculated from the physical model of the electrolyzer 1000. The second factor may be time-series information at substantially regular time intervals. In addition, the second factor may include information acquired by the acquisition unit 10 from the electrolyzer 1000.
  • the contract conditions with the electricity procurement source 1010 may be the contract conditions regarding the sale and purchase of electric power between the operator of the electrolytic device 1000 and the electricity procurement source 1010.
  • the terms and conditions of the contract with the electricity supplier 1010 are, for example, the electricity charge from the electricity supplier 1010 or the electricity charge according to the timing of the electricity purchase, the upper and lower limits of the electricity purchase amount, and the discount that occurs when the electricity purchase amount reaches a predetermined amount.
  • a discount according to the time of receiving electricity supply, and a discount according to the contract period with the electricity supplier may be included.
  • the second factor may include a contract condition group including a plurality of contract conditions.
  • the reliability of the electricity procurement source 1010 may indicate the possibility that all the requested electric energy can be supplied to the electrolytic apparatus 1000.
  • the reliability of the electricity source 1010 is, for example, the business scale of the electricity source 1010, the ratio of the amount of electricity that could not be supplied to the amount of electricity requested in the past, the amount of change in the electricity charge, and the amount of power generation of the electricity source 1010. , The amount of change in the amount of power generation, and at least one of the power sources may be calculated.
  • the information of the first factor and the second factor may be added or updated with the passage of time, respectively.
  • the acquisition unit 10 may acquire and update each information at predetermined periods. Further, the acquisition unit 10 may acquire the information at substantially the same or different periods and add or update the information according to the information to be acquired.
  • Each of the plurality of first model generation units 110 (1) to 110 (n) (n ⁇ 2) (hereinafter, also simply referred to as “first model generation unit 110”) is the value of the first factor before the target period. Based on, generate an electricity rate prediction model that predicts changes in electricity rates during the target period.
  • the plurality of first model generation units 110 may generate a plurality of different electricity rate prediction models for each of the plurality of electricity procurement sources 1010 by using the corresponding values of the first factor.
  • the first model generation unit 110 may generate an electricity rate prediction model by a process called pre-learning, offline learning, or the like, using information past the target period.
  • the first model generation unit 110 generates an electricity rate prediction model using, for example, regression analysis, Bayesian inference, a neural network, a Gaussian mixed model, a hidden Markov model, and the like.
  • the first model generation unit 110 supplies the generated electricity rate prediction model as the first model to the first model update unit 120.
  • the plurality of first model update units 120 (1) to 120 (n) (n ⁇ 2) are the value of the first factor in the past period and the past period, respectively.
  • the electricity rate prediction model is updated by learning based on the actual transition of the electricity rate thereafter.
  • Each of the plurality of first model updating units 120 has a first model learning unit 122, and updates the electricity rate prediction model according to the learning result of the first model learning unit 122.
  • the first model update unit 120 may update the electricity rate prediction model learned by the first model learning unit 122 as a new electricity rate prediction model every predetermined first update period.
  • the first model updating unit 120 may update the electricity rate prediction model in response to the first model learning unit 122 learning a predetermined number of times.
  • Each of the plurality of first model learning units 122 (1) to 122 (n) (n ⁇ 2) (hereinafter, also simply referred to as “first model learning unit 122”) is subjected to a process called adaptive learning or online learning. You may learn the electricity rate prediction model.
  • the first model learning unit 122 learns the electricity charge prediction model by executing reinforcement learning using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixed model, hidden Markov model, and the like as discriminative models. It is desirable that the first model learning unit 122 learns using information that is later in time than the information of the first factor used by the first model generation unit 110 to generate the electricity rate prediction model.
  • the first model learning unit 122 learns the electricity price prediction model by using the information of the first factor updated by the transition of the actual electricity price.
  • the first model learning unit 122 may execute the learning of the electricity rate prediction model in response to the update of the information of the first factor.
  • the first model learning unit 122 learns an electricity rate prediction model based on the value of the first factor in the past period and the actual transition of the electricity rate after the past period.
  • the first model learning unit 122 executes learning one or more times during the first update period of the first model updating unit 120.
  • the plurality of first model update units 120 supply the updated electricity rate prediction model to the electricity rate prediction unit 130, respectively.
  • the plurality of electricity rate prediction units 130 (1) to 130 (n) (n ⁇ 2) are updated correspondingly for each of the plurality of electricity procurement sources 1010.
  • electricity rate prediction unit 130 uses the electricity rate prediction model, future changes in electricity rates are predicted based on the corresponding values of the first factor.
  • the electricity rate prediction unit 130 predicts the electricity rate for the predetermined period in the future for each predetermined period, for example.
  • the electricity rate prediction unit 130 predicts the electricity rate by applying, for example, the information of the first factor in the period immediately before the period in which the electricity rate is to be predicted to the electricity rate prediction model.
  • the electricity rate prediction unit 130 supplies the prediction result to the operation plan generation unit 50.
  • the electricity rate prediction unit 130 may predict the electricity rate for each time zone of each electricity source 1010 in the target period, and also predict the probability distribution of the future electricity rate of each electricity source 1010 in the target period. May be good.
  • the electricity rate prediction unit 130 predicts the maintenance cost of the electricity source 1010 during the target period as an electricity rate. Good.
  • the second model generation unit 210 generates an operation plan generation model based on the value of the second factor and the transition of the electricity rate before the target period.
  • the operation plan generation model is based on the value of the second factor before the target period and the prediction result of the transition of the electricity rate of each electricity procurement source 1010 in the target period by learning, and the electrolyzer 1000 in the target period. It becomes a model to generate an operation plan.
  • the second model generation unit 210 may use the value of the first factor as a transition of the past electricity charges.
  • the second model generation unit 210 may generate an operation plan generation model by a learning process called pre-learning, offline learning, or the like, using information past the target period.
  • the second model generation unit 210 generates an operation plan generation model by executing reinforcement learning using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixed model, hidden Markov model, etc. as discriminative models.
  • the second model generation unit 210 supplies the generated operation plan generation model as the second model to the second model update unit 220.
  • the second model update unit 220 updates the operation plan generation model by learning.
  • the second model updating unit 220 has a second model learning unit 222, and updates the operation plan generation model according to the learning result of the second model learning unit 222.
  • the second model update unit 220 may update the operation plan generation model learned by the second model learning unit 222 as a new operation plan generation model, for example, every predetermined second update period. Instead, the second model update unit 220 may update the operation plan generation model according to the second model learning unit 222 learning a predetermined number of times.
  • the second model learning unit 222 may learn the operation plan generation model by a process called adaptive learning or online learning.
  • the second model learning unit 222 learns the operation plan generation model by executing reinforcement learning using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixed model, hidden Markov model, and the like as discriminative models. It is desirable that the second model learning unit 222 learns using information that is later in time than the information of the second factor that the second model generation unit 210 used to generate the operation plan generation model.
  • the second model learning unit 222 uses the information of the first factor updated by the transition of the actual electricity charge and the information of the second factor updated by the actual operation of the electrolytic apparatus 1000 to plan the operation. Learn the generative model.
  • the prediction result of the electricity rate prediction unit 130 may be used instead of the actual transition of the electricity rate. That is, the second model learning unit 222 learns the operation plan generation model based on the value of the second factor in the past period and the prediction result of the transition of the electricity charge or the transition of the electricity charge after the past period.
  • the second model learning unit 222 may execute the learning of the operation plan generation model in response to the update of the information of the second factor.
  • the second model learning unit 222 executes learning one or more times during the second updating period of the second model updating unit 220.
  • the second model update unit 220 supplies the updated operation plan generation model to the operation plan generation unit 50.
  • the operation plan generation unit 50 generates an operation plan of the electrolytic device 1000 in the first period in the future based on the transition of the future electricity charge predicted by the electricity charge prediction unit 130.
  • the operation plan generation unit 50 has a first operation plan generation unit 230.
  • the first operation plan generation unit 230 generates an operation plan in the target period based on the value of the second factor available before the target period and the prediction result of the transition of the electricity rate in the target period.
  • the model is used to generate an operating plan for the electrolyzer 1000 in the first period in the future.
  • the first operation plan generation unit 230 generates an operation plan for the electrolytic apparatus 1000, for example, with a period of several days, a dozen days, one or several weeks as the first period.
  • the first operation plan generation unit 230 generates an operation plan for N days as an example.
  • the control unit 60 controls the operation of the electrolytic device 1000 while switching between a plurality of electricity procurement sources 1010 according to the operation plan generated by the operation plan generation unit 50. Further, the control unit 60 may control the electrolyzer 1000 so that the acquisition unit 10 can acquire information on the second factor that changes as the electrolyzer 1000 operates.
  • the planning device 100 generates an operation plan for the electrolytic device 1000. Further, the planning device 100 generates an operation plan of the electrolytic device 1000 while predicting the electricity charge. The operation of such a planning device 100 will be described below.
  • FIG. 3 shows an example of the operation flow of the planning device 100 of the second configuration example according to the present embodiment. The planning apparatus 100 may execute the operation flow shown in FIG. 3 to operate the electrolytic apparatus 1000.
  • the acquisition unit 10 acquires information on the first factor and the second factor, which are the past trends of the electricity charge and the electrolyzer 1000 (S310).
  • the acquisition unit 10 acquires information on the first factor and the second factor from time t0 to time t1, for example.
  • the period between the time t0 and the time t1 is the second period before the first period.
  • the acquisition unit 10 stores the acquired information on the first factor and the second factor in the storage unit 20. Further, the acquisition unit 10 may supply the information of the first factor and the second factor to the model generation unit 30.
  • the model generation unit 30 generates a learning model (S320).
  • the model generation unit 30 generates a learning model based on the values of the first factor and the second factor in the second period.
  • the first model generation unit 110 generates an electricity rate prediction model based on the value of the first factor.
  • the first model generation unit 110 generates an electricity rate prediction model using the value of the first factor in the second period.
  • the second model generation unit 210 generates an operation plan generation model based on the values of the first factor and the second factor.
  • the second model generator 210 may use the electricity charges of a plurality of electricity sources 1010, the operation data of the electrolyzer 1000, the contract conditions with each electricity source 1010, and the reliability of each electricity source 1010 in the second period.
  • At least one fixed electricity charge of the plurality of electricity sources 1010, the hydrogen storage amount of the electrolyzer 1000, and at least one of the virtual data of the operation plan are used to generate an operation plan generation model.
  • the second model generation unit 210 sets virtual data based on the physical model of the electrolytic device 1000 as the target prediction data, and compares the prediction data with the actual data acquired by the operation of the electrolytic device 1000 in the past. By doing so, an operation plan generation model may be generated.
  • the second model generation unit 210 executes reinforcement learning to generate an operation plan generation model so that the difference between the prediction data to be targeted and the actual data in the past is 0 or less than a predetermined value. ..
  • the second model generation unit 210 sets the period of M days in the second period as a virtual prediction period.
  • the M days may be, for example, a period of several days or a dozen days, one or several weeks. It is desirable that M days coincide with the first period (N days).
  • the second model generation unit 210 determines the prediction result of the operation operation of the prediction period based on the values of the first factor and the second factor of the period before the prediction period in the second period, and the actual data or virtual of the prediction period. Reinforcement learning is performed so that the error with the data is minimized.
  • the second model generation unit 210 sets the fluctuation range of the hydrogen storage amount to the range of 0 to the maximum storage amount (first condition), and the amount of hydrogen generated and supplied by the electrolyzer 1000 is predetermined.
  • the hydrogen generation cost is reduced while satisfying the conditions such as satisfying the supply plan (second condition), selecting the electricity source 1010 with a low electricity cost and / or the time zone to operate the electrolyzer 1000 (third condition), and the like. Reinforcement learning may be done to reduce it.
  • the generation of the learning model by the model generation unit 30 may be executed before the planning device 100 acquires the actual data of the electrolytic device 1000 as the electrolytic device 1000 operates.
  • the learning processing unit 40 adaptively learns the generated learning model (S330).
  • the acquisition unit 10 may acquire information on the first factor and the second factor.
  • the acquisition unit 10 acquires information on the first factor and the second factor from time t1 to time t2, for example.
  • the period between time t1 and time t2 is the third period between the first period and the second period.
  • the learning processing unit 40 may perform adaptive learning using the information of the first factor and the second factor newly acquired by the acquisition unit 10.
  • each of the plurality of first model learning units 122 adaptively learns the electricity rate prediction model based on the corresponding value of the first factor.
  • the first model learning unit 122 may adaptively learn the electricity rate prediction model by using the first factor regarding the corresponding electricity procurement source 1010 in the third period.
  • the first model learning unit 122 uses the electricity rate prediction model to predict the electricity rate of the corresponding electricity source 1010 in the third period, and the result is the obtained electricity rate of the electricity source 1010 in the third period. You may do reinforcement learning so that they match.
  • the first model learning unit 122 sets the period of M days in the third period as a virtual prediction period.
  • the M days may be, for example, a period of several days or a dozen days, one or several weeks. It is desirable that M days coincide with the first period (N days).
  • the first model learning unit 122 determines that the difference between the prediction result of the prediction period based on the value of the first factor in the period before the prediction period in the third period and the actual data of the prediction period is 0 or predetermined. Strengthen learning so that it is less than the specified value.
  • the first model learning unit 122 may improve the learning accuracy by adjusting the data to be used and the prediction period according to the actual acquisition timing of each data. For example, it can be assumed that data corresponding to the amount of power supplied at one time can be acquired at a timing deviated from the one time. As information on such a first factor, the amount of renewable energy power generation will be described as an example. If the amount of renewable energy power generation is known after the power is supplied from the power source 1010, the amount of renewable energy power generation according to the amount of power supply at one time is at a time shifted after one time. It becomes information.
  • the first model learning unit 122 uses the value of the first factor excluding the renewable energy power generation amount in the period before the prediction period in the third period and the predicted value of the renewable energy power generation amount in the prediction period. Therefore, the electricity charge for the forecast period may be predicted.
  • the second model learning unit 222 may apply and learn the operation plan generation model based on the values of the first factor and the second factor. For example, the second model learning unit 222 learns the operation plan generation model using at least one of the electricity charge, the operation data of the electrolyzer 1000, the hydrogen storage amount, and the actual data of the operation plan in the third period. You can. The second model learning unit 222 uses the operation plan generation model to predict the operating operation of the electrolytic device 1000 in the third period, and the difference between the acquired actual data in the third period is 0 or less than a predetermined value. Reinforcement learning may be performed so that
  • the second model learning unit 222 sets the period of M days in the third period as a virtual prediction period.
  • the M days may be, for example, a period of several days or a dozen days, one or several weeks. It is desirable that M days coincide with the first period (N days).
  • the second model learning unit 222 sets the prediction result of the operation operation in the prediction period based on the values of the first factor and the second factor in the period before the prediction period in the third period, and the actual data of the prediction period. Reinforcement learning is performed so that the difference becomes 0 or less than a predetermined value.
  • the second model learning unit 222 may similarly use the first condition, the second condition, the third condition, and the like used by the second model generation unit 210 to generate the operation plan generation model. That is, the second model learning unit 222 may reinforce the operation plan generation model so as to reduce the hydrogen generation cost while satisfying the three conditions.
  • the second model learning unit 222 may execute reinforcement learning such as Q-learning, the SARSA method, or the Monte Carlo method, for example.
  • the second model learning unit 222 uses the actual data of the implemented operation plan to satisfy the first condition, the second condition, the third condition, and the like used for generating the operation plan generation model. Reinforcement learning may be performed so that the evaluation index of the operation plan is within the maximum or a predetermined range.
  • the evaluation index is, for example, an objective function of a weighted sum obtained by weighting and summing a plurality of the operating cost of the electrolytic apparatus 1000, the sales of hydrogen, the profit of hydrogen, and the cost per unit amount of hydrogen. , May be calculated by the planning device 100 or an external device.
  • the learning processing unit 40 updates the learning model (S340).
  • the learning processing unit 40 may update the learning model at predetermined time intervals. For example, the learning processing unit 40 continues adaptive learning for the initial update period required for updating after starting adaptive learning, executes the first update of the learning model, and then updates at regular intervals. repeat.
  • the initial update period is N days or more, which is the period of the operation plan to be generated.
  • the fixed period in which the renewal is repeated may be several hours, ten and several hours, one day, several tens of hours, several days, and the like.
  • the first model update unit 120 updates the electricity rate prediction model every first update period after the initial update period.
  • the plurality of first model update units 120 may update the electricity rate prediction model at different first update periods or at the same first update period.
  • the second model update unit 220 updates the operation plan generation model every second update period after the initial update period.
  • the first renewal period and the second renewal period may be different periods, and instead, they may be substantially the same period.
  • the first renewal period and the second renewal period are, for example, one day.
  • the learning processing unit 40 predicts the electricity rate using the updated learning model (S350).
  • the electricity rate prediction unit 130 predicts the transition of the electricity rate in the first period for the corresponding electricity source 1010 by using the updated electricity rate prediction model and the value of the first factor.
  • the electricity rate prediction unit 130 applies the value of the first factor for N days acquired by the acquisition unit 10 during the initial update period to the electricity rate prediction model, and the electricity for N days after the initial update period. Predict price changes.
  • the operation plan generation unit 50 generates an operation plan of the electrolytic apparatus 1000 in the first period using the updated learning model (S360).
  • the first operation plan generation unit 230 uses the updated operation plan generation model, the prediction result of the electricity charge of each electricity procurement source 1010 generated by the electricity charge prediction unit 130, and the value of the first factor. Generate an operation plan for the first period.
  • the first operation plan generation unit 230 predicts the value of the second factor for N days acquired by the acquisition unit 10 during the initial update period and the transition of the electricity charge for N days after the initial update period. Is applied to the operation plan generation model to generate the operation plan for N days after the initial update period.
  • the first operation plan generation unit 230 may similarly use the first condition, the second condition, the third condition, and the like used by the second model generation unit 210 to generate the operation plan generation model. That is, the first operation plan generation unit 230 may generate an operation plan that reduces the hydrogen generation cost while satisfying the three conditions. It is desirable that the first operation plan generation unit 230 generate an operation plan that minimizes the hydrogen generation cost.
  • the first operation plan generation unit 230 generates, for example, an operation plan including a period in which the electrolytic device 1000 is operated and a period in which the electrolytic device 1000 is not operated in the first period. Further, the first operation plan generation unit 230 may generate an operation plan indicating the period during which the electrolytic device 1000 is operated together with the operation rates of the electric source 1010 and the electrolytic device 1000 that supply power to the electrolytic device 1000 during the period. .. It is desirable that the first operation plan generation unit 230 generate an operation plan in which the operation rate changes in time series. The first operation plan generation unit 230 generates, for example, an operation plan at regular time intervals. The first operation plan generation unit 230 may generate an operation plan every tens of minutes, one hour, or several hours.
  • the first operation plan generation unit 230 may, for example, add a larger offset to the predicted electricity rate of the electricity procurement source 1010 having a lower reliability (for example, below the threshold value) so that the rate becomes higher, or a predetermined coefficient (for example). For example, a coefficient greater than 1) may be multiplied.
