WO2020196864A1 - Foam, sound-absorbing material, resin composition, sound-absorbing method, sound-absorbing structure, sound-absorbing structure production method, sound-absorbing material production method, building, and vehicle - Google Patents

Foam, sound-absorbing material, resin composition, sound-absorbing method, sound-absorbing structure, sound-absorbing structure production method, sound-absorbing material production method, building, and vehicle Download PDF

Info

Publication number
WO2020196864A1
WO2020196864A1 PCT/JP2020/014160 JP2020014160W WO2020196864A1 WO 2020196864 A1 WO2020196864 A1 WO 2020196864A1 JP 2020014160 W JP2020014160 W JP 2020014160W WO 2020196864 A1 WO2020196864 A1 WO 2020196864A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
group
sound absorbing
sound
absorbing material
Prior art date
Application number
PCT/JP2020/014160
Other languages
French (fr)
Japanese (ja)
Inventor
博志 神山
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019061823A external-priority patent/JP7412891B2/en
Priority claimed from JP2019061384A external-priority patent/JP7320364B2/en
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2020196864A1 publication Critical patent/WO2020196864A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/109Esters; Ether-esters of carbonic acid, e.g. R-O-C(=O)-O-R
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials

Definitions

  • the present invention comprises a foam exhibiting good sound absorbing characteristics, a sound absorbing material provided with the foam, a resin composition for giving the foam, a sound absorbing material composed of the foam, and a sound absorbing method using the sound absorbing material.
  • the sound absorbing structure provided with the above-mentioned sound absorbing material, the vehicle provided with the above-mentioned sound absorbing structure, the method for manufacturing the above-mentioned sound absorbing structure, the method for manufacturing the above-mentioned sound absorbing material, and the building provided with the above-mentioned sound absorbing material.
  • vehicles Regarding vehicles.
  • a foam of a polymer compound a foam using a thermoplastic resin such as polystyrene, polyethylene, polypropylene, or polyvinyl chloride is well known. Taking advantage of its sound absorbing characteristics, such foams are used in the fields of civil engineering and construction, packaging, home appliances, automobiles, etc. in the form of beads, sheets, or boards, for example. In particular, such a foam is used as a sound absorbing material in various articles such as buildings such as houses and vehicles (see, for example, Patent Document 1).
  • a thermoplastic resin such as polystyrene, polyethylene, polypropylene, or polyvinyl chloride
  • a sound absorbing material that absorbs noise in various frequency bands is required. Then, various sound absorbing materials are used according to the frequency of the sound to be absorbed.
  • the above-mentioned foam using a thermoplastic resin such as polystyrene, polyethylene, polypropylene, or polyvinyl chloride is used as a sound absorbing material for absorbing noise at a relatively high frequency.
  • Asphalt sheets and the like are used to absorb low-frequency noise such as road noise generated by vehicles such as automobiles.
  • a foam using a thermosetting resin a foam using a modified silicone resin is known.
  • a base resin (A) which has a silicon group having a hydrolyzable group and whose main chain is a polymer composed of an oxyalkylene-based unit, a silanol condensation catalyst (B), a bicarbonate, etc.
  • a foam obtained by curing a liquid resin composition containing a chemical foaming agent (C) containing the above by heating is known (see Patent Document 2).
  • the sound absorption performance of a foam made of a resin such as polyurethane is not always sufficient. Therefore, the sound absorbing material used in the sound absorbing method for absorbing noise and the like is required to have improved sound absorbing characteristics.
  • the sound absorption performance of the foam made of a resin such as polyurethane is not always sufficient.
  • the present inventor foams and cures a base resin (A) having a reactive silicon group containing a polyoxyalkylene polymer (A1) to produce a foam.
  • a base resin (A) having a reactive silicon group containing a polyoxyalkylene polymer (A1) to produce a foam.
  • the present inventor has added a poly as a base resin (A) to a resin composition containing a base resin (A) having a reactive silicon group, a chemical foaming agent (B), and a silanol condensation catalyst (D). It has been found that by containing an oxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher, it is possible to suppress a decrease in the foaming ratio over time when producing a foam. , The present invention has been completed.
  • the present inventor uses a foam having a shear modulus of 7,000 Pa or less and a flow resistance of 1,000,000 N ⁇ s / m 4 or more per unit thickness as a sound absorbing material, even in a high frequency band of more than 2000 Hz. , It has been found that a sound absorbing material showing good sound absorbing characteristics can be provided even in a low frequency band of 1000 Hz or less, and the present invention has been completed.
  • the present invention has the following configuration. 1) A foam obtained by foaming and curing a base resin (A) having a reactive silicon group containing a polyoxyalkylene polymer (A1). A foam having a sound absorption coefficient of 70% or more at a frequency of 1000 Hz to 5500 Hz, measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2. 2) Using a sample with a thickness of 25 mm, the sound absorption coefficient measured using the B tube at 20 ° C. in accordance with JIS A 1405-2 shows the maximum in the frequency range of 1000 Hz to 1700 Hz to 1). The foam described.
  • the sound absorption coefficient at a frequency of 800 Hz is 40% or more, measured using a B tube at 20 ° C. in accordance with JIS A 1405-2, 1) or 2).
  • the foam described in. 4) A foam obtained by foaming and curing a foam resin composition containing a base resin (A) and a chemical foaming agent (B).
  • the reactive silicon group is a trimethoxysilyl group, a (methoxymethyl) dimethoxysilyl group, the following formulas (1) to (3): (In formulas (1) to (3), R 1 is an independently hydrocarbon group having 1 or more and 20 or less carbon atoms, and the hydrocarbon group as R 1 may be substituted.
  • X is a hydroxy group or a hydrolyzable group
  • a is 1, 2, or 3
  • R 4 is a divalent linking group, which R 4 has. The two bonds are bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group, respectively, and R 2 and R 3 are independently hydrogen atoms and 1 or more carbon atoms, respectively.
  • the foam according to any one of 1) to 9), which has an FP hardness of 60 or less at 0 ° C. 11) Contains the base resin (A), the chemical foaming agent (B), and the silanol condensation catalyst (D).
  • the base resin (A) has a reactive silicon group and has.
  • the base resin (A) contains a polyoxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher.
  • a vertical incident sound absorption coefficient of 0.15 or more is measured using an acoustic tube with an inner diameter of 40 mm and a test piece with a thickness of 10 mm in accordance with JIS A1405-2.
  • the vertical incident sound absorption coefficient measured using an acoustic tube with an inner diameter of 40 mm and a test piece with a thickness of 10 mm in accordance with JIS A1405-2 in the frequency range of 1000 Hz or more and 4500 Hz or less is 0.45.
  • the sound absorbing method according to 24), wherein the sound to be absorbed contains a component in the frequency range of 650 Hz or more and 1000 Hz or less.
  • a sound absorbing structure composed of the sound absorbing material according to any one of 14) to 23) and a support supporting the sound absorbing material.
  • the support consists of a motor and a casing that houses the motor.
  • a vehicle comprising the sound absorbing structure according to any one of 27) to 29).
  • a method for manufacturing a sound absorbing structure comprising the sound absorbing material according to any one of 14) to 23) and a support supporting the sound absorbing material.
  • a method for manufacturing a sound absorbing structure in which the sound absorbing material is fixed to the surface of a support or the sound absorbing material is filled in a space defined by the support.
  • a liquid resin composition containing a polyoxyalkylene polymer (A1) having a reactive silicon group is applied to the surface of a support or filled in the space defined by the support. When, By curing the resin composition while foaming it to form a foam, the foam as a sound absorbing material is adhered to the surface of the support. 31).
  • the method for manufacturing a sound absorbing structure 33) The method for manufacturing a sound absorbing structure according to 32), wherein a liquid resin composition is applied to the surface of the tire as a support on the lumen side.
  • the present invention it is possible to provide a foam having good sound absorbing characteristics in a wide frequency range, a sound absorbing material provided with the foam, and a building and a vehicle provided with the sound absorbing material. Further, according to the present invention, when a foam is produced using a chemical foaming agent, a resin composition for forming a foam that can suppress a decrease in the foaming ratio over time after the foaming ratio has increased, and the said resin composition. It is possible to provide a foam obtained by foaming and curing a resin composition, and a method for producing a foam using the resin composition.
  • a sound absorbing material exhibiting good sound absorbing characteristics in a wide frequency band including a low frequency band of 1000 Hz or less and a high frequency band of more than 2000 Hz, a sound absorbing method using the sound absorbing material, and the above-mentioned sound absorbing material.
  • a sound absorbing structure including the above-mentioned sound absorbing structure, a vehicle provided with the above-mentioned sound absorbing structure, and a method for manufacturing the above-mentioned sound absorbing structure can be provided.
  • the foam is a foam obtained by foaming and curing a base resin (A) having a reactive silicon group containing a polyoxyalkylene polymer (A1).
  • A base resin
  • A1 a reactive silicon group containing a polyoxyalkylene polymer
  • the sound absorption coefficient at a frequency of 1000 Hz to 5500 Hz measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm is 70% or more in accordance with JIS A 1405-2.
  • the foam has a maximum sound absorption coefficient in the frequency range of 1000 Hz to 1700 Hz measured using a B tube at 20 ° C. in accordance with JIS A 1405-2 using a sample having a thickness of 25 mm. preferable.
  • the sound absorption coefficient at a frequency of 800 Hz which is measured by using a sample having a thickness of 25 mm and using a B tube at 20 ° C. in accordance with JIS A 1405-2, is 40% or more. preferable.
  • the foam has a sound absorption coefficient of 90% or more at a frequency of 1500 Hz, which is measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2. preferable.
  • the base resin (A), the chemical foaming agent (B), and the silanol condensation catalyst (D) are contained, and as the base resin (A), the polyoxyalkylene polymer (A1) and the glass transition temperature are different.
  • a foam resin composition containing a combination of an acrylic resin (A2) having a temperature of less than 35 ° C. a decrease in the foaming ratio over time is suppressed.
  • the above foam is produced by the continuous method, it is produced by foaming and curing in a short time while ensuring a sufficient time until the shape of the resin composition for foam becomes a predetermined shape. Therefore, the shape and density are uniform, and a foam having a high foaming ratio can be stably produced.
  • the foam absorbs well the components in the frequency range of 1000 Hz to 5500 Hz, and particularly well absorbs the components in the frequency range of 1000 Hz to 1700 Hz among the sounds to be absorbed.
  • Sounds containing components in the frequency range of 1000 Hz to 1700 Hz include daily conversation, musical instrument sounds such as piano and clarinet. Therefore, the above-mentioned foam tends to absorb noise that is particularly annoying in daily life.
  • the skin layer is often cut off for the purpose of enhancing the sound absorbing characteristics.
  • the above foam has a small effect on the sound absorption characteristics with and without the skin layer.
  • a foam is constructed using a resin composition for a foam at a construction site or a manufacturing site of various products, it may be difficult to cut the skin layer.
  • the above-mentioned foam has a small effect on the sound absorption characteristics of the presence or absence of the skin layer, the sound absorption characteristics of the foam can be sufficiently maintained even if the foam is applied at a construction site or a manufacturing site of various products. It can be demonstrated.
  • the above foam since the above foam is easily installed at the construction site, it can be easily installed on the inner wall or the gap together with the hard heat insulating material in a building such as a house. As will be described later, the above-mentioned foam has a low FP hardness and is flexible. Therefore, in a building such as a house, if the above foam is applied to the inner wall or the gap together with the hard heat insulating material, the shaking of the earthquake can be absorbed and the hard heat insulating material can be prevented from cracking. As a result, even in the event of an earthquake, it is possible to maintain high heat insulation and airtightness of buildings such as houses.
  • the use of the above foam is not particularly limited.
  • the above-mentioned foam can be suitably used in applications to which various conventionally known foams such as polyurethane foam and polystyrene foam are applied.
  • the shape of the foam is not particularly limited.
  • Examples of the shape of the foam include a sheet shape, a rod shape, a regular polyhedron shape (for example, a cube shape, a regular tetrahedron shape, a regular octahedron shape, etc.), a disk shape, a spherical shape, a hemispherical shape, an indefinite shape, and the like.
  • the shape of the foam is preferably sheet-like or rod-like.
  • the rod shape is a shape in a stationary state. Since the foam is flexible, the foam may behave like a string when the rod-shaped foam is moved in a stationary state.
  • the density of the foam is not particularly limited as long as the foam exhibits the desired sound absorbing characteristics. Density of the foam, for example, preferably 200 kg / m 3 or less, more preferably 150 kg / m 3 or less, 100 kg / m 3 more preferably less, still more preferably 50 kg / m 3 or less. When the density is within this range, the sound absorbing characteristics of the foam are good, and the foam is relatively lightweight and easy to carry on a daily basis, so that the foam can be applied to buildings as a sound absorbing material. It's easy.
  • the lower limit of the density of the foam is not particularly limited, but may be 10 kg / m 3 or more, 30 kg / m 3 or more, and 70 kg / m 3 or more. If the density is too low, when the foam is used as a sound absorbing material, it may be easily deformed by its own weight.
  • the hardness of the foam is not particularly limited.
  • the hardness of the foam is appropriately determined according to the use of the foam and the performance required for the foam.
  • the hardness of the foam is preferably 60 or less, more preferably 50 or less, further preferably 15 or less, still more preferably 10 or less, as the FP hardness (ASKER FP hardness) measured at 0 ° C.
  • the above foam is suitably used for sound absorbing materials.
  • the sound absorbing material provided with the above foam and its use will be described in detail later.
  • the use of the foam is not limited to the sound absorbing material.
  • the foam can be suitably used as a soundproofing material, a vibration damping material, a cushioning material, etc., for applications such as transportation equipment, bedding / bedding, furniture, various equipment, building materials, packaging materials, medical / nursing care, and the like.
  • Preferred applications include seats for automobiles, construction machinery, railroad vehicles, ships, aircraft, etc., child seats, headrests, armrests, footrests, headliners, saddles / rider cushions for motorcycles / bicycles, custom cars, etc.
  • bedding / bedding applications include cushioning materials such as pillows, comforters, mattresses, beds, mattresses, bed mats, bed pads, cushions, baby beds, and baby neck pillows, as well as skin materials and skin lining materials.
  • Examples of furniture applications include various cushions such as chairs, seat chairs, cushions, sofas, sofa cushions and seat cushions, cushion materials such as carpets and mats, kotatsu mats and comforters, and toilet seat mats, and skin materials and skin lining materials. Be done.
  • Examples of various device applications include sealing / cushioning materials for liquid crystals, electronic parts, robot skin, conductive cushioning materials, antistatic cushioning materials, pressure sensing materials, and the like.
  • Examples of building material applications include heat insulating materials for floors and roofs, shock absorbers for floors and walls, and the like.
  • packaging materials include packaging materials such as cushioning materials, cushioning materials, and shock absorbing materials.
  • cell sheets for regenerative medicine artificial skin, artificial bones, artificial cartilage, artificial organs, other biocompatible materials, chemical exudation pads, hemostatic pads, gas-liquid separation filters (indwelling needle filters), and adhesives Agents, medical liquid absorbents, masks, compression pads, surgical disposable products, low frequency treatment device electrode pads, bedsore prevention mattresses, repositioning cushions, wheelchair cushions, wheelchair seats, shower chairs and other nursing care products, bathing Also used for nursing care pillows, palm protectors for contraction, taping, cast liners, artificial limbs / legs liners, tooth pads, other dental products, shock absorbing pads, hip protectors, elbow / knee protectors, wound dressings, etc. It can be done.
  • cleaning sponge applications include cleaning cleaners, dishwashing cleaners, body cleaning cleaners, shoe polish cleaners, car wash cleaners, and the like.
  • toiletry applications include absorbent materials such as diapers and sanitary napkins, side gathers, and various liquid filters.
  • footwear applications include shoe skin materials, linings, insoles, shoe anti-scratch pads, various shoe pads, inner boots, slippers, slipper cores, sandals, sandal insoles, etc.
  • Examples of cosmetic tool applications include cosmetic puffs and eye color chips.
  • bath products such as bath pillows, massage puffs, mouth pads, armrests for keyboards, non-slip cushions, stationery (pen grips, penetrating stamps), small pillows for desks, ear plugs, cotton sticks, sheets for hot packs.
  • Cold pack sheet wet cloth, glasses pad, underwater eyeglass pad, face protector, watch pad, headphone ear pad, earphone, ice pillow cover, core material such as folding pillow, cushion material, skin material, skin lining material, both sides
  • Examples thereof include a tape base material, an fragrance, and an adsorption medium such as a stamp stand.
  • Examples of clothing applications include pad materials such as shoulders and brassieres, liners such as cold protection materials, and heat insulating materials.
  • bouldering bouldering mini rock climbing 2 to 3 m rock climbing
  • beat boards cushioning materials for high jumps, landing mats for gymnastics and exercise, kids mats, etc.
  • Examples include materials, skin materials, skin lining materials, liners for ski boots, snowboard boots, and the like.
  • Examples include casting materials for molding the shape of articles and making models, molding materials for shaping articles in the casting method, materials for making model samples from molds, materials for making ornaments, special moldings and molded objects for monsters, etc. ..
  • the resin composition used for forming the foam preferably contains a base resin (A), a chemical foaming agent (B), and a silanol condensation catalyst (D).
  • the base resin (A) has a reactive silicon group.
  • the base resin (A) preferably contains a polyoxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher in combination.
  • the base resin (A) is a curable component having a reactive silicon group.
  • the base resin (A) preferably has at least one reactive silicon group in the molecular chain. Since (A) has a reactive silicon group in the base resin, a silanol condensation reaction occurs between the reactive silicon groups to crosslink the resin, and the resin becomes a polymer state and is cured.
  • the base resin (A) contains a polyoxyalkylene polymer (A1) as a resin having a reactive silicon group.
  • the foam contains a cured product in which the polyoxyalkylene polymer (A1) is cured by a condensation reaction between reactive silicon groups, and the foaming state is appropriately adjusted to exhibit desired sound absorbing characteristics.
  • the number of reactive silicon groups contained in the base resin (A) is preferably at least one in the molecular chain from the viewpoint of condensation reactivity.
  • the base resin (A) is preferably a polymer having reactive silicon groups at both ends of the main chain or the molecular chain at the branch portion.
  • the number of such polymers is preferably 1.0 or more and 3.0 or less, more preferably 1.1 or more and 2.5 or less, and particularly preferably 1.2 or more and 2.0 or less in one molecule. It has a reactive silicon group.
  • the curing reaction of the base resin (A) by the reaction between the reactive silicon groups can proceed sufficiently only by the moisture in the air and the material. Therefore, even when the foam resin composition used for producing the foam does not contain water (C) or contains a very small amount of water (C), the foam resin composition There is no particular problem in terms of the progress of curing.
  • the base resin (A) consists only of a polymer having reactive silicon groups at both ends of the main chain or the molecular chain at the branching portion
  • the acetone gel fraction of the obtained foam tends to be high.
  • a high acetone gel fraction means that the foam has high organic solvent resistance.
  • the acetone gel content of the foam is high, for example, when the foam is applied to various buildings or attached to various devices by using an adhesive containing an organic solvent, the solvent of the foam is used. Deterioration (elution of solvent-soluble components) is unlikely to occur.
  • the base resin (A) contains a polymer having a reactive silicon group at both ends of the main chain or the molecular chain at the branch portion, and a polymer having a reactive silicon group only at one end of the molecular chain. You may.
  • the number of polymers having a reactive silicon group at only one end of the molecular chain is preferably 1.0 or less, more preferably 0.3 or more and 1.0 or less, still more preferably, on average in one molecule. It has 0.4 or more and 1.0 or less, particularly preferably 0.5 or more and 1.0 or less reactive silicon groups.
  • the content of the polymer having reactive silicon groups at both ends of the molecular chain in 100 parts by weight of the base resin (A) is preferably 65 parts by weight or more and 95 parts by weight or less.
  • the content of the polymer having a reactive silicon group only at one end of the molecular chain in 100 parts by weight of the base resin (A) is preferably 5 parts by weight or more and 35 parts by weight or less.
  • the reactive silicon group contained in the base resin (A) has a hydroxy group or a hydrolyzable group bonded to a silicon atom, and is crosslinked by forming a siloxane bond by a reaction accelerated by a silanol condensation catalyst. It is a possible group.
  • the reactive silicon group the formula (1a): -Si (R 1a ) 3-a (X) a (1a) (R 1a is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms, or -OSi (R') 3 (R'is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms.
  • hydrocarbon group as R 1a may be substituted and may have a hetero-containing group
  • X is independently a hydroxy group or a hydro group. It is a degradable group. Further, a is an integer of 1 or more and 3 or less) The group represented by is mentioned.
  • the hydrolyzable group is not particularly limited, and any conventionally known hydrolyzable group may be used. Specific examples thereof include hydrogen atom, halogen atom, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group, alkenyloxy group and the like. Among these, a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable, and alkoxy is preferable from the viewpoint of mild hydrolyzability and easy handling. Groups are particularly preferred.
  • the hydrolyzable group and the hydroxy group can be bonded to one silicon atom in the range of 1 or more and 3 or less. When two or more hydrolyzable groups or hydroxy groups are bonded to the reactive silicon group, they may be the same or different.
  • the a in the above formula (1a) is preferably 2 or 3, and is preferably 3 from the viewpoint of curability and the point that curing and foaming proceed at the same time.
  • R 1a in the above formula (1a) include alkyl groups such as methyl group and ethyl group, cycloalkyl groups such as cyclohexyl group, aryl groups such as phenyl group, aralkyl groups such as benzyl group, and R. 'Is a methyl group, a phenyl group, etc.-A triorganosyloxy group, a chloromethyl group, a methoxymethyl group, etc. represented by -OSi (R') 3 can be mentioned. Of these, a methyl group and a methoxymethyl group are particularly preferable.
  • the reactive silicon group represented by the above formula (1a) include a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group, and a diethoxymethylsilyl group.
  • examples thereof include an isopropoxymethylsilyl group and a (methoxymethyl) dimethoxysilyl group.
  • a trimethoxysilyl group, a triethoxysilyl group, and a dimethoxymethylsilyl group are preferable, and a trimethoxysilyl group is more preferable, because high activity and good curability can be obtained.
  • the structure of the base resin (A) may be linear or has a branched structure, but the branched structure is preferable from the viewpoint of curability.
  • the base resin (A) preferably has three or more ends.
  • the molecular weight of the base resin (A) is preferably 1500 or more, more preferably 3000 or more, as the number average molecular weight Mn from the viewpoint of the balance between viscosity and reactivity.
  • the upper limit of the number average molecular weight Mn is not particularly limited, but is preferably 50,000 or less, more preferably 30,000 or less, and even more preferably 20,000 or less.
  • the base resin (A) may be a combination of two or more types. At that time, the polymer other than the polymer used as the main agent may be other than the above conditions if the purpose is to adjust the viscosity and the crosslinked structure.
  • the reactive silicon group at the terminal of the base resin (A) can be introduced by terminal-modifying the oxyalkylene at the terminal of the hydroxy group with an isocyanate silane compound.
  • a reactive silicon group is introduced at the terminal of the base resin (A) by introducing a group having a carbon-carbon unsaturated bond such as an allyl group at the terminal of the hydroxy group and then hydrosilylating with alkoxysilane. Can also be introduced.
  • a reactive silicon group can be introduced into the terminal of the base resin (A) by terminal-modifying with aminosilane having active hydrogen or the like.
  • a trimethoxysilyl group (methoxymethyl) can be easily produced as a foam having a high expansion ratio.
  • Dimethoxysilyl group formulas (1) to (3) below:
  • R 1 is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms, and the hydrocarbon group as R 1 may be substituted. It may have a hetero-containing group, where X is a hydroxy or hydrolyzable group, a is 1, 2, or 3, R 4 is a divalent linking group, and R 4 has two.
  • the bonders are bonded to carbon atoms, oxygen atoms, nitrogen atoms, or sulfur atoms in the linking group, respectively, and R 2 and R 3 are independently hydrogen atoms and carbon atoms of 1 to 20 or less, respectively. It is either an alkyl group, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a silyl group.)
  • the group represented by is preferable.
  • the reactive silicon group represented by -Si (R 1) 3-a (X) a carbon - carbon double bond Adjacent. Therefore, in the structures represented by the formulas (1) to (3), the carbon-carbon double bond acts as an electron-withdrawing group, and the activity of the reactive silicon group is improved.
  • the base resin (A) having a terminal group represented by the formulas (1) to (3) and the foam resin composition containing the base resin (A) are said to have excellent curing reactivity. Conceivable.
  • R 4 is a divalent linking group.
  • the two bonds of R 4 are bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group, respectively.
  • the two bonds possessed by R 4 are bonded to the carbon atom, oxygen atom, nitrogen atom, or sulfur atom in the linking group, respectively, and the two bonds possessed by R 4 are respectively. It means that it exists on a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in a linking group.
  • R 8 is a hydrogen atom or a hydrocarbon group having 1 or more and 10 or less carbon atoms.
  • Examples of the hydrocarbon group as R 8 include an alkyl group such as a methyl group, an ethyl group, an n-propyl group and an isopropyl group, an aryl group such as a phenyl group and a naphthyl group, and an aralkyl group such as a benzyl group. Be done.
  • n an integer of 0 or more and 10 or less is preferable, an integer of 0 or more and 5 or less is more preferable, an integer of 0 or more and 2 or less is further preferable, 0 or 1 is particularly preferable, and 1 is most preferable.
  • R 2 and R 3 are independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, and a silyl group. It is either.
  • the number of carbon atoms of the alkyl group is preferably 1 or more and 12 or less, more preferably 1 or more and 6 or less, and particularly preferably 1 or more and 4 or less.
  • the number of carbon atoms of the aryl group is preferably 6 or more and 12 or less, and more preferably 6 or more and 10 or less.
  • the number of carbon atoms of the aralkyl group is preferably 7 or more and 12 or less.
  • R 2 and R 3 include hydrogen; alkyl groups such as methyl group, ethyl group, and cyclohexyl; aryl groups such as phenyl group and tolyl group; aralkyl groups such as benzyl group and phenethyl group.
  • a silyl group such as a trimethylsilyl group can be mentioned.
  • hydrogen, a methyl group, and a trimethylsilyl group are preferable, hydrogen and a methyl group are more preferable, and hydrogen is further preferable.
  • the structures represented by the above formulas (1) to (3) include the following formulas (5) to (7):
  • the structure represented by is preferable.
  • R 1 , X, and a are the same as described above.
  • the hydrocarbon group as R 1 is the same as the hydrocarbon group as R 1a in the formula (1a).
  • the hydrocarbon group as R 1 include an alkyl group such as a methyl group and an ethyl group; an alkyl group having a hetero-containing group such as a chloromethyl group and a methoxymethyl group; a cycloalkyl group such as a cyclohexyl group; phenyl.
  • An aryl group such as a group; an aralkyl group such as a benzyl group; and the like can be mentioned.
  • the R 1, a methyl group, methoxymethyl group, and a chloromethyl group are preferred, a methyl group, and more preferably a methoxymethyl group, methoxymethyl group are more preferred.
  • R 5 in formula (4) is a heteroatom that may be substituted. Since R 5 is an electron-rich heteroatom, the terminal group having a reactive silicon group represented by the formula (4) exhibits high reactivity.
  • the optionally substituted hetero atom as R 5 in the formula (4) is not particularly limited so long as it does not inhibit the object of the present invention. Specific examples of the heteroatom include O, N, and S.
  • R 5 is an unsubstituted heteroatom
  • specific examples of the divalent group represented by -R 5- include -O- and -S-.
  • R 5 is a substituted heteroatom
  • specific examples of the divalent group represented by -R 5- include, for example, -SO-, -SO 2- , -NH-, and -NR 6-. Can be mentioned.
  • R 6 as a substituent is not particularly limited.
  • R 6 include a hydrocarbon group, an acyl group represented by -CO-R 7 , and the like.
  • a hydrocarbon group is preferable as R 7 .
  • Examples of the hydrocarbon groups as R 6 and R 7 are the same as those of the hydrocarbon groups as R 1 .
  • the main chain structure of the base resin (A) will be described below.
  • the main chain structure of the base resin (A) may be linear or may have a branched chain.
  • the main chain structure of the base resin (A) is not particularly limited.
  • Examples of the polymer constituting the main chain skeleton of the base resin (A) include a polyoxyalkylene polymer, a hydrocarbon polymer, a polyester polymer, a vinyl (co) polymer, and (meth) acrylic.
  • the base resin (A) preferably contains a polyoxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher.
  • polyoxyalkylene polymer examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and polyoxypropylene-polyoxybutylene copolymer. And so on.
  • hydrocarbon-based polymer examples include ethylene-propylene-based copolymers, polyisobutylene, copolymers of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or butadiene and acrylonitrile and / or styrene and the like.
  • hydrocarbon-based polymers include coalescing, polybutadiene, isoprene, or copolymers of butadiene with acrylonitrile and styrene, and hydrocarbon-based polymers obtained by hydrogenating these polyolefin-based polymers.
  • polyester-based polymer examples include polymers having an ester bond such as a polymer obtained by a condensation reaction of a dibasic acid such as adipic acid and a glycol, and a polymer obtained by ring-opening polymerization of lactones. Be done.
  • the vinyl-based (co) polymer is obtained by radical polymerization of, for example, vinyl-based monomers such as (meth) acrylic acid ester, vinyl acetate, acrylonitrile, and styrene, alone or in combination of two or more (co). Polymers can be mentioned.
  • Examples of the (meth) acrylic acid ester-based (co) polymer include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and (meth) acrylate. ) Examples thereof include (co) polymers obtained by radical polymerization of (meth) acrylic acid ester monomers such as stearyl acrylate, alone or in combination of two or more.
  • the (meth) acrylic acid ester-based (co) polymer is a so-called acrylic resin.
  • the "acrylic resin” is not limited to a polymer of a monomer composed of acrylic acid and / or an acrylic acid derivative. Within the specification and claims of the present application, a polymer of a monomer containing methacrylic acid and / or a methacrylic acid derivative is also included in the "acrylic resin".
  • Examples of the graft polymer include a polymer obtained by polymerizing a vinyl-based monomer among the above-mentioned various polymers.
  • polyamide polymer examples include nylon 6 obtained by ring-opening polymerization of ⁇ -caprolactam, nylon 6.6 obtained by condensation polymerization of hexamethylenediamine and adipic acid, and condensation polymerization of hexamethylenediamine and sebacic acid.
  • nylon 6/10 obtained, nylon 11 obtained by condensation polymerization of ⁇ -aminoundecanoic acid, nylon 12 obtained by ring-opening polymerization of ⁇ -aminolaurolactum, and a combination of two or more of the above nylon components. Polymerized nylon and the like can be mentioned.
  • polycarbonate-based polymer examples include a polymer produced by polycondensation of bisphenol A and carbonyl chloride.
  • Examples of the polymer having a urethane bond and / or a urea bond include a liquid polymer compound having an isocyanate group at the molecular terminal obtained by reacting a polyol with an excessive amount of a polyisocyanate compound. Be done.
  • (meth) acrylate means “acrylate and / or methacrylate”.
  • (Meta) acrylic acid means “acrylic acid and / or methacrylic acid”.
  • the "(co) polymer” means a “polymer and / or a copolymer”.
  • saturated hydrocarbon-based polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene-based polymers, and acrylic resins.
  • ((Meta) acrylic acid ester-based polymer) is preferable because the glass transition temperature is relatively low and the obtained cured product has excellent cold resistance.
  • the glass transition temperature of the base resin (A) is not particularly limited, but is preferably 20 ° C. or lower, more preferably 0 ° C. or lower, and ⁇ 20 ° C. or lower. Is particularly preferable. If the glass transition temperature exceeds 20 ° C., the viscosity of the resin composition for foam in winter or cold regions may increase, which may result in poor workability, and the flexibility of the foam may decrease, resulting in elongation. May decrease.
  • the glass transition temperature shows the value measured by DSC.
  • the base resin (A) contains a resin having a glass transition temperature of 35 ° C. or higher. In this case, it is easy to suppress the shrinkage of the foam after foaming. From the viewpoint that shrinkage of the foam after foaming is particularly easy to be suppressed, the base resin (A) contains a resin having a glass transition temperature of 35 ° C. or higher and a resin having a glass transition temperature of less than 35 ° C. preferable.
  • the glass transition temperature of the above-mentioned polyoxyalkylene polymer (A1) is usually less than 35 ° C. Therefore, the polyoxyalkylene polymer (A1) can be suitably used as a resin having a glass transition temperature of less than 35 degrees.
  • the glass transition temperature of the resin having a glass transition temperature of less than 35 ° C. is preferably 20 ° C. or lower, more preferably ⁇ 10 ° C. or lower.
  • a resin having a glass transition temperature of less than 35 ° C can dissolve a resin having a glass transition temperature of 35 ° C or higher.
  • a foam with a small amount of cross-linking component can be obtained.
  • the glass transition temperature of the base resin (A) can be adjusted by adjusting the type of the main chain skeleton, the type of the unit constituting the main chain, the composition of the unit constituting the main chain, the molecular weight, and the like.
  • the base resin (A) having a reactive silicon group used in the production of the foam is a polyoxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher.
  • the glass transition temperature of the base resin (A) can be adjusted by adjusting the type of the main chain skeleton, the type of the unit constituting the main chain, the composition of the unit constituting the main chain, the molecular weight, and the like.
  • the polyoxyalkylene polymer (A1) and the acrylic resin (A2) are preferable because of their high moisture permeability.
  • the polyoxyalkylene-based polymer (A1) as an essential component the polyoxypropylene-based polymer is preferable.
  • the base resin (A) contains an acrylic resin (A2) and a polyoxyalkylene polymer (A1), a base resin composition having a viscosity within an appropriate range can be easily obtained.
  • the amount of acrylic resin (A2) in 100 parts by weight of the resin (A) is preferably 3 parts by weight or more and 80 parts by weight or less, more preferably 10 parts by weight or more and 80 parts by weight or more, and 10 parts by weight or more and 50 parts by weight or less. More preferably, it is more preferably 5 parts by weight or more and 50 parts by weight or less, particularly preferably 5 parts by weight or more and 30 parts by weight or less, and most preferably 10 parts by weight or more and 30 parts by weight or less.
  • the base resin (A) has a low viscosity, it is easy to stir the foam resin composition when producing the foam.
  • the base resin (A) has a low viscosity, particularly when the resin composition for a foam is a two-component or more multi-component composition, a static mixer or the like for each liquid during foam production. It is easy to mix uniformly with. From this point as well, the content of the acrylic resin (A2) in the described resin (A) is preferably an amount within the above range.
  • the reactive silicon group may be introduced into the main chain of the base resin (A) by a known method. For example, the following method can be mentioned.
  • Method I An organic polymer having a functional group such as a hydroxy group is reacted with a compound having an active group and an unsaturated group exhibiting reactivity with this functional group to obtain an organic polymer having an unsaturated group. Then, the obtained organic polymer having an unsaturated group is reacted with a hydrosilane compound having a reactive silicon group by hydrosilylation.
  • Examples of the reactive compound having an active group and an unsaturated group that can be used in Method I include an unsaturated group-containing epoxy compound such as allyl glycidyl ether, allyl chloride, metallic chloride, vinyl bromide, and allyl bromide. Examples thereof include compounds having a carbon-carbon double bond such as metallyl bromide, vinyl iodide, allyl iodide, and metallyl iodide.
  • Examples of the compound having a carbon-carbon triple bond include propargyl chloride, 1-chloro-2-butyne, 4-chloro-1-butyne, 1-chloro-2-octyne, 1-chloro-2-pentin, 1, 4-Dichloro-2-butyne, 5-chloro-1-pentin, 6-chloro-1-hexine, propargyl bromide, 1-bromo-2-butyne, 4-bromo-1-butyne, 1-bromo-2- Octin, 1-bromo-2-pentin, 1,4-dibromo-2-butyne, 5-bromo-1-pentin, 6-bromo-1-hexine, propargyl iodide, 1-iodo-2-butyne, 4- Iodo-1-butyne, 1-iodo-2-octyne, 1-iodo-2-pentin, 1,4-diiodo-2-buty
  • halogenated hydrocarbon compounds having a carbon-carbon triple bond examples thereof include halogenated hydrocarbon compounds having a carbon-carbon triple bond.
  • propargyl chloride, propargyl bromide, and propargyl iodide are more preferred.
  • Hydrocarbon compounds having unsaturated bonds other than halogenated hydrocarbons having carbon-carbon triple bonds may be used.
  • halogenated silanes include trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane.
  • alkoxysilanes examples include trimethoxysilane, triethoxysilane, triisopropoxysilane, dimethoxymethylsilane, diethoxymethylsilane, diisopropoxymethylsilane, (methoxymethyl) dimethoxysilane, phenyldimethoxysilane, and 1-.
  • [2- (Trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane and the like can be mentioned.
  • asyloxysilanes include methyldiacetoxysilane and phenyldiacetoxysilane.
  • ketoximate silanes include bis (dimethyl ketoximate) methylsilane and bis (cyclohexylketoximate) methylsilane.
  • halogenated silanes and alkoxysilanes are particularly preferable.
  • Alkoxysilanes are most preferred because they are mildly hydrolyzable and easy to handle.
  • a foam having excellent tensile strength is produced by using the resin composition for foam, which is easily available, has excellent curability and storage stability, and is easy to obtain. Dimethoxymethylsilane is preferable because it is easy to use. Further, trimethoxysilane and triethoxysilane are also preferable from the viewpoint that a resin composition for a foam having excellent curability can be easily obtained.
  • Method II An organic polymer having an unsaturated group obtained by subjecting a compound having a mercapto group and a reactive silicon group to a radical addition reaction in the presence of a radical initiator and / or a radical source in the same manner as in Method I. Method of introducing into the unsaturated radical site of.
  • Examples of the compound having a mercapto group and a reactive silicon group that can be used in Method II include 3-mercapto-n-propyltrimethoxysilane, 3-mercapto-n-propylmethyldimethoxysilane, and 3-mercapto-n-propyl. Examples thereof include triethoxysilane, 3-mercapto-n-propylmethyldiethoxysilane, mercaptomethyltrimethoxysilane, and mercaptomethyltriethoxysilane. Compounds having a mercapto group and a reactive silicon group are not limited thereto.
  • Method III An organic polymer having a functional group such as a hydroxy group, an epoxy group, and an isocyanate group in the molecule is reacted with a compound having a functional group exhibiting reactivity with these functional groups and a reactive silicon group.
  • the method for reacting the organic polymer having a hydroxy group with the compound having an isocyanate group and a reactive silicon group which can be adopted in Method III, is not particularly limited, but is shown in, for example, JP-A-3-47825. There is a method to be used.
  • Examples of the compound having an isocyanate group and a reactive silicon group that can be used in Method III include 3-isocyanato-n-propyltrimethoxysilane, 3-isocyanato-n-propylmethyldimethoxysilane, and 3-isocyanato-n-. Examples thereof include propyltriethoxysilane, 3-isocyanato-n-propylmethyldiethoxysilane, isocyanatomethyltrimethoxysilane, isocyanatomethyltriethoxysilane, isocyanatomethyldimethoxymethylsilane, and isocyanatomethyldiethoxymethylsilane. .. Compounds having an isocyanate group and a reactive silicon group are not limited thereto.
  • a silane compound in which three hydrolyzable groups are bonded to one silicon atom such as trimethoxysilane may undergo a disproportionation reaction. As the disproportionation reaction proceeds, unstable compounds such as dimethoxysilane are produced, which may be difficult to handle. However, such disproportionation reaction does not proceed with 3-mercapto-n-propyltrimethoxysilane or 3-isocyanato-n-propyltrimethoxysilane. Therefore, when a group in which three hydrolyzable groups such as a trimethoxysilyl group are bonded to one silicon atom is used as the silicon-containing group, the method of Method II or Method III is preferably used.
  • the disproportionation reaction does not proceed with the silane compound represented by the following formula (2a).
  • X is the same as the formula (1a).
  • the 2m + 2 R 2a are independently the same as the R 1a of the equation (1a).
  • R 3a represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • m indicates an integer of 0 or more and 19 or less.
  • each of the 2m + 2 R 2a is preferably a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrocarbon group having 1 to 8 carbon atoms, and carbon. Hydrocarbon groups having 1 or more and 4 or less atoms are more preferable.
  • R 3a a divalent hydrocarbon group having 1 to 12 carbon atoms is preferable, a divalent hydrocarbon group having 2 to 8 carbon atoms is more preferable, and a divalent hydrocarbon having 2 carbon atoms is preferable. Groups are even more preferred.
  • the m is most preferably 1.
  • Examples of the silane compound represented by the formula (2a) include 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane and 1- [2- (trimethoxysilyl). Examples thereof include propyl] -1,1,3,3-tetramethyldisiloxane and 1- [2- (trimethoxysilyl) hexyl] -1,1,3,3-tetramethyldisiloxane.
  • the method of reacting the organic polymer having a hydroxy group at the terminal with the compound having an isocyanate group and a reactive silicon group can obtain a high conversion rate in a relatively short reaction time.
  • the organic polymer having a reactive silicon group obtained by Method I has a lower viscosity than the organic polymer having a reactive silicon group obtained by Method III, and is a resin composition for a foam having good workability.
  • the method I is particularly preferable because the organic polymer having a reactive silicon group obtained by the method II has a strong odor based on mercaptosilane.
  • the main chain structure of the polyoxyalkylene polymer (A1) preferably comprises a repeating unit represented by the following formula (3a).
  • R 4a represents a linear or branched alkylene group having 1 or more and 14 or less carbon atoms, and more preferably 2 or more and 4 or less carbon atoms.
  • the repeating unit represented by formula (3a), for example, -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, -CH 2 C (CH 3 ) 2 O-, -CH 2 CH 2 CH 2 CH 2 O- and the like can be mentioned.
  • the main chain of the polyoxyalkylene polymer (A1) may consist of only one type of repeating unit or may consist of two or more types of repeating units.
  • the polyoxyalkylene polymer (A1) is preferably an amorphous polyoxypropylene polymer having a relatively low viscosity.
  • Examples of the method for synthesizing the polyoxyalkylene polymer (A1) include a polymerization method using an alkali catalyst such as KOH; a complex obtained by reacting an organic aluminum compound shown in JP-A-61-215623 with porphyrin and the like. Transition metal compound-porphyrin complex-catalyzed polymerization method; JP-A-46-27250, JP-A-59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat. No.
  • a polymerization method in which an alkylene oxide is reacted with an initiator in the presence of a composite metal cyanide complex catalyst is preferable because a polymer having a narrow molecular weight distribution can be obtained.
  • composite metal cyanide complex catalyst examples include Zn 3 [Co (CN) 6 ] 2 (zinc hexacyanocobaltate complex). Further, a catalyst in which alcohol and / or ether is coordinated as an organic ligand can also be used.
  • the initiator a compound having at least two active hydrogen groups is preferable.
  • the active hydrogen-containing compound include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and glycerin, and linear or branched polyether compounds having a number average molecular weight of 500 or more and 20,000 or less.
  • alkylene oxide examples include ethylene oxide, propylene oxide, and isobutylene oxide.
  • Examples of the polyoxyalkylene polymer (A1) having a reactive silicon group include JP-A-45-363319, JP-A-46-12154, JP-A-50-156599, and JP-A-54-. 6096, Japanese Patent Application Laid-Open No. 55-13767, Japanese Patent Application Laid-Open No. 55-13468, Japanese Patent Application Laid-Open No. 57-164123, Japanese Patent Application Laid-Open No. 3-2450, US Pat. No. 363255, US Pat. No. 4345053, US Pat. Examples thereof include polymers proposed in Japanese Patent No. 4366307, US Pat. No. 4,960,844, and the like. Further, Japanese Patent Application Laid-Open No.
  • a polyoxyalkylene polymer having a narrow reactive silicon group or the like is also preferable.
  • the polyoxyalkylene polymer (A1) having such a reactive silicon group may be used alone or in combination of two or more.
  • Acrylic resin ((meth) acrylic acid ester-based (co) polymer) (A2))
  • Acrylic resin having a reactive silicon group (((meth) acrylic acid ester-based (co) polymer) (A2) is obtained by polymerizing various (meth) acrylic acid ester-based monomers alone or in combination of two or more. Can be obtained by
  • Examples of the (meth) acrylic acid ester-based monomer include (meth) acrylic acid, methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, and isopropyl (meth) acrylic acid.
  • the acrylic resin (A2) can also be copolymerized with the following vinyl-based monomer together with the (meth) acrylic acid ester-based monomer.
  • vinyl-based monomer examples include styrene-based monomers such as styrene, vinyltoluene, ⁇ -methylstyrene, chlorostyrene, styrenesulfonic acid, and styrenesulfonate; vinyltrimethoxysilane and vinyltriethoxysilane.
  • Silicon-containing vinyl-based monomers such as; maleic anhydride, maleic acid, and maleic acid or maleic acid derivatives such as maleic acid monoalkyl esters and dialkyl esters; fumaric acid, and fumaric acid monoalkyl esters and dialkyl esters, etc.
  • maleimide-based monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, and cyclohexylmaleimide; acrylonitrile, And nitrile group-containing vinyl monomers such as methacrylonitrile; acrylamide and amide group-containing vinyl monomers such as methacrylicamide; vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, and vinyl cinnate.
  • maleimide-based monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenyl
  • Vinyl esters such as; alkens such as ethylene and propylene; conjugated dienes such as butadiene and isoprene; vinyl chloride, vinylidene chloride, allyl chloride, allyl alcohol and the like. These may be polymerized alone, or a plurality of them may be copolymerized.
  • the acrylic resin (A2) is a (co) polymer of a (meth) acrylic acid ester-based monomer or a copolymer of a styrene-based monomer and a (meth) acrylic acid-based monomer from the viewpoint of physical properties and the like. Is preferable, a (co) polymer of a (meth) acrylic acid ester-based monomer is more preferable, and a (co) polymer of an acrylic acid ester-based monomer is further preferable.
  • the method for producing the acrylic resin (A2) is not particularly limited.
  • the (meth) acrylic acid ester-based (co) polymer can be produced by a known method.
  • a polymer obtained by a normal free radical polymerization method using an azo compound, a peroxide or the like as a polymerization initiator generally has a molecular weight distribution value of more than 2, and tends to have a high viscosity. Therefore, it is a (meth) acrylic acid ester-based (co) polymer having a narrow molecular weight distribution and low viscosity, and has a high proportion of crosslinkable functional groups at the ends of the molecular chain (meth) acrylic acid ester-based (co) weight.
  • atom transfer radicals that polymerize (meth) acrylic acid ester-based monomers using organic halides, sulfonyl halide compounds, etc. as initiators and transition metal complexes as catalysts.
  • the “polymerization method” has a halogen or the like at the end, which is relatively advantageous for the functional group conversion reaction, and has a large degree of freedom in designing the initiator and catalyst. It is more preferable as a method for producing an acrylic resin (A2) having a specific functional group.
  • This atom transfer radical polymerization method is described, for example, in Mattyjaszewski et al., Journal of the American Chemical Society (J. Am. Chem. Soc), 1995, Vol. 117, p. 5614.
  • an acrylic resin (A2) having a reactive silicon group for example, JP-A-314068, JP-A-4-55444, JP-A-6-21922, etc., refer to a chain transfer agent.
  • a production method using the free radical polymerization method used is disclosed.
  • Japanese Patent Application Laid-Open No. 9-272714 and the like disclose a production method using an atom transfer radical polymerization method.
  • the method for producing a (meth) acrylic acid ester-based (co) polymer having a reactive silicon group is not limited to these methods.
  • the (meth) acrylic acid ester-based (co) polymer having the above-mentioned reactive silicon group may be used alone or in combination of two or more.
  • the base resin (A) having these reactive silicon groups may be used alone or in combination of two or more. Specifically, when two or more types of base resin (A) are used in combination, the base resin (A) having the same type of main chain may be used in combination, for example, a polymer having a reactive silicon group. A base resin (A) having a different main chain is used in combination, such as a combination of an oxyalkylene polymer (A1) and a (meth) acrylic acid ester polymer having a reactive silicon group (A2). You may.
  • the resin composition for a foam that can be used for producing a foam preferably contains a chemical foaming agent (B).
  • the chemical foaming agent (B) is not particularly limited as long as the foam exhibits desired sound absorbing properties.
  • the chemical foaming agent (B) is not a heating type chemical foaming agent that requires heating for the foaming reaction, but foams by a chemical reaction with water, acid, base, etc. in a temperature range of -10 ° C or higher and 30 ° C or lower, for example.
  • a non-pyrolytic chemical foaming agent that causes a reaction is preferred.
  • the base resin (A) may be deteriorated by heating, but by using such a non-pyrolytic chemical foaming agent, deterioration of the performance of the foam due to the deterioration of the base resin (A) can be suppressed. ..
  • the chemical foaming agent (B) preferably contains a dicarbonate diester (B-1) because it is easy to produce a foam exhibiting good sound absorbing properties. After preparing the resin composition for foam, the dicarbonate diester (B-1) is decomposed at a preferable rate according to the rate of the curing reaction of the base resin (A) even under low temperature conditions of about room temperature. Can foam. The dicarbonate diester (B-1) tends to foam better in the presence of water (C) than in anhydrous conditions.
  • Japanese Patent Application Laid-Open No. 46-35992 states that when diethyl dicarbonate is added as a foaming agent to a foam resin composition in which unsaturated polyester is cured by an addition reaction, when a foam is produced at room temperature, It is disclosed that the expansion of the resin composition by foaming proceeds over a time of about 20 minutes, and the curing of the resin composition proceeds over a long time of more than 20 minutes (Japanese Patent Publication No. 46-35992). 8). However, for example, when the base resin (A) having a reactive silicon group is foamed while being cured, the curing of the base resin (A) may proceed considerably in about 5 minutes.
  • the chemical foaming agent (B) that foams over a period of as long as 20 minutes is applied to the resin composition for a foam containing the base resin (A) having a reactive silicon group, the desired foaming occurs. It is predicted that the base resin (A) will be rapidly cured before reaching the magnification, and only a foam having a low expansion ratio can be obtained.
  • the resin composition for a foam containing the base resin (A) and the silanol condensation catalyst (D) contains the dicarbonate diester (B-1). It has been found that when the chemical foaming agent (B) is blended, the resin composition can be foamed to a desired degree in a short time.
  • the dicarbonate diester is represented by the following formula (B1).
  • R b is an organic group.
  • the organic group as R b is preferably a hydrocarbon group.
  • the two R bs may be the same or different, and are preferably the same.
  • the number of carbon atoms of the hydrocarbon group as R b is preferably 1 or more and 16 or less, more preferably 1 or more and 12 or less, further preferably 1 or more and 8 or less, and particularly preferably 1 or more and 6 or less.
  • the hydrocarbon group as R b include an alicyclic group such as an alkyl group and a cycloalkyl group, an aralkyl group, and an aryl group.
  • the alkyl group may be linear or branched, preferably linear.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and n-hexyl group.
  • alkyl group examples include n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group and n-dodecyl group.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group and the like.
  • aralkyl group examples include a benzyl group, a phenethyl group, a naphthalene-1-ylmethyl group, a naphthalene-2-ylmethyl group and the like.
  • aryl group examples include phenyl, naphthalene-1-yl group, naphthalene-2-yl group, 4-phenylphenyl group, 3-phenylphenyl group, 2-phenylphenyl group and the like.
  • dicarbonate diester (B-1) represented by the formula (B1) examples include dimethyl dicarbonate, diethyl dicarbonate, di-n-propyl dicarbonate, diisopropyl dicarbonate, di-n-butyl dicarbonate, and diisobutyl dicarbonate. , Di-sec-butyl dicarbonate, di-tert-butyl dicarbonate, di-n-pentyl dicarbonate, and di-n-hexyl dicarbonate are preferred.
  • Dimethyl dicarbonate (B-1) includes dimethyl dicarbonate, diethyl dicarbonate, di-n-propyl dicarbonate, and dicarbonate because it is easily available and has a small molecular weight and a large amount of foaming per unit weight. Diisopropyl dicarbonate is preferred, and dimethyl dicarbonate and diethyl dicarbonate are more preferred. Further, from the viewpoint of high volatility and low toxicity of the product after the dicarbonate diester is hydrolyzed, diethyl dicarbonate is particularly preferable as the dicarbonate diester (B-1).
  • the resin composition for foams does not contain water (C) or may contain only a small amount of water (C), and achieves a high foaming ratio even when the amount of the chemical foaming agent (B) used is small.
  • the chemical foaming agent (B) is mainly composed of dicarbonate diester (B-1).
  • the ratio of the weight of the dicarbonate diester (B-1) to the weight of the chemical foaming agent (B) is preferably 50% by weight or more, more preferably 70% by weight or more, further preferably 80% by weight or more, and 90% by weight. The above is particularly preferable, and 100% by weight or more is most preferable.
  • the chemical foaming agent (B) contains a chemical foaming agent other than the dicarbonate diester (B-1)
  • the other chemical foaming agents are known as various chemical foaming agents as long as the object of the present invention is not impaired. Agents can be used.
  • the amount of the chemical foaming agent (B) used can be appropriately selected in consideration of the foaming ratio of the foam.
  • the content of the chemical foaming agent (B) is preferably 2 parts by weight or more and 200 parts by weight or less, more preferably 5 parts by weight or more and 170 parts by weight or less, and 5 parts by weight or more with respect to 100 parts by weight of the base resin (A). It is more preferably 130 parts by weight or less, and particularly preferably 5 parts by weight or more and 100 parts by weight or less.
  • the content of the dicarbonate diester (B-1) as the chemical foaming agent (B) is preferably 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the base resin (A), and is 2 parts by weight or more and 40 parts by weight. More preferably, it is 5 parts by weight or more and 30 parts by weight or less.
  • a physical foaming agent may be added to the resin composition for foam to assist foaming.
  • the boiling point of the physical foaming agent is preferably 100 ° C. or lower, more preferably 50 ° C. or lower, from the viewpoint of foamability, workability, and safety.
  • Specific examples of the physical foaming agent include hydrocarbons (eg, LPG (propane), butane, etc.), halogenated hydrocarbons, ethers (eg, diethyl ethers), chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), and hydrochloros.
  • Examples thereof include fluorocarbons (HCFCs), fluoroolefins (FOs), chlorofluoroolefins (CFOs), hydrofluoroolefins (HFOs), hydrochlorofluorofluoroolefins (HCFOs), carbon dioxide, nitrogen, and air.
  • HCFCs fluorocarbons
  • Fs fluoroolefins
  • CFOs chlorofluoroolefins
  • HFOs hydrofluoroolefins
  • hydrochlorofluorofluoroolefins HCFOs
  • carbon dioxide nitrogen
  • nitrogen and air.
  • these physical foaming agents hydrocarbons, ethers, carbon dioxide, nitrogen, and air are preferable from the viewpoint of environmental compatibility.
  • the foam resin composition contains or does not contain water (C). Curing and foaming proceed even when the resin composition for foam does not contain water (C).
  • water (C) has a function of accelerating the foaming reaction of the chemical foaming agent (B) and the curing reaction of the base resin (A).
  • the content of water (C) is preferably 1 part by weight or more and 70 parts by weight or less with respect to 100 parts by weight of the base resin (A), and 2 parts by weight. More than 60 parts by weight is more preferable, and 2 parts by weight or more and 50 parts by weight or less is further preferable.
  • the content of water (C) is within the above range, it is easy to proceed with curing satisfactorily while sufficiently foaming, and it is easy to obtain a foam having fine and dense foam cells and excellent flexibility.
  • the content of water (C) in the foam resin composition is the dicarbonate diester (B-1). It is preferably 0.05 parts by weight or more, and more preferably 0.1 parts by weight or more with respect to 1 part by weight.
  • the dicarbonate diester (B-1) can be satisfactorily reacted with water (B) to cause particularly good foaming, and the base resin (A) can be formed.
  • the hydrolysis-condensation reaction between the reactive silicon groups has proceeded well.
  • the content of water (C) in the foam resin composition is the dicarbonate diester (B-1).
  • B-1) It is preferably 0.05 parts by weight or more and 0.5 parts by weight or less, and more preferably 0.05 parts by weight or more and 0.3 parts by weight or less with respect to 1 part by weight.
  • the content of water (C) in the foam after forming the foam can be reduced while causing particularly good foaming, and drying is performed to remove volatile components such as water during the production of the foam. The step can be omitted.
  • the resin composition for a foam contains a dicarbonate diester (B-1) as a chemical foaming agent (B), the resin composition for a foam is only from the viewpoint of reducing the content of water (C) in the foam.
  • the content of water (C) in the product is preferably 0 parts by weight or more and 0.05 parts by weight or less, and 0 parts by weight or more and 0.03 parts by weight with respect to 1 part by weight of the dicarbonate diester (B-1). It is more preferably parts by weight or less, and particularly preferably 0 parts by weight, that is, it does not contain water (C).
  • 1 mol of dicarbonate diester (B-1) reacts with 1 mol of water (C) to generate 2 mol of carbon dioxide gas (carbon dioxide).
  • the dicarbonate diester (B-1) and water (C) are used.
  • the molar ratio of dicarbonate diester (B-1): water (C) is preferably 0.8: 1 to 1: 0.8, preferably 0.9: 1 to 1: 0.9. More preferably, it is 0.95: 1 to 1: 0.95.
  • the reason why foaming occurs well from the dicarbonate diester (B-1) even when water (C) is insufficient is unknown, but the water content of the dicarbonate diester (B-1) is added to the water in the air and in the material. It is considered that carbon dioxide is generated by decomposition or a decomposition reaction different from hydrolysis.
  • the resin composition for a foam used in the production of the foam preferably contains a silanol condensation catalyst (D).
  • the silanol condensation catalyst (D) is not particularly limited as long as it can be used as a condensation catalyst, and any one can be used.
  • the resin composition for a foam contains a dicarbonate diester (B-1) as a chemical foaming agent (B)
  • the catalytic activity is lowered due to the influence of carbonic acid generated by the foaming reaction of the dicarbonate diester (B-1).
  • a neutral or weakly acidic silanol condensation catalyst (D) is preferable because it is difficult. Carbonic acid is generated when carbon dioxide dissolves in water.
  • silanol condensation catalyst (D) examples include tetravalent tin compounds, divalent tin compounds, and reactants and mixtures of the above-mentioned divalent tin compounds and amine-based compounds such as laurylamine described below. , Monoalkyltins, titanic acid esters, organic aluminum compounds, carboxylic acid metal salts, carboxylic acid metal salts and amine compounds such as laurylamine described below, chelate compounds, saturated aliphatic primary Amines, saturated aliphatic secondary amines, saturated aliphatic tertiary amines, aliphatic unsaturated amines, aromatic amines, other amines other than these amines, these amines and carboxylics.
  • Salts with acids, etc. reactants and mixtures of amine compounds and organic tin compounds, low molecular weight polyamide resins obtained from excess polyamines and polybasic acids, reaction products of excess polyamines with epoxy compounds, amino groups
  • Examples thereof include a silane coupling agent having an amino group, a modified derivative of a silane coupling agent having an amino group, and the like.
  • tetravalent tin compounds include dialkyltin dicarboxylates, dialkyltin alcoxides, intramolecular coordinating derivatives of dialkyltin, reactants of dialkyltin oxide and ester compounds, dialkyltin oxide and carboxylic acid.
  • examples thereof include a reaction product with an alcohol compound, a dialkyl compound, a reaction product between a dialkyl tin oxide and a silicate compound, and an oxy derivative (stanoxane compound) of these dialkyl tin compounds.
  • dialkyltin dicarboxylates include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin di (2-ethylhexanoate), dibutyltin dioctate, dibutyltin diversate, dibutyltin distearate, and dibutyltin di (methyl).
  • dialkyltin alcoxysides include dibutyltin dimethoxyde and dibutyltin diphenoxide.
  • intramolecular coordinating derivatives of dialkyltin include dibutyltin diacetylacetonate and dibutyltin diethylacetacetate.
  • reaction product of the dialkyl tin oxide and the ester compound include a reaction product of a dialkyl tin oxide such as dibutyl tin oxide and dioctyl tin oxide and an ester compound such as dioctyl phthalate, diisodecyl phthalate and methyl maleate. ..
  • reaction product of the dialkyltin oxide and the silicate compound examples include dibutyltin bistriethoxysilicate and dioctyltin bistriethoxysilicate.
  • divalent tin compounds include tin octylate, tin naphthenate, tin stearate, tin ferzaticate and the like.
  • monoalkyl tins include monobutyl tin compounds such as monobutyl tin trisoctate and monobutyl tin triisopropoxide, and monooctyl tin compounds.
  • titanic acid esters include tetrabutyl titanate, tetrapropyl titanate, tetra (2-ethylhexyl) titanate, isopropoxytitanium bis (ethylacetoacetate) and the like.
  • organoaluminum compound examples include aluminum trisacetylacetonate, aluminumtrisethylacetate, di-isopropoxyaluminum ethylacetate and the like.
  • the metal carboxylate salt include bismuth carboxylate, iron carboxylate, titanium carboxylate, lead carboxylate, vanadium carboxylate, zirconium carboxylate, calcium carboxylate, potassium carboxylate, barium carboxylate, manganese carboxylate, Examples thereof include cerium carboxylate, nickel carboxylate, cobalt carboxylate, zinc carboxylate, aluminum carboxylate and the like.
  • Specific examples of the carboxylic acid that gives the carboxylic acid metal salt include 2-ethylhexanoic acid, neodecanoic acid, versatic acid, oleic acid, and naphthenic acid.
  • chelate compounds include zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, dibutoxyzirconium diacetylacetonate, zirconium acetylacetonatebis (ethylacetacetone), titanium tetraacetylacetonate and the like.
  • saturated aliphatic primary amines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, laurylamine and pentadecylamine. , Cetylamine, stearylamine, cyclohexylamine and the like.
  • saturated aliphatic secondary amines include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diamylamine, dioctylamine, di (2-ethylhexyl) amine, didecylamine, dilaurylamine, and disetylamine.
  • saturated aliphatic secondary amines include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diamylamine, dioctylamine, di (2-ethylhexyl) amine, didecylamine, dilaurylamine, and disetylamine.
  • distearylamine methylstearylamine, ethylstearylamine, butylstearylamine and the like.
  • saturated aliphatic tertiary amines include triamylamine, trihexylamine, trioctylamine, 1,4-diazabicyclo [2.2.2] octane (DABCO) and the like.
  • aliphatic unsaturated amines include triallylamine, oleylamine and the like.
  • aromatic amines include laurylaniline, stearylaniline, triphenylamine and the like.
  • amines other than the above amines include monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, oleylamine, benzylamine, diethylaminopropylamine, xylylenediamine, ethylenediamine, hexamethylenediamine.
  • Triethylenediamine, guanidine, diphenylguanidine, 2,4,6-tris (dimethylaminomethyl) phenol, morpholin, N-methylmorpholin, 2-ethyl-4-methylimidazole, 1,8-diazabicyclo [5.4.0] ] -7-Amine-based compounds such as undecene (DBU) can be mentioned.
  • reaction product and mixture of the amine compound and the organic tin compound examples include a reaction product or a mixture of laurylamine and tin octylate.
  • silane coupling agent having an amino group examples include 3-amino-n-propyltrimethoxysilane, 3-amino-n-propyltriethoxysilane, 3-amino-n-propyltriisopropoxysilane, and 3-.
  • Examples of the derivative obtained by modifying the above-mentioned silane coupling agent having an amino group include an amino-modified silyl polymer, a silylated amino polymer, an unsaturated amino silane complex, a phenylamino long chain alkyl silane, and an amino silylated silicone.
  • fatty acids such as ferzatic acid
  • other acidic catalysts such as organic acidic phosphoric acid ester compounds, basic catalysts and the like can be exemplified as known silanol condensation catalysts.
  • a tin-containing catalyst containing Sn is preferable, and dialkyltin dicarboxylates and dialkyltin.
  • Alcoxides, intramolecular coordinating derivatives of dialkyl tin, reaction products of dialkyl tin oxide and ester compounds, tin compounds obtained by reacting dialkyl tin oxide, carboxylic acids and alcohol compounds, dialkyl tin oxide and silicate compounds , And tetravalent tin compounds such as oxy derivatives (stanoxane compounds) of these dialkyl tin compounds are preferably contained.
  • the tin-containing catalyst As the tin-containing catalyst, the higher the ratio of the mass of tin atoms to the mass, the higher the catalytic activity, which is preferable. Further, from the viewpoint of suppressing shrinkage of the foam over time after the production of the foam, dialkyltin dicarboxylates are preferable as the silanol condensation catalyst (D), and dibutyltin diacetate is more preferable.
  • the catalytic activity is unlikely to decrease due to the influence of carbon dioxide generated by the foaming reaction of the dicarbonate diester (B-1), and the foaming reaction between the dicarbonate diester (B-1) and water and the curing of the base resin (A)
  • silanol condensation catalysts (D) listed above a neutral or weakly acidic silanol condensation catalyst is preferable, and a weakly acidic silanol condensation catalyst is more preferable, from the viewpoint of allowing the reaction to proceed in a particularly well-balanced manner.
  • Carbonic acid is generated when carbon dioxide dissolves in water.
  • the silanol condensation catalyst (D) is a neutral or weakly acidic catalyst among the various tin-containing catalysts described above as a neutral or weakly acidic silanol condensation catalyst because the base resin (A) can be easily cured. Is preferably included. From this point of view, dialkyltin dicarboxylates are preferable as the neutral or weakly acidic tin-containing catalyst with respect to the silanol condensation catalyst (D).
  • a compound represented by the following formula (D1) or an oligomer or polymer composed of a structural unit represented by the following formula (D2) is preferable.
  • R d1 and R d2 may be the same or different, respectively.
  • R d1 and R d2 are linear or branched alkyl groups, and a linear alkyl group is preferable.
  • the number of carbon atoms of the alkyl group as R d1 and R d2 is not particularly limited, and is preferably 1 or more and 20 or less, more preferably 2 or more and 16 or less, and further preferably 3 or more and 10 or less. Since the tin-containing catalyst is easily available and the activity of the tin-containing catalyst as a silanol condensation catalyst (D) is good, n-butyl group and n-octyl group are used as R d1 and R d2. preferable.
  • R d3 and R d4 are organic groups having 1 or more and 40 or less carbon atoms, respectively.
  • the number of carbon atoms of the organic group as R d3 and R d4 is preferably 1 or more and 30 or less.
  • R d6 is a hydrocarbon group having 1 or more and 30 or less carbon atoms.
  • the hydrocarbon group may be an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a combination of an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
  • the number of carbon atoms of the hydrocarbon group as R d6 is preferably 1 or more and 20 or less.
  • R d5 is a divalent organic group having 1 or more and 40 or less carbon atoms.
  • the number of carbon atoms of the organic group as R d5 is preferably 1 or more and 30 or less, more preferably 1 or more and 10 or less, and further preferably 1 or more and 4 or less.
  • the organic group as R d5 may contain heteroatoms such as O, S, N, and Si.
  • Preferable specific examples of the compound represented by the above formula (D1) or the oligomer or polymer composed of the structural unit represented by the above formula (D2) are as described above as specific examples of dialkyltin dicarboxylates. , Dibutyltin diacetate is particularly preferred.
  • the pH when the pH is 6.5 or more and less than 7.5, it is neutral, and when the pH is 4.0 or more and less than 6.5, it is weakly acidic.
  • a resin composition for a foam containing a neutral or weakly acidic silanol condensation catalyst (D) is used, foaming and the effect can be easily promoted in a short time. Therefore, the resin composition for a foam containing a neutral or weakly acidic silanol condensation catalyst (D) is particularly useful when constructing a foam at a construction site or a manufacturing site of various industrial products. Is. This is because foaming and curing in a short time are required for the construction of the foam on site.
  • the basic silanol condensation catalyst (D) are the above-mentioned aliphatic primary amines, aliphatic secondary amines, aliphatic tertiary amines, and aliphatic unsaturated amines, respectively. , And aromatic amines, other amines other than these amines, and silane coupling agents having an amino group.
  • the curing reaction of the base resin (A) may be slightly slow.
  • the above-mentioned amines and the silane coupling agent having an amino group are used in combination with a catalyst having a high effect of accelerating the curing reaction of the base resin (A), such as the above-mentioned various tin-containing catalysts.
  • a catalyst having a high effect of accelerating the curing reaction of the base resin (A) such as the above-mentioned various tin-containing catalysts.
  • the basic silanol condensation catalyst (D) is preferably used in combination with a neutral or weakly acidic tin-containing catalyst, more preferably in combination with dialkyltin dicarboxylates, and dibutyltin dicarboxylate. Is most preferred.
  • the content of the silanol condensation catalyst (D) is preferably 90 parts by weight or less, more preferably 0.05 parts by weight or more and 80 parts by weight or less, and 0.05 parts by weight or more with respect to 100 parts by weight of the base resin (A). 20 parts by weight or less is more preferable, and 1 part by weight or more and 15 parts by weight or less is even more preferable. If the content of the silanol condensation catalyst (D) is more than 80 parts by weight, the foam may bottom out due to compression of the obtained foam. By adjusting the amount of the silanol condensation catalyst (D), the curability of the foam resin composition can be adjusted.
  • the resin composition for a foam contains a dicarbonate diester (B-1) as a chemical foaming agent (B)
  • the resin composition for a foam is a foaming aid (E) and / or a foaming aid (E). It is preferable to include a silanol condensation catalyst (D) that acts as a resin.
  • the foaming aid (E) is a component that promotes foaming due to the decomposition of the dicarbonate diester (B-1).
  • the foaming aid (E) is not particularly limited as long as it is a compound that promotes foaming when added to a mixture containing water and a dicarbonate diester (B-1).
  • the foaming aid (E) preferably includes an organic or inorganic basic compound. Therefore, the basic catalyst described above as the silanol condensation catalyst may act as a foaming aid (E).
  • the resin composition for a foam contains a component that acts as a foaming aid (E) such as the above-mentioned basic silanol condensation catalyst as the silanol condensation catalyst (D)
  • foaming is conveniently performed.
  • the body resin composition is treated as containing both the silanol condensation catalyst (D) and the foaming aid (E).
  • silanol condensation catalyst (D) acting as a foaming aid (E) are bis (N, N-dimethylamino-2-ethyl) ether, triethylenediamine and N, N, N', N'-.
  • the content of the foaming aid (E) that does not correspond to the silanol condensation catalyst (D) is preferably 0.05 parts by weight or more and 20 parts by weight or less, preferably 0.1 parts by weight, based on 100 parts by weight of the base resin (A). More than 10 parts by weight is more preferable, and 0.5 parts by weight or more and 5 parts by weight or less is further preferable.
  • the content of the silanol condensation catalyst (D) acting as the foaming aid (E) is the same as the content of the silanol condensation catalyst (D) described above.
  • a plasticizer, a reactivity modifier, and a dye can be added to the foam resin composition for the purpose of adjusting the flexibility and molding processability of the foam.
  • a plasticizer having a main chain composed of repeating units composed of oxyalkylene-based units is preferable.
  • the main chain include polyethylene oxide, polypropylene oxide, polybutylene oxide; two or more random or block copolymers selected from ethylene oxide, propylene oxide, and butylene oxide, which are used alone. Alternatively, two or more types may be used in combination.
  • polypropylene oxide is preferable in terms of compatibility with the base resin (A). Further, those obtained by modifying these oxyalkylenes with isocyanate can also be added.
  • the molecular weight of the plasticizer has a number average molecular weight of 1000 or more, preferably 3000 or more, from the viewpoint of the flexibility of the obtained foam and the prevention of the plasticizer from flowing out of the system.
  • the upper limit is not particularly limited, but if the number average molecular weight becomes too high, the viscosity increases and workability deteriorates. Therefore, 50,000 or less is preferable, and 30,000 or less is more preferable.
  • the plasticizer is not particularly limited as long as it can impart flexibility to the foam, and may be linear or branched.
  • the amount of the plasticizer added is preferably 5 parts by weight or more and 150 parts by weight or less, more preferably 10 parts by weight or more and 120 parts by weight or less, and further preferably 20 parts by weight with respect to 100 parts by weight of the base resin (A). It is 100 parts by weight or less.
  • the amount of the plasticizer added is within the above range, it is easy to adjust the flexibility and moldability, have good mechanical strength, and easily form a foam having a desired foaming ratio.
  • the method for producing the plasticizer is not particularly limited, and a known production method can be applied, and a commercially available compound may be used.
  • the reactivity modifier preferably has a reactive silicon group.
  • the reactivity modifier may be a silicate compound such as methyl silicate or ethyl silicate, a copolymer of a vinyl monomer having a reactive silicon group, or a reactive silicon having a chain transfer group such as thiol. It may be a copolymer using a monomer. These may be used alone or in combination of two or more.
  • the molecular weight of the reactivity modifier is preferably 1000 or more, more preferably 3000 or more, in terms of number average molecular weight from the viewpoint of curing and foaming of the obtained foam.
  • the upper limit is not particularly limited, but is preferably 50,000 or less, more preferably 30,000 or less, because the viscosity of the resin composition for foam can be easily set within a workable range.
  • the reactivity modifier is not particularly limited as long as it can adjust the curability of the foam resin composition, whether it is linear or branched.
  • the amount of the reactivity adjusting agent added is preferably 2 parts by weight or more and 120 parts by weight or less, more preferably 5 parts by weight or more and 80 parts by weight or less, and further preferably 10 parts by weight with respect to 100 parts by weight of the base resin (A). It is 50 parts by weight or more and 50 parts by weight or less.
  • an amount of the reaction modifier within such a range is used, the curability can be easily adjusted within an appropriate range, and curing can proceed at an appropriate rate to easily obtain a foam having a high foaming ratio.
  • the method for producing the reactivity adjusting agent is not particularly limited, and a known production method can be applied, and a commercially available compound may be used.
  • a light resistance stabilizer, an ultraviolet absorber, a storage stabilizer, a bubble modifier, a lubricant, a flame retardant, etc. may be added to the foam resin composition as necessary, as long as the effects of the present invention are not impaired. Good.
  • the light resistance stabilizer examples include a hindered phenol-based antioxidant and a hindered amine-based light stabilizer containing no sulfur atom, phosphorus atom, primary amine, or secondary amine.
  • the light resistance stabilizer has a function of absorbing light having a wavelength in the ultraviolet region to suppress the generation of radicals, or a function of capturing radicals generated by light absorption and converting them into thermal energy to make them harmless. It is a compound that enhances the stability against light.
  • the ultraviolet absorber is not particularly limited, and examples thereof include a benzoxazine-based ultraviolet absorber, a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, and a triazine-based ultraviolet absorber.
  • the ultraviolet absorber is a compound having a function of absorbing light having a wavelength in the ultraviolet region and suppressing the generation of radicals.
  • the amount of the light-resistant stabilizer and the ultraviolet absorber added is preferably 0.01 parts by weight or more and 5 parts by weight or less, and 0.1 parts by weight or more and 3 parts by weight or more, respectively, with respect to 100 parts by weight of the base resin (A). More preferably, it is 0.3 parts by weight or more, and further preferably 2.0 parts by weight or less.
  • the amount of the light-resistant stabilizer and the ultraviolet absorber added is within the above range, the effect of suppressing an increase in surface adhesiveness with time can be easily obtained.
  • Preferred examples of the storage stability improving agent include, for example, a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic sulfur compound, a nitrogen-containing compound, a tin compound, and an organic peroxide. These may be used alone or in combination of two or more. Specifically, 2-benzothiazolyl sulfate, benzothiazole, thiazole, dimethylacetylene dicarboxylate, diethylacetylene dicarboxylate, 2,6-di-t-butyl-4-methylphenol, butylhydroxyanisole, vitamins.
  • a bubble modifier may be added to the foam resin composition.
  • the type of the bubble adjusting agent is not particularly limited, and examples thereof include inorganic solid powders usually used, such as talc, magnesium oxide, titanium oxide, zinc oxide, carbon black, and silica. These may be used alone or in combination of two or more.
  • the content of metal salts and / or inorganic particles in the foam is 2 with respect to the weight of the foam. It is preferably 5.5% by weight or less, and more preferably 1% by weight or less.
  • the metal salt may be an inorganic salt or an organic salt containing an organic anion or an organic cation. Therefore, when the resin composition for a foam contains an inorganic solid powder, the amount of the inorganic solid powder used is preferably adjusted so that the amount of the inorganic solid powder used in the foam is the above amount. ..
  • the amount of the bubble adjusting agent used is preferably 0.1 part by weight or more and 100 parts by weight or less, and more preferably 0.5 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the base resin (A).
  • a foam stabilizer may be added to the resin composition for foam.
  • the type of the foam stabilizer is not particularly limited, and examples thereof include silicone oil-based compounds such as polyether-modified silicone oil and fluorine-based compounds, which are usually used. These may be used alone or in combination of two or more. In particular, polypropylene and polyethylene-modified silicone may be expected to have foam-regulating power in a small amount.
  • the amount of the foam stabilizer used is preferably 0.2 parts by weight or more and 30 parts by weight or less, and more preferably 0.5 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the base resin (A).
  • Hollow particles may be added to the resin composition for foam, if necessary.
  • the type of hollow particles is not particularly limited, and is generally used, for example, a thermoplastic shell polymer containing a volatile liquid that becomes gaseous at a temperature below the softening point of the shell polymer and heated to volatilize. Examples thereof include those in which the sex liquid becomes gaseous and the shell polymer is softened and expanded. It is also possible to add hollow particles before expansion and foam them during molding.
  • the amount of the hollow particles used is preferably 0.2 parts by weight or more and 30 parts by weight or less, and more preferably 0.5 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the base resin (A).
  • the preferable amount to be used is the same as the preferable amount to be used for the inorganic solid powder.
  • a lubricant can be added for the purpose of improving the compatibility of the components contained in the resin composition for foam.
  • a lubricant By containing a lubricant, friction and adhesion in the foam cell of the foam formed by foaming the resin composition for foam can be reduced, and a foam having desired flexibility can be obtained. Further, the lubricant is held by the three-dimensional network structure formed by the silanol condensation reaction between the base resins (A), and tends to suppress bleeding out of the foam system, so that it is flexible for a long period of time. It becomes possible to maintain sex.
  • liquid lubricant As the lubricant, a liquid lubricant is preferable.
  • liquid lubricants include animal and vegetable oils such as paraffin mineral oil, naphthenic mineral oil, and fatty acid glyceride; olefin lubricants having an alkyl structure such as poly-1-decene and polybutene; alkyl aromatics having an aralkyl structure.
  • Compound-based lubricants Polyalkylene glycol-based lubricants; Ether-based lubricants such as polyalkylene glycol ethers, perfluoropolyethers, and polyphenyl ethers; fatty acid esters, fatty acid diesters, polyol esters, silicic acid esters, phosphoric acid esters, etc.
  • Ester-based lubricants with an ester structure dimethyl silicone (ie, dimethylpolysiloxane with both terminal trimethylsiloxy groups blocked), and some of the methyl groups of dimethylsilicone are polyether groups, phenyl groups, alkyl groups, aralkyl groups, and fluorinated Examples thereof include silicone-based lubricants such as silicone oil substituted with an alkyl group and the like; fluorine atom-containing lubricants such as chlorofluorocarbon. These may be used alone or in combination of two or more.
  • silicone-based lubricants are particularly preferable from the viewpoint of reducing the coefficient of friction in the foam cell, dispersibility, workability, safety, and the like.
  • the amount of the lubricant added is preferably 1 part by weight or more, more preferably 2 parts by weight or more, and further preferably 3 parts by weight or more with respect to 100 parts by weight of the base resin (A).
  • the upper limit of the amount of the lubricant added is not particularly limited, but is preferably 25 parts by weight or less, more preferably 20 parts by weight or less.
  • the flame retardant include red phosphorus, phosphoric acid ester, phosphate-containing flame retardant, bromine-containing flame retardant, boron-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. These may be used alone or in combination of two or more.
  • red phosphorus is used in combination with at least one selected from phosphoric acid ester, phosphate-containing flame retardant, bromine-containing flame retardant, boron-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. It is preferable to be done.
  • the resin composition for a foam is used as a two-component or three-component or more liquid type liquid composition. May occur. Since it is easy to prepare the resin composition for foam by mixing, the resin composition for foam is preferably a two-component resin composition.
  • the multi-component resin composition contains a first liquid containing a base resin (A), a chemical foaming agent (B) such as dicarbonate diester (B-1), and at least a silanol condensation catalyst (D). It is preferable to contain two liquids. It is also preferable that the second liquid contains water (C). When the silanol condensation catalyst (D) is contained in the first liquid, curing due to cross-linking between the base resin (A) may proceed. However, by containing the silanol condensation catalyst (D) in a liquid different from the first liquid, it is possible to prevent the base resin (A) from being cured before the foam is produced.
  • the silanol condensation catalyst (D) preferably contains a neutral or weakly acidic silanol condensation catalyst, and more preferably contains a weakly acidic silanol condensation catalyst.
  • the foaming aid (E) and / or the foaming aid (E) are added to the second liquid containing the silanol condensation catalyst (D) or the liquids other than the first liquid and the second liquid. ), It is preferable to contain a silanol condensation catalyst (D), or a foaming aid (E) and water (C).
  • the method for producing the foam is not particularly limited.
  • the method for producing the foam is, for example, a batch method in which the resin composition for foam is filled in a mold, and then foamed and cured in the mold.
  • it may be a continuous type in which the resin composition for a foam is continuously foamed and cured on a continuously moving band-shaped support.
  • a non-woven fabric can be used as the support.
  • the above-mentioned resin composition for a foam is completely liquid or a pigment (for example, carbon black) or the like by using a dicarbonate diester (B-1) as the chemical foaming agent (B). It can be a low-viscosity composition containing only a small amount of insoluble matter. Further, the foam resin composition containing dicarbonate diester (B-1) does not necessarily have to contain a component that is difficult to dissolve in the foam resin composition such as carbonate or bicarbonate. When the resin composition for foam has a low viscosity, a one-component, two-component or more multi-component resin composition for foam is discharged onto the construction surface and collided and mixed on the construction surface. It is possible to form a film-like foam on the construction surface.
  • the foam is typically a first liquid containing a base resin (A) having a reactive silicon group, a chemical foaming agent (B) such as dicarbonate diester (B-1), and a silanol condensation catalyst ( It is produced by a method including a mixing step of mixing with D) to obtain a mixed solution.
  • a method including a mixing step of mixing with D to obtain a mixed solution.
  • the foaming rate due to the decomposition of the chemical foaming agent (B) such as dicarbonate diester (B-1) and the curing reaction rate of the mixed solution due to the reaction between the reactive silicon groups are desired. It is preferable to adjust each of them so as to obtain a foam having a foaming ratio of the same.
  • the desired foaming ratio is, for example, 2 times or more and 60 times or less.
  • the foaming rate due to the decomposition of the chemical foaming agent (B) such as dicarbonate diester (B-1) is determined by, for example, the type and amount of the chemical foaming agent (B), the content of water (C) in the mixed solution, and foaming.
  • the type and content of the foaming aid (E) and / or the silanol condensation catalyst (D) acting as the foaming aid (E) in the mixed solution can be adjusted.
  • the rate of curing reaction of the mixed solution is, for example, the type and amount of reactive silicon contained in the base resin (A), the type and content of the silanol condensation catalyst (D) in the mixed solution, and the water in the mixed solution ( It can be adjusted by appropriately changing the content of C), the temperature of the environment in which the foam is produced, and the like.
  • the foaming rate due to the decomposition of the chemical foaming agent (B) and the curing reaction rate of the mixed solution are preferably adjusted so that the foaming ratio of the obtained foam is 2 times or more and 60 or less, and the foaming ratio is high. It is more preferable that the adjustment is made so as to be 5 times or more and 40 times or less.
  • the amount of the chemical foaming agent (B) used and the amount of the silanol condensation catalyst (D) used in the above production method are as described above for the composition.
  • the silanol condensation catalyst (D) acting as the foaming aid (E) and / or the foaming aid (E) is mixed with the first liquid.
  • the silanol condensation catalyst (D) acting as a foaming aid (E) 1,4-diazabicyclo [2.2.2] octane is preferable.
  • the temperature at which the resin composition for a foam is cured and foamed is not particularly limited.
  • the temperature at which the resin composition for a foam is cured and foamed is, for example, preferably ⁇ 10 ° C. or higher and 40 ° C. or lower, and more preferably 0 ° C. or higher and 37 ° C. or lower. Under such temperature conditions, it is easy to produce a foam using the resin composition for foam at the site where the foam is used.
  • There is no particular limitation on the time required for curing and foaming to complete For example, 12 minutes or less is preferable, and 10 minutes or less is more preferable.
  • the foam produced in this manner is preferably distributed and sold as a foam product after being dried.
  • the conditions of the drying temperature and time are not particularly limited as long as they can be derived from the resin composition for foam or the water, alcohol, etc. produced by the curing reaction can be reduced to a desired degree.
  • the drying conditions may be, for example, about 1 hour in an atmosphere of about 80 ° C.
  • the drying temperature and time conditions may be, for example, about 12 hours in an atmosphere of about 60 ° C.
  • the product can be produced without drying. Is.
  • the sound absorbing material includes the above-mentioned foam.
  • the sound absorbing material may be composed of only a foam, or may be composed of a foam and a member other than the foam.
  • a composite in which a foam is fixed to a support such as a metal plate, a wooden plate, a plastic sheet, corrugated cardboard, or cardboard can be used as a sound absorbing material.
  • the above sound absorbing material includes the above-mentioned foam, it exhibits good sound absorbing characteristics. Therefore, the above-mentioned sound absorbing material can be suitably used for manufacturing various articles to which various sound absorbing materials have been conventionally applied. As described above, the above-mentioned sound absorbing material can satisfactorily absorb noise in daily life. Therefore, a building provided with the above-mentioned sound absorbing material and a vehicle provided with the above-mentioned sound absorbing material are preferable as articles provided with the sound absorbing material.
  • the sound absorbing material is also preferably used as a sound absorbing material for pneumatic tires.
  • the noise in automobiles is mainly tire pattern noise, which is 800 Hz or less.
  • the sound absorbing material described above exhibits better sound absorbing properties in the frequency range below 800 Hz than well known foams such as polyurethane foam.
  • the method of attaching the above-mentioned sound absorbing material to the pneumatic tire is not particularly limited.
  • the sound absorbing material is preferably provided, for example, in the cavity of the pneumatic tire as a band-shaped member extending in the tire circumferential direction.
  • the shape of the band-shaped member may be an arc shape or an annular shape, and an annular shape is preferable.
  • the strip-shaped member may be arranged at a position away from the inner surface of the pneumatic tire, may be arranged in contact with the inner surface of the pneumatic tire, and is preferably arranged in contact with the inner surface of the pneumatic tire. Further, the band-shaped member made of the sound absorbing material is preferably fixed in contact with the inner surface of the pneumatic tire by using an adhesive or a fixing tool such as a screw.
  • the size of the band-shaped member is preferably a size in which the volume of the band-shaped member is 0.1% or more and 30% or more, and 0.5% or more and 20% or less of the volume of the cavity of the pneumatic tire. Is more preferable.
  • the shape of the cross section of the strip-shaped member perpendicular to the tangential direction in the tire circumferential direction is not particularly limited.
  • Preferred examples of such cross-sectional shapes include squares, rectangles, triangles (preferably isosceles triangles), trapezoids, and semicircles, and shapes that roughly approximate these shapes.
  • the shape of the cross section is such that the inner surface side of the pneumatic tire is smooth, and one or more protrusions (the surface on the rotation center side of the pneumatic tire) opposite to the inner surface side surface of the pneumatic tire.
  • a shape having 2 or 3 protrusions) is preferable.
  • the above foam has a sound absorption coefficient of 70 at a frequency of 1000 Hz to 5500 Hz, which is measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2. % Or more. Therefore, various sounds, particularly noise, can be absorbed by using the foam or the sound absorbing material described above. Since the above-mentioned foam or sound absorbing material can absorb sound in a wide frequency band, it is preferable to use the above-mentioned foam or sound absorbing material to absorb sound containing components in the frequency range of 1000 Hz to 5500 Hz.
  • the above foam has a maximum sound absorption coefficient in the frequency range of 1000 Hz to 1700 Hz measured using a B tube at 20 ° C. in accordance with JIS A 1405-2 using a sample having a thickness of 25 mm. Is preferable. Further, the above foam has a sound absorption coefficient of 40% or more at a frequency of 800 Hz, which is measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2. Is preferable. Further, the above foam has a sound absorption coefficient of 90% or more at a frequency of 1500 Hz, which is measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2. Is preferable.
  • the foam absorbs well the components in the frequency range of 1000 Hz to 5500 Hz, and particularly well absorbs the components in the frequency range of 1000 Hz to 1700 Hz among the sounds to be absorbed.
  • the sounds including the components in the frequency range of 1000 Hz to 1700 Hz include daily conversation, musical instrument sounds such as a piano and a clarinet. Therefore, the above-mentioned foam tends to absorb noise that is particularly annoying in daily life. Therefore, the above-mentioned foam or sound absorbing material is preferably used in daily conversation or in a method of causing the foam or sound absorbing material to absorb noise containing components in the frequency range of 1000 Hz to 1700 Hz derived from musical instrument sounds. ..
  • the above-mentioned foam or sound absorbing material is preferably used in a method of causing the foam or sound absorbing material to absorb noise of 800 Hz or less, which is called tire pattern noise.
  • a sound absorbing material made of a foam material satisfying the following specific physical properties can be mentioned.
  • the foam showing the shear modulus and the flow resistance per unit thickness exhibits good sound absorption characteristics in a wide frequency band including a low frequency band of 1000 Hz or less and a high frequency band of more than 2000 Hz.
  • the shear modulus of the foam as another sound absorbing material is preferably 6000 Pa or less, and more preferably 5000 Pa or less. Further, the lower limit of the shear elastic modulus of the foam as another sound absorbing material is not particularly limited. The shear modulus of the foam as another sound absorbing material is preferably 500 Pa or more, more preferably 1000 Pa or more, and even more preferably 2000 Pa or more. Other foams as sound absorbing materials may have a skin layer. Conventionally known sound absorbing materials made of foam often do not exhibit the desired sound absorbing performance when they have a skin layer, and are used in a state where the skin layer is cut off. However, in a foam having a shear modulus of 7,000 Pa or less, which is soft, excellent sound absorption can be exhibited regardless of the presence or absence of a skin layer.
  • Flow resistance per unit thickness of the foam as another sound-absorbing material preferably 1500000N ⁇ s / m 4 or more, 2000000N ⁇ s / m 4 or more is more preferable. Further, the lower limit of the flow resistance per unit thickness of the foam as another sound absorbing material is not particularly limited. Flow resistance per unit thickness of the foam as another sound-absorbing material, preferably 100000000N ⁇ s / m 4 or less, more preferably 80000000N ⁇ s / m 4 or less, more preferably 50000000N ⁇ s / m 4 or less.
  • the shear modulus can be measured by the following method. First, two test pieces of another flat sheet-shaped sound absorbing material having a thickness of d1 and an area of the main surface of s1 are prepared.
  • a device for measuring the shear modulus a device including a plate for applying a shearing force to the test piece and a vibrator for moving the plate is used. The area of the main surface of the plate is substantially equal to the area s1 of the test piece described above. The aforementioned plate is connected to the exciter. An impedance head for measuring the force F applied to the test piece and the vibration velocity ⁇ is provided between the plate and the exciter.
  • the measuring device includes two base plates for sandwiching and fixing the two test pieces.
  • shear modulus N (m1 ⁇ d1) / (2 ⁇ s1) ⁇ (2 ⁇ ⁇ fr1) 2
  • the flow resistance per unit thickness can be measured according to ISO 9053.
  • the shear modulus can be adjusted by adjusting the volume density of the other sound absorbing material.
  • the flow resistance per unit thickness can be adjusted by adjusting the Young's modulus of other sound absorbing materials. When the porosity of the other sound absorbing material is about the same, the larger the Young's modulus of the other sound absorbing material, the larger the flow resistance per unit thickness tends to be.
  • Young's modulus can be measured by the following method. First, a test piece of another sound absorbing material in the form of a flat sheet having a thickness of d2 and an area of the main surface of s2 is prepared.
  • a device including a base plate on which the test piece is placed, a vibrator for moving the base plate, and a plate for sandwiching and fixing the test piece together with the base plate is used.
  • the base plate is connected to the exciter so that it can move perpendicular to the plane direction of the main surface of the base plate.
  • a pickup for detecting the acceleration ⁇ 0 is connected to a position on the base plate where the test piece is not placed.
  • a pickup for detecting the acceleration ⁇ 1 is connected to the surface of the plate opposite to the surface in contact with the test piece.
  • the test piece is sandwiched between the base plate and the plate and fixed, and the base plate is moved by the exciter to measure the acceleration ⁇ 0 and the acceleration ⁇ 1.
  • the shape of the foam as another sound absorbing material is not particularly limited.
  • the shape of the foam include a sheet shape, a rod shape, a regular polyhedron shape (for example, a cube shape, a regular tetrahedron shape, a regular octahedron shape, etc.), a disk shape, a spherical shape, a hemispherical shape, an indefinite shape, and the like.
  • the shape of the foam is preferably sheet-like or rod-like.
  • the rod shape is a shape in a stationary state. Since the foam is flexible, the foam may behave like a string when the rod-shaped foam is moved in a stationary state.
  • the density of the foam as another sound absorbing material is not particularly limited.
  • the density of the foam is appropriately determined according to the use of the other sound absorbing material and the performance required for the other sound absorbing material. Density of the foam, from the point sound-absorbing characteristics are good, for example, preferably 100 kg / m 3 or less, more preferably 50 kg / m 3, more preferably from 45 kg / m 3 or less, 40 kg / m 3 or less is more preferable. When the density is within this range, it is lightweight and easy to carry on a daily basis, and it is easy to install other sound absorbing materials on buildings and the like, and to attach other sound absorbing materials to various articles.
  • the lower limit of the density of the foam is not particularly limited. The density of the foam is, for example, preferably 10 kg / m 3 or more, and more preferably 20 kg / m 3 or more.
  • the hardness of the foam is not particularly limited.
  • the hardness of the foam is appropriately determined according to the use of the foam and the performance required for the foam.
  • the hardness of the foam is preferably 50 or less, more preferably 15 or less, still more preferably 10 or less, as the ASKER FP hardness measured at 23 ° C.
  • the total of the content of the inorganic fine particles of the foam and the content of the metal atom contained in the foam as a metal salt of the foam is 2.5% by weight or less. Is preferable, 2% by weight or less is more preferable, 1.5% by weight or less is further preferable, and 1% by weight or less is even more preferable.
  • the contents of the inorganic fine particles and the metal salt satisfy the above-mentioned requirements, for example, sound absorption in a low frequency band of 1000 Hz or less is less likely to be inhibited.
  • the vertical incident sound absorption coefficient measured using an acoustic tube having an inner diameter of 40 mm and a test piece having a thickness of 10 mm in accordance with JIS A1405-2 at a frequency of 800 Hz is 0.15 or more. It is preferable to show the vertical incident sound absorption coefficient of.
  • a vertical incident sound absorption coefficient of 0.15 or more measured using an acoustic tube having an inner diameter of 40 mm and a test piece having a thickness of 10 mm in accordance with JIS A1405-2 is vertical. It is more preferable to indicate the incident sound absorption coefficient.
  • the other sound absorbing material preferably exhibits a vertically incident sound absorption coefficient of 0.4 or more at any frequency in the range of 650 Hz or more and 1200 Hz or less, and any frequency in the frequency range of 650 Hz or more and 1000 Hz or less. It is more preferable to show a vertically incident sound absorption coefficient of 0.4 or more.
  • Other sound absorbing materials preferably exhibit a vertical incident sound absorption coefficient of 0.5 or more, and more preferably 0.6 or more, at any frequency within the frequency range of 650 Hz or more and 1200 Hz or less. It is preferable to show a vertically incident sound absorption coefficient of 0.7 or more, and more preferably.
  • other sound absorbing materials preferably exhibit a vertical incident sound absorption coefficient of 0.5 or more, and exhibit a vertical incident sound absorption coefficient of 0.6 or more at any frequency within the frequency range of 650 Hz or more and 1000 Hz or less. Is more preferable, and it is further preferable to show a vertically incident sound absorption coefficient of 0.7 or more.
  • Other sound absorbing materials exhibiting such sound absorbing characteristics can easily absorb road noise generated when a vehicle such as an automobile is running.
  • Road noise is noise in a low frequency band generated by elastic vibration of a tire caused by unevenness of a road surface.
  • vertically incident sound absorbing material measured using an acoustic tube having an inner diameter of 40 mm and a test piece having a thickness of 10 mm in accordance with JIS A1405-2 in the frequency range of 1200 Hz or more and 4500 Hz or less.
  • the rate is preferably 0.45 or more, and more preferably 0.5 or more.
  • the rate is preferably 0.45 or more, and more preferably 0.5 or more.
  • Such other sound absorbing materials can satisfactorily absorb not only low frequency band noise such as road noise but also various noises that may occur in daily life.
  • the foams constituting the other sound absorbing materials the same as the foams constituting the sound absorbing materials described above, a sample having a thickness of 25 mm was used, and a B tube was used at 20 ° C. in accordance with JIS A 1405-2. It is preferable that the sound absorption coefficient at a frequency of 1000 Hz to 5500 Hz, which is measured in the above manner, is 70% or more.
  • the foam having a shear modulus of 7,000 Pa or less and a flow resistance per unit thickness of 1,000,000 N ⁇ s / m 4 or more not only exhibits good sound absorption but also good sound insulation. Also shown.
  • the sound absorption property is a property that attenuates the sound passing through the material.
  • the sound insulation property is a property of attenuating the reflected sound with respect to the incident sound when the sound incident on the material is reflected.
  • the vertical incident transmission loss is measured at a frequency of 1000 Hz to 4500 Hz, which is measured by using a sample having a thickness of 10 mm and using an acoustic tube having an inner diameter of 40 mm according to ASTM E2611. It is preferably 7 dB or more.
  • the foam as another sound absorbing material is preferably composed of a composition containing a polyoxyalkylene polymer because it has good sound absorbing characteristics. Further, since it is easy to manufacture another sound absorbing material and to construct another sound absorbing material, the foam is preferably made of a cured product of a composition containing a base resin having a reactive silicon group. From the above, the foam is preferably composed of a cured product of a curable composition containing a polyoxyalkylene polymer having a reactive silicon group. Further, since it is particularly easy to achieve both the desired shear modulus and the flow resistance per unit thickness, the foam contains a polyoxyalkylene polymer having a reactive silicon group and a reactive silicon group. It is more preferably composed of a cured product of a curable composition containing the (meth) acrylic resin.
  • Suitable resin compositions for forming foams include a base resin (A) having a reactive silicon group, a chemical foaming agent (B), and a silanol condensation catalyst (D).
  • the resin composition for a foam preferably contains a dicarbonate diester (B-1) as the chemical foaming agent (B).
  • the base resin (A) is as described above.
  • the base resin (A) is a curable component having a reactive silicon group.
  • the base resin (A) preferably has at least one reactive silicon group in the molecular chain. Since the base resin (A) has a reactive silicon group, a silanol condensation reaction occurs between the reactive silicon groups to crosslink the resin, and the resin becomes a polymer state and is cured.
  • the number of reactive silicon groups contained in the base resin (A) is preferably at least one in the molecular chain from the viewpoint of condensation reactivity. From the viewpoint of curability and flexibility, the base resin (A) is preferably a polymer having reactive silicon groups at both ends of the main chain or the molecular chain at the branch portion.
  • the number of such polymers is preferably 1.0 or more and 3.0 or less, more preferably 1.1 or more and 2.5 or less, and particularly preferably 1.2 or more and 2.0 or less in one molecule. It has a reactive silicon group.
  • the curing reaction of the base resin (A) by the reaction between the reactive silicon groups can be sufficiently proceeded only by the moisture in the air and the material. Therefore, even if the resin composition for foam does not contain water (C) or the content of water (C) is extremely small, there is a particular problem in terms of the progress of curing of the resin composition for foam. There is no.
  • the base resin (A) consists only of a polymer having reactive silicon groups at both ends of the main chain or the molecular chain at the branching portion
  • the acetone gel fraction of the obtained foam tends to be high.
  • a high acetone gel fraction means that the foam has high organic solvent resistance.
  • the acetone gel content of the foam is high, for example, when the foam is applied to various buildings or attached to various devices by using an adhesive containing an organic solvent, the solvent of the foam is used. Deterioration (elution of solvent-soluble components) is unlikely to occur.
  • the base resin (A) contains a polymer having a reactive silicon group at both ends of the main chain or the molecular chain at the branch portion, and a polymer having a reactive silicon group only at one end of the molecular chain. You may.
  • the number of polymers having a reactive silicon group at only one end of the molecular chain is preferably 1.0 or less, more preferably 0.3 or more and 1.0 or less, still more preferably, on average in one molecule. It has 0.4 or more and 1.0 or less, particularly preferably 0.5 or more and 1.0 or less reactive silicon groups.
  • the content of the polymer having reactive silicon groups at both ends of the molecular chain in 100 parts by weight of the base resin (A) is preferably 65 parts by weight or more and 95 parts by weight or less.
  • the content of the polymer having a reactive silicon group only at one end of the molecular chain in 100 parts by weight of the base resin (A) is preferably 5 parts by weight or more and 35 parts by weight or less.
  • the reactive silicon group contained in the base resin (A) has a hydroxy group or a hydrolyzable group bonded to a silicon atom, and is crosslinked by forming a siloxane bond by a reaction accelerated by a silanol condensation catalyst. It is a possible group.
  • the reactive silicon group the formula (1a): -Si (R 1a ) 3-a (X) a (1a) (R 1a is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms, or -OSi (R') 3 (R'is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms.
  • hydrocarbon group as R 1a may be substituted and may have a hetero-containing group
  • X is independently a hydroxy group or a hydro group. It is a degradable group. Further, a is an integer of 1 or more and 3 or less) The group represented by is mentioned.
  • the hydrolyzable group is not particularly limited, and any conventionally known hydrolyzable group may be used. Specific examples thereof include hydrogen atom, halogen atom, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group, alkenyloxy group and the like. Among these, a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable, and alkoxy is preferable from the viewpoint of mild hydrolyzability and easy handling. Groups are particularly preferred.
  • the hydrolyzable group and the hydroxy group can be bonded to one silicon atom in the range of 1 or more and 3 or less. When two or more hydrolyzable groups or hydroxy groups are bonded to the reactive silicon group, they may be the same or different.
  • the a in the above formula (1a) is preferably 2 or 3, and is preferably 3 from the viewpoint of curability and the point that curing and foaming proceed at the same time.
  • R 1a in the above formula (1a) include alkyl groups such as methyl group and ethyl group, cycloalkyl groups such as cyclohexyl group, aryl groups such as phenyl group, aralkyl groups such as benzyl group, and R. 'Is a methyl group, a phenyl group, etc.-A triorganosyloxy group, a chloromethyl group, a methoxymethyl group, etc. represented by -OSi (R') 3 can be mentioned. Of these, a methyl group and a methoxymethyl group are particularly preferable.
  • the reactive silicon group represented by the above formula (1a) include a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group, and a diethoxymethylsilyl group.
  • examples thereof include an isopropoxymethylsilyl group and a (methoxymethyl) dimethoxysilyl group.
  • a trimethoxysilyl group, a triethoxysilyl group, and a dimethoxymethylsilyl group are preferable, and a trimethoxysilyl group is more preferable, because high activity and good curability can be obtained.
  • the structure of the base resin (A) may be linear or has a branched structure, but the branched structure is preferable from the viewpoint of curability.
  • the molecular weight of the base resin (A) is preferably 1500 or more, more preferably 3000 or more, as the number average molecular weight Mn from the viewpoint of the balance between viscosity and reactivity.
  • the upper limit of the number average molecular weight Mn is not particularly limited, but is preferably 50,000 or less, more preferably 30,000 or less, and even more preferably 30,000 or less.
  • the base resin (A) may be a combination of two or more types. At that time, the polymer other than the polymer used as the main agent may be other than the above conditions if the purpose is to adjust the viscosity and the crosslinked structure.
  • the reactive silicon group at the terminal of the base resin (A) can be introduced by terminal-modifying the oxyalkylene at the terminal of the hydroxy group with an isocyanate silane compound.
  • a reactive silicon group is introduced at the terminal of the base resin (A) by introducing a group having a carbon-carbon unsaturated bond such as an allyl group at the terminal of the hydroxy group and then hydrosilylating with alkoxysilane. Can also be introduced.
  • a reactive silicon group can be introduced into the terminal of the base resin (A) by terminal-modifying with aminosilane having active hydrogen or the like.
  • a trimethoxysilyl group (methoxymethyl) can be easily produced as a foam having a high expansion ratio.
  • Dimethoxysilyl group formulas (1) to (3) below:
  • R 1 is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms, and the hydrocarbon group as R 1 may be substituted. It may have a hetero-containing group, where X is a hydroxy or hydrolyzable group, a is 1, 2, or 3, R 4 is a divalent linking group, and R 4 has two.
  • the bonders are bonded to carbon atoms, oxygen atoms, nitrogen atoms, or sulfur atoms in the linking group, respectively, and R 2 and R 3 are independently hydrogen atoms and carbon atoms of 1 to 20 or less, respectively. It is either an alkyl group, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a silyl group.)
  • the group represented by is also preferable.
  • the reactive silicon group represented by -Si (R 1) 3-a (X) a carbon - carbon double bond Adjacent. Therefore, in the structures represented by the formulas (1) to (3), the carbon-carbon double bond acts as an electron-withdrawing group, and the activity of the reactive silicon group is improved.
  • the base resin (A) having a terminal group represented by the formulas (1) to (3) and the foam resin composition containing the base resin (A) are said to have excellent curing reactivity. Conceivable.
  • R 4 is a divalent linking group.
  • the two bonds of R 4 are bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group, respectively.
  • the two bonds possessed by R 4 are bonded to the carbon atom, oxygen atom, nitrogen atom, or sulfur atom in the linking group, respectively, and the two bonds possessed by R 4 are respectively. It means that it exists on a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in a linking group.
  • R 8 is a hydrogen atom or a hydrocarbon group having 1 or more and 10 or less carbon atoms.
  • Examples of the hydrocarbon group as R 8 include an alkyl group such as a methyl group, an ethyl group, an n-propyl group and an isopropyl group, an aryl group such as a phenyl group and a naphthyl group, and an aralkyl group such as a benzyl group. Be done.
  • n an integer of 0 or more and 10 or less is preferable, an integer of 0 or more and 5 or less is more preferable, an integer of 0 or more and 2 or less is further preferable, 0 or 1 is particularly preferable, and 1 is most preferable.
  • R 2 and R 3 are independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, and a silyl group. It is either.
  • the number of carbon atoms of the alkyl group is preferably 1 or more and 12 or less, more preferably 1 or more and 6 or less, and particularly preferably 1 or more and 4 or less.
  • the number of carbon atoms of the aryl group is preferably 6 or more and 12 or less, and more preferably 6 or more and 10 or less.
  • the number of carbon atoms of the aralkyl group is preferably 7 or more and 12 or less.
  • R 2 and R 3 include hydrogen; alkyl groups such as methyl group, ethyl group, and cyclohexyl; aryl groups such as phenyl group and tolyl group; aralkyl groups such as benzyl group and phenethyl group.
  • a silyl group such as a trimethylsilyl group can be mentioned.
  • hydrogen, a methyl group, and a trimethylsilyl group are preferable, hydrogen and a methyl group are more preferable, and hydrogen is further preferable.
  • the structures represented by the above formulas (1) to (3) include the following formulas (5) to (7):
  • the structure represented by is preferable.
  • R 1 , X, and a are the same as described above.
  • the hydrocarbon group as R 1 is the same as the hydrocarbon group as R 1a in the formula (1a).
  • the hydrocarbon group as R 1 include an alkyl group such as a methyl group and an ethyl group; an alkyl group having a hetero-containing group such as a chloromethyl group and a methoxymethyl group; a cycloalkyl group such as a cyclohexyl group; phenyl.
  • An aryl group such as a group; an aralkyl group such as a benzyl group; and the like can be mentioned.
  • the R 1, a methyl group, methoxymethyl group, and a chloromethyl group are preferred, a methyl group, and more preferably a methoxymethyl group, methoxymethyl group are more preferred.
  • R 5 in formula (4) is a heteroatom that may be substituted. Since R 5 is an electron-rich heteroatom, the terminal group having a reactive silicon group represented by the formula (4) exhibits high reactivity.
  • the optionally substituted hetero atom as R 5 in the formula (4) is not particularly limited so long as it does not inhibit the object of the present invention. Specific examples of the heteroatom include O, N, and S.
  • R 5 is an unsubstituted heteroatom
  • specific examples of the divalent group represented by -R 5- include -O- and -S-.
  • R 5 is a substituted heteroatom
  • specific examples of the divalent group represented by -R 5- include, for example, -SO-, -SO 2- , -NH-, and -NR 6-. Can be mentioned.
  • R 6 as a substituent is not particularly limited.
  • R 6 include a hydrocarbon group, an acyl group represented by -CO-R 7 , and the like.
  • a hydrocarbon group is preferable as R 7 .
  • Examples of the hydrocarbon groups as R 6 and R 7 are the same as those of the hydrocarbon groups as R 1 .
  • the main chain structure of the base resin (A) will be described below.
  • the main chain structure of the base resin (A) may be linear or may have a branched chain.
  • the main chain structure of the base resin (A) is not particularly limited, and as the base resin (A), a polymer containing a main chain skeleton having various main chain structures can be used.
  • the polymer constituting the main chain skeleton of the base resin (A) include a polyoxyalkylene polymer, a hydrocarbon polymer, a polyester polymer, a vinyl (co) polymer, and (meth) acrylic.
  • Acid ester-based (co) polymer graft polymer, polysulfide-based polymer, polyamide-based polymer, polycarbonate-based polymer, polymer having urethane bond and / or urea bond (urethane prepolymer), diallyl phthalate-based polymer Etc. can be given.
  • polyoxyalkylene polymer examples include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and polyoxypropylene-polyoxybutylene copolymer. And so on.
  • hydrocarbon-based polymer examples include ethylene-propylene-based copolymers, polyisobutylene, copolymers of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or butadiene and acrylonitrile and / or styrene and the like.
  • hydrocarbon-based polymers include coalescing, polybutadiene, isoprene, or copolymers of butadiene with acrylonitrile and styrene, and hydrocarbon-based polymers obtained by hydrogenating these polyolefin-based polymers.
  • polyester-based polymer examples include polymers having an ester bond such as a polymer obtained by a condensation reaction of a dibasic acid such as adipic acid and a glycol, and a polymer obtained by ring-opening polymerization of lactones. Be done.
  • the vinyl-based (co) polymer is obtained by radical polymerization of, for example, vinyl-based monomers such as (meth) acrylic acid ester, vinyl acetate, acrylonitrile, and styrene, alone or in combination of two or more (co). Polymers can be mentioned.
  • Examples of the (meth) acrylic acid ester-based (co) polymer include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and (meth) acrylate. ) Examples thereof include (co) polymers obtained by radical polymerization of (meth) acrylic acid ester monomers such as stearyl acrylate, alone or in combination of two or more.
  • the (meth) acrylic acid ester-based (co) polymer is a so-called acrylic resin.
  • Examples of the graft polymer include a polymer obtained by polymerizing a vinyl-based monomer among the above-mentioned various polymers.
  • polyamide polymer examples include nylon 6 obtained by ring-opening polymerization of ⁇ -caprolactam, nylon 6.6 obtained by condensation polymerization of hexamethylenediamine and adipic acid, and condensation polymerization of hexamethylenediamine and sebacic acid.
  • nylon 6/10 obtained, nylon 11 obtained by condensation polymerization of ⁇ -aminoundecanoic acid, nylon 12 obtained by ring-opening polymerization of ⁇ -aminolaurolactum, and a combination of two or more of the above nylon components. Polymerized nylon and the like can be mentioned.
  • polycarbonate-based polymer examples include a polymer produced by polycondensation of bisphenol A and carbonyl chloride.
  • Examples of the polymer having a urethane bond and / or a urea bond include a liquid polymer compound having an isocyanate group at the molecular terminal obtained by reacting a polyol with an excessive amount of a polyisocyanate compound. Be done.
  • saturated hydrocarbon-based polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene-based polymers, and acrylic resins.
  • ((Meta) acrylic acid ester-based polymer) is preferable because the glass transition temperature is relatively low and the obtained cured product has excellent cold resistance.
  • the glass transition temperature of the polymer constituting the main chain skeleton of the base resin (A) is not particularly limited, but is preferably 20 ° C. or lower, more preferably 0 ° C. or lower, and ⁇ 20 ° C. or lower. Is particularly preferable. If the glass transition temperature exceeds 20 ° C., the viscosity of the resin composition for foam in winter or cold regions may increase, which may result in poor workability, and the flexibility of the foam may decrease, resulting in elongation. May decrease.
  • the glass transition temperature shows the value measured by DSC.
  • the base resin (A) contains a resin having a glass transition temperature of 35 ° C. or higher. In this case, it is easy to suppress the shrinkage of the foam after foaming. From the viewpoint that shrinkage of the foam after foaming is particularly easy to be suppressed, the base resin (A) contains a resin having a glass transition temperature of 35 ° C. or higher and a resin having a glass transition temperature of less than 35 ° C. preferable.
  • the glass transition temperature of the base resin (A) can be adjusted by adjusting the type of the main chain skeleton, the type of the unit constituting the main chain, the composition of the unit constituting the main chain, the molecular weight, and the like.
  • the polyoxyalkylene polymer and the acrylic resin are preferable because they have high moisture permeability and the like.
  • a polyoxyalkylene polymer is more preferable, and a polyoxypropylene polymer is most preferable, because the sound absorbing property of the foam is particularly excellent.
  • the base resin (A) is used.
  • the amount of the (meth) acrylic resin in 100 parts by weight of the base resin (A) is preferably 2 parts by weight or more and 50 parts by weight or less, more preferably 5 parts by weight or more and 40 parts by weight or less, and 8 parts by weight or more and 30 parts by weight. Less than a part is more preferable.
  • the amount of the polyoxyalkylene polymer in 100 parts by weight of the base resin (A) is preferably 50 parts by weight or more and 98 parts by weight or less, more preferably 60 parts by weight or more and 95 parts by weight or less, and 70 parts by weight. More than 92 parts by weight or less is more preferable.
  • the reactive silicon group may be introduced into the main chain of the base resin (A) by a known method. For example, the following method can be mentioned.
  • Method I An organic polymer having a functional group such as a hydroxy group is reacted with a compound having an active group and an unsaturated group exhibiting reactivity with this functional group to obtain an organic polymer having an unsaturated group. Then, the obtained organic polymer having an unsaturated group is reacted with a hydrosilane compound having a reactive silicon group by hydrosilylation.
  • Examples of the reactive compound having an active group and an unsaturated group that can be used in Method I include an unsaturated group-containing epoxy compound such as allyl glycidyl ether, allyl chloride, metallic chloride, vinyl bromide, and allyl bromide. Examples thereof include compounds having a carbon-carbon double bond such as metallyl bromide, vinyl iodide, allyl iodide, and metallyl iodide.
  • Examples of the compound having a carbon-carbon triple bond include propargyl chloride, 1-chloro-2-butyne, 4-chloro-1-butyne, 1-chloro-2-octyne, 1-chloro-2-pentin, 1, 4-Dichloro-2-butyne, 5-chloro-1-pentin, 6-chloro-1-hexine, propargyl bromide, 1-bromo-2-butyne, 4-bromo-1-butyne, 1-bromo-2- Octin, 1-bromo-2-pentin, 1,4-dibromo-2-butyne, 5-bromo-1-pentin, 6-bromo-1-hexine, propargyl iodide, 1-iodo-2-butyne, 4- Iodo-1-butyne, 1-iodo-2-octyne, 1-iodo-2-pentin, 1,4-diiodo-2-buty
  • halogenated hydrocarbon compounds having a carbon-carbon triple bond examples thereof include halogenated hydrocarbon compounds having a carbon-carbon triple bond.
  • propargyl chloride, propargyl bromide, and propargyl iodide are more preferred.
  • Hydrocarbon compounds having unsaturated bonds other than halogenated hydrocarbons having carbon-carbon triple bonds may be used.
  • halogenated silanes include trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane.
  • alkoxysilanes examples include trimethoxysilane, triethoxysilane, triisopropoxysilane, dimethoxymethylsilane, diethoxymethylsilane, diisopropoxymethylsilane, (methoxymethyl) dimethoxysilane, phenyldimethoxysilane, and 1-.
  • [2- (Trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane and the like can be mentioned.
  • asyloxysilanes include methyldiacetoxysilane and phenyldiacetoxysilane.
  • ketoximate silanes include bis (dimethyl ketoximate) methylsilane and bis (cyclohexylketoximate) methylsilane.
  • halogenated silanes and alkoxysilanes are particularly preferable.
  • Alkoxysilanes are most preferred because they are mildly hydrolyzable and easy to handle.
  • a foam having excellent tensile strength is produced by using the resin composition for foam, which is easily available, has excellent curability and storage stability, and is easy to obtain. Dimethoxymethylsilane is preferable because it is easy to use. Further, trimethoxysilane and triethoxysilane are also preferable from the viewpoint that a resin composition for a foam having excellent curability can be easily obtained.
  • Method II An organic polymer having an unsaturated group obtained by subjecting a compound having a mercapto group and a reactive silicon group to a radical addition reaction in the presence of a radical initiator and / or a radical source in the same manner as in Method I. Method of introducing into the unsaturated radical site of.
  • Examples of the compound having a mercapto group and a reactive silicon group that can be used in Method II include 3-mercapto-n-propyltrimethoxysilane, 3-mercapto-n-propylmethyldimethoxysilane, and 3-mercapto-n-propyl. Examples thereof include triethoxysilane, 3-mercapto-n-propylmethyldiethoxysilane, mercaptomethyltrimethoxysilane, and mercaptomethyltriethoxysilane. Compounds having a mercapto group and a reactive silicon group are not limited thereto.
  • Method III An organic polymer having a functional group such as a hydroxy group, an epoxy group, and an isocyanate group in the molecule is reacted with a compound having a functional group exhibiting reactivity with these functional groups and a reactive silicon group.
  • the method for reacting the organic polymer having a hydroxy group with the compound having an isocyanate group and a reactive silicon group which can be adopted in Method III, is not particularly limited, but is shown in, for example, JP-A-3-47825. There is a method to be used.
  • Examples of the compound having an isocyanate group and a reactive silicon group that can be used in Method III include 3-isocyanato-n-propyltrimethoxysilane, 3-isocyanato-n-propylmethyldimethoxysilane, and 3-isocyanato-n-. Examples thereof include propyltriethoxysilane, 3-isocyanato-n-propylmethyldiethoxysilane, isocyanatomethyltrimethoxysilane, isocyanatomethyltriethoxysilane, isocyanatomethyldimethoxymethylsilane, and isocyanatomethyldiethoxymethylsilane. .. Compounds having an isocyanate group and a reactive silicon group are not limited thereto.
  • a silane compound in which three hydrolyzable groups are bonded to one silicon atom such as trimethoxysilane may undergo a disproportionation reaction. As the disproportionation reaction proceeds, unstable compounds such as dimethoxysilane are produced, which may be difficult to handle. However, such disproportionation reaction does not proceed with 3-mercapto-n-propyltrimethoxysilane or 3-isocyanato-n-propyltrimethoxysilane. Therefore, when a group in which three hydrolyzable groups such as a trimethoxysilyl group are bonded to one silicon atom is used as the silicon-containing group, the method of Method II or Method III is preferably used.
  • the disproportionation reaction does not proceed with the silane compound represented by the following formula (2a).
  • X is the same as the formula (1a).
  • the 2m + 2 R 2a are independently the same as the R 1a of the equation (1a).
  • R 3a represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms.
  • m indicates an integer of 0 or more and 19 or less.
  • each of the 2m + 2 R 2a is preferably a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrocarbon group having 1 to 8 carbon atoms, and carbon. Hydrocarbon groups having 1 or more and 4 or less atoms are more preferable.
  • R 3a a divalent hydrocarbon group having 1 to 12 carbon atoms is preferable, a divalent hydrocarbon group having 2 to 8 carbon atoms is more preferable, and a divalent hydrocarbon having 2 carbon atoms is preferable. Groups are even more preferred.
  • the m is most preferably 1.
  • Examples of the silane compound represented by the formula (2a) include 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane and 1- [2- (trimethoxysilyl). Examples thereof include propyl] -1,1,3,3-tetramethyldisiloxane and 1- [2- (trimethoxysilyl) hexyl] -1,1,3,3-tetramethyldisiloxane.
  • the method of reacting the organic polymer having a hydroxy group at the terminal with the compound having an isocyanate group and a reactive silicon group can obtain a high conversion rate in a relatively short reaction time.
  • the organic polymer having a reactive silicon group obtained by Method I has a lower viscosity than the organic polymer having a reactive silicon group obtained by Method III, and is a resin composition for a foam having good workability.
  • the method I is particularly preferable because the organic polymer having a reactive silicon group obtained by the method II has a strong odor based on mercaptosilane.
  • the main chain structure of the polyoxyalkylene polymer is preferably composed of a repeating unit represented by the following formula (3a).
  • R 4a represents a linear or branched alkylene group having 1 or more and 14 or less carbon atoms, and more preferably 2 or more and 4 or less carbon atoms.
  • the repeating unit represented by formula (3a), for example, -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, -CH 2 C (CH 3 ) 2 O-, -CH 2 CH 2 CH 2 CH 2 O- and the like can be mentioned.
  • the main chain of the polyoxyalkylene polymer may consist of only one type of repeating unit or may consist of two or more types of repeating units.
  • the polyoxyalkylene polymer is preferably an amorphous polyoxypropylene polymer having a relatively low viscosity.
  • Examples of the method for synthesizing the polyoxyalkylene polymer include a polymerization method using an alkali catalyst such as KOH; a transition metal such as a complex obtained by reacting an organic aluminum compound shown in JP-A-61-215623 with porphyrin.
  • an alkali catalyst such as KOH
  • a transition metal such as a complex obtained by reacting an organic aluminum compound shown in JP-A-61-215623 with porphyrin.
  • Compound-Porphyrin Complex Catalyzed Polymerization Method Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, US Patent No. 3278457, US Patent No. 3278458, US Patent No. 3278459, US Patent No. 3427256, US Patent No.
  • a polymerization method in which an alkylene oxide is reacted with an initiator in the presence of a composite metal cyanide complex catalyst is preferable because a polymer having a narrow molecular weight distribution can be obtained.
  • composite metal cyanide complex catalyst examples include Zn 3 [Co (CN) 6 ] 2 (zinc hexacyanocobaltate complex). Further, a catalyst in which alcohol and / or ether is coordinated as an organic ligand can also be used.
  • the initiator a compound having at least two active hydrogen groups is preferable.
  • the active hydrogen-containing compound include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and glycerin, and linear or branched polyether compounds having a number average molecular weight of 500 or more and 20000 or less.
  • alkylene oxide examples include ethylene oxide, propylene oxide, and isobutylene oxide.
  • Examples of the polyoxyalkylene polymer having a reactive silicon group include JP-A-45-363319, JP-A-46-12154, JP-A-50-156599, and JP-A-54-6096. , Japanese Patent Application Laid-Open No. 55-13767, Japanese Patent Application Laid-Open No. 55-13468, Japanese Patent Application Laid-Open No. 57-164123, Japanese Patent Application Laid-Open No. 362550, US Pat. No. 3632557, US Pat. No. 4345053, US Pat. No. 4,366,307 , US Pat. No. 4,960,844, etc., and the polymers proposed in each publication. Further, Japanese Patent Application Laid-Open No.
  • the molecular weight distribution is narrow with a number average molecular weight of 6000 or more and a molecular weight distribution (Mw / Mn) of 1.6 or less or 1.3 or less proposed in each of the publications No. 47825 and Japanese Patent Application Laid-Open No. 8-231707.
  • a polyoxyalkylene polymer having a reactive silicon group and the like are also preferable. Such a polyoxyalkylene polymer having a reactive silicon group may be used alone or in combination of two or more.
  • the (meth) acrylic acid ester-based (co) polymer having a reactive silicon group can be obtained by polymerizing various (meth) acrylic acid ester-based monomers alone or in combination of two or more.
  • Examples of the (meth) acrylic acid ester-based monomer include (meth) acrylic acid, methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, and isopropyl (meth) acrylic acid.
  • the (meth) acrylic acid ester-based (co) polymer can also copolymerize the following vinyl-based monomers together with the (meth) acrylic acid ester-based monomer.
  • vinyl-based monomer examples include styrene-based monomers such as styrene, vinyltoluene, ⁇ -methylstyrene, chlorostyrene, styrenesulfonic acid, and styrenesulfonate; vinyltrimethoxysilane and vinyltriethoxysilane.
  • Silicon-containing vinyl-based monomers such as; maleic anhydride, maleic acid, and maleic acid or maleic acid derivatives such as maleic acid monoalkyl esters and dialkyl esters; fumaric acid, and fumaric acid monoalkyl esters and dialkyl esters, etc.
  • maleimide-based monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, and cyclohexylmaleimide; acrylonitrile, And nitrile group-containing vinyl monomers such as methacrylonitrile; acrylamide and amide group-containing vinyl monomers such as methacrylicamide; vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, and vinyl cinnate.
  • maleimide-based monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenyl
  • Vinyl esters such as; alkens such as ethylene and propylene; conjugated dienes such as butadiene and isoprene; vinyl chloride, vinylidene chloride, allyl chloride, allyl alcohol and the like. These may be polymerized alone, or a plurality of them may be copolymerized.