  • a predetermined coefficient for example, a coefficient greater than 1
  • an upper limit is set for the amount of procurement from each source according to the reliability (for example, when the reliability is less than the threshold value, a predetermined upper limit is set for the procurement amount, or the reliability is lower.
  • the electricity procurement source 1010 may set an upper limit on the procurement amount to the total procurement amount from a source with low reliability. As a result, the first operation plan generation unit 230 can determine the electricity procurement source 1010 with the lowest electricity rate by using the predicted electricity rate according to the reliability.
  • the first operation plan generation unit 230 determines the electricity procurement source 1010 to receive the power supply in each operating time zone by using the probability distribution of the predicted electricity charge of each electricity procurement source 1010 output by the electricity charge prediction unit 130. You can do it. As an example, the first operation plan generation unit 230 determines the electricity procurement source 1010 with the lowest predicted electricity rate among a plurality of electricity procurement sources 1010 by using the electricity rate with the highest probability in the probability distribution of the predicted electricity rate. You can do it. In addition, the first operation plan generation unit 230 increases the electricity rate by the standard deviation ⁇ (or 2 ⁇ , 3 ⁇ , ...) Of the probability distribution from the electricity rate with the highest probability in the probability distribution of the predicted electricity rate.
  • the electricity source 1010 with the lowest estimated electricity rate may be determined using.
  • the first operation plan generation unit 230 compares the electricity charges when the electricity charges with the highest probability in the probability distribution are higher than the electricity charges with a predetermined probability in consideration of the degree of dispersion of the probability distribution, and is the most. It is possible to determine the electricity source 1010, which has a high probability of reducing the electricity charge.
  • the first operation plan generation unit 230 may generate an operation plan for each of the plurality of electrolytic devices 1000.
  • the first operation plan generation unit 230 may generate substantially the same operation plan.
  • the control unit 60 controls different types of electrolyzers, electrolyzers purchased at different times, electrolyzers of different manufacturers, or a plurality of electrolyzers 1000 including a combination thereof. In this case, different operation plans may be generated for each electrolyzer 1000.
  • the second model generation unit 210 may generate a plurality of operation plan generation models corresponding to each of the operating number of the plurality of electrolytic devices 1000 or each combination of the plurality of electrolytic devices. Further, the second model learning unit 222 may learn each of a plurality of operation generation models, and the second model update unit 220 may update each of the plurality of operation generation models.
  • the first operation plan generation unit 230 uses the operation plan generation model according to the operation schedule of the plurality of electrolytic devices 1000 in the first period among the plurality of operation plan generation models, and uses the operation plan generation model of the electrolytic device in the first period. May be generated.
  • the operation schedule may be a predetermined hydrogen supply plan that the electrolytic apparatus 1000 should satisfy.
  • the control unit 60 operates the electrolytic apparatus 1000 for N days using the operation plan generated by the operation plan generation unit 50 (S370). As a result, the electrolyzer 1000 can be operated in the first period so as to reduce the hydrogen production cost while satisfying the predetermined hydrogen supply plan.
  • the planning device 100 When the planning device 100 continues the operation of the electrolytic device 1000 after the lapse of the first period (S380: No), it returns to S330 and the learning processing unit 40 adaptively learns the learning model.
  • the acquisition unit 10 sequentially acquires the information of the first factor in the first period and the information of the second factor that changes due to the operation of the electrolytic apparatus 1000 in the first period, and sequentially stores the information in the storage unit 20. .. That is, the planning device 100 includes the information of the first period in the past information, and sets the target period to be predicted as a period after the first period (for example, the fourth period).
  • the planning apparatus 100 repeats adaptive learning of the model using the information of the first period, updates the model according to the passage of a certain period, and generates an operation plan of the electrolytic apparatus 1000 of the fourth period.
  • the electrolytic device 1000 is operated according to the operation plan.
  • the planning device 100 according to the present embodiment continues the electrolyzer 1000 while updating the learning model by repeating the generation of the operation plan for the target period of the electrolyzer 1000 and the operation of the target period. Can operate.
  • the second period, the third period, the first period, and the fourth period may be temporally continuous periods in this order. At least, the first period and the fourth period are preferably continuous periods.
  • the planning device 100 generates an operation plan according to the transition of the electricity charges of the plurality of electricity procurement sources 1010 and the operating state of the electrolytic device 1000.
  • the electrolytic device 1000 it is desirable that the electrolytic device 1000 be regularly maintained in order to prevent the operation of the electrolytic device 1000 from being stopped due to abnormal operation or failure.
  • the electrolytic device 1000 may be stopped for a certain period of time due to maintenance or the like, and the operating state may fluctuate. Therefore, the planning device 100 may perform learning in consideration of fluctuations in the operating state due to maintenance or the like.
  • Such a planning apparatus 100 will be described below.
  • FIG. 4 shows a third configuration example of the planning device 100 according to the present embodiment.
  • the planning device 100 of the third configuration example those substantially the same as the operation of the planning device 100 of the second configuration example shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 4 shows a configuration in which the acquisition unit 10 of the planning device 100 is omitted.
  • the planning device 100 of the third configuration example includes one first model generation unit 110, one first model update unit 120, and one electricity rate prediction unit 130, and generates one electricity rate prediction model. Predict the electricity rate of each electricity source 1010.
  • the first model generation unit 110, the first model update unit 120, and the electricity charge prediction unit 130 of the third configuration example are the first model generation unit 110, the first model update unit 120, and the electricity charge of the second configuration example, respectively. It may be the same as the prediction unit 130.
  • the first model generation unit 110 generates one electricity rate prediction model using the first factor related to the plurality of electricity procurement sources 1010, and the first model update unit 120 generates the first factor of the plurality of electricity procurement sources 1010. It may be used to learn the electricity rate prediction model.
  • the electricity rate prediction unit 130 may apply the first factor of each electricity source 1010 to the electricity rate prediction model to predict the future electricity rate of the corresponding electricity source 1010.
  • the planning device 100 of the third configuration example includes a third model generation unit 310, a third model update unit 320, and a maintenance plan generation unit 330, and predicts a transition of the operating state due to maintenance of the electrolytic device 1000 in the future.
  • the model generation unit 30 may have the third model generation unit 310
  • the learning processing unit 40 may have the third model update unit 320 and the maintenance plan generation unit 330.
  • the acquisition unit 10 further acquires the third factor and stores it in the storage unit 20.
  • the third factor may include a past maintenance plan for the electrolyzer 1000.
  • the third factor may include placement information such as personnel, equipment, and replacement parts capable of performing maintenance.
  • the third factor may include information such as the time, period, and contents of the maintenance performed by the electrolytic device 1000 in the past, and the change in the operating rate of the electrolytic device 1000 due to the maintenance.
  • the acquisition unit 10 may acquire prediction data for predicting abnormality and deterioration of the electrolytic device 1000 from the outside and store it in the storage unit 20 as information of the third factor. ..
  • the prediction data may predict that the next abnormality and deterioration will occur in a period equivalent to the period from the operation of the past electrolytic apparatus 1000 to the occurrence of the abnormality and deterioration.
  • the prediction data the history of abnormality and deterioration acquired as a result of operating different electrolytic devices 1000 of the same type may be used as the prediction data of the electrolytic device 1000.
  • the third model generation unit 310 generates a maintenance plan generation model based on the value of the third factor that can be obtained before the target period.
  • the third model generation unit 310 may generate a maintenance plan generation model by a process called pre-learning, offline learning, or the like, using information past the target period.
  • the third model generation unit 310 generates a maintenance plan generation model by executing reinforcement learning using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixed model, hidden Markov model, etc. as discriminative models.
  • the maintenance plan generation model is a model that generates a maintenance plan including the allocation of personnel to execute maintenance, the maintenance schedule, the content of maintenance, the operating rate of the electrolytic device 1000, and the like by learning.
  • the third model generation unit 310 when an abnormality or deterioration is predicted in a predetermined period, the third model generation unit 310 generates a maintenance plan so that maintenance is started or completed before the date and time when the abnormality or deterioration occurs. Reinforcement learning and generating a model.
  • the maintenance plan for the electrolytic device 1000 to be targeted is a plan for starting or completing maintenance according to the prediction of abnormality and deterioration.
  • the third model generation unit 310 may generate a maintenance plan generation model in the operation of S320 described with reference to FIG. That is, the third model generation unit 310 generates a maintenance plan generation model based on the value of the third factor in the second period.
  • the third model generation unit 310 supplies the generated maintenance plan generation model as the third model to the third model update unit 320.
  • the third model update unit 320 updates the maintenance plan generation model by learning.
  • the third model update unit 320 has a third model learning unit 322, and updates the maintenance plan generation model according to the learning result of the third model learning unit 322.
  • the third model update unit 320 may update the maintenance plan generation model learned by the third model learning unit 322 as a new maintenance plan generation model, for example, every predetermined third update period. Instead, the third model update unit 320 may update the maintenance plan generation model according to the third model learning unit 322 learning a predetermined number of times.
  • the third model learning unit 322 may learn the maintenance plan generation model by a process called adaptive learning or online learning.
  • the third model learning unit 322 reinforces the maintenance plan generation model by using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixed model, hidden Markov model, and the like as discriminative models. It is desirable that the third model learning unit 322 learns using information that is later in time than the information of the third factor that the third model generation unit 310 used to generate the maintenance plan generation model.
  • the third model learning unit 322 learns the maintenance plan generation model by using the information of the third factor updated by the actual operation of the electrolytic device 1000. That is, the third model learning unit 322 learns the maintenance plan generation model based on the value of the third factor in the past period and the maintenance plan of the electrolytic apparatus 1000 to be targeted after the past period.
  • the third model learning unit 322 may execute learning of the maintenance plan generation model in response to the update of the information of the third factor.
  • the third model learning unit 322 executes learning one or more times during the third update period of the third model update unit 320.
  • the third model generation unit 310 may adaptively learn the maintenance plan generation model in the operation of S330 described with reference to FIG. 3, and update the maintenance plan generation model in the operation of S340.
  • the third model update unit 320 updates the maintenance plan generation model every third update period after the initial update period described in FIG.
  • the third renewal period and the first renewal period may be different periods, and instead, they may be substantially the same period.
  • the third renewal period is one day as an example.
  • the third model update unit 320 supplies the updated maintenance plan generation model to the maintenance plan generation unit 330.
  • the maintenance plan generation unit 330 uses the updated maintenance plan generation model to generate a maintenance plan for the electrolytic apparatus 1000 in the first period in the future.
  • the maintenance plan generation unit 330 generates a maintenance plan for the electrolytic device 1000 in the first period based on the value of the third factor including the abnormality prediction of the electrolytic device 1000 in the first period.
  • the maintenance plan generation unit 330 generates, for example, a maintenance plan for the predetermined period in the future for each predetermined period.
  • the maintenance plan generation unit 330 applies the information of the third factor in the period until immediately before the start of the future predetermined period to the maintenance plan generation model to generate the maintenance plan.
  • the maintenance plan generation unit 330 may generate a maintenance plan in the operation of S350 described with reference to FIG.
  • the maintenance plan generation unit 330 applies the value of the third factor for N days acquired by the acquisition unit 10 during the initial update period to the maintenance plan generation model, and N in the first period after the initial update period. Generate a daily maintenance plan.
  • the maintenance plan generation unit 330 supplies the generated maintenance plan to the operation plan generation unit 50.
  • the operation plan generation unit 50 of the third configuration example further generates an operation plan of the electrolytic device 1000 in the first period based on the maintenance plan of the electrolytic device 1000 in the first period.
  • the first operation plan generation unit 230 of the electrolytic apparatus 1000 according to the maintenance plan according to the first condition, the second condition, the third condition, etc. used by the second model generation unit 210 to generate the operation plan generation model.
  • the conditions including the fourth condition of operating at the operating number and the operating rate may be used in the same manner. That is, the first operation plan generation unit 230 may generate an operation plan that reduces the hydrogen generation cost while satisfying the four conditions. It is desirable that the first operation plan generation unit 230 generate an operation plan that minimizes the hydrogen generation cost.
  • the planning device 100 of the third configuration example since the planning device 100 of the third configuration example generates an operation plan in consideration of the maintenance plan generated by learning, it is possible to execute the control of the electrolytic device 1000 with higher accuracy.
  • the planning device 100 of the third configuration example has described an example of acquiring prediction data for predicting abnormality and deterioration of the electrolytic device 1000 from the outside or the like. Instead, the planning device 100 may predict the amount of power generated by the power generation device, which is the electricity procurement source 1010, and the abnormality and deterioration of the electrolytic device 1000. In addition, the planning device 100 may predict the amount of power generated by the power generation device, which is the electricity procurement source 1010, and the abnormality and deterioration of the electrolytic device 1000 by learning. Such a planning apparatus 100 will be described below.
  • FIG. 5 shows a fourth configuration example of the planning device 100 according to the present embodiment.
  • the planning device 100 of the fourth configuration example those substantially the same as the operation of the planning device 100 of the third configuration example shown in FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 5 shows a configuration in which the acquisition unit 10 of the planning device 100 is omitted.
  • the planning device 100 of the fourth configuration example includes a fourth model generation unit 410, a fourth model update unit 420, and an abnormality prediction unit 430, and predicts an abnormal operation of the electrolytic device 1000 in the future.
  • the model generation unit 30 may have the fourth model generation unit 410
  • the learning processing unit 40 may have the fourth model update unit 420 and the abnormality prediction unit 430.
  • the acquisition unit 10 further acquires the fourth factor and stores it in the storage unit 20.
  • the fourth factor includes the operating status of the electrolytic apparatus 1000 before the target period.
  • the fourth factor may include a history of abnormalities and deteriorations that have occurred in the past of the electrolytic apparatus 1000.
  • the fourth factor includes, for example, the occurrence time of abnormality and deterioration, the repair period, the operating rate of the electrolytic apparatus 1000 before and after the occurrence time of abnormality and deterioration, and the content of abnormality and deterioration.
  • the fourth factor may include information such as the degree of wear, fatigue, and deterioration of parts and the like based on the inspection result of the electrolytic apparatus 1000 and the maintenance result. Further, the fourth factor may include information on the replacement time of the component recommended by the component manufacturer, and information such as the usage time of the component or the time elapsed since the component was mounted on the electrolytic device 1000.
  • the fourth model generation unit 410 generates an abnormality prediction model based on the value of the fourth factor that can be obtained before the target period.
  • the fourth model generation unit 410 may generate an abnormality prediction model by a process called pre-learning, offline learning, or the like, using information past the target period.
  • the fourth model generation unit 410 generates an anomaly prediction model by using, for example, regression analysis, Bayesian inference, a neural network, a Gaussian mixed model, a hidden Markov model, and the like.
  • the abnormality prediction model is a model that generates an abnormality prediction of the electrolytic apparatus 1000 in the target period based on the value of the fourth factor by learning.
  • the fourth model generation unit 410 may generate an abnormality prediction model in the operation of S320 described with reference to FIG. That is, the fourth model generation unit 410 generates an abnormality prediction model based on the value of the fourth factor in the second period.
  • the fourth model generation unit 410 supplies the generated abnormality prediction model as the fourth model to the fourth model update unit 420.
  • the fourth model update unit 420 updates the abnormality prediction model by learning based on the value of the fourth factor in the past period and the abnormality occurrence situation after the past period.
  • the fourth model updating unit 420 has a fourth model learning unit 422, and updates the abnormality prediction model according to the learning result of the fourth model learning unit 422.
  • the fourth model update unit 420 may update the abnormality prediction model learned by the fourth model learning unit 422 as a new abnormality prediction model, for example, every predetermined fourth update period. Instead, the fourth model update unit 420 may update the abnormality prediction model according to the number of times the fourth model learning unit 422 has learned a predetermined number of times.
  • the fourth model learning unit 422 may learn the abnormality prediction model by a process called adaptive learning or online learning.
  • the fourth model learning unit 422 reinforces the anomaly prediction model by using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixed model, hidden Markov model, and the like as discriminative models. It is desirable that the fourth model learning unit 422 learns by using information that is later in time than the information of the fourth factor that the fourth model generation unit 410 used to generate the abnormality prediction model.
  • the fourth model learning unit 422 learns the abnormality prediction model using the information of the fourth factor updated by the actual operation of the electrolytic device 1000. That is, the fourth model learning unit 422 learns the abnormality prediction model based on the value of the fourth factor in the past period and the abnormality occurrence situation after the past period.
  • the fourth model learning unit 422 may execute learning of the abnormality prediction model in response to the update of the information of the fourth factor.
  • the fourth model learning unit 422 executes one or a plurality of learnings during the fourth updating period of the fourth model updating unit 420.
  • the fourth model update unit 420 may adaptively learn the abnormality prediction model in the operation of S330 described with reference to FIG. 3, and update the abnormality prediction model in the operation of S340.
  • the fourth model update unit 420 updates the abnormality prediction model every fourth update period after the initial update period described in FIG.
  • the fourth renewal period and the first renewal period may be different periods, and instead, they may be substantially the same period.
  • the fourth renewal period is one day as an example.
  • the fourth model update unit 420 supplies the updated abnormality prediction model to the abnormality prediction unit 430.
  • the abnormality prediction unit 430 uses the updated abnormality prediction model to generate an abnormality prediction of the electrolytic device 1000 in the target period, and uses the abnormality prediction model to generate an abnormality prediction in the first period.
  • the abnormality prediction unit 430 generates an abnormality prediction of the electrolytic device in the first period based on the value of the fourth factor including the abnormality prediction of the electrolytic device 1000 in the first period.
  • the anomaly prediction unit 430 generates, for example, an abnormality prediction for the predetermined period in the future for each predetermined period.
  • the anomaly prediction unit 430 applies, for example, the information of the fourth factor in the period immediately before the period in which the anomaly prediction should be predicted to the anomaly prediction model to generate the anomaly prediction.
  • the abnormality prediction unit 430 may generate an abnormality prediction in the operation of S350 described with reference to FIG.
  • the anomaly prediction unit 430 applies the value of the fourth factor for N days of the second period acquired by the acquisition unit 10 during the initial update period to the anomaly prediction model, and applies the value of the fourth factor for the first period after the initial update period. Generates anomaly predictions for N days.
  • the abnormality prediction unit 430 stores the generated abnormality prediction in the storage unit 20 as a new third factor. Instead of this, the abnormality prediction unit 430 may supply the generated abnormality prediction as a new third factor to the third model generation unit and the third model update unit 320.
  • the planning device 100 of the fourth configuration example is output by the fourth model generation unit 410 and the fourth model learning unit 422 by learning in the second period and the third period before the first period, before the update.
  • the prediction result of the anomaly prediction model may be used as the third factor.
  • the planning device 100 of the fourth configuration example performs an abnormality prediction generated by an operation other than learning as the planning device 100 of the third configuration example. You may use it.
  • the planning device 100 of the fourth configuration example includes a fifth model generation unit 440, a fifth model update unit 450, and a power generation amount prediction unit 460, and predicts the renewable energy power generation amount of the future power generation device.
  • the model generation unit 30 may have the fifth model generation unit 440
  • the learning processing unit 40 may have the fifth model update unit 450 and the power generation amount prediction unit 460.