  • Examples of the (meth) acrylic acid ester-based (co) polymer include a (co) polymer of a (meth) acrylic acid ester-based monomer, a styrene-based monomer and a (meth) acrylic acid-based simple compound from the viewpoint of physical properties and the like.
  • a copolymer with a polymer is preferable, a (co) polymer of a (meth) acrylic acid ester-based monomer is more preferable, and a (co) polymer of an acrylic acid ester-based monomer is further preferable.
  • the method for producing the (meth) acrylic acid ester-based (co) polymer is not particularly limited.
  • the (meth) acrylic acid ester-based (co) polymer can be produced by a known method.
  • a polymer obtained by a normal free radical polymerization method using an azo compound, a peroxide or the like as a polymerization initiator generally has a molecular weight distribution value of more than 2, and tends to have a high viscosity. Therefore, it is a (meth) acrylic acid ester-based (co) polymer having a narrow molecular weight distribution and low viscosity, and has a high proportion of crosslinkable functional groups at the ends of the molecular chain (meth) acrylic acid ester-based (co) weight.
  • atom transfer radicals that polymerize (meth) acrylic acid ester-based monomers using organic halides, sulfonyl halide compounds, etc. as initiators and transition metal complexes as catalysts.
  • the “polymerization method” has halogen and the like at the ends, which are relatively advantageous for the functional group conversion reaction, and has a large degree of freedom in designing the initiator and catalyst. It is more preferable as a method for producing a (meth) acrylic acid ester-based polymer having a specific functional group.
  • This atom transfer radical polymerization method is described, for example, in Mattyjaszewski et al., Journal of the American Chemical Society (J. Am. Chem. Soc), 1995, Vol. 117, p. 5614.
  • Examples of the method for producing a (meth) acrylic acid ester-based (co) polymer having a reactive silicon group include JP-A-3-14068, JP-A-4-55444, and JP-A-6-21922. Etc., a production method using a free radical polymerization method using a chain transfer agent is disclosed. Further, Japanese Patent Application Laid-Open No. 9-272714 and the like disclose a production method using an atom transfer radical polymerization method. The method for producing a (meth) acrylic acid ester-based (co) polymer having a reactive silicon group is not limited to these methods. The (meth) acrylic acid ester-based (co) polymer having the above-mentioned reactive silicon group may be used alone or in combination of two or more.
  • the base resin (A) having these reactive silicon groups may be used alone or in combination of two or more. Specifically, when two or more types of base resin (A) are used in combination, the base resin (A) having the same type of main chain may be used in combination, for example, a polymer having a reactive silicon group. A base resin (A) having a different main chain may be used in combination, such as a combination of an oxyalkylene polymer and a (meth) acrylic acid ester polymer having a reactive silicon group.
  • a suitable foam resin composition contains a chemical foaming agent (B).
  • a chemical foaming agent (B) a compound that does not generate inorganic fine particles or metal salts as by-products after the foaming reaction is preferable.
  • the chemical foaming agent (B) preferably contains a dicarbonate diester (B-1).
  • the dicarbonate diester (B-1) is decomposed at a preferable rate according to the rate of the curing reaction of the base resin (A) even under low temperature conditions of about room temperature. Can foam.
  • the dicarbonate diester (B-1) tends to foam better in the presence of water (C) than in anhydrous conditions.
  • the dicarbonate diester (B-1) produces only a volatile decomposition product after decomposition during foaming.
  • the foam contains, for example, a large amount of metal salts or the like, it may be difficult to obtain a foam having good sound absorption characteristics in a low frequency band of, for example, 1000 Hz or less.
  • foaming is performed using the dicarbonate diester (B-1), it is possible to easily produce a foam that contains almost no metal salt or the like and exhibits good sound absorption characteristics in a low frequency band.
  • Japanese Patent Application Laid-Open No. 46-35992 states that when diethyl dicarbonate is added as a foaming agent to a foam resin composition in which unsaturated polyester is cured by an addition reaction, when a foam is produced at room temperature, It is disclosed that the expansion of the resin composition by foaming proceeds over a time of about 20 minutes, and the curing of the resin composition proceeds over a long time of more than 20 minutes (Japanese Patent Publication No. 46-35992). 8). However, for example, when the base resin (A) having a reactive silicon group is foamed while being cured, the curing of the base resin (A) may proceed considerably in about 5 minutes.
  • the chemical foaming agent (B) that foams over a period of as long as 20 minutes is applied to the resin composition for a foam containing the base resin (A) having a reactive silicon group, the desired foaming occurs. It is predicted that the base resin (A) will be rapidly cured before reaching the magnification, and only a foam having a low expansion ratio can be obtained.
  • the resin composition for a foam containing the base resin (A) and the silanol condensation catalyst (D) contains the dicarbonate diester (B-1). It has been found that when the chemical foaming agent (B) is blended, the resin composition can be foamed to a desired degree in a short time.
  • the dicarbonate diester is represented by the following formula (B1).
  • R b is an organic group.
  • the organic group as R b is preferably a hydrocarbon group.
  • the two R bs may be the same or different, and are preferably the same.
  • the number of carbon atoms of the hydrocarbon group as R b is preferably 1 or more and 16 or less, more preferably 1 or more and 12 or less, further preferably 1 or more and 8 or less, and particularly preferably 1 or more and 6 or less.
  • the hydrocarbon group as R b include an alicyclic group such as an alkyl group and a cycloalkyl group, an aralkyl group, and an aryl group.
  • the alkyl group may be linear or branched, preferably linear.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and n-hexyl group.
  • alkyl group examples include n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group and n-dodecyl group.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group and the like.
  • aralkyl group examples include a benzyl group, a phenethyl group, a naphthalene-1-ylmethyl group, a naphthalene-2-ylmethyl group and the like.
  • aryl group examples include phenyl, naphthalene-1-yl group, naphthalene-2-yl group, 4-phenylphenyl group, 3-phenylphenyl group, 2-phenylphenyl group and the like.
  • dicarbonate diester (B-1) represented by the formula (B1) examples include dimethyl dicarbonate, diethyl dicarbonate, di-n-propyl dicarbonate, diisopropyl dicarbonate, di-n-butyl dicarbonate, and diisobutyl dicarbonate. , Di-sec-butyl dicarbonate, di-tert-butyl dicarbonate, di-n-pentyl dicarbonate, and di-n-hexyl dicarbonate are preferred.
  • Dimethyl dicarbonate (B-1) includes dimethyl dicarbonate, diethyl dicarbonate, di-n-propyl dicarbonate, and dicarbonate because it is easily available and has a small molecular weight and a large amount of foaming per unit weight. Diisopropyl dicarbonate is preferred, and dimethyl dicarbonate and diethyl dicarbonate are more preferred. Further, from the viewpoint of high volatility and low toxicity of the product after the dicarbonate diester is hydrolyzed, diethyl dicarbonate is particularly preferable as the dicarbonate diester (B-1).
  • the resin composition for foams does not contain water (C) or may contain only a small amount of water (C), and achieves a high foaming ratio even when the amount of the chemical foaming agent (B) used is small.
  • the chemical foaming agent (B) is mainly composed of dicarbonate diester (B-1).
  • the ratio of the weight of the dicarbonate diester (B-1) to the weight of the chemical foaming agent (B) is preferably 50% by weight or more, more preferably 70% by weight or more, further preferably 80% by weight or more, and 90% by weight. The above is particularly preferable, and 100% by weight or more is most preferable.
  • the chemical foaming agent (B) contains a chemical foaming agent other than the dicarbonate diester (B-1)
  • the other chemical foaming agents are known as various chemical foaming agents as long as the object of the present invention is not impaired. Agents can be used.
  • the amount of the chemical foaming agent (B) used can be appropriately selected in consideration of the foaming ratio of the foam.
  • the content of the chemical foaming agent (B) is preferably 2 parts by weight or more and 200 parts by weight or less, more preferably 5 parts by weight or more and 170 parts by weight or less, and 5 parts by weight or more with respect to 100 parts by weight of the base resin (A). It is more preferably 130 parts by weight or less, and particularly preferably 5 parts by weight or more and 100 parts by weight or less.
  • the content of the dicarbonate diester (B-1) as the chemical foaming agent (B) is preferably 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the base resin (A), and is 2 parts by weight or more and 40 parts by weight. More preferably, it is 5 parts by weight or more and 30 parts by weight or less.
  • a physical foaming agent may be added to the resin composition for foam to assist foaming.
  • the boiling point of the physical foaming agent is preferably 100 ° C. or lower, more preferably 50 ° C. or lower, from the viewpoint of foamability, workability, and safety.
  • Specific examples of the physical foaming agent include hydrocarbons (eg, LPG (propane), butane, etc.), halogenated hydrocarbons, ethers (eg, diethyl ethers), chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), and hydrochloros.
  • Examples thereof include fluorocarbons (HCFCs), fluoroolefins (FOs), chlorofluoroolefins (CFOs), hydrofluoroolefins (HFOs), hydrochlorofluorofluoroolefins (HCFOs), carbon dioxide, nitrogen, and air.
  • HCFCs fluorocarbons
  • Fs fluoroolefins
  • CFOs chlorofluoroolefins
  • HFOs hydrofluoroolefins
  • hydrochlorofluorofluoroolefins HCFOs
  • carbon dioxide nitrogen
  • nitrogen and air.
  • these physical foaming agents hydrocarbons, ethers, carbon dioxide, nitrogen, and air are preferable from the viewpoint of environmental compatibility.
  • the above-mentioned suitable foam resin composition contains or does not contain water (C). Curing and foaming proceed even when the resin composition for foam does not contain water (C).
  • water (C) has a function of accelerating the foaming reaction of the chemical foaming agent (B) and the curing reaction of the base resin (A).
  • the content of water (C) is preferably 1 part by weight or more and 70 parts by weight or less with respect to 100 parts by weight of the base resin (A), and 2 parts by weight. More than 60 parts by weight is more preferable, and 2 parts by weight or more and 50 parts by weight or less is further preferable.
  • the content of water (C) is within the above range, it is easy to proceed with curing satisfactorily while sufficiently foaming, and it is easy to obtain a foam having fine and dense foam cells and excellent flexibility.
  • the content of water (C) is preferably 0.05 parts by weight or more, and more preferably 0.1 parts by weight or more with respect to 1 part by weight of the dicarbonate diester (B-1).
  • the dicarbonate diester (B-1) can be satisfactorily reacted with water (C) to cause particularly good foaming, and the base resin (A) can be formed.
  • the hydrolysis-condensation reaction between the reactive silicon groups has proceeded well.
  • the foam resin composition contains only dicarbonate diester (B-1) as the chemical foaming agent (B)
  • the content of water (C) in the foam resin composition is the dicarbonate diester (B-1).
  • B-1) It is preferably 0.05 parts by weight or more and 0.5 parts by weight or less, and more preferably 0.05 parts by weight or more and 0.3 parts by weight or less with respect to 1 part by weight.
  • the content of water (C) in the foam after forming the foam can be reduced while causing particularly good foaming, and drying is performed to remove volatile components such as water during the production of the foam. The step can be omitted.
  • the content of water (C) in the resin composition for foam is based on 1 part by weight of the dicarbonate diester (B-1).
  • the molar ratio of dicarbonate diester (B-1): water (C) is preferably 0.8: 1 to 1: 0.8, preferably 0.9: 1 to 1: 0.9.
  • the resin composition for a foam contains a silanol condensation catalyst (D).
  • the silanol condensation catalyst (D) is not particularly limited as long as it can be used as a condensation catalyst, and any one can be used, but the carbonic acid generated by the foaming reaction of the dicarbonate diester (B-1) can be used.
  • a neutral or weakly acidic silanol condensation catalyst (D) is preferable because the catalytic activity is unlikely to decrease due to the influence. Carbonic acid is generated when carbon dioxide dissolves in water.
  • silanol condensation catalyst (D) examples include tetravalent tin compounds, divalent tin compounds, and reactants and mixtures of the above-mentioned divalent tin compounds and amine-based compounds such as laurylamine described below. , Monoalkyltins, titanic acid esters, organic aluminum compounds, carboxylic acid metal salts, carboxylic acid metal salts and amine compounds such as laurylamine described below, chelate compounds, saturated aliphatic primary Amines, saturated aliphatic secondary amines, saturated aliphatic tertiary amines, aliphatic unsaturated amines, aromatic amines, other amines other than these amines, these amines and carboxylics.
  • Salts with acids, etc. reactants and mixtures of amine compounds and organic tin compounds, low molecular weight polyamide resins obtained from excess polyamines and polybasic acids, reaction products of excess polyamines with epoxy compounds, amino groups
  • Examples thereof include a silane coupling agent having an amino group, a modified derivative of a silane coupling agent having an amino group, and the like.
  • tetravalent tin compounds include dialkyltin dicarboxylates, dialkyltin alcoxides, intramolecular coordinating derivatives of dialkyltin, reactants of dialkyltin oxide and ester compounds, dialkyltin oxide and carboxylic acid.
  • examples thereof include a reaction product with an alcohol compound, a dialkyl compound, a reaction product between a dialkyl tin oxide and a silicate compound, and an oxy derivative (stanoxane compound) of these dialkyl tin compounds.
  • dialkyltin dicarboxylates include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin di (2-ethylhexanoate), dibutyltin dioctate, dibutyltin diversate, dibutyltin distearate, and dibutyltin di (methyl).
  • dialkyltin alcoxysides include dibutyltin dimethoxyde and dibutyltin diphenoxide.
  • intramolecular coordinating derivatives of dialkyltin include dibutyltin diacetylacetonate and dibutyltin diethylacetacetate.
  • reaction product of the dialkyl tin oxide and the ester compound include a reaction product of a dialkyl tin oxide such as dibutyl tin oxide and dioctyl tin oxide and an ester compound such as dioctyl phthalate, diisodecyl phthalate and methyl maleate. ..
  • reaction product of the dialkyltin oxide and the silicate compound examples include dibutyltin bistriethoxysilicate and dioctyltin bistriethoxysilicate.
  • divalent tin compounds include tin octylate, tin naphthenate, tin stearate, tin ferzaticate and the like.
  • monoalkyl tins include monobutyl tin compounds such as monobutyl tin trisoctate and monobutyl tin triisopropoxide, and monooctyl tin compounds.
  • titanic acid esters include tetrabutyl titanate, tetrapropyl titanate, tetra (2-ethylhexyl) titanate, isopropoxytitanium bis (ethylacetoacetate) and the like.
  • organoaluminum compound examples include aluminum trisacetylacetonate, aluminumtrisethylacetate, di-isopropoxyaluminum ethylacetate and the like.
  • the metal carboxylate salt include bismuth carboxylate, iron carboxylate, titanium carboxylate, lead carboxylate, vanadium carboxylate, zirconium carboxylate, calcium carboxylate, potassium carboxylate, barium carboxylate, manganese carboxylate, Examples thereof include cerium carboxylate, nickel carboxylate, cobalt carboxylate, zinc carboxylate, aluminum carboxylate and the like.
  • Specific examples of the carboxylic acid that gives the carboxylic acid metal salt include 2-ethylhexanoic acid, neodecanoic acid, versatic acid, oleic acid, and naphthenic acid.
  • chelate compounds include zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, dibutoxyzirconium diacetylacetonate, zirconium acetylacetonatebis (ethylacetacetone), titanium tetraacetylacetonate and the like.
  • saturated aliphatic primary amines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, laurylamine and pentadecylamine. , Cetylamine, stearylamine, cyclohexylamine and the like.
  • saturated aliphatic secondary amines include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diamylamine, dioctylamine, di (2-ethylhexyl) amine, didecylamine, dilaurylamine, and disetylamine.
  • saturated aliphatic secondary amines include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diamylamine, dioctylamine, di (2-ethylhexyl) amine, didecylamine, dilaurylamine, and disetylamine.
  • distearylamine methylstearylamine, ethylstearylamine, butylstearylamine and the like.
  • saturated aliphatic tertiary amines include triamylamine, trihexylamine, trioctylamine, 1,4-diazabicyclo [2.2.2] octane (DABCO) and the like.
  • aliphatic unsaturated amines include triallylamine, oleylamine and the like.
  • aromatic amines include laurylaniline, stearylaniline, triphenylamine and the like.
  • amines other than the above amines include monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, oleylamine, benzylamine, diethylaminopropylamine, xylylenediamine, ethylenediamine, hexamethylenediamine.
  • Triethylenediamine, guanidine, diphenylguanidine, 2,4,6-tris (dimethylaminomethyl) phenol, morpholin, N-methylmorpholin, 2-ethyl-4-methylimidazole, 1,8-diazabicyclo [5.4.0] ] -7-Amine-based compounds such as undecene (DBU) can be mentioned.
  • reaction product and mixture of the amine compound and the organic tin compound examples include a reaction product or a mixture of laurylamine and tin octylate.
  • silane coupling agent having an amino group examples include 3-amino-n-propyltrimethoxysilane, 3-amino-n-propyltriethoxysilane, 3-amino-n-propyltriisopropoxysilane, and 3-.
  • Examples of the derivative obtained by modifying the above-mentioned silane coupling agent having an amino group include an amino-modified silyl polymer, a silylated amino polymer, an unsaturated amino silane complex, a phenylamino long chain alkyl silane, and an amino silylated silicone.
  • fatty acids such as ferzatic acid
  • other acidic catalysts such as organic acidic phosphoric acid ester compounds, basic catalysts and the like can be exemplified as known silanol condensation catalysts.
  • a tin-containing catalyst containing Sn is preferable, and dialkyltin dicarboxylates and dialkyltin.
  • Alcoxides, intramolecular coordinating derivatives of dialkyl tin, reaction products of dialkyl tin oxide and ester compounds, tin compounds obtained by reacting dialkyl tin oxide, carboxylic acids and alcohol compounds, dialkyl tin oxide and silicate compounds , And tetravalent tin compounds such as oxy derivatives (stanoxane compounds) of these dialkyl tin compounds are preferably contained.
  • the tin-containing catalyst As the tin-containing catalyst, the higher the ratio of the mass of tin atoms to the mass, the higher the catalytic activity, which is preferable. Further, from the viewpoint of suppressing shrinkage of the foam over time after the production of the foam, dialkyltin dicarboxylates are preferable as the silanol condensation catalyst (D), and dibutyltin diacetate is more preferable.
  • the catalytic activity is unlikely to decrease due to the influence of carbon dioxide generated by the foaming reaction of the dicarbonate diester (B-1), and the foaming reaction between the dicarbonate diester (B-1) and water and the curing of the base resin (A)
  • silanol condensation catalysts (D) listed above a neutral or weakly acidic silanol condensation catalyst is preferable, and a weakly acidic silanol condensation catalyst is more preferable, from the viewpoint of allowing the reaction to proceed in a particularly well-balanced manner.
  • Carbonic acid is generated when carbon dioxide dissolves in water.
  • the silanol condensation catalyst (D) is a neutral or weakly acidic catalyst among the various tin-containing catalysts described above as a neutral or weakly acidic silanol condensation catalyst because the base resin (A) can be easily cured. Is preferably included. From this point of view, dialkyltin dicarboxylates are preferable as the neutral or weakly acidic tin-containing catalyst with respect to the silanol condensation catalyst (D).
  • a compound represented by the following formula (D1) or an oligomer or polymer composed of a structural unit represented by the following formula (D2) is preferable.
  • R d1 and R d2 may be the same or different, respectively.
  • R d1 and R d2 are linear or branched alkyl groups, and a linear alkyl group is preferable.
  • the number of carbon atoms of the alkyl group as R d1 and R d2 is not particularly limited, and is preferably 1 or more and 20 or less, more preferably 2 or more and 16 or less, and further preferably 3 or more and 10 or less. Since the tin-containing catalyst is easily available and the activity of the tin-containing catalyst as a silanol condensation catalyst (D) is good, n-butyl group and n-octyl group are used as R d1 and R d2. preferable.
  • R d3 and R d4 are organic groups having 1 or more and 40 or less carbon atoms, respectively.
  • the number of carbon atoms of the organic group as R d3 and R d4 is preferably 1 or more and 30 or less.
  • R d6 is a hydrocarbon group having 1 or more and 30 or less carbon atoms.
  • the hydrocarbon group may be an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a combination of an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
  • the number of carbon atoms of the hydrocarbon group as R d6 is preferably 1 or more and 20 or less.
  • R d5 is a divalent organic group having 1 or more and 40 or less carbon atoms.
  • the number of carbon atoms of the organic group as R d5 is preferably 1 or more and 30 or less, more preferably 1 or more and 10 or less, and further preferably 1 or more and 4 or less.
  • the organic group as R d5 may contain heteroatoms such as O, S, N, and Si.
  • Preferable specific examples of the compound represented by the above formula (D1) or the oligomer or polymer composed of the structural unit represented by the above formula (D2) are as described above as specific examples of dialkyltin dicarboxylates. , Dibutyltin diacetate is particularly preferred.
  • the case where the pH is 6.0 or more and less than 8.0 is regarded as neutral
  • the case where the pH is 3.5 or more and less than 6.0 is regarded as weakly acidic.
  • the resin composition for a foam containing a neutral or weakly acidic silanol condensation catalyst (D) is particularly useful when constructing a foam at a construction site or a manufacturing site of various industrial products. Is. This is because foaming and curing in a short time are required for the construction of the foam on site.
  • the basic silanol condensation catalyst (D) are the above-mentioned aliphatic primary amines, aliphatic secondary amines, aliphatic tertiary amines, and aliphatic unsaturated amines, respectively. , And aromatic amines, other amines other than these amines, and silane coupling agents having an amino group.
  • the curing reaction of the base resin (A) may be slightly slow.
  • the above-mentioned amines and the silane coupling agent having an amino group are used in combination with a catalyst having a high effect of accelerating the curing reaction of the base resin (A), such as the above-mentioned various tin-containing catalysts.
  • a catalyst having a high effect of accelerating the curing reaction of the base resin (A) such as the above-mentioned various tin-containing catalysts.
  • the basic silanol condensation catalyst (D) is preferably used in combination with a neutral or weakly acidic tin-containing catalyst, more preferably in combination with dialkyltin dicarboxylates, and dibutyltin dicarboxylate. Is most preferred.
  • the content of the silanol condensation catalyst (D) is preferably 90 parts by weight or less, more preferably 0.05 parts by weight or more and 80 parts by weight or less, and 0.05 parts by weight or more with respect to 100 parts by weight of the base resin (A). 20 parts by weight or less is more preferable, and 1 part by weight or more and 15 parts by weight or less is even more preferable. If the content of the silanol condensation catalyst (D) is more than 80 parts by weight, the foam may bottom out due to compression of the obtained foam. By adjusting the amount of silanol condensation catalyst, the curability of the resin composition for foam can be adjusted.
  • the foam resin composition preferably contains a silanol condensation catalyst (D) that acts as a foaming aid (E) and / or a foaming aid (E).
  • the foaming aid (E) is a component that promotes foaming due to the decomposition of the dicarbonate diester (B-1).
  • the foaming aid (E) is not particularly limited as long as it is a compound that promotes foaming when added to a mixture containing water and a dicarbonate diester (B-1).
  • the foaming aid (E) preferably includes an organic or inorganic basic compound. Therefore, the basic catalyst described above as the silanol condensation catalyst may act as a foaming aid (E).
  • the resin composition for a foam contains a component that acts as a foaming aid (E) such as the above-mentioned basic silanol condensation catalyst as the silanol condensation catalyst (D)
  • foaming is conveniently performed.
  • the body resin composition is treated as containing both the silanol condensation catalyst (D) and the foaming aid (E).
  • silanol condensation catalyst (D) acting as a foaming aid (E) are bis (N, N-dimethylamino-2-ethyl) ether, triethylenediamine and N, N, N', N'-.
  • the content of the foaming aid (E) that does not correspond to the silanol condensation catalyst (D) is preferably 0.05 parts by weight or more and 20 parts by weight or less, preferably 0.1 parts by weight, based on 100 parts by weight of the base resin (A). More than 10 parts by weight is more preferable, and 0.5 parts by weight or more and 5 parts by weight or less is further preferable.
  • the content of the silanol condensation catalyst (D) acting as the foaming aid (E) is the same as the content of the silanol condensation catalyst (D) described above.
  • a plasticizer, a reactivity modifier, and a dye can be added to the foam resin composition for the purpose of adjusting the flexibility and molding processability of the foam.
  • a plasticizer having a main chain composed of repeating units composed of oxyalkylene-based units is preferable.
  • the main chain include polyethylene oxide, polypropylene oxide, polybutylene oxide; two or more random or block copolymers selected from ethylene oxide, propylene oxide, and butylene oxide, which are used alone. Alternatively, two or more types may be used in combination.
  • polypropylene oxide is preferable in terms of compatibility with the base resin (A). Further, those obtained by modifying these oxyalkylenes with isocyanate can also be added.
  • the molecular weight of the plasticizer has a number average molecular weight of 1000 or more, preferably 3000 or more, from the viewpoint of the flexibility of the obtained foam and the prevention of the plasticizer from flowing out of the system.
  • the upper limit is not particularly limited, but if the number average molecular weight becomes too high, the viscosity increases and workability deteriorates. Therefore, 50,000 or less is preferable, and 30,000 or less is more preferable.
  • the plasticizer is not particularly limited as long as it can impart flexibility to the foam, and may be linear or branched.
  • the amount of the plasticizer added is preferably 5 parts by weight or more and 150 parts by weight or less, more preferably 10 parts by weight or more and 120 parts by weight or less, and further preferably 20 parts by weight with respect to 100 parts by weight of the base resin (A). It is 100 parts by weight or less.
  • the amount of the plasticizer added is within the above range, it is easy to adjust the flexibility and moldability, have good mechanical strength, and easily form a foam having a desired foaming ratio.
  • the method for producing the plasticizer is not particularly limited, and a known production method can be applied, and a commercially available compound may be used.
  • the reactivity modifier preferably has a reactive silicon group.
  • the reactivity modifier may be a silicate compound such as methyl silicate or ethyl silicate, a copolymer of a vinyl monomer having a reactive silicon group, or a reactive silicon having a chain transfer group such as thiol. It may be a copolymer using a monomer. These may be used alone or in combination of two or more.
  • the molecular weight of the reactivity modifier is preferably 1000 or more, more preferably 3000 or more, in terms of number average molecular weight from the viewpoint of curing and foaming of the obtained foam.
  • the upper limit is not particularly limited, but is preferably 50,000 or less, more preferably 30,000 or less, because the viscosity of the resin composition for foam can be easily set within a workable range.
  • the reactivity modifier is not particularly limited as long as it can adjust the curability of the foam resin composition, whether it is linear or branched.
  • the amount of the reactivity adjusting agent added is preferably 2 parts by weight or more and 120 parts by weight or less, more preferably 5 parts by weight or more and 80 parts by weight or less, and further preferably 10 parts by weight with respect to 100 parts by weight of the base resin (A). It is 50 parts by weight or more and 50 parts by weight or less.
  • an amount of the reaction modifier within such a range is used, the curability can be easily adjusted within an appropriate range, and curing can proceed at an appropriate rate to easily obtain a foam having a high foaming ratio.
  • the method for producing the reactivity adjusting agent is not particularly limited, and a known production method can be applied, and a commercially available compound may be used.
  • a light resistance stabilizer, an ultraviolet absorber, a storage stabilizer, a bubble modifier, a lubricant, a flame retardant, etc. may be added to the foam resin composition as necessary, as long as the effects of the present invention are not impaired. Good.
  • the light resistance stabilizer examples include a hindered phenol-based antioxidant and a hindered amine-based light stabilizer containing no sulfur atom, phosphorus atom, primary amine, or secondary amine.
  • the light resistance stabilizer has a function of absorbing light having a wavelength in the ultraviolet region to suppress the generation of radicals, or a function of capturing radicals generated by light absorption and converting them into thermal energy to make them harmless. It is a compound that enhances the stability against light.
  • the ultraviolet absorber is not particularly limited, and examples thereof include a benzoxazine-based ultraviolet absorber, a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, and a triazine-based ultraviolet absorber.
  • the ultraviolet absorber is a compound having a function of absorbing light having a wavelength in the ultraviolet region and suppressing the generation of radicals.
  • the amount of the light-resistant stabilizer and the ultraviolet absorber added is preferably 0.01 parts by weight or more and 5 parts by weight or less, and 0.1 parts by weight or more and 3 parts by weight or more, respectively, with respect to 100 parts by weight of the base resin (A). More preferably, it is 0.3 parts by weight or more, and further preferably 2.0 parts by weight or less.
  • the amount of the light-resistant stabilizer and the ultraviolet absorber added is within the above range, the effect of suppressing an increase in surface adhesiveness with time can be easily obtained.
  • Preferred examples of the storage stability improving agent include, for example, a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic sulfur compound, a nitrogen-containing compound, a tin compound, and an organic peroxide. These may be used alone or in combination of two or more. Specifically, 2-benzothiazolyl sulfate, benzothiazole, thiazole, dimethylacetylene dicarboxylate, diethylacetylene dicarboxylate, 2,6-di-t-butyl-4-methylphenol, butylhydroxyanisole, vitamins.
  • a bubble modifier may be added to the foam resin composition.
  • the type of the bubble adjusting agent is not particularly limited, and examples thereof include inorganic solid powders such as talc, magnesium oxide, titanium oxide, zinc oxide, carbon black, and silica, which are usually used. These may be used alone or in combination of two or more. However, the inorganic solid powder tends to inhibit the sound absorption of the foam in the low frequency band. Therefore, when an inorganic solid powder is used, the amount used is preferably a small amount so that sound absorption in the low frequency band is not excessively hindered.
  • the amount of the bubble adjusting agent used is preferably 0.1 part by weight or more and 100 parts by weight or less, and more preferably 0.5 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the base resin (A).
  • a foam stabilizer may be added to the resin composition for foam.
  • the type of the foam stabilizer is not particularly limited, and examples thereof include silicone oil-based compounds such as polyether-modified silicone oil and fluorine-based compounds, which are usually used. These may be used alone or in combination of two or more. In particular, polypropylene and polyethylene-modified silicone may be expected to have foam-regulating power in a small amount.
  • the amount of the foam stabilizer used is preferably 0.2 parts by weight or more and 30 parts by weight or less, and more preferably 0.5 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the base resin (A).
  • Hollow particles may be added to the resin composition for foam, if necessary.
  • the type of hollow particles is not particularly limited, and is generally used, for example, a thermoplastic shell polymer containing a volatile liquid that becomes gaseous at a temperature below the softening point of the shell polymer and heated to volatilize. Examples thereof include those in which the sex liquid becomes gaseous and the shell polymer is softened and expanded. It is also possible to add hollow particles before expansion and foam them during molding.
  • the amount of the hollow particles used is preferably 0.2 parts by weight or more and 30 parts by weight or less, and more preferably 0.5 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the base resin (A).
  • a lubricant can be added for the purpose of improving the compatibility of the foam resin composition containing the base resin (A), the chemical foaming agent (B), and water (C).
  • a lubricant By containing a lubricant, friction and adhesion in the foam cell of the foam formed by foaming the resin composition for foam can be reduced, and a foam having desired flexibility can be obtained. Further, the lubricant is held by the three-dimensional network structure formed by the silanol condensation reaction between the base resins (A), and tends to suppress bleeding out of the foam system, so that it is flexible for a long period of time. It becomes possible to maintain sex.
  • liquid lubricant As the lubricant, a liquid lubricant is preferable.
  • liquid lubricants include animal and vegetable oils such as paraffin mineral oil, naphthenic mineral oil, and fatty acid glyceride; olefin lubricants having an alkyl structure such as poly-1-decene and polybutene; alkyl aromatics having an aralkyl structure.
  • Compound-based lubricants Polyalkylene glycol-based lubricants; Ether-based lubricants such as polyalkylene glycol ethers, perfluoropolyethers, and polyphenyl ethers; fatty acid esters, fatty acid diesters, polyol esters, silicic acid esters, phosphoric acid esters, etc.
  • Ester-based lubricants with an ester structure dimethyl silicone (ie, dimethylpolysiloxane with both terminal trimethylsiloxy groups blocked), and some of the methyl groups of dimethylsilicone are polyether groups, phenyl groups, alkyl groups, aralkyl groups, and fluorinated Examples thereof include silicone-based lubricants such as silicone oil substituted with an alkyl group and the like; fluorine atom-containing lubricants such as chlorofluorocarbon. These may be used alone or in combination of two or more.
  • silicone-based lubricants are particularly preferable from the viewpoint of reducing the coefficient of friction in the foam cell, dispersibility, workability, safety, and the like.
  • the amount of the lubricant added is preferably 1 part by weight or more, more preferably 2 parts by weight or more, and further preferably 3 parts by weight or more with respect to 100 parts by weight of the base resin (A).
  • the upper limit of the amount of the lubricant added is not particularly limited, but is preferably 25 parts by weight or less, more preferably 20 parts by weight or less.
  • the flame retardant include red phosphorus, phosphoric acid ester, phosphate-containing flame retardant, bromine-containing flame retardant, boron-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. These may be used alone or in combination of two or more.
  • red phosphorus is used in combination with at least one selected from phosphoric acid ester, phosphate-containing flame retardant, bromine-containing flame retardant, boron-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. It is preferable to be done.
  • the resin composition for a foam is used as a two-component or three-component or more liquid type liquid composition. May occur. Since it is easy to prepare the resin composition for foam by mixing, the resin composition for foam is preferably a two-component resin composition.
  • the multi-component resin composition preferably contains a first liquid containing the base resin (A), a dicarbonate ester (B-1), and at least a second liquid containing a silanol condensation catalyst (D). .. It is also preferable that the second liquid contains water (C).
  • the silanol condensation catalyst (D) is contained in the first liquid, curing due to cross-linking between the base resin (A) may proceed. However, by containing the silanol condensation catalyst (D) in a liquid different from the first liquid, it is possible to prevent the base resin (A) from being cured before the foam is produced.
  • the silanol condensation catalyst (D) preferably contains a neutral or weakly acidic silanol condensation catalyst, and more preferably contains a weakly acidic silanol condensation catalyst.
  • the foaming aid (E) and / or the foaming aid (E) are added to the second liquid containing the silanol condensation catalyst (D) or the liquids other than the first liquid and the second liquid. ), It is preferable to contain a silanol condensation catalyst (D).
  • the method for producing a foam using the preferable resin composition for a foam described above may be, for example, a batch method in which the resin composition for a foam is filled in a mold, and then foamed and cured in the mold. Often, a continuous type may be used in which the foam resin composition is continuously foamed and cured on a continuously moving band-shaped support. A non-woven fabric can be used as the support.
  • the above resin composition for a foam is completely liquid or insoluble in a pigment (for example, carbon black) by using dicarbonate diester (B-1) as the chemical foaming agent (B). Can be made into a low viscosity composition containing only a small amount of.
  • a one-component, two-component or more multi-component resin composition for foam is discharged onto the construction surface and collided and mixed on the construction surface. It is possible to form a film-like foam on the construction surface.
  • the foam is typically a mixture of a base resin (A) having a reactive silicon group, a first liquid containing a dicarbonate diester (B-1), and a silanol condensation catalyst (D).
  • A base resin
  • B-1 first liquid containing a dicarbonate diester
  • D silanol condensation catalyst
  • the foaming rate due to the decomposition of the dicarbonate diester (B-1) and the rate of the curing reaction of the mixed solution due to the reaction between the reactive silicon groups are 2 times or more and 60 times or less. Each is adjusted so that a foam is obtained.
  • the foaming rate due to the decomposition of the dicarbonate diester (B-1) is determined by, for example, the type and amount of the dicarbonate diester (B-1) used, the content of water (C) in the mixed solution, and the environment for producing the foam. It can be adjusted by appropriately changing the temperature and the type and content of the silanol condensation catalyst (D) acting as the foaming aid (E) and / or the foaming aid (E) in the mixed solution.
  • the rate of curing reaction of the mixed solution is, for example, the type and amount of reactive silicon contained in the base resin (A), the type and content of the silanol condensation catalyst (D) in the mixed solution, and the water in the mixed solution ( It can be adjusted by appropriately changing the content of C), the temperature of the environment in which the foam is produced, and the like.
  • the foaming rate due to the decomposition of the dicarbonate diester (B-1) and the curing reaction rate of the mixed solution are preferably adjusted so that the foaming ratio of the obtained foam is 2 times or more and 60 times or less. It is more preferable that the foaming ratio is adjusted to be 5 times or more and 40 times or less.
  • the amount of the dicarbonate diester (B-1) used and the amount of the silanol condensation catalyst (D) used in the above production method are as described above for the composition.
  • the amount of the dicarbonate diester (B-1) used is preferably 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the base resin (A), and more preferably 2 parts by weight or more and 40 parts by weight or less. 5, 5 parts by weight or more and 30 parts by weight or less are particularly preferable.
  • the amount of the silanol condensation catalyst (D) used is preferably 0.05 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the base resin (A), and more preferably 1 part by weight or more and 15 parts by weight or less. ..
  • the silanol condensation catalyst (D) acting as the foaming aid (E) and / or the foaming aid (E) is mixed with the first liquid.
  • the silanol condensation catalyst (D) acting as a foaming aid (E) 1,4-diazabicyclo [2.2.2] octane is preferable.
  • the temperature at which the resin composition for a foam is cured and foamed is not particularly limited.
  • the temperature at which the resin composition for a foam is cured and foamed is, for example, preferably ⁇ 10 ° C. or higher and 40 ° C. or lower, and more preferably 0 ° C. or higher and 37 ° C. or lower. Under such temperature conditions, it is easy to produce a foam using the resin composition for foam at the site where the foam is used.
  • There is no particular limitation on the time required for curing and foaming to complete For example, 12 minutes or less is preferable, and 10 minutes or less is more preferable.
  • the foam produced in this manner is preferably distributed and sold as another sound absorbing material after being dried.
  • the conditions of the drying temperature and time are not particularly limited as long as they can be derived from the resin composition for foam or the water, alcohol, etc. produced by the curing reaction can be reduced to a desired degree.
  • the drying conditions may be, for example, about 1 hour in an atmosphere of about 80 ° C.
  • the drying temperature and time conditions may be, for example, about 12 hours in an atmosphere of about 60 ° C.
  • dicarbonate diester is used as the chemical foaming agent (B) and the amount of water (C) used is set low, it is possible to use other sound absorbing material products without drying. Is.
  • the resin composition used for forming the foams constituting the other sound absorbing materials described above is usually liquid and exhibits good fluidity. Therefore, the resin composition can be satisfactorily filled and foamed even in a mold having fine flow paths and recesses. Further, since the foaming pressure is small, a simple mold can be used. Therefore, for the production of the mold used for the production of the foam using the resin composition, a 3D printer capable of easily producing the mold having an internal shape which is fine or complicated is preferably used. be able to.
  • a formwork using a 3D printer Injecting a liquid resin composition containing a polyoxyalkylene polymer (A1) having a reactive silicon group into a mold, and
  • the foam or the other sound absorbing material described above can be satisfactorily produced by a method including the formation of a foam by curing the resin composition while foaming.
  • the material of the mold formed by using the 3D printer is not particularly limited, but it is preferably a transparent and lightweight resin material whose contents can be confirmed.
  • the resin composition is a multi-component resin composition
  • a plurality of liquids constituting the multi-component resin composition may be injected into the mold simultaneously or sequentially, and the plurality of liquids are mixed. It may be injected into the mold in a state, and it is preferable to inject into the mold in a state where a plurality of liquids are mixed.
  • Various sounds, especially noise, can be insulated by using the other sound absorbing materials described above. Since the above-mentioned other sound absorbing materials can absorb sound in a wide frequency band and at the same time can insulate sound in a wide frequency band, the other sound absorbing materials mentioned above can be used in a frequency range of 1000 Hz or more and 4500 Hz or less. It is preferable to insulate the sound containing the above components while absorbing it by another sound absorbing material. As a result, the sound passing through the other sound absorbing material is significantly attenuated, and the sound reflected by the other sound absorbing material is also significantly attenuated.
  • the motor in a support composed of a motor and a casing accommodating the motor, in a sound absorbing structure described later in which a gap between the motor and the casing is filled with another sound absorbing material, the motor is inside the sound absorbing structure. Since the generated noise can be absorbed while being insulated, the operation of the motor can be made extremely quiet.
  • the conventional sound absorbing material absorbs and attenuates sound by passing sound waves, it is difficult to improve the sound insulation. Further, since the sound insulating material reflects sound waves without passing through them, sound leaks from the gaps in a casing having a gap, and soundproofing cannot be improved.
  • the sound absorbing structure includes the above-mentioned other sound absorbing material and a support that supports the other sound absorbing material.
  • the support is not particularly limited as long as it can support other sound absorbing materials.
  • the support is not particularly limited, and may be a cloth, a plate made of resin, wood, or gypsum, or a pipe made of resin or wood.
  • examples of sound absorbing structures for buildings include sound absorbing structures in which other sheet-shaped sound absorbing materials are supported on resin, wooden, or gypsum boards, or inside resin, wooden, or gypsum.
  • Examples thereof include a sound absorbing structure composed of a box-shaped sheet-shaped member having a cavity and another sound absorbing material filled in the cavity inside the sheet-shaped member.
  • Such other sound absorbing materials can be used as materials for walls, floors, and ceilings in buildings.
  • the sound absorbing structure may be formed by supporting the other sound absorbing materials described above on exterior materials and interior materials such as doors, bonnets, roofing materials (roofs), floor materials, fenders, pillars, and seats.
  • a sound absorbing structure in which another sound absorbing material is supported by the pneumatic tire so as to cover at least a part of the surface on the lumen side of the pneumatic tire is also preferable. According to the sound absorbing structure provided with the pneumatic tire as a support, it is easy to suppress the propagation of road noise into the vehicle.
  • a sound absorbing structure in which the support is composed of a motor and a casing accommodating the motor, and the gap between the motor and the casing is filled with another sound absorbing material is also preferable.
  • the motor include a drive motor, a pump motor, a power generation motor, a fan motor, a power generation motor, an electric power steering motor, a blower motor for an air conditioner and an air cooling device, which are mounted on electric vehicles and hybrid vehicles.
  • Examples include motors for power windows and motors for electric power seats. According to such a sound absorbing structure including a motor, it is possible to suppress the propagation of noise caused by driving the motor from the sound absorbing structure to the outside of the sound absorbing structure, and to reduce the noise in the space inside the vehicle.
  • the above-mentioned sound absorbing structure can be manufactured by fixing another sound absorbing material to the surface of the support or filling the space defined by the support with the other sound absorbing material.
  • a method of fixing the other sound absorbing material to the surface of the support a method using a fixture such as a nail, a screw, a screw, or a clip may be used, or a method using an adhesive, an adhesive tape or the like may be used. ..
  • the resin composition for a foam used for forming a foam as another sound absorbing material is a liquid curable composition containing a polyoxyalkylene polymer (A1) having a reactive silicon group, it is liquid.
  • the curable composition is applied to the surface of the support and then cured while foaming the liquid curable composition, or the space defined by the support is filled with the liquid curable composition and then the liquid curable.
  • a sound absorbing structure can be produced by curing the composition while foaming it.
  • the foaming and curing of the liquid curable composition is carried out according to the above-mentioned method for producing a foam.
  • the support When the liquid curable composition is filled in the space defined by the support and then cured while foaming the liquid curable composition, the support is provided with a vent for releasing the gas generated by the foaming reaction. It is preferable that it is. Since the cured product of the liquid curable composition containing the oxyalkylene polymer (A1) having a reactive silicon group has adhesiveness to various materials, a sound absorbing structure can be produced by the above method. ..
  • a liquid curable composition containing an oxyalkylene polymer (A1) having a reactive silicon group is applied to the inner surface of the tire as a support, and then the applied liquid.
  • a tire provided with another sound absorbing material can be produced as a sound absorbing structure.
  • a liquid curable composition containing the oxyalkylene polymer (A) having a reactive silicon group By curing the filled liquid curable composition while foaming, a sound absorbing structure containing a motor in a casing can be manufactured.
  • ⁇ Polymer D > 60 parts by weight of polymer A, methyl methacrylate (MMA), 2-ethylhexyl acrylate (2EHA), stearyl methacrylate (SMA), 3- (trimethoxysilyl) propyl methacrylate (TSMA), and (3-mercaptopropyl).
  • 40 parts by weight of the copolymer of trimethoxysilane (A189Z) and 27 parts by weight of isobutyl alcohol which is the solvent of the copolymer are degassed and uniformly mixed using a rotary evaporator, and a reactive silicon group-containing polyoxy is mixed.
  • the copolymerization ratio (mass ratio) of the copolymer is 65/24/1/10/8 as MMA / 2EHA / SMA / TSMA / A189Z.
  • the glass transition temperature of the copolymer is 43 ° C.
  • the number average molecular weight of the polymer is 2,200 (polystyrene-equivalent molecular weight measured using HLC-8120GPC manufactured by Tosoh as a liquid feeding system, TSK-GEL H type manufactured by Tosoh as a column, and THF as a solvent). is there.
  • tBMA tert-butyl methacrylate
  • A189Z 3-mercaptopropyl trimethoxysilane
  • the copolymerization ratio (mass ratio) of the copolymer is 64 / 0.3 / 0.3 / 10/10/15 / 7.2 as MMA / BA / 2EHA / SMA / TSMA / tBMA / A189Z. ..
  • the glass transition temperature of the copolymer is 70 ° C.
  • the number average molecular weight of the polymer is 2,300 (polystyrene-equivalent molecular weight measured using HLC-8120GPC manufactured by Tosoh as a liquid feeding system, TSK-GEL H type manufactured by Tosoh as a column, and THF as a solvent). is there.
  • ⁇ Polymer F > 60 parts by weight of polymer A, methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (2EHA), stearyl methacrylate (SMA), 3- (trimethoxysilyl) propyl methacrylate (TSMA), Using a rotary evaporator, 40 parts by weight of a copolymer of isoboronyl methacrylate (iBOMA) and (3-mercaptopropyl) trimethoxysilane (A189Z) and 27 parts by weight of isobutyl alcohol as a solvent for the copolymer were used.
  • iBOMA isoboronyl methacrylate
  • A189Z 3-mercaptopropyl trimethoxysilane
  • a polymer F having a solid content of 100% which is a blend of 60 parts by weight of the reactive silicon group-containing polyoxypropylene (polymer A) and 40 parts by weight of the acrylic resin.
  • the copolymerization ratio (mass ratio) of the copolymer is 20 / 0.3 / 0.3 / 10/10/60 / 1.8 as MMA / BA / 2EHA / SMA / TSMA / iBoMA / A189Z. ..
  • the glass transition temperature of the copolymer is 100 ° C.
  • the elementary average molecular weight of the polymer is 5,300 (polystyrene-equivalent molecular weight measured using HLC-8120GPC manufactured by Tosoh as a liquid feeding system, TSK-GEL H type manufactured by Tosoh as a column, and THF as a solvent). is there.
  • this first liquid 2 parts by weight of a foam stabilizer [Ebonic Japan Co., Ltd., Tegostarve BF2470], silanol condensation catalyst (D) [Nitto Kasei Co., Ltd., Neostan U200 (dibutyltin diacetate)] 6 parts by weight and 4 parts by weight of silanol condensation catalyst (D) [DABCO (1,4-diazabicyclo [2.2.2] octane)] are added, and the volume is graduated at room temperature (23 ° C atmosphere).
  • a total of 10 cc was prepared in a resin cup, and the mixture was manually stirred with a 10 mm wide spatula for 10 seconds to foam.
  • Table 1 shows the foaming ratio after 5 minutes from the start of stirring and the density of the foam.
  • the ASKER FP hardness of the obtained foam at 0 ° C. was measured. The FP hardness is shown in Table 1.
  • Example 3 40 parts by weight of base resin (A) [polymer A], 60 parts by weight of base resin (A) [polymer F], dicarbonate diester (B-1) [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., diethyl dicarbonate ] 13 parts by weight and 4 parts by weight of water (C) were added and mixed thoroughly to prepare a first liquid.
  • a foam stabilizer [Ebonic Japan Co., Ltd., Tegostarve BF2470]
  • silanol condensation catalyst (D) [Nitto Kasei Co., Ltd., Neostan U200 (dibutyltin diacetate) )] 4 parts by weight and 1.2 parts by weight of silanol condensation catalyst (D) [DABCO (1,4-diazabicyclo [2.2.2] octane)]
  • D silanol condensation catalyst
  • Table 1 shows the foaming ratio after 5 minutes from the start of stirring and the density of the foam.
  • ASKER FP hardness of the obtained foam at 0 ° C. was measured. The FP hardness is shown in Table 1.
  • the foam of Example 2 for measuring the sound absorption coefficient was prepared according to the following method. First, 80 parts by weight of [Polymer A], 20 parts by weight of [Polymer E], 10 parts by weight of foaming agent (B-1) [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., diethyl carbonate], and water (C). 2 parts by weight was added and mixed sufficiently to prepare a solution A.
  • a foam was prepared by adding 6 parts by weight and 6 parts by weight of Sn catalyst (D) [dibutyltin diacetate (NEOSTANN U-200, manufactured by Nitto Kasei Co., Ltd.)] and thoroughly mixing them.
  • Foam molding was produced by stirring under the following conditions using a stirrer Magella ZZ-2221 manufactured by Tokyo Rika Kikai Co., Ltd.
  • the skin layer of the obtained soft resin foam was cut to a thickness of 25 mm or 20 mm, and the B tube sample was punched to a diameter of 29 mm to obtain a sound absorption coefficient measurement sample (skin layer cutting step).
  • the foam of Example 3 for measuring the sound absorption coefficient was prepared according to the following method. First, 40 parts by weight of [Polymer A], 60 parts by weight of [Polymer D], 13 parts by weight of foaming agent (B-1) [diethyl carbonate manufactured by Wako Pure Chemical Industries, Ltd.], and 4 parts by weight of water (C). was added and mixed thoroughly to prepare a solution A.
  • foam stabilizer [Evonik Degussa Japan Co., Ltd., TEGOSTAB BF2470], which is a component of the liquid A and liquid B, and the foaming aid [Evonik Degussa Japan Co., Ltd., DABCO NE1070] 1 .2 parts by weight and 4 parts by weight of Sn catalyst (D) [dibutyltin diacetate (NEOSTANN U-200, manufactured by Nitto Kasei Co., Ltd.)] were added and thoroughly mixed to prepare a foam.
  • Sn catalyst (D) dibutyltin diacetate (NEOSTANN U-200, manufactured by Nitto Kasei Co., Ltd.)] were added and thoroughly mixed to prepare a foam.
  • Foam molding was produced by stirring under the following conditions using a stirrer Magella ZZ-2221 manufactured by Tokyo Rika Kikai Co., Ltd.
  • the skin layer of the obtained soft resin foam was cut to a thickness of 20 mm, and the B tube sample was punched to a diameter of 29 mm to obtain a sound absorption coefficient measurement sample (skin layer cutting step).
  • a urethane sponge sound absorbing material ZS manufactured by Sonorize Co., Ltd. was punched to a diameter of 29 mm to obtain a sound absorption coefficient measurement sample of a B tube.
  • the sound absorption coefficient of the foam in the frequency range of 500 Hz to 6400 Hz was measured using a B tube at 20 ° C. according to JISA-1405-2.
  • the test piece is in a state where the skin layer is completely cut.
  • the measurement result of the sound absorption coefficient is shown in FIG.
  • DABCO is DABCO NE1070 and acts as a foaming aid (E).
  • the sound absorption coefficient of the foam of Comparative Example 1, which is a known polyurethane foam is lower than the sound absorption coefficient of the foam of Example in the entire frequency range in the graph shown in FIG. 1, especially in the range of 800 Hz to 2500 Hz. Low.
  • each of the foam of Example 2 and the foam of Example 3 had a thickness of 20 mm, and a test piece having a cut skin layer was prepared. Using the prepared test piece, the sound absorption coefficient of the foam in the frequency range of 500 Hz to 6400 Hz was measured using a B tube at 20 ° C. according to JISA-1405-2. The measurement result of the sound absorption coefficient is shown in FIG. According to FIG. 2, it can be seen that there is no significant difference in sound absorption coefficient between the foam of Example 2 and the foam of Example 3.
  • metal salts and inorganic fine particles are not used as materials used for producing the foam.
  • the alkali metal content, especially the sodium content, of the foams obtained in Examples 1 to 3 was confirmed by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy), but the alkali metal content. was a very small amount of less than 0.005% by mass. It is considered that the low content of the metal salt and the inorganic particles in the foam contributes to the high sound absorption of the foam, particularly the high sound absorption at frequencies of 1000 Hz or less and 800 Hz or less. As a result of the test by the inventor, it was confirmed that the sound absorption property at a frequency of 1000 Hz or less or 800 Hz or less tends to decrease slightly as the content of the metal salt or the inorganic fine particles in the foam increases.
  • Example 3 [Examination of the effect on the sound absorption coefficient of the skin layer]
  • the foam of Example 3 and the foam of Comparative Example 2 (polyurethane foam manufactured by Saint-Gobain, AGP200, density 30 kg / m 3 ) were 20 mm thick, respectively, and the skin layer was cut off.
  • a test piece having the above was prepared.
  • the sound absorption coefficient of the foam in the frequency range of 500 Hz to 6400 Hz was measured using a B tube at 20 ° C. according to JISA-1405-2.
  • the sound absorption coefficient for each frequency was almost the same between the test piece having the skin layer and the test piece having the skin layer cut.
  • the sound absorption coefficient of the test piece having the skin layer was significantly inferior to the sound absorption coefficient of the test piece having the skin layer cut in the frequency range of 1000 to 3000 Hz. That is, the foam of Example 3 has a small influence on the sound absorption characteristics with and without the skin layer. For example, when a foam is constructed using a resin composition for a foam at a construction site or a manufacturing site of various products, it may be difficult to cut the skin layer. However, since the foam of the example has a small influence on the sound absorption characteristics of the presence or absence of the skin layer, even if the foam is applied at the construction site or the manufacturing site of various products, the sound absorption characteristics of the foam are sufficiently sufficient. Can be demonstrated.
  • Base resin (A) [polymer A] 100 parts by weight, dicarbonate diester (B-1) [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., diethyl dicarbonate] 10 parts by weight, and water (C) 2 parts by weight.
  • the first solution was prepared by adding and mixing well.
  • this first liquid To 112 parts by weight of this first liquid, 2 parts by weight of a foam stabilizer [Ebonic Japan Co., Ltd., Tegostarve BF2470], silanol condensation catalyst (D) [Nitto Kasei Co., Ltd., Neostan U200 (dibutyltin diacetate)] Made of resin with a volume scale at room temperature (23 ° C atmosphere) with the addition of 6 parts by weight and 4 parts by weight of silanol condensation catalyst [DABCO (1,4-diazabicyclo [2.2.2] octane)].
  • D silanol condensation catalyst
  • Base resin (A) [Polymer C, polyether having dimethoxy (methyl) silylmethyl carbamate terminal, manufactured by WACKER CHEMIE, GENIOSIL (registered trademark) STP E-10] 100 parts by weight, dicarbonate diester (B-1) [Fujifilm Wako Pure Chemical Industries, Ltd., diethyl carbonate] 10 parts by weight and 2 parts by weight of water (C) were added and mixed thoroughly to prepare a first solution.
  • B-1) dicarbonate diester [Fujifilm Wako Pure Chemical Industries, Ltd., diethyl carbonate] 10 parts by weight and 2 parts by weight of water (C) were added and mixed thoroughly to prepare a first solution.
  • Polymer C is liquid at room temperature.
  • the glass transition temperature of Polymer C is ⁇ 60 ° C.
  • this first liquid To 112 parts by weight of this first liquid, 2 parts by weight of a foam stabilizer [Ebonic Japan Co., Ltd., Tegostarve BF2470], silanol condensation catalyst (D) [Nitto Kasei Co., Ltd., Neostan U200 (dibutyltin diacetate)] 6 parts by weight and 1.2 parts by weight of silanol condensation catalyst [DABCO (1,4-diazabicyclo [2.2.2] octane)] were added, and the volume was graduated at room temperature (23 ° C. atmosphere). The mixture was mixed in a resin cup so as to have a total of 10 cc, and was manually stirred with a 10 mm wide spatula for 10 seconds to foam. Table 2 shows the foaming ratio after 5 minutes from the start of stirring and the density of the foam. Table 2 shows the foaming ratio 24 hours after the start of stirring.
  • a foam stabilizer [Ebonic Japan Co., Ltd., Tegostarve BF2470]
  • Example 1 In the same manner as in Example 1 described above, the first liquid was prepared and the foam was prepared. Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
  • Example 4 In the first liquid, the amount of water (C) was changed from 4 parts by weight to 2 parts by weight, and the amount of silanol condensation catalyst [DABCO (1,4-diazabicyclo [2.2.2] octane)] was changed to 4 parts by weight. Other than changing from 1 part to 1.2 parts by weight, the first liquid was prepared and the foam was prepared in the same manner as in Example 1. Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
  • DABCO silanol condensation catalyst
  • Example 5 In the first liquid, the preparation of the first liquid and the preparation of the foam were carried out in the same manner as in Example 1 except that water (C) was not used.
  • Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
  • Example 2 In the same manner as in Example 2 described above, the first liquid was prepared and the foam was prepared. Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
  • Example 6 Except for changing the polymer A to the polymer B, the first liquid was prepared and the foam was prepared in the same manner as in Example 2.
  • Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
  • Example 7 Except for changing the polymer A to the polymer C, the first liquid and the foam were prepared in the same manner as in Example 2.
  • Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
  • D silanol condensation catalysts
  • E DABCO NE1070 and acts as a foaming aid
  • Shrink rate (%) (foaming ratio after 5 minutes-24 hours after foaming ratio) / 5 minutes after foaming ratio x 100
  • the base resin (A) in the resin composition for a foam containing the base resin (A) having a reactive silicon group, the chemical foaming agent (B), and the silanol condensation catalyst (D), the base resin (A) ),
  • the acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher and the polyoxyalkylene polymer (A1) having a glass transition temperature of less than 35 ° C. are used in combination, 24 hours after the start of foaming. It can be seen that the foam hardly shrinks in.
  • Reference Example 1 using a foam resin composition containing only the polyoxyalkylene polymer (A1) having a glass transition temperature of less than 35 ° C. as the base resin (A) 24 hours from the start of foaming. Later, a significant shrink of the foam occurred.
  • the foams obtained in Examples 1, 2 and 4 to 7 are measured using a sample having a thickness of 25 mm and using a B tube at 20 ° C. in accordance with JIS A 1405-2.
  • the sound absorption coefficient at frequencies of 1000 Hz to 5500 Hz was 70% or more.
  • Example 8 Polymer A and polymer F as the base resin (A), foaming agent [Fujifilm Wako Pure Chemical Industries, Ltd., diethyl carbonate (B-1)], and foam stabilizer [Evonik Degussa Japan] TEGOSTAB B8244 manufactured by Co., Ltd.] and water (C) were added in the amounts shown in Table 3 and sufficiently mixed to prepare a solution A.
  • foaming aid [DABCO NE1070 manufactured by Evonik Degussa Japan Co., Ltd.] and silanol condensation catalyst (D) [tetraethoxysilane-modified dibutyltin salt (Nitto Kasei Co., Ltd.) are added to each of the amounts shown in Table 3. ), NEOSTANN U-700)] was sequentially added and mixed to prepare a foam.
  • Foam molding was produced by stirring under the following conditions using a stirrer Magella ZZ-2221 manufactured by Tokyo Rika Kikai Co., Ltd.
  • Example 9 Polymer A as the base resin (A), foaming agent [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., diethyl carbonate (B-1)], and foam stabilizer [manufactured by Ebonic Degussa Japan Co., Ltd.] , TEGOSTAB B8244] and water (C) were added in the amounts shown in Table 3 and mixed sufficiently to prepare a solution A.
  • foaming aid [DABCO NE1070 manufactured by Evonik Degussa Japan Co., Ltd.] and silanol condensation catalyst (D) [tetraethoxysilane-modified dibutyltin salt (Nitto Kasei Co., Ltd.) are added to each of the amounts shown in Table 3. ), NEOSTANN U-700)] was sequentially added and mixed to prepare a foam.
  • Foam molding was produced by stirring under the following conditions using a stirrer Magella ZZ-2221 manufactured by Tokyo Rika Kikai Co., Ltd.
  • salicylic acid primary salicylic acid (pKa: 2.97) manufactured by Kishida Chemical Co., Ltd.
  • water (C) silanol condensation catalyst (D) [2-ethylacid phosphate (Johoku Chemical Industry Co., Ltd.), respectively, shown in Table 3 Co., Ltd., acidic phosphoric acid ester, JP-502)]
  • foam stabilizer Ebonic Japan Co., Ltd., Tegostave B8123
  • Body preparation was performed.
  • Discharge rate Continuous mixing and discharging was performed at 1 shot (75 cc) / 2.4 seconds, the mixed solution was poured into a polyethylene mold, foamed with the upper lid set, and left for 12 hours.
  • the working conditions were 23 ° C.
  • Foam molding step The foamed cured product after 12 hours was released from the polyethylene mold and left to stand in an atmosphere of 90 ° C. for 12 hours to obtain a soft resin foam (drying step). The skin layer of the obtained soft resin foam was cut to a specified thickness, and each measurement sample was prepared (skin layer cutting step).
  • Comparative Examples 6 to 10 glass wool (GW 64K, manufactured by Asahi Fiber Glass Co., Ltd.) was used as a measurement sample.
  • polyurethane foam Inoac F2, manufactured by Inoac Corporation
  • polyurethane foam Inoac F9M, manufactured by Inoac Corporation
  • an ethylene propylene diene rubber foam Eptsealer EV-1000, manufactured by Nitto Denko KK
  • Thinsulate registered trademark
  • 3M model number TAI 2047
  • the shear modulus, the flow resistance per unit thickness, the density, the porosity, and the Young's modulus were measured by the above-mentioned methods. These values are shown in Table 3. In Example 9, the porosity and Young's modulus were not measured. In addition, Young's modulus was not measured for Comparative Examples 6 to 8.
  • DABCO as the silanol condensation catalyst (D) is DABCO NE1070, which acts as a foaming aid (E).
  • Examples 8 and 9 are made of foam having a shear modulus of 7,000 Pa or less and a flow resistance of 1,000,000 N ⁇ s / m 4 or more per unit thickness. It can be seen that the sound absorbing material absorbs sound well in a wide frequency range. On the other hand, the sound absorbing material of Comparative Example 3 made of a foam having a shear modulus of 7,000 Pa or less but a flow resistance per unit thickness of less than 1,000,000 N ⁇ s / m 4 has a low frequency band of 650 Hz or more and 1000 Hz or less. The sound absorption characteristics were inferior.
  • the sound absorbing material of Comparative Example 4 made of a foam having a flow resistance of 1000000 N ⁇ s / m 4 or more per unit thickness but a shear elastic modulus of more than 7000 Pa has a low frequency band of 650 Hz or more and 1000 Hz or less.
  • the sound absorption characteristics in the above range were slightly inferior, and the sound absorption characteristics in the frequency range of 2000 Hz or more and 4000 Hz or more were inferior.
  • the sound absorbing material of Comparative Example 5 which cannot be measured because the shear modulus is higher than a predetermined value and the flow resistance per unit thickness is excessively high, is inferior in sound absorbing characteristics at a frequency of 650 Hz or more and 4500 Hz or less.
  • Example 8 a sample having a thickness of 10 mm was prepared for the sound absorbing materials of Example 8, Example 9, Comparative Example 3, Comparative Example 4, Comparative Example 8 and Comparative Example 9 based on the above method.
  • the vertical incident transmission loss was measured at frequencies of 1000 Hz to 4500 Hz, measured using an acoustic tube with an inner diameter of 40 mm according to ASTM E2611.
  • the measurement results of the vertical incident transmission loss of these samples are shown in FIG. According to FIGS. 3, 4, and 13, Examples 8 and 8 are made of a foam having a shear modulus of 7,000 Pa or less and a flow resistance of 1,000,000 N ⁇ s / m 4 or more per unit thickness. It can be seen that the sound absorbing material of No.