  • the power generation device may be one of a plurality of electricity sources 1010, and the electric power generated by using renewable energy is directly electrolyzed through the power grid or without the power grid. It may be supplied to the device 1000.
  • the acquisition unit 10 further acquires the power generation amount prediction factor (hereinafter, also referred to as “fifth factor”) and stores it in the storage unit 20.
  • the fifth factor may include information on the amount of power generated by the power generator.
  • the fifth factor is the amount of power generated by the power generation device (for example, the cumulative amount of power generated within a predetermined period, or the power generation efficiency, etc.) before the target period, the amount of power supplied by the power generation device, the amount of power purchased by the electrolytic device 1000, and so on.
  • the fifth factor may include virtual data calculated from the physical model of the power generation device.
  • the fifth model generation unit 440 generates a power generation amount prediction model based on the value of the fifth factor that can be obtained before the target period.
  • the fifth model generation unit 440 may generate a power generation amount prediction model by a process called pre-learning, offline learning, or the like, using information past the target period.
  • the fifth model generation unit 440 generates a power generation prediction model using, for example, regression analysis, Bayesian inference, a neural network, a Gaussian mixed model, a hidden Markov model, and the like.
  • the power generation amount prediction model is a model that predicts the transition of the renewable energy power generation amount of the power generation device in the target period based on the value of the fifth factor that can be obtained before the target period by learning.
  • the fifth model generation unit 440 may generate a power generation amount prediction model in the operation of S320 described with reference to FIG. That is, the fifth model generation unit 440 generates a power generation amount prediction model based on the value of the fifth factor in the second period.
  • the fifth model generation unit 440 supplies the generated power generation amount prediction model as the fifth model to the fifth model update unit 450.
  • the fifth model update unit 450 updates the power generation amount prediction model by learning based on the value of the fifth factor in the past period and the actual power generation amount after the past period.
  • the fifth model updating unit 450 has a fifth model learning unit 452, and updates the power generation amount prediction model according to the learning result of the fifth model learning unit 452.
  • the fifth model update unit 450 may update the power generation amount prediction model learned by the fifth model learning unit 452 as a new power generation amount prediction model at each predetermined fourth update period.
  • the fifth model updating unit 450 may update the power generation amount prediction model according to the fifth model learning unit 452 learning a predetermined number of times.
  • the fifth model learning unit 452 may learn the power generation amount prediction model by a process called adaptive learning or online learning.
  • the fifth model learning unit 452 reinforces the power generation prediction model by using, for example, regression analysis, Bayesian inference, neural network, Gaussian mixed model, hidden Markov model, and the like as discriminative models. It is desirable that the fifth model learning unit 452 learns by further using information that is later in time than the information of the fifth factor that the fifth model generation unit 440 used to generate the power generation amount prediction model.
  • the fifth model learning unit 452 learns the power generation amount prediction model using the information of the fifth factor updated by the actual operation of the power generation device. That is, the fifth model learning unit 452 generates power so that the difference between the prediction result of the prediction period based on the value of the fifth factor in the past period and the actual data of the prediction period is 0 or less than a predetermined value. Learn the quantity prediction model.
  • the fifth model learning unit 452 may execute learning of the power generation amount prediction model in response to the update of the information of the fifth factor.
  • the fifth model learning unit 452 executes learning one or more times during the fifth update period of the fifth model updating unit 450.
  • the fifth model update unit 450 may adaptively learn the power generation amount prediction model in the operation of S330 described with reference to FIG. 3, and update the power generation amount prediction model in the operation of S340.
  • the fifth model update unit 450 updates the power generation amount prediction model every fourth update period after the initial update period described in FIG.
  • the fourth renewal period and the first renewal period may be different periods, and instead, they may be substantially the same period.
  • the fourth renewal period is one day as an example.
  • the fifth model update unit 450 supplies the updated power generation amount prediction model to the power generation amount prediction unit 460.
  • the power generation amount prediction unit 460 predicts the future transition of the renewable energy power generation amount in the target period by using the updated power generation amount prediction model.
  • the power generation amount prediction unit 460 generates the predicted power generation amount in the first period based on the value of the fifth factor.
  • the power generation amount prediction unit 460 generates, for example, the amount of power generation in the predetermined period in the future for each predetermined period.
  • the power generation amount prediction unit 460 applies, for example, the information of the fifth factor in the period immediately before the period in which the power generation amount prediction is to be predicted to the power generation amount prediction model to generate the predicted power generation amount.
  • the power generation amount prediction unit 460 may generate the predicted power generation amount in the operation of S350 described with reference to FIG.
  • the power generation amount prediction unit 460 applies the value of the fifth factor for N days of the second period acquired by the acquisition unit 10 during the initial update period to the power generation amount prediction model, and the third after the initial update period. Generates predicted power generation for N days in one period.
  • the power generation amount prediction unit 460 stores the generated predicted power generation amount in the storage unit 20 as a new factor. Instead of this, the power generation amount prediction unit 460 may supply the generated predicted power generation amount as a new factor to another configuration.
  • the planning device 100 of the fourth configuration example is output by the fifth model generation unit 440 and the fifth model learning unit 452 by learning in the second period and the third period before the first period, before the update.
  • the prediction result of the power generation prediction model may be used as a factor.
  • the planning device 100 of the fourth configuration example has, as an initial value, the predicted power generation amount generated by an operation other than learning, as in the planning device 100 of the third configuration example. May be used.
  • the power generation amount prediction unit 460 may store the generated predicted power generation amount in the storage unit 20 as, for example, the first factor and the second factor, and may supply the generated predicted power generation amount to the operation plan generation unit 50.
  • the operation plan generation unit 50 further generates an operation plan based on at least one of the predicted future abnormality prediction and the transition of the power generation amount.
  • the first operation plan generation unit 230 further applies at least one of the predicted future abnormality prediction and the transition of the power generation amount to the operation plan generation model to generate the operation plan of the electrolytic apparatus 1000 in the target period. Good.
  • the planning device 100 of the fourth configuration example can generate an operation plan using the power generation amount of the power generation device predicted more accurately by learning. Therefore, the planning device 100 can operate the electrolytic device 1000 so as to satisfy the hydrogen supply plan at low cost by preferentially using the electric power from the power generation device. Further, the planning device 100 of the fourth configuration example can generate a maintenance plan based on the predicted abnormal operation of the electrolytic device 1000. That is, the planning device 100 can predict abnormal operations, failures, and the like by learning, and can generate a maintenance plan so that maintenance can be executed in advance so that the operating state of the device does not fluctuate significantly. Then, since the planning device 100 of the fourth configuration example generates an operation plan in consideration of such a maintenance plan, it is possible to execute the control of the electrolytic device 1000 with higher accuracy and reduced cost.
  • the planning device 100 generates an operation plan of the electrolytic device 1000 by learning.
  • Such a planning device 100 may be combined with an operation of generating an operation plan by a logic different from learning.
  • the planning device 100 may improve the accuracy of the operation plan by learning according to the number of times and / or the time of learning.
  • the planning apparatus 100 may generate an operation plan by logic until the accuracy of the operation plan is improved.
  • Such a planning apparatus 100 will be described below.
  • FIG. 6 shows a fifth configuration example of the planning device 100 according to the present embodiment.
  • the operation plan generation unit 50 of any of the planning devices 100 of the first configuration example to the fourth configuration example has the allocation calculation unit 500 and the second operation plan generation unit 510.
  • the operation plan selection unit 520 may be further provided.
  • the distribution calculation unit 500 may receive the predicted electricity charges of the plurality of electricity procurement sources 1010 from the electricity charge prediction unit 130, and calculate the power supply distribution of the plurality of electricity procurement sources 1010 according to the hydrogen supply plan.
  • the allocation calculation unit 500 may calculate the distribution of the electric power from the power generation device which is the electricity procurement source 1010 and the electric power from a plurality of electric power companies which are the electricity procurement sources 1010.
  • the allocation calculation unit 500 has a risk of not exceeding the amount of the hydrogen supply plan from the probability distribution of the predicted electricity charge of each electricity procurement source 1010 received from the electricity charge prediction unit 130 and the reliability of each electricity procurement source 1010.
  • the allocation may be calculated to be the lowest.
  • the first operation plan generation unit 230 may generate an operation plan according to the prediction result of the transition of the electricity rate and / or the allocation from the allocation calculation unit 500.
  • the second operation plan generation unit 510 uses a predetermined logic that does not learn to obtain the value of the second factor before the first period and the prediction result of the electricity charges of the plurality of electricity procurement sources 1010 in the first period. Based on this, an operation plan for the electrolyzer 1000 in the first period is generated.
  • the second operation plan generation unit 510 may generate an operation plan in parallel with the first operation plan generation unit 230.
  • the predetermined logic will be described later.
  • the operation plan selection unit 520 is generated by the second operation plan generation unit 510 when the operation plan generated by the first operation plan generation unit 230 does not satisfy a predetermined constraint (for example, the amount of the hydrogen supply plan). Select the operation plan you have made.
  • the operation plan selection unit 520 is, for example, when the hydrogen generation cost in the first period according to the operation plan of the first operation plan generation unit 230 is less than the hydrogen supply amount in the first period by the second operation plan generation unit 510.
  • the operation plan of the second operation plan generation unit 510 is selected.
  • the operation plan selection unit 520 may select the operation plan of the second operation plan generation unit 510 when the number of learnings and / or the learning time of the planning device 100 is less than a predetermined threshold value. Further, the operation plan selection unit 520 selects the operation plan of the second operation plan generation unit 510 when the planning device 100 stops the operation of one or more of the electrolytic devices 1000 among the plurality of electrolytic devices 1000 and executes maintenance. You can do it.
  • the planning device 100 of the fifth configuration example controls the electrolytic device 1000 by adopting the operation plan by logic when the learning is insufficient or the learning is difficult.
  • the planning apparatus 100 can stably operate the electrolytic apparatus 1000 and reduce the hydrogen generation cost even in the initial period and the maintenance execution period.
  • the logic used by the second operation plan generation unit 510 of the electrolytic apparatus 1000 will be described below.
  • FIG. 7 shows an example of the operation flow of the second operation plan generation unit 510 according to the present embodiment.
  • the second operation plan generation unit 510 may execute the operation flow shown in FIG. 7 to generate an operation plan for the electrolytic device 1000.
  • the second operation plan generation unit 510 generates an operation plan for the first period (N days) will be described.
  • the second operation plan generation unit 510 satisfies the usage plan of the product of the electrolyzer 1000 during the first period, and the period in which the electricity rate is predicted to be higher in the period in which the electricity rate is predicted to be lower. Generate an operation plan for operating the electrolytic apparatus 1000 with priority over. Therefore, first, the second operation plan generation unit 510 selects a time zone in which the electricity charge for generating hydrogen should be low in the first period based on the plurality of predicted electricity charges in the first period (S710). The second operation plan generation unit 510 may make a judgment based on the predicted electricity charge of the lowest electricity procurement source 1010 in each time zone among the plurality of electricity procurement sources 1010.
  • the second operation plan generation unit 510 selects a time zone in which hydrogen should be generated so that the amount of hydrogen generated and supplied by the electrolyzer 1000 satisfies a predetermined supply plan.
  • the supply plan may be a plan to supply hydrogen at predetermined intervals. For example, in the supply plan, the total number of hydrogen supplies in the first period and the amount of hydrogen supplied for each period Q are set.
  • the period Q is a period shorter than the first period, and is, for example, one day.
  • the second operation plan generation unit 510 further generates an operation plan for maintaining the stored amount of the product within the reference range during the first period. For example, in the first period, the second operation plan generation unit 510 operates the electrolytic device 1000 in the selected time zone to generate hydrogen, and supplies hydrogen for each period Q, and the storage amount of hydrogen V The transition is calculated (S720). Next, the second operation plan generation unit 510 determines whether or not the hydrogen storage amount V is below the predetermined threshold value Th1 for each period Q (S730).
  • the second operation plan generation unit 510 updates the operation plan of the electrolytic device 1000 when the hydrogen storage amount V is lower than the predetermined threshold value Th1 (S730: Yes).
  • the second operation plan generation unit 510 increases, for example, the operation time of the electrolytic apparatus 1000 during the period Q in which the hydrogen storage amount V decreases by a predetermined fixed time (S740).
  • the second operation plan generation unit 510 selects a time zone in which the electricity rate is low and the corresponding electricity procurement source 1010 to increase the operation time.
  • the second operation plan generation unit 510 returns to S720 and calculates the transition of the hydrogen storage amount V according to the updated operation plan.
  • the second operation plan generation unit 510 may repeat the operations of S720 to S740 until the hydrogen storage amount V does not fall below the predetermined threshold value Th1 (S730: No) in the first period.
  • the second operation plan generation unit 510 determines whether or not the hydrogen storage amount V exceeds the predetermined threshold Th2 for each period Q (S750).
  • the second operation plan generation unit 510 updates the operation plan of the electrolytic apparatus 1000 when the stored amount of hydrogen exceeds the predetermined threshold Th2 (S750: Yes).
  • the second operation plan generation unit 510 reduces the operation time of the electrolytic apparatus 1000 in the period Q in which the hydrogen storage amount V increases by a predetermined fixed time (S760).
  • the second operation plan generation unit 510 selects a time zone in which the electricity rate is high to reduce the operation time.
  • the second operation plan generation unit 510 returns to S720 and calculates the transition of the hydrogen storage amount V according to the updated operation plan.
  • the second operation plan generation unit 510 operates from S720 to S760 until the hydrogen storage amount V is maintained within the predetermined threshold values Th1 and Th2 (S730: No, S750: No) in the first period. May be repeated.
  • the second operation plan generation unit 510 may output the operation plan when the operation plan can maintain the hydrogen storage amount within the reference range (S770). If the operation flow is looped without being able to output the operation plan even after a predetermined period of time has elapsed, the second operation plan generation unit 510 outputs a warning or the like to the outside as it cannot be generated. Good. In this case, the operation plan selection unit 520 may select the operation plan of the first operation plan generation unit 230. The second operation plan generation unit 510 may generate an operation plan for the next first period each time the first period elapses. As in the above example, the second operation plan generation unit 510 generates the operation plan of the electrolytic device 1000 by using a predetermined logic that does not learn.
  • the planning device 100 predicts the electricity charges for a plurality of electricity procurement sources 1010 and generates an operation plan, but the predicted electricity charges (for example, electricity charges) for one electricity procurement source 1010. Probability distribution) may be generated to generate an operation plan.
  • the planning device 100 receives power supply only from the one electricity procurement source 1010, or acquires the predicted electricity rate or the fixed electricity rate of the other electricity procurement source 1010 from the outside to generate an operation plan. You may use it.
  • the planning device 100 generates an operation plan of the electrolytic device 1000 in the first period in the future based on the transition of the future electricity rate.
  • the predicted value is used for the future transition of the electricity price
  • the actual electricity price may suddenly deviate greatly from the predicted value.
  • the control unit 60 may execute the control of the electrolytic device 1000 different from the operation plan in response to such a sudden change.
  • the control unit 60 has a higher electricity rate in response to the fact that the electricity rate of at least one of the plurality of electricity sources 1010 is lower than expected during the period when the electrolytic device 1000 is not to be operated in the operation plan. Instead of operating the electrolyzer 1000 in the future for a fee, the electrolyzer 1000 will be operated during the period.
  • the electricity charge of the electricity procurement source 1010 having the lowest predicted electricity charge among the plurality of electricity procurement sources 1010 becomes less than a predetermined first threshold value. In that case, the electrolyzer 1000 is operated. Further, whether the control unit 60 stops the operation of the electrolyzer 1000 when the electricity charge of the electricity procurement source 1010 scheduled to be supplied exceeds a predetermined second threshold value during the period of operating the electrolyzer 1000. , Or the operating rate may be reduced.
  • the planning device 100 can revise the operation plan in response to sudden fluctuations in electricity charges. Further, since the planning device 100 according to the present embodiment generates the next operation plan by learning using the operation result of the electrolytic device 1000, even if the control unit 60 executes the control deviating from the operation plan, the learning is performed.
  • the operation plan can be modified, stable operation can be realized throughout the entire period, and the hydrogen production cost can be reduced.
  • the planning device 100 generates an operation plan so that the amount of hydrogen generated and supplied by the electrolyzer 1000 satisfies a predetermined supply plan.
  • the actual hydrogen supply amount of the electrolyzer 1000 may differ from the supply plan.
  • the supply amount may be lower than the supply plan due to a defect, failure, consumption adjustment, or the like of the supply destination of the electrolytic device 1000.
  • the control unit 60 may adjust the operation of the electrolytic device 1000 according to the amount of hydrogen stored in the electrolytic device 1000.
  • control unit 60 operates the electrolytic device 1000 according to the storage amount of the product of the electrolytic device 1000 exceeding the upper limit value within the period during which the electrolytic device 1000 is operated based on the operation plan. Stop it. As a result, the control unit 60 can prevent the hydrogen storage amount of the electrolyzer 1000 from exceeding the upper limit.
  • the supply amount of the electrolytic device 1000 may increase more than the supply plan. In this case, the amount of hydrogen stored in the electrolytic device 1000 is lower than expected. Therefore, the control unit 60 may adjust the operation of the electrolytic device 1000 according to the amount of hydrogen stored in the electrolytic device 1000.
  • control unit 60 operates the electrolytic device 1000 in response to the storage amount of the product of the electrolytic device 1000 becoming equal to or less than the lower limit value within the period in which the electrolytic device 1000 is stopped based on the operation plan. Let's get started. As a result, the control unit 60 can prevent the hydrogen storage amount of the electrolyzer 1000 from falling below the lower limit.
  • Various embodiments of the present invention may be described with reference to flowcharts and block diagrams, wherein the block is (1) a stage of the process in which the operation is performed or (2) a device responsible for performing the operation. May represent a section of. Specific stages and sections are implemented by dedicated circuits, programmable circuits supplied with computer-readable instructions stored on a computer-readable medium, and / or processors supplied with computer-readable instructions stored on a computer-readable medium. You can.
  • Dedicated circuits may include digital and / or analog hardware circuits, and may include integrated circuits (ICs) and / or discrete circuits.
  • Programmable circuits are memory elements such as logical AND, logical OR, logical XOR, logical NAND, logical NOR, and other logical operations, flip-flops, registers, field programmable gate arrays (FPGA), programmable logic arrays (PLA), etc. May include reconfigurable hardware circuits, including.
  • the computer-readable medium may include any tangible device capable of storing instructions executed by the appropriate device, so that the computer-readable medium having the instructions stored therein is specified in a flowchart or block diagram. It will be equipped with a product that contains instructions that can be executed to create means for performing the operation. Examples of computer-readable media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like.
  • Computer-readable media include floppy (registered trademark) disks, diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), Electrically erasable programmable read-only memory (EEPROM), static random access memory (SRAM), compact disk read-only memory (CD-ROM), digital versatile disc (DVD), Blu-ray (RTM) disc, memory stick, integrated A circuit card or the like may be included.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory erasable programmable read-only memory
  • EEPROM Electrically erasable programmable read-only memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disc
  • Blu-ray (RTM) disc memory stick, integrated A circuit card or the like may be included.
  • Computer-readable instructions are assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state-setting data, or object-oriented programming such as Smalltalk, JAVA®, C ++, etc.
  • ISA instruction set architecture
  • Computer-readable instructions are applied locally or to a processor or programmable circuit of a general purpose computer, special purpose computer, or other programmable data processing device, or to a wide area network (WAN) such as the local area network (LAN), the Internet, etc. ) May be executed to create a means for performing the operation specified in the flowchart or block diagram.
  • processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers and the like.
  • FIG. 8 shows an example of a computer 1200 in which a plurality of aspects of the present invention can be embodied in whole or in part.
  • the program installed on the computer 1200 causes the computer 1200 to function as an operation associated with the device according to an embodiment of the present invention or as one or more "parts" of the device, or the operation or the one or more "parts".
  • a unit can be run and / or a computer 1200 can be run a process according to an embodiment of the invention or a stage of the process.
  • Such a program may be executed by the CPU 1212 to cause the computer 1200 to perform a specific operation associated with some or all of the blocks of the flowcharts and block diagrams described herein.
  • the computer 1200 includes a CPU 1212, a RAM 1214, a graphic controller 1216, and a display device 1218, which are connected to each other by a host controller 1210.
  • the computer 1200 also includes input / output units such as a communication interface 1222, a hard disk drive 1224, a DVD-ROM drive 1226, and an IC card drive, which are connected to the host controller 1210 via the input / output controller 1220.
  • the computer also includes legacy I / O units such as the ROM 1230 and keyboard 1242, which are connected to the I / O controller 1220 via the I / O chip 1240.
  • the CPU 1212 operates according to the programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
  • the graphic controller 1216 acquires image data generated by the CPU 1212 in a frame buffer or the like provided in the RAM 1214 or in the graphic controller 1216 itself, and displays the image data on the display device 1218.
  • the communication interface 1222 communicates with other electronic devices via the network.
  • the hard disk drive 1224 stores programs and data used by the CPU 1212 in the computer 1200.
  • the DVD-ROM drive 1226 reads the program or data from the DVD-ROM 1201 and provides the program or data to the hard disk drive 1224 via the RAM 1214.
  • the IC card drive reads the program and data from the IC card and / or writes the program and data to the IC card.
  • the ROM 1230 internally stores a boot program or the like executed by the computer 1200 at the time of activation, and / or a program depending on the hardware of the computer 1200.
  • the input / output chip 1240 may also connect various input / output units to the input / output controller 1220 via a parallel port, a serial port, a keyboard port, a mouse port, and the like.
  • the program is provided by a computer-readable storage medium such as a DVD-ROM1201 or an IC card.
  • the program is read from a computer-readable storage medium, installed on a hard disk drive 1224, RAM 1214, or ROM 1230, which is also an example of a computer-readable storage medium, and executed by the CPU 1212.
  • the information processing described in these programs is read by the computer 1200 and provides a link between the program and the various types of hardware resources described above.
  • the device or method may be configured to implement the operation or processing of information in accordance with the use of computer 1200.
  • the CPU 1212 executes a communication program loaded in the RAM 1214, and performs communication processing on the communication interface 1222 based on the processing described in the communication program. You may order.
  • the communication interface 1222 reads and reads the transmission data stored in the transmission buffer area provided in the recording medium such as the RAM 1214, the hard disk drive 1224, the DVD-ROM 1201, or the IC card. The data is transmitted to the network, or the received data received from the network is written to the reception buffer area or the like provided on the recording medium.
  • the CPU 1212 allows the RAM 1214 to read all or necessary parts of a file or database stored in an external recording medium such as a hard disk drive 1224, a DVD-ROM drive 1226 (DVD-ROM1201), or an IC card. Various types of processing may be performed on the data on the RAM 1214. The CPU 1212 may then write back the processed data to an external recording medium.
  • an external recording medium such as a hard disk drive 1224, a DVD-ROM drive 1226 (DVD-ROM1201), or an IC card.
  • Various types of processing may be performed on the data on the RAM 1214.
  • the CPU 1212 may then write back the processed data to an external recording medium.
  • the CPU 1212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval described in various parts of the present disclosure with respect to the data read from the RAM 1214, and is specified by the instruction sequence of the program. Various types of processing may be performed, including / replacement, etc., and the results are written back to the RAM 1214. Further, the CPU 1212 may search for information in a file, a database, or the like in the recording medium.
  • the CPU 1212 is the first of the plurality of entries.
  • the attribute value of the attribute of is searched for the entry that matches the specified condition, the attribute value of the second attribute stored in the entry is read, and the first attribute satisfying the predetermined condition is selected. You may get the attribute value of the associated second attribute.
  • the program or software module described above may be stored on the computer 1200 or in a computer-readable storage medium near the computer 1200.
  • a recording medium such as a hard disk or RAM provided in a dedicated communication network or a server system connected to the Internet can be used as a computer-readable storage medium, whereby the program can be sent to the computer 1200 via the network.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Strategic Management (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一定期間における電解装置の生成物の生成量を低減させずに、生成物の製造コストを低減させる。対象期間における複数の電気調達元の電気料金の推移を対象期間よりも前に入手可能な第1因子の値に基づいて予測する電気料金予測モデルを用いて、将来の電気料金の推移を予測する電気料金予測部と、予測された将来の電気料金の推移に基づいて、将来の第1期間における電解装置の稼働計画を生成する稼働計画生成部とを備える計画装置を提供する。

Description

計画装置、稼働計画の生成方法、水素製造方法、およびプログラム
 本発明は、計画装置、稼働計画の生成方法、水素製造方法、およびプログラムに関する。
 従来、水を電気分解することにより水素を生成する水素生成装置等が知られている。また、天気および風力といった電力の供給コストに応じて、料金が変動する電力供給システムが知られている。
解決しようとする課題
 このような水素生成装置等は、電気料金が安い時間帯で稼働率を高め、電気料金が高い時間帯では稼働率を低減させることで水素の製造コストを低減させることが望ましい。そこで、水素生成装置は、例えば、変動する電気料金と閾値とを比較して、比較結果に応じて稼働率を制御して製造コストを低減させることが考えられる。しかしながら、例えば1日といった一定期間毎に供給すべき水素の量が定められていることがある。この場合、当該一定期間の間に、水素を十分に生成できるほど電気料金の安い時間帯が発生しないことがある。したがって、閾値等を用いて製造装置を制御しても、一定の期間の間に水素の製造量が不足してしまうこと、または、結局高い電気料金の時間帯で水素を生成させなければならなくなってしまうこと等が発生していた。
一般的開示
 上記課題を解決するために、本発明の第1の態様においては、計画装置を提供する。計画装置は、対象期間における複数の電気調達元の電気料金の推移を対象期間よりも前に入手可能な第1因子の値に基づいて予測する電気料金予測モデルを用いて、将来の電気料金の推移を予測する電気料金予測部を備える。計画装置は、予測された将来の電気料金の推移に基づいて、将来の第1期間における電解装置の稼働計画を生成する稼働計画生成部を備える。
 電気料金予測部は、複数の電気調達元のそれぞれの将来の電気料金の推移を、対応する第1因子の値に基づいて予測してよい。電気料金予測部は、複数の電気調達元のそれぞれに対応する複数の電気料金予測モデルを用いて、各電気調達元の将来の電気料金の推移を予測してよい。電気料金予測部は、将来の電気料金の確率分布を予測してよい。電気料金予測モデルは、対象期間よりも前の、電気料金、電力需要量、電力供給量、再生可能エネルギー発電量、再生可能エネルギー発電量の予測値、各電気調達元からの電力購入量、および天気情報の少なくとも1つを含む第1因子の値に基づいて、対象期間における電気料金の推移を予測してよい。
 計画装置は、過去期間における第1因子の値と過去期間以降の電気料金の現実の推移とに基づいて、電気料金予測モデルを学習により更新する第1モデル更新部を備えてよい。稼働計画生成部は、対象期間における稼働計画を、対象期間よりも前に入手可能な第2因子の値と対象期間における電気料金の推移の予測結果とに基づいて生成する稼働計画生成モデルを用いて、将来の第1期間における電解装置の稼働計画を生成する第1稼働計画生成部を有してよい。
 稼働計画生成モデルは、対象期間よりも前の、電解装置の稼働データ、各電気調達元との契約条件、各電気調達元の信頼度、複数の電気調達元の少なくとも1つの固定の電気料金、および電解装置の生成物貯蔵量の少なくとも1つを含む第2因子の値と、対象期間における電気料金の推移の予測結果とに基づいて、対象期間における電解装置の稼働計画を生成してよい。計画装置は、対象期間における発電装置の再生可能エネルギー発電量の推移を対象期間よりも前に入手可能な発電量予測因子の値に基づいて予測する発電量予測モデルを用いて、将来の再生可能エネルギー発電量の推移を予測する発電量予測部を有してよい。稼働計画生成部は、さらに予測された将来の再生可能エネルギー発電量の推移に基づいて稼働計画を生成してよい。
 計画装置は、稼働計画を用いて、電解装置を稼働させる制御を行う制御部を備えてよい。制御部は、稼働計画上は電解装置を稼働させない予定の期間において、複数の電気調達元のうち少なくとも1つの電気料金が予測よりも低くなったことに応じて、より高い電気料金で将来電解装置を稼働させる代わりに当該期間において電解装置を稼働させてよい。電解装置は、電気分解によって水素を生成する水素生成装置であってよい。
 本発明の第2の態様においては、計画装置を提供する。計画装置は、対象期間における電気料金の確率分布を対象期間よりも前に入手可能な第1因子の値に基づいて予測する電気料金予測モデルを用いて、将来の電気料金の確率分布を予測する電気料金予測部を備える。計画装置は、予測された将来の電気料金の確率分布に基づいて、将来の第1期間における電解装置の稼働計画を生成する稼働計画生成部を備える。
 本発明の第3の態様においては、電解装置の稼働計画の生成方法を提供する。生成方法は、対象期間における複数の電気調達元の電気料金の推移を対象期間よりも前に入手可能な第1因子の値に基づいて予測する電気料金予測モデルを用いて、将来の電気料金の推移を予測することを備える。生成方法は、予測された将来の電気料金の推移に基づいて、将来の第1期間における電解装置の稼働計画を生成することを備える。
 本発明の第4の態様においては、コンピュータに、第1または第2の態様における計画装置として機能させるプログラムを提供する。
 本発明の第5の態様においては、水素製造方法を提供する。水素製造方法は、電気料金予測部が、対象期間における複数の電気調達元の電気料金の推移を対象期間よりも前に入手可能な第1因子の値に基づいて予測する電気料金予測モデルを用いて、将来の電気料金の推移を予測する。水素製造方法は、稼働計画生成部が、予測された将来の電気料金の推移に基づいて、将来の第1期間における水素生成装置の稼働計画を生成する。水素製造方法は、水素生成装置が、稼働計画に基づいて水素を生成する。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係る計画装置100の第1構成例を電解装置1000と共に示す。 本実施形態に係る計画装置100の第2構成例を示す。 本実施形態に係る第2構成例の計画装置100の動作フローの一例を示す。 本実施形態に係る計画装置100の第3構成例を示す。 本実施形態に係る計画装置100の第4構成例を示す。 本実施形態に係る計画装置100の第5構成例を示す。 本実施形態に係る第2稼働計画生成部510の動作フローの一例を示す。 本発明の複数の態様が全体的または部分的に具現化されうるコンピュータ1200の例を示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本実施形態に係る計画装置100の構成例を、電解装置1000および複数の電気調達元1010(1)~1010(n)(n≧2)(以下、単に「電気調達元1010」とも示す)と共に示す。計画装置100は、電解装置1000の将来の第1期間における稼働計画を生成する。計画装置100は、生成した稼働計画に応じて複数の電気調達元1010からの電力を用いて電解装置1000を稼働させ、電解装置1000が生成物を生成する製造コストを低減させる。なお、第1期間は、数日、十数日、数週間、または数十日等の予め定められた期間でよい。
 ここで、電解装置1000は、電力系統の送電網を介してまたは直接、複数の電気調達元1010に接続される。電解装置1000は、複数の電気調達元1010からの電気エネルギーを用いて生成物を生成する装置でよい。電解装置1000は、例えば、電気分解によって水素を生成する水素生成装置である。また、複数の電気調達元1010は、例えば、火力発電施設等により発電した電力を供給する電力会社、再生可能エネルギー等により発電した電力を供給する発電装置、および蓄電装置のうちの複数であってよい。
 計画装置100は、パーソナルコンピュータ、タブレット型コンピュータ、スマートフォン、ワークステーション、サーバコンピュータ、または汎用コンピュータ等のコンピュータであってよく、複数のコンピュータが接続されたコンピュータシステムであってもよい。計画装置100は、コンピュータのCPU、GPU(Graphics Processing Unit)、および/またはTPU(Tensor Processing Unit)における処理によって計画等を生成してよい。また、計画装置100は、サーバコンピュータにより提供されるクラウド上で各種の処理を行うものであってよい。
 計画装置100が生成する稼働計画は、例えば、第1期間における、電解装置1000の稼働すべき状態を記述したテーブルまたはデータ等である。稼働計画は、電解装置1000を稼働させる(稼働させない)時間帯、および/または、電解装置1000の時間帯毎の稼働率等を定めたテーブルまたはデータ等でよい。稼働計画は、さらに、電解装置1000を稼働させる期間における複数の電気調達元1010の電力供給の配分、および各電気調達元1010の電力供給のタイミングの少なくとも1つを含んでよい。また、稼働計画は、後述のように、電気調達元1010と複数の契約条件で契約を結んでいる場合、電気調達元1010から各契約条件に応じて電力供給を受ける配分、および電気調達元1010から各契約条件に応じて電力供給を受けるタイミングの少なくとも1つを含んでよい。計画装置100は、取得部10と、記憶部20と、モデル生成部30と、学習処理部40と、稼働計画生成部50と、制御部60とを備える。