Abstract

Provided are a foam and sound-absorbing material that have excellent sound-absorbing characteristics, and a building and vehicle that comprise said sound-absorbing material. Further provided are a resin composition that is capable of suppressing a decrease in the foaming ratio of foam over time, a foam that is obtained using said resin composition, and a foam production method that uses said resin composition. Further provided are a sound-absorbing material that excellently absorbs sound over a wide frequency band, a sound-absorbing method that uses said sound-absorbing material, a sound-absorbing structure that comprises the sound-absorbing material, and a method for producing said sound-absorbing structure. The foam is produced by foaming and curing a base material resin (A) having a reactive silicon group containing a polyoxyalkylene polymer (A1); or the resin composition, which contains a base material resin (A) having a reactive silicon group, a chemical foaming agent (B) and a silanol condensation catalyst (D), contains a polyoxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35°C or more; or a foam exhibiting a shear modulus and a flow resistance per unit thickness of specific values is used as the sound-absorbing material.

Description

発泡体、吸音材、樹脂組成物、吸音方法、吸音構造体、吸音構造体の製造方法、吸音材の製造方法、建築物、及び車両Foam, sound absorbing material, resin composition, sound absorbing method, sound absorbing structure, manufacturing method of sound absorbing structure, manufacturing method of sound absorbing material, building, and vehicle
 本発明は、良好な吸音特性を示す発泡体と、当該発泡体を備える吸音材と、当該発泡体を与える樹脂組成物と、当該発泡体からなる吸音材と、当該吸音材を用いる吸音方法と、前述の吸音材を備える吸音構造体と、前述の吸音構造体を備える車両と、前述の吸音構造体の製造方法と、前述の吸音材の製造方法と、前述の吸音材を備える建築物及び車両に関する。 The present invention comprises a foam exhibiting good sound absorbing characteristics, a sound absorbing material provided with the foam, a resin composition for giving the foam, a sound absorbing material composed of the foam, and a sound absorbing method using the sound absorbing material. , The sound absorbing structure provided with the above-mentioned sound absorbing material, the vehicle provided with the above-mentioned sound absorbing structure, the method for manufacturing the above-mentioned sound absorbing structure, the method for manufacturing the above-mentioned sound absorbing material, and the building provided with the above-mentioned sound absorbing material. Regarding vehicles.
 高分子化合物の発泡体としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の熱可塑性樹脂を用いた発泡体がよく知られている。このような発泡体は、その吸音特性を活かし、例えば、ビーズ、シート、又はボードのような形態として、土木建築分野、包装分野、家電分野、自動車分野等に利用されている。特に、かかる発泡体は、住宅等の建築物や車両等の種々の物品における吸音材として使用されている(例えば、特許文献1を参照)。 As a foam of a polymer compound, a foam using a thermoplastic resin such as polystyrene, polyethylene, polypropylene, or polyvinyl chloride is well known. Taking advantage of its sound absorbing characteristics, such foams are used in the fields of civil engineering and construction, packaging, home appliances, automobiles, etc. in the form of beads, sheets, or boards, for example. In particular, such a foam is used as a sound absorbing material in various articles such as buildings such as houses and vehicles (see, for example, Patent Document 1).
 また、種々の周波数帯域のノイズを吸音する吸音材が求められている。そして、吸音すべき音の周波数に応じて、種々の吸音材が使用されている。ポリスチレン、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の熱可塑性樹脂を用いた前述の発泡体は、比較的高い周波数の騒音を吸収させるための吸音材として使用されている。自動車等の車両が発生させるロードノイズのような低周波数の騒音を吸収させるためには、アスファルトシート等が用いられている。 In addition, a sound absorbing material that absorbs noise in various frequency bands is required. Then, various sound absorbing materials are used according to the frequency of the sound to be absorbed. The above-mentioned foam using a thermoplastic resin such as polystyrene, polyethylene, polypropylene, or polyvinyl chloride is used as a sound absorbing material for absorbing noise at a relatively high frequency. Asphalt sheets and the like are used to absorb low-frequency noise such as road noise generated by vehicles such as automobiles.
 さらに、熱硬化性樹脂を用いた発泡体として、変性シリコーン樹脂を用いた発泡体が知られている。具体的には、加水分解性基を有するケイ素基を有し、主鎖がオキシアルキレン系単位からなる重合体である基材樹脂(A)と、シラノール縮合触媒(B)と、重炭酸塩等を含む化学発泡剤(C)とを含有する液状樹脂組成物を加熱により硬化させた発泡体が知られている(特許文献2を参照)。 Further, as a foam using a thermosetting resin, a foam using a modified silicone resin is known. Specifically, a base resin (A) which has a silicon group having a hydrolyzable group and whose main chain is a polymer composed of an oxyalkylene-based unit, a silanol condensation catalyst (B), a bicarbonate, etc. A foam obtained by curing a liquid resin composition containing a chemical foaming agent (C) containing the above by heating is known (see Patent Document 2).
特開2012-189783号公報Japanese Unexamined Patent Publication No. 2012-189783 国際公開第2016/021630号International Publication No. 2016/021630
 しかしながら、ポリウレタン等の樹脂からなる発泡体の吸音性能は、必ずしも十分ではない。このため、騒音等を吸音させる吸音方法において用いられる吸音材には、吸音特性の向上が求められている。 However, the sound absorption performance of a foam made of a resin such as polyurethane is not always sufficient. Therefore, the sound absorbing material used in the sound absorbing method for absorbing noise and the like is required to have improved sound absorbing characteristics.
 また、特許文献1等に記載の化学発泡剤を含む液状組成物を用いて発泡体を製造する場合、化学発泡剤の発泡開始からある程度の時間では高い発泡倍率を達成できても、その後、経時的に発泡倍率が低下してしまうことがしばしばある。 Further, when a foam is produced using a liquid composition containing a chemical foaming agent described in Patent Document 1 and the like, even if a high foaming ratio can be achieved within a certain period of time from the start of foaming of the chemical foaming agent, the lapse of time thereafter. In many cases, the foaming ratio is lowered.
 そして、2000Hz以下の周波数帯域では、ポリウレタン等の樹脂からなる発泡体の吸音性能は必ずしも十分ではない。特に、2000Hz超の高い周波数帯域でも、1000Hz以下の低い周波数帯域でも良好な吸音特性を示す吸音材は知られていない。 And, in the frequency band of 2000 Hz or less, the sound absorption performance of the foam made of a resin such as polyurethane is not always sufficient. In particular, there is no known sound absorbing material that exhibits good sound absorbing characteristics in a high frequency band of more than 2000 Hz and a low frequency band of 1000 Hz or less.
 本発明者は、上記課題に関して鋭意検討を行った結果、ポリオキシアルキレン系重合体(A1)を含む反応性ケイ素基を有する基材樹脂(A)を、発泡及び硬化させて発泡体を製造することにより、1000Hz~5500Hzの幅広い周波数範囲において良好な吸音特性を示す発泡体を製造し得ることを見出し、本発明を完成するに至った。 As a result of diligent studies on the above problems, the present inventor foams and cures a base resin (A) having a reactive silicon group containing a polyoxyalkylene polymer (A1) to produce a foam. As a result, they have found that it is possible to produce a foam exhibiting good sound absorbing characteristics in a wide frequency range of 1000 Hz to 5500 Hz, and have completed the present invention.
 また、本発明者は、反応性ケイ素基を有する基材樹脂(A)、化学発泡剤(B)、及びシラノール縮合触媒(D)を含む樹脂組成物に、基材樹脂(A)として、ポリオキシアルキレン系重合体(A1)と、ガラス転移温度が35℃以上であるアクリル樹脂(A2)とを含有させることにより、発泡体を製造する際の経時的な発泡倍率の低下を抑制できることを見出し、本発明を完成するに至った。 Further, the present inventor has added a poly as a base resin (A) to a resin composition containing a base resin (A) having a reactive silicon group, a chemical foaming agent (B), and a silanol condensation catalyst (D). It has been found that by containing an oxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher, it is possible to suppress a decrease in the foaming ratio over time when producing a foam. , The present invention has been completed.
 さらに、本発明者は、せん断弾性率が7000Pa以下であり、単位厚さ当たりの流れ抵抗が1000000N・s/m以上である発泡体を吸音材として用いることにより、2000Hz超の高い周波数帯域でも、1000Hz以下の低い周波数帯域でも良好な吸音特性を示す吸音材を提供できることを見出し、本発明を完成するに至った。 Further, the present inventor uses a foam having a shear modulus of 7,000 Pa or less and a flow resistance of 1,000,000 N · s / m 4 or more per unit thickness as a sound absorbing material, even in a high frequency band of more than 2000 Hz. , It has been found that a sound absorbing material showing good sound absorbing characteristics can be provided even in a low frequency band of 1000 Hz or less, and the present invention has been completed.
 すなわち、本発明は、以下の構成を有するものである。
1)ポリオキシアルキレン系重合体(A1)を含む反応性ケイ素基を有する基材樹脂(A)を、発泡及び硬化させてなる発泡体であって、
 厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1000Hz~5500Hzにおける吸音率が70%以上である、発泡体。
2)厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される吸音率について、周波数1000Hz~1700Hzの範囲に極大を示す、1)に記載の発泡体。
3)厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数800Hzにおける吸音率が40%以上である、1)又は2)に記載の発泡体。
4)基材樹脂(A)と、化学発泡剤(B)とを含有する発泡体用樹脂組成物を発泡及び硬化させてなる発泡体であり、
 発泡体中の、金属塩及び/又は無機粒子の含有量が前記発泡体の重量に対して2.5重量%以下である、1)~3)のいずれか1つに記載の発泡体。
5)化学発泡剤(B)が、非熱分解型である、4)に記載の発泡体。
6)化学発泡剤(B)が、二炭酸ジエステル(B-1)を含む、5)に記載の発泡体。
7)基材樹脂(A)が、ガラス転移温度が35℃以上であるアクリル樹脂(A2)を含む、1)~6)のいずれか1つに記載の発泡体。
8)反応性ケイ素基が、トリメトキシシリル基、(メトキシメチル)ジメトキシシリル基、下記式(1)~(3):
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
(式(1)~式(3)中、Rはそれぞれ独立に、炭素原子数1以上20以下の炭化水素基であり、Rとしての前記炭化水素基は、置換されていてもよく、且つヘテロ含有基を有してもよく、Xはヒドロキシ基又は加水分解性基であり、aは1、2、又は3であり、Rは2価の連結基であり、前記Rが有する2つの結合手は、それぞれ、前記連結基内の炭素原子、酸素原子、窒素原子、又は硫黄原子に結合しており、R、及びRは、それぞれ独立に水素原子、炭素原子数1以上20以下のアルキル基、炭素原子数6以上20以下のアリール基、炭素原子数7以上20以下のアラルキル基、又はシリル基のいずれかである。)
で表される基、及び下記式(4):
-R-CH-Si(R3-a(X) (4)
(式(4)中、R1、及びaは、式(1)~式(3)におけるR、及びaと同様であり、Rはヘテロ原子である。)
で表される基からなる群から選択される基である、1)~7)のいずれか1つに記載の発泡体。
9)発泡倍率が15~60倍である、1)~8)のいずれか1つに記載の発泡体。
10)0℃でのFP硬度が60以下である、1)~9)のいずれか1つに記載の発泡体。
11)基材樹脂(A)、化学発泡剤(B)、及びシラノール縮合触媒(D)を含み、
 基材樹脂(A)が、反応性ケイ素基を有し、
 基材樹脂(A)が、ポリオキシアルキレン系重合体(A1)と、ガラス転移温度が35℃以上であるアクリル樹脂(A2)とを含み、
 厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1000Hz~5500Hzにおける吸音率が70%以上である発泡体を与える、樹脂組成物。
12)基材樹脂(A)が、主鎖構造において分岐を有し、且つ3つ以上の末端を有する、11)に記載の樹脂組成物。
13)1)~10)のいずれか1つに記載の発泡体を備える吸音材。
14)せん断弾性率が7000Pa以下であり、
 単位厚さ当たりの流れ抵抗が1000000N・s/m以上である発泡体からなる吸音材。
15)密度が100kg/m以下である、14)に記載の吸音材。
16)発泡体が、ポリオキシアルキレン系重合体を含む組成物からなる、14)又は15)に記載の吸音材。
17)発泡体が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)を含む樹脂組成物の硬化物からなる、16)に記載の吸音材。
18)発泡体が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)と、反応性ケイ素基を有するアクリル樹脂(A2)とを含む樹脂組成物の硬化物からなる、17)に記載の吸音材。
19)発泡体の無機微粒子の含有量と、発泡体の、発泡体に金属塩として含まれる金属原子の含有量との合計が2.5重量%以下である、14)~18)のいずれか1つに記載の吸音材。
20)周波数650Hzにおいて、JIS A1405-2に準拠して、内径40mmの音響管と、厚さ10mmの試験片とを用いて測定される垂直入射吸音率として0.15以上の垂直入射吸音率を示し、周波数650Hz以上1000Hz以下の範囲内におけるいずれかの周波数において、0.4以上の垂直入射吸音率を示す、14)~19)のいずれか1つに記載の吸音材。
21)周波数1000Hz以上4500Hz以下の範囲内における、JIS A1405-2に準拠して、内径40mmの音響管と、厚さ10mmの試験片とを用いて測定される垂直入射吸音率が、0.45以上である、14)~20)のいずれか1つに記載の吸音材。
22)発泡体について、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1000Hz~5500Hzにおける吸音率が70%以上である、17)又は18)に記載の吸音材。
23)発泡体について、厚さ10mmの試料を用いて、ASTM E2611に従い内径40mmの音響管を用いて測定される、周波数1000Hz~4500Hzにおいて垂直入射透過損失が7dB以上であって、
 遮音性を備える、14)~22)のいずれか1つに記載の吸音材。
24)14)~23)のいずれか1つに記載の吸音材に、周波数650Hz以上4500Hz以下の範囲内の成分を含む音を吸音させる、吸音方法。
25)吸音対象の音が、周波数650Hz以上1000Hz以下の範囲内の成分を含む、24)に記載の吸音方法。
26)23)に記載の吸音材により、周波数1000Hz~4500以下の範囲内の成分を含む音を遮音する、遮音方法。
27)14)~23)のいずれか1つに記載の吸音材と、吸音材を支持する支持体とからなる吸音構造体。
28)支持体が空気入りタイヤであり、吸音材が、空気入りタイヤの内腔側の面の少なくとも一部を被覆するようにタイヤに支持される、27)に記載の吸音構造体。
29)支持体が、モーターと、モーターを収容するケーシングとからなり、
 モーターとケーシングとの間の空隙に吸音材が充填されている、27)に記載の吸音構造体。
30)27)~29)のいずれか1つに記載の吸音構造体を備える、車両。
31)14)~23)のいずれか1つに記載の吸音材と、吸音材を支持する支持体とからなる吸音構造体の製造方法であって、
 吸音材を、支持体の表面に固定するか、吸音材を支持体により規定される空間内に充填する、吸音構造体の製造方法。
32)反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)を含む液状の樹脂組成物を、支持体の表面に塗布するか、又は前記支持体により規定される前記空間内に充填することと、
 樹脂組成物を発泡させながら硬化させて発泡体を形成することにより、吸音材としての発泡体を支持体の表面に接着させることと、
を含む、31)に記載の吸音構造体の製造方法。
33)支持体としてのタイヤの内腔側の面に、液状の樹脂組成物を塗布する、32)に記載の吸音構造体の製造方法。
34)モーターとモーターを収容するケーシングとからなる支持体において、モーターとケーシングとの間の空隙に液状の樹脂組成物を充填する、32)に記載の吸音構造体の製造方法。
35)3Dプリンターを用いて型枠を形成することと、
 型枠に反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)を含む液状の樹脂組成物を注入することと、
 樹脂組成物を発泡させながら硬化させて発泡体を形成することと、を含む14)~23)のいずれか1つに記載の吸音材の製造方法。
36)13)~23)のいずれか1つに記載の吸音材を備える、建築物。
37)13)~23)のいずれか1つに記載の吸音材を備える、車両。
That is, the present invention has the following configuration.
1) A foam obtained by foaming and curing a base resin (A) having a reactive silicon group containing a polyoxyalkylene polymer (A1).
A foam having a sound absorption coefficient of 70% or more at a frequency of 1000 Hz to 5500 Hz, measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2.
2) Using a sample with a thickness of 25 mm, the sound absorption coefficient measured using the B tube at 20 ° C. in accordance with JIS A 1405-2 shows the maximum in the frequency range of 1000 Hz to 1700 Hz to 1). The foam described.
3) Using a sample with a thickness of 25 mm, the sound absorption coefficient at a frequency of 800 Hz is 40% or more, measured using a B tube at 20 ° C. in accordance with JIS A 1405-2, 1) or 2). The foam described in.
4) A foam obtained by foaming and curing a foam resin composition containing a base resin (A) and a chemical foaming agent (B).
The foam according to any one of 1) to 3), wherein the content of the metal salt and / or inorganic particles in the foam is 2.5% by weight or less based on the weight of the foam.
5) The foam according to 4), wherein the chemical foaming agent (B) is a non-pyrolytic type.
6) The foam according to 5), wherein the chemical foaming agent (B) contains a dicarbonate diester (B-1).
7) The foam according to any one of 1) to 6), wherein the base resin (A) contains an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher.
8) The reactive silicon group is a trimethoxysilyl group, a (methoxymethyl) dimethoxysilyl group, the following formulas (1) to (3):
Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006

(In formulas (1) to (3), R 1 is an independently hydrocarbon group having 1 or more and 20 or less carbon atoms, and the hydrocarbon group as R 1 may be substituted. Further, it may have a hetero-containing group, X is a hydroxy group or a hydrolyzable group, a is 1, 2, or 3, and R 4 is a divalent linking group, which R 4 has. The two bonds are bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group, respectively, and R 2 and R 3 are independently hydrogen atoms and 1 or more carbon atoms, respectively. It is either an alkyl group having 20 or less, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a silyl group.)
The group represented by and the following formula (4):
-R 5- CH 2- Si (R 1 ) 3-a (X) a (4)
(In the formula (4), R1, and a are the same as R 1, and a in equation (1) to (3), R 5 is a heteroatom.)
The foam according to any one of 1) to 7), which is a group selected from the group consisting of the groups represented by.
9) The foam according to any one of 1) to 8), which has a foaming ratio of 15 to 60 times.
10) The foam according to any one of 1) to 9), which has an FP hardness of 60 or less at 0 ° C.
11) Contains the base resin (A), the chemical foaming agent (B), and the silanol condensation catalyst (D).
The base resin (A) has a reactive silicon group and has.
The base resin (A) contains a polyoxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher.
A resin that gives a foam having a sound absorption coefficient of 70% or more at frequencies of 1000 Hz to 5500 Hz, measured using a B tube at 20 ° C., in accordance with JIS A 1405-2, using a sample having a thickness of 25 mm. Composition.
12) The resin composition according to 11), wherein the base resin (A) has a branch in the main chain structure and has three or more ends.
13) A sound absorbing material comprising the foam according to any one of 1) to 10).
14) Shear modulus is 7000 Pa or less,
A sound absorbing material made of a foam having a flow resistance of 1000000 N · s / m 4 or more per unit thickness.
15) The sound absorbing material according to 14), which has a density of 100 kg / m 3 or less.
16) The sound absorbing material according to 14) or 15), wherein the foam comprises a composition containing a polyoxyalkylene polymer.
17) The sound absorbing material according to 16), wherein the foam is a cured product of a resin composition containing a polyoxyalkylene polymer (A1) having a reactive silicon group.
18) The cured product of a resin composition in which the foam contains a polyoxyalkylene polymer (A1) having a reactive silicon group and an acrylic resin (A2) having a reactive silicon group, 17). Sound absorbing material.
19) The total of the content of the inorganic fine particles of the foam and the content of the metal atom contained in the foam as a metal salt in the foam is 2.5% by weight or less, any of 14) to 18). The sound absorbing material described in one.
20) At a frequency of 650 Hz, a vertical incident sound absorption coefficient of 0.15 or more is measured using an acoustic tube with an inner diameter of 40 mm and a test piece with a thickness of 10 mm in accordance with JIS A1405-2. The sound absorbing material according to any one of 14) to 19), which shows a vertically incident sound absorbing coefficient of 0.4 or more at any frequency within a frequency range of 650 Hz or more and 1000 Hz or less.
21) The vertical incident sound absorption coefficient measured using an acoustic tube with an inner diameter of 40 mm and a test piece with a thickness of 10 mm in accordance with JIS A1405-2 in the frequency range of 1000 Hz or more and 4500 Hz or less is 0.45. The sound absorbing material according to any one of 14) to 20) described above.
22) With respect to the foam, the sound absorption coefficient at a frequency of 1000 Hz to 5500 Hz measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm is 70% or more in accordance with JIS A 1405-2. , 17) or 18).
23) For the foam, the vertical incident transmission loss is 7 dB or more at a frequency of 1000 Hz to 4500 Hz, which is measured using a sample having a thickness of 10 mm and an acoustic tube having an inner diameter of 40 mm according to ASTM E2611.
The sound absorbing material according to any one of 14) to 22), which has sound insulating properties.
24) A sound absorbing method for causing the sound absorbing material according to any one of 14) to 23) to absorb sound containing a component having a frequency in the range of 650 Hz or more and 4500 Hz or less.
25) The sound absorbing method according to 24), wherein the sound to be absorbed contains a component in the frequency range of 650 Hz or more and 1000 Hz or less.
26) A sound insulation method for insulating sound containing components in the frequency range of 1000 Hz to 4500 or less by using the sound absorbing material according to 23).
27) A sound absorbing structure composed of the sound absorbing material according to any one of 14) to 23) and a support supporting the sound absorbing material.
28) The sound absorbing structure according to 27), wherein the support is a pneumatic tire, and the sound absorbing material is supported by the tire so as to cover at least a part of the inner surface of the pneumatic tire.
29) The support consists of a motor and a casing that houses the motor.
27) The sound absorbing structure according to 27), wherein the gap between the motor and the casing is filled with a sound absorbing material.
30) A vehicle comprising the sound absorbing structure according to any one of 27) to 29).
31) A method for manufacturing a sound absorbing structure comprising the sound absorbing material according to any one of 14) to 23) and a support supporting the sound absorbing material.
A method for manufacturing a sound absorbing structure, in which the sound absorbing material is fixed to the surface of a support or the sound absorbing material is filled in a space defined by the support.
32) A liquid resin composition containing a polyoxyalkylene polymer (A1) having a reactive silicon group is applied to the surface of a support or filled in the space defined by the support. When,
By curing the resin composition while foaming it to form a foam, the foam as a sound absorbing material is adhered to the surface of the support.
31). The method for manufacturing a sound absorbing structure.
33) The method for manufacturing a sound absorbing structure according to 32), wherein a liquid resin composition is applied to the surface of the tire as a support on the lumen side.
34) The method for manufacturing a sound absorbing structure according to 32), wherein in a support including a motor and a casing accommodating the motor, a liquid resin composition is filled in a gap between the motor and the casing.
35) Forming a formwork using a 3D printer
Injecting a liquid resin composition containing a polyoxyalkylene polymer (A1) having a reactive silicon group into a mold, and
The method for producing a sound absorbing material according to any one of 14) to 23), wherein the resin composition is cured while being foamed to form a foam.
36) A building provided with the sound absorbing material according to any one of 13) to 23).
37) A vehicle provided with the sound absorbing material according to any one of 13) to 23).
 本発明によれば、幅広い周波数範囲において良好な吸音特性を示す発泡体と、当該発泡体を備える吸音材と、当該吸音材を備える建築物及び車両とを提供することができる。
 また、本発明によれば、化学発泡剤を用いて発泡体を製造する際の、発泡倍率が高まった後の経時的な発泡倍率の低下を抑制できる発泡体形成用の樹脂組成物と、当該樹脂組成物を発泡及び硬化させてなる発泡体と、当該樹脂組成物を用いる発泡体の製造方法とを提供することができる。
 さらに、本発明によれば1000Hz以下の低い周波数帯域と2000Hz超の高い周波数帯域とを含む幅広い周波数帯域において良好な吸音特性を示す吸音材と、当該吸音材を用いる吸音方法と、前述の吸音材を備える吸音構造体と、前述の吸音構造体を備える車両と、前述の吸音構造体の製造方法とを提供することができる。
According to the present invention, it is possible to provide a foam having good sound absorbing characteristics in a wide frequency range, a sound absorbing material provided with the foam, and a building and a vehicle provided with the sound absorbing material.
Further, according to the present invention, when a foam is produced using a chemical foaming agent, a resin composition for forming a foam that can suppress a decrease in the foaming ratio over time after the foaming ratio has increased, and the said resin composition. It is possible to provide a foam obtained by foaming and curing a resin composition, and a method for producing a foam using the resin composition.
Further, according to the present invention, a sound absorbing material exhibiting good sound absorbing characteristics in a wide frequency band including a low frequency band of 1000 Hz or less and a high frequency band of more than 2000 Hz, a sound absorbing method using the sound absorbing material, and the above-mentioned sound absorbing material. A sound absorbing structure including the above-mentioned sound absorbing structure, a vehicle provided with the above-mentioned sound absorbing structure, and a method for manufacturing the above-mentioned sound absorbing structure can be provided.
実施例3の発泡体、及び比較例1の発泡体の吸音率を示す図である。It is a figure which shows the sound absorption coefficient of the foam of Example 3 and the foam of Comparative Example 1. 実施例2の発泡体、及び実施例3の発泡体の吸音率を示す図である。It is a figure which shows the sound absorption coefficient of the foam of Example 2 and the foam of Example 3. 実施例8の吸音材の垂直入射吸音率を示す図である。It is a figure which shows the vertical incident sound absorption coefficient of the sound absorbing material of Example 8. 実施例9の吸音材の垂直入射吸音率を示す図である。It is a figure which shows the vertical incident sound absorption coefficient of the sound absorbing material of Example 9. 比較例3の吸音材の垂直入射吸音率を示す図である。It is a figure which shows the vertical incident sound absorption coefficient of the sound absorbing material of the comparative example 3. 比較例4の吸音材の垂直入射吸音率を示す図である。It is a figure which shows the vertical incident sound absorption coefficient of the sound absorbing material of the comparative example 4. 比較例5の吸音材の垂直入射吸音率を示す図である。It is a figure which shows the vertical incident sound absorption coefficient of the sound absorbing material of the comparative example 5. 比較例6の吸音材の垂直入射吸音率を示す図である。It is a figure which shows the vertical incident sound absorption coefficient of the sound absorbing material of the comparative example 6. 比較例7の吸音材の垂直入射吸音率を示す図である。It is a figure which shows the vertical incident sound absorption coefficient of the sound absorbing material of the comparative example 7. 比較例8の吸音材の垂直入射吸音率を示す図である。It is a figure which shows the vertical incident sound absorption coefficient of the sound absorbing material of the comparative example 8. 比較例9の吸音材の垂直入射吸音率を示す図である。It is a figure which shows the vertical incident sound absorption coefficient of the sound absorbing material of the comparative example 9. 比較例10の吸音材の垂直入射吸音率を示す図である。It is a figure which shows the vertical incident sound absorption coefficient of the sound absorbing material of the comparative example 10. 実施例8、実施例9、比較例3、比較例4、比較例8、及び比較例9の吸音材の垂直入射透過損失を示す図である。It is a figure which shows the vertical incident transmission loss of the sound absorbing material of Example 8, Example 9, Comparative Example 3, Comparative Example 4, Comparative Example 8, and Comparative Example 9.
≪発泡体≫
 発泡体は、ポリオキシアルキレン系重合体(A1)を含む反応性ケイ素基を有する基材樹脂(A)を、発泡及び硬化させてなる発泡体である。
 かかる発泡体に関して、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1000Hz~5500Hzにおける吸音率が70%以上である。
≪ Foam≫
The foam is a foam obtained by foaming and curing a base resin (A) having a reactive silicon group containing a polyoxyalkylene polymer (A1).
With respect to such a foam, the sound absorption coefficient at a frequency of 1000 Hz to 5500 Hz measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm is 70% or more in accordance with JIS A 1405-2.
 発泡体は、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される吸音率について、周波数1000Hz~1700Hzの範囲に極大を示すのが好ましい。
 また、発泡体について、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数800Hzにおける吸音率が40%以上であるのが好ましい。
 さらに、発泡体について、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1500Hzにおける吸音率が90%以上であるのが好ましい。
The foam has a maximum sound absorption coefficient in the frequency range of 1000 Hz to 1700 Hz measured using a B tube at 20 ° C. in accordance with JIS A 1405-2 using a sample having a thickness of 25 mm. preferable.
Further, regarding the foam, the sound absorption coefficient at a frequency of 800 Hz, which is measured by using a sample having a thickness of 25 mm and using a B tube at 20 ° C. in accordance with JIS A 1405-2, is 40% or more. preferable.
Furthermore, the foam has a sound absorption coefficient of 90% or more at a frequency of 1500 Hz, which is measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2. preferable.
 なお、基材樹脂(A)、化学発泡剤(B)、及びシラノール縮合触媒(D)を含み、且つ基材樹脂(A)として、ポリオキシアルキレン系重合体(A1)と、ガラス転移温度が35℃未満であるアクリル樹脂(A2)とを組み合わせて含む発泡体用樹脂組成物を用いて発泡体を形成する場合、経時的な発泡倍率の低下が抑制される。
 上記の発泡体は、連続法により生産される場合でも、発泡体用樹脂組成物の形状が所定の形状になるまでの十分な時間を確保しながら、短時間で発泡及び硬化して製造されるため、形状や密度が均一であり高発泡倍率の発泡体として安定的に製造可能である。
The base resin (A), the chemical foaming agent (B), and the silanol condensation catalyst (D) are contained, and as the base resin (A), the polyoxyalkylene polymer (A1) and the glass transition temperature are different. When a foam is formed by using a foam resin composition containing a combination of an acrylic resin (A2) having a temperature of less than 35 ° C., a decrease in the foaming ratio over time is suppressed.
Even when the above foam is produced by the continuous method, it is produced by foaming and curing in a short time while ensuring a sufficient time until the shape of the resin composition for foam becomes a predetermined shape. Therefore, the shape and density are uniform, and a foam having a high foaming ratio can be stably produced.
 上記の発泡体は、吸収対象の音のうち、周波数1000Hz~5500Hzの範囲内の成分を良好に吸収し、周波数1000Hz~1700Hzの範囲内の成分を特に良好に吸収する。
 周波数1000Hz~1700Hzの範囲内の成分を含む音としては、日常会話、ピアノやクラリネット等の楽器音が含まれる。このため、上記の発泡体は、日常生活において特に気になる騒音を吸音しやすい。
The foam absorbs well the components in the frequency range of 1000 Hz to 5500 Hz, and particularly well absorbs the components in the frequency range of 1000 Hz to 1700 Hz among the sounds to be absorbed.
Sounds containing components in the frequency range of 1000 Hz to 1700 Hz include daily conversation, musical instrument sounds such as piano and clarinet. Therefore, the above-mentioned foam tends to absorb noise that is particularly annoying in daily life.
 また、従来知られる発泡体を吸音材として使用する場合、吸音特性を高める目的でスキン層を切り落とされることが多い。しかし、上記の発泡体ではスキン層の有無の吸音特性への影響が小さい。例えば、建築現場や、種々の製品の製造現場で、発泡体用樹脂組成物を用いて発泡体を施工する場合、スキン層のカットを行いにくい場合がある。しかしながら、上記の発泡体については、スキン層の有無の吸音特性への影響が小さいため、建築現場や、種々の製品の製造現場で発泡体を施工しても、十分に発泡体の吸音特性を発揮させることができる。
 そして、上記の通り、上記の発泡体は建築現場での施工が容易であるので、住宅等の建築物において、硬質の断熱材とともに内壁や隙間に容易に施工することができる。後述するように、上記の発泡体はFP硬度が低く柔軟である。このため、住宅等の建築物において、硬質の断熱材とともに上記の発泡体を内壁や隙間に施工すると、地震の揺れを吸収でき、硬質断熱材の割れを防止できる。その結果として、地震が起きた場合であっても、住宅等の建築物の高断熱性や気密性を維持することができる。
Further, when a conventionally known foam is used as a sound absorbing material, the skin layer is often cut off for the purpose of enhancing the sound absorbing characteristics. However, the above foam has a small effect on the sound absorption characteristics with and without the skin layer. For example, when a foam is constructed using a resin composition for a foam at a construction site or a manufacturing site of various products, it may be difficult to cut the skin layer. However, since the above-mentioned foam has a small effect on the sound absorption characteristics of the presence or absence of the skin layer, the sound absorption characteristics of the foam can be sufficiently maintained even if the foam is applied at a construction site or a manufacturing site of various products. It can be demonstrated.
As described above, since the above foam is easily installed at the construction site, it can be easily installed on the inner wall or the gap together with the hard heat insulating material in a building such as a house. As will be described later, the above-mentioned foam has a low FP hardness and is flexible. Therefore, in a building such as a house, if the above foam is applied to the inner wall or the gap together with the hard heat insulating material, the shaking of the earthquake can be absorbed and the hard heat insulating material can be prevented from cracking. As a result, even in the event of an earthquake, it is possible to maintain high heat insulation and airtightness of buildings such as houses.
 上記の発泡体の用途については特に限定されない。上記の発泡体は、ポリウレタンフォーム、ポリスチレンフォーム等の従来から知られる種々の発泡体が適用される用途において好適に使用することができる。 The use of the above foam is not particularly limited. The above-mentioned foam can be suitably used in applications to which various conventionally known foams such as polyurethane foam and polystyrene foam are applied.
 発泡体の形状は特に限定されない。発泡体の形状としては、シート状、棒状、正多面体状(例えば、立方体状、正四面体状、正八面体状等)、円盤状、球状、半球状、不定形状等が挙げられる。連続法により好ましく製造し得る点からは、発泡体の形状は、シート状、又は棒状が好ましい。なお、棒状とは、静止した状態での形状である。発泡体は柔軟であるため、静止状態で棒状の発泡体を動かした場合に、発泡体が紐のようにふるまう場合がある。 The shape of the foam is not particularly limited. Examples of the shape of the foam include a sheet shape, a rod shape, a regular polyhedron shape (for example, a cube shape, a regular tetrahedron shape, a regular octahedron shape, etc.), a disk shape, a spherical shape, a hemispherical shape, an indefinite shape, and the like. From the viewpoint that it can be preferably produced by the continuous method, the shape of the foam is preferably sheet-like or rod-like. The rod shape is a shape in a stationary state. Since the foam is flexible, the foam may behave like a string when the rod-shaped foam is moved in a stationary state.
 発泡体の密度は、発泡体が所望する吸音特性を示す限り特に限定されない。発泡体の密度は、例えば、200kg/m以下が好ましく、150kg/m以下がより好ましく、100kg/m以下がさらに好ましく、50kg/m以下がさらにより好ましい。密度が当該範囲であると、発泡体の吸音特性が良好であることに加え、比較的軽量であり日常的な持ち運びが容易であって、建築物等への発泡体の吸音材としての施工が容易である。発泡体の密度の下限は、特に限定するものではないが、10kg/m以上であってよく、30kg/m以上であってよく、70kg/m以上であってよい。密度が小さすぎる場合は、発泡体を吸音材として使用する際、自重で変形しやすくなる場合がある。 The density of the foam is not particularly limited as long as the foam exhibits the desired sound absorbing characteristics. Density of the foam, for example, preferably 200 kg / m 3 or less, more preferably 150 kg / m 3 or less, 100 kg / m 3 more preferably less, still more preferably 50 kg / m 3 or less. When the density is within this range, the sound absorbing characteristics of the foam are good, and the foam is relatively lightweight and easy to carry on a daily basis, so that the foam can be applied to buildings as a sound absorbing material. It's easy. The lower limit of the density of the foam is not particularly limited, but may be 10 kg / m 3 or more, 30 kg / m 3 or more, and 70 kg / m 3 or more. If the density is too low, when the foam is used as a sound absorbing material, it may be easily deformed by its own weight.
 発泡体の硬度は、特に限定されない。発泡体の硬度は、発泡体の用途や、発泡体に要求される性能に応じて適宜決定される。発泡体の硬度は、0℃で測定されたFP硬度(ASKER FP硬度)として、60以下が好ましく、50以下がより好ましく、15以下がさらに好ましく、10以下がさらにより好ましい。 The hardness of the foam is not particularly limited. The hardness of the foam is appropriately determined according to the use of the foam and the performance required for the foam. The hardness of the foam is preferably 60 or less, more preferably 50 or less, further preferably 15 or less, still more preferably 10 or less, as the FP hardness (ASKER FP hardness) measured at 0 ° C.
 上記の発泡体は吸音材用途に好適に使用される。上記の発泡体を備える吸音材、及びその用途については詳細に後述する。
 発泡体の用途は、吸音材用には限定されない。発泡体は、例えば、防音材、制振材、クッション材等として、輸送機器、寝具・寝装品、家具、各種機器、建材、包装材、医療・介護等の用途に好適に利用できる。
The above foam is suitably used for sound absorbing materials. The sound absorbing material provided with the above foam and its use will be described in detail later.
The use of the foam is not limited to the sound absorbing material. The foam can be suitably used as a soundproofing material, a vibration damping material, a cushioning material, etc., for applications such as transportation equipment, bedding / bedding, furniture, various equipment, building materials, packaging materials, medical / nursing care, and the like.
 好ましい用途として、例えば輸送機器用途としては、自動車・建築機械・鉄道車両・船舶・航空機等の座席、チャイルドシート、ヘッドレスト、アームレスト、フットレスト、ヘッドライナー、バイク・自転車等のサドル・ライダークッション、カスタムカー用のベッドマット、キャンピングカー用クッション等のクッション材や表皮材・表皮裏打ち材、天井材、ハンドル、ドアトリム、インストルメントパネル、ダッシュボード、ドアパネル、ピラー、コンソールボックス、クォータートリム、サンバイザー、フレキシブルコンテナー、フロントミラー、ハーネス、ダストカバー等の芯材や表皮材・表皮裏打ち材、フロアクッション等の制振吸音材、ヘルメット内張り、クラッシュパッド、センタピラガーニッシュ等の緩衝材、エネルギー吸収バンパー、ガード防音材、車両ワックス用スポンジ等が挙げられる。 Preferred applications include seats for automobiles, construction machinery, railroad vehicles, ships, aircraft, etc., child seats, headrests, armrests, footrests, headliners, saddles / rider cushions for motorcycles / bicycles, custom cars, etc. Bed mats, cushioning materials for camper cushions, skin materials, skin lining materials, ceiling materials, handles, door trims, instrument panels, dashboards, door panels, pillars, console boxes, quarter trims, sun visors, flexible containers, front Core materials such as mirrors, harnesses and dust covers, skin and skin lining materials, vibration damping and sound absorbing materials such as floor cushions, helmet linings, crash pads, cushioning materials such as center pillar garnish, energy absorption bumpers, guard soundproofing materials, vehicles Examples include wax sponges.
 寝具・寝装品用途としては、枕、掛け布団、敷布団、ベッド、マットレス、ベッドマット、ベッドパッド、クッション、ベビーベッド、ベビー用首まくら等のクッション材や表皮材・表皮裏打ち材等が挙げられる。 Examples of bedding / bedding applications include cushioning materials such as pillows, comforters, mattresses, beds, mattresses, bed mats, bed pads, cushions, baby beds, and baby neck pillows, as well as skin materials and skin lining materials.
 家具用途としては、椅子、座イス、座布団、ソファー、ソファークッション・シートクッション等の各種クッション、カーペット・マット類、コタツ敷・掛け布団、便座マット等のクッション材や表皮材・表皮裏打ち材等が挙げられる。 Examples of furniture applications include various cushions such as chairs, seat chairs, cushions, sofas, sofa cushions and seat cushions, cushion materials such as carpets and mats, kotatsu mats and comforters, and toilet seat mats, and skin materials and skin lining materials. Be done.
 各種機器用途としては、液晶、電子部品等のシール・緩衝材、ロボットの皮膚、導電性クッション材、帯電防止性クッション材、圧力感知材等が挙げられる。 Examples of various device applications include sealing / cushioning materials for liquid crystals, electronic parts, robot skin, conductive cushioning materials, antistatic cushioning materials, pressure sensing materials, and the like.
 建材用途としては、床や屋根等の断熱材、床や壁等の衝撃吸収材等が挙げられる。
 包装材用途としては、緩衝材、クッション材、衝撃吸収材等の梱包資材が挙げられる。
 医療・介護用途としては、再生医療用細胞シート、人工皮膚、人工骨、人工軟骨、人工臓器、その他生体適合材料、薬液染み出しパッド、止血パッド、気液分離フィルター(留置針フィルター)、貼布剤、医療用液体吸収用具、マスク、圧迫パッド、手術用ディスポ製品、低周波治療器用電極パッド、床ずれ予防マットレス、体位変換クッション、車椅子用クッション、車椅子の座面、シャワー椅子等の介護用品、入浴介護用枕、拘縮用手のひらプロテクター、テーピング、ギブス用ライナー、義肢・義足用ライナー、入れ歯台、その他、歯科用品、衝撃吸収パッド、ヒッププロテクター、肘・膝用プロテクター、創傷被覆材等にも利用できるものである。
Examples of building material applications include heat insulating materials for floors and roofs, shock absorbers for floors and walls, and the like.
Examples of packaging materials include packaging materials such as cushioning materials, cushioning materials, and shock absorbing materials.
For medical and long-term care applications, cell sheets for regenerative medicine, artificial skin, artificial bones, artificial cartilage, artificial organs, other biocompatible materials, chemical exudation pads, hemostatic pads, gas-liquid separation filters (indwelling needle filters), and adhesives Agents, medical liquid absorbents, masks, compression pads, surgical disposable products, low frequency treatment device electrode pads, bedsore prevention mattresses, repositioning cushions, wheelchair cushions, wheelchair seats, shower chairs and other nursing care products, bathing Also used for nursing care pillows, palm protectors for contraction, taping, cast liners, artificial limbs / legs liners, tooth pads, other dental products, shock absorbing pads, hip protectors, elbow / knee protectors, wound dressings, etc. It can be done.
 その他、例えば下記の用途を挙げることができる。 In addition, for example, the following uses can be mentioned.
 各種洗浄用スポンジ用途としては、清掃用クリーナー、食器洗浄用クリーナー、身体洗浄用クリーナー、靴磨クリーナー、洗車用クリーナー等が挙げられる。
 トイレタリー用途としては、オムツ、生理用ナプキン等の吸収材、サイドギャザーや各種液体フィルター等が挙げられる。
Examples of various cleaning sponge applications include cleaning cleaners, dishwashing cleaners, body cleaning cleaners, shoe polish cleaners, car wash cleaners, and the like.
Examples of toiletry applications include absorbent materials such as diapers and sanitary napkins, side gathers, and various liquid filters.
 履物用途としては、靴の表皮材、裏打ち、中敷、靴擦れ防止パッド、各種靴パッド、インナブーツ、スリッパ、スリッパ芯、サンダル、サンダル中敷等が挙げられる。 Examples of footwear applications include shoe skin materials, linings, insoles, shoe anti-scratch pads, various shoe pads, inner boots, slippers, slipper cores, sandals, sandal insoles, etc.
 化粧用具用途としては、化粧用パフ、アイカラーチップ等が挙げられる。
 各種雑貨用途としては、バスピロー等の風呂用品、マッサージ用パフ、マウスパッド、キーボード用アームレスト、滑り止めクッション、文具(ペングリップ、浸透印材)、デスク用小まくら、耳栓、綿棒、ホットパック用シート、コールドパック用シート、湿布、めがねパッド、水中眼鏡用パッド、顔面プロテクター、腕時計パッド、ヘッドホーンイヤーパット、イヤホン、氷枕カバー、折りたたみまくら等の芯材、クッション材や表皮材・表皮裏打ち材、両面テープ基材、芳香剤、スタンプ台等の吸着媒体等が挙げられる。
Examples of cosmetic tool applications include cosmetic puffs and eye color chips.
For various miscellaneous goods, bath products such as bath pillows, massage puffs, mouth pads, armrests for keyboards, non-slip cushions, stationery (pen grips, penetrating stamps), small pillows for desks, ear plugs, cotton sticks, sheets for hot packs. , Cold pack sheet, wet cloth, glasses pad, underwater eyeglass pad, face protector, watch pad, headphone ear pad, earphone, ice pillow cover, core material such as folding pillow, cushion material, skin material, skin lining material, both sides Examples thereof include a tape base material, an fragrance, and an adsorption medium such as a stamp stand.
 衣料用途としては、肩・ブラジャー等のパッド材や、防寒材等のライナーや断熱材等が挙げられる。 Examples of clothing applications include pad materials such as shoulders and brassieres, liners such as cold protection materials, and heat insulating materials.
 スポーツ用途としては、スポーツ用プロテクター類、ボルダリング(2~3mの岩を登るクライミング・ミニ岩登り)マット、ビート板、高飛び用のクッション材、体操競技や運動用の着地マット、キッズマット等のクッション材や表皮材・表皮裏打ち材、スキーブーツ、スノーボードブーツ等のライナー等が挙げられる。 For sports applications, sports protectors, bouldering (climbing mini rock climbing 2 to 3 m rock climbing) mats, beat boards, cushioning materials for high jumps, landing mats for gymnastics and exercise, kids mats, etc. Examples include materials, skin materials, skin lining materials, liners for ski boots, snowboard boots, and the like.
 玩具・遊具用途としては、ハンドエクササイザー、ヒーリンググッズ、キーホルダー、ぬいぐるみ、マネキンボデイー、ボール、マッサージボール等のクッション材や詰め物、表皮材・表皮裏打ち材、装飾品や怪獣等の特殊形状物、各種物品形状の型取りやモデル作製用等の注型材料、注型法における物品形状の型取り材料、型からのモデルサンプル作製材料、装飾品作製材料、怪獣の特殊造型・造型物等が挙げられる。 For toys and playground equipment, hand exercisers, healing goods, key chains, stuffed animals, mannequin bodies, balls, massage balls and other cushioning materials and fillings, skin materials and skin lining materials, ornaments and monsters and other special shapes, etc. Examples include casting materials for molding the shape of articles and making models, molding materials for shaping articles in the casting method, materials for making model samples from molds, materials for making ornaments, special moldings and molded objects for monsters, etc. ..
 発泡体の形成に用いられる樹脂組成物は、基材樹脂(A)と、化学発泡剤(B)と、シラノール縮合触媒(D)とを含むのが好ましい。
 基材樹脂(A)は、反応性ケイ素基を有する。基材樹脂(A)は、ポリオキシアルキレン系重合体(A1)と、ガラス転移温度が35℃以上であるアクリル樹脂(A2)とを組み合わせて含むのが好ましい。
 以下、発泡体用樹脂組成物に含まれる必須又は任意の成分について、詳細に説明する。
The resin composition used for forming the foam preferably contains a base resin (A), a chemical foaming agent (B), and a silanol condensation catalyst (D).
The base resin (A) has a reactive silicon group. The base resin (A) preferably contains a polyoxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher in combination.
Hereinafter, essential or optional components contained in the foam resin composition will be described in detail.
<基材樹脂(A)>
 基材樹脂(A)は、反応性ケイ素基を有する硬化性の成分である。基材樹脂(A)は、分子鎖中に少なくとも1個の反応性ケイ素基を有するのが好ましい。
 基材樹脂は(A)が反応性ケイ素基を有するため、反応性ケイ素基間でシラノール縮合反応が起こって架橋し、高分子状態となり、硬化する。
 基材樹脂(A)は、反応性ケイ素基を有する樹脂としてポリオキシアルキレン系重合体(A1)を含む。発泡体は、ポリオキシアルキレン系重合体(A1)が反応性ケイ素基間の縮合反応によって硬化した硬化物を含むとともに、発泡状態が適宜調整されることによって、所望する吸音特性を示す。
 基材樹脂(A)に含まれる反応性ケイ素基の数は、縮合反応性の点から、分子鎖中に少なくとも1個であるのが好ましい。硬化性、柔軟性の点からは、基材樹脂(A)は、主鎖もしくは分岐部の分子鎖の両末端に反応性ケイ素基を有する重合体であるのが好ましい。かかる重合体は、1分子中に好ましくは1.0個以上3.0個以下、より好ましくは1.1個以上2.5個以下、特に好ましくは1.2個以上2.0個以下の反応性ケイ素基を有する。
 なお、反応性ケイ素基間の反応による基材樹脂(A)の硬化反応は、空気中の水分及び材料中のみによっても十分に進行し得る。このため、発泡体の製造に使用される、発泡体用樹脂組成物が、水(C)を含まないか、水(C)の含有量が極少量である場合でも、発泡体用樹脂組成物の硬化の進行の点では特段問題がない。
<Base resin (A)>
The base resin (A) is a curable component having a reactive silicon group. The base resin (A) preferably has at least one reactive silicon group in the molecular chain.
Since (A) has a reactive silicon group in the base resin, a silanol condensation reaction occurs between the reactive silicon groups to crosslink the resin, and the resin becomes a polymer state and is cured.
The base resin (A) contains a polyoxyalkylene polymer (A1) as a resin having a reactive silicon group. The foam contains a cured product in which the polyoxyalkylene polymer (A1) is cured by a condensation reaction between reactive silicon groups, and the foaming state is appropriately adjusted to exhibit desired sound absorbing characteristics.
The number of reactive silicon groups contained in the base resin (A) is preferably at least one in the molecular chain from the viewpoint of condensation reactivity. From the viewpoint of curability and flexibility, the base resin (A) is preferably a polymer having reactive silicon groups at both ends of the main chain or the molecular chain at the branch portion. The number of such polymers is preferably 1.0 or more and 3.0 or less, more preferably 1.1 or more and 2.5 or less, and particularly preferably 1.2 or more and 2.0 or less in one molecule. It has a reactive silicon group.
The curing reaction of the base resin (A) by the reaction between the reactive silicon groups can proceed sufficiently only by the moisture in the air and the material. Therefore, even when the foam resin composition used for producing the foam does not contain water (C) or contains a very small amount of water (C), the foam resin composition There is no particular problem in terms of the progress of curing.
 基材樹脂(A)が、主鎖もしくは分岐部の分子鎖の両末端に反応性ケイ素基を有する重合体のみからなる場合、得られる発泡体のアセトンゲル分率が高い傾向がある。アセトンゲル分率が高いことは、発泡体の有機溶剤耐性が高いことを意味する。発泡体のアセトンゲル分率が高いと、例えば、発泡体を、有機溶剤を含む接着剤を用いて、種々の建築物に施工したり種々の機器に取り付けたりする場合に、発泡体の溶剤による劣化(溶剤可溶分の溶出)が生じにくい。 When the base resin (A) consists only of a polymer having reactive silicon groups at both ends of the main chain or the molecular chain at the branching portion, the acetone gel fraction of the obtained foam tends to be high. A high acetone gel fraction means that the foam has high organic solvent resistance. When the acetone gel content of the foam is high, for example, when the foam is applied to various buildings or attached to various devices by using an adhesive containing an organic solvent, the solvent of the foam is used. Deterioration (elution of solvent-soluble components) is unlikely to occur.
 また、基材樹脂(A)は、主鎖もしくは分岐部の分子鎖の両末端に反応性ケイ素基を有する重合体とともに、分子鎖の片末端のみに反応性ケイ素基を有する重合体を含んでいてもよい。分子鎖の片末端のみに反応性ケイ素基を有する重合体は、1分子中に平均して、好ましくは1.0個以下、より好ましくは0.3個以上1.0個以下、さらに好ましくは0.4個以上1.0個以下、特に好ましくは0.5個以上1.0個以下の反応性ケイ素基を有する。
 基材樹脂(A)100重量部における、分子鎖の両末端に反応性ケイ素基を有する重合体の含有量は、65重量部以上95重量部以下が好ましい。基材樹脂(A)100重量部における、分子鎖の片末端のみに反応性ケイ素基を有する重合体の含有量は、5重量部以上35重量部以下が好ましい。
Further, the base resin (A) contains a polymer having a reactive silicon group at both ends of the main chain or the molecular chain at the branch portion, and a polymer having a reactive silicon group only at one end of the molecular chain. You may. The number of polymers having a reactive silicon group at only one end of the molecular chain is preferably 1.0 or less, more preferably 0.3 or more and 1.0 or less, still more preferably, on average in one molecule. It has 0.4 or more and 1.0 or less, particularly preferably 0.5 or more and 1.0 or less reactive silicon groups.
The content of the polymer having reactive silicon groups at both ends of the molecular chain in 100 parts by weight of the base resin (A) is preferably 65 parts by weight or more and 95 parts by weight or less. The content of the polymer having a reactive silicon group only at one end of the molecular chain in 100 parts by weight of the base resin (A) is preferably 5 parts by weight or more and 35 parts by weight or less.
 基材樹脂(A)中に含有される反応性ケイ素基は、ケイ素原子に結合したヒドロキシ基又は加水分解性基を有し、シラノール縮合触媒によって加速される反応によりシロキサン結合を形成することにより架橋しうる基である。反応性ケイ素基としては、式(1a):
-Si(R1a3-a(X)  (1a)
(R1aはそれぞれ独立に、炭素原子数1以上20以下の炭化水素基、又は、-OSi(R’)(R’は、それぞれ独立に炭素原子数1以上20以下の炭化水素基である)で示されるトリオルガノシロキシ基であり、R1aとしての炭化水素基は、置換されていてもよく、且つヘテロ含有基を有してもよい。また、Xは、それぞれ独立にヒドロキシ基又は加水分解性基である。さらに、aは1以上3以下の整数である)
で表される基が挙げられる。
The reactive silicon group contained in the base resin (A) has a hydroxy group or a hydrolyzable group bonded to a silicon atom, and is crosslinked by forming a siloxane bond by a reaction accelerated by a silanol condensation catalyst. It is a possible group. As the reactive silicon group, the formula (1a):
-Si (R 1a ) 3-a (X) a (1a)
(R 1a is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms, or -OSi (R') 3 (R'is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms. ), And the hydrocarbon group as R 1a may be substituted and may have a hetero-containing group, and X is independently a hydroxy group or a hydro group. It is a degradable group. Further, a is an integer of 1 or more and 3 or less)
The group represented by is mentioned.
 加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよい。具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、及び、アルケニルオキシ基が好ましく、加水分解性が穏やかで取扱いやすいという観点からアルコキシ基が特に好ましい。 The hydrolyzable group is not particularly limited, and any conventionally known hydrolyzable group may be used. Specific examples thereof include hydrogen atom, halogen atom, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group, alkenyloxy group and the like. Among these, a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable, and alkoxy is preferable from the viewpoint of mild hydrolyzability and easy handling. Groups are particularly preferred.
 加水分解性基やヒドロキシ基は、1個のケイ素原子に1個以上3個以下の範囲で結合することができる。加水分解性基やヒドロキシ基が反応性ケイ素基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。 The hydrolyzable group and the hydroxy group can be bonded to one silicon atom in the range of 1 or more and 3 or less. When two or more hydrolyzable groups or hydroxy groups are bonded to the reactive silicon group, they may be the same or different.
 上記式(1a)におけるaは、2又は3が好ましく、硬化性の点と、硬化と発泡とが同時に進行する点とから、3が好ましい。 The a in the above formula (1a) is preferably 2 or 3, and is preferably 3 from the viewpoint of curability and the point that curing and foaming proceed at the same time.
 また上記式(1a)におけるR1aの具体例としては、例えばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R’がメチル基、フェニル基等である-OSi(R’)で示されるトリオルガノシロキシ基、クロロメチル基、メトキシメチル基等が挙げられる。これらの中ではメチル基、及びメトキシメチル基が特に好ましい。 Specific examples of R 1a in the above formula (1a) include alkyl groups such as methyl group and ethyl group, cycloalkyl groups such as cyclohexyl group, aryl groups such as phenyl group, aralkyl groups such as benzyl group, and R. 'Is a methyl group, a phenyl group, etc.-A triorganosyloxy group, a chloromethyl group, a methoxymethyl group, etc. represented by -OSi (R') 3 can be mentioned. Of these, a methyl group and a methoxymethyl group are particularly preferable.
 上記式(1a)で表される反応性ケイ素基のより具体的な例示としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基、(メトキシメチル)ジメトキシシリル基が挙げられる。活性が高く良好な硬化性が得られることから、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基が好ましく、トリメトキシシリル基がより好ましい。 More specific examples of the reactive silicon group represented by the above formula (1a) include a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group, and a diethoxymethylsilyl group. Examples thereof include an isopropoxymethylsilyl group and a (methoxymethyl) dimethoxysilyl group. A trimethoxysilyl group, a triethoxysilyl group, and a dimethoxymethylsilyl group are preferable, and a trimethoxysilyl group is more preferable, because high activity and good curability can be obtained.
 基材樹脂(A)の構造としては、直鎖状であっても、分岐構造を有していても構わないが、分岐であるほうが硬化性の観点から好ましい。基材樹脂(A)の主鎖構造が分岐構造である場合、基材樹脂(A)は3つ以上の末端を有するのが好ましい。 The structure of the base resin (A) may be linear or has a branched structure, but the branched structure is preferable from the viewpoint of curability. When the main chain structure of the base resin (A) is a branched structure, the base resin (A) preferably has three or more ends.
 基材樹脂(A)の分子量は、粘度及び反応性のバランスの点から、数平均分子量Mnとして1500以上が好ましく、3000以上がより好ましい。数平均分子量Mnの上限値には特に限定は無いが、50000以下が好ましく、30000以下がより好ましく、20000以下がさらに好ましい。また、基材樹脂(A)は、2種類以上の組み合わせでもよい。また、その際、主剤として用いる重合体以外の重合体は、粘度及び架橋構造の調整を目的とする場合は、上記条件以外のものでもよい。 The molecular weight of the base resin (A) is preferably 1500 or more, more preferably 3000 or more, as the number average molecular weight Mn from the viewpoint of the balance between viscosity and reactivity. The upper limit of the number average molecular weight Mn is not particularly limited, but is preferably 50,000 or less, more preferably 30,000 or less, and even more preferably 20,000 or less. Further, the base resin (A) may be a combination of two or more types. At that time, the polymer other than the polymer used as the main agent may be other than the above conditions if the purpose is to adjust the viscosity and the crosslinked structure.
 基材樹脂(A)の末端における反応性ケイ素基は、ヒドロキシ基末端のオキシアルキレンをイソシアネートシラン化合物で末端変性することにより導入することができる。別の方法としてはヒドロキシ基末端にアリル基等の炭素-炭素不飽和結合を有する基を導入した後に、アルコキシシランによるヒドロシリル化を行うことにより、基材樹脂(A)の末端に反応性ケイ素基を導入することもできる。さらに、ポリイソシアネート変性品の末端をイソシアネート基とした場合は、活性水素を有するアミノシラン等で末端変性することで、基材樹脂(A)の末端に反応性ケイ素基を導入することができる。 The reactive silicon group at the terminal of the base resin (A) can be introduced by terminal-modifying the oxyalkylene at the terminal of the hydroxy group with an isocyanate silane compound. As another method, a reactive silicon group is introduced at the terminal of the base resin (A) by introducing a group having a carbon-carbon unsaturated bond such as an allyl group at the terminal of the hydroxy group and then hydrosilylating with alkoxysilane. Can also be introduced. Further, when the terminal of the polyisocyanate-modified product is an isocyanate group, a reactive silicon group can be introduced into the terminal of the base resin (A) by terminal-modifying with aminosilane having active hydrogen or the like.
 以上説明した、基材樹脂(A)における反応性ケイ素基、又は反応性ケイ素基を含む末端基としては、高発泡倍率の発泡体を製造しやすいことから、トリメトキシシリル基、(メトキシメチル)ジメトキシシリル基、下記式(1)~(3):
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
(式(1)~式(3)中、Rはそれぞれ独立に、炭素原子数1以上20以下の炭化水素基であり、Rとしての炭化水素基は、置換されていてもよく、且つヘテロ含有基を有してもよく、Xはヒドロキシ基又は加水分解性基であり、aは1、2、又は3であり、Rは2価の連結基であり、Rが有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、又は硫黄原子に結合しており、R、及びRは、それぞれ独立に水素原子、炭素原子数1以上20以下のアルキル基、炭素原子数6以上20以下のアリール基、炭素原子数7以上20以下のアラルキル基、又はシリル基のいずれかである。)
で表される基、及び下記式(4):
-R-CH-Si(R3-a(X) (4)
(式(4)中、R、及びaは、式(1)~式(3)におけるR、及びaと同様であり、Rは置換されていてもよいヘテロ原子である。)
で表される基が好ましい。
As the reactive silicon group or the terminal group containing the reactive silicon group in the base resin (A) described above, a trimethoxysilyl group (methoxymethyl) can be easily produced as a foam having a high expansion ratio. Dimethoxysilyl group, formulas (1) to (3) below:
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008