 取得部10は、学習に用いるパラメータおよび学習データ等を取得する。取得部10は、例えば、将来の予め定められた対象期間において目標とすべき電解装置1000の稼働計画と、対象期間よりも前に入手可能な因子の値とを含む学習データを取得する。対象期間は、将来における予め定められた期間である。対象期間は、第1期間を含む期間でよい。取得部10は、対象期間よりも前に入手可能な電気料金に関するパラメータを第1因子として取得してよい。また、取得部10は、対象期間よりも前に入手可能な電解装置1000に関するパラメータを第2因子として取得してよい。
 取得部10は、電解装置1000および複数の電気調達元1010等に接続され、学習に用いるパラメータおよび学習データ等を取得してよい。取得部10は、ネットワーク等に接続され、当該ネットワークを介してデータを取得してもよい。取得部10は、取得すべきデータの少なくとも一部が外部のデータベース等に記憶されている場合、当該データベース等にアクセスして、取得してよい。また、取得部10は、取得したデータを、記憶部20に供給してよい。
 記憶部20は、取得部10が取得した情報を記憶する。記憶部20は、当該計画装置100が処理するデータを記憶可能でよい。記憶部20は、計画装置100が稼働計画を生成する過程で算出する(または利用する)中間データ、算出結果、およびパラメータ等をそれぞれ記憶してもよい。また、記憶部20は、計画装置100内の各部の要求に応じて、記憶したデータを要求元に供給してよい。記憶部20は、一例として、モデル生成部30の要求に応じて、記憶したデータを当該モデル生成部30に供給する。
 モデル生成部30は、計画装置100が学習する学習モデルを生成する。モデル生成部30は、第1因子および第2因子等に応じて、学習モデルを生成する。モデル生成部30は、1または複数の学習モデルを生成してよい。モデル生成部30は、生成した学習モデルを学習処理部40に供給する。
 学習処理部40は、取得された学習データに基づいて、生成した学習モデルを学習する。学習処理部40は、強化学習を実行して、学習モデルを更新してよい。学習処理部40は、1または複数の学習モデルを更新してよい。学習処理部40は、更新した学習モデルを稼働計画生成部50に供給する。
 稼働計画生成部50は、将来の第1期間における電解装置の稼働計画を生成する。稼働計画生成部50は、例えば、第1期間において、電解装置1000が生成すべき量(供給計画の水素量)の生成物を生成しつつ、生成物の製造コストを最小化または低減させる稼働計画を生成する。稼働計画生成部50は、電気調達元1010との契約条件、および電気調達元1010の信頼度の少なくともいずれかを含む第2因子の値と、電気料金予測部130の予測する電気料金の推移の予測結果とに基づいて、将来の第1期間における複数の電気調達元1010の電力供給の配分、および各電気調達元の電力供給のタイミングの少なくとも1つを含む稼働計画を生成してよい。
 さらに、稼働計画生成部50は、これに加えて、またはこれに代えて、例えば、第1期間において、電解装置1000が生成すべき量(供給計画の水素量)の生成物を生成しつつ、電力供給を受けられるリスクを最小化または低減させる稼働計画を生成する。稼働計画生成部50が、上記のような稼働計画を生成することで、複数の電気調達元1010から供給を受けられる電力量または電気料金に変動が生じる場合であっても、需要を満たせるだけの生成物を生成する可能性を高くすることができる。これは、電気調達元1010が主に発電量が不安定な発電源を有している場合や、電気調達元1010と複数の契約条件を含む契約を結んでいる場合に特に有効である。稼働計画生成部50は、生成した稼働計画を制御部60に供給する。
 さらに、稼働計画生成部50は複数の電気調達元1010から電力供給を受けられるリスクを示す電力供給リスクを算出してもよい。この場合、稼働計画生成部50は複数の電気調達元1010のそれぞれに対して電力供給リスクを算出してもよいし、複数の電気調達元の内の少なくとも一部に対して一括して電力供給リスクを算出してもよい。また、電気調達元1010と複数の契約条件を含む契約を結んでいる場合、各契約条件ごとに電力供給リスクを算出してよい。
 稼働計画生成部50は、電力供給量の確率分布を算出することで電力供給リスクを算出してよい。稼働計画生成部50は、上記電力供給量の確率分布を、電気調達元1010との間の一または複数の契約条件、電気調達元1010が存在する地域、総発電容量、発電量の変化量、発電源等の内の少なくともいずれかに基づいて算出してよい。さらに、稼働計画生成部50は、これに加えて、またはこれらに代えて、要求電力量を供給できる可能性、過去に要求した電力量のうちの供給できなかった電力量の割合等の内の少なくともいずれかに基づいて電力供給量の確率分布を算出してよい。稼働計画生成部50は、上記電力供給量の確率分布を算出するために用いるデータとして、各電気調達元が公表したものを用いてもよいし、ユーザが独自に記録したものを用いてもよい。稼働計画生成部50は、これらのデータと電気調達元1010からの電力供給量とを含む教師データを用いて、上述の取得部10、記憶部20、モデル生成部30により電力供給量の確率分布を出力する学習モデルを生成してよい。
 なお、電気調達元1010が存在する地域としては、例えば、「1:ドイツ、2:フランス」のように、国や地域等に番号を割り当てることによりデータとして使用してよい。電気調達元1010が要求電力量を供給できる可能性としては、例えば、「100%供給可能性:80%、80%供給可能性:85%、60%供給可能性:90%、40%供給可能性:100%」のように、要求した電力の内、供給できる割合ごとに可能性ごとに確率を割り当てたデータを使用してよい。発電源としては、「1:風力、2:地熱」のように、発電源の種類ごとに番号を割り当てたものを使用してよい。
 さらに、稼働計画生成部50は、上記電力供給リスクとして、電力供給量の確率分布に加えて、または代えて、複数の電力調達元1010の供給継続性を算出してよい。稼働計画生成部50は、上記供給継続性を、複数の電力調達元1010の事業規模、売上、利益、電気料金等の内の少なくともいずれかに基づいて算出してよい。上記事業規模としては、例えば、従業員数、資本金等を用いてよい。
 稼働計画生成部50は、制約を満たす稼働計画の中から予め定められた基準を満たす稼働計画を制御部60に出力してよい。また、稼働計画生成部50は、制約条件を満たす少なくとも一つの稼働計画を稼働計画候補として選択可能に出力する稼働計画選択部を有してもよい。稼働計画選択部は、稼働計画候補の内、ユーザ等に選択された稼働計画を制御部60に出力してよい。
 さらに、稼働計画生成部50は、稼働計画の生成にあたって満たすべき制約を指定する制約条件指定部を有してもよい。制約条件指定部は、ユーザ等からの入力に応じて調整可能に制約条件を指定してよい。制約条件指定部は、上記制約条件として、電力購入量、水素生成量、電気料金、電力供給リスク、電気料金の変動幅等のいずれかを指定することができる。なお、例えば電気料金の変動幅は、電気料金予測部130の予測する電気料金の確率分布に基づいて算出されてよい。制約条件指定部は、例えば、電気料金の確率分布の標準偏差を電気料金の変動幅として用いてよい。制約条件指定部は、上記制約条件として、これらの数値の範囲(上限のみ、下限のみ指定する場合も含む)を指定してよい。また、制約条件指定部は、例えば、「A:10以上30未満、B:30以上50未満」のように、各条件の範囲に予め割り当てておいた番号や記号を指定してよい。さらに、制約条件指定部は、例えば、「10以上、好ましくは30以上50未満」のように、異なる条件を段階的に指定してよい。また、制約条件指定部は、上記制約条件として、許容できる割合や数値を指定してよい。制約条件指定部は、例えば、許容できる電気料金の変動幅または電力供給リスクとして、「指定した値のプラスマイナス10%」のように、制約条件に対する幅を指定してよい。さらに、制約条件指定部は、上記制約条件として、必ず満たすべき必須条件と、必ずしも満たしている必要のない目標条件とを区別して指定してよい。また、制約条件指定部は、各制約条件に優先順位を指定してよい。さらに、制約条件指定部は、上記の制約条件をテキストボックス、スライダバー、ドロップダウンリスト等の入力機能を通じてユーザからの指定を受け付けてよい。
 制御部60は、第1期間における電解装置1000の稼働計画を用いて、当該電解装置1000を稼働させる制御を行う。制御部60は、複数の電解装置1000をそれぞれ稼働させてよい。また、制御部60は、電解装置1000の動作および生成部の貯蔵量等が想定とは異なる範囲となった場合に、電解装置1000の稼働の停止および開始を指示してもよい。また、制御部60は、電気料金が大きく変動した場合に、電解装置1000の稼働の停止および開始を指示してもよい。
 以上の本実施形態の計画装置100によれば、複数の電気調達元1010の電気料金の変動に応じた電解装置1000の稼働計画を生成することができ、予め定められた量以上の生成物を、より低い製造コストで生成することができる。このような計画装置100のより具体的な構成例について、次に説明する。
 図2は、本実施形態に係る計画装置100の第2構成例を示す。第2構成例の計画装置100において、図1に示された本実施形態に係る計画装置100の動作と略同一のものには同一の符号を付け、説明を省略する。また、図2は、計画装置100の取得部10を省略した構成を示す。
 第2構成例の計画装置100は、複数の電気調達元1010にそれぞれ対応する、複数の第1モデル生成部110、複数の第1モデル更新部120、および複数の電気料金予測部130を備え、各電気調達元1010の将来の電気料金の推移を予測する。また、第2構成例の計画装置100は、第2モデル生成部210、第2モデル更新部220、および第1稼働計画生成部230を備え、予測した電気料金の推移に基づいて、将来の電解装置1000の稼働計画を生成する。この場合、モデル生成部30が第1モデル生成部110および第2モデル生成部210を有してよく、また、学習処理部40が第1モデル更新部120、電気料金予測部130、および第2モデル更新部220を有してよい。
 第2構成例の記憶部20は、取得部10が取得した第1因子および第2因子を記憶する。第1因子は、対象期間よりも前の、電気料金、電力需要量、電力供給量、再生可能エネルギー発電量、再生可能エネルギー発電量の予測値、各電気調達元1010からの電力購入量、および天気情報の少なくとも1つを含む。電気料金は、電解装置1000が設置された場所において、電解装置1000に供給される電力に対する実際の電気料金でよい。電力需要量、電力供給量、再生可能エネルギー発電量、および再生可能エネルギー発電量の予測値は、電解装置1000が設置された地域に電力を供給する発電所、または電解装置1000に直接接続されて電力を供給する発電装置等の情報でよい。各電気調達元1010からの電力購入量は、各電気調達元1010からの電力の時間帯毎の購入量、所定期間における各電気調達元1010からの電力の購入量の累計を含んでよい。天気情報は、各電気調達元1010が有する発電所または発電装置等が存在する地域の情報でよい。
 第1因子は、複数の電気調達元1010の過去の電気料金の情報に加えて、電解装置1000が消費する電力に対する電気料金に影響を及ぼす情報を含んでよい。第1因子は、略一定時間毎の時系列の情報でよい。また、第1因子は、異なる期間における種々の情報を含んでよい。また、第1因子は、複数の電気調達元1010および外部の装置等から取得部10が取得した情報を含んでよい。第1因子は、複数の電気調達元1010のそれぞれに関連付けられて記憶部20に記憶されてよい。
 第2因子は、対象期間よりも前の、電解装置1000の稼働データ、各電気調達元1010との契約条件、各電気調達元1010の信頼度、発電装置の発電量、複数の電気調達元1010の少なくとも1つの固定の電気料金、および電解装置1000の水素貯蔵量の少なくとも1つを含む。また、第2因子は、対象期間において電解装置1000が生成すべき生成物の量(供給計画の水素量)、当該計画装置100が過去に生成した電解装置1000の稼働計画を含んでもよい。また、第2因子は、電解装置1000の物理モデルから算出される仮想データを含んでよい。第2因子は、略一定時間毎の時系列の情報でよい。また、第2因子は、電解装置1000から取得部10が取得した情報を含んでよい。
 ここで、電気調達元1010との契約条件は、電解装置1000の事業者と電気調達元1010との間の電力の売買に関する契約条件であってよい。電気調達元1010との契約条件は、例えば、電気調達元1010からの電力購入量または電力購入タイミングに応じた電気料金、電力購入量の上限、下限、および電力購入量が所定量になると生じる割引、電力供給を受ける時間に応じた割引、電気調達元との契約期間に応じた割引のうちの少なくとも1つを含んでよい。さらに、電気調達元1010と複数の契約条件を結んでいる場合は、第2因子は、複数の契約条件を含む契約条件群を含んでよい。また、電気調達元1010の信頼度は、要求した電力量の全てを電解装置1000に供給できる可能性を示すものであってよい。電気調達元1010の信頼度は、例えば、電気調達元1010の事業規模、過去に要求した電力量のうちの供給できなかった電力量の割合、電気料金の変化量、電気調達元1010の発電量、発電量の変化量、および発電源のうちの少なくとも1つに応じて算出されてよい。
 第1因子および第2因子の情報は、時間の経過と共にそれぞれ追加または更新されてよい。例えば、取得部10は、予め定められた期間毎に、それぞれの情報を取得して更新してよい。また、取得部10は、取得すべき情報に応じて、略同一または異なる期間毎に取得して、それぞれ追加または更新してよい。
 複数の第1モデル生成部110(1)~110(n)(n≧2)(以下、単に「第1モデル生成部110」とも示す)はそれぞれ、対象期間よりも前の第1因子の値に基づいて、対象期間における電気料金の推移を予測する電気料金予測モデルを生成する。複数の第1モデル生成部110は、複数の電気調達元1010のそれぞれについて、対応する第1因子の値を用いて、互いに異なる複数の電気料金予測モデルを生成してよい。第1モデル生成部110は、対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、電気料金予測モデルを生成してよい。第1モデル生成部110は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、電気料金予測モデルを生成する。第1モデル生成部110は、生成した電気料金予測モデルを第1モデルとして第1モデル更新部120に供給する。
 複数の第1モデル更新部120(1)~120(n)(n≧2)(以下、単に「第1モデル更新部120」とも示す)はそれぞれ、過去期間における第1因子の値と過去期間以降の電気料金の現実の推移とに基づいて、電気料金予測モデルを学習により更新する。複数の第1モデル更新部120は、それぞれ第1モデル学習部122を有し、第1モデル学習部122の学習結果に応じて、電気料金予測モデルを更新する。第1モデル更新部120は、例えば、予め定められた第1更新期間毎に、第1モデル学習部122が学習した電気料金予測モデルを、新たな電気料金予測モデルとして更新してよい。これに代えて、第1モデル更新部120は、第1モデル学習部122が予め定められた回数だけ学習したことに応じて、電気料金予測モデルを更新してもよい。
 複数の第1モデル学習部122(1)~122(n)(n≧2)(以下、単に「第1モデル学習部122」とも示す)はそれぞれ、適応学習またはオンライン学習等と呼ばれる処理により、電気料金予測モデルを学習してよい。第1モデル学習部122は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を識別モデルとして、強化学習を実行することによって、電気料金予測モデルを学習する。第1モデル学習部122は、第1モデル生成部110が電気料金予測モデルの生成に用いた第1因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。
 即ち、第1モデル学習部122は、実際の電気料金の推移によって更新された第1因子の情報を用いて、電気料金予測モデルを学習する。第1モデル学習部122は、第1因子の情報が更新されたことに応じて、電気料金予測モデルの学習を実行してよい。一例として、第1モデル学習部122は、過去期間における第1因子の値と過去期間以降の電気料金の現実の推移とに基づいて、電気料金予測モデルを学習する。第1モデル学習部122は、第1モデル更新部120の第1更新期間の間に、1または複数回の学習を実行する。複数の第1モデル更新部120は、更新した電気料金予測モデルを電気料金予測部130にそれぞれ供給する。
 複数の電気料金予測部130(1)~130(n)(n≧2)(以下、単に「電気料金予測部130」とも示す)は、複数の電気調達元1010のそれぞれについて、対応する更新された電気料金予測モデルを用いて、将来の電気料金の推移を、対応する第1因子の値に基づいて予測する。電気料金予測部130は、例えば、予め定められた期間毎に、将来における当該予め定められた期間の電気料金を予測する。電気料金予測部130は、例えば、電気料金を予測すべき期間の直前までの期間における第1因子の情報を、電気料金予測モデルに適用して電気料金を予測する。電気料金予測部130は、予測結果を稼働計画生成部50に供給する。
 電気料金予測部130は、対象期間における各電気調達元1010の時間帯毎の電気料金を予測してよく、また、対象期間における各電気調達元1010の将来の電気料金の確率分布を予測してもよい。電気調達元1010が電解装置1000の事業者自身が所有する発電装置または蓄電装置である場合には、電気料金予測部130は、対象期間における電気調達元1010の維持費を電気料金として予測してよい。
 第2モデル生成部210は、対象期間よりも前の第2因子の値および電気料金の推移に基づいて、稼働計画生成モデルを生成する。稼働計画生成モデルは、学習により、対象期間よりも前の第2因子の値と、対象期間における各電気調達元1010の電気料金の推移の予測結果とに基づいて、対象期間における電解装置1000の稼働計画を生成するモデルとなる。なお、第2モデル生成部210は、過去の電気料金の推移として、第1因子の値を用いてよい。第2モデル生成部210は、対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる学習処理により、稼働計画生成モデルを生成してよい。
 第2モデル生成部210は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を識別モデルとして、強化学習を実行することによって、稼働計画生成モデルを生成する。第2モデル生成部210は、生成した稼働計画生成モデルを第2モデルとして第2モデル更新部220に供給する。
 第2モデル更新部220は、稼働計画生成モデルを学習により更新する。第2モデル更新部220は、第2モデル学習部222を有し、第2モデル学習部222の学習結果に応じて、稼働計画生成モデルを更新する。第2モデル更新部220は、例えば、予め定められた第2更新期間毎に、第2モデル学習部222が学習した稼働計画生成モデルを、新たな稼働計画生成モデルとして更新してよい。これに代えて、第2モデル更新部220は、第2モデル学習部222が予め定められた回数だけ学習したことに応じて、稼働計画生成モデルを更新してもよい。
 第2モデル学習部222は、適応学習またはオンライン学習等と呼ばれる処理により、稼働計画生成モデルを学習してよい。第2モデル学習部222は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を識別モデルとして、強化学習を実行することによって、稼働計画生成モデルを学習する。第2モデル学習部222は、第2モデル生成部210が稼働計画生成モデルの生成に用いた第2因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。
 即ち、第2モデル学習部222は、実際の電気料金の推移によって更新された第1因子の情報と、実際の電解装置1000の稼働によって更新された第2因子の情報とを用いて、稼働計画生成モデルを学習する。なお、電気料金の推移については、例えば、実際の電気料金の推移に代えて、電気料金予測部130の予測結果を用いてもよい。即ち、第2モデル学習部222は、過去期間における第2因子の値と、過去期間以降における電気料金の推移または電気料金の推移の予測結果とに基づいて、稼働計画生成モデルを学習する。
 第2モデル学習部222は、第2因子の情報が更新されたことに応じて、稼働計画生成モデルの学習を実行してよい。第2モデル学習部222は、第2モデル更新部220の第2更新期間の間に、1または複数回の学習を実行する。第2モデル更新部220は、更新した稼働計画生成モデルを稼働計画生成部50に供給する。
 稼働計画生成部50は、電気料金予測部130によって予測された将来の電気料金の推移に基づいて、将来の第1期間における電解装置1000の稼働計画を生成する。稼働計画生成部50は、第1稼働計画生成部230を有する。
 第1稼働計画生成部230は、対象期間における稼働計画を、対象期間よりも前に入手可能な第2因子の値と対象期間における電気料金の推移の予測結果とに基づいて生成する稼働計画生成モデルを用いて、将来の第1期間における電解装置1000の稼働計画を生成する。第1稼働計画生成部230は、例えば、数日または十数日、1または数週間といった期間を第1期間として、電解装置1000の稼働計画を生成する。第1稼働計画生成部230は、一例として、N日分の稼働計画を生成する。
 制御部60は、稼働計画生成部50が生成した稼働計画に応じて、複数の電気調達元1010を切り替えながら電解装置1000を稼働させる制御を行う。また、制御部60は、電解装置1000が稼働することによって変動する第2因子の情報を、取得部10が取得できるように電解装置1000を制御してもよい。
 以上の本実施形態に係る計画装置100は、電解装置1000の稼働計画を生成する。また、計画装置100は、電気料金を予測しつつ、電解装置1000の稼働計画を生成する。このような計画装置100の動作について、次に説明する。図3は、本実施形態に係る第2構成例の計画装置100の動作フローの一例を示す。計画装置100は、図3に示す動作フローを実行して、電解装置1000を稼働させてよい。
 まず、取得部10は、電気料金および電解装置1000の過去のトレンドとなる第1因子および第2因子の情報を取得する(S310)。取得部10は、例えば、時刻t0から時刻t1における、第1因子および第2因子の情報を取得する。ここで、時刻t0から時刻t1の間の期間は、第1期間よりも前の第2期間とする。取得部10は、取得した第1因子および第2因子の情報を記憶部20に記憶する。また、取得部10は、第1因子および第2因子の情報をモデル生成部30に供給してもよい。
 次に、モデル生成部30は、学習モデルを生成する(S320)。モデル生成部30は、第2期間の第1因子および第2因子の値に基づき、学習モデルを生成する。例えば、第1モデル生成部110は、第1因子の値に基づき、電気料金予測モデルを生成する。第1モデル生成部110は、第2期間における第1因子の値を用いて、電気料金予測モデルを生成する。
 また、第2モデル生成部210は、第1因子および第2因子の値に基づき、稼働計画生成モデルを生成する。例えば、第2モデル生成部210は、第2期間における、複数の電気調達元1010の電気料金、電解装置1000の稼働データ、各電気調達元1010との契約条件、各電気調達元1010の信頼度、複数の電気調達元1010の少なくとも1つの固定の電気料金、電解装置1000の水素貯蔵量、および稼働計画の仮想データの少なくとも1つを用いて、稼働計画生成モデルを生成する。
 また、第2モデル生成部210は、電解装置1000の物理モデルに基づく仮想データを目標とすべき予測データとし、当該予測データおよび過去の電解装置1000の稼働によって取得された実データとを比較することにより、稼働計画生成モデルを生成してよい。例えば、第2モデル生成部210は、目標とすべき予測データおよび過去の実データの差分が0または予め定められた値未満となるように、強化学習を実行して稼働計画生成モデルを生成する。
 第2モデル生成部210は、一例として、第2期間におけるM日間の期間を仮想的な予測期間とする。なお、M日間は、例えば、数日または十数日、1または数週間といった期間でよい。M日間は、第1期間(N日間)と一致することが望ましい。そして、第2モデル生成部210は、第2期間における予測期間よりも前の期間の第1因子および第2因子の値に基づく予測期間の稼働動作の予測結果と、予測期間の実データまたは仮想データとの誤差が、最小となるように強化学習する。
 この場合、第2モデル生成部210は、水素貯蔵量の変動範囲を0から最大貯蔵量の範囲とする(第1条件)、電解装置1000が生成して供給する水素の量が予め定められた供給計画を満たす(第2条件)、電気代の低い電気調達元1010および/または時間帯を選択して電解装置1000を稼働する(第3条件)、等といった条件を満たしながら、水素生成コストを低減させるように強化学習してよい。なお、このようなモデル生成部30による学習モデルの生成は、電解装置1000の稼働に伴って計画装置100が当該電解装置1000の実データを取得する前に、実行されてよい。
 次に、学習処理部40は、生成した学習モデルを適応学習する(S330)。ここで、取得部10は、第1因子および第2因子の情報を取得してよい。取得部10は、例えば、時刻t1から時刻t2における、第1因子および第2因子の情報を取得する。なお、時刻t1から時刻t2の間の期間は、第1期間および第2期間の間の第3期間とする。学習処理部40は、取得部10が新たに取得した第1因子および第2因子の情報を用いて適応学習してよい。
 例えば、複数の第1モデル学習部122はそれぞれ、対応する第1因子の値に基づき、電気料金予測モデルを適応学習する。第1モデル学習部122は、第3期間における、対応する電気調達元1010に関する第1因子を用いて、電気料金予測モデルを適応学習してよい。第1モデル学習部122は、電気料金予測モデルを用いて第3期間における対応する電気調達元1010の電気料金等を予測した結果が、取得した第3期間の当該電気調達元1010の電気料金と一致するように強化学習してよい。
 第1モデル学習部122は、一例として、第3期間におけるM日間の期間を仮想的な予測期間とする。なお、M日間は、例えば、数日または十数日、1または数週間といった期間でよい。M日間は、第1期間(N日間)と一致することが望ましい。第1モデル学習部122は、一例として、第3期間における予測期間よりも前の期間の第1因子の値に基づく予測期間の予測結果と、予測期間の実データとの差分が0または予め定められた値未満となるように強化学習する。
 なお、第1モデル学習部122は、実際の各データの取得タイミングに応じて、用いるデータおよび予測する期間を調節して、学習の精度を高めてよい。例えば、一の時刻における電力供給量に応じたデータが、当該一の時刻からずれたタイミングに取得できる場合が想定できる。このような第1因子の情報として、再生可能エネルギー発電量を例に説明する。再生可能エネルギー発電量が電力調達元1010から電力が供給された後に判明する場合には、一の時刻における電力供給量に応じた再生可能エネルギー発電量は、一の時刻よりも後にずれた時刻の情報となる。そこで、第1モデル学習部122は、第3期間における予測期間よりも前の期間の再生可能エネルギー発電量を除く第1因子の値と、予測期間の再生可能エネルギー発電量の予測値とを用いて、予測期間の電気料金等を予測してよい。
 また、第2モデル学習部222は、第1因子および第2因子の値に基づき、稼働計画生成モデルを適用学習してよい。例えば、第2モデル学習部222は、第3期間における、電気料金、電解装置1000の稼働データ、水素貯蔵量、および稼働計画の実データの少なくとも1つを用いて、稼働計画生成モデルを学習してよい。第2モデル学習部222は、稼働計画生成モデルを用いて第3期間における電解装置1000の稼働動作を予測した結果と、取得した第3期間の実データの差分が0または予め定められた値未満となるように、強化学習を実行してよい。
 第2モデル学習部222は、一例として、第3期間におけるM日間の期間を仮想的な予測期間とする。なお、M日間は、例えば、数日または十数日、1または数週間といった期間でよい。M日間は、第1期間(N日間)と一致することが望ましい。そして、第2モデル学習部222は、第3期間における予測期間よりも前の期間の第1因子および第2因子の値に基づく予測期間の稼働動作の予測結果と、予測期間の実データとの差分が0または予め定められた値未満となるように強化学習する。
 この場合、第2モデル学習部222は、第2モデル生成部210が稼働計画生成モデルの生成に用いた、第1条件、第2条件、および第3条件等を同様に用いてよい。即ち、第2モデル学習部222は、3つの条件を満たしつつ、水素生成コストを低減させるように稼働計画生成モデルを強化学習してよい。第2モデル学習部222は、例えば、Q学習、SARSA法、またはモンテカルロ法等の強化学習を実行してよい。
 第2モデル学習部222は、一例として、実施された稼働計画の実績データを用いて、稼働計画生成モデルの生成に用いた第1条件、第2条件、および第3条件等を満たしつつ、当該稼働計画の評価指標が最大または予め定められた範囲内となるように強化学習してよい。評価指標は、例えば、電解装置1000の運営コスト、水素の売上、水素の利益、および水素の単位量当たりの原価のうちの複数についてそれぞれに重みをかけて和をとった重み付け和の目的関数で、計画装置100または外部の装置により算出されてよい。
 次に、学習処理部40は、学習モデルを更新する(S340)。学習処理部40は、予め定められた時間毎に学習モデルを更新してよい。例えば、学習処理部40は、適応学習を開始してから更新に必要な初期更新期間だけ適応学習を継続させてから、学習モデルの最初の更新を実行し、その後、一定の期間毎に更新を繰り返す。ここで、初期更新期間は、生成すべき稼働計画の期間であるN日以上であることが望ましい。また、更新を繰り返す一定の期間は、数時間、十数時間、1日、数十時間、または数日等でよい。
 例えば、第1モデル更新部120は、初期更新期間後、電気料金予測モデルを第1更新期間毎に更新する。複数の第1モデル更新部120はそれぞれ、互いに異なる第1更新期間毎に、または、同一の第1更新期間毎に、電気料金予測モデルを更新してよい。また、第2モデル更新部220は、初期更新期間後、稼働計画生成モデルを第2更新期間毎に更新する。第1更新期間および第2更新期間は、異なる期間でよく、これに代えて、略同一の期間でもよい。第1更新期間および第2更新期間は、一例として1日である。
 次に、学習処理部40は、更新した学習モデルを用いて電気料金を予測する(S350)。例えば、電気料金予測部130は、対応する電気調達元1010について、更新された電気料金予測モデルおよび第1因子の値を用いて、第1期間の電気料金の推移を予測する。電気料金予測部130は、一例として、初期更新期間に取得部10が取得したN日分の第1因子の値を電気料金予測モデルに適用して、初期更新期間の後のN日分の電気料金の推移を予測する。
 次に、稼働計画生成部50は、更新された学習モデルを用いて、第1期間の電解装置1000の稼働計画を生成する(S360)。例えば、第1稼働計画生成部230は、更新された稼働計画生成モデル、電気料金予測部130により生成された各電気調達元1010の電気料金の予測結果、および第1因子の値を用いて、第1期間の稼働計画を生成する。第1稼働計画生成部230は、一例として、初期更新期間に取得部10が取得したN日分の第2因子の値と、初期更新期間の後のN日分の電気料金の推移の予測結果とを稼働計画生成モデルに適用して、初期更新期間の後のN日分の稼働計画を生成する。
 第1稼働計画生成部230は、第2モデル生成部210が稼働計画生成モデルの生成に用いた、第1条件、第2条件、および第3条件等を同様に用いてよい。即ち、第1稼働計画生成部230は、3つの条件を満たしつつ、水素生成コストを低減させる稼働計画を生成してよい。第1稼働計画生成部230は、水素生成コストを最小化させる稼働計画を生成することが望ましい。
 第1稼働計画生成部230は、例えば、第1期間において、電解装置1000を稼働させる期間と、稼働させない期間とを含む稼働計画を生成する。また、第1稼働計画生成部230は、電解装置1000を稼働させる期間を、当該期間に電解装置1000に電力供給する電気調達元1010および電解装置1000の稼働率と共に示す稼働計画を生成してよい。第1稼働計画生成部230は、時系列に稼働率が推移する稼働計画を生成することが望ましい。第1稼働計画生成部230は、例えば、一定時間ごとの稼働計画を生成する。第1稼働計画生成部230は、数十分、1時間、または数時間ごとの稼働計画を生成してよい。
 第1稼働計画生成部230は、例えば、信頼度がより低い(例えば閾値以下)電気調達元1010の予測電気料金には、料金が高くなるようにより大きなオフセットを足したり、予め定められた係数(例えば、1より大きい係数)をかけてよい。また、信頼度に応じて各調達元からの調達量に上限を設けたり(例えば、信頼度が閾値以下である場合に、調達量に予め定められた上限を設ける、または、信頼度がより低い電気調達元1010には、調達量に、より小さな上限を設ける等)、信頼度の低い調達元からの全調達量に対する調達割合に上限を設けてもよい。これにより、第1稼働計画生成部230は、信頼度に応じた予測電気料金を用いて、最も電気料金が安くなる電気調達元1010を決定できる。
 また、第1稼働計画生成部230は、電気料金予測部130が出力した各電気調達元1010の予測電気料金の確率分布を用いて、各稼働時間帯で電力供給を受ける電気調達元1010を決定してよい。第1稼働計画生成部230は、一例として、予測電気料金の確率分布において最も確率の高い電気料金を用いて、複数の電気調達元1010のうち、最も安い予測電気料金の電気調達元1010を決定してよい。また、第1稼働計画生成部230は、予測電気料金の確率分布において最も確率の高い電気料金から当該確率分布の標準偏差σ(または2σ、3σ、・・・)分高くなった場合の電気料金を用いて、複数の電気調達元1010のうち、最も安い予測電気料金の電気調達元1010を決定してよい。これにより、第1稼働計画生成部230は、確率分布の分散度を考慮して、確率分布において最も確率の高い電気料金から所定の確率で上振れした場合の電気料金同士を比較して、最も電気料金が安くなる確率が高い電気調達元1010を決定できる。
 また、第1稼働計画生成部230は、制御部60が複数の電解装置1000を制御する場合、当該複数の電解装置1000のそれぞれに対する稼働計画を生成してよい。第1稼働計画生成部230は、複数の電解装置1000が略同一の電解装置である場合は、略同一の稼働計画をそれぞれ生成してよい。また、第1稼働計画生成部230は、制御部60が異なる種類の電解装置、異なる時期に購入した電解装置、異なる製造メーカの電解装置、またはこれらの組み合わせを含む複数の電解装置1000を制御する場合、それぞれの電解装置1000に対応して、異なる稼働計画をそれぞれ生成してよい。
 この場合、第2モデル生成部210は、複数の電解装置1000の稼働台数毎または複数の電解装置の組み合わせ毎にそれぞれ対応する複数の稼働計画生成モデルを生成してよい。また、第2モデル学習部222は、複数の稼働生成モデルをそれぞれ学習してよく、第2モデル更新部220は、複数の稼働生成モデルをそれぞれ更新してよい。第1稼働計画生成部230は、複数の稼働計画生成モデルのうち、第1期間における複数の電解装置1000の運用予定に応じた稼働計画生成モデルを用いて、第1期間における電解装置の稼働計画を生成してよい。ここで、運用予定は、電解装置1000が満たすべき、予め定められた水素の供給計画でよい。
 制御部60は、稼働計画生成部50が生成した稼働計画を用いて、電解装置1000をN日分稼働させる(S370)。これにより、電解装置1000は、第1期間において、予め定められた水素の供給計画を満たしつつ、水素生成コストを低減させるように稼働させることができる。
 計画装置100が第1期間の経過後に電解装置1000の稼働を継続させる場合(S380:No)、S330に戻り、学習処理部40は学習モデルを適応学習させる。この場合、取得部10は、当該第1期間の第1因子の情報と、当該第1期間の電解装置1000の稼働によって推移する第2因子の情報を順次取得し、記憶部20に順次記憶する。即ち、計画装置100は、第1期間の情報を過去の情報に含め、予測すべき対象期間を第1期間よりも後の期間(一例として、第4期間)とする。
 そして、計画装置100は、第1期間の情報を用いてモデルの適応学習を繰り返し、一定期間の経過に応じてモデルを更新して、第4期間の電解装置1000の稼働計画を生成し、生成した稼働計画に応じて電解装置1000を稼働させる。このように、本実施形態に係る計画装置100は、電解装置1000の対象期間の稼働計画の生成と、当該対象期間の稼働とを繰り返すことにより、学習モデルを更新しつつ電解装置1000を継続して稼働できる。
 以上の計画装置100の動作フローにおいて、第2期間、第3期間、第1期間、および第4期間の順に、計画装置100を時系列に動作させる例を説明した。ここで、第2期間、第3期間、第1期間、および第4期間は、この順に時間的に連続した期間でよい。少なくとも、第1期間および第4期間は、連続した期間であることが望ましい。
 以上の本実施形態に係る計画装置100は、複数の電気調達元1010の電気料金の推移および電解装置1000の稼働状態等に応じて、稼働計画を生成することを説明した。ここで、電解装置1000は、異常動作および故障によって稼働が停止することを回避すべく、定期的にメンテナンスすることが望ましい。この場合、電解装置1000は、メンテナンス等に応じて一定期間停止することがあり、稼働状態が変動することがある。そこで、計画装置100は、メンテナンス等による稼働状態の変動を加味した学習を実行してよい。このような計画装置100について、次に説明する。
 図4は、本実施形態に係る計画装置100の第3構成例を示す。第3構成例の計画装置100において、図2に示された第2構成例の計画装置100の動作と略同一のものには同一の符号を付け、説明を省略する。また、図4は、計画装置100の取得部10を省略した構成を示す。
 第3構成例の計画装置100は、1つの第1モデル生成部110、1つの第1モデル更新部120、および1つの電気料金予測部130を備え、1つの電気料金予測モデルを生成して、各電気調達元1010の電気料金を予測する。第3構成例の第1モデル生成部110、第1モデル更新部120、および電気料金予測部130はそれぞれ、第2構成例の第1モデル生成部110、第1モデル更新部120、および電気料金予測部130と同様であってよい。第1モデル生成部110は、複数の電気調達元1010に関する第1因子を用いて1つの電気料金予測モデルを生成し、第1モデル更新部120は、複数の電気調達元1010の第1因子を用いて、当該電気料金予測モデルを学習してよい。電気料金予測部130は、各電気調達元1010の第1因子を電気料金予測モデルに適用して、対応する電気調達元1010の将来の電気料金を予測してよい。
 第3構成例の計画装置100は、第3モデル生成部310、第3モデル更新部320、およびメンテナンス計画生成部330を備え、将来の電解装置1000のメンテナンスによる稼働状態の推移を予測する。この場合、モデル生成部30が第3モデル生成部310を有してよく、また、学習処理部40が第3モデル更新部320およびメンテナンス計画生成部330を有してよい。
 第3構成例の記憶部20は、取得部10が第3因子を更に取得して、記憶部20に記憶する。第3因子は、電解装置1000の過去のメンテナンス計画を含んでよい。第3因子は、メンテナンスを実行できる人員、装置、および交換部品等の配置の情報を含んでよい。また、第3因子は、過去に電解装置1000がメンテナンスを実行した時期、期間、内容、およびメンテナンスによる電解装置1000の稼働率の変化等の情報を含んでよい。
 また、第3構成例の計画装置100において、取得部10は、外部等から電解装置1000の異常および劣化を予測する予測データを取得して第3因子の情報として記憶部20に記憶してよい。この場合、予測データは、過去の電解装置1000が稼働してから異常および劣化が発生するまでの期間と同等の期間で、次の異常および劣化が発生することを予想してよい。また、予測データは、異なる同型の電解装置1000を稼働させた結果、取得された異常および劣化の履歴を、電解装置1000の予測データとして用いてもよい。
 第3モデル生成部310は、対象期間よりも前に入手可能な第3因子の値に基づいて、メンテナンス計画生成モデルを生成する。第3モデル生成部310は、対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、メンテナンス計画生成モデルを生成してよい。
 第3モデル生成部310は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を識別モデルとして、強化学習を実行することによって、メンテナンス計画生成モデルを生成する。なお、メンテナンス計画生成モデルは、学習により、メンテナンスを実行する人員の配置、メンテナンスのスケジュール、メンテナンスの内容、および電解装置1000の稼働率等を含むメンテナンス計画を生成するモデルである。
 第3モデル生成部310は、例えば、予め定められた期間において、異常または劣化が予測される場合、当該異常または劣化が発生する日時よりも前にメンテナンスを開始または完了するように、メンテナンス計画生成モデルを強化学習して生成する。なお、異常および劣化の予測に応じて、メンテナンスを開始または完了させる計画を、目標とすべき電解装置1000のメンテナンス計画とする。
 第3モデル生成部310は、一例として、図3で説明したS320の動作において、メンテナンス計画生成モデルを生成してよい。即ち、第3モデル生成部310は、第2期間の第3因子の値に基づき、メンテナンス計画生成モデルを生成する。第3モデル生成部310は、生成したメンテナンス計画生成モデルを第3モデルとして第3モデル更新部320に供給する。
 第3モデル更新部320は、メンテナンス計画生成モデルを学習により更新する。第3モデル更新部320は、第3モデル学習部322を有し、第3モデル学習部322の学習結果に応じて、メンテナンス計画生成モデルを更新する。第3モデル更新部320は、例えば、予め定められた第3更新期間毎に、第3モデル学習部322が学習したメンテナンス計画生成モデルを、新たなメンテナンス計画生成モデルとして更新してよい。これに代えて、第3モデル更新部320は、第3モデル学習部322が予め定められた回数だけ学習したことに応じて、メンテナンス計画生成モデルを更新してもよい。
 第3モデル学習部322は、適応学習またはオンライン学習等と呼ばれる処理により、メンテナンス計画生成モデルを学習してよい。第3モデル学習部322は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を識別モデルとして、メンテナンス計画生成モデルを強化学習する。第3モデル学習部322は、第3モデル生成部310がメンテナンス計画生成モデルの生成に用いた第3因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。
 第3モデル学習部322は、実際の電解装置1000の稼働によって更新された第3因子の情報を用いて、メンテナンス計画生成モデルを学習する。即ち、第3モデル学習部322は、過去期間における第3因子の値と、過去期間以降において目標とすべき電解装置1000のメンテナンス計画とに基づいて、メンテナンス計画生成モデルを学習する。
 第3モデル学習部322は、第3因子の情報が更新されたことに応じて、メンテナンス計画生成モデルの学習を実行してよい。第3モデル学習部322は、第3モデル更新部320の第3更新期間の間に、1または複数回の学習を実行する。第3モデル生成部310は、一例として、図3で説明したS330の動作において、メンテナンス計画生成モデルを適応学習し、S340の動作において、メンテナンス計画生成モデルを更新してよい。
 例えば、第3モデル更新部320は、図3で説明した初期更新期間後、メンテナンス計画生成モデルを第3更新期間毎に更新する。第3更新期間および第1更新期間は、異なる期間でよく、これに代えて、略同一の期間でもよい。第3更新期間は、一例として1日である。第3モデル更新部320は、更新したメンテナンス計画生成モデルをメンテナンス計画生成部330に供給する。
 メンテナンス計画生成部330は、更新されたメンテナンス計画生成モデルを用いて、将来の第1期間における電解装置1000のメンテナンス計画を生成する。メンテナンス計画生成部330は、第1期間における電解装置1000の異常予測を含む第3因子の値に基づいて、第1期間における電解装置のメンテナンス計画を生成する。
 メンテナンス計画生成部330は、例えば、予め定められた期間毎に、将来における当該予め定められた期間のメンテナンス計画を生成する。メンテナンス計画生成部330は、例えば、将来の予め定められた期間が開始する直前までの期間における第3因子の情報を、メンテナンス計画生成モデルに適用してメンテナンス計画を生成する。メンテナンス計画生成部330は、一例として、図3で説明したS350の動作において、メンテナンス計画を生成してよい。
 この場合、メンテナンス計画生成部330は、初期更新期間に取得部10が取得したN日分の第3因子の値をメンテナンス計画生成モデルに適用して、初期更新期間の後の第1期間のN日分のメンテナンス計画を生成する。メンテナンス計画生成部330は、生成したメンテナンス計画を稼働計画生成部50に供給する。
 第3構成例の稼働計画生成部50は、第1期間における電解装置1000のメンテナンス計画に更に基づいて、第1期間における電解装置1000の稼働計画を生成する。第1稼働計画生成部230は、第2モデル生成部210が稼働計画生成モデルの生成に用いた、第1条件、第2条件、および第3条件等に、メンテナンス計画に従った電解装置1000の稼働台数および稼働率で稼働する第4条件を加えた条件を同様に用いてよい。即ち、第1稼働計画生成部230は、4つの条件を満たしつつ、水素生成コストを低減させる稼働計画を生成してよい。第1稼働計画生成部230は、水素生成コストを最小化させる稼働計画を生成することが望ましい。
 以上のように、第3構成例の計画装置100は、学習によって生成されたメンテナンス計画を考慮して稼働計画を生成するので、より精度の高い電解装置1000の制御を実行することができる。なお、第3構成例の計画装置100は、外部等より電解装置1000の異常および劣化を予測する予測データを取得する例を説明した。これに代えて、計画装置100は、電気調達元1010である発電装置の発電量と、電解装置1000の異常および劣化とを予測してよい。また、計画装置100は、学習により、電気調達元1010である発電装置の発電量と、電解装置1000の異常および劣化とを予測してもよい。このような計画装置100について、次に説明する。