Figure JPOXMLDOC01-appb-C000009

(In formulas (1) to (3), R 1 is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms, and the hydrocarbon group as R 1 may be substituted. It may have a hetero-containing group, where X is a hydroxy or hydrolyzable group, a is 1, 2, or 3, R 4 is a divalent linking group, and R 4 has two. The bonders are bonded to carbon atoms, oxygen atoms, nitrogen atoms, or sulfur atoms in the linking group, respectively, and R 2 and R 3 are independently hydrogen atoms and carbon atoms of 1 to 20 or less, respectively. It is either an alkyl group, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a silyl group.)
The group represented by and the following formula (4):
-R 5- CH 2- Si (R 1 ) 3-a (X) a (4)
(In the formula (4), R 1, and a is the same as R 1, and a in equation (1) to (3), R 5 is a hetero atom which may be substituted.)
The group represented by is preferable.
 式(1)~(3)で表される構造では、上記のように、-Si(R3-a(X)で表される反応性ケイ素基に、炭素-炭素二重結合が隣接している。このため、式(1)~(3)で表される構造においては、炭素-炭素二重結合が電子吸引基として作用し、反応性ケイ素基の活性が向上する。その結果、式(1)~(3)で表される末端基を有する基材樹脂(A)や、当該基材樹脂(A)を含む発泡体用樹脂組成物は、硬化反応性に優れると考えられる。 In the structure represented by formula (1) to (3), as mentioned above, the reactive silicon group represented by -Si (R 1) 3-a (X) a, carbon - carbon double bond Adjacent. Therefore, in the structures represented by the formulas (1) to (3), the carbon-carbon double bond acts as an electron-withdrawing group, and the activity of the reactive silicon group is improved. As a result, the base resin (A) having a terminal group represented by the formulas (1) to (3) and the foam resin composition containing the base resin (A) are said to have excellent curing reactivity. Conceivable.
 Rは2価の連結基である。Rが有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、又は硫黄原子に結合している。
 ここで、Rが有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、又は硫黄原子に結合しているとは、Rが有する2つの結合手が、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、又は硫黄原子上に存在することを意味する。
 2価の連結基の具体例としては、-(CH-、-O-(CH-、-S-(CH-、-NR-(CH-、-O-C(=O)-NR-(CH-、及び-NR-C(=O)-NR-(CH-、等が挙げられる。これらの中では、-O-(CH-、-O-C(=O)-NR-(CH-、及び-NR-C(=O)-NR-(CH-が好ましく、-O-CH-が原料が入手しやすいためより好ましい。Rは、水素原子又は炭素原子数1以上10以下の炭化水素基である。Rとしての炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、及びイソプロピル基等のアルキル基、フェニル基、及びナフチル基等のアリール基、ベンジル基等のアラルキル基が挙げられる。nとしては、0以上10以下の整数が好ましく、0以上5以下の整数がより好ましく、0以上2以下の整数がさらに好ましく、0又は1が特に好ましく、1が最も好ましい。
R 4 is a divalent linking group. The two bonds of R 4 are bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group, respectively.
Here, the two bonds possessed by R 4 are bonded to the carbon atom, oxygen atom, nitrogen atom, or sulfur atom in the linking group, respectively, and the two bonds possessed by R 4 are respectively. It means that it exists on a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in a linking group.
Specific examples of the divalent linking group, - (CH 2) n - , - O- (CH 2) n -, - S- (CH 2) n -, - NR 8 - (CH 2) n -, -O-C (= O) -NR 8 - (CH 2) n -, and -NR 8 -C (= O) -NR 8 - (CH 2) n -, it includes like. Among these, -O- (CH 2) n - , - O-C (= O) -NR 8 - (CH 2) n -, and -NR 8 -C (= O) -NR 8 - (CH 2 ) n -is preferable, and -O-CH 2- is more preferable because the raw material is easily available. R 8 is a hydrogen atom or a hydrocarbon group having 1 or more and 10 or less carbon atoms. Examples of the hydrocarbon group as R 8 include an alkyl group such as a methyl group, an ethyl group, an n-propyl group and an isopropyl group, an aryl group such as a phenyl group and a naphthyl group, and an aralkyl group such as a benzyl group. Be done. As n, an integer of 0 or more and 10 or less is preferable, an integer of 0 or more and 5 or less is more preferable, an integer of 0 or more and 2 or less is further preferable, 0 or 1 is particularly preferable, and 1 is most preferable.
 R、及びRは、それぞれ独立に水素、炭素原子数1以上20以下のアルキル基、炭素原子数6以上20以下のアリール基、炭素原子数7以上20以下のアラルキル基、及びシリル基のいずれかである。アルキル基の炭素原子数は、1以上12以下が好ましく、1以上6以下がより好ましく、1以上4以下が特に好ましい。アリール基の炭素原子数は、6以上12以下が好ましく、6以上10以下がより好ましい。アラルキル基の炭素原子数は、7以上12以下が好ましい。
 R、及びRとしては、具体的には、水素;メチル基、エチル基、及びシクロヘキシル等のアルキル基;フェニル基、及びトリル基等のアリール基;ベンジル基、及びフェネチル基等のアラルキル基;トリメチルシリル基等のシリル基、が挙げられる。これらの中では、水素、メチル基、及びトリメチルシリル基が好ましく、水素、及びメチル基がより好ましく、水素がさらに好ましい。
R 2 and R 3 are independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, and a silyl group. It is either. The number of carbon atoms of the alkyl group is preferably 1 or more and 12 or less, more preferably 1 or more and 6 or less, and particularly preferably 1 or more and 4 or less. The number of carbon atoms of the aryl group is preferably 6 or more and 12 or less, and more preferably 6 or more and 10 or less. The number of carbon atoms of the aralkyl group is preferably 7 or more and 12 or less.
Specific examples of R 2 and R 3 include hydrogen; alkyl groups such as methyl group, ethyl group, and cyclohexyl; aryl groups such as phenyl group and tolyl group; aralkyl groups such as benzyl group and phenethyl group. A silyl group such as a trimethylsilyl group can be mentioned. Among these, hydrogen, a methyl group, and a trimethylsilyl group are preferable, hydrogen and a methyl group are more preferable, and hydrogen is further preferable.
 上記式(1)~(3)で表される構造としては、それぞれ、下記式(5)~(7):
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
で表される構造が好ましい。
 R、X、及びaは上記の記載と同様である。
The structures represented by the above formulas (1) to (3) include the following formulas (5) to (7):
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012

The structure represented by is preferable.
R 1 , X, and a are the same as described above.
 式(1)~式(4)において、Rとしての炭化水素基は、式(1a)におけるR1aとしての炭化水素基と同様である。
 Rとしての炭化水素基としては、例えば、メチル基、及びエチル基等のアルキル基;クロロメチル基、及びメトキシメチル基等のヘテロ含有基を有するアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基等のアリール基;ベンジル基等のアラルキル基;等を挙げることができる。Rとしては、メチル基、メトキシメチル基、及びクロロメチル基が好ましく、メチル基、及びメトキシメチル基がより好ましく、メトキシメチル基がさらに好ましい。
In the formulas (1) to (4), the hydrocarbon group as R 1 is the same as the hydrocarbon group as R 1a in the formula (1a).
Examples of the hydrocarbon group as R 1 include an alkyl group such as a methyl group and an ethyl group; an alkyl group having a hetero-containing group such as a chloromethyl group and a methoxymethyl group; a cycloalkyl group such as a cyclohexyl group; phenyl. An aryl group such as a group; an aralkyl group such as a benzyl group; and the like can be mentioned. The R 1, a methyl group, methoxymethyl group, and a chloromethyl group are preferred, a methyl group, and more preferably a methoxymethyl group, methoxymethyl group are more preferred.
 式(1)~式(4)におけるXとしては、式(1a)について前述した通りである。 The X in the formulas (1) to (4) is as described above for the formula (1a).
 式(4)におけるRは、置換されていてもよいヘテロ原子である。Rが電子リッチなヘテロ原子であることにより、式(4)で表される反応性ケイ素基を有する末端基は、高い反応性を示す。
 式(4)におけるRとしての置換されていてもよいヘテロ原子としては、本発明の目的と阻害しない限り特に限定されない。ヘテロ原子の具体例としては、O、N、及びSが挙げられる。
 Rが無置換のヘテロ原子である場合、-R-で表される2価基の具体例としては、-O-、及び-S-が挙げられる。
 Rが置換されたヘテロ原子である場合、-R-で表される2価基の具体例としては、例えば、-SO-、-SO-、-NH-、及び-NR-等が挙げられる。
 置換基としてのRは特に限定されない。Rの好適な例としては、炭化水素基、及び-CO-Rで表されるアシル基等が挙げられる。Rとしては、炭化水素基が好ましい。R及びRとしての炭化水素基の例としては、Rとしての炭化水素基の例と同様である。
R 5 in formula (4) is a heteroatom that may be substituted. Since R 5 is an electron-rich heteroatom, the terminal group having a reactive silicon group represented by the formula (4) exhibits high reactivity.
The optionally substituted hetero atom as R 5 in the formula (4) is not particularly limited so long as it does not inhibit the object of the present invention. Specific examples of the heteroatom include O, N, and S.
When R 5 is an unsubstituted heteroatom, specific examples of the divalent group represented by -R 5- include -O- and -S-.
When R 5 is a substituted heteroatom, specific examples of the divalent group represented by -R 5- include, for example, -SO-, -SO 2- , -NH-, and -NR 6-. Can be mentioned.
R 6 as a substituent is not particularly limited. Preferable examples of R 6 include a hydrocarbon group, an acyl group represented by -CO-R 7 , and the like. A hydrocarbon group is preferable as R 7 . Examples of the hydrocarbon groups as R 6 and R 7 are the same as those of the hydrocarbon groups as R 1 .
 以下、基材樹脂(A)の主鎖構造について説明する。 The main chain structure of the base resin (A) will be described below.
[主鎖構造]
 基材樹脂(A)の主鎖構造は、前述の通り、直鎖状であってもよいし、分岐鎖を有していてもよい。
 基材樹脂(A)の主鎖構造には特に制限はない。基材樹脂(A)としては、各種の主鎖構造を有する主鎖骨格を含む重合体を使用することができる。
 基材樹脂(A)の主鎖骨格を構成する重合体としては、例えば、ポリオキシアルキレン系重合体、炭化水素系重合体、ポリエステル系重合体、ビニル系(共)重合体、(メタ)アクリル酸エステル系(共)重合体、グラフト重合体、ポリサルファイド系重合体、ポリアミド系重合体、ポリカーボネート系重合体、ウレタン結合及び/又はウレア結合を有する重合体(ウレタンプレポリマー)、ジアリルフタレート系重合体等をあげることができる。
 なお、前述の通り、基材樹脂(A)は、ポリオキシアルキレン系重合体(A1)と、ガラス転移温度が35℃以上であるアクリル樹脂(A2)とを含むのが好ましい。
[Main chain structure]
As described above, the main chain structure of the base resin (A) may be linear or may have a branched chain.
The main chain structure of the base resin (A) is not particularly limited. As the base resin (A), a polymer containing a main chain skeleton having various main chain structures can be used.
Examples of the polymer constituting the main chain skeleton of the base resin (A) include a polyoxyalkylene polymer, a hydrocarbon polymer, a polyester polymer, a vinyl (co) polymer, and (meth) acrylic. Acid ester-based (co) polymer, graft polymer, polysulfide-based polymer, polyamide-based polymer, polycarbonate-based polymer, polymer having urethane bond and / or urea bond (urethane prepolymer), diallyl phthalate-based polymer Etc. can be given.
As described above, the base resin (A) preferably contains a polyoxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher.
 ポリオキシアルキレン系重合体としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、及びポリオキシプロピレン-ポリオキシブチレン共重合体等が挙げられる。 Examples of the polyoxyalkylene polymer include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and polyoxypropylene-polyoxybutylene copolymer. And so on.
 炭化水素系重合体としては、例えば、エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレンとの共重合体、ポリクロロプレン、ポリイソプレン、イソプレン又はブタジエンとアクリロニトリル及び/又はスチレン等との共重合体、ポリブタジエン、イソプレン又はブタジエンとアクリロニトリル及びスチレンとの共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等が挙げられる。 Examples of the hydrocarbon-based polymer include ethylene-propylene-based copolymers, polyisobutylene, copolymers of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or butadiene and acrylonitrile and / or styrene and the like. Examples thereof include coalescing, polybutadiene, isoprene, or copolymers of butadiene with acrylonitrile and styrene, and hydrocarbon-based polymers obtained by hydrogenating these polyolefin-based polymers.
 ポリエステル系重合体としては、例えば、アジピン酸等の2塩基酸とグリコールとの縮合反応で得られる重合体、及びラクトン類の開環重合で得られる重合体等のエステル結合を有する重合体が挙げられる。 Examples of the polyester-based polymer include polymers having an ester bond such as a polymer obtained by a condensation reaction of a dibasic acid such as adipic acid and a glycol, and a polymer obtained by ring-opening polymerization of lactones. Be done.
 ビニル系(共)重合体としては、例えば、(メタ)アクリル酸エステル、酢酸ビニル、アクリロニトリル、及びスチレン等のビニル系単量体を、単独、又は複数組み合わせてラジカル重合して得られる(共)重合体が挙げられる。 The vinyl-based (co) polymer is obtained by radical polymerization of, for example, vinyl-based monomers such as (meth) acrylic acid ester, vinyl acetate, acrylonitrile, and styrene, alone or in combination of two or more (co). Polymers can be mentioned.
 (メタ)アクリル酸エステル系(共)重合体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、及び(メタ)アクリル酸ステアリル等の(メタ)アクリル酸エステル単量体を、単独、又は複数組み合わせてラジカル重合して得られる(共)重合体が挙げられる。(メタ)アクリル酸エステル系(共)重合体は、所謂、アクリル樹脂である。
 なお、本出願の明細書及び請求項の範囲において、「アクリル樹脂」は、アクリル酸及び/又はアクリル酸誘導体からなる単量体の重合体には限定されない。本出願の明細書及び請求項の範囲において、メタクリル酸及び/又はメタクリル酸誘導体を含む単量体の重合体も、「アクリル樹脂」に含まれる。
Examples of the (meth) acrylic acid ester-based (co) polymer include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and (meth) acrylate. ) Examples thereof include (co) polymers obtained by radical polymerization of (meth) acrylic acid ester monomers such as stearyl acrylate, alone or in combination of two or more. The (meth) acrylic acid ester-based (co) polymer is a so-called acrylic resin.
In the specification and claims of the present application, the "acrylic resin" is not limited to a polymer of a monomer composed of acrylic acid and / or an acrylic acid derivative. Within the specification and claims of the present application, a polymer of a monomer containing methacrylic acid and / or a methacrylic acid derivative is also included in the "acrylic resin".
 グラフト重合体としては、例えば、上記の各種重合体中で、ビニル系単量体を重合して得られる重合体が挙げられる。 Examples of the graft polymer include a polymer obtained by polymerizing a vinyl-based monomer among the above-mentioned various polymers.
 ポリアミド系重合体としては、例えば、ε-カプロラクタムの開環重合で得られるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合で得られるナイロン6・6、ヘキサメチレンジアミンとセバシン酸との縮重合で得られるナイロン6・10、ε-アミノウンデカン酸の縮重合で得られるナイロン11、ε-アミノラウロラクタムの開環重合で得られるナイロン12、及び上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等が挙げられる。 Examples of the polyamide polymer include nylon 6 obtained by ring-opening polymerization of ε-caprolactam, nylon 6.6 obtained by condensation polymerization of hexamethylenediamine and adipic acid, and condensation polymerization of hexamethylenediamine and sebacic acid. Nylon 6/10 obtained, nylon 11 obtained by condensation polymerization of ε-aminoundecanoic acid, nylon 12 obtained by ring-opening polymerization of ε-aminolaurolactum, and a combination of two or more of the above nylon components. Polymerized nylon and the like can be mentioned.
 ポリカーボネート系重合体としては、例えば、ビスフェノールAと塩化カルボニルより縮重合して製造される重合体等が挙げられる。 Examples of the polycarbonate-based polymer include a polymer produced by polycondensation of bisphenol A and carbonyl chloride.
 ウレタン結合及び/又はウレア結合を有する重合体(ウレタンプレポリマー)としては、例えば、ポリオールと過剰量のポリイソシアネート化合物とを反応させて得られる分子末端にイソシアネート基を有する液状高分子化合物等が挙げられる。 Examples of the polymer having a urethane bond and / or a urea bond (urethane prepolymer) include a liquid polymer compound having an isocyanate group at the molecular terminal obtained by reacting a polyol with an excessive amount of a polyisocyanate compound. Be done.
 本願明細書において、「(メタ)アクリレート」とは「アクリレート及び/又はメタクリレート」を表す。「(メタ)アクリル酸」とは「アクリル酸及び/又はメタクリル酸」を表す。「(共)重合体」とは「重合体及び/又は共重合体」を表す。 In the specification of the present application, "(meth) acrylate" means "acrylate and / or methacrylate". "(Meta) acrylic acid" means "acrylic acid and / or methacrylic acid". The "(co) polymer" means a "polymer and / or a copolymer".
 基材樹脂(A)の主鎖骨格を構成する重合体の中で、ポリイソブチレン、水添ポリイソプレン、及び水添ポリブタジエン等の飽和炭化水素系重合体、ポリオキシアルキレン系重合体、並びにアクリル樹脂((メタ)アクリル酸エステル系重合体)は、比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることから好ましい。 Among the polymers constituting the main chain skeleton of the base resin (A), saturated hydrocarbon-based polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene-based polymers, and acrylic resins. ((Meta) acrylic acid ester-based polymer) is preferable because the glass transition temperature is relatively low and the obtained cured product has excellent cold resistance.
 以下、基材樹脂(A)のガラス転移温度について説明する。
 基材樹脂(A)の主鎖骨格を構成する重合体のガラス転移温度は、特に限定は無いが、20℃以下であることが好ましく、0℃以下であることがより好ましく、-20℃以下であることが特に好ましい。ガラス転移温度が20℃を上回ると、冬季又は寒冷地での発泡体用樹脂組成物の粘度が高くなり、作業性が悪くなる場合があり、また、発泡体の柔軟性が低下し、伸びが低下する場合がある。ガラス転移温度はDSC測定による値を示す。
Hereinafter, the glass transition temperature of the base resin (A) will be described.
The glass transition temperature of the polymer constituting the main chain skeleton of the base resin (A) is not particularly limited, but is preferably 20 ° C. or lower, more preferably 0 ° C. or lower, and −20 ° C. or lower. Is particularly preferable. If the glass transition temperature exceeds 20 ° C., the viscosity of the resin composition for foam in winter or cold regions may increase, which may result in poor workability, and the flexibility of the foam may decrease, resulting in elongation. May decrease. The glass transition temperature shows the value measured by DSC.
 また、基材樹脂(A)がガラス転移温度が35℃以上である樹脂を含むのも好ましい。この場合、発泡後の発泡体のシュリンクを抑制しやすい。発泡後の発泡体のシュリンクを特に抑制しやすい点からは、基材樹脂(A)が、ガラス転移温度が35℃以上である樹脂とともに、ガラス転移温度が35℃未満である樹脂を含むのが好ましい。
 前述のポリオキシアルキレン系重合体(A1)のガラス転移温度は、通常35℃未満である。このため、ポリオキシアルキレン系重合体(A1)を、ガラス転移温度が35度未満である樹脂として好適に用いることができる。
 特に良好なシュリンク抑制効果が得られることから、ガラス転移温度が35℃未満である樹脂のガラス転移温度は、20℃以下が好ましく、-10℃以下がより好ましい。ガラス転移温度が35℃未満である樹脂はガラス転移温度が35℃以上である樹脂を溶解できるため、固形分100%の液状樹脂組成物となり、室温での反応性が高く、発泡・硬化後に未架橋成分の少ない発泡体が得られる。
 基材樹脂(A)のガラス転移温度は、主鎖骨格の種類、主鎖を構成する単位の種類、主鎖を構成する単位の組成、及び分子量等を調整することにより調整できる。
 ガラス転移温度が35℃以上である樹脂のガラス転移温度は、35℃以上180℃以下が好ましく、50℃以上120℃以下がより好ましい。
 ガラス転移温度が35℃未満である樹脂のガラス転移温度の下限は、-60℃以上が好ましく、-30℃以上がより好ましい。
 ガラス転移温度が35℃以上である樹脂としては、発泡体のシュリンクを特に抑制しやすい点から、アクリル樹脂(A2)が好ましい。つまり、発泡体の製造に用いられる反応性ケイ素基を有する基材樹脂(A)は、ポリオキシアルキレン系重合体(A1)と、ガラス転移温度が35℃以上であるアクリル樹脂(A2)とを組み合わせて含むのが好ましい。
 基材樹脂(A)のガラス転移温度は、主鎖骨格の種類、主鎖を構成する単位の種類、主鎖を構成する単位の組成、及び分子量等を調整することにより調整できる。
It is also preferable that the base resin (A) contains a resin having a glass transition temperature of 35 ° C. or higher. In this case, it is easy to suppress the shrinkage of the foam after foaming. From the viewpoint that shrinkage of the foam after foaming is particularly easy to be suppressed, the base resin (A) contains a resin having a glass transition temperature of 35 ° C. or higher and a resin having a glass transition temperature of less than 35 ° C. preferable.
The glass transition temperature of the above-mentioned polyoxyalkylene polymer (A1) is usually less than 35 ° C. Therefore, the polyoxyalkylene polymer (A1) can be suitably used as a resin having a glass transition temperature of less than 35 degrees.
Since a particularly good shrink suppressing effect can be obtained, the glass transition temperature of the resin having a glass transition temperature of less than 35 ° C. is preferably 20 ° C. or lower, more preferably −10 ° C. or lower. A resin having a glass transition temperature of less than 35 ° C can dissolve a resin having a glass transition temperature of 35 ° C or higher. A foam with a small amount of cross-linking component can be obtained.
The glass transition temperature of the base resin (A) can be adjusted by adjusting the type of the main chain skeleton, the type of the unit constituting the main chain, the composition of the unit constituting the main chain, the molecular weight, and the like.
The glass transition temperature of the resin having a glass transition temperature of 35 ° C. or higher is preferably 35 ° C. or higher and 180 ° C. or lower, and more preferably 50 ° C. or higher and 120 ° C. or lower.
The lower limit of the glass transition temperature of the resin having a glass transition temperature of less than 35 ° C. is preferably −60 ° C. or higher, more preferably −30 ° C. or higher.
As the resin having a glass transition temperature of 35 ° C. or higher, an acrylic resin (A2) is preferable because it is particularly easy to suppress shrinkage of the foam. That is, the base resin (A) having a reactive silicon group used in the production of the foam is a polyoxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher. It is preferable to include them in combination.
The glass transition temperature of the base resin (A) can be adjusted by adjusting the type of the main chain skeleton, the type of the unit constituting the main chain, the composition of the unit constituting the main chain, the molecular weight, and the like.
 基材樹脂(A)の主鎖骨格を構成する重合体の中でも、ポリオキシアルキレン系重合体(A1)及びアクリル樹脂(A2)が透湿性が高い点等から好ましい。必須成分としてのポリオキシアルキレン系重合体(A1)の中では、ポリオキシプロピレン系重合体が好ましい。
 基材樹脂(A)が、アクリル樹脂(A2)、及びポリオキシアルキレン系重合体(A1)を含む場合、適切な範囲内の粘度を有する発泡体用樹脂組成物を得やすい点から、基材樹脂(A)100重量部中のアクリル樹脂(A2)の量は、3重量部以上80重量部以下が好ましく、10重量部以上80重量部以上がより好ましく、10重量部以上50重量部以下がさらに好ましく、5重量部以上50重量部以下がさらにより好ましく、5重量部以上30重量部以下が特に好ましく、10重量部以上30重量部以下が最も好ましい。
 基材樹脂(A)が低粘度であると、発泡体を製造する際の発泡体用樹脂組成物の撹拌が容易である。基材樹脂が(A)が低粘度であると、特に、発泡体用樹脂組成物を2液型以上の多液型の組成物とする場合に、発泡体製造時の各液のスタティックミキサー等による均一な混合が容易である。この点からも、記載樹脂(A)におけるアクリル樹脂(A2)の含有量は、上記の範囲内の量であるのが好ましい。
Among the polymers constituting the main chain skeleton of the base resin (A), the polyoxyalkylene polymer (A1) and the acrylic resin (A2) are preferable because of their high moisture permeability. Among the polyoxyalkylene-based polymer (A1) as an essential component, the polyoxypropylene-based polymer is preferable.
When the base resin (A) contains an acrylic resin (A2) and a polyoxyalkylene polymer (A1), a base resin composition having a viscosity within an appropriate range can be easily obtained. The amount of acrylic resin (A2) in 100 parts by weight of the resin (A) is preferably 3 parts by weight or more and 80 parts by weight or less, more preferably 10 parts by weight or more and 80 parts by weight or more, and 10 parts by weight or more and 50 parts by weight or less. More preferably, it is more preferably 5 parts by weight or more and 50 parts by weight or less, particularly preferably 5 parts by weight or more and 30 parts by weight or less, and most preferably 10 parts by weight or more and 30 parts by weight or less.
When the base resin (A) has a low viscosity, it is easy to stir the foam resin composition when producing the foam. When the base resin (A) has a low viscosity, particularly when the resin composition for a foam is a two-component or more multi-component composition, a static mixer or the like for each liquid during foam production. It is easy to mix uniformly with. From this point as well, the content of the acrylic resin (A2) in the described resin (A) is preferably an amount within the above range.
 基材樹脂(A)の主鎖への反応性ケイ素基の導入は公知の方法で行えばよい。例えば以下の方法があげられる。 The reactive silicon group may be introduced into the main chain of the base resin (A) by a known method. For example, the following method can be mentioned.
 方法I:ヒドロキシ基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基及び不飽和基を有する化合物を反応させ、不飽和基を有する有機重合体を得る。次いで、得られた不飽和基を有する有機重合体に、ヒドロシリル化によって、反応性ケイ素基を有するヒドロシラン化合物を反応させる。 Method I: An organic polymer having a functional group such as a hydroxy group is reacted with a compound having an active group and an unsaturated group exhibiting reactivity with this functional group to obtain an organic polymer having an unsaturated group. Then, the obtained organic polymer having an unsaturated group is reacted with a hydrosilane compound having a reactive silicon group by hydrosilylation.
 方法Iにおいて使用し得る反応性を示す活性基及び不飽和基を有する化合物としては、例えば、アリルグリシジルエーテル等の不飽和基含有エポキシ化合物、塩化アリル、塩化メタリル、臭化ビニル、臭化アリル、臭化メタリル、ヨウ化ビニル、ヨウ化アリル、及びヨウ化メタリル等の炭素-炭素二重結合を有する化合物が挙げられる。
 また、炭素-炭素三重結合を有する化合物としては、塩化プロパルギル、1-クロロ-2-ブチン、4-クロロ-1-ブチン、1-クロロ-2-オクチン、1-クロロ-2-ペンチン、1,4-ジクロロ-2-ブチン、5-クロロ-1-ペンチン、6-クロロ-1-ヘキシン、臭化プロパルギル、1-ブロモ-2-ブチン、4-ブロモ-1-ブチン、1-ブロモ-2-オクチン、1-ブロモ-2-ペンチン、1,4-ジブロモ-2-ブチン、5-ブロモ-1-ペンチン、6-ブロモ-1-ヘキシン、ヨウ化プロパルギル、1-ヨード-2-ブチン、4-ヨード-1-ブチン、1-ヨード-2-オクチン、1-ヨード-2-ペンチン、1,4-ジヨード-2-ブチン、5-ヨード-1-ペンチン、及び6-ヨード-1-ヘキシン等の炭素-炭素三重結合を有するハロゲン化炭化水素化合物が挙げられる。これらの中では、塩化プロパルギル、臭化プロパルギル、及びヨウ化プロパルギルがより好ましい。
 炭素-炭素三重結合を有するハロゲン化炭化水素化合物と同時に、塩化ビニル、塩化アリル、塩化メタリル、臭化ビニル、臭化アリル、臭化メタリル、ヨウ化ビニル、ヨウ化アリル、及びヨウ化メタリル等の炭素-炭素三重結合を有するハロゲン化炭化水素以外の不飽和結合を有する炭化水素化合物を使用してもよい。
Examples of the reactive compound having an active group and an unsaturated group that can be used in Method I include an unsaturated group-containing epoxy compound such as allyl glycidyl ether, allyl chloride, metallic chloride, vinyl bromide, and allyl bromide. Examples thereof include compounds having a carbon-carbon double bond such as metallyl bromide, vinyl iodide, allyl iodide, and metallyl iodide.
Examples of the compound having a carbon-carbon triple bond include propargyl chloride, 1-chloro-2-butyne, 4-chloro-1-butyne, 1-chloro-2-octyne, 1-chloro-2-pentin, 1, 4-Dichloro-2-butyne, 5-chloro-1-pentin, 6-chloro-1-hexine, propargyl bromide, 1-bromo-2-butyne, 4-bromo-1-butyne, 1-bromo-2- Octin, 1-bromo-2-pentin, 1,4-dibromo-2-butyne, 5-bromo-1-pentin, 6-bromo-1-hexine, propargyl iodide, 1-iodo-2-butyne, 4- Iodo-1-butyne, 1-iodo-2-octyne, 1-iodo-2-pentin, 1,4-diiodo-2-butyne, 5-iodo-1-pentyne, 6-iodo-1-hexine, etc. Examples thereof include halogenated hydrocarbon compounds having a carbon-carbon triple bond. Of these, propargyl chloride, propargyl bromide, and propargyl iodide are more preferred.
At the same time as a halogenated hydrocarbon compound having a carbon-carbon triple bond, vinyl chloride, allyl chloride, metallyl chloride, vinyl bromide, allyl bromide, metallyl bromide, vinyl iodide, allyl iodide, metallyl iodide, etc. Hydrocarbon compounds having unsaturated bonds other than halogenated hydrocarbons having carbon-carbon triple bonds may be used.
 方法Iにおいて使用し得るヒドロシラン化合物としては、例えば、ハロゲン化シラン類、アルコキシシラン類、アシロキシシラン類、及びケトキシメートシラン類等が挙げられる。ヒドロシラン化合物は、これらに限定されない。 Examples of the hydrosilane compound that can be used in Method I include halogenated silanes, alkoxysilanes, asyloxysilanes, and ketoximatesilanes. Hydrosilane compounds are not limited to these.
 ハロゲン化シラン類としては、例えば、トリクロロシラン、メチルジクロロシラン、ジメチルクロロシラン、及びフェニルジクロロシラン等が挙げられる。 Examples of halogenated silanes include trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane.
 アルコキシシラン類としては、例えば、トリメトキシシラン、トリエトキシシラン、トリイソプロポキシシラン、ジメトキシメチルシラン、ジエトキシメチルシラン、ジイソプロポキシメチルシラン、(メトキシメチル)ジメトキシシラン、フェニルジメトキシシラン、及び1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン等が挙げられる。 Examples of alkoxysilanes include trimethoxysilane, triethoxysilane, triisopropoxysilane, dimethoxymethylsilane, diethoxymethylsilane, diisopropoxymethylsilane, (methoxymethyl) dimethoxysilane, phenyldimethoxysilane, and 1-. [2- (Trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane and the like can be mentioned.
 アシロキシシラン類としては、例えば、メチルジアセトキシシラン、及びフェニルジアセトキシシラン等が挙げられる。 Examples of asyloxysilanes include methyldiacetoxysilane and phenyldiacetoxysilane.
 ケトキシメートシラン類としては、例えば、ビス(ジメチルケトキシメート)メチルシラン、及びビス(シクロヘキシルケトキシメート)メチルシラン等が挙げられる。 Examples of ketoximate silanes include bis (dimethyl ketoximate) methylsilane and bis (cyclohexylketoximate) methylsilane.
 これらの中では、ハロゲン化シラン類、及びアルコキシシラン類が特に好ましい。アルコキシシラン類は、加水分解性が穏やかで取り扱いやすいために最も好ましい。 Among these, halogenated silanes and alkoxysilanes are particularly preferable. Alkoxysilanes are most preferred because they are mildly hydrolyzable and easy to handle.
 アルコキシシラン類の中では、入手しやすい点、硬化性、及び貯蔵安定性に優れる発泡体用樹脂組成物を得やすい点、発泡体用樹脂組成物を用いて引張強度に優れる発泡体を製造しやすい点等からジメトキシメチルシランが好ましい。また、硬化性に優れる発泡体用樹脂組成物を得やすい点から、トリメトキシシラン、及びトリエトキシシランも好ましい。 Among the alkoxysilanes, a foam having excellent tensile strength is produced by using the resin composition for foam, which is easily available, has excellent curability and storage stability, and is easy to obtain. Dimethoxymethylsilane is preferable because it is easy to use. Further, trimethoxysilane and triethoxysilane are also preferable from the viewpoint that a resin composition for a foam having excellent curability can be easily obtained.
 方法II:メルカプト基及び反応性ケイ素基を有する化合物を、ラジカル開始剤及び/又はラジカル発生源存在下でのラジカル付加反応によって、方法Iと同様にして得られた不飽和基を有する有機重合体の不飽和基部位に導入する方法。 Method II: An organic polymer having an unsaturated group obtained by subjecting a compound having a mercapto group and a reactive silicon group to a radical addition reaction in the presence of a radical initiator and / or a radical source in the same manner as in Method I. Method of introducing into the unsaturated radical site of.
 方法IIにおいて使用し得るメルカプト基及び反応性ケイ素基を有する化合物としては、例えば、3-メルカプト-n-プロピルトリメトキシシラン、3-メルカプト-n-プロピルメチルジメトキシシラン、3-メルカプト-n-プロピルトリエトキシシラン、3-メルカプト-n-プロピルメチルジエトキシシラン、メルカプトメチルトリメトキシシラン、及びメルカプトメチルトリエトキシシラン等が挙げられる。メルカプト基及び反応性ケイ素基を有する化合物は、これらに限定されない。 Examples of the compound having a mercapto group and a reactive silicon group that can be used in Method II include 3-mercapto-n-propyltrimethoxysilane, 3-mercapto-n-propylmethyldimethoxysilane, and 3-mercapto-n-propyl. Examples thereof include triethoxysilane, 3-mercapto-n-propylmethyldiethoxysilane, mercaptomethyltrimethoxysilane, and mercaptomethyltriethoxysilane. Compounds having a mercapto group and a reactive silicon group are not limited thereto.
 方法III:分子中にヒドロキシ基、エポキシ基、及びイソシアネート基等の官能基を有する有機重合体に、これらの官能基に対して反応性を示す官能基及び反応性ケイ素基を有する化合物を反応させる方法。 Method III: An organic polymer having a functional group such as a hydroxy group, an epoxy group, and an isocyanate group in the molecule is reacted with a compound having a functional group exhibiting reactivity with these functional groups and a reactive silicon group. Method.
 方法IIIにおいて採用し得る、ヒドロキシ基を有する有機重合体と、イソシアネート基及び反応性ケイ素基を有する化合物とを反応させる方法としては、特に限定されないが、例えば、特開平3-47825号公報に示される方法等が挙げられる。 The method for reacting the organic polymer having a hydroxy group with the compound having an isocyanate group and a reactive silicon group, which can be adopted in Method III, is not particularly limited, but is shown in, for example, JP-A-3-47825. There is a method to be used.
 方法IIIにおいて使用し得る、イソシアネート基及び反応性ケイ素基を有する化合物としては、例えば、3-イソシアナト-n-プロピルトリメトキシシラン、3-イソシアナト-n-プロピルメチルジメトキシシラン、3-イソシアナト-n-プロピルトリエトキシシラン、3-イソシアナト-n-プロピルメチルジエトキシシラン、イソシアナトメチルトリメトキシシラン、イソシアナトメチルトリエトキシシラン、イソシアナトメチルジメトキシメチルシラン、及びイソシアナトメチルジエトキシメチルシラン等があげられる。イソシアネート基及び反応性ケイ素基を有する化合物はこれらに限定されない。 Examples of the compound having an isocyanate group and a reactive silicon group that can be used in Method III include 3-isocyanato-n-propyltrimethoxysilane, 3-isocyanato-n-propylmethyldimethoxysilane, and 3-isocyanato-n-. Examples thereof include propyltriethoxysilane, 3-isocyanato-n-propylmethyldiethoxysilane, isocyanatomethyltrimethoxysilane, isocyanatomethyltriethoxysilane, isocyanatomethyldimethoxymethylsilane, and isocyanatomethyldiethoxymethylsilane. .. Compounds having an isocyanate group and a reactive silicon group are not limited thereto.
 トリメトキシシラン等の1つのケイ素原子に3個の加水分解性基が結合しているシラン化合物は不均化反応が進行する場合がある。不均化反応が進むと、ジメトキシシランのような不安定な化合物が生じ、取り扱いが困難となることがある。しかし、3-メルカプト-n-プロピルトリメトキシシランや3-イソシアナト-n-プロピルトリメトキシシランでは、このような不均化反応は進行しない。このため、ケイ素含有基としてトリメトキシシリル基等の3個の加水分解性基が1つのケイ素原子に結合している基を用いる場合には、方法II又は方法IIIの方法を用いることが好ましい。 A silane compound in which three hydrolyzable groups are bonded to one silicon atom such as trimethoxysilane may undergo a disproportionation reaction. As the disproportionation reaction proceeds, unstable compounds such as dimethoxysilane are produced, which may be difficult to handle. However, such disproportionation reaction does not proceed with 3-mercapto-n-propyltrimethoxysilane or 3-isocyanato-n-propyltrimethoxysilane. Therefore, when a group in which three hydrolyzable groups such as a trimethoxysilyl group are bonded to one silicon atom is used as the silicon-containing group, the method of Method II or Method III is preferably used.
 一方、下記式(2a)で表されるシラン化合物は不均化反応が進まない。
H-(SiR2a O)SiR2a -R3a-SiX   (2a)
 ここで、式(2a)において、Xは式(1a)と同じである。2m+2個のR2aはそれぞれ独立に式(1a)のR1aと同じである。R3aは、炭素原子数1以上20以下の置換又は非置換の2価の炭化水素基を示す。mは0以上19以下の整数を示す。
On the other hand, the disproportionation reaction does not proceed with the silane compound represented by the following formula (2a).
H- (SiR 2a 2 O) m SiR 2a 2- R 3a- SiX 3 (2a)
Here, in the formula (2a), X is the same as the formula (1a). The 2m + 2 R 2a are independently the same as the R 1a of the equation (1a). R 3a represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. m indicates an integer of 0 or more and 19 or less.
 このため、方法Iで、3個の加水分解性基が1つのケイ素原子に結合している基を導入する場合には、式(2a)で表されるシラン化合物を用いることが好ましい。入手性及びコストの点から、2m+2個のR2aとしては、それぞれ独立に、炭素原子数1以上20以下の炭化水素基が好ましく、炭素原子数1以上8以下の炭化水素基がより好ましく、炭素原子数1以上4以下の炭化水素基がさらに好ましい。R3aとしては、炭素原子数1以上12以下の2価の炭化水素基が好ましく、炭素原子数2以上8以下の2価の炭化水素基がより好ましく、炭素原子数2の2価の炭化水素基がさらに好ましい。mは1が最も好ましい。 Therefore, when introducing a group in which three hydrolyzable groups are bonded to one silicon atom in Method I, it is preferable to use the silane compound represented by the formula (2a). From the viewpoint of availability and cost, each of the 2m + 2 R 2a is preferably a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrocarbon group having 1 to 8 carbon atoms, and carbon. Hydrocarbon groups having 1 or more and 4 or less atoms are more preferable. As R 3a , a divalent hydrocarbon group having 1 to 12 carbon atoms is preferable, a divalent hydrocarbon group having 2 to 8 carbon atoms is more preferable, and a divalent hydrocarbon having 2 carbon atoms is preferable. Groups are even more preferred. The m is most preferably 1.
 式(2a)で示されるシラン化合物としては、例えば、1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン、1-[2-(トリメトキシシリル)プロピル]-1,1,3,3-テトラメチルジシロキサン、及び1-[2-(トリメトキシシリル)ヘキシル]-1,1,3,3-テトラメチルジシロキサン等が挙げられる。 Examples of the silane compound represented by the formula (2a) include 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane and 1- [2- (trimethoxysilyl). Examples thereof include propyl] -1,1,3,3-tetramethyldisiloxane and 1- [2- (trimethoxysilyl) hexyl] -1,1,3,3-tetramethyldisiloxane.
 上記の方法I又は方法IIIにおいて、末端にヒドロキシ基を有する有機重合体と、イソシアネート基及び反応性ケイ素基を有する化合物とを反応させる方法は、比較的短い反応時間で高い転化率が得られるために好ましい。さらに、方法Iで得られた反応性ケイ素基を有する有機重合体は、方法IIIで得られる反応性ケイ素基を有する有機重合体よりも低粘度であり、作業性のよい発泡体用樹脂組成物が得られること、また、方法IIで得られる反応性ケイ素基を有する有機重合体は、メルカプトシランに基づく臭気が強いことから、方法Iが特に好ましい。 In the above method I or method III, the method of reacting the organic polymer having a hydroxy group at the terminal with the compound having an isocyanate group and a reactive silicon group can obtain a high conversion rate in a relatively short reaction time. Is preferable. Further, the organic polymer having a reactive silicon group obtained by Method I has a lower viscosity than the organic polymer having a reactive silicon group obtained by Method III, and is a resin composition for a foam having good workability. The method I is particularly preferable because the organic polymer having a reactive silicon group obtained by the method II has a strong odor based on mercaptosilane.
 以下、基材樹脂(A)の中でも必須であるか特に好ましい、反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)と、アクリル樹脂((メタ)アクリル酸エステル系共重合体)(A2)について詳細に説明する。 Hereinafter, a polyoxyalkylene polymer (A1) having a reactive silicon group and an acrylic resin ((meth) acrylic acid ester copolymer) (A2), which are essential or particularly preferable among the base resin (A), are used. ) Will be described in detail.
(ポリオキシアルキレン系重合体(A1))
 ポリオキシアルキレン系重合体(A1)の主鎖構造は下記式(3a)で示される繰り返し単位からなるのが好ましい。
-R4a-O-   (3a)
 ここで、式(3a)において、R4aは炭素原子数1以上14以下の直鎖状又は分岐状アルキレン基を示し、炭素原子数2以上4以下がより好ましい。
(Polyoxyalkylene polymer (A1))
The main chain structure of the polyoxyalkylene polymer (A1) preferably comprises a repeating unit represented by the following formula (3a).
-R 4a -O- (3a)
Here, in the formula (3a), R 4a represents a linear or branched alkylene group having 1 or more and 14 or less carbon atoms, and more preferably 2 or more and 4 or less carbon atoms.
 式(3a)で示される繰り返し単位としては、例えば、-CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CHO-、及び-CHCHCHCHO-等が挙げられる。 The repeating unit represented by formula (3a), for example, -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, -CH 2 C (CH 3 ) 2 O-, -CH 2 CH 2 CH 2 CH 2 O- and the like can be mentioned.
 ポリオキシアルキレン系重合体(A1)の主鎖は、1種類だけの繰り返し単位からなっていてもよく、2種類以上の繰り返し単位からなっていてもよい。ポリオキシアルキレン系重合体(A1)は、非晶質且つ比較的低粘度であるポリオキシプロピレン系重合体であることが好ましい。 The main chain of the polyoxyalkylene polymer (A1) may consist of only one type of repeating unit or may consist of two or more types of repeating units. The polyoxyalkylene polymer (A1) is preferably an amorphous polyoxypropylene polymer having a relatively low viscosity.
 ポリオキシアルキレン系重合体(A1)の合成法としては、例えば、KOH等のアルカリ触媒による重合法;特開昭61-215623号に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体等の遷移金属化合物-ポルフィリン錯体触媒による重合法;特公昭46-27250号公報、特公昭59-15336号公報、米国特許第3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、及び米国特許3427335号等に示される複合金属シアン化物錯体触媒(例えば、亜鉛ヘキサシアノコバルテートグライム錯体触媒)による重合法;特開平10-273512号公報に示されるポリホスファゼン塩からなる触媒を用いる重合法;特開平11-060722号公報に示されるホスファゼン化合物からなる触媒を用いる重合法等が挙げられる。ポリオキシアルキレン系重合体(A1)の合成方法は、これらに限定されない。 Examples of the method for synthesizing the polyoxyalkylene polymer (A1) include a polymerization method using an alkali catalyst such as KOH; a complex obtained by reacting an organic aluminum compound shown in JP-A-61-215623 with porphyrin and the like. Transition metal compound-porphyrin complex-catalyzed polymerization method; JP-A-46-27250, JP-A-59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat. No. 3,427,256, USA Polymerization method using a composite metal cyanide complex catalyst (for example, zinc hexacyanocobaltate glyme complex catalyst) shown in Japanese Patent No. 3427334 and US Patent No. 3427335; a catalyst composed of a polyphosphazene salt shown in JP-A-10-273512. ; A polymerization method using a catalyst composed of a phosphazene compound shown in JP-A-11-060722. The method for synthesizing the polyoxyalkylene polymer (A1) is not limited to these.
 これらの合成法の中では、複合金属シアン化物錯体触媒の存在下、開始剤にアルキレンオキシドを反応させる重合法が分子量分布の狭い重合体を得られることから好ましい。 Among these synthetic methods, a polymerization method in which an alkylene oxide is reacted with an initiator in the presence of a composite metal cyanide complex catalyst is preferable because a polymer having a narrow molecular weight distribution can be obtained.
 複合金属シアン化物錯体触媒としては、Zn[Co(CN)(亜鉛ヘキサシアノコバルテート錯体)等が挙げられる。また、これらにアルコール及び/又はエーテルが有機配位子として配位した触媒も使用できる。 Examples of the composite metal cyanide complex catalyst include Zn 3 [Co (CN) 6 ] 2 (zinc hexacyanocobaltate complex). Further, a catalyst in which alcohol and / or ether is coordinated as an organic ligand can also be used.
 開始剤としては、少なくとも2個の活性水素基を有する化合物が好ましい。活性水素含有化合物は、エチレングリコール、ジエチレングリコール、プロピレングリコール、及びグリセリン等の多価アルコールや、数平均分子量500以上20,000以下の直鎖状又は分岐鎖状のポリエーテル化合物等が挙げられる。 As the initiator, a compound having at least two active hydrogen groups is preferable. Examples of the active hydrogen-containing compound include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and glycerin, and linear or branched polyether compounds having a number average molecular weight of 500 or more and 20,000 or less.
 アルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、及びイソブチレンオキシド等が挙げられる。 Examples of the alkylene oxide include ethylene oxide, propylene oxide, and isobutylene oxide.
 反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)としては、例えば、特公昭45-36319号公報、特公昭46-12154号公報、特開昭50-156599号公報、特開昭54-6096号公報、特開昭55-13767号公報、特開昭55-13468号公報、特開昭57-164123号公報、特公平3-2450号公報、米国特許3632557号、米国特許4345053号、米国特許4366307号、米国特許4960844号等の各公報に提案されている重合体が挙げられる。また、特開昭61-197631号公報、特開昭61-215622号公報、特開昭61-215623号公報、特開昭61-218632号公報、特開平3-72527号公報、特開平3-47825号公報、特開平8-231707号公報の各公報に提案されている数平均分子量6,000以上、分子量分布(Mw/Mn)が1.6以下や1.3以下の高分子量で分子量分布が狭い反応性ケイ素基を有するポリオキシアルキレン系重合体等も好ましい。このような反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)は単独で使用してもよく、2種以上を併用してもよい。 Examples of the polyoxyalkylene polymer (A1) having a reactive silicon group include JP-A-45-363319, JP-A-46-12154, JP-A-50-156599, and JP-A-54-. 6096, Japanese Patent Application Laid-Open No. 55-13767, Japanese Patent Application Laid-Open No. 55-13468, Japanese Patent Application Laid-Open No. 57-164123, Japanese Patent Application Laid-Open No. 3-2450, US Pat. No. 363255, US Pat. No. 4345053, US Pat. Examples thereof include polymers proposed in Japanese Patent No. 4366307, US Pat. No. 4,960,844, and the like. Further, Japanese Patent Application Laid-Open No. 61-197631, Japanese Patent Application Laid-Open No. 61-215622, Japanese Patent Application Laid-Open No. 61-215623, Japanese Patent Application Laid-Open No. 61-218632, Japanese Patent Application Laid-Open No. 3-72527, JP-A-3-72527 Molecular weight distribution with a number average molecular weight of 6,000 or more and a molecular weight distribution (Mw / Mn) of 1.6 or less or 1.3 or less proposed in each of Japanese Patent Application Laid-Open No. 47825 and Japanese Patent Application Laid-Open No. 8-231707. A polyoxyalkylene polymer having a narrow reactive silicon group or the like is also preferable. The polyoxyalkylene polymer (A1) having such a reactive silicon group may be used alone or in combination of two or more.
(アクリル樹脂((メタ)アクリル酸エステル系(共)重合体)(A2))
 反応性ケイ素基を有するアクリル樹脂(((メタ)アクリル酸エステル系(共)重合体)(A2)は種々の(メタ)アクリル酸エステル系単量体を、単独で又は複数組み合わせて重合することによって得ることができる。
(Acrylic resin ((meth) acrylic acid ester-based (co) polymer) (A2))
Acrylic resin having a reactive silicon group (((meth) acrylic acid ester-based (co) polymer) (A2) is obtained by polymerizing various (meth) acrylic acid ester-based monomers alone or in combination of two or more. Can be obtained by
 (メタ)アクリル酸エステル系単量体としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、3-((メタ)アクリロイルオキシ)-n-プロピルトリメトキシシラン、3-((メタ)アクリロイルオキシ)-n-プロピルジメトキシメチルシラン、(メタ)アクリロイルオキシメチルトリメトキシシラン、(メタ)アクリロイルオキシメチルトリエトキシシラン、(メタ)アクリロイルオキシメチルジメトキシメチルシラン、(メタ)アクリロイルオキシメチルジエトキシメチルシラン、及び(メタ)アクリル酸のエチレンオキサイド付加物等の(メタ)アクリル酸系単量体が挙げられる。(メタ)アクリル酸エステル系単量体は、これらに限定されない。 Examples of the (meth) acrylic acid ester-based monomer include (meth) acrylic acid, methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, and isopropyl (meth) acrylic acid. , (Meta) n-butyl acrylate, (meth) isobutyl acrylate, (meth) tert-butyl acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate , (Meta) n-heptyl acrylate, (meth) n-octyl acrylate, (meth) 2-ethylhexyl acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate (meth) ) Phenyl acrylate, toluyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, ( 2-Hydroxypropyl acrylate, stearyl (meth) acrylate, glycidyl (meth) acrylate, 2-aminoethyl (meth) acrylate, 3-((meth) acryloyloxy) -n-propyltrimethoxysilane, 3-((Meta) Acryloyloxy) -n-propyldimethoxymethylsilane, (Meta) Acryloyloxymethyltrimethoxysilane, (Meta) Acryloyloxymethyltriethoxysilane, (Meta) Acryloyloxymethyldimethoxymethylsilane, (Meta) Examples thereof include (meth) acrylic acid-based monomers such as acryloyloxymethyldiethoxymethylsilane and an ethylene oxide adduct of (meth) acrylic acid. The (meth) acrylic acid ester-based monomer is not limited to these.
 アクリル樹脂(A2)は、(メタ)アクリル酸エステル系単量体とともに、以下のビニル系単量体を共重合することもできる。 The acrylic resin (A2) can also be copolymerized with the following vinyl-based monomer together with the (meth) acrylic acid ester-based monomer.
 ビニル系単量体としては、例えば、スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸、及びスチレンスルホン酸塩等のスチレン系単量体;ビニルトリメトキシシラン、及びビニルトリエトキシシラン等のケイ素含有ビニル系単量体;無水マレイン酸、マレイン酸、並びにマレイン酸のモノアルキルエステル及びジアルキルエステル等のマレイン酸又はマレイン酸誘導体;フマル酸、並びにフマル酸のモノアルキルエステル及びジアルキルエステル等のフマル酸又はフマル酸誘導体;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、及びシクロヘキシルマレイミド等のマレイミド系単量体;アクリロニトリル、及びメタクリロニトリル等のニトリル基含有ビニル系単量体;アクリルアミド、及びメタクリルアミド等のアミド基含有ビニル系単量体;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、及び桂皮酸ビニル等のビニルエステル類;エチレン、及びプロピレン等のアルケン類;ブタジエン、及びイソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。これらは単独で重合させてもよく、複数を共重合させてもよい。 Examples of the vinyl-based monomer include styrene-based monomers such as styrene, vinyltoluene, α-methylstyrene, chlorostyrene, styrenesulfonic acid, and styrenesulfonate; vinyltrimethoxysilane and vinyltriethoxysilane. Silicon-containing vinyl-based monomers such as; maleic anhydride, maleic acid, and maleic acid or maleic acid derivatives such as maleic acid monoalkyl esters and dialkyl esters; fumaric acid, and fumaric acid monoalkyl esters and dialkyl esters, etc. Fumaric acid or fumaric acid derivative; maleimide-based monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, and cyclohexylmaleimide; acrylonitrile, And nitrile group-containing vinyl monomers such as methacrylonitrile; acrylamide and amide group-containing vinyl monomers such as methacrylicamide; vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, and vinyl cinnate. Vinyl esters such as; alkens such as ethylene and propylene; conjugated dienes such as butadiene and isoprene; vinyl chloride, vinylidene chloride, allyl chloride, allyl alcohol and the like. These may be polymerized alone, or a plurality of them may be copolymerized.
 アクリル樹脂(A2)としては、物性等の点から(メタ)アクリル酸エステル系単量体の(共)重合体、スチレン系単量体と(メタ)アクリル酸系単量体との共重合体が好ましく、(メタ)アクリル酸エステル系単量体の(共)重合体がより好ましく、アクリル酸エステル系単量体の(共)重合体がさらに好ましい。 The acrylic resin (A2) is a (co) polymer of a (meth) acrylic acid ester-based monomer or a copolymer of a styrene-based monomer and a (meth) acrylic acid-based monomer from the viewpoint of physical properties and the like. Is preferable, a (co) polymer of a (meth) acrylic acid ester-based monomer is more preferable, and a (co) polymer of an acrylic acid ester-based monomer is further preferable.
 アクリル樹脂(A2)の製造方法は、特に限定されない。(メタ)アクリル酸エステル系(共)重合体は、公知の方法により製造することができる。ただし、重合開始剤としてアゾ系化合物、過酸化物等を用いる通常のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2より大きく、粘度が高くなりやすい。従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系(共)重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系(共)重合体を得るためには、リビングラジカル重合法を用いることが好ましい。 The method for producing the acrylic resin (A2) is not particularly limited. The (meth) acrylic acid ester-based (co) polymer can be produced by a known method. However, a polymer obtained by a normal free radical polymerization method using an azo compound, a peroxide or the like as a polymerization initiator generally has a molecular weight distribution value of more than 2, and tends to have a high viscosity. Therefore, it is a (meth) acrylic acid ester-based (co) polymer having a narrow molecular weight distribution and low viscosity, and has a high proportion of crosslinkable functional groups at the ends of the molecular chain (meth) acrylic acid ester-based (co) weight. In order to obtain coalescence, it is preferable to use the living radical polymerization method.
 「リビングラジカル重合法」の中でも、有機ハロゲン化物、及びハロゲン化スルホニル化合物等を開始剤として用い、遷移金属錯体を触媒として用いて(メタ)アクリル酸エステル系単量体を重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有するアクリル樹脂(A2)の製造方法としてさらに好ましい。この原子移動ラジカル重合法は、例えば、Matyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁等に記載されている。 Among the "living radical polymerization methods", "atom transfer radicals" that polymerize (meth) acrylic acid ester-based monomers using organic halides, sulfonyl halide compounds, etc. as initiators and transition metal complexes as catalysts. In addition to the above-mentioned features of the "living radical polymerization method", the "polymerization method" has a halogen or the like at the end, which is relatively advantageous for the functional group conversion reaction, and has a large degree of freedom in designing the initiator and catalyst. It is more preferable as a method for producing an acrylic resin (A2) having a specific functional group. This atom transfer radical polymerization method is described, for example, in Mattyjaszewski et al., Journal of the American Chemical Society (J. Am. Chem. Soc), 1995, Vol. 117, p. 5614.
 反応性ケイ素基を有するアクリル樹脂(A2)の製造方法としては、例えば、特公平3-14068号公報、特公平4-55444号公報、及び特開平6-211922号公報等に、連鎖移動剤を用いたフリーラジカル重合法を用いた製法が開示されている。また、特開平9-272714号公報等に、原子移動ラジカル重合法を用いた製法が開示されている。反応性ケイ素基を有する(メタ)アクリル酸エステル系(共)重合体の製造方法は、これらの方法に限定されない。上記の反応性ケイ素基を有する(メタ)アクリル酸エステル系(共)重合体は、単独で使用されてもよく、2種以上を併用されてもよい。 As a method for producing an acrylic resin (A2) having a reactive silicon group, for example, JP-A-314068, JP-A-4-55444, JP-A-6-21922, etc., refer to a chain transfer agent. A production method using the free radical polymerization method used is disclosed. Further, Japanese Patent Application Laid-Open No. 9-272714 and the like disclose a production method using an atom transfer radical polymerization method. The method for producing a (meth) acrylic acid ester-based (co) polymer having a reactive silicon group is not limited to these methods. The (meth) acrylic acid ester-based (co) polymer having the above-mentioned reactive silicon group may be used alone or in combination of two or more.
 これらの反応性ケイ素基を有する基材樹脂(A)は、単独で使用してもよく、2種以上を併用してもよい。具体的には、2種以上の基材樹脂(A)を併用する場合、同種の主鎖を有する基材樹脂(A)を組み合わせて用いてもよいし、例えば、反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)と反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体(A2)との組み合わせのように、異種の主鎖を有する基材樹脂(A)を組み合わせて用いてもよい。 The base resin (A) having these reactive silicon groups may be used alone or in combination of two or more. Specifically, when two or more types of base resin (A) are used in combination, the base resin (A) having the same type of main chain may be used in combination, for example, a polymer having a reactive silicon group. A base resin (A) having a different main chain is used in combination, such as a combination of an oxyalkylene polymer (A1) and a (meth) acrylic acid ester polymer having a reactive silicon group (A2). You may.
<化学発泡剤(B)>
 発泡体の製造に使用し得る発泡体用樹脂組成物は、化学発泡剤(B)を含むのが好ましい。化学発泡剤(B)としては、発泡体が所望の吸音特性を示す限り特に限定されない。
 化学発泡剤(B)としては、発泡反応に加熱を要する加熱型の化学発泡剤ではなく、例えば、-10℃以上30℃以下の温度範囲において、水分、酸、塩基等との化学反応によって発泡反応を生じさせる、非熱分解型の化学発泡剤が好ましい。
 基材樹脂(A)は、加熱により劣化する場合があるが、このような非熱分解型の化学発泡剤を用いることにより、基材樹脂(A)の劣化による発泡体の性能低下を抑制できる。
 また、良好な吸音特性を示す発泡体の製造が容易であることから、化学発泡剤(B)が、二炭酸ジエステル(B-1)を含むのが好ましい。二炭酸ジエステル(B-1)は、発泡体用樹脂組成物の調製後に、室温程度の低温条件下であっても、基材樹脂(A)の硬化反応の速度に応じた好ましい速で分解して発泡し得る。二炭酸ジエステル(B-1)は、水(C)の存在下では、無水条件よりも良好に発泡しやすい。
<Chemical foaming agent (B)>
The resin composition for a foam that can be used for producing a foam preferably contains a chemical foaming agent (B). The chemical foaming agent (B) is not particularly limited as long as the foam exhibits desired sound absorbing properties.
The chemical foaming agent (B) is not a heating type chemical foaming agent that requires heating for the foaming reaction, but foams by a chemical reaction with water, acid, base, etc. in a temperature range of -10 ° C or higher and 30 ° C or lower, for example. A non-pyrolytic chemical foaming agent that causes a reaction is preferred.
The base resin (A) may be deteriorated by heating, but by using such a non-pyrolytic chemical foaming agent, deterioration of the performance of the foam due to the deterioration of the base resin (A) can be suppressed. ..
In addition, the chemical foaming agent (B) preferably contains a dicarbonate diester (B-1) because it is easy to produce a foam exhibiting good sound absorbing properties. After preparing the resin composition for foam, the dicarbonate diester (B-1) is decomposed at a preferable rate according to the rate of the curing reaction of the base resin (A) even under low temperature conditions of about room temperature. Can foam. The dicarbonate diester (B-1) tends to foam better in the presence of water (C) than in anhydrous conditions.
 例えば、特公昭46-35992号公報には、不飽和ポリエステルを付加反応により硬化される発泡体用樹脂組成物に、二炭酸ジエチルを発泡剤として加える場合、室温で発泡体を製造する際に、20分程度の時間をかけて発泡による樹脂組成物の膨張が進行し、20分を超える長い時間をかけて樹脂組成物の硬化が進行することが開示されている(特公昭46-35992号公報の実施例8を参照。)。
 しかしながら、例えば、反応性ケイ素基を有する基材樹脂(A)を硬化させつつ発泡させる場合、基材樹脂(A)の硬化が5分程度でかなり進行してしまう場合がある。このため、反応性ケイ素基を有する基材樹脂(A)を含む発泡体用樹脂組成物に、20分もの時間をかけて発泡する化学発泡剤(B)を適用してしまうと、所望する発泡倍率に達する前に、基材樹脂(A)が速やかに硬化してしまい低発泡倍率の発泡体しか得られないと予測される。
 ところが、本発明者らが検討したところ、意外にも、基材樹脂(A)と、シラノール縮合触媒(D)とを含む発泡体用樹脂組成物に、二炭酸ジエステル(B-1)を含む化学発泡剤(B)を配合する場合、短時間で樹脂組成物を所望する程度に発泡させることができることが見出された。
For example, Japanese Patent Application Laid-Open No. 46-35992 states that when diethyl dicarbonate is added as a foaming agent to a foam resin composition in which unsaturated polyester is cured by an addition reaction, when a foam is produced at room temperature, It is disclosed that the expansion of the resin composition by foaming proceeds over a time of about 20 minutes, and the curing of the resin composition proceeds over a long time of more than 20 minutes (Japanese Patent Publication No. 46-35992). 8).
However, for example, when the base resin (A) having a reactive silicon group is foamed while being cured, the curing of the base resin (A) may proceed considerably in about 5 minutes. Therefore, if the chemical foaming agent (B) that foams over a period of as long as 20 minutes is applied to the resin composition for a foam containing the base resin (A) having a reactive silicon group, the desired foaming occurs. It is predicted that the base resin (A) will be rapidly cured before reaching the magnification, and only a foam having a low expansion ratio can be obtained.
However, as a result of examination by the present inventors, surprisingly, the resin composition for a foam containing the base resin (A) and the silanol condensation catalyst (D) contains the dicarbonate diester (B-1). It has been found that when the chemical foaming agent (B) is blended, the resin composition can be foamed to a desired degree in a short time.
 二炭酸ジエステルは、下記式(B1)で表される。
-O-CO-O-CO-O-R・・・(B1)
 式(B1)中、Rは有機基である。Rとしての有機基は、炭化水素基であるのが好ましい。2つのRは、同一であっても異なっていてもよく、同一であるのが好ましい。
The dicarbonate diester is represented by the following formula (B1).
R b- O-CO-O-CO-O-R b ... (B1)
In formula (B1), R b is an organic group. The organic group as R b is preferably a hydrocarbon group. The two R bs may be the same or different, and are preferably the same.
 Rとしての、炭化水素基の炭素原子数は、1以上16以下が好ましく、1以上12以下がより好ましく、1以上8以下がさらに好ましく、1以上6以下が特に好ましい。
 Rとしての炭化水素基としては、例えば、アルキル基、シクロアルキル基等の脂環式基、アラルキル基、及びアリール基が挙げられる。アルキル基について、直鎖状でも分岐鎖状でもよく、直鎖状が好ましい。
The number of carbon atoms of the hydrocarbon group as R b is preferably 1 or more and 16 or less, more preferably 1 or more and 12 or less, further preferably 1 or more and 8 or less, and particularly preferably 1 or more and 6 or less.
Examples of the hydrocarbon group as R b include an alicyclic group such as an alkyl group and a cycloalkyl group, an aralkyl group, and an aryl group. The alkyl group may be linear or branched, preferably linear.
 アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、及びn-ドデシル基等が挙げられる。
 シクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、及びシクロオクチル基等が挙げられる。
 アラルキル基の具体例としては、ベンジル基、フェネチル基、ナフタレン-1-イルメチル基、及びナフタレン-2-イルメチル基等が挙げられる。
 アリール基の具体例としては、フェニル、ナフタレン-1-イル基、ナフタレン-2-イル基、4-フェニルフェニル基、3-フェニルフェニル基、及び2-フェニルフェニル基等が挙げられる。
Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and n-hexyl group. Examples thereof include n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group and n-dodecyl group.
Specific examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group and the like.
Specific examples of the aralkyl group include a benzyl group, a phenethyl group, a naphthalene-1-ylmethyl group, a naphthalene-2-ylmethyl group and the like.
Specific examples of the aryl group include phenyl, naphthalene-1-yl group, naphthalene-2-yl group, 4-phenylphenyl group, 3-phenylphenyl group, 2-phenylphenyl group and the like.
 式(B1)で表される二炭酸ジエステル(B-1)としては、二炭酸ジメチル、二炭酸ジエチル、二炭酸ジ-n-プロピル、二炭酸ジイソプロピル、二炭酸ジ-n-ブチル、二炭酸ジイソブチル、二炭酸ジ-sec-ブチル、二炭酸ジ-tert-ブチル、二炭酸ジ-n-ペンチル、及び二炭酸ジ-n-ヘキシルが好ましい。入手が容易であることや、分子量が小さく単位重量当たりの発泡量が多いことから、二炭酸ジエステル(B-1)としては、二炭酸ジメチル、二炭酸ジエチル、二炭酸ジ-n-プロピル、及び二炭酸ジイソプロピルが好ましく、二炭酸ジメチル、及び二炭酸ジエチルがより好ましい。さらに、二炭酸ジエステルが加水分解された後の生成物の揮発性の高さ及び毒性の低さの観点により、二炭酸ジエステル(B-1)としては、二炭酸ジエチルが特に好ましい。 Examples of the dicarbonate diester (B-1) represented by the formula (B1) include dimethyl dicarbonate, diethyl dicarbonate, di-n-propyl dicarbonate, diisopropyl dicarbonate, di-n-butyl dicarbonate, and diisobutyl dicarbonate. , Di-sec-butyl dicarbonate, di-tert-butyl dicarbonate, di-n-pentyl dicarbonate, and di-n-hexyl dicarbonate are preferred. Dimethyl dicarbonate (B-1) includes dimethyl dicarbonate, diethyl dicarbonate, di-n-propyl dicarbonate, and dicarbonate because it is easily available and has a small molecular weight and a large amount of foaming per unit weight. Diisopropyl dicarbonate is preferred, and dimethyl dicarbonate and diethyl dicarbonate are more preferred. Further, from the viewpoint of high volatility and low toxicity of the product after the dicarbonate diester is hydrolyzed, diethyl dicarbonate is particularly preferable as the dicarbonate diester (B-1).
 発泡体用樹脂組成物が、水(C)を含まないか、少量の水(C)しか含まなくてもよい点や、化学発泡剤(B)の使用量が少量でも高発泡倍率を達成しやすい点で、化学発泡剤(B)が、主に二炭酸ジエステル(B-1)からなるのも好ましい。
 化学発泡剤(B)の重量に対する、二炭酸ジエステル(B-1)の重量の比率は、50重量%以上が好ましく、70重量%以上がより好ましく、80重量%以上がさらに好ましく、90重量%以上が特に好ましく、100重量%以上が最も好ましい。
The resin composition for foams does not contain water (C) or may contain only a small amount of water (C), and achieves a high foaming ratio even when the amount of the chemical foaming agent (B) used is small. From the point of view of ease, it is also preferable that the chemical foaming agent (B) is mainly composed of dicarbonate diester (B-1).
The ratio of the weight of the dicarbonate diester (B-1) to the weight of the chemical foaming agent (B) is preferably 50% by weight or more, more preferably 70% by weight or more, further preferably 80% by weight or more, and 90% by weight. The above is particularly preferable, and 100% by weight or more is most preferable.
 化学発泡剤(B)が二炭酸ジエステル(B-1)以外の他の化学発泡剤を含む場合、当該他の化学発泡剤としては、本発明の目的を阻害しない範囲で公知の種々の化学発泡剤を用いることができる。
 二炭酸ジエステル(B-1)以外の好ましい化学発泡剤(B)としては、テトライソシアネートシラン(Si(NCO))、メチルトリイソシアネートシラン(SiCH(NCO))、イソシアナトメチルトリメトキシシラン、イソシアナトメチルトリエトキシシラン、2-イソシアナトエチルトリメトキシシラン、2-イソシアナトエチルトリエトキシシラン、3-イソシアナト-n-プロピルトリメトキシシラン、3-イソシアナト-n-プロピルトリエトキシシラン、4-イソシアナト-n-ブチルトリメトキシシラン、及び4-イソシアナト-n-ブチルトリエトキシシラン等のイソシアネートシラン化合物(B-2)が挙げられる。特にアルコキシシリル基を有するイソシアネートシランはポリマーに固定化される点で好ましい。
 イソシアネートシラン化合物(B-2)は、二炭酸ジエステル(B-1)と併用されてもよい。
When the chemical foaming agent (B) contains a chemical foaming agent other than the dicarbonate diester (B-1), the other chemical foaming agents are known as various chemical foaming agents as long as the object of the present invention is not impaired. Agents can be used.
The dicarbonate (B-1) other than the preferred chemical blowing agent (B), tetraisocyanatesilane (Si (NCO) 4), methyl triisocyanate silane (SiCH 3 (NCO) 3) , isocyanatomethyl-trimethoxysilane , Isocyanatomethyltriethoxysilane, 2-isocyanatoethyltrimethoxysilane, 2-isocyanatoethyltriethoxysilane, 3-isocyanato-n-propyltrimethoxysilane, 3-isocyanato-n-propyltriethoxysilane, 4- Examples thereof include isocyanate silane compounds (B-2) such as isocyanato-n-butyltrimethoxysilane and 4-isocyanato-n-butyltriethoxysilane. In particular, isocyanate silane having an alkoxysilyl group is preferable in that it is immobilized on the polymer.
The isocyanate silane compound (B-2) may be used in combination with the dicarbonate diester (B-1).
 化学発泡剤(B)の使用量は、発泡体の発泡倍率を勘案して適宜選択され得る。
 化学発泡剤(B)の含有量は、基材樹脂(A)100重量部に対して2重量部以上200重量部以下が好ましく、5重量部以上170重量部以下がより好ましく、5重量部以上130重量部以下がさらに好ましく、5重量部以上100重量部以下が特に好ましい。
The amount of the chemical foaming agent (B) used can be appropriately selected in consideration of the foaming ratio of the foam.
The content of the chemical foaming agent (B) is preferably 2 parts by weight or more and 200 parts by weight or less, more preferably 5 parts by weight or more and 170 parts by weight or less, and 5 parts by weight or more with respect to 100 parts by weight of the base resin (A). It is more preferably 130 parts by weight or less, and particularly preferably 5 parts by weight or more and 100 parts by weight or less.
 化学発泡剤(B)としての二炭酸ジエステル(B-1)の含有量は、基材樹脂(A)100重量部に対して1重量部以上50重量部以下が好ましく、2重量部以上40重量部以下がより好ましく、5重量部以上30重量部以下が特に好ましい。 The content of the dicarbonate diester (B-1) as the chemical foaming agent (B) is preferably 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the base resin (A), and is 2 parts by weight or more and 40 parts by weight. More preferably, it is 5 parts by weight or more and 30 parts by weight or less.
 以上化学発泡剤(B)について説明したが、化学発泡剤による発泡に加え、発泡体用樹脂組成物に物理発泡剤を加えて発泡を補助してもよい。物理発泡剤の沸点は、発泡性、作業性、及び安全性の点から、100℃以下が好ましく、50℃以下がより好ましい。物理発泡剤の具体例としては、炭化水素(例えば、LPG(プロパン)、ブタン等)、ハロゲン化炭化水素、エーテル(例えば、ジエチルエーテル)、クロロフルオロカーボン(CFC)、ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)、フルオロオレフィン(FO)、クロロフルオロオレフィン(CFO)、ハイドロフルオロオレフィン(HFO)、ハイドロクロロフルオロフルオロオレフィン(HCFO)、二酸化炭素、窒素、及び空気等が挙げられる。これらの物理発泡剤の中では、環境適合性の観点から、炭化水素、エーテル、二酸化炭素、窒素、及び空気が好ましい。 Although the chemical foaming agent (B) has been described above, in addition to foaming by the chemical foaming agent, a physical foaming agent may be added to the resin composition for foam to assist foaming. The boiling point of the physical foaming agent is preferably 100 ° C. or lower, more preferably 50 ° C. or lower, from the viewpoint of foamability, workability, and safety. Specific examples of the physical foaming agent include hydrocarbons (eg, LPG (propane), butane, etc.), halogenated hydrocarbons, ethers (eg, diethyl ethers), chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), and hydrochloros. Examples thereof include fluorocarbons (HCFCs), fluoroolefins (FOs), chlorofluoroolefins (CFOs), hydrofluoroolefins (HFOs), hydrochlorofluorofluoroolefins (HCFOs), carbon dioxide, nitrogen, and air. Among these physical foaming agents, hydrocarbons, ethers, carbon dioxide, nitrogen, and air are preferable from the viewpoint of environmental compatibility.
<水(C)>
 発泡体用樹脂組成物は、水(C)を含むか、又は含まない。発泡体用樹脂組成物が水(C)を含まない場合でも、硬化及び発泡が進行する。他方、水(C)としては、化学発泡剤(B)の発泡反応及び基材樹脂(A)の硬化反応を促進させる働きがある。
 発泡体用樹脂組成物が水(C)を含む場合、水(C)の含有量は、基材樹脂(A)100重量部に対して1重量部以上70重量部以下が好ましく、2重量部以上60重量部以下がより好ましく、2重量部以上50重量部以下がさらに好ましい。水(C)の含有量が上記の範囲内であると、十分に発泡させつつ良好に硬化を進行させやすく、微細且つ緻密な発泡セルを有し、柔軟性に優れる発泡体を得やすい。
<Water (C)>
The foam resin composition contains or does not contain water (C). Curing and foaming proceed even when the resin composition for foam does not contain water (C). On the other hand, water (C) has a function of accelerating the foaming reaction of the chemical foaming agent (B) and the curing reaction of the base resin (A).
When the resin composition for a foam contains water (C), the content of water (C) is preferably 1 part by weight or more and 70 parts by weight or less with respect to 100 parts by weight of the base resin (A), and 2 parts by weight. More than 60 parts by weight is more preferable, and 2 parts by weight or more and 50 parts by weight or less is further preferable. When the content of water (C) is within the above range, it is easy to proceed with curing satisfactorily while sufficiently foaming, and it is easy to obtain a foam having fine and dense foam cells and excellent flexibility.
 発泡体用樹脂組成物が化学発泡剤(B)として二炭酸ジエステル(B-1)を含む場合、発泡体用樹脂組成物の水(C)の含有量は、二炭酸ジエステル(B-1)1重量部に対して、0.05重量部以上が好ましく、0.1重量部以上であるのがより好ましい。このような量の水を使用することにより、二炭酸ジエステル(B-1)を良好に水(B)と反応させ、特に良好な発泡を生じさせることができるとともに、基材樹脂(A)が有する反応性ケイ素基間の加水分解縮合反応が良好に進行する。
 特に、発泡体用樹脂組成物が化学発泡剤(B)として二炭酸ジエステル(B-1)のみを含む場合、発泡体用樹脂組成物中の水(C)の含有量は、二炭酸ジエステル(B-1)1重量部に対して0.05重量部以上0.5重量部以下であることが好ましく、0.05重量部以上0.3重量部以下であることがより好ましい。
 この場合、特に良好な発泡を生じさせながらも、発泡体作成後の発泡体中の水(C)の含有量を少なくでき、発泡体製造時の水等の揮発性成分を除去するための乾燥工程を省略することができる。
 発泡体用樹脂組成物が化学発泡剤(B)として二炭酸ジエステル(B-1)を含む場合、発泡体中の水(C)の含有量の低減の観点のみからは、発泡体用樹脂組成物中の水(C)の含有量は、二炭酸ジエステル(B-1)1重量部に対して、0重量部以上0.05重量部以下であるのも好ましく、0重量部以上0.03重量部以下がより好ましく、0重量部、つまり水(C)を含まないのが特に好ましい。
 なお、二炭酸ジエステル(B-1)1モルは、水(C)1モルと反応し、炭酸ガス(二酸化炭素)2モルを発生させる。このため、二炭酸ジエステル(B-1)を、発泡体用樹脂組成物中の水(C)によって効率よく発泡させる観点からは、二炭酸ジエステル(B-1)と、水(C)とのモル比が、二炭酸ジエステル(B-1):水(C)として0.8:1~1:0.8であるのが好ましく、0.9:1~1:0.9であるのがより好ましく、0.95:1~1:0.95であるのがさらに好ましい。
 水(C)が不足している場合でも二炭酸ジエステル(B-1)から良好に発泡が生じる理由は不明であるが、空気中及び材料中の水分による二炭酸ジエステル(B-1)の加水分解が生じているか、加水分解とは別の分解反応により二酸化炭素が発生していると思われる。
When the foam resin composition contains dicarbonate diester (B-1) as the chemical foaming agent (B), the content of water (C) in the foam resin composition is the dicarbonate diester (B-1). It is preferably 0.05 parts by weight or more, and more preferably 0.1 parts by weight or more with respect to 1 part by weight. By using such an amount of water, the dicarbonate diester (B-1) can be satisfactorily reacted with water (B) to cause particularly good foaming, and the base resin (A) can be formed. The hydrolysis-condensation reaction between the reactive silicon groups has proceeded well.
In particular, when the foam resin composition contains only dicarbonate diester (B-1) as the chemical foaming agent (B), the content of water (C) in the foam resin composition is the dicarbonate diester (B-1). B-1) It is preferably 0.05 parts by weight or more and 0.5 parts by weight or less, and more preferably 0.05 parts by weight or more and 0.3 parts by weight or less with respect to 1 part by weight.
In this case, the content of water (C) in the foam after forming the foam can be reduced while causing particularly good foaming, and drying is performed to remove volatile components such as water during the production of the foam. The step can be omitted.
When the resin composition for a foam contains a dicarbonate diester (B-1) as a chemical foaming agent (B), the resin composition for a foam is only from the viewpoint of reducing the content of water (C) in the foam. The content of water (C) in the product is preferably 0 parts by weight or more and 0.05 parts by weight or less, and 0 parts by weight or more and 0.03 parts by weight with respect to 1 part by weight of the dicarbonate diester (B-1). It is more preferably parts by weight or less, and particularly preferably 0 parts by weight, that is, it does not contain water (C).
In addition, 1 mol of dicarbonate diester (B-1) reacts with 1 mol of water (C) to generate 2 mol of carbon dioxide gas (carbon dioxide). Therefore, from the viewpoint of efficiently foaming the dicarbonate diester (B-1) with water (C) in the resin composition for foam, the dicarbonate diester (B-1) and water (C) are used. The molar ratio of dicarbonate diester (B-1): water (C) is preferably 0.8: 1 to 1: 0.8, preferably 0.9: 1 to 1: 0.9. More preferably, it is 0.95: 1 to 1: 0.95.
The reason why foaming occurs well from the dicarbonate diester (B-1) even when water (C) is insufficient is unknown, but the water content of the dicarbonate diester (B-1) is added to the water in the air and in the material. It is considered that carbon dioxide is generated by decomposition or a decomposition reaction different from hydrolysis.
<シラノール縮合触媒(D)>
 発泡体の製造に用いられる発泡体用樹脂組成物は、シラノール縮合触媒(D)を含むのが好ましい。シラノール縮合触媒(D)としては、縮合触媒として使用し得るものである限り、特に制限はなく、任意のものを使用し得る。発泡体用樹脂組成物が化学発泡剤(B)として二炭酸ジエステル(B-1)を含む場合、二炭酸ジエステル(B-1)の発泡反応により発生する炭酸の影響による触媒活性の低下が生じにくい点から、中性あるいは弱酸性のシラノール縮合触媒(D)が好ましい。炭酸は二酸化炭素が水に溶解することで発生する。
<Silanol condensation catalyst (D)>
The resin composition for a foam used in the production of the foam preferably contains a silanol condensation catalyst (D). The silanol condensation catalyst (D) is not particularly limited as long as it can be used as a condensation catalyst, and any one can be used. When the resin composition for a foam contains a dicarbonate diester (B-1) as a chemical foaming agent (B), the catalytic activity is lowered due to the influence of carbonic acid generated by the foaming reaction of the dicarbonate diester (B-1). A neutral or weakly acidic silanol condensation catalyst (D) is preferable because it is difficult. Carbonic acid is generated when carbon dioxide dissolves in water.
 シラノール縮合触媒(D)の例としては、4価の錫化合物類、2価の錫化合物物類、前述の2価の錫化合物類と後述のラウリルアミン等のアミン系化合物との反応物及び混合物、モノアルキル錫類、チタン酸エステル類、有機アルミニウム化合物、カルボン酸金属塩、カルボン酸金属塩と後述のラウリルアミン等のアミン系化合物との反応物及び混合物、キレート化合物、飽和脂肪族第一級アミン類、飽和脂肪族第二級アミン類、飽和脂肪族第三級アミン類、脂肪族不飽和アミン類、芳香族アミン類、これらのアミン類以外のその他のアミン類、これらのアミン類とカルボン酸等との塩、アミン系化合物と有機錫化合物との反応物及び混合物、過剰のポリアミンと多塩基酸とから得られる低分子量ポリアミド樹脂、過剰のポリアミンとエポキシ化合物との反応生成物、アミノ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤を変性した誘導体等が挙げられる。 Examples of the silanol condensation catalyst (D) include tetravalent tin compounds, divalent tin compounds, and reactants and mixtures of the above-mentioned divalent tin compounds and amine-based compounds such as laurylamine described below. , Monoalkyltins, titanic acid esters, organic aluminum compounds, carboxylic acid metal salts, carboxylic acid metal salts and amine compounds such as laurylamine described below, chelate compounds, saturated aliphatic primary Amines, saturated aliphatic secondary amines, saturated aliphatic tertiary amines, aliphatic unsaturated amines, aromatic amines, other amines other than these amines, these amines and carboxylics. Salts with acids, etc., reactants and mixtures of amine compounds and organic tin compounds, low molecular weight polyamide resins obtained from excess polyamines and polybasic acids, reaction products of excess polyamines with epoxy compounds, amino groups Examples thereof include a silane coupling agent having an amino group, a modified derivative of a silane coupling agent having an amino group, and the like.
 4価の錫化合物類としては、ジアルキル錫ジカルボキシレート類、ジアルキル錫アルコキサイド類、ジアルキル錫の分子内配位性誘導体類、ジアルキル錫オキサイドとエステル化合物との反応物、ジアルキル錫オキサイドとカルボン酸とアルコール化合物との反応物、ジアルキル化合物、ジアルキル錫オキサイドとシリケート化合物との反応物、及びこれらのジアルキル錫化合物のオキシ誘導体(スタノキサン化合物)等が挙げられる。 Examples of tetravalent tin compounds include dialkyltin dicarboxylates, dialkyltin alcoxides, intramolecular coordinating derivatives of dialkyltin, reactants of dialkyltin oxide and ester compounds, dialkyltin oxide and carboxylic acid. Examples thereof include a reaction product with an alcohol compound, a dialkyl compound, a reaction product between a dialkyl tin oxide and a silicate compound, and an oxy derivative (stanoxane compound) of these dialkyl tin compounds.
 ジアルキル錫ジカルボキシレート類の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジ(2-エチルヘキサノエート)、ジブチル錫ジオクテート、ジブチル錫ジバーサテート、ジブチル錫ジステアレート、ジブチル錫ジ(メチルマレエート)、ジブチル錫ジ(エチルマレエート)、ジブチル錫ジ(ブチルマレエート)、ジブチル錫ジ(イソオクチルマレエート)、ジブチル錫ジ(トリデシルマレエート)、ジブチル錫ジ(オレイルマレエート)、ジブチル錫ジ(ベンジルマレエート)、ジブチル錫マレエート、ジオクチル錫ジアセテート、ジオクチル錫ジバーサテート、ジオクチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジ(エチルマレエート)、ジオクチル錫ジ(イソオクチルマレエート)等が挙げられる。
 なお、ジブチル錫マレエートは、下記式:
-Sn(-n-C-OCO―CH=CH=COO-
で表される構成単位からなるオリゴマー又はポリマーである。
Specific examples of dialkyltin dicarboxylates include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin di (2-ethylhexanoate), dibutyltin dioctate, dibutyltin diversate, dibutyltin distearate, and dibutyltin di (methyl). Maleate), Dibutyltin Di (Ethylmaleate), Dibutyltin Di (Butyl Maleate), Dibutyltin Di (Isooctyl Maleate), Dibutyltin Di (Tridecyl Maleate), Dibutyltin Di (Oleyl Maleate) , Dibutyltin di (benzylmaleate), dibutyltin maleate, dioctyltin diacetate, dioctyltin diversate, dioctyltin disteareate, dioctyltin dilaurate, dioctyltin di (ethylmaleate), dioctyltin di (isooctylmalate), etc. Can be mentioned.
The dibutyltin maleate is expressed by the following formula:
-Sn (-n-C 4 H 9 ) 2 -OCO-CH = CH = COO-
It is an oligomer or polymer composed of a structural unit represented by.
 ジアルキル錫アルコキサイド類の具体例としては、ジブチル錫ジメトキシド、ジブチル錫ジフェノキシド等が挙げられる。 Specific examples of dialkyltin alcoxysides include dibutyltin dimethoxyde and dibutyltin diphenoxide.
 ジアルキル錫の分子内配位性誘導体類の具体例としては、ジブチル錫ジアセチルアセトナート、ジブチル錫ジエチルアセトアセテート等が挙げられる。 Specific examples of the intramolecular coordinating derivatives of dialkyltin include dibutyltin diacetylacetonate and dibutyltin diethylacetacetate.
 ジアルキル錫オキサイドとエステル化合物との反応物の具体例としては、ジブチル錫オキサイドやジオクチル錫オキサイド等のジアルキル錫オキサイドと、ジオクチルフタレート、ジイソデシルフタレート、メチルマレエート等のエステル化合物との反応物が挙げられる。 Specific examples of the reaction product of the dialkyl tin oxide and the ester compound include a reaction product of a dialkyl tin oxide such as dibutyl tin oxide and dioctyl tin oxide and an ester compound such as dioctyl phthalate, diisodecyl phthalate and methyl maleate. ..
 ジアルキル錫オキサイドとシリケート化合物との反応物としては、ジブチル錫ビストリエトキシシリケート、ジオクチル錫ビストリエトキシシリケート等が挙げられる。 Examples of the reaction product of the dialkyltin oxide and the silicate compound include dibutyltin bistriethoxysilicate and dioctyltin bistriethoxysilicate.
 2価の錫化合物物類の具体例としては、オクチル酸錫、ナフテン酸錫、ステアリン酸錫、フェルザチック酸錫等が挙げられる。 Specific examples of the divalent tin compounds include tin octylate, tin naphthenate, tin stearate, tin ferzaticate and the like.
 モノアルキル錫類の具体例としては、モノブチル錫トリスオクトエートやモノブチル錫トリイソプロポキシド等のモノブチル錫化合物やモノオクチル錫化合物等が挙げられる。 Specific examples of monoalkyl tins include monobutyl tin compounds such as monobutyl tin trisoctate and monobutyl tin triisopropoxide, and monooctyl tin compounds.
 チタン酸エステル類の具体例としては、テトラブチルチタネート、テトラプロピルチタネート、テトラ(2-エチルヘキシル)チタネート、イソプロポキシチタンビス(エチルアセトアセテート)等が挙げられる。 Specific examples of the titanic acid esters include tetrabutyl titanate, tetrapropyl titanate, tetra (2-ethylhexyl) titanate, isopropoxytitanium bis (ethylacetoacetate) and the like.
 有機アルミニウム化合物の具体例としては、アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジ-イソプロポキシアルミニウムエチルアセトアセテート等が挙げられる。 Specific examples of the organoaluminum compound include aluminum trisacetylacetonate, aluminumtrisethylacetate, di-isopropoxyaluminum ethylacetate and the like.
 カルボン酸金属塩の具体例としては、カルボン酸ビスマス、カルボン酸鉄、カルボン酸チタニウム、カルボン酸鉛、カルボン酸バナジウム、カルボン酸ジルコニウム、カルボン酸カルシウム、カルボン酸カリウム、カルボン酸バリウム、カルボン酸マンガン、カルボン酸セリウム、カルボン酸ニッケル、カルボン酸コバルト、カルボン酸亜鉛、カルボン酸アルミニウム等が挙げられる。当該カルボン酸金属塩を与えるカルボン酸の具体例としては2-エチルヘキサン酸、ネオデカン酸、バーサチック酸、オレイン酸、ナフテン酸等が挙げられる。 Specific examples of the metal carboxylate salt include bismuth carboxylate, iron carboxylate, titanium carboxylate, lead carboxylate, vanadium carboxylate, zirconium carboxylate, calcium carboxylate, potassium carboxylate, barium carboxylate, manganese carboxylate, Examples thereof include cerium carboxylate, nickel carboxylate, cobalt carboxylate, zinc carboxylate, aluminum carboxylate and the like. Specific examples of the carboxylic acid that gives the carboxylic acid metal salt include 2-ethylhexanoic acid, neodecanoic acid, versatic acid, oleic acid, and naphthenic acid.
 キレート化合物類の具体例としては、ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジブトキシジルコニウムジアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート)、チタンテトラアセチルアセトナート等が挙げられる。 Specific examples of the chelate compounds include zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, dibutoxyzirconium diacetylacetonate, zirconium acetylacetonatebis (ethylacetacetone), titanium tetraacetylacetonate and the like.
 飽和脂肪族第一級アミン類の具体例としては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、アミルアミン、ヘキシルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ラウリルアミン、ペンタデシルアミン、セチルアミン、ステアリルアミン、シクロヘキシルアミン等が挙げられる。 Specific examples of saturated aliphatic primary amines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, laurylamine and pentadecylamine. , Cetylamine, stearylamine, cyclohexylamine and the like.
 飽和脂肪族第二級アミン類の具体例としては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジアミルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、ジデシルアミン、ジラウリルアミン、ジセチルアミン、ジステアリルアミン、メチルステアリルアミン、エチルステアリルアミン、ブチルステアリルアミン等が挙げられる。 Specific examples of saturated aliphatic secondary amines include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diamylamine, dioctylamine, di (2-ethylhexyl) amine, didecylamine, dilaurylamine, and disetylamine. Examples thereof include distearylamine, methylstearylamine, ethylstearylamine, butylstearylamine and the like.
 飽和脂肪族第三級アミン類の具体例としては、トリアミルアミン、トリヘキシルアミン、トリオクチルアミン、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等が挙げられる。 Specific examples of saturated aliphatic tertiary amines include triamylamine, trihexylamine, trioctylamine, 1,4-diazabicyclo [2.2.2] octane (DABCO) and the like.
 脂肪族不飽和アミン類の具体例としては、トリアリルアミン、オレイルアミン等が挙げられる。 Specific examples of aliphatic unsaturated amines include triallylamine, oleylamine and the like.
 芳香族アミン類の具体例としては、ラウリルアニリン、ステアリルアニリン、トリフェニルアミン等が挙げられる。 Specific examples of aromatic amines include laurylaniline, stearylaniline, triphenylamine and the like.
 上記のアミン類以外のその他のアミン類の具体例としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、オレイルアミン、ベンジルアミン、ジエチルアミノプロピルアミン、キシリレンジアミン、エチレンジアミン、ヘキサメチレンジアミン、トリエチレンジアミン、グアニジン、ジフェニルグアニジン、2,4,6-トリス(ジメチルアミノメチル)フェノール、モルホリン、N-メチルモルホリン、2-エチル-4-メチルイミダゾール、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等のアミン系化合物が挙げられる。 Specific examples of amines other than the above amines include monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, oleylamine, benzylamine, diethylaminopropylamine, xylylenediamine, ethylenediamine, hexamethylenediamine. , Triethylenediamine, guanidine, diphenylguanidine, 2,4,6-tris (dimethylaminomethyl) phenol, morpholin, N-methylmorpholin, 2-ethyl-4-methylimidazole, 1,8-diazabicyclo [5.4.0] ] -7-Amine-based compounds such as undecene (DBU) can be mentioned.
 アミン系化合物と有機錫化合物との反応物及び混合物としては、ラウリルアミンとオクチル酸錫の反応物あるいは混合物等が挙げられる。 Examples of the reaction product and mixture of the amine compound and the organic tin compound include a reaction product or a mixture of laurylamine and tin octylate.
 アミノ基を有するシランカップリング剤の具体例としては、3-アミノ-n-プロピルトリメトキシシラン、3-アミノ-n-プロピルトリエトキシシラン、3-アミノ-n-プロピルトリイソプロポキシシラン、3-アミノ-n-プロピルメチルジメトキシシラン、3-アミノ-n-プロピルメチルジエトキシシラン、N-(β-アミノエチル)-3-アミノ-n-プロピルトリメトキシシラン、N-(β-アミノエチル)-3-アミノ-n-プロピルメチルジメトキシシラン、N-(β-アミノエチル)-3-アミノ-n-プロピルトリエトキシシラン、N-(β-アミノエチル)-3-アミノ-n-プロピルメチルジエトキシシラン、N-(β-アミノエチル)-3-アミノ-n-プロピルトリイソプロポキシシラン、3-ウレイド-n-プロピルトリメトキシシラン、N-フェニル-3-アミノ-n-プロピルトリメトキシシラン、N-ベンジル-3-アミノ-n-プロピルトリメトキシシラン、N-ビニルベンジル-3-アミノ-n-プロピルトリエトキシシラン等を挙げることができる。 Specific examples of the silane coupling agent having an amino group include 3-amino-n-propyltrimethoxysilane, 3-amino-n-propyltriethoxysilane, 3-amino-n-propyltriisopropoxysilane, and 3-. Amino-n-propylmethyldimethoxysilane, 3-amino-n-propylmethyldiethoxysilane, N- (β-aminoethyl) -3-amino-n-propyltrimethoxysilane, N- (β-aminoethyl)- 3-Amino-n-propylmethyldimethoxysilane, N- (β-aminoethyl) -3-amino-n-propyltriethoxysilane, N- (β-aminoethyl) -3-amino-n-propylmethyldiethoxy Silane, N- (β-aminoethyl) -3-amino-n-propyltriisopropoxysilane, 3-ureido-n-propyltrimethoxysilane, N-phenyl-3-amino-n-propyltrimethoxysilane, N Examples thereof include -benzyl-3-amino-n-propyltrimethoxysilane and N-vinylbenzyl-3-amino-n-propyltriethoxysilane.
 上記のアミノ基を有するシランカップリング剤を変性した誘導体としては、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン等が挙げられる。 Examples of the derivative obtained by modifying the above-mentioned silane coupling agent having an amino group include an amino-modified silyl polymer, a silylated amino polymer, an unsaturated amino silane complex, a phenylamino long chain alkyl silane, and an amino silylated silicone.
 さらにはフェルザチック酸等の脂肪酸や有機酸性リン酸エステル化合物等他の酸性触媒、塩基性触媒等を、公知のシラノール縮合触媒として例示できる。 Further, fatty acids such as ferzatic acid, other acidic catalysts such as organic acidic phosphoric acid ester compounds, basic catalysts and the like can be exemplified as known silanol condensation catalysts.
 酸性触媒の有機酸性リン酸エステル化合物としては、(CHO)-P(=O)(-OH)、(CHO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(C17O)-P(=O)(-OH)、(C17O)-P(=O)(-OH)、(C1021O)-P(=O)(-OH)、(C1021O)-P(=O)(-OH)、(C1327O)-P(=O)(-OH)、(C1327O)-P(=O)(-OH)、(C1633O)-P(=O)(-OH)、(C1633O)-P(=O)(-OH)、(HO-C12O)-P(=O)(-OH)、(HO-C12O)-P(=O)(-OH)、(HO-C16O)-P(=O)(-OH)、(HO-C16O)-P(=O)(-OH)、[(CHOH)(CHOH)O]-P(=O)(-OH)、[(CHOH)(CHOH)O]-P(=O)(-OH)、[(CHOH)(CHOH)CO]-P(=O)(-OH)、[(CHOH)(CHOH)CO]-P(=O)(-OH)等が挙げられるが、例示物質に限定されるものではない。 Examples of the organic acidic phosphoric acid ester compound of the acidic catalyst include (CH 3 O) 2- P (= O) (-OH), (CH 3 O) -P (= O) (-OH) 2 , (C 2 H). 5 O) 2- P (= O) (-OH), (C 2 H 5 O) -P (= O) (-OH) 2 , (C 3 H 7 O) 2- P (= O) (- OH), (C 3 H 7 O) -P (= O) (-OH) 2 , (C 4 H 9 O) 2- P (= O) (-OH), (C 4 H 9 O) -P (= O) (-OH) 2 , (C 8 H 17 O) 2- P (= O) (-OH), (C 8 H 17 O) -P (= O) (-OH) 2 , (C 10 H 21 O) 2- P (= O) (-OH), (C 10 H 21 O) -P (= O) (-OH) 2 , (C 13 H 27 O) 2- P (= O) (-OH), (C 13 H 27 O) -P (= O) (-OH) 2 , (C 16 H 33 O) 2- P (= O) (-OH), (C 16 H 33 O) -P (= O) (-OH) 2 , (HO-C 6 H 12 O) 2- P (= O) (-OH), (HO-C 6 H 12 O) -P (= O) (- OH) 2, (HO-C 8 H 16 O) -P (= O) (- OH), (HO-C 8 H 16 O) -P (= O) (- OH) 2, [(CH 2 OH ) (CHOH) O] 2- P (= O) (-OH), [(CH 2 OH) (CHOH) O] -P (= O) (-OH) 2 , [(CH 2 OH) (CHOH) C 2 H 4 O] 2- P (= O) (-OH), [(CH 2 OH) (CHOH) C 2 H 4 O] -P (= O) (-OH) 2, etc. It is not limited to the exemplary substance.
 発泡体用樹脂組成物の硬化を良好に進行させる観点からは、前述のシラノール縮合触媒(D)の好適な例の中でも、Snを含む錫含有触媒が好ましく、ジアルキル錫ジカルボキシレート類、ジアルキル錫アルコキサイド類、ジアルキル錫の分子内配位性誘導体類、ジアルキル錫オキサイドとエステル化合物との反応物、ジアルキル錫オキサイド、カルボン酸及びアルコール化合物を反応させて得られる錫化合物、ジアルキル錫オキサイドとシリケート化合物との反応物、及びこれらのジアルキル錫化合物のオキシ誘導体(スタノキサン化合物)等の4価の錫化合物類を含むのが好ましい。
 錫含有触媒としては、その質量における錫原子の質量の比率が高いほど、触媒活性が高く好ましい。
 また、発泡体製造後の発泡体の経時的なシュリンクの抑制の観点からは、シラノール縮合触媒(D)として、ジアルキル錫ジカルボキシレート類が好ましく、ジブチル錫ジアセテートがより好ましい。
From the viewpoint of satisfactorily curing the resin composition for foam, among the preferred examples of the silanol condensation catalyst (D) described above, a tin-containing catalyst containing Sn is preferable, and dialkyltin dicarboxylates and dialkyltin. Alcoxides, intramolecular coordinating derivatives of dialkyl tin, reaction products of dialkyl tin oxide and ester compounds, tin compounds obtained by reacting dialkyl tin oxide, carboxylic acids and alcohol compounds, dialkyl tin oxide and silicate compounds , And tetravalent tin compounds such as oxy derivatives (stanoxane compounds) of these dialkyl tin compounds are preferably contained.
As the tin-containing catalyst, the higher the ratio of the mass of tin atoms to the mass, the higher the catalytic activity, which is preferable.
Further, from the viewpoint of suppressing shrinkage of the foam over time after the production of the foam, dialkyltin dicarboxylates are preferable as the silanol condensation catalyst (D), and dibutyltin diacetate is more preferable.
 二炭酸ジエステル(B-1)の発泡反応により発生する炭酸の影響による触媒活性の低下が生じにくく、二炭酸ジエステル(B-1)と水との発泡反応と、基材樹脂(A)の硬化反応とを特にバランスよく進行させるという観点から、上記に挙げられるシラノール縮合触媒(D)の中でも、中性又は弱酸性のシラノール縮合触媒が好ましく、弱酸性のシラノール縮合触媒がより好ましい。炭酸は二酸化炭素が水に溶解することで発生する。
 また、中性又は弱酸性のシラノール縮合触媒を用いる場合、発泡開始時の、二炭酸ジエステル(B-1)の水との発泡反応の進行を阻害しにくい。
 シラノール縮合触媒(D)は、基材樹脂(A)を良好に硬化させやすい点から、中性又は弱酸性のシラノール縮合触媒として、前述の種々の錫含有触媒のうち中性又は弱酸性の触媒を含むのが好ましい。
 このような観点からも、シラノール縮合触媒(D)に関して、中性又は弱酸性の錫含有触媒として、ジアルキル錫ジカルボキシレート類が好ましい。
 中性又は弱酸性のジアルキル錫ジカルボキシレートとしては、下記式(D1)で表される化合物、又は下記式(D2)で表される構成単位からなるオリゴマー又はポリマーが好ましい。
(Rd1)(Rd2)(Rd3COO)(Rd4COO)Sn・・・(D1)
-(-(Rd1)(Rd2)Sn-OCORd5COO-)-・・・(D2)
 式(D1)及び式(D2)において、Rd1及びRd2は、それぞれ同一でも異なっていてもよい。Rd1及びRd2は、直鎖状又は分岐状のアルキル基であり、直鎖アルキル基が好ましい。Rd1及びRd2としてのアルキル基の炭素原子数は特に限定されず、1以上20以下が好ましく、2以上16以下がより好ましく、3以上10以下がさらに好ましい。錫含有触媒の入手が容易な点や、錫含有触媒のシラノール縮合触媒(D)としての活性が良好であることから、Rd1及びRd2としては、n-ブチル基、及びn-オクチル基が好ましい。
 式(D1)中、Rd3及びRd4は、それぞれ、炭素原子数1以上40以下の有機基である。Rd3及びRd4としての有機基の炭素原子数は、1以上30以下が好ましい。Rd3及びRd4としての有機基は、O、S、N、及びSi等のヘテロ原子を含んでいてもよい。
 錫含有触媒の入手が容易な点や、錫含有触媒のシラノール縮合触媒(D)としての活性が良好であることから、Rd3及びRd4としては、炭素原子数1以上30以下の直鎖状又は分岐鎖状のアルキル基と、下記式(D3):
-CH=CH-CO-ORd6・・・(D3)
で表される基が好ましい。Rd6は炭素原子数1以上30以下の炭化水素基である。当該炭化水素基は、脂肪族炭化水素基であっても、芳香族炭化水素基であっても、脂肪族炭化水素基と芳香族炭化水素基との組み合わせであってもよい。Rd6としての炭化水素基の炭素原子数は1以上20以下が好ましい。
 式(D2)中、Rd5は、炭素原子数1以上40以下の2価の有機基である。Rd5としての有機基の炭素原子数は、1以上30以下が好ましく、1以上10以下がより好ましく、1以上4以下がさらに好ましい。Rd5としての有機基は、O、S、N、及びSi等のヘテロ原子を含んでいてもよい。Rd5としての有機基としては、炭化水素基が好ましく、-CH=CH-、及び-CHCH-がより好ましい。
 上記式(D1)で表される化合物、又は上記式(D2)で表される構成単位からなるオリゴマー又はポリマーの好適な具体例は、ジアルキル錫ジカルボキシレート類の具体例として前述した通りであり、ジブチル錫ジアセテートが特に好ましい。
 シラノール縮合触媒が中性又は弱酸性であるかは、シラノール縮合触媒の濃度1質量%の水/アセトン=10/90(重量比)溶液の20℃でのpHを測定することにより判別することができる。具体的には、pHが6.5以上7.5未満である場合を中性とし、pHが4.0以上6.5未満である場合を弱酸性とする。
 中性又は弱酸性のシラノール縮合触媒(D)を含む発泡体用樹脂組成物を用いる場合、短時間で、発泡及び効果を進行させやすい。このため、中性又は弱酸性のシラノール縮合触媒(D)を含む発泡体用樹脂組成物は、建築現場や種々の工業製品の製造現場等における現場において、発泡体を施工する場合に、特に有用である。
 現場での発泡体の施工には、短時間での発泡及び硬化が要求されるためである。