 図5は、本実施形態に係る計画装置100の第4構成例を示す。第4構成例の計画装置100において、図4に示された第3構成例の計画装置100の動作と略同一のものには同一の符号を付け、説明を省略する。また、図5は、計画装置100の取得部10を省略した構成を示す。
 第4構成例の計画装置100は、第4モデル生成部410、第4モデル更新部420、および異常予測部430を備え、将来の電解装置1000の異常動作等を予測する。この場合、モデル生成部30が第4モデル生成部410を有してよく、また、学習処理部40が第4モデル更新部420および異常予測部430を有してよい。
 第4構成例の記憶部20は、取得部10が第4因子を更に取得して、記憶部20に記憶する。第4因子は、対象期間よりも前の電解装置1000の稼働状況を含む。第4因子は、電解装置1000の過去に発生した異常および劣化等の履歴を含んでよい。第4因子は、例えば、異常および劣化等の発生時間、修理期間、異常および劣化等が発生時間の前後の電解装置1000の稼働率、および異常および劣化等の内容等を含む。
 また、第4因子は、電解装置1000の点検結果、およびメンテナンス結果による、部品等の摩耗、疲労、および劣化の度合い等の情報を含んでよい。また、第4因子は、部品メーカが推奨する部品の交換時期の情報、および当該部品の使用時間または当該電解装置1000に搭載してから経過した時間等の情報を含んでよい。
 第4モデル生成部410は、対象期間よりも前に入手可能な第4因子の値に基づいて、異常予測モデルを生成する。第4モデル生成部410は、対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、異常予測モデルを生成してよい。第4モデル生成部410は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、異常予測モデルを生成する。なお、異常予測モデルは、学習により、第4因子の値に基づいて、対象期間における電解装置1000の異常予測を生成するモデルである。
 第4モデル生成部410は、一例として、図3で説明したS320の動作において、異常予測モデルを生成してよい。即ち、第4モデル生成部410は、第2期間の第4因子の値に基づき、異常予測モデルを生成する。第4モデル生成部410は、生成した異常予測モデルを第4モデルとして第4モデル更新部420に供給する。
 第4モデル更新部420は、過去期間における第4因子の値と過去期間以降の異常発生状況とに基づいて、異常予測モデルを学習により更新する。第4モデル更新部420は、第4モデル学習部422を有し、第4モデル学習部422の学習結果に応じて、異常予測モデルを更新する。第4モデル更新部420は、例えば、予め定められた第4更新期間毎に、第4モデル学習部422が学習した異常予測モデルを、新たな異常予測モデルとして更新してよい。これに代えて、第4モデル更新部420は、第4モデル学習部422が予め定められた回数だけ学習したことに応じて、異常予測モデルを更新してもよい。
 第4モデル学習部422は、適応学習またはオンライン学習等と呼ばれる処理により、異常予測モデルを学習してよい。第4モデル学習部422は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を識別モデルとして、異常予測モデルを強化学習する。第4モデル学習部422は、第4モデル生成部410が異常予測モデルの生成に用いた第4因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。
 第4モデル学習部422は、実際の電解装置1000の稼働によって更新された第4因子の情報を用いて、異常予測モデルを学習する。即ち、第4モデル学習部422は、過去期間における第4因子の値と、過去期間以降の異常発生状況とに基づいて、異常予測モデルを学習する。
 第4モデル学習部422は、第4因子の情報が更新されたことに応じて、異常予測モデルの学習を実行してよい。第4モデル学習部422は、第4モデル更新部420の第4更新期間の間に、1または複数回の学習を実行する。第4モデル更新部420は、一例として、図3で説明したS330の動作において、異常予測モデルを適応学習し、S340の動作において、異常予測モデルを更新してよい。
 例えば、第4モデル更新部420は、図3で説明した初期更新期間後、異常予測モデルを第4更新期間毎に更新する。第4更新期間および第1更新期間は、異なる期間でよく、これに代えて、略同一の期間でもよい。第4更新期間は、一例として1日である。第4モデル更新部420は、更新した異常予測モデルを異常予測部430に供給する。
 異常予測部430は、更新された異常予測モデルを用いて、対象期間における電解装置1000の異常予測を、異常予測モデルを用いて、第1期間における異常予測を生成する。異常予測部430は、第1期間における電解装置1000の異常予測を含む第4因子の値に基づいて、第1期間における電解装置の異常予測を生成する。
 異常予測部430は、例えば、予め定められた期間毎に、将来における当該予め定められた期間の異常予測を生成する。異常予測部430は、例えば、異常予測を予測すべき期間の直前までの期間における第4因子の情報を、異常予測モデルに適用して異常予測を生成する。異常予測部430は、一例として、図3で説明したS350の動作において、異常予測を生成してよい。
 この場合、異常予測部430は、初期更新期間に取得部10が取得した第2期間のN日分の第4因子の値を異常予測モデルに適用して、初期更新期間の後の第1期間のN日分の異常予測を生成する。異常予測部430は、生成した異常予測を新たな第3因子として記憶部20に記憶させる。これに代えて、異常予測部430は、生成した異常予測を新たな第3因子として、第3モデル生成部および第3モデル更新部320に供給してもよい。
 なお、異常予測部430による第3因子の供給は、第1期間から開始することになる。そこで、第4構成例の計画装置100は、第1期間よりも前の第2期間および第3期間において、第4モデル生成部410および第4モデル学習部422が学習によって出力する、更新前の異常予測モデルの予測結果を第3因子として用いてよい。また、第4構成例の計画装置100は、当該第2期間および第3期間においては、初期値として、第3構成例の計画装置100と同様に、学習以外の動作によって生成された異常予測を用いてもよい。
 第4構成例の計画装置100は、第5モデル生成部440、第5モデル更新部450、および発電量予測部460を備え、将来の発電装置の再生可能エネルギー発電量を予測する。この場合、モデル生成部30が第5モデル生成部440を有してよく、また、学習処理部40が第5モデル更新部450および発電量予測部460を有してよい。ここで、発電装置は、複数の電気調達元1010のうちの1つであってよく、再生可能エネルギーを用いて発電した電力を、送電網を介して、または送電網を介さずに直接、電解装置1000に供給するものであってよい。
 第4構成例の記憶部20は、取得部10が発電量予測因子(以下、「第5因子」とも称する)を更に取得して、記憶部20に記憶する。第5因子は、発電装置の発電量に関する情報を含んでよい。第5因子は、対象期間より前における、発電装置の発電量(例えば、所定期間内での発電量の累計、または発電効率等)、発電装置の電力供給量、電解装置1000の電力購入量、他の電気調達元1010の電気料金、天気情報、発電装置の種類(例えば、発電に用いる再生可能エネルギーの種類等)、発電装置の利用期間、対象期間における、予測の天気情報、および他の電気調達元1010の電気料金の予測の少なくとも1つを含んでよい。また、第5因子は、発電装置の物理モデルから算出される仮想データを含んでよい。
 第5モデル生成部440は、対象期間よりも前に入手可能な第5因子の値に基づいて、発電量予測モデルを生成する。第5モデル生成部440は、対象期間よりも過去の情報を用いて、事前学習またはオフライン学習等と呼ばれる処理により、発電量予測モデルを生成してよい。第5モデル生成部440は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を用いて、発電量予測モデルを生成する。なお、発電量予測モデルは、学習により、対象期間における発電装置の再生可能エネルギー発電量の推移を対象期間よりも前に入手可能な第5因子の値に基づいて予測するモデルである。
 第5モデル生成部440は、一例として、図3で説明したS320の動作において、発電量予測モデルを生成してよい。即ち、第5モデル生成部440は、第2期間の第5因子の値に基づき、発電量予測モデルを生成する。第5モデル生成部440は、生成した発電量予測モデルを第5モデルとして第5モデル更新部450に供給する。
 第5モデル更新部450は、過去期間における第5因子の値と過去期間以降の実際の発電量とに基づいて、発電量予測モデルを学習により更新する。第5モデル更新部450は、第5モデル学習部452を有し、第5モデル学習部452の学習結果に応じて、発電量予測モデルを更新する。第5モデル更新部450は、例えば、予め定められた第4更新期間毎に、第5モデル学習部452が学習した発電量予測モデルを、新たな発電量予測モデルとして更新してよい。これに代えて、第5モデル更新部450は、第5モデル学習部452が予め定められた回数だけ学習したことに応じて、発電量予測モデルを更新してもよい。
 第5モデル学習部452は、適応学習またはオンライン学習等と呼ばれる処理により、発電量予測モデルを学習してよい。第5モデル学習部452は、例えば、回帰分析、ベイズ推論、ニューラルネットワーク、ガウシアン混合モデル、および隠れマルコフモデル等を識別モデルとして、発電量予測モデルを強化学習する。第5モデル学習部452は、第5モデル生成部440が発電量予測モデルの生成に用いた第5因子の情報よりも時間的に後の情報を更に用いて学習することが望ましい。
 第5モデル学習部452は、実際の発電装置の稼働によって更新された第5因子の情報を用いて、発電量予測モデルを学習する。即ち、第5モデル学習部452は、過去期間における第5因子の値に基づく予測期間の予測結果と、予測期間の実データとの差分が0または予め定められた値未満となるように、発電量予測モデルを学習する。
 第5モデル学習部452は、第5因子の情報が更新されたことに応じて、発電量予測モデルの学習を実行してよい。第5モデル学習部452は、第5モデル更新部450の第5更新期間の間に、1または複数回の学習を実行する。第5モデル更新部450は、一例として、図3で説明したS330の動作において、発電量予測モデルを適応学習し、S340の動作において、発電量予測モデルを更新してよい。
 例えば、第5モデル更新部450は、図3で説明した初期更新期間後、発電量予測モデルを第4更新期間毎に更新する。第4更新期間および第1更新期間は、異なる期間でよく、これに代えて、略同一の期間でもよい。第4更新期間は、一例として1日である。第5モデル更新部450は、更新した発電量予測モデルを発電量予測部460に供給する。
 発電量予測部460は、更新された発電量予測モデルを用いて、対象期間における将来の再生可能エネルギー発電量の推移を予測する。発電量予測部460は、第5因子の値に基づいて、第1期間における予測発電量を生成する。
 発電量予測部460は、例えば、予め定められた期間毎に、将来における当該予め定められた期間の発電量を生成する。発電量予測部460は、例えば、発電量予測を予測すべき期間の直前までの期間における第5因子の情報を、発電量予測モデルに適用して予測発電量を生成する。発電量予測部460は、一例として、図3で説明したS350の動作において、予測発電量を生成してよい。
 この場合、発電量予測部460は、初期更新期間に取得部10が取得した第2期間のN日分の第5因子の値を発電量予測モデルに適用して、初期更新期間の後の第1期間のN日分の予測発電量を生成する。発電量予測部460は、生成した予測発電量を新たな因子として記憶部20に記憶させる。これに代えて、発電量予測部460は、生成した予測発電量を新たな因子として、他の構成に供給してもよい。
 なお、発電量予測部460による因子の供給は、第1期間から開始することになる。そこで、第4構成例の計画装置100は、第1期間よりも前の第2期間および第3期間において、第5モデル生成部440および第5モデル学習部452が学習によって出力する、更新前の発電量予測モデルの予測結果を因子として用いてよい。また、第4構成例の計画装置100は、当該第2期間および第3期間においては、初期値として、第3構成例の計画装置100と同様に、学習以外の動作によって生成された予測発電量を用いてもよい。発電量予測部460は、生成した予測発電量を記憶部20に例えば第1因子および第2因子として記憶させ、また、稼働計画生成部50に供給してよい。
 第4構成例の計画装置100において、稼働計画生成部50は、さらに予測された将来の異常予測および発電量の推移の少なくとも1つに基づいて稼働計画を生成する。第1稼働計画生成部230は、稼働計画生成モデルに、予測された将来の異常予測および発電量の推移の少なくとも1つをさらに適用して、対象期間における電解装置1000の稼働計画を生成してよい。
 以上のように、第4構成例の計画装置100は、学習によってより正確に予測された発電装置の発電量を用いて稼働計画を生成できる。従って、計画装置100は、発電装置からの電力を優先的に用いて、低コストに水素の供給計画を満たすように電解装置1000を稼働させることができる。また、第4構成例の計画装置100は、予測された電解装置1000の異常動作に基づき、メンテナンス計画を生成することができる。即ち、計画装置100は、異常動作および故障等を学習によって予想し、装置の稼働状態が大きく変動しないように予めメンテナンスが実行できるようにメンテナンス計画を生成することができる。そして、第4構成例の計画装置100は、このようなメンテナンス計画を考慮した稼働計画を生成するので、より精度が高く、コストを低減させた電解装置1000の制御を実行することができる。
 以上のように、本実施形態に係る計画装置100は、学習によって電解装置1000の稼働計画を生成することを説明した。このような計画装置100は、学習とは異なるロジックによって稼働計画を生成する動作と組み合わされてもよい。例えば、計画装置100は、学習による稼働計画の精度が、学習する回数および/または時間に応じて向上する場合がある。この場合、計画装置100は、稼働計画の精度が向上するまで、ロジックによって稼働計画を生成してもよい。このような計画装置100について、次に説明する。
 図6は、本実施形態に係る計画装置100の第5構成例を示す。第5構成例の計画装置100において、図1から図5で説明した本実施形態に係る計画装置100の動作と略同一のものには同一の符号を付け、説明を省略する。第5構成例の計画装置100は、第1構成例から第4構成例の計画装置100のいずれかの計画装置100の稼働計画生成部50が、配分算出部500と第2稼働計画生成部510と稼働計画選択部520とを更に有する構成でよい。
 配分算出部500は、複数の電気調達元1010の予測電気料金を電気料金予測部130から受け取り、水素の供給計画に応じて複数の電気調達元1010の電力の供給配分を算出してよい。例えば、配分算出部500は、電気調達元1010である発電装置からの電力と、電気調達元1010である複数の電力会社からの電力との配分を算出してよい。配分算出部500は、電気料金予測部130から受け取った各電気調達元1010の予測電気料金の確率分布と、各電気調達元1010の信頼度とから、水素の供給計画の量を満たないリスクが最も低くなるように配分を算出してよい。第1稼働計画生成部230は、電気料金の推移の予測結果および/または配分算出部500からの配分に応じて、稼働計画を生成してよい。
 第2稼働計画生成部510は、学習をしない予め定められたロジックにより、第1期間よりも前の第2因子の値と第1期間における複数の電気調達元1010の電気料金の予測結果とに基づいて、第1期間における電解装置1000の稼働計画を生成する。第2稼働計画生成部510は、第1稼働計画生成部230と並行して、稼働計画を生成してよい。予め定められたロジックについては後述する。
 稼働計画選択部520は、第1稼働計画生成部230が生成した稼働計画が予め定められた制約(例えば水素の供給計画の量等)を満たさない場合に、第2稼働計画生成部510が生成した稼働計画を選択する。稼働計画選択部520は、例えば、第1稼働計画生成部230の稼働計画による第1期間の水素生成コストが、第2稼働計画生成部510による第1期間の水素の供給量未満の場合に、第2稼働計画生成部510の稼働計画を選択する。
 また、稼働計画選択部520は、計画装置100の学習回数および/または学習時間が予め定められた閾値未満の場合に、第2稼働計画生成部510の稼働計画を選択してよい。また、稼働計画選択部520は、計画装置100が複数の電解装置1000のうち1以上の電解装置1000の稼働を停止してメンテナンスを実行する場合、第2稼働計画生成部510の稼働計画を選択してよい。
 このように、第5構成例の計画装置100は、学習が不十分、または学習が困難な場合に、ロジックによる稼働計画を採用して、電解装置1000を制御する。これにより、計画装置100は、初期期間、およびメンテナンス実行期間においても、安定に電解装置1000を稼働させて水素生成コストを低減させることができる。このような電解装置1000の第2稼働計画生成部510が用いるロジックについて次に説明する。
 図7は、本実施形態に係る第2稼働計画生成部510の動作フローの一例を示す。第2稼働計画生成部510は、図7に示す動作フローを実行して、電解装置1000の稼働計画を生成してよい。本実施形態において、第2稼働計画生成部510が、第1期間(N日間)の稼働計画を生成する例を説明する。
 第2稼働計画生成部510は、第1期間中において、電解装置1000の生成物の使用計画を満たし、かつ電気料金がより低いと予測された期間において、電気料金がより高いと予測された期間よりも優先して電解装置1000を稼働させる稼働計画を生成する。そこでまず、第2稼働計画生成部510は、第1期間の複数の予測電気料金に基づき、第1期間において水素を生成すべき電気料金の低い時間帯を選択する(S710)。なお、第2稼働計画生成部510は、複数の電気調達元1010のうちで各時間帯で最も低い電気調達元1010の予測電気料金に基づいて判断を行ってよい。
 第2稼働計画生成部510は、電解装置1000が生成して供給する水素の量が予め定められた供給計画を満たすように、水素を生成すべき時間帯を選択する。なお、供給計画は、予め定められた期間毎に水素を供給する計画である場合がある。例えば、供給計画は、第1期間における水素の総供給数と、期間Q毎に水素を供給する量が設定される。期間Qは、第1期間よりも短い期間であり、一例として、1日である。
 そして、第2稼働計画生成部510は、第1期間中において、更に、生成物の貯蔵量を基準範囲内に維持する稼働計画を生成する。例えば、第2稼働計画生成部510は、第1期間において、選択した時間帯で電解装置1000を稼働して水素を生成し、期間Q毎に水素を供給した場合の、水素の貯蔵量Vの推移を算出する(S720)。次に、第2稼働計画生成部510は、期間Q毎に、水素の貯蔵量Vが予め定められた閾値Th1を下回るか否かを判断する(S730)。
 第2稼働計画生成部510は、水素の貯蔵量Vが予め定められた閾値Th1を下回る場合(S730:Yes)、電解装置1000の稼働計画を更新する。第2稼働計画生成部510は、例えば、水素の貯蔵量Vが低減する期間Qにおける電解装置1000の稼働時間を予め定められた一定時間だけ増加させる(S740)。第2稼働計画生成部510は、電気料金の低い時間帯および対応する電気調達元1010を選択して稼働時間を増加させる。第2稼働計画生成部510は、S720に戻り、更新した稼働計画による水素の貯蔵量Vの推移を算出する。第2稼働計画生成部510は、第1期間において、水素の貯蔵量Vが予め定められた閾値Th1を下回らなくなる(S730:No)まで、S720からS740の動作を繰り返してよい。
 次に、第2稼働計画生成部510は、期間Q毎に、水素の貯蔵量Vが予め定められた閾値Th2を上回るか否かを判断する(S750)。第2稼働計画生成部510は、水素の貯蔵量が予め定められた閾値Th2を上回る場合(S750:Yes)、電解装置1000の稼働計画を更新する。第2稼働計画生成部510は、水素の貯蔵量Vが増加する期間Qにおける電解装置1000の稼働時間を予め定められた一定時間だけ減少させる(S760)。第2稼働計画生成部510は、電気料金の高い時間帯を選択して稼働時間を減少させる。
 第2稼働計画生成部510は、S720に戻り、更新した稼働計画による水素の貯蔵量Vの推移を算出する。第2稼働計画生成部510は、第1期間において、水素の貯蔵量Vが予め定められた閾値Th1およびTh2の範囲内を維持する(S730:No、S750:No)まで、S720からS760の動作を繰り返してよい。
 第2稼働計画生成部510は、水素の貯蔵量が基準範囲内に維持できる稼働計画となった場合に、当該稼働計画を出力してよい(S770)。なお、第2稼働計画生成部510は、予め定められた一定の期間が経過しても、稼働計画を出力できずに動作フローをループした場合は、生成不能として外部に警告等を出力してよい。この場合、稼働計画選択部520は、第1稼働計画生成部230の稼働計画を選択してよい。第2稼働計画生成部510は、第1期間が経過する毎に、次の第1期間の稼働計画を生成してよい。以上の例のように、第2稼働計画生成部510は、学習をしない予め定められたロジックを用いて電解装置1000の稼働計画を生成する。
 なお、以上の本実施形態に係る計画装置100は、複数の電気調達元1010についての電気料金を予測して、稼働計画を生成したが、1つの電気調達元1010について予測電気料金(例えば電気料金の確率分布)を生成して、稼働計画を生成してもよい。この場合、計画装置100は、当該1つの電気調達元1010からのみ電力供給を受ける、または、他の電気調達元1010の予測電気料金もしくは固定の電気料金を外部から取得して稼働計画の生成に用いてよい。
 以上の本実施形態に係る計画装置100は、将来の電気料金の推移に基づいて、将来の第1期間における電解装置1000の稼働計画を生成することを説明した。ここで、将来の電気料金の推移は、予測された値を用いるので、実際の電気料金が突発的に予測値と大きく乖離することがある。この場合、計画装置100の稼働計画を用いても、水素の製造コストを低減できなくなってしまうことがあり得る。そこで、制御部60は、このような突発的な変動に応じて、稼働計画とは異なる電解装置1000の制御を実行してよい。
 例えば、制御部60は、稼働計画上は電解装置1000を稼働させない予定の期間において、複数の電気調達元1010のうち少なくとも1つの電気料金が予測よりも低くなったことに応じて、より高い電気料金で将来電解装置1000を稼働させる代わりに当該期間において電解装置1000を稼働させる。制御部60は、一例として、電解装置1000を稼働させない期間において、複数の電気調達元1010のうち最も低い予測電気料金の電気調達元1010の電気料金が、予め定められた第1閾値未満となった場合に、電解装置1000を稼働させる。また、制御部60は、電解装置1000を稼働させる期間において、電力供給予定の電気調達元1010の電気料金が予め定められた第2閾値を超えた場合に、電解装置1000の稼働を停止させるか、または稼働率を低減させてもよい。