The catalytic activity is unlikely to decrease due to the influence of carbon dioxide generated by the foaming reaction of the dicarbonate diester (B-1), and the foaming reaction between the dicarbonate diester (B-1) and water and the curing of the base resin (A) Among the silanol condensation catalysts (D) listed above, a neutral or weakly acidic silanol condensation catalyst is preferable, and a weakly acidic silanol condensation catalyst is more preferable, from the viewpoint of allowing the reaction to proceed in a particularly well-balanced manner. Carbonic acid is generated when carbon dioxide dissolves in water.
Further, when a neutral or weakly acidic silanol condensation catalyst is used, it is difficult to inhibit the progress of the foaming reaction of the dicarbonate diester (B-1) with water at the start of foaming.
The silanol condensation catalyst (D) is a neutral or weakly acidic catalyst among the various tin-containing catalysts described above as a neutral or weakly acidic silanol condensation catalyst because the base resin (A) can be easily cured. Is preferably included.
From this point of view, dialkyltin dicarboxylates are preferable as the neutral or weakly acidic tin-containing catalyst with respect to the silanol condensation catalyst (D).
As the neutral or weakly acidic dialkyltin dicarboxylate, a compound represented by the following formula (D1) or an oligomer or polymer composed of a structural unit represented by the following formula (D2) is preferable.
(R d1 ) (R d2 ) (R d3 COO) (R d4 COO) Sn ... (D1)
-(-(R d1 ) (R d2 ) Sn-OCOR d5 COO-)-... (D2)
In formulas (D1) and (D2), R d1 and R d2 may be the same or different, respectively. R d1 and R d2 are linear or branched alkyl groups, and a linear alkyl group is preferable. The number of carbon atoms of the alkyl group as R d1 and R d2 is not particularly limited, and is preferably 1 or more and 20 or less, more preferably 2 or more and 16 or less, and further preferably 3 or more and 10 or less. Since the tin-containing catalyst is easily available and the activity of the tin-containing catalyst as a silanol condensation catalyst (D) is good, n-butyl group and n-octyl group are used as R d1 and R d2. preferable.
In the formula (D1), R d3 and R d4 are organic groups having 1 or more and 40 or less carbon atoms, respectively. The number of carbon atoms of the organic group as R d3 and R d4 is preferably 1 or more and 30 or less. The organic groups as R d3 and R d4 may contain heteroatoms such as O, S, N, and Si.
Since the tin-containing catalyst is easily available and the activity of the tin-containing catalyst as a silanol condensation catalyst (D) is good, the R d3 and R d4 are linear with 1 to 30 carbon atoms. Alternatively, a branched alkyl group and the following formula (D3):
-CH = CH-CO-OR d6 ... (D3)
The group represented by is preferable. R d6 is a hydrocarbon group having 1 or more and 30 or less carbon atoms. The hydrocarbon group may be an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a combination of an aliphatic hydrocarbon group and an aromatic hydrocarbon group. The number of carbon atoms of the hydrocarbon group as R d6 is preferably 1 or more and 20 or less.
In the formula (D2), R d5 is a divalent organic group having 1 or more and 40 or less carbon atoms. The number of carbon atoms of the organic group as R d5 is preferably 1 or more and 30 or less, more preferably 1 or more and 10 or less, and further preferably 1 or more and 4 or less. The organic group as R d5 may contain heteroatoms such as O, S, N, and Si. As the organic group as R d5 , a hydrocarbon group is preferable, and -CH = CH- and -CH 2 CH 2 --are more preferable.
Preferable specific examples of the compound represented by the above formula (D1) or the oligomer or polymer composed of the structural unit represented by the above formula (D2) are as described above as specific examples of dialkyltin dicarboxylates. , Dibutyltin diacetate is particularly preferred.
Whether the silanol condensation catalyst is neutral or weakly acidic can be determined by measuring the pH of a 1% by mass water / acetone = 10/90 (weight ratio) solution of the silanol condensation catalyst at 20 ° C. it can. Specifically, when the pH is 6.5 or more and less than 7.5, it is neutral, and when the pH is 4.0 or more and less than 6.5, it is weakly acidic.
When a resin composition for a foam containing a neutral or weakly acidic silanol condensation catalyst (D) is used, foaming and the effect can be easily promoted in a short time. Therefore, the resin composition for a foam containing a neutral or weakly acidic silanol condensation catalyst (D) is particularly useful when constructing a foam at a construction site or a manufacturing site of various industrial products. Is.
This is because foaming and curing in a short time are required for the construction of the foam on site.
 塩基性のシラノール縮合触媒(D)の好適な例としては、それぞれ上記される、脂肪族第一級アミン類、脂肪族第二級アミン類、脂肪族第三級アミン類、脂肪族不飽和アミン類、及び芳香族アミン類と、これらのアミン類以外のその他のアミン類と、アミノ基を有するシランカップリング剤が挙げられる。
 なお、上記のアミン類や、アミノ基を有するシランカップリング剤を単独でシラノール縮合触媒として用いる場合、基材樹脂(A)の硬化反応がやや遅い場合がある。このため、上記のアミン類や、アミノ基を有するシランカップリング剤は、前述の種々の錫含有触媒のように基材樹脂(A)の硬化反応の促進効果が高い触媒と併用されるのが好ましい。
 特に、塩基性のシラノール縮合触媒(D)は、中性又は弱酸性の錫含有触媒と併用されるのが好ましく、ジアルキル錫ジカルボキシレート類と併用されるのがより好ましく、ジブチル錫ジカルボキシレート類が最も好ましい。
Preferable examples of the basic silanol condensation catalyst (D) are the above-mentioned aliphatic primary amines, aliphatic secondary amines, aliphatic tertiary amines, and aliphatic unsaturated amines, respectively. , And aromatic amines, other amines other than these amines, and silane coupling agents having an amino group.
When the above amines or a silane coupling agent having an amino group is used alone as a silanol condensation catalyst, the curing reaction of the base resin (A) may be slightly slow. Therefore, the above-mentioned amines and the silane coupling agent having an amino group are used in combination with a catalyst having a high effect of accelerating the curing reaction of the base resin (A), such as the above-mentioned various tin-containing catalysts. preferable.
In particular, the basic silanol condensation catalyst (D) is preferably used in combination with a neutral or weakly acidic tin-containing catalyst, more preferably in combination with dialkyltin dicarboxylates, and dibutyltin dicarboxylate. Is most preferred.
 シラノール縮合触媒(D)の含有量は、基材樹脂(A)100重量部に対して90重量部以下が好ましく、0.05重量部以上80重量部以下がさらに好ましく、0.05重量部以上20重量部以下がより好ましく、1重量部以上15重量部以下がさらにより好ましい。シラノール縮合触媒(D)の含有量が80重量部よりも多いと、得られた発泡体の圧縮により底付きする場合がある。シラノール縮合触媒(D)の量を調整することにより、発泡体用樹脂組成物の硬化性を調整することができる。 The content of the silanol condensation catalyst (D) is preferably 90 parts by weight or less, more preferably 0.05 parts by weight or more and 80 parts by weight or less, and 0.05 parts by weight or more with respect to 100 parts by weight of the base resin (A). 20 parts by weight or less is more preferable, and 1 part by weight or more and 15 parts by weight or less is even more preferable. If the content of the silanol condensation catalyst (D) is more than 80 parts by weight, the foam may bottom out due to compression of the obtained foam. By adjusting the amount of the silanol condensation catalyst (D), the curability of the foam resin composition can be adjusted.
<発泡助剤(E)>
 発泡体用樹脂組成物が化学発泡剤(B)として二炭酸ジエステル(B-1)を含む場合、発泡体用樹脂組成物は、発泡助剤(E)、及び/又は発泡助剤(E)として作用するシラノール縮合触媒(D)を含むのが好ましい。
 発泡助剤(E)は、二炭酸ジエステル(B-1)の分解による発泡を促進させる成分である。発泡助剤(E)は、水と二炭酸ジエステル(B-1)とを含む混合物に添加された場合に、発泡を促進する化合物であれば特に限定されない。
<Effervescent aid (E)>
When the resin composition for a foam contains a dicarbonate diester (B-1) as a chemical foaming agent (B), the resin composition for a foam is a foaming aid (E) and / or a foaming aid (E). It is preferable to include a silanol condensation catalyst (D) that acts as a resin.
The foaming aid (E) is a component that promotes foaming due to the decomposition of the dicarbonate diester (B-1). The foaming aid (E) is not particularly limited as long as it is a compound that promotes foaming when added to a mixture containing water and a dicarbonate diester (B-1).
 典型的には、発泡助剤(E)としては、有機又は無機の塩基性化合物が好ましく挙げられる。このため、シラノール縮合触媒として前述した塩基性の触媒は、発泡助剤(E)としての作用を奏する場合がある。
 例えば、発泡体用樹脂組成物が、シラノール縮合触媒(D)として上記の塩基性のシラノール縮合触媒のような発泡助剤(E)としての作用を奏する成分を含有する場合、便宜的に、発泡体用樹脂組成物が、シラノール縮合触媒(D)と発泡助剤(E)との双方を含むとして扱う。
Typically, the foaming aid (E) preferably includes an organic or inorganic basic compound. Therefore, the basic catalyst described above as the silanol condensation catalyst may act as a foaming aid (E).
For example, when the resin composition for a foam contains a component that acts as a foaming aid (E) such as the above-mentioned basic silanol condensation catalyst as the silanol condensation catalyst (D), foaming is conveniently performed. The body resin composition is treated as containing both the silanol condensation catalyst (D) and the foaming aid (E).
 発泡助剤(E)として作用するシラノール縮合触媒(D)の好適な例としては、ビス(N,N-ジメチルアミノ-2-エチル)エーテル、トリエチレンジアミン及びN,N,N’,N’-テトラメチルヘキサメチレンジアミン、N-エチルモルホリン、テトラメチルエチレンジアミン、ジアミノビシクロオクタン、1,2-ジメチルイミダゾール、1-メチルイミダゾール及び1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等の活性水素を含有しない第三級アミン類や、ジメチルエタノールアミン、ジエチルエタノールアミン、ジメチルヘキサノールアミン等の、水酸基、チオール基、カルボキシ基等の活性水素含有基を有する活性水素を含有する第三級アミンが挙げられる。 Preferable examples of the silanol condensation catalyst (D) acting as a foaming aid (E) are bis (N, N-dimethylamino-2-ethyl) ether, triethylenediamine and N, N, N', N'-. Tetramethylhexamethylenediamine, N-ethylmorpholin, tetramethylethylenediamine, diaminobicyclooctane, 1,2-dimethylimidazole, 1-methylimidazole and 1,8-diazabicyclo- [5.4.0] -7-undecene (DBU) ), 1,4-diazabicyclo [2.2.2] Octane (DABCO) and other tertiary amines that do not contain active hydrogen, and hydroxyl and thiol groups such as dimethylethanolamine, diethylethanolamine and dimethylhexanolamine. , Tertiary amine containing active hydrogen having an active hydrogen-containing group such as a carboxy group.
 シラノール縮合触媒(D)に該当しない発泡助剤(E)の含有量は、基材樹脂(A)100重量部に対して0.05重量部以上20重量部以下が好ましく、0.1重量部以上10重量部以下がより好ましく、0.5重量部以上5重量部以下がさらに好ましい。
 発泡助剤(E)として作用するシラノール縮合触媒(D)の含有量は、前述のシラノール縮合触媒(D)の含有量と同様である。
The content of the foaming aid (E) that does not correspond to the silanol condensation catalyst (D) is preferably 0.05 parts by weight or more and 20 parts by weight or less, preferably 0.1 parts by weight, based on 100 parts by weight of the base resin (A). More than 10 parts by weight is more preferable, and 0.5 parts by weight or more and 5 parts by weight or less is further preferable.
The content of the silanol condensation catalyst (D) acting as the foaming aid (E) is the same as the content of the silanol condensation catalyst (D) described above.
<その他添加剤>
 発泡体用樹脂組成物には、発泡体の柔軟性や成形加工性を調整する目的で可塑剤、反応性調整剤、染料を添加することができる。
<Other additives>
A plasticizer, a reactivity modifier, and a dye can be added to the foam resin composition for the purpose of adjusting the flexibility and molding processability of the foam.
 可塑剤としては、オキシアルキレン系単位からなる繰り返し単位から構成される主鎖を有する可塑剤が好ましい。主鎖の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド;エチレンオキシド、プロピレンオキシド、及びブチレンオキシドから選ばれる2種以上のランダム又はブロック共重合体等が挙げられ、これらは単独で使用してもよく、二種類以上を併用してもよい。これらのうち、基材樹脂(A)との相溶性の点で、ポリプロピレンオキシドが好ましい。また、これらのオキシアルキレンをイソシアネート変性したものも添加することができる。 As the plasticizer, a plasticizer having a main chain composed of repeating units composed of oxyalkylene-based units is preferable. Specific examples of the main chain include polyethylene oxide, polypropylene oxide, polybutylene oxide; two or more random or block copolymers selected from ethylene oxide, propylene oxide, and butylene oxide, which are used alone. Alternatively, two or more types may be used in combination. Of these, polypropylene oxide is preferable in terms of compatibility with the base resin (A). Further, those obtained by modifying these oxyalkylenes with isocyanate can also be added.
 可塑剤の分子量は、得られる発泡体の柔軟性や、可塑剤の系外への流出防止の観点から数平均分子量で1000以上であり、3000以上が好ましい。数平均分子量が前述の範囲内であると、熱や圧縮等による可塑剤の経時的な系外への流出を抑制でき、初期の物性を長期に渡り維持しやすく、柔軟性への悪影響が少ない。また、上限値は特に限定は無いが、数平均分子量が高くなりすぎると粘度が高くなり、作業性が悪化するため50000以下が好ましく、30000以下がより好ましい。なお、可塑剤は、発泡体に柔軟性を付与できるものであれば、直鎖状でも分岐状でも特に限定はない。 The molecular weight of the plasticizer has a number average molecular weight of 1000 or more, preferably 3000 or more, from the viewpoint of the flexibility of the obtained foam and the prevention of the plasticizer from flowing out of the system. When the number average molecular weight is within the above range, it is possible to suppress the outflow of the plasticizer from the system over time due to heat, compression, etc., it is easy to maintain the initial physical properties for a long period of time, and there is little adverse effect on flexibility. .. The upper limit is not particularly limited, but if the number average molecular weight becomes too high, the viscosity increases and workability deteriorates. Therefore, 50,000 or less is preferable, and 30,000 or less is more preferable. The plasticizer is not particularly limited as long as it can impart flexibility to the foam, and may be linear or branched.
 可塑剤の添加量は、基材樹脂(A)100重量部に対して、好ましくは、5重量部以上150重量部以下、より好ましくは10重量部以上120重量部以下、さらに好ましくは20重量部以上100重量部以下である。可塑剤の添加量が前述の範囲内であると、柔軟性や成形加工性を調整しやすく、良好な機械強度を有し、所望する発泡倍率である発泡体を形成しやすい。可塑剤の製造方法は特に限定なく、公知の製造方法を適用することができ、さらに市販の化合物を用いてもよい。 The amount of the plasticizer added is preferably 5 parts by weight or more and 150 parts by weight or less, more preferably 10 parts by weight or more and 120 parts by weight or less, and further preferably 20 parts by weight with respect to 100 parts by weight of the base resin (A). It is 100 parts by weight or less. When the amount of the plasticizer added is within the above range, it is easy to adjust the flexibility and moldability, have good mechanical strength, and easily form a foam having a desired foaming ratio. The method for producing the plasticizer is not particularly limited, and a known production method can be applied, and a commercially available compound may be used.
 反応性調整剤は、反応性ケイ素基を有するのが好ましい。反応性調整剤は、メチルシリケート、エチルシリケート等のシリケート化合物であってもよく、反応性ケイ素基を有するビニルモノマーの共重合体であってもよく、チオール等の連鎖移動基を有する反応性ケイ素モノマーを使用した共重合体であってもよい。これらは単独で使用してもよく、二種類以上を併用してもよい。 The reactivity modifier preferably has a reactive silicon group. The reactivity modifier may be a silicate compound such as methyl silicate or ethyl silicate, a copolymer of a vinyl monomer having a reactive silicon group, or a reactive silicon having a chain transfer group such as thiol. It may be a copolymer using a monomer. These may be used alone or in combination of two or more.
 反応性調整剤の分子量は、得られる発泡体の硬化及び発泡の観点から数平均分子量で1000以上が好ましく、3000以上がより好ましい。また、上限値は特に限定は無いが、発泡体用樹脂組成物の粘度を作業しやすい範囲内としやすいことから、50000以下が好ましく、30000以下がより好ましい。なお、反応性調整剤は、発泡体用樹脂組成物の硬化性を調整できるものであれば、直鎖状でも分岐状でも特に限定はない。 The molecular weight of the reactivity modifier is preferably 1000 or more, more preferably 3000 or more, in terms of number average molecular weight from the viewpoint of curing and foaming of the obtained foam. The upper limit is not particularly limited, but is preferably 50,000 or less, more preferably 30,000 or less, because the viscosity of the resin composition for foam can be easily set within a workable range. The reactivity modifier is not particularly limited as long as it can adjust the curability of the foam resin composition, whether it is linear or branched.
 反応性調整剤の添加量は、基材樹脂(A)100重量部に対して、好ましくは、2重量部以上120重量部以下、より好ましくは5重量部以上80重量部以下、さらに好ましくは10重量部以上50重量部以下である。かかる範囲内の量の反応調整剤を用いると、硬化性を適切な範囲内に調整しやすく、適切な速度で硬化を進行させ発泡倍率の高い発泡体を得やすい。反応性調整剤の製造方法は特に限定なく、公知の製造方法を適用することができ、さらに市販の化合物を用いてもよい。 The amount of the reactivity adjusting agent added is preferably 2 parts by weight or more and 120 parts by weight or less, more preferably 5 parts by weight or more and 80 parts by weight or less, and further preferably 10 parts by weight with respect to 100 parts by weight of the base resin (A). It is 50 parts by weight or more and 50 parts by weight or less. When an amount of the reaction modifier within such a range is used, the curability can be easily adjusted within an appropriate range, and curing can proceed at an appropriate rate to easily obtain a foam having a high foaming ratio. The method for producing the reactivity adjusting agent is not particularly limited, and a known production method can be applied, and a commercially available compound may be used.
 発泡体用樹脂組成物には、本発明の効果を損なわない限り、耐光性安定剤、紫外線吸収剤、貯蔵安定剤、気泡調整剤、潤滑剤、難燃剤等を必要に応じて添加してもよい。 A light resistance stabilizer, an ultraviolet absorber, a storage stabilizer, a bubble modifier, a lubricant, a flame retardant, etc. may be added to the foam resin composition as necessary, as long as the effects of the present invention are not impaired. Good.
 耐光性安定剤としては、ヒンダードフェノール系酸化防止剤、及びイオウ原子、リン原子、1級アミン、2級アミンを含まないヒンダードアミン系光安定剤が挙げられる。ここで、耐光性安定剤とは、紫外線領域の波長の光を吸収してラジカルの生成を抑制する機能、又は、光吸収により生成したラジカルを捕捉して熱エネルギーに変換し無害化する機能等を有し、光に対する安定性を高める化合物である。 Examples of the light resistance stabilizer include a hindered phenol-based antioxidant and a hindered amine-based light stabilizer containing no sulfur atom, phosphorus atom, primary amine, or secondary amine. Here, the light resistance stabilizer has a function of absorbing light having a wavelength in the ultraviolet region to suppress the generation of radicals, or a function of capturing radicals generated by light absorption and converting them into thermal energy to make them harmless. It is a compound that enhances the stability against light.
 紫外線吸収剤としては、特に限定されるものではないが、ベンゾオキサジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤等が例示される。ここで、紫外線吸収剤とは、紫外線領域の波長の光を吸収してラジカルの生成を抑制する機能を有する化合物である。 The ultraviolet absorber is not particularly limited, and examples thereof include a benzoxazine-based ultraviolet absorber, a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, and a triazine-based ultraviolet absorber. Here, the ultraviolet absorber is a compound having a function of absorbing light having a wavelength in the ultraviolet region and suppressing the generation of radicals.
 耐光性安定剤、及び紫外線吸収剤の添加量としては、それぞれ、基材樹脂(A)100重量部に対して、0.01重量部以上5重量部以下が好ましく、0.1重量部以上3重量部以下がより好ましく、0.3重量部以上2.0重量部以下がさらに好ましい。耐光性安定剤、紫外線吸収剤の添加量が当該範囲内であると、経時的な表面粘着性の上昇を抑制する効果が得やすい。 The amount of the light-resistant stabilizer and the ultraviolet absorber added is preferably 0.01 parts by weight or more and 5 parts by weight or less, and 0.1 parts by weight or more and 3 parts by weight or more, respectively, with respect to 100 parts by weight of the base resin (A). More preferably, it is 0.3 parts by weight or more, and further preferably 2.0 parts by weight or less. When the amount of the light-resistant stabilizer and the ultraviolet absorber added is within the above range, the effect of suppressing an increase in surface adhesiveness with time can be easily obtained.
 貯蔵安定性改良剤の好ましい例としては、例えば、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機硫黄化合物、チッ素含有化合物、スズ系化合物、有機過酸化物等が挙げられる。これらを単独使用、又は2種以上併用してもよい。具体的には、2-ベンゾチアゾリルサルファイド、ベンゾチアゾール、チアゾール、ジメチルアセチレンダイカルボキシレート、ジエチルアセチレンダイカルボキシレート、2,6-ジ-t-ブチル-4-メチルフェノール、ブチルヒドロキシアニソール、ビタミンE、2-(4-モルフォジニルジチオ)ベンゾチアゾール、3-メチル-1-ブテン-3-オール、アセチレン性不飽和基含有オルガノシロキサン、アセチレンアルコール、3-メチル-1-ブチン-3-オール、2-メチル-3-ブチン-2-オール、ジアリルフマレート、ジアリルマレエート、ジエチルフマレート、ジエチルマレエート、ジメチルマレエート、2-ペンテンニトリル、2,3-ジクロロプロペン等が挙げられる。 Preferred examples of the storage stability improving agent include, for example, a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic sulfur compound, a nitrogen-containing compound, a tin compound, and an organic peroxide. These may be used alone or in combination of two or more. Specifically, 2-benzothiazolyl sulfate, benzothiazole, thiazole, dimethylacetylene dicarboxylate, diethylacetylene dicarboxylate, 2,6-di-t-butyl-4-methylphenol, butylhydroxyanisole, vitamins. E, 2- (4-morphozynyldithio) benzothiazole, 3-methyl-1-buten-3-ol, acetylene unsaturated group-containing organosiloxane, acetylene alcohol, 3-methyl-1-butyne-3-ol , 2-Methyl-3-butyne-2-ol, diallyl fumarate, diallyl maleate, diethyl fumarate, diethyl maleate, dimethyl maleate, 2-pentenenitrile, 2,3-dichloropropene and the like.
 発泡体用樹脂組成物には、必要であれば、気泡調整剤を添加してもよい。気泡調整剤の種類には特に限定はなく、通常使用される、例えば、タルク、酸化マグネシウム、酸化チタン、酸化亜鉛、カーボンブラック、シリカ等の無機固体粉末が挙げられる。これらは、単独で使用してもよいし、2種以上を併用してもよい。 If necessary, a bubble modifier may be added to the foam resin composition. The type of the bubble adjusting agent is not particularly limited, and examples thereof include inorganic solid powders usually used, such as talc, magnesium oxide, titanium oxide, zinc oxide, carbon black, and silica. These may be used alone or in combination of two or more.
 なお、周波数1000Hz以下や800Hz以下の音の成分を良好に吸収する発泡体を製造しやすいことから、発泡体中の、金属塩及び/又は無機粒子の含有量が発泡体の重量に対して2.5重量%以下であるのが好ましく、1重量%以下であるのがより好ましい。なお、金属塩は、無機塩であっても、有機アニオン又は有機カチオンを含む有機塩であってもよい。
 このため、発泡体用樹脂組成物に無機固体粉末を含有させる場合、無機固体粉末の使用量は、発泡体中の無機固体粉末の使用量が上記の量であるように調整されるのが好ましい。
Since it is easy to produce a foam that satisfactorily absorbs sound components having a frequency of 1000 Hz or less or 800 Hz or less, the content of metal salts and / or inorganic particles in the foam is 2 with respect to the weight of the foam. It is preferably 5.5% by weight or less, and more preferably 1% by weight or less. The metal salt may be an inorganic salt or an organic salt containing an organic anion or an organic cation.
Therefore, when the resin composition for a foam contains an inorganic solid powder, the amount of the inorganic solid powder used is preferably adjusted so that the amount of the inorganic solid powder used in the foam is the above amount. ..
 気泡調整剤の使用量は、基材樹脂(A)100重量部に対して、0.1重量部以上100重量部以下が好ましく、0.5重量部以上50重量部以下がより好ましい。 The amount of the bubble adjusting agent used is preferably 0.1 part by weight or more and 100 parts by weight or less, and more preferably 0.5 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the base resin (A).
 発泡体用樹脂組成物には、必要であれば、整泡剤を添加してもよい。整泡剤の種類には特に限定はなく、通常使用される、例えば、ポリエーテル変成シリコーンオイル等のシリコーンオイル系化合物、フッ素系化合物等が挙げられる。これらは、単独で使用してもよいし、2種以上を併用してもよい。特に、ポリプロピレン及びポリエチレン変性シリコーンは少量での整泡力が期待できる場合がある。 If necessary, a foam stabilizer may be added to the resin composition for foam. The type of the foam stabilizer is not particularly limited, and examples thereof include silicone oil-based compounds such as polyether-modified silicone oil and fluorine-based compounds, which are usually used. These may be used alone or in combination of two or more. In particular, polypropylene and polyethylene-modified silicone may be expected to have foam-regulating power in a small amount.
 整泡剤の使用量は、基材樹脂(A)100重量部に対して、0.2重量部以上30重量部以下が好ましく、0.5重量部以上15重量部以下がより好ましい。 The amount of the foam stabilizer used is preferably 0.2 parts by weight or more and 30 parts by weight or less, and more preferably 0.5 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the base resin (A).
 発泡体用樹脂組成物には、必要であれば、中空粒子を添加してもよい。中空粒子の種類には特に限定はなく、通常使用される、例えば、熱可塑性のシェルポリマーの中にシェルポリマーの軟化点以下の温度でガス状になる揮発性液体を内包し、加熱された揮発性液体がガス状になるとともに、シェルポリマーが軟化して膨張したものが挙げられる。また、膨張する前の中空粒子を添加し、成形時に発泡させることも可能である。 Hollow particles may be added to the resin composition for foam, if necessary. The type of hollow particles is not particularly limited, and is generally used, for example, a thermoplastic shell polymer containing a volatile liquid that becomes gaseous at a temperature below the softening point of the shell polymer and heated to volatilize. Examples thereof include those in which the sex liquid becomes gaseous and the shell polymer is softened and expanded. It is also possible to add hollow particles before expansion and foam them during molding.
 中空粒子の使用量は、基材樹脂(A)100重量部に対して、0.2重量部以上30重量部以下が好ましく、0.5重量部以上15重量部以下がより好ましい。
 中空粒子が中空シリカやグラスバルーンのような無機粒子である場合、その好ましい使用量は、無機固体粉末の好ましい使用量と同様である。
The amount of the hollow particles used is preferably 0.2 parts by weight or more and 30 parts by weight or less, and more preferably 0.5 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the base resin (A).
When the hollow particles are inorganic particles such as hollow silica and glass balloon, the preferable amount to be used is the same as the preferable amount to be used for the inorganic solid powder.
 さらに、発泡体用樹脂組成物に含まれる成分の相溶性を向上する目的で、潤滑剤を添加することもできる。 Further, a lubricant can be added for the purpose of improving the compatibility of the components contained in the resin composition for foam.
 潤滑剤を含有することで、発泡体用樹脂組成物を発泡してなる発泡体の発泡セル内における摩擦や粘着を少なくし、所望の柔軟性を有する発泡体を得ることができる。また、潤滑剤は、基材樹脂(A)間のシラノール縮合反応によって形成される三次元網目構造体に保持されて、発泡体系外へのブリードアウトが抑えられる傾向にあるため、長期間にわたって柔軟性を維持することが可能となる。 By containing a lubricant, friction and adhesion in the foam cell of the foam formed by foaming the resin composition for foam can be reduced, and a foam having desired flexibility can be obtained. Further, the lubricant is held by the three-dimensional network structure formed by the silanol condensation reaction between the base resins (A), and tends to suppress bleeding out of the foam system, so that it is flexible for a long period of time. It becomes possible to maintain sex.
 潤滑剤としては、液状の潤滑剤が好ましい。液体潤滑剤の具体的な例としてはパラフィン系鉱油、ナフテン系鉱油、脂肪酸グリセライド等の動植物油;ポリ-1-デセン、ポリブテン等のアルキル構造を有するオレフィン系潤滑剤;アラルキル構造を有するアルキル芳香族化合物系潤滑剤;ポリアルキレングリコール系潤滑剤;ポリアルキレングリコールエーテル、パーフロロポリエーテル、ポリフェニルエーテル等のエーテル系潤滑剤;脂肪酸エステル、脂肪酸ジエステル、ポリオールエステル、ケイ酸エステル、リン酸エステル等のエステル構造を有するエステル系潤滑剤;ジメチルシリコーン(すなわち、両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン)、及びジメチルシリコーンのメチル基の一部をポリエーテル基、フェニル基、アルキル基、アラルキル基、フッ素化アルキル基等で置換したシリコーンオイル等のシリコーン系潤滑剤;クロロフロロカーボン等のフッ素原子含有系潤滑剤等が挙げられる。これらは、単独で使用してもよいし、2種以上を併用してもよい。 As the lubricant, a liquid lubricant is preferable. Specific examples of liquid lubricants include animal and vegetable oils such as paraffin mineral oil, naphthenic mineral oil, and fatty acid glyceride; olefin lubricants having an alkyl structure such as poly-1-decene and polybutene; alkyl aromatics having an aralkyl structure. Compound-based lubricants; Polyalkylene glycol-based lubricants; Ether-based lubricants such as polyalkylene glycol ethers, perfluoropolyethers, and polyphenyl ethers; fatty acid esters, fatty acid diesters, polyol esters, silicic acid esters, phosphoric acid esters, etc. Ester-based lubricants with an ester structure; dimethyl silicone (ie, dimethylpolysiloxane with both terminal trimethylsiloxy groups blocked), and some of the methyl groups of dimethylsilicone are polyether groups, phenyl groups, alkyl groups, aralkyl groups, and fluorinated Examples thereof include silicone-based lubricants such as silicone oil substituted with an alkyl group and the like; fluorine atom-containing lubricants such as chlorofluorocarbon. These may be used alone or in combination of two or more.
 これらの潤滑剤の中では、発泡セル内における摩擦係数の低下や分散性、加工性、安全性等の観点から、特にシリコーン系潤滑剤が好ましい。 Among these lubricants, silicone-based lubricants are particularly preferable from the viewpoint of reducing the coefficient of friction in the foam cell, dispersibility, workability, safety, and the like.
 潤滑剤の添加量は、基材樹脂(A)100重量部に対して、1重量部以上が好ましく、2重量部以上がより好ましく、3重量部以上がさらに好ましい。潤滑剤の添加量の上限値に特に制限はないが、25重量部以下、さらには20重量部以下が好ましい。かかる範囲内の量の潤滑剤を用いると、発泡セル内の摩擦や粘着を抑制しやすく、発泡倍率を高めやすく、潤滑剤の系外へのブリードアウトを抑制しやすく、所望する柔軟性の発泡体を得やすい。 The amount of the lubricant added is preferably 1 part by weight or more, more preferably 2 parts by weight or more, and further preferably 3 parts by weight or more with respect to 100 parts by weight of the base resin (A). The upper limit of the amount of the lubricant added is not particularly limited, but is preferably 25 parts by weight or less, more preferably 20 parts by weight or less. When an amount of lubricant within such a range is used, friction and adhesion in the foam cell can be easily suppressed, the foaming ratio can be easily increased, bleeding out of the lubricant to the outside of the system can be easily suppressed, and foaming with desired flexibility can be easily performed. Easy to get a body.
 難燃剤の好適な具体例としては、赤リン、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤、及び金属水酸化物が挙げられる。これらは、単独で使用してもよいし、2種以上を併用してもよい。難燃剤としては、赤リンと、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤、及び金属水酸化物から選ばれる少なくとも1つとが組み合わせて使用されるのが好ましい。 Preferable specific examples of the flame retardant include red phosphorus, phosphoric acid ester, phosphate-containing flame retardant, bromine-containing flame retardant, boron-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. These may be used alone or in combination of two or more. As the flame retardant, red phosphorus is used in combination with at least one selected from phosphoric acid ester, phosphate-containing flame retardant, bromine-containing flame retardant, boron-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. It is preferable to be done.
 化学発泡剤(B)と、水(C)とが共存する環境下では発泡が進行しやすいため、発泡体用樹脂組成物は、2液又は3液以上の多液型液状組成物として使用される場合がある。混合による発泡体用樹脂組成物の調製が容易であることから、発泡体用樹脂組成物は2液型樹脂組成物であるのが好ましい。 Since foaming easily proceeds in an environment where the chemical foaming agent (B) and water (C) coexist, the resin composition for a foam is used as a two-component or three-component or more liquid type liquid composition. May occur. Since it is easy to prepare the resin composition for foam by mixing, the resin composition for foam is preferably a two-component resin composition.
 多液型樹脂組成物は、基材樹脂(A)と、二炭酸ジエステル(B-1)等の化学発泡剤(B)とを含む第1液と、少なくともシラノール縮合触媒(D)を含む第2液とを含むのが好ましい。
 また、第2液が水(C)を含むのも好ましい。シラノール縮合触媒(D)を第1液に含有させる場合、基材樹脂(A)間の架橋による硬化が進行する場合がある。しかし、シラノール縮合触媒(D)を、第1液と別の液に含有させることにより、発泡体の製造前の基材樹脂(A)の硬化を防ぐことができる。第2液がシラノール縮合触媒(D)を含む場合、当該シラノール縮合触媒(D)は中性又は弱酸性のシラノール縮合触媒を含むのが好ましく、弱酸性のシラノール縮合触媒を含むがより好ましい。
The multi-component resin composition contains a first liquid containing a base resin (A), a chemical foaming agent (B) such as dicarbonate diester (B-1), and at least a silanol condensation catalyst (D). It is preferable to contain two liquids.
It is also preferable that the second liquid contains water (C). When the silanol condensation catalyst (D) is contained in the first liquid, curing due to cross-linking between the base resin (A) may proceed. However, by containing the silanol condensation catalyst (D) in a liquid different from the first liquid, it is possible to prevent the base resin (A) from being cured before the foam is produced. When the second liquid contains a silanol condensation catalyst (D), the silanol condensation catalyst (D) preferably contains a neutral or weakly acidic silanol condensation catalyst, and more preferably contains a weakly acidic silanol condensation catalyst.
 また、多液型樹脂組成物において、シラノール縮合触媒(D)を含む第2液か、第1液及び第2液以外の液に、発泡助剤(E)、及び/又は発泡助剤(E)として作用するシラノール縮合触媒(D)を含有させるか、発泡助剤(E)及び水(C)を含有させるのが好ましい。 Further, in the multi-component resin composition, the foaming aid (E) and / or the foaming aid (E) are added to the second liquid containing the silanol condensation catalyst (D) or the liquids other than the first liquid and the second liquid. ), It is preferable to contain a silanol condensation catalyst (D), or a foaming aid (E) and water (C).
≪発泡体の製造方法≫
 発泡体の製造方法は、特に限定されない。前述の発泡体用樹脂組成物を用いる場合、発泡体の製造方法は、例えば、発泡体用樹脂組成物を型枠に充填した後に、型枠内で発泡、及び硬化を行うバッチ式であってもよく、連続的に移動する帯状の支持体上で、発泡体用樹脂組成物の発泡及び硬化を連続的に行う連続式であってもよい。支持体としては不織布を用いることができる。
≪Manufacturing method of foam≫
The method for producing the foam is not particularly limited. When the above-mentioned resin composition for foam is used, the method for producing the foam is, for example, a batch method in which the resin composition for foam is filled in a mold, and then foamed and cured in the mold. Alternatively, it may be a continuous type in which the resin composition for a foam is continuously foamed and cured on a continuously moving band-shaped support. A non-woven fabric can be used as the support.
 また、上記の発泡体用樹脂組成物は、例えば、化学発泡剤(B)として二炭酸ジエステル(B-1)を用いることによって、完全な液状であるか、顔料(例えば、カーボンブラック)等の不溶分を少量しか含まない低粘度の組成とすることができる。また、二炭酸ジエステル(B-1)を含む発泡体用樹脂組成物は、炭酸塩又は重炭酸塩のような発泡体用樹脂組成物に対して溶解しにくい成分を必ずしも含まなくてよい。
 発泡体用樹脂組成物が低粘度である場合、1液、2液以上の多液型の発泡体用樹脂組成物を施工面に対して吐出して、施工面上で衝突混合させることにより、施工面上に被膜状の発泡体を形成することが可能である。
Further, the above-mentioned resin composition for a foam is completely liquid or a pigment (for example, carbon black) or the like by using a dicarbonate diester (B-1) as the chemical foaming agent (B). It can be a low-viscosity composition containing only a small amount of insoluble matter. Further, the foam resin composition containing dicarbonate diester (B-1) does not necessarily have to contain a component that is difficult to dissolve in the foam resin composition such as carbonate or bicarbonate.
When the resin composition for foam has a low viscosity, a one-component, two-component or more multi-component resin composition for foam is discharged onto the construction surface and collided and mixed on the construction surface. It is possible to form a film-like foam on the construction surface.
 発泡体は、典型的には、反応性ケイ素基を有する基材樹脂(A)と、二炭酸ジエステル(B-1)等の化学発泡剤(B)を含む第1液と、シラノール縮合触媒(D)とを混合して混合液を得る、混合工程を含む方法によって製造される。
 当該方法では、混合液において、二炭酸ジエステル(B-1)等の化学発泡剤(B)の分解による発泡速度と、反応性ケイ素基間の反応による混合液の硬化反応の速度とが、所望する発泡倍率の発泡体が得られるように、それぞれ調整されるのが好ましい。所望する発泡倍率は、例えば2倍以上60倍以下である。
The foam is typically a first liquid containing a base resin (A) having a reactive silicon group, a chemical foaming agent (B) such as dicarbonate diester (B-1), and a silanol condensation catalyst ( It is produced by a method including a mixing step of mixing with D) to obtain a mixed solution.
In this method, in the mixed solution, the foaming rate due to the decomposition of the chemical foaming agent (B) such as dicarbonate diester (B-1) and the curing reaction rate of the mixed solution due to the reaction between the reactive silicon groups are desired. It is preferable to adjust each of them so as to obtain a foam having a foaming ratio of the same. The desired foaming ratio is, for example, 2 times or more and 60 times or less.
 二炭酸ジエステル(B-1)等の化学発泡剤(B)の分解による発泡速度は、例えば、化学発泡剤(B)の種類及び使用量、混合液中の水(C)の含有量、発泡体を製造する環境の温度、並びに混合液中の発泡助剤(E)、及び/又は発泡助剤(E)として作用するシラノール縮合触媒(D)の種類及び含有量等を適宜変更することにより調整することができる。
 混合液の硬化反応の速度は、例えば、基材樹脂(A)が有する反応性ケイ素の種類、及び量、混合液中のシラノール縮合触媒(D)の種類及び含有量、混合液中の水(C)の含有量、並びに発泡体を製造する環境の温度等を適宜変更することにより調整することができる。
 化学発泡剤(B)の分解による発泡速度と、混合液の硬化反応の速度とは、得られる発泡体の発泡倍率が2倍以上60以下であるように調整されるのが好ましく、発泡倍率が5倍以上40倍以下であるように調整されるのがより好ましい。
The foaming rate due to the decomposition of the chemical foaming agent (B) such as dicarbonate diester (B-1) is determined by, for example, the type and amount of the chemical foaming agent (B), the content of water (C) in the mixed solution, and foaming. By appropriately changing the temperature of the environment in which the body is produced, the type and content of the foaming aid (E) and / or the silanol condensation catalyst (D) acting as the foaming aid (E) in the mixed solution, and the like. Can be adjusted.
The rate of curing reaction of the mixed solution is, for example, the type and amount of reactive silicon contained in the base resin (A), the type and content of the silanol condensation catalyst (D) in the mixed solution, and the water in the mixed solution ( It can be adjusted by appropriately changing the content of C), the temperature of the environment in which the foam is produced, and the like.
The foaming rate due to the decomposition of the chemical foaming agent (B) and the curing reaction rate of the mixed solution are preferably adjusted so that the foaming ratio of the obtained foam is 2 times or more and 60 or less, and the foaming ratio is high. It is more preferable that the adjustment is made so as to be 5 times or more and 40 times or less.
 上記の製造方法における、化学発泡剤(B)の使用量、及びシラノール縮合触媒(D)の使用量は、組成物について前述の通りである。 The amount of the chemical foaming agent (B) used and the amount of the silanol condensation catalyst (D) used in the above production method are as described above for the composition.
 上記の混合工程において、発泡助剤(E)、及び/又は発泡助剤(E)として作用するシラノール縮合触媒(D)が、第1液に混合されるのが好ましい。発泡助剤(E)として作用するシラノール縮合触媒(D)としては、1,4-ジアザビシクロ[2.2.2]オクタンが好ましい。 In the above mixing step, it is preferable that the silanol condensation catalyst (D) acting as the foaming aid (E) and / or the foaming aid (E) is mixed with the first liquid. As the silanol condensation catalyst (D) acting as a foaming aid (E), 1,4-diazabicyclo [2.2.2] octane is preferable.
 発泡体用樹脂組成物を硬化及び発泡させる温度は特に限定されない。発泡体用樹脂組成物を硬化及び発泡させる温度は、例えば、-10℃以上40℃以下が好ましく、0℃以上37℃以下がより好ましい。かかる温度条件であれば、発泡体を使用する現場での、発泡体用樹脂組成物を用いる発泡体の製造が容易である。
 硬化及び発泡が完了する時間に特に制限はない。例えば、12分以下が好ましく、10分以下がより好ましい、
The temperature at which the resin composition for a foam is cured and foamed is not particularly limited. The temperature at which the resin composition for a foam is cured and foamed is, for example, preferably −10 ° C. or higher and 40 ° C. or lower, and more preferably 0 ° C. or higher and 37 ° C. or lower. Under such temperature conditions, it is easy to produce a foam using the resin composition for foam at the site where the foam is used.
There is no particular limitation on the time required for curing and foaming to complete. For example, 12 minutes or less is preferable, and 10 minutes or less is more preferable.
 このようにして製造された発泡体は、好ましくは乾燥された後に発泡体製品として、流通、販売される。
 乾燥の温度及び時間の条件は、発泡体用樹脂組成物に由来するか、硬化反応により副生する水、アルコール等を所望する程度まで低減できればよく、特に制約はない。乾燥条件は、例えば約80℃雰囲気下で約1時間であればよい。また、乾燥の温度及び時間の条件は、例えば約60℃雰囲気下で約12時間であってもよい。
 ただし、前述の通り、化学発泡剤(B)として二炭酸ジエステル(B-1)のみを用い、水(C)の使用量を低めに設定する場合、乾燥を行うことなく製品とすることが可能である。
The foam produced in this manner is preferably distributed and sold as a foam product after being dried.
The conditions of the drying temperature and time are not particularly limited as long as they can be derived from the resin composition for foam or the water, alcohol, etc. produced by the curing reaction can be reduced to a desired degree. The drying conditions may be, for example, about 1 hour in an atmosphere of about 80 ° C. The drying temperature and time conditions may be, for example, about 12 hours in an atmosphere of about 60 ° C.
However, as described above, when only the dicarbonate diester (B-1) is used as the chemical foaming agent (B) and the amount of water (C) used is set low, the product can be produced without drying. Is.
≪吸音材≫
 吸音材は、前述の発泡体を備える。吸音材は、発泡体のみからなってもよく、発泡体と発泡体以外の部材とから構成されていてもよい。例えば、金属板、木製の板、プラスチックシート、段ボール紙、厚紙等の支持体に発泡体が固定された複合体を吸音材として用いることができる。
≪Sound absorbing material≫
The sound absorbing material includes the above-mentioned foam. The sound absorbing material may be composed of only a foam, or may be composed of a foam and a member other than the foam. For example, a composite in which a foam is fixed to a support such as a metal plate, a wooden plate, a plastic sheet, corrugated cardboard, or cardboard can be used as a sound absorbing material.
≪吸音材の用途≫
 上記の吸音材は、前述の発泡体を備えるため良好な吸音特性を示す。このため、上記の吸音材を、従来より種々の吸音材が適用されている種々の物品の製造に好適に用いることができる。
 前述の通り、上記の吸音材は、日常生活における騒音を良好に吸収できる。このため、前述の吸音材を備える建築物、及び前述の吸音材を備える車両は、吸音材を備える物品として好ましい。
≪Use of sound absorbing material≫
Since the above sound absorbing material includes the above-mentioned foam, it exhibits good sound absorbing characteristics. Therefore, the above-mentioned sound absorbing material can be suitably used for manufacturing various articles to which various sound absorbing materials have been conventionally applied.
As described above, the above-mentioned sound absorbing material can satisfactorily absorb noise in daily life. Therefore, a building provided with the above-mentioned sound absorbing material and a vehicle provided with the above-mentioned sound absorbing material are preferable as articles provided with the sound absorbing material.
 また、吸音材は、空気入りタイヤ用の吸音材として使用されるのも好ましい。自動車における騒音は、主にタイヤパターンノイズといわれる800Hz以下の騒音である。
 実施例、及び図面により詳細に後述するように、前述の吸音材は、800Hz以下の周波数領域において、ポリウレタンフォームのような周知の発泡体よりも良好な吸音特性を示す。
Further, the sound absorbing material is also preferably used as a sound absorbing material for pneumatic tires. The noise in automobiles is mainly tire pattern noise, which is 800 Hz or less.
As will be described in more detail with reference to the examples and drawings, the sound absorbing material described above exhibits better sound absorbing properties in the frequency range below 800 Hz than well known foams such as polyurethane foam.
 空気入りタイヤへの前述の吸音材の取り付け方法は特に限定されない。吸音材は、例えば、空気入りタイヤの内腔内に、タイヤ周方向に伸びる帯状の部材として設けられるのが好ましい。かかる帯状の部材の形状は、円弧状であってもよく、環状であってもよく、環状が好ましい。 The method of attaching the above-mentioned sound absorbing material to the pneumatic tire is not particularly limited. The sound absorbing material is preferably provided, for example, in the cavity of the pneumatic tire as a band-shaped member extending in the tire circumferential direction. The shape of the band-shaped member may be an arc shape or an annular shape, and an annular shape is preferable.
 かかる帯状の部材は、空気入りタイヤの内面から離れた位置に配置されても、空気入りタイヤの内面に接して配置されてもよく、空気入りタイヤの内面に接して配置されるのが好ましい。また、吸音材からなる帯状の部材は、接着剤や、ビス等の固定具を用いて、空気入りタイヤの内面に接して固定されるのが好ましい。 The strip-shaped member may be arranged at a position away from the inner surface of the pneumatic tire, may be arranged in contact with the inner surface of the pneumatic tire, and is preferably arranged in contact with the inner surface of the pneumatic tire. Further, the band-shaped member made of the sound absorbing material is preferably fixed in contact with the inner surface of the pneumatic tire by using an adhesive or a fixing tool such as a screw.
 上記の帯状の部材のサイズは、帯状の部材の体積が、空気入りタイヤの内腔の容積の0.1%以上30%以上であるサイズが好ましく、0.5%以上20%以下であるサイズがより好ましい。 The size of the band-shaped member is preferably a size in which the volume of the band-shaped member is 0.1% or more and 30% or more, and 0.5% or more and 20% or less of the volume of the cavity of the pneumatic tire. Is more preferable.
 帯状の部材の、タイヤ周方向における接線方向に対して垂直な断面の形状は特に限定されない。かかる断面の形状の好ましい例としては、正方形、長方形、三角形(好ましくは二等辺三角形)、台形、及び半円形や、これらの形状に概略近似する形状が挙げられる。
 また、かかる断面の形状は、空気入りタイヤの内面側が平滑であり、空気入りタイヤの内面側の面と反対の面(空気入りタイヤの回転中心側の面)の側に1以上の突出部(好ましくは2又は3の突出部)を有する形状が挙げられる。
The shape of the cross section of the strip-shaped member perpendicular to the tangential direction in the tire circumferential direction is not particularly limited. Preferred examples of such cross-sectional shapes include squares, rectangles, triangles (preferably isosceles triangles), trapezoids, and semicircles, and shapes that roughly approximate these shapes.
Further, the shape of the cross section is such that the inner surface side of the pneumatic tire is smooth, and one or more protrusions (the surface on the rotation center side of the pneumatic tire) opposite to the inner surface side surface of the pneumatic tire. A shape having 2 or 3 protrusions) is preferable.
≪吸音方法≫
 上記の発泡体について、前述の通り、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1000Hz~5500Hzにおける吸音率が70%以上である。
 このため、以上説明した発泡体又は吸音材を用いて、種々の音、特に騒音を吸音させることができる。上記の発泡体又は吸音材は、幅広い周波数帯域の音を吸収可能であるので、前述の発泡体又は吸音材を用いて周波数1000Hz~5500Hzの範囲内の成分を含む音を吸音させるのが好ましい。
≪Sound absorption method≫
As described above, the above foam has a sound absorption coefficient of 70 at a frequency of 1000 Hz to 5500 Hz, which is measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2. % Or more.
Therefore, various sounds, particularly noise, can be absorbed by using the foam or the sound absorbing material described above. Since the above-mentioned foam or sound absorbing material can absorb sound in a wide frequency band, it is preferable to use the above-mentioned foam or sound absorbing material to absorb sound containing components in the frequency range of 1000 Hz to 5500 Hz.
 上記の発泡体について、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される吸音率において、周波数1000Hz~1700Hzの範囲に極大を示すのが好ましい。
 また、上記の発泡体について、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数800Hzにおける吸音率が40%以上であるのが好ましい。
 さらに、上記の発泡体について、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1500Hzにおける吸音率が90%以上であるのが好ましい。
The above foam has a maximum sound absorption coefficient in the frequency range of 1000 Hz to 1700 Hz measured using a B tube at 20 ° C. in accordance with JIS A 1405-2 using a sample having a thickness of 25 mm. Is preferable.
Further, the above foam has a sound absorption coefficient of 40% or more at a frequency of 800 Hz, which is measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2. Is preferable.
Further, the above foam has a sound absorption coefficient of 90% or more at a frequency of 1500 Hz, which is measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2. Is preferable.
 上記の発泡体は、吸収対象の音のうち、周波数1000Hz~5500Hzの範囲内の成分を良好に吸収し、周波数1000Hz~1700Hzの範囲内の成分を特に良好に吸収する。
 前述の通り、周波数1000Hz~1700Hzの範囲内の成分を含む音としては、日常会話、ピアノやクラリネット等の楽器音が含まれる。このため、上記の発泡体は、日常生活において特に気になる騒音を吸音しやすい。
 このため、上記の発泡体又は吸音材は、日常会話、又は楽器音に由来する周波数1000Hz~1700Hzの範囲内の成分を含む騒音を発泡体又は吸音材に吸音させる方法において使用されるのが好ましい。
The foam absorbs well the components in the frequency range of 1000 Hz to 5500 Hz, and particularly well absorbs the components in the frequency range of 1000 Hz to 1700 Hz among the sounds to be absorbed.
As described above, the sounds including the components in the frequency range of 1000 Hz to 1700 Hz include daily conversation, musical instrument sounds such as a piano and a clarinet. Therefore, the above-mentioned foam tends to absorb noise that is particularly annoying in daily life.
Therefore, the above-mentioned foam or sound absorbing material is preferably used in daily conversation or in a method of causing the foam or sound absorbing material to absorb noise containing components in the frequency range of 1000 Hz to 1700 Hz derived from musical instrument sounds. ..
 また、上記の発泡体又は吸音材は、タイヤパターンノイズといわれる800Hz以下の騒音を発泡体又は吸音材に吸音させる方法において使用されるのが好ましい。 Further, the above-mentioned foam or sound absorbing material is preferably used in a method of causing the foam or sound absorbing material to absorb noise of 800 Hz or less, which is called tire pattern noise.
≪他の吸音材≫
 他の好ましい吸音材(本願明細書において「他の吸音材」とも記す。)としては、下記の特定の物性を満たす発泡体からなる吸音材が挙げられる。他の吸音材の材質としての発泡体は、当該発泡体が、7000Pa以下のせん断弾性率と、1000000N・s/m以上の単位厚さ当たりの流れ抵抗を示す限り特に限定されない。
 上記のせん断弾性率と、単位厚さ当たりの流れ抵抗を示す発泡体は、1000Hz以下の低い周波数帯域と2000Hz超の高い周波数帯域とを含む幅広い周波数帯域において良好な吸音特性を示す。
≪Other sound absorbing materials≫
As another preferable sound absorbing material (also referred to as “another sound absorbing material” in the present specification), a sound absorbing material made of a foam material satisfying the following specific physical properties can be mentioned. Foam as the material of the other sound absorbing material, the foam, the less shear modulus 7000 Pa, not particularly limited so long as they exhibit the flow resistance per 1000000N · s / m 4 or more unit thickness.
The foam showing the shear modulus and the flow resistance per unit thickness exhibits good sound absorption characteristics in a wide frequency band including a low frequency band of 1000 Hz or less and a high frequency band of more than 2000 Hz.
 他の吸音材としての発泡体のせん断弾性率は、6000Pa以下が好ましく、5000Pa以下がより好ましい。
 また、他の吸音材としての発泡体のせん断弾性率の下限は特に限定されない。他の吸音材としての発泡体のせん断弾性率は、500Pa以上が好ましく、1000Pa以上がより好ましく、2000Pa以上がさらに好ましい。
 他の吸音材としての発泡体にはスキン層がある場合がある。従来知られる発泡体からなる吸音材は、スキン層を有する場合に所望する吸音性能が発現しないことが多く、スキン層を切除した状態で使用されている。しかし、せん断弾性率が7000Pa以下と柔らかい発泡体ではスキン層の有無によらず、優れた吸音性を発現することができる。
The shear modulus of the foam as another sound absorbing material is preferably 6000 Pa or less, and more preferably 5000 Pa or less.
Further, the lower limit of the shear elastic modulus of the foam as another sound absorbing material is not particularly limited. The shear modulus of the foam as another sound absorbing material is preferably 500 Pa or more, more preferably 1000 Pa or more, and even more preferably 2000 Pa or more.
Other foams as sound absorbing materials may have a skin layer. Conventionally known sound absorbing materials made of foam often do not exhibit the desired sound absorbing performance when they have a skin layer, and are used in a state where the skin layer is cut off. However, in a foam having a shear modulus of 7,000 Pa or less, which is soft, excellent sound absorption can be exhibited regardless of the presence or absence of a skin layer.
 他の吸音材としての発泡体の単位厚さ当たりの流れ抵抗は、1500000N・s/m以上が好ましく、2000000N・s/m以上がより好ましい。
 また、他の吸音材としての発泡体の単位厚さ当たりの流れ抵抗の下限は特に限定されない。他の吸音材としての発泡体の単位厚さ当たりの流れ抵抗は、100000000N・s/m以下が好ましく、80000000N・s/m以下がより好ましく、50000000N・s/m以下がさらに好ましい。
Flow resistance per unit thickness of the foam as another sound-absorbing material, preferably 1500000N · s / m 4 or more, 2000000N · s / m 4 or more is more preferable.
Further, the lower limit of the flow resistance per unit thickness of the foam as another sound absorbing material is not particularly limited. Flow resistance per unit thickness of the foam as another sound-absorbing material, preferably 100000000N · s / m 4 or less, more preferably 80000000N · s / m 4 or less, more preferably 50000000N · s / m 4 or less.
 せん断弾性率は、以下の方法により測定することができる。
 まず、厚さがd1であり、主面の面積がs1である平らなシート状の他の吸音材の試験片を2つ用意する。
 せん断弾性率の測定装置としては、試験片に対してせん断力を加えるプレートと、当該プレートを移動させる加振器とを備える装置を用いる。プレートの主面の面積は、前述の試験片の面積s1と概ね等しい。前述のプレートは、加振器に接続されている。プレートと、加振器との間には、試験片に加わる力Fと、振動速度νとを測定するインピーダンスヘッドが設けられている。測定装置は、2つの試験片を挟み込んで固定するためのベースプレートを2つ備えている。
 2つの試験片の主面で、プレートを挟み込むように試験片をセットし、次いで、2つのベースプレートの主面が、それぞれ、2つの試験片のプレートに接していない面に接触するようにして、プレートを挟み込んだ2つの試験片をさらにベースプレートで挟み込んで固定する。
 次いで、加振器によりプレートに力を印加し、インピーダンスヘッドによって、試験片に加わる力Fと、試験片の振動速度νとを測定する。測定されたF及びνに基づいて、モビリティM(ω)=ν/Fの共振周波数fr1を算出する。
 前述のd1、s1、fr1、及びプレートの質量と、インピーダンスヘッドの、インピーダンスヘッドが備える力センサーよりも試験片側の部分の質量との合計であるm1とを用いて、下式に従いせん断弾性率Nを算出する。
せん断弾性率N=(m1×d1)/(2×s1)×(2π×fr1)
The shear modulus can be measured by the following method.
First, two test pieces of another flat sheet-shaped sound absorbing material having a thickness of d1 and an area of the main surface of s1 are prepared.
As a device for measuring the shear modulus, a device including a plate for applying a shearing force to the test piece and a vibrator for moving the plate is used. The area of the main surface of the plate is substantially equal to the area s1 of the test piece described above. The aforementioned plate is connected to the exciter. An impedance head for measuring the force F applied to the test piece and the vibration velocity ν is provided between the plate and the exciter. The measuring device includes two base plates for sandwiching and fixing the two test pieces.
Set the test pieces so that the plates are sandwiched between the main surfaces of the two test pieces, and then make sure that the main faces of the two base plates are in contact with the surfaces of the two test pieces that are not in contact with the plates. The two test pieces sandwiching the plate are further sandwiched between the base plates and fixed.
Next, a force is applied to the plate by the exciter, and the force F applied to the test piece and the vibration velocity ν of the test piece are measured by the impedance head. Based on the measured F and ν, the resonance frequency fr1 of mobility M (ω) = ν / F is calculated.
Using the above-mentioned d1, s1, fr1, and m1 which is the sum of the mass of the plate and the mass of the impedance head on the test piece side of the force sensor provided by the impedance head, the shear modulus N is according to the following equation. Is calculated.
Shear modulus N = (m1 × d1) / (2 × s1) × (2π × fr1) 2
 単位厚さ当たりの流れ抵抗は、ISO 9053に従って測定することができる。 The flow resistance per unit thickness can be measured according to ISO 9053.
 せん断弾性率は、他の吸音材の体積密度を調整することにより調整することができる。他の吸音材の体積密度が大きいほど、他の吸音材のせん断弾性率が高い傾向がある。
 単位厚さ当たりの流れ抵抗は、他の吸音材のヤング率を調整することにより調整できる。他の吸音材の多孔度が同程度である場合、他の吸音材のヤング率が大きいほど、単位厚さ当たりの流れ抵抗が大きい傾向がある。
The shear modulus can be adjusted by adjusting the volume density of the other sound absorbing material. The higher the volume density of the other sound absorbing material, the higher the shear modulus of the other sound absorbing material tends to be.
The flow resistance per unit thickness can be adjusted by adjusting the Young's modulus of other sound absorbing materials. When the porosity of the other sound absorbing material is about the same, the larger the Young's modulus of the other sound absorbing material, the larger the flow resistance per unit thickness tends to be.
 他の吸音材の多孔度φは、他の吸音材を構成する材質の密度ρmと、空気の密度ρAと、吸音材の嵩密度ρtotとから、下記式に基づいて算出される。
多孔度φ=(ρm-ρtot)/(ρm-ρA)
The porosity φ of the other sound absorbing material is calculated from the density ρm of the material constituting the other sound absorbing material, the air density ρA, and the bulk density ρtot of the sound absorbing material based on the following formula.
Porosity φ = (ρm-ρtot) / (ρm-ρA)
 ヤング率は、以下の方法により測定することができる。
 まず、厚さがd2であり、主面の面積がs2である平らなシート状の他の吸音材の試験片を用意する。
 ヤング率の測定装置としては、試験片を載置するためのベースプレートと、当該ベースプレートを移動させる加振器と、ベースプレートともに試験片を挟み込んで固定するプレートとを備える装置を用いる。ベースプレートは、ベースプレートの主面の面方向に対して垂直方向に移動可能であるように加振器に接続される。ベースプレート上の試験片が載置されていない位置には、加速度α0を検出するためのピックアップが接続される。また、プレートの試験片と接する面とは反対の面には、加速度α1を検出するためのピックアップが接続される。
 次いで、試験片をベースプレート及びプレートで挟み込んで固定した状態で、加振器によりベースプレートを移動させ、加速度α0及び加速度α1を測定する。α0及びα1の測定結果から、α0とα1との伝達関数H(ω)=α1/α0を導出し、伝達関数H(ω)の共振周波数fr2を算出する。
 前述のd2、s2、fr2、及びプレートの質量であるm2を用いて、下式に従いヤング率Eを算出する。
ヤング率E=(m2×d2)/s2×(2π×fr2)
Young's modulus can be measured by the following method.
First, a test piece of another sound absorbing material in the form of a flat sheet having a thickness of d2 and an area of the main surface of s2 is prepared.
As the Young's modulus measuring device, a device including a base plate on which the test piece is placed, a vibrator for moving the base plate, and a plate for sandwiching and fixing the test piece together with the base plate is used. The base plate is connected to the exciter so that it can move perpendicular to the plane direction of the main surface of the base plate. A pickup for detecting the acceleration α0 is connected to a position on the base plate where the test piece is not placed. Further, a pickup for detecting the acceleration α1 is connected to the surface of the plate opposite to the surface in contact with the test piece.
Next, the test piece is sandwiched between the base plate and the plate and fixed, and the base plate is moved by the exciter to measure the acceleration α0 and the acceleration α1. From the measurement results of α0 and α1, the transfer function H (ω) = α1 / α0 between α0 and α1 is derived, and the resonance frequency fr2 of the transfer function H (ω) is calculated.
Young's modulus E is calculated according to the following formula using the above-mentioned d2, s2, fr2, and m2 which is the mass of the plate.
Young's modulus E = (m2 × d2) / s2 × (2π × fr2) 2
 他の吸音材としての発泡体の形状は特に限定されない。発泡体の形状としては、シート状、棒状、正多面体状(例えば、立方体状、正四面体状、正八面体状等)、円盤状、球状、半球状、不定形状等が挙げられる。連続法により好ましく製造し得る点からは、発泡体の形状は、シート状、又は棒状が好ましい。なお、棒状とは、静止した状態での形状である。発泡体は柔軟であるため、静止状態で棒状の発泡体を動かした場合に、発泡体が紐のようにふるまう場合がある。 The shape of the foam as another sound absorbing material is not particularly limited. Examples of the shape of the foam include a sheet shape, a rod shape, a regular polyhedron shape (for example, a cube shape, a regular tetrahedron shape, a regular octahedron shape, etc.), a disk shape, a spherical shape, a hemispherical shape, an indefinite shape, and the like. From the viewpoint that it can be preferably produced by the continuous method, the shape of the foam is preferably sheet-like or rod-like. The rod shape is a shape in a stationary state. Since the foam is flexible, the foam may behave like a string when the rod-shaped foam is moved in a stationary state.
 他の吸音材としての発泡体の密度は、特に限定されない。発泡体の密度は、他の吸音材の用途や、他の吸音材に要求される性能に応じて適宜決定される。発泡体の密度は、吸音特性が良好である点から、例えば、100kg/m以下が好ましく、50kg/m以下がより好ましく、45kg/m以下がより好ましく、40kg/m以下がさらに好ましい。密度が当該範囲であると、軽量であり日常的な持ち運びが容易であって、建築物等への他の吸音材の施工や、種々の物品に対する他の吸音材の取り付け等が容易である。発泡体の密度の下限は、特に限定されない。発泡体の密度は、例えば、10kg/m以上が好ましく、20kg/m以上がより好ましい。 The density of the foam as another sound absorbing material is not particularly limited. The density of the foam is appropriately determined according to the use of the other sound absorbing material and the performance required for the other sound absorbing material. Density of the foam, from the point sound-absorbing characteristics are good, for example, preferably 100 kg / m 3 or less, more preferably 50 kg / m 3, more preferably from 45 kg / m 3 or less, 40 kg / m 3 or less is more preferable. When the density is within this range, it is lightweight and easy to carry on a daily basis, and it is easy to install other sound absorbing materials on buildings and the like, and to attach other sound absorbing materials to various articles. The lower limit of the density of the foam is not particularly limited. The density of the foam is, for example, preferably 10 kg / m 3 or more, and more preferably 20 kg / m 3 or more.
 発泡体の硬度は、特に限定されない。発泡体の硬度は、発泡体の用途や、発泡体に要求される性能に応じて適宜決定される。発泡体の硬度は、23℃で測定されたASKER FP硬度として、50以下が好ましく、15以下がより好ましく、10以下がさらに好ましい。 The hardness of the foam is not particularly limited. The hardness of the foam is appropriately determined according to the use of the foam and the performance required for the foam. The hardness of the foam is preferably 50 or less, more preferably 15 or less, still more preferably 10 or less, as the ASKER FP hardness measured at 23 ° C.
 他の吸音材としての発泡体について、発泡体の無機微粒子の含有量と、発泡体の、発泡体に金属塩として含まれる金属原子の含有量との合計が2.5重量%以下であるのが好ましく、2重量%以下がより好ましく、1.5重量%以下がさらに好ましく、1重量%以下がさらにより好ましい。無機微粒子、及び金属塩の含有量が前述の要件を満たす場合、例えば、1000Hz以下の低周波帯域における吸音が阻害されにくい。 Regarding the foam as another sound absorbing material, the total of the content of the inorganic fine particles of the foam and the content of the metal atom contained in the foam as a metal salt of the foam is 2.5% by weight or less. Is preferable, 2% by weight or less is more preferable, 1.5% by weight or less is further preferable, and 1% by weight or less is even more preferable. When the contents of the inorganic fine particles and the metal salt satisfy the above-mentioned requirements, for example, sound absorption in a low frequency band of 1000 Hz or less is less likely to be inhibited.
 また、他の吸音材について、周波数800Hzにおいて、JIS A1405-2に準拠して、内径40mmの音響管と、厚さ10mmの試験片とを用いて測定される垂直入射吸音率として0.15以上の垂直入射吸音率を示すのが好ましい。
 他の吸音材について、周波数650Hzにおいて、JIS A1405-2に準拠して、内径40mmの音響管と、厚さ10mmの試験片とを用いて測定される垂直入射吸音率として0.15以上の垂直入射吸音率を示すのがより好ましい。
 さらに、他の吸音材は、650Hz以上1200Hz以下の範囲内におけるいずれかの周波数において、0.4以上の垂直入射吸音率を示すのが好ましく、周波数650Hz以上1000Hz以下の範囲内におけるいずれかの周波数において、0.4以上の垂直入射吸音率を示すのがより好ましい。
 他の吸音材は、周波数650Hz以上1200Hz以下の範囲内におけるいずれかの周波数において、0.5以上の垂直入射吸音率を示すのが好ましく、0.6以上の垂直入射吸音率を示すのがより好ましく、0.7以上の垂直入射吸音率を示すのがさらに好ましい。
 特に、他の吸音材は、周波数650Hz以上1000Hz以下の範囲内におけるいずれかの周波数において、0.5以上の垂直入射吸音率を示すのが好ましく、0.6以上の垂直入射吸音率を示すのがより好ましく、0.7以上の垂直入射吸音率を示すのがさらに好ましい。
 このような吸音特性を示す他の吸音材は、例えば、自動車等の車両の走行時に発生するロードノイズを吸収しやすい。ロードノイズは、路面の凹凸によって生じるタイヤの弾性振動に起因して発生する低周波数帯域における騒音である。
For other sound absorbing materials, the vertical incident sound absorption coefficient measured using an acoustic tube having an inner diameter of 40 mm and a test piece having a thickness of 10 mm in accordance with JIS A1405-2 at a frequency of 800 Hz is 0.15 or more. It is preferable to show the vertical incident sound absorption coefficient of.
For other sound absorbing materials, at a frequency of 650 Hz, a vertical incident sound absorption coefficient of 0.15 or more measured using an acoustic tube having an inner diameter of 40 mm and a test piece having a thickness of 10 mm in accordance with JIS A1405-2 is vertical. It is more preferable to indicate the incident sound absorption coefficient.
Further, the other sound absorbing material preferably exhibits a vertically incident sound absorption coefficient of 0.4 or more at any frequency in the range of 650 Hz or more and 1200 Hz or less, and any frequency in the frequency range of 650 Hz or more and 1000 Hz or less. It is more preferable to show a vertically incident sound absorption coefficient of 0.4 or more.
Other sound absorbing materials preferably exhibit a vertical incident sound absorption coefficient of 0.5 or more, and more preferably 0.6 or more, at any frequency within the frequency range of 650 Hz or more and 1200 Hz or less. It is preferable to show a vertically incident sound absorption coefficient of 0.7 or more, and more preferably.
In particular, other sound absorbing materials preferably exhibit a vertical incident sound absorption coefficient of 0.5 or more, and exhibit a vertical incident sound absorption coefficient of 0.6 or more at any frequency within the frequency range of 650 Hz or more and 1000 Hz or less. Is more preferable, and it is further preferable to show a vertically incident sound absorption coefficient of 0.7 or more.
Other sound absorbing materials exhibiting such sound absorbing characteristics can easily absorb road noise generated when a vehicle such as an automobile is running. Road noise is noise in a low frequency band generated by elastic vibration of a tire caused by unevenness of a road surface.
 さらに、他の吸音材について、周波数1200Hz以上4500Hz以下の範囲内における、JIS A1405-2に準拠して、内径40mmの音響管と、厚さ10mmの試験片とを用いて測定される垂直入射吸音率が、0.45以上であるのが好ましく、0.5以上であるのがより好ましい。
 特に、他の吸音材について、周波数1000Hz以上4500Hz以下の範囲内における、JIS A1405-2に準拠して、内径40mmの音響管と、厚さ10mmの試験片とを用いて測定される垂直入射吸音率が、0.45以上であるのが好ましく、0.5以上であるのがより好ましい。
 このような他の吸音材は、ロードノイズのような低周波帯域の騒音のみならず、日常発生し得る種々の騒音を良好に吸収できる。
Further, for other sound absorbing materials, vertically incident sound absorbing material measured using an acoustic tube having an inner diameter of 40 mm and a test piece having a thickness of 10 mm in accordance with JIS A1405-2 in the frequency range of 1200 Hz or more and 4500 Hz or less. The rate is preferably 0.45 or more, and more preferably 0.5 or more.
In particular, for other sound absorbing materials, vertically incident sound absorbing material measured using an acoustic tube having an inner diameter of 40 mm and a test piece having a thickness of 10 mm in accordance with JIS A1405-2 within a frequency range of 1000 Hz or more and 4500 Hz or less. The rate is preferably 0.45 or more, and more preferably 0.5 or more.
Such other sound absorbing materials can satisfactorily absorb not only low frequency band noise such as road noise but also various noises that may occur in daily life.
 他の吸音材を構成する発泡体について、前述の吸音材を構成する発泡体と同様に、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1000Hz~5500Hzにおける吸音率が70%以上であるのが好ましい。 As for the foams constituting the other sound absorbing materials, the same as the foams constituting the sound absorbing materials described above, a sample having a thickness of 25 mm was used, and a B tube was used at 20 ° C. in accordance with JIS A 1405-2. It is preferable that the sound absorption coefficient at a frequency of 1000 Hz to 5500 Hz, which is measured in the above manner, is 70% or more.
 また、当該発泡体が、7000Pa以下のせん断弾性率と、1000000N・s/m以上の単位厚さ当たりの流れ抵抗を示す発泡体は、良好な吸音性を示すだけでなく、良好な遮音性も示す。
 ここで、吸音性は、材料を通過する音を減衰させる特性である。他方、遮音性は、材料へ入射する音が反射する際に、反射音を入射音に対して減衰させる性質である。
 具体的には、他の吸音材を構成する発泡体について、厚さ10mmの試料を用いて、ASTM E2611に従い内径40mmの音響管を用いて測定される、周波数1000Hz~4500Hzにおいて垂直入射透過損失が7dB以上であるのが好ましい。
Further, the foam having a shear modulus of 7,000 Pa or less and a flow resistance per unit thickness of 1,000,000 N · s / m 4 or more not only exhibits good sound absorption but also good sound insulation. Also shown.
Here, the sound absorption property is a property that attenuates the sound passing through the material. On the other hand, the sound insulation property is a property of attenuating the reflected sound with respect to the incident sound when the sound incident on the material is reflected.
Specifically, with respect to the foam constituting another sound absorbing material, the vertical incident transmission loss is measured at a frequency of 1000 Hz to 4500 Hz, which is measured by using a sample having a thickness of 10 mm and using an acoustic tube having an inner diameter of 40 mm according to ASTM E2611. It is preferably 7 dB or more.
 他の吸音材としての発泡体は、吸音特性が良好である点から、ポリオキシアルキレン系重合体を含む組成物からなるのが好ましい。また、他の吸音材の製造や、他の吸音材の施工が容易であることから、発泡体は、反応性ケイ素基を有する基材樹脂を含む組成物の硬化物からなるのが好ましい。
 以上より、発泡体は、反応性ケイ素基を有するポリオキシアルキレン系重合体を含む硬化性組成物の硬化物からなるのが好ましい。さらに、所望するせん断弾性率と、単位厚さ当たりの流れ抵抗との両立が特に容易であることから、発泡体が、反応性ケイ素基を有するポリオキシアルキレン系重合体と、反応性ケイ素基を有する(メタ)アクリル樹脂とを含む硬化性組成物の硬化物からなるのがより好ましい。
The foam as another sound absorbing material is preferably composed of a composition containing a polyoxyalkylene polymer because it has good sound absorbing characteristics. Further, since it is easy to manufacture another sound absorbing material and to construct another sound absorbing material, the foam is preferably made of a cured product of a composition containing a base resin having a reactive silicon group.
From the above, the foam is preferably composed of a cured product of a curable composition containing a polyoxyalkylene polymer having a reactive silicon group. Further, since it is particularly easy to achieve both the desired shear modulus and the flow resistance per unit thickness, the foam contains a polyoxyalkylene polymer having a reactive silicon group and a reactive silicon group. It is more preferably composed of a cured product of a curable composition containing the (meth) acrylic resin.
 以下、他の吸音材としての発泡体の製造に好適に使用され得る樹脂組成物について説明する。 Hereinafter, a resin composition that can be suitably used for producing a foam as another sound absorbing material will be described.
<樹脂組成物>
 好適な発泡体形成用の樹脂組成物としては、反応性ケイ素基を有する基材樹脂(A)と、化学発泡剤(B)と、シラノール縮合触媒(D)とを含む組成物が挙げられる。
 発泡体用樹脂組成物は、化学発泡剤(B)として、二炭酸ジエステル(B-1)を含むのが好ましい。
<Resin composition>
Suitable resin compositions for forming foams include a base resin (A) having a reactive silicon group, a chemical foaming agent (B), and a silanol condensation catalyst (D).
The resin composition for a foam preferably contains a dicarbonate diester (B-1) as the chemical foaming agent (B).
〔基材樹脂(A)〕
 基材樹脂(A)については、前述した通りである。
 基材樹脂(A)は、反応性ケイ素基を有する硬化性の成分である。基材樹脂(A)は、分子鎖中に少なくとも1個の反応性ケイ素基を有するのが好ましい。
 基材樹脂(A)が反応性ケイ素基を有するため、反応性ケイ素基間でシラノール縮合反応が起こって架橋し、高分子状態となり、硬化する。
 基材樹脂(A)に含まれる反応性ケイ素基の数は、縮合反応性の点から、分子鎖中に少なくとも1個であるのが好ましい。硬化性、柔軟性の点からは、基材樹脂(A)は、主鎖もしくは分岐部の分子鎖の両末端に反応性ケイ素基を有する重合体であるのが好ましい。かかる重合体は、1分子中に好ましくは1.0個以上3.0個以下、より好ましくは1.1個以上2.5個以下、特に好ましくは1.2個以上2.0個以下の反応性ケイ素基を有する。
 なお、反応性ケイ素基間の反応による基材樹脂(A)の硬化反応は、空気中及び材料中の水分のみによっても十分に進行し得る。このため、発泡体用樹脂組成物が、水(C)を含まないか、水(C)の含有量が極少量である場合でも、発泡体用樹脂組成物の硬化の進行の点では特段問題がない。
[Base resin (A)]
The base resin (A) is as described above.
The base resin (A) is a curable component having a reactive silicon group. The base resin (A) preferably has at least one reactive silicon group in the molecular chain.
Since the base resin (A) has a reactive silicon group, a silanol condensation reaction occurs between the reactive silicon groups to crosslink the resin, and the resin becomes a polymer state and is cured.
The number of reactive silicon groups contained in the base resin (A) is preferably at least one in the molecular chain from the viewpoint of condensation reactivity. From the viewpoint of curability and flexibility, the base resin (A) is preferably a polymer having reactive silicon groups at both ends of the main chain or the molecular chain at the branch portion. The number of such polymers is preferably 1.0 or more and 3.0 or less, more preferably 1.1 or more and 2.5 or less, and particularly preferably 1.2 or more and 2.0 or less in one molecule. It has a reactive silicon group.
The curing reaction of the base resin (A) by the reaction between the reactive silicon groups can be sufficiently proceeded only by the moisture in the air and the material. Therefore, even if the resin composition for foam does not contain water (C) or the content of water (C) is extremely small, there is a particular problem in terms of the progress of curing of the resin composition for foam. There is no.
 基材樹脂(A)が、主鎖もしくは分岐部の分子鎖の両末端に反応性ケイ素基を有する重合体のみからなる場合、得られる発泡体のアセトンゲル分率が高い傾向がある。アセトンゲル分率が高いことは、発泡体の有機溶剤耐性が高いことを意味する。発泡体のアセトンゲル分率が高いと、例えば、発泡体を、有機溶剤を含む接着剤を用いて、種々の建築物に施工したり種々の機器に取り付けたりする場合に、発泡体の溶剤による劣化(溶剤可溶分の溶出)が生じにくい。 When the base resin (A) consists only of a polymer having reactive silicon groups at both ends of the main chain or the molecular chain at the branching portion, the acetone gel fraction of the obtained foam tends to be high. A high acetone gel fraction means that the foam has high organic solvent resistance. When the acetone gel content of the foam is high, for example, when the foam is applied to various buildings or attached to various devices by using an adhesive containing an organic solvent, the solvent of the foam is used. Deterioration (elution of solvent-soluble components) is unlikely to occur.
 また、基材樹脂(A)は、主鎖もしくは分岐部の分子鎖の両末端に反応性ケイ素基を有する重合体とともに、分子鎖の片末端のみに反応性ケイ素基を有する重合体を含んでいてもよい。分子鎖の片末端のみに反応性ケイ素基を有する重合体は、1分子中に平均して、好ましくは1.0個以下、より好ましくは0.3個以上1.0個以下、さらに好ましくは0.4個以上1.0個以下、特に好ましくは0.5個以上1.0個以下の反応性ケイ素基を有する。
 基材樹脂(A)100重量部における、分子鎖の両末端に反応性ケイ素基を有する重合体の含有量は、65重量部以上95重量部以下が好ましい。基材樹脂(A)100重量部における、分子鎖の片末端のみに反応性ケイ素基を有する重合体の含有量は、5重量部以上35重量部以下が好ましい。
Further, the base resin (A) contains a polymer having a reactive silicon group at both ends of the main chain or the molecular chain at the branch portion, and a polymer having a reactive silicon group only at one end of the molecular chain. You may. The number of polymers having a reactive silicon group at only one end of the molecular chain is preferably 1.0 or less, more preferably 0.3 or more and 1.0 or less, still more preferably, on average in one molecule. It has 0.4 or more and 1.0 or less, particularly preferably 0.5 or more and 1.0 or less reactive silicon groups.
The content of the polymer having reactive silicon groups at both ends of the molecular chain in 100 parts by weight of the base resin (A) is preferably 65 parts by weight or more and 95 parts by weight or less. The content of the polymer having a reactive silicon group only at one end of the molecular chain in 100 parts by weight of the base resin (A) is preferably 5 parts by weight or more and 35 parts by weight or less.
 基材樹脂(A)中に含有される反応性ケイ素基は、ケイ素原子に結合したヒドロキシ基又は加水分解性基を有し、シラノール縮合触媒によって加速される反応によりシロキサン結合を形成することにより架橋しうる基である。反応性ケイ素基としては、式(1a):
-Si(R1a3-a(X)  (1a)
(R1aはそれぞれ独立に、炭素原子数1以上20以下の炭化水素基、又は、-OSi(R’)(R’は、それぞれ独立に炭素原子数1以上20以下の炭化水素基である)で示されるトリオルガノシロキシ基であり、R1aとしての炭化水素基は、置換されていてもよく、且つヘテロ含有基を有してもよい。また、Xは、それぞれ独立にヒドロキシ基又は加水分解性基である。さらに、aは1以上3以下の整数である)
で表される基が挙げられる。
The reactive silicon group contained in the base resin (A) has a hydroxy group or a hydrolyzable group bonded to a silicon atom, and is crosslinked by forming a siloxane bond by a reaction accelerated by a silanol condensation catalyst. It is a possible group. As the reactive silicon group, the formula (1a):
-Si (R 1a ) 3-a (X) a (1a)
(R 1a is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms, or -OSi (R') 3 (R'is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms. ), And the hydrocarbon group as R 1a may be substituted and may have a hetero-containing group, and X is independently a hydroxy group or a hydro group. It is a degradable group. Further, a is an integer of 1 or more and 3 or less)
The group represented by is mentioned.
 加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよい。具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、及び、アルケニルオキシ基が好ましく、加水分解性が穏やかで取扱いやすいという観点からアルコキシ基が特に好ましい。 The hydrolyzable group is not particularly limited, and any conventionally known hydrolyzable group may be used. Specific examples thereof include hydrogen atom, halogen atom, alkoxy group, acyloxy group, ketoximate group, amino group, amide group, acid amide group, aminooxy group, mercapto group, alkenyloxy group and the like. Among these, a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable, and alkoxy is preferable from the viewpoint of mild hydrolyzability and easy handling. Groups are particularly preferred.
 加水分解性基やヒドロキシ基は、1個のケイ素原子に1個以上3個以下の範囲で結合することができる。加水分解性基やヒドロキシ基が反応性ケイ素基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。 The hydrolyzable group and the hydroxy group can be bonded to one silicon atom in the range of 1 or more and 3 or less. When two or more hydrolyzable groups or hydroxy groups are bonded to the reactive silicon group, they may be the same or different.
 上記式(1a)におけるaは、2又は3が好ましく、硬化性の点と、硬化と発泡とが同時に進行する点とから、3が好ましい。 The a in the above formula (1a) is preferably 2 or 3, and is preferably 3 from the viewpoint of curability and the point that curing and foaming proceed at the same time.
 また上記式(1a)におけるR1aの具体例としては、例えばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R’がメチル基、フェニル基等である-OSi(R’)で示されるトリオルガノシロキシ基、クロロメチル基、メトキシメチル基等が挙げられる。これらの中ではメチル基、及びメトキシメチル基が特に好ましい。 Specific examples of R 1a in the above formula (1a) include alkyl groups such as methyl group and ethyl group, cycloalkyl groups such as cyclohexyl group, aryl groups such as phenyl group, aralkyl groups such as benzyl group, and R. 'Is a methyl group, a phenyl group, etc.-A triorganosyloxy group, a chloromethyl group, a methoxymethyl group, etc. represented by -OSi (R') 3 can be mentioned. Of these, a methyl group and a methoxymethyl group are particularly preferable.
 上記式(1a)で表される反応性ケイ素基のより具体的な例示としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基、(メトキシメチル)ジメトキシシリル基が挙げられる。活性が高く良好な硬化性が得られることから、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基が好ましく、トリメトキシシリル基がより好ましい。 More specific examples of the reactive silicon group represented by the above formula (1a) include a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group, and a diethoxymethylsilyl group. Examples thereof include an isopropoxymethylsilyl group and a (methoxymethyl) dimethoxysilyl group. A trimethoxysilyl group, a triethoxysilyl group, and a dimethoxymethylsilyl group are preferable, and a trimethoxysilyl group is more preferable, because high activity and good curability can be obtained.
 基材樹脂(A)の構造としては、直鎖状であっても、分岐構造を有していても構わないが、分岐であるほうが硬化性の観点から好ましい。 The structure of the base resin (A) may be linear or has a branched structure, but the branched structure is preferable from the viewpoint of curability.
 基材樹脂(A)の分子量は、粘度及び反応性のバランスの点から、数平均分子量Mnとして1500以上が好ましく、3000以上がより好ましい。数平均分子量Mnの上限値には特に限定は無いが、50000以下が好ましく、30000以下がより好ましく、30000以下がさらに好ましい。また、基材樹脂(A)は、2種類以上の組み合わせでもよい。また、その際、主剤として用いる重合体以外の重合体は、粘度及び架橋構造の調整を目的とする場合は、上記条件以外のものでもよい。 The molecular weight of the base resin (A) is preferably 1500 or more, more preferably 3000 or more, as the number average molecular weight Mn from the viewpoint of the balance between viscosity and reactivity. The upper limit of the number average molecular weight Mn is not particularly limited, but is preferably 50,000 or less, more preferably 30,000 or less, and even more preferably 30,000 or less. Further, the base resin (A) may be a combination of two or more types. At that time, the polymer other than the polymer used as the main agent may be other than the above conditions if the purpose is to adjust the viscosity and the crosslinked structure.
 基材樹脂(A)の末端における反応性ケイ素基は、ヒドロキシ基末端のオキシアルキレンをイソシアネートシラン化合物で末端変性することにより導入することができる。別の方法としてはヒドロキシ基末端にアリル基等の炭素-炭素不飽和結合を有する基を導入した後に、アルコキシシランによるヒドロシリル化を行うことにより、基材樹脂(A)の末端に反応性ケイ素基を導入することもできる。さらに、ポリイソシアネート変性品の末端をイソシアネート基とした場合は、活性水素を有するアミノシラン等で末端変性することで、基材樹脂(A)の末端に反応性ケイ素基を導入することができる。 The reactive silicon group at the terminal of the base resin (A) can be introduced by terminal-modifying the oxyalkylene at the terminal of the hydroxy group with an isocyanate silane compound. As another method, a reactive silicon group is introduced at the terminal of the base resin (A) by introducing a group having a carbon-carbon unsaturated bond such as an allyl group at the terminal of the hydroxy group and then hydrosilylating with alkoxysilane. Can also be introduced. Further, when the terminal of the polyisocyanate-modified product is an isocyanate group, a reactive silicon group can be introduced into the terminal of the base resin (A) by terminal-modifying with aminosilane having active hydrogen or the like.
 以上説明した、基材樹脂(A)における反応性ケイ素基、又は反応性ケイ素基を含む末端基としては、高発泡倍率の発泡体を製造しやすいことから、トリメトキシシリル基、(メトキシメチル)ジメトキシシリル基、下記式(1)~(3):
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
(式(1)~式(3)中、Rはそれぞれ独立に、炭素原子数1以上20以下の炭化水素基であり、Rとしての炭化水素基は、置換されていてもよく、且つヘテロ含有基を有してもよく、Xはヒドロキシ基又は加水分解性基であり、aは1、2、又は3であり、Rは2価の連結基であり、Rが有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、又は硫黄原子に結合しており、R、及びRは、それぞれ独立に水素原子、炭素原子数1以上20以下のアルキル基、炭素原子数6以上20以下のアリール基、炭素原子数7以上20以下のアラルキル基、又はシリル基のいずれかである。)
で表される基、及び下記式(4):
-R-CH-Si(R3-a(X) (4)
(式(4)中、R、及びaは、式(1)~式(3)におけるR、及びaと同様であり、Rは置換されていてもよいヘテロ原子である。)
で表される基も好ましい。
As the reactive silicon group or the terminal group containing the reactive silicon group in the base resin (A) described above, a trimethoxysilyl group (methoxymethyl) can be easily produced as a foam having a high expansion ratio. Dimethoxysilyl group, formulas (1) to (3) below:
Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014

Figure JPOXMLDOC01-appb-C000015

(In formulas (1) to (3), R 1 is independently a hydrocarbon group having 1 or more and 20 or less carbon atoms, and the hydrocarbon group as R 1 may be substituted. It may have a hetero-containing group, where X is a hydroxy or hydrolyzable group, a is 1, 2, or 3, R 4 is a divalent linking group, and R 4 has two. The bonders are bonded to carbon atoms, oxygen atoms, nitrogen atoms, or sulfur atoms in the linking group, respectively, and R 2 and R 3 are independently hydrogen atoms and carbon atoms of 1 to 20 or less, respectively. It is either an alkyl group, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a silyl group.)
The group represented by and the following formula (4):
-R 5- CH 2- Si (R 1 ) 3-a (X) a (4)
(In the formula (4), R 1, and a is the same as R 1, and a in equation (1) to (3), R 5 is a hetero atom which may be substituted.)
The group represented by is also preferable.
 式(1)~(3)で表される構造では、上記のように、-Si(R3-a(X)で表される反応性ケイ素基に、炭素-炭素二重結合が隣接している。このため、式(1)~(3)で表される構造においては、炭素-炭素二重結合が電子吸引基として作用し、反応性ケイ素基の活性が向上する。その結果、式(1)~(3)で表される末端基を有する基材樹脂(A)や、当該基材樹脂(A)を含む発泡体用樹脂組成物は、硬化反応性に優れると考えられる。 In the structure represented by formula (1) to (3), as mentioned above, the reactive silicon group represented by -Si (R 1) 3-a (X) a, carbon - carbon double bond Adjacent. Therefore, in the structures represented by the formulas (1) to (3), the carbon-carbon double bond acts as an electron-withdrawing group, and the activity of the reactive silicon group is improved. As a result, the base resin (A) having a terminal group represented by the formulas (1) to (3) and the foam resin composition containing the base resin (A) are said to have excellent curing reactivity. Conceivable.
 Rは2価の連結基である。Rが有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、又は硫黄原子に結合している。
 ここで、Rが有する2つの結合手は、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、又は硫黄原子に結合しているとは、Rが有する2つの結合手が、それぞれ、連結基内の炭素原子、酸素原子、窒素原子、又は硫黄原子上に存在することを意味する。
 2価の連結基の具体例としては、-(CH-、-O-(CH-、-S-(CH-、-NR-(CH-、-O-C(=O)-NR-(CH-、及び-NR-C(=O)-NR-(CH-、等が挙げられる。これらの中では、-O-(CH-、-O-C(=O)-NR-(CH-、及び-NR-C(=O)-NR-(CH-が好ましく、-O-CH-が原料が入手しやすいためより好ましい。Rは、水素原子又は炭素原子数1以上10以下の炭化水素基である。Rとしての炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、及びイソプロピル基等のアルキル基、フェニル基、及びナフチル基等のアリール基、ベンジル基等のアラルキル基が挙げられる。nとしては、0以上10以下の整数が好ましく、0以上5以下の整数がより好ましく、0以上2以下の整数がさらに好ましく、0又は1が特に好ましく、1が最も好ましい。
R 4 is a divalent linking group. The two bonds of R 4 are bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group, respectively.
Here, the two bonds possessed by R 4 are bonded to the carbon atom, oxygen atom, nitrogen atom, or sulfur atom in the linking group, respectively, and the two bonds possessed by R 4 are respectively. It means that it exists on a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in a linking group.
Specific examples of the divalent linking group, - (CH 2) n - , - O- (CH 2) n -, - S- (CH 2) n -, - NR 8 - (CH 2) n -, -O-C (= O) -NR 8 - (CH 2) n -, and -NR 8 -C (= O) -NR 8 - (CH 2) n -, it includes like. Among these, -O- (CH 2) n - , - O-C (= O) -NR 8 - (CH 2) n -, and -NR 8 -C (= O) -NR 8 - (CH 2 ) n -is preferable, and -O-CH 2- is more preferable because the raw material is easily available. R 8 is a hydrogen atom or a hydrocarbon group having 1 or more and 10 or less carbon atoms. Examples of the hydrocarbon group as R 8 include an alkyl group such as a methyl group, an ethyl group, an n-propyl group and an isopropyl group, an aryl group such as a phenyl group and a naphthyl group, and an aralkyl group such as a benzyl group. Be done. As n, an integer of 0 or more and 10 or less is preferable, an integer of 0 or more and 5 or less is more preferable, an integer of 0 or more and 2 or less is further preferable, 0 or 1 is particularly preferable, and 1 is most preferable.
 R、及びRは、それぞれ独立に水素、炭素原子数1以上20以下のアルキル基、炭素原子数6以上20以下のアリール基、炭素原子数7以上20以下のアラルキル基、及びシリル基のいずれかである。アルキル基の炭素原子数は、1以上12以下が好ましく、1以上6以下がより好ましく、1以上4以下が特に好ましい。アリール基の炭素原子数は、6以上12以下が好ましく、6以上10以下がより好ましい。アラルキル基の炭素原子数は、7以上12以下が好ましい。
 R、及びRとしては、具体的には、水素;メチル基、エチル基、及びシクロヘキシル等のアルキル基;フェニル基、及びトリル基等のアリール基;ベンジル基、及びフェネチル基等のアラルキル基;トリメチルシリル基等のシリル基、が挙げられる。これらの中では、水素、メチル基、及びトリメチルシリル基が好ましく、水素、及びメチル基がより好ましく、水素がさらに好ましい。
R 2 and R 3 are independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, and a silyl group. It is either. The number of carbon atoms of the alkyl group is preferably 1 or more and 12 or less, more preferably 1 or more and 6 or less, and particularly preferably 1 or more and 4 or less. The number of carbon atoms of the aryl group is preferably 6 or more and 12 or less, and more preferably 6 or more and 10 or less. The number of carbon atoms of the aralkyl group is preferably 7 or more and 12 or less.
Specific examples of R 2 and R 3 include hydrogen; alkyl groups such as methyl group, ethyl group, and cyclohexyl; aryl groups such as phenyl group and tolyl group; aralkyl groups such as benzyl group and phenethyl group. A silyl group such as a trimethylsilyl group can be mentioned. Among these, hydrogen, a methyl group, and a trimethylsilyl group are preferable, hydrogen and a methyl group are more preferable, and hydrogen is further preferable.
 上記式(1)~(3)で表される構造としては、それぞれ、下記式(5)~(7):
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
で表される構造が好ましい。
 R、X、及びaは上記の記載と同様である。
The structures represented by the above formulas (1) to (3) include the following formulas (5) to (7):
Figure JPOXMLDOC01-appb-C000016

Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018

The structure represented by is preferable.
R 1 , X, and a are the same as described above.
 式(1)~式(4)において、Rとしての炭化水素基は、式(1a)におけるR1aとしての炭化水素基と同様である。
 Rとしての炭化水素基としては、例えば、メチル基、及びエチル基等のアルキル基;クロロメチル基、及びメトキシメチル基等のヘテロ含有基を有するアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基等のアリール基;ベンジル基等のアラルキル基;等を挙げることができる。Rとしては、メチル基、メトキシメチル基、及びクロロメチル基が好ましく、メチル基、及びメトキシメチル基がより好ましく、メトキシメチル基がさらに好ましい。
In the formulas (1) to (4), the hydrocarbon group as R 1 is the same as the hydrocarbon group as R 1a in the formula (1a).
Examples of the hydrocarbon group as R 1 include an alkyl group such as a methyl group and an ethyl group; an alkyl group having a hetero-containing group such as a chloromethyl group and a methoxymethyl group; a cycloalkyl group such as a cyclohexyl group; phenyl. An aryl group such as a group; an aralkyl group such as a benzyl group; and the like can be mentioned. The R 1, a methyl group, methoxymethyl group, and a chloromethyl group are preferred, a methyl group, and more preferably a methoxymethyl group, methoxymethyl group are more preferred.
 式(1)~式(4)におけるXとしては、式(1a)について前述した通りである。 The X in the formulas (1) to (4) is as described above for the formula (1a).
 式(4)におけるRは、置換されていてもよいヘテロ原子である。Rが電子リッチなヘテロ原子であることにより、式(4)で表される反応性ケイ素基を有する末端基は、高い反応性を示す。
 式(4)におけるRとしての置換されていてもよいヘテロ原子としては、本発明の目的と阻害しない限り特に限定されない。ヘテロ原子の具体例としては、O、N、及びSが挙げられる。
 Rが無置換のヘテロ原子である場合、-R-で表される2価基の具体例としては、-O-、及び-S-が挙げられる。
 Rが置換されたヘテロ原子である場合、-R-で表される2価基の具体例としては、例えば、-SO-、-SO-、-NH-、及び-NR-等が挙げられる。
 置換基としてのRは特に限定されない。Rの好適な例としては、炭化水素基、及び-CO-Rで表されるアシル基等が挙げられる。Rとしては、炭化水素基が好ましい。R及びRとしての炭化水素基の例としては、Rとしての炭化水素基の例と同様である。
R 5 in formula (4) is a heteroatom that may be substituted. Since R 5 is an electron-rich heteroatom, the terminal group having a reactive silicon group represented by the formula (4) exhibits high reactivity.
The optionally substituted hetero atom as R 5 in the formula (4) is not particularly limited so long as it does not inhibit the object of the present invention. Specific examples of the heteroatom include O, N, and S.
When R 5 is an unsubstituted heteroatom, specific examples of the divalent group represented by -R 5- include -O- and -S-.
When R 5 is a substituted heteroatom, specific examples of the divalent group represented by -R 5- include, for example, -SO-, -SO 2- , -NH-, and -NR 6-. Can be mentioned.
R 6 as a substituent is not particularly limited. Preferable examples of R 6 include a hydrocarbon group, an acyl group represented by -CO-R 7 , and the like. A hydrocarbon group is preferable as R 7 . Examples of the hydrocarbon groups as R 6 and R 7 are the same as those of the hydrocarbon groups as R 1 .
 以下、基材樹脂(A)の主鎖構造について説明する。 The main chain structure of the base resin (A) will be described below.
[主鎖構造]
 基材樹脂(A)の主鎖構造は、前述の通り、直鎖状であってもよいし、分岐鎖を有していてもよい。
 基材樹脂(A)の主鎖構造には特に制限はない、基材樹脂(A)としては、各種の主鎖構造を有する主鎖骨格を含む重合体を使用することができる。
 基材樹脂(A)の主鎖骨格を構成する重合体としては、例えば、ポリオキシアルキレン系重合体、炭化水素系重合体、ポリエステル系重合体、ビニル系(共)重合体、(メタ)アクリル酸エステル系(共)重合体、グラフト重合体、ポリサルファイド系重合体、ポリアミド系重合体、ポリカーボネート系重合体、ウレタン結合及び/又はウレア結合を有する重合体(ウレタンプレポリマー)、ジアリルフタレート系重合体等をあげることができる。
[Main chain structure]
As described above, the main chain structure of the base resin (A) may be linear or may have a branched chain.
The main chain structure of the base resin (A) is not particularly limited, and as the base resin (A), a polymer containing a main chain skeleton having various main chain structures can be used.
Examples of the polymer constituting the main chain skeleton of the base resin (A) include a polyoxyalkylene polymer, a hydrocarbon polymer, a polyester polymer, a vinyl (co) polymer, and (meth) acrylic. Acid ester-based (co) polymer, graft polymer, polysulfide-based polymer, polyamide-based polymer, polycarbonate-based polymer, polymer having urethane bond and / or urea bond (urethane prepolymer), diallyl phthalate-based polymer Etc. can be given.
 ポリオキシアルキレン系重合体としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、及びポリオキシプロピレン-ポリオキシブチレン共重合体等が挙げられる。 Examples of the polyoxyalkylene polymer include polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, and polyoxypropylene-polyoxybutylene copolymer. And so on.
 炭化水素系重合体としては、例えば、エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレンとの共重合体、ポリクロロプレン、ポリイソプレン、イソプレン又はブタジエンとアクリロニトリル及び/又はスチレン等との共重合体、ポリブタジエン、イソプレン又はブタジエンとアクリロニトリル及びスチレンとの共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等が挙げられる。 Examples of the hydrocarbon-based polymer include ethylene-propylene-based copolymers, polyisobutylene, copolymers of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or butadiene and acrylonitrile and / or styrene and the like. Examples thereof include coalescing, polybutadiene, isoprene, or copolymers of butadiene with acrylonitrile and styrene, and hydrocarbon-based polymers obtained by hydrogenating these polyolefin-based polymers.
 ポリエステル系重合体としては、例えば、アジピン酸等の2塩基酸とグリコールとの縮合反応で得られる重合体、及びラクトン類の開環重合で得られる重合体等のエステル結合を有する重合体が挙げられる。 Examples of the polyester-based polymer include polymers having an ester bond such as a polymer obtained by a condensation reaction of a dibasic acid such as adipic acid and a glycol, and a polymer obtained by ring-opening polymerization of lactones. Be done.
 ビニル系(共)重合体としては、例えば、(メタ)アクリル酸エステル、酢酸ビニル、アクリロニトリル、及びスチレン等のビニル系単量体を、単独、又は複数組み合わせてラジカル重合して得られる(共)重合体が挙げられる。 The vinyl-based (co) polymer is obtained by radical polymerization of, for example, vinyl-based monomers such as (meth) acrylic acid ester, vinyl acetate, acrylonitrile, and styrene, alone or in combination of two or more (co). Polymers can be mentioned.
 (メタ)アクリル酸エステル系(共)重合体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、及び(メタ)アクリル酸ステアリル等の(メタ)アクリル酸エステル単量体を、単独、又は複数組み合わせてラジカル重合して得られる(共)重合体が挙げられる。(メタ)アクリル酸エステル系(共)重合体は、所謂、アクリル樹脂である。 Examples of the (meth) acrylic acid ester-based (co) polymer include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and (meth) acrylate. ) Examples thereof include (co) polymers obtained by radical polymerization of (meth) acrylic acid ester monomers such as stearyl acrylate, alone or in combination of two or more. The (meth) acrylic acid ester-based (co) polymer is a so-called acrylic resin.
 グラフト重合体としては、例えば、上記の各種重合体中で、ビニル系単量体を重合して得られる重合体が挙げられる。 Examples of the graft polymer include a polymer obtained by polymerizing a vinyl-based monomer among the above-mentioned various polymers.
 ポリアミド系重合体としては、例えば、ε-カプロラクタムの開環重合で得られるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合で得られるナイロン6・6、ヘキサメチレンジアミンとセバシン酸との縮重合で得られるナイロン6・10、ε-アミノウンデカン酸の縮重合で得られるナイロン11、ε-アミノラウロラクタムの開環重合で得られるナイロン12、及び上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等が挙げられる。 Examples of the polyamide polymer include nylon 6 obtained by ring-opening polymerization of ε-caprolactam, nylon 6.6 obtained by condensation polymerization of hexamethylenediamine and adipic acid, and condensation polymerization of hexamethylenediamine and sebacic acid. Nylon 6/10 obtained, nylon 11 obtained by condensation polymerization of ε-aminoundecanoic acid, nylon 12 obtained by ring-opening polymerization of ε-aminolaurolactum, and a combination of two or more of the above nylon components. Polymerized nylon and the like can be mentioned.
 ポリカーボネート系重合体としては、例えば、ビスフェノールAと塩化カルボニルより縮重合して製造される重合体等が挙げられる。 Examples of the polycarbonate-based polymer include a polymer produced by polycondensation of bisphenol A and carbonyl chloride.
 ウレタン結合及び/又はウレア結合を有する重合体(ウレタンプレポリマー)としては、例えば、ポリオールと過剰量のポリイソシアネート化合物とを反応させて得られる分子末端にイソシアネート基を有する液状高分子化合物等が挙げられる。 Examples of the polymer having a urethane bond and / or a urea bond (urethane prepolymer) include a liquid polymer compound having an isocyanate group at the molecular terminal obtained by reacting a polyol with an excessive amount of a polyisocyanate compound. Be done.
 基材樹脂(A)の主鎖骨格を構成する重合体の中で、ポリイソブチレン、水添ポリイソプレン、及び水添ポリブタジエン等の飽和炭化水素系重合体、ポリオキシアルキレン系重合体、並びにアクリル樹脂((メタ)アクリル酸エステル系重合体)は、比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることから好ましい。 Among the polymers constituting the main chain skeleton of the base resin (A), saturated hydrocarbon-based polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene-based polymers, and acrylic resins. ((Meta) acrylic acid ester-based polymer) is preferable because the glass transition temperature is relatively low and the obtained cured product has excellent cold resistance.
 基材樹脂(A)の主鎖骨格を構成する重合体のガラス転移温度は、特に限定は無いが、20℃以下であることが好ましく、0℃以下であることがより好ましく、-20℃以下であることが特に好ましい。ガラス転移温度が20℃を上回ると、冬季又は寒冷地での発泡体用樹脂組成物の粘度が高くなり、作業性が悪くなる場合があり、また、発泡体の柔軟性が低下し、伸びが低下する場合がある。ガラス転移温度はDSC測定による値を示す。 The glass transition temperature of the polymer constituting the main chain skeleton of the base resin (A) is not particularly limited, but is preferably 20 ° C. or lower, more preferably 0 ° C. or lower, and −20 ° C. or lower. Is particularly preferable. If the glass transition temperature exceeds 20 ° C., the viscosity of the resin composition for foam in winter or cold regions may increase, which may result in poor workability, and the flexibility of the foam may decrease, resulting in elongation. May decrease. The glass transition temperature shows the value measured by DSC.
 また、基材樹脂(A)がガラス転移温度が35℃以上である樹脂を含むことも好ましい。この場合、発泡後の発泡体のシュリンクを抑制しやすい。発泡後の発泡体のシュリンクを特に抑制しやすい点からは、基材樹脂(A)が、ガラス転移温度が35℃以上である樹脂とともに、ガラス転移温度が35℃未満である樹脂を含むのが好ましい。
 基材樹脂(A)のガラス転移温度は、主鎖骨格の種類、主鎖を構成する単位の種類、主鎖を構成する単位の組成、及び分子量等を調整することにより調整できる。
It is also preferable that the base resin (A) contains a resin having a glass transition temperature of 35 ° C. or higher. In this case, it is easy to suppress the shrinkage of the foam after foaming. From the viewpoint that shrinkage of the foam after foaming is particularly easy to be suppressed, the base resin (A) contains a resin having a glass transition temperature of 35 ° C. or higher and a resin having a glass transition temperature of less than 35 ° C. preferable.
The glass transition temperature of the base resin (A) can be adjusted by adjusting the type of the main chain skeleton, the type of the unit constituting the main chain, the composition of the unit constituting the main chain, the molecular weight, and the like.
 基材樹脂(A)の主鎖骨格を構成する重合体の中で、ポリオキシアルキレン系重合体及びアクリル樹脂は透湿性が高い点等から好ましい。発泡体の吸音特性が特に優れる点から、ポリオキシアルキレン系重合体がより好ましく、ポリオキシプロピレン系重合体が最も好ましい。
 また、発泡後の、発泡体のシュリンクを抑制しやすい点と、所望するせん断弾性率と、所望する単位厚さあたりの流れ抵抗を示す発泡体を得やすい点からは、基材樹脂(A)は、ポリオキシアルキレン系重合体とともに、(メタ)アクリル樹脂を含むのが好ましい。
 基材樹脂(A)が、(メタ)アクリル樹脂、及びポリオキシアルキレン系重合体を含む場合、所望するせん断弾性率と、所望する単位厚さあたりの流れ抵抗を示す発泡体を特に得やすい点から、基材樹脂(A)100重量部中の(メタ)アクリル樹脂の量は2重量部以上50重量部以下が好ましく、5重量部以上40重量部以下がより好ましく、8重量部以上30重量部以下がさらに好ましい。
 この場合、基材樹脂(A)100重量部中のポリオキシアルキレン系重合体の量は、50重量部以上98重量部以下が好ましく、60重量部以上95重量部以下がより好ましく、70重量部以上92重量部以下がさらに好ましい。
Among the polymers constituting the main chain skeleton of the base resin (A), the polyoxyalkylene polymer and the acrylic resin are preferable because they have high moisture permeability and the like. A polyoxyalkylene polymer is more preferable, and a polyoxypropylene polymer is most preferable, because the sound absorbing property of the foam is particularly excellent.
Further, from the viewpoint that it is easy to suppress shrinkage of the foam after foaming, and it is easy to obtain a foam showing a desired shear modulus and a flow resistance per unit thickness, the base resin (A) is used. Preferably contains a (meth) acrylic resin together with a polyoxyalkylene polymer.
When the base resin (A) contains a (meth) acrylic resin and a polyoxyalkylene polymer, it is particularly easy to obtain a foam exhibiting a desired shear elasticity and a flow resistance per unit thickness. Therefore, the amount of the (meth) acrylic resin in 100 parts by weight of the base resin (A) is preferably 2 parts by weight or more and 50 parts by weight or less, more preferably 5 parts by weight or more and 40 parts by weight or less, and 8 parts by weight or more and 30 parts by weight. Less than a part is more preferable.
In this case, the amount of the polyoxyalkylene polymer in 100 parts by weight of the base resin (A) is preferably 50 parts by weight or more and 98 parts by weight or less, more preferably 60 parts by weight or more and 95 parts by weight or less, and 70 parts by weight. More than 92 parts by weight or less is more preferable.
 基材樹脂(A)の主鎖への反応性ケイ素基の導入は公知の方法で行えばよい。例えば以下の方法があげられる。 The reactive silicon group may be introduced into the main chain of the base resin (A) by a known method. For example, the following method can be mentioned.
 方法I:ヒドロキシ基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基及び不飽和基を有する化合物を反応させ、不飽和基を有する有機重合体を得る。次いで、得られた不飽和基を有する有機重合体に、ヒドロシリル化によって、反応性ケイ素基を有するヒドロシラン化合物を反応させる。 Method I: An organic polymer having a functional group such as a hydroxy group is reacted with a compound having an active group and an unsaturated group exhibiting reactivity with this functional group to obtain an organic polymer having an unsaturated group. Then, the obtained organic polymer having an unsaturated group is reacted with a hydrosilane compound having a reactive silicon group by hydrosilylation.
 方法Iにおいて使用し得る反応性を示す活性基及び不飽和基を有する化合物としては、例えば、アリルグリシジルエーテル等の不飽和基含有エポキシ化合物、塩化アリル、塩化メタリル、臭化ビニル、臭化アリル、臭化メタリル、ヨウ化ビニル、ヨウ化アリル、及びヨウ化メタリル等の炭素-炭素二重結合を有する化合物が挙げられる。
 また、炭素-炭素三重結合を有する化合物としては、塩化プロパルギル、1-クロロ-2-ブチン、4-クロロ-1-ブチン、1-クロロ-2-オクチン、1-クロロ-2-ペンチン、1,4-ジクロロ-2-ブチン、5-クロロ-1-ペンチン、6-クロロ-1-ヘキシン、臭化プロパルギル、1-ブロモ-2-ブチン、4-ブロモ-1-ブチン、1-ブロモ-2-オクチン、1-ブロモ-2-ペンチン、1,4-ジブロモ-2-ブチン、5-ブロモ-1-ペンチン、6-ブロモ-1-ヘキシン、ヨウ化プロパルギル、1-ヨード-2-ブチン、4-ヨード-1-ブチン、1-ヨード-2-オクチン、1-ヨード-2-ペンチン、1,4-ジヨード-2-ブチン、5-ヨード-1-ペンチン、及び6-ヨード-1-ヘキシン等の炭素-炭素三重結合を有するハロゲン化炭化水素化合物が挙げられる。これらの中では、塩化プロパルギル、臭化プロパルギル、及びヨウ化プロパルギルがより好ましい。
 炭素-炭素三重結合を有するハロゲン化炭化水素化合物と同時に、塩化ビニル、塩化アリル、塩化メタリル、臭化ビニル、臭化アリル、臭化メタリル、ヨウ化ビニル、ヨウ化アリル、及びヨウ化メタリル等の炭素-炭素三重結合を有するハロゲン化炭化水素以外の不飽和結合を有する炭化水素化合物を使用してもよい。
Examples of the reactive compound having an active group and an unsaturated group that can be used in Method I include an unsaturated group-containing epoxy compound such as allyl glycidyl ether, allyl chloride, metallic chloride, vinyl bromide, and allyl bromide. Examples thereof include compounds having a carbon-carbon double bond such as metallyl bromide, vinyl iodide, allyl iodide, and metallyl iodide.
Examples of the compound having a carbon-carbon triple bond include propargyl chloride, 1-chloro-2-butyne, 4-chloro-1-butyne, 1-chloro-2-octyne, 1-chloro-2-pentin, 1, 4-Dichloro-2-butyne, 5-chloro-1-pentin, 6-chloro-1-hexine, propargyl bromide, 1-bromo-2-butyne, 4-bromo-1-butyne, 1-bromo-2- Octin, 1-bromo-2-pentin, 1,4-dibromo-2-butyne, 5-bromo-1-pentin, 6-bromo-1-hexine, propargyl iodide, 1-iodo-2-butyne, 4- Iodo-1-butyne, 1-iodo-2-octyne, 1-iodo-2-pentin, 1,4-diiodo-2-butyne, 5-iodo-1-pentyne, 6-iodo-1-hexine, etc. Examples thereof include halogenated hydrocarbon compounds having a carbon-carbon triple bond. Of these, propargyl chloride, propargyl bromide, and propargyl iodide are more preferred.
At the same time as a halogenated hydrocarbon compound having a carbon-carbon triple bond, vinyl chloride, allyl chloride, metallyl chloride, vinyl bromide, allyl bromide, metallyl bromide, vinyl iodide, allyl iodide, metallyl iodide, etc. Hydrocarbon compounds having unsaturated bonds other than halogenated hydrocarbons having carbon-carbon triple bonds may be used.
 方法Iにおいて使用し得るヒドロシラン化合物としては、例えば、ハロゲン化シラン類、アルコキシシラン類、アシロキシシラン類、及びケトキシメートシラン類等が挙げられる。ヒドロシラン化合物は、これらに限定されない。 Examples of the hydrosilane compound that can be used in Method I include halogenated silanes, alkoxysilanes, asyloxysilanes, and ketoximatesilanes. Hydrosilane compounds are not limited to these.
 ハロゲン化シラン類としては、例えば、トリクロロシラン、メチルジクロロシラン、ジメチルクロロシラン、及びフェニルジクロロシラン等が挙げられる。 Examples of halogenated silanes include trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane.
 アルコキシシラン類としては、例えば、トリメトキシシラン、トリエトキシシラン、トリイソプロポキシシラン、ジメトキシメチルシラン、ジエトキシメチルシラン、ジイソプロポキシメチルシラン、(メトキシメチル)ジメトキシシラン、フェニルジメトキシシラン、及び1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン等が挙げられる。 Examples of alkoxysilanes include trimethoxysilane, triethoxysilane, triisopropoxysilane, dimethoxymethylsilane, diethoxymethylsilane, diisopropoxymethylsilane, (methoxymethyl) dimethoxysilane, phenyldimethoxysilane, and 1-. [2- (Trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane and the like can be mentioned.
 アシロキシシラン類としては、例えば、メチルジアセトキシシラン、及びフェニルジアセトキシシラン等が挙げられる。 Examples of asyloxysilanes include methyldiacetoxysilane and phenyldiacetoxysilane.
 ケトキシメートシラン類としては、例えば、ビス(ジメチルケトキシメート)メチルシラン、及びビス(シクロヘキシルケトキシメート)メチルシラン等が挙げられる。 Examples of ketoximate silanes include bis (dimethyl ketoximate) methylsilane and bis (cyclohexylketoximate) methylsilane.
 これらの中では、ハロゲン化シラン類、及びアルコキシシラン類が特に好ましい。アルコキシシラン類は、加水分解性が穏やかで取り扱いやすいために最も好ましい。 Among these, halogenated silanes and alkoxysilanes are particularly preferable. Alkoxysilanes are most preferred because they are mildly hydrolyzable and easy to handle.
 アルコキシシラン類の中では、入手しやすい点、硬化性、及び貯蔵安定性に優れる発泡体用樹脂組成物を得やすい点、発泡体用樹脂組成物を用いて引張強度に優れる発泡体を製造しやすい点等からジメトキシメチルシランが好ましい。また、硬化性に優れる発泡体用樹脂組成物を得やすい点から、トリメトキシシラン、及びトリエトキシシランも好ましい。 Among the alkoxysilanes, a foam having excellent tensile strength is produced by using the resin composition for foam, which is easily available, has excellent curability and storage stability, and is easy to obtain. Dimethoxymethylsilane is preferable because it is easy to use. Further, trimethoxysilane and triethoxysilane are also preferable from the viewpoint that a resin composition for a foam having excellent curability can be easily obtained.
 方法II:メルカプト基及び反応性ケイ素基を有する化合物を、ラジカル開始剤及び/又はラジカル発生源存在下でのラジカル付加反応によって、方法Iと同様にして得られた不飽和基を有する有機重合体の不飽和基部位に導入する方法。 Method II: An organic polymer having an unsaturated group obtained by subjecting a compound having a mercapto group and a reactive silicon group to a radical addition reaction in the presence of a radical initiator and / or a radical source in the same manner as in Method I. Method of introducing into the unsaturated radical site of.
 方法IIにおいて使用し得るメルカプト基及び反応性ケイ素基を有する化合物としては、例えば、3-メルカプト-n-プロピルトリメトキシシラン、3-メルカプト-n-プロピルメチルジメトキシシラン、3-メルカプト-n-プロピルトリエトキシシラン、3-メルカプト-n-プロピルメチルジエトキシシラン、メルカプトメチルトリメトキシシラン、及びメルカプトメチルトリエトキシシラン等が挙げられる。メルカプト基及び反応性ケイ素基を有する化合物は、これらに限定されない。 Examples of the compound having a mercapto group and a reactive silicon group that can be used in Method II include 3-mercapto-n-propyltrimethoxysilane, 3-mercapto-n-propylmethyldimethoxysilane, and 3-mercapto-n-propyl. Examples thereof include triethoxysilane, 3-mercapto-n-propylmethyldiethoxysilane, mercaptomethyltrimethoxysilane, and mercaptomethyltriethoxysilane. Compounds having a mercapto group and a reactive silicon group are not limited thereto.
 方法III:分子中にヒドロキシ基、エポキシ基、及びイソシアネート基等の官能基を有する有機重合体に、これらの官能基に対して反応性を示す官能基及び反応性ケイ素基を有する化合物を反応させる方法。 Method III: An organic polymer having a functional group such as a hydroxy group, an epoxy group, and an isocyanate group in the molecule is reacted with a compound having a functional group exhibiting reactivity with these functional groups and a reactive silicon group. Method.
 方法IIIにおいて採用し得る、ヒドロキシ基を有する有機重合体と、イソシアネート基及び反応性ケイ素基を有する化合物とを反応させる方法としては、特に限定されないが、例えば、特開平3-47825号公報に示される方法等が挙げられる。 The method for reacting the organic polymer having a hydroxy group with the compound having an isocyanate group and a reactive silicon group, which can be adopted in Method III, is not particularly limited, but is shown in, for example, JP-A-3-47825. There is a method to be used.
 方法IIIにおいて使用し得る、イソシアネート基及び反応性ケイ素基を有する化合物としては、例えば、3-イソシアナト-n-プロピルトリメトキシシラン、3-イソシアナト-n-プロピルメチルジメトキシシラン、3-イソシアナト-n-プロピルトリエトキシシラン、3-イソシアナト-n-プロピルメチルジエトキシシラン、イソシアナトメチルトリメトキシシラン、イソシアナトメチルトリエトキシシラン、イソシアナトメチルジメトキシメチルシラン、及びイソシアナトメチルジエトキシメチルシラン等があげられる。イソシアネート基及び反応性ケイ素基を有する化合物はこれらに限定されない。 Examples of the compound having an isocyanate group and a reactive silicon group that can be used in Method III include 3-isocyanato-n-propyltrimethoxysilane, 3-isocyanato-n-propylmethyldimethoxysilane, and 3-isocyanato-n-. Examples thereof include propyltriethoxysilane, 3-isocyanato-n-propylmethyldiethoxysilane, isocyanatomethyltrimethoxysilane, isocyanatomethyltriethoxysilane, isocyanatomethyldimethoxymethylsilane, and isocyanatomethyldiethoxymethylsilane. .. Compounds having an isocyanate group and a reactive silicon group are not limited thereto.
 トリメトキシシラン等の1つのケイ素原子に3個の加水分解性基が結合しているシラン化合物は不均化反応が進行する場合がある。不均化反応が進むと、ジメトキシシランのような不安定な化合物が生じ、取り扱いが困難となることがある。しかし、3-メルカプト-n-プロピルトリメトキシシランや3-イソシアナト-n-プロピルトリメトキシシランでは、このような不均化反応は進行しない。このため、ケイ素含有基としてトリメトキシシリル基等の3個の加水分解性基が1つのケイ素原子に結合している基を用いる場合には、方法II又は方法IIIの方法を用いることが好ましい。 A silane compound in which three hydrolyzable groups are bonded to one silicon atom such as trimethoxysilane may undergo a disproportionation reaction. As the disproportionation reaction proceeds, unstable compounds such as dimethoxysilane are produced, which may be difficult to handle. However, such disproportionation reaction does not proceed with 3-mercapto-n-propyltrimethoxysilane or 3-isocyanato-n-propyltrimethoxysilane. Therefore, when a group in which three hydrolyzable groups such as a trimethoxysilyl group are bonded to one silicon atom is used as the silicon-containing group, the method of Method II or Method III is preferably used.
 一方、下記式(2a)で表されるシラン化合物は不均化反応が進まない。
H-(SiR2a O)SiR2a -R3a-SiX   (2a)
 ここで、式(2a)において、Xは式(1a)と同じである。2m+2個のR2aはそれぞれ独立に式(1a)のR1aと同じである。R3aは、炭素原子数1以上20以下の置換又は非置換の2価の炭化水素基を示す。mは0以上19以下の整数を示す。
On the other hand, the disproportionation reaction does not proceed with the silane compound represented by the following formula (2a).
H- (SiR 2a 2 O) m SiR 2a 2- R 3a- SiX 3 (2a)
Here, in the formula (2a), X is the same as the formula (1a). The 2m + 2 R 2a are independently the same as the R 1a of the equation (1a). R 3a represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms. m indicates an integer of 0 or more and 19 or less.
 このため、方法Iで、3個の加水分解性基が1つのケイ素原子に結合している基を導入する場合には、式(2a)で表されるシラン化合物を用いることが好ましい。入手性及びコストの点から、2m+2個のR2aとしては、それぞれ独立に、炭素原子数1以上20以下の炭化水素基が好ましく、炭素原子数1以上8以下の炭化水素基がより好ましく、炭素原子数1以上4以下の炭化水素基がさらに好ましい。R3aとしては、炭素原子数1以上12以下の2価の炭化水素基が好ましく、炭素原子数2以上8以下の2価の炭化水素基がより好ましく、炭素原子数2の2価の炭化水素基がさらに好ましい。mは1が最も好ましい。 Therefore, when introducing a group in which three hydrolyzable groups are bonded to one silicon atom in Method I, it is preferable to use the silane compound represented by the formula (2a). From the viewpoint of availability and cost, each of the 2m + 2 R 2a is preferably a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrocarbon group having 1 to 8 carbon atoms, and carbon. Hydrocarbon groups having 1 or more and 4 or less atoms are more preferable. As R 3a , a divalent hydrocarbon group having 1 to 12 carbon atoms is preferable, a divalent hydrocarbon group having 2 to 8 carbon atoms is more preferable, and a divalent hydrocarbon having 2 carbon atoms is preferable. Groups are even more preferred. The m is most preferably 1.
 式(2a)で示されるシラン化合物としては、例えば、1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン、1-[2-(トリメトキシシリル)プロピル]-1,1,3,3-テトラメチルジシロキサン、及び1-[2-(トリメトキシシリル)ヘキシル]-1,1,3,3-テトラメチルジシロキサン等が挙げられる。 Examples of the silane compound represented by the formula (2a) include 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane and 1- [2- (trimethoxysilyl). Examples thereof include propyl] -1,1,3,3-tetramethyldisiloxane and 1- [2- (trimethoxysilyl) hexyl] -1,1,3,3-tetramethyldisiloxane.
 上記の方法I又は方法IIIにおいて、末端にヒドロキシ基を有する有機重合体と、イソシアネート基及び反応性ケイ素基を有する化合物とを反応させる方法は、比較的短い反応時間で高い転化率が得られるために好ましい。さらに、方法Iで得られた反応性ケイ素基を有する有機重合体は、方法IIIで得られる反応性ケイ素基を有する有機重合体よりも低粘度であり、作業性のよい発泡体用樹脂組成物が得られること、また、方法IIで得られる反応性ケイ素基を有する有機重合体は、メルカプトシランに基づく臭気が強いことから、方法Iが特に好ましい。 In the above method I or method III, the method of reacting the organic polymer having a hydroxy group at the terminal with the compound having an isocyanate group and a reactive silicon group can obtain a high conversion rate in a relatively short reaction time. Is preferable. Further, the organic polymer having a reactive silicon group obtained by Method I has a lower viscosity than the organic polymer having a reactive silicon group obtained by Method III, and is a resin composition for a foam having good workability. The method I is particularly preferable because the organic polymer having a reactive silicon group obtained by the method II has a strong odor based on mercaptosilane.
 以下、基材樹