 これにより、計画装置100は、突発的な電気料金の変動に対応して、稼働計画を修正することができる。また、本実施形態に係る計画装置100は、電解装置1000の稼働結果を用いて次の稼働計画を学習によって生成するので、制御部60が稼働計画から逸脱した制御を実行しても、学習によって稼働計画を修正することができ、全体の期間を通じて安定な動作を実現することができ、水素の製造コストを低減させることができる。
 以上の本実施形態に係る計画装置100は、電解装置1000が生成して供給する水素の量が予め定められた供給計画を満たすように、稼働計画を生成することを説明した。しかしながら、実際の電解装置1000の水素の供給量が、供給計画とは異なる場合が生じることもある。例えば、電解装置1000の供給先の不具合、故障、および消費調整等により、供給計画よりも供給量が低減してしまう場合がある。この場合、電解装置1000の水素の貯蔵量は、想定よりも増加してしまう。そこで、制御部60は、電解装置1000の水素の貯蔵量に応じて、電解装置1000の稼働を調節してもよい。
 例えば、制御部60は、稼働計画に基づいて電解装置1000を稼働させている期間内において電解装置1000の生成物の貯蔵量が上限値以上となったことに応じて、電解装置1000の稼働を停止させる。これにより、制御部60は、電解装置1000の水素の貯蔵量が上限を超えてしまうことを防止できる。
 また、例えば、電解装置1000の供給量が供給計画よりも増加してしまう場合がある。この場合、電解装置1000の水素の貯蔵量は、想定よりも低減してしまう。そこで、制御部60は、電解装置1000の水素の貯蔵量に応じて、電解装置1000の稼働を調節してもよい。
 例えば、制御部60は、稼働計画に基づいて電解装置1000を停止させている期間内において電解装置1000の生成物の貯蔵量が下限値以下となったことに応じて、電解装置1000の稼働を開始させる。これにより、制御部60は、電解装置1000の水素の貯蔵量が下限を下回ることを防止できる。
 以上の図2から図8に示す第2構成例から第6構成例の計画装置100は、いずれも他の構成例の一部の構成を追加してよく、また、一部の構成を省略してもよい。
 本発明の様々な実施形態は、フローチャートおよびブロック図を参照して記載されてよく、ここにおいてブロックは、(1)操作が実行されるプロセスの段階または(2)操作を実行する役割を持つ装置のセクションを表わしてよい。特定の段階およびセクションが、専用回路、コンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、および/またはコンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタルおよび/またはアナログハードウェア回路を含んでよく、集積回路(IC)および/またはディスクリート回路を含んでよい。プログラマブル回路は、論理AND、論理OR、論理XOR、論理NAND、論理NOR、および他の論理操作、フリップフロップ、レジスタ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックアレイ(PLA)等のようなメモリ要素等を含む、再構成可能なハードウェア回路を含んでよい。
 コンピュータ可読媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読媒体は、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(RTM)ディスク、メモリスティック、集積回路カード等が含まれてよい。
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、Python、および「C」プログラミング言語または同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1または複数のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードのいずれかを含んでよい。
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供され、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
 図8は、本発明の複数の態様が全体的又は部分的に具現化されうるコンピュータ1200の例を示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200に、本発明の実施形態に係る装置に関連付けられるオペレーション又は当該装置の1又は複数の「部」として機能させ、又は当該オペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、本発明の実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。このようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
 本実施形態によるコンピュータ1200は、CPU1212、RAM1214、グラフィックコントローラ1216、及びディスプレイデバイス1218を含み、これらはホストコントローラ1210によって相互に接続される。コンピュータ1200はまた、通信インターフェース1222、ハードディスクドライブ1224、DVD-ROMドライブ1226、及びICカードドライブのような入出力ユニットを含み、これらは入出力コントローラ1220を介してホストコントローラ1210に接続される。コンピュータはまた、ROM1230及びキーボード1242のようなレガシの入出力ユニットを含み、これらは入出力チップ1240を介して入出力コントローラ1220に接続される。
 CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、これにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又は当該グラフィックコントローラ1216自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示させる。
 通信インターフェース1222は、ネットワークを介して他の電子デバイスと通信する。ハードディスクドライブ1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。DVD-ROMドライブ1226は、プログラム又はデータをDVD-ROM1201から読み取り、ハードディスクドライブ1224にRAM1214を介してプログラム又はデータを提供する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。
 ROM1230は、内部に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをパラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。
 プログラムが、DVD-ROM1201又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもあるハードディスクドライブ1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。
 例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インターフェース1222に対し、通信処理を命令してよい。通信インターフェース1222は、CPU1212の制御の下、RAM1214、ハードディスクドライブ1224、DVD-ROM1201、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。
 また、CPU1212は、ハードディスクドライブ1224、DVD-ROMドライブ1226(DVD-ROM1201)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。
 様々なタイプのプログラム、データ、テーブル、及びデータベースのような、様々なタイプの情報が、情報処理されるべく、記録媒体に格納されてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、これにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
 以上の説明によるプログラム又はソフトウェアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、これにより、プログラムをコンピュータ1200にネットワークを介して提供する。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 取得部、20 記憶部、30 モデル生成部、40 学習処理部、50 稼働計画生成部、60 制御部、100 計画装置、110 第1モデル生成部、120 第1モデル更新部、122 第1モデル学習部、130 電気料金予測部、210 第2モデル生成部、220 第2モデル更新部、222 第2モデル学習部、230 第1稼働計画生成部、310 第3モデル生成部、320 第3モデル更新部、322 第3モデル学習部、330 メンテナンス計画生成部、410 第4モデル生成部、420 第4モデル更新部、422 第4モデル学習部、430 異常予測部、440 第5モデル生成部、450 第5モデル更新部、452 第5モデル学習部、460 発電量予測部、500 配分算出部、510 第2稼働計画生成部、520 稼働計画選択部、1000 電解装置、1200 コンピュータ、1201 DVD-ROM、1210 ホストコントローラ、1212 CPU、1214 RAM、1216 グラフィックコントローラ、1218 ディスプレイデバイス、1220 入出力コントローラ、1222 通信インターフェース、1224 ハードディスクドライブ、1226 DVD-ROMドライブ、1230 ROM、1240 入出力チップ、1242 キーボード

Claims (19)

  1.  対象期間における複数の電気調達元の電気料金の推移を対象期間よりも前に入手可能な第1因子の値に基づいて予測する電気料金予測モデルを用いて、将来の電気料金の推移を予測する電気料金予測部と、
     予測された前記将来の電気料金の推移に基づいて、将来の第1期間における電解装置の稼働計画を生成する稼働計画生成部と
     を備える計画装置。
  2.  前記電気料金予測部は、前記複数の電気調達元のそれぞれの前記将来の電気料金の推移を、対応する前記第1因子の値に基づいて予測する請求項1に記載の計画装置。
  3.  前記電気料金予測部は、前記複数の電気調達元のそれぞれに対応する複数の電気料金予測モデルを用いて、各電気調達元の将来の電気料金の推移を予測する請求項1または2に記載の計画装置。
  4.  前記電気料金予測部は、将来の電気料金の確率分布を予測する請求項1から3のいずれか一項に記載の計画装置。
  5.  前記電気料金予測モデルは、対象期間よりも前の、電気料金、電力需要量、電力供給量、再生可能エネルギー発電量、再生可能エネルギー発電量の予測値、各電気調達元からの電力購入量、および天気情報の少なくとも1つを含む前記第1因子の値に基づいて、対象期間における電気料金の推移を予測する請求項1から4のいずれか一項に記載の計画装置。
  6.  過去期間における前記第1因子の値と前記過去期間以降の電気料金の現実の推移とに基づいて、前記電気料金予測モデルを学習により更新する第1モデル更新部を更に備える請求項1から5のいずれか一項に記載の計画装置。
  7.  前記稼働計画生成部は、対象期間における稼働計画を、対象期間よりも前に入手可能な第2因子の値と対象期間における電気料金の推移の予測結果とに基づいて生成する稼働計画生成モデルを用いて、将来の前記第1期間における前記電解装置の稼働計画を生成する第1稼働計画生成部を有する請求項1から6のいずれか一項に記載の計画装置。
  8.  前記稼働計画生成モデルは、対象期間よりも前の、前記電解装置の稼働データ、各電気調達元との契約条件、各電気調達元の信頼度、前記複数の電気調達元の少なくとも1つの固定の電気料金、および前記電解装置の生成物貯蔵量の少なくとも1つを含む前記第2因子の値と、対象期間における電気料金の推移の予測結果とに基づいて、対象期間における前記電解装置の稼働計画を生成する請求項7に記載の計画装置。
  9.  前記稼働計画生成部は、前記契約条件、および前記信頼度の少なくともいずれかを含む前記第2因子の値と、前記電気料金の推移の予測結果とに基づいて、
     前記対象期間における前記複数の電気調達元の電力供給の配分、および各電気調達元の電力供給のタイミングの少なくとも1つを含む前記稼働計画を生成する請求項8に記載の計画装置。
  10.  前記稼働計画生成部は、前記契約条件として、前記複数の電気調達元の内の少なくとも1つと結んだ複数の契約条件を含む契約条件群に基づいて前記稼働計画を生成し、
     前記稼働計画は、前記配分として、前記契約条件群に含まれる各契約条件で前記電気調達元から電力供給を受ける配分、および前記タイミングとして、前記契約条件群に含まれる各契約条件で電力供給を受けるタイミングの少なくともいずれかを含む前記稼働計画を生成する請求項9に記載の計画装置。
  11.  前記稼働計画生成部は、前記稼働計画が満たすべき制約を調整可能に指定する制約条件指定部を有する請求項8に記載の計画装置。
  12.  対象期間における発電装置の再生可能エネルギー発電量の推移を対象期間よりも前に入手可能な発電量予測因子の値に基づいて予測する発電量予測モデルを用いて、将来の再生可能エネルギー発電量の推移を予測する発電量予測部をさらに備える請求項1から11のいずれか一項に記載の計画装置。
  13.  前記稼働計画生成部は、さらに前記予測された将来の再生可能エネルギー発電量の推移に基づいて前記稼働計画を生成する請求項12に記載の計画装置。
  14.  前記稼働計画を用いて、前記電解装置を稼働させる制御を行う制御部を更に備え、
     前記制御部は、前記稼働計画上は前記電解装置を稼働させない予定の期間において、前記複数の電気調達元のうち少なくとも1つの電気料金が予測よりも低くなったことに応じて、より高い電気料金で将来前記電解装置を稼働させる代わりに当該期間において前記電解装置を稼働させる請求項1から13のいずれか一項に記載の計画装置。
  15.  前記電解装置は、電気分解によって水素を生成する水素生成装置である請求項1から14のいずれか一項に記載の計画装置。
  16.  対象期間における電気料金の確率分布を対象期間よりも前に入手可能な第1因子の値に基づいて予測する電気料金予測モデルを用いて、将来の電気料金の確率分布を予測する電気料金予測部と、
     予測された前記将来の電気料金の確率分布に基づいて、将来の第1期間における電解装置の稼働計画を生成する稼働計画生成部と
     を備える計画装置。
  17.  対象期間における複数の電気調達元の電気料金の推移を対象期間よりも前に入手可能な第1因子の値に基づいて予測する電気料金予測モデルを用いて、将来の電気料金の推移を予測することと、
     予測された前記将来の電気料金の推移に基づいて、将来の第1期間における電解装置の稼働計画を生成することと
     を備える電解装置の稼働計画の生成方法。
  18.  コンピュータに、請求項1から16のいずれか一項に記載の計画装置として機能させるプログラム。
  19.  電気料金予測部が、対象期間における複数の電気調達元の電気料金の推移を対象期間よりも前に入手可能な第1因子の値に基づいて予測する電気料金予測モデルを用いて、将来の電気料金の推移を予測し、
     稼働計画生成部が、予測された前記将来の電気料金の推移に基づいて、将来の第1期間における水素生成装置の稼働計画を生成し、
     前記水素生成装置が、前記稼働計画に基づいて水素を生成する
     水素製造方法。
PCT/JP2020/014302 2019-03-27 2020-03-27 計画装置、稼働計画の生成方法、水素製造方法、およびプログラム WO2020196889A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021509681A JP7219808B2 (ja) 2019-03-27 2020-03-27 計画装置、稼働計画の生成方法、水素製造方法、およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019060069 2019-03-27
JP2019-060069 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196889A1 true WO2020196889A1 (ja) 2020-10-01

Family

ID=72611086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014302 WO2020196889A1 (ja) 2019-03-27 2020-03-27 計画装置、稼働計画の生成方法、水素製造方法、およびプログラム

Country Status (2)

Country Link
JP (1) JP7219808B2 (ja)
WO (1) WO2020196889A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176993A1 (ja) * 2023-02-21 2024-08-29 Eneos株式会社 制御装置、水素キャリア製造システム及び制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528851A (ja) * 2012-05-28 2015-10-01 ハイドロジェニクス コーポレイション 電気分解装置及びエネルギーシステム
JP2016103082A (ja) * 2014-11-27 2016-06-02 住友電気工業株式会社 電力管理装置、電力システム、需要家装置、電力管理方法および電力管理プログラム
WO2018083781A1 (ja) * 2016-11-04 2018-05-11 株式会社 東芝 水素管理システムおよび水素管理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528851A (ja) * 2012-05-28 2015-10-01 ハイドロジェニクス コーポレイション 電気分解装置及びエネルギーシステム
JP2016103082A (ja) * 2014-11-27 2016-06-02 住友電気工業株式会社 電力管理装置、電力システム、需要家装置、電力管理方法および電力管理プログラム
WO2018083781A1 (ja) * 2016-11-04 2018-05-11 株式会社 東芝 水素管理システムおよび水素管理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176993A1 (ja) * 2023-02-21 2024-08-29 Eneos株式会社 制御装置、水素キャリア製造システム及び制御方法

Also Published As

Publication number Publication date
JP7219808B2 (ja) 2023-02-08
JPWO2020196889A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2020203520A1 (ja) 装置、方法、およびプログラム
JP7061616B2 (ja) 計画装置、稼働計画の生成方法、水素製造方法、およびプログラム
JP7219805B2 (ja) 計画装置、制御装置、方法、およびプログラム
JP7256790B2 (ja) 設計装置、方法、およびプログラム
JP7157815B2 (ja) 計画装置、計画方法、および計画プログラム
Baringo et al. Risk-constrained multi-stage wind power investment
Zugno et al. Pool strategy of a price-maker wind power producer
CN112200489B (zh) 有色金属冶炼产供销一体优化系统、方法、装置
Koken et al. A genetic algorithm based heuristic for dynamic lot sizing problem with returns and hybrid products
Liu et al. Multi-objective imperfect maintenance optimization for production system with an intermediate buffer
WO2020196889A1 (ja) 計画装置、稼働計画の生成方法、水素製造方法、およびプログラム
Tang et al. Bidding strategy evolution analysis based on multi-task inverse reinforcement learning
WO2020059741A1 (ja) 計画装置、方法、およびプログラム
Xia et al. Multi-level maintenance and inventory joint optimization for a k-out-of-n hyper-system considering the selection of suppliers with incentive discount policies
Iftikhar et al. Electricity demand forecasting using a novel time series ensemble technique
Hu et al. Knowledge-enhanced reinforcement learning for multi-machine integrated production and maintenance scheduling
Dui et al. A data-driven construction method of aggregated value chain in three phases for manufacturing enterprises
Xu et al. Deep Learning-Based Risk Prediction in Power Sector Financial Management Using Transformer and Actor-Critic Reinforcement Learning
Van Niekerk Exact approaches towards solving generator maintenance scheduling problems
JP2024101494A (ja) 水素製造プラント収益算出装置、水素製造プラント期待収益算出装置、水素製造量算出装置、水素製造プラント設備容量算出装置
Chandra et al. Electrical Load Demand Forecast for Gujarat State of India using Machine Learning Models
Zhang Enterprise-wide Optimization for Industrial Demand Side Management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777520

Country of ref document: EP

Kind code of ref document: A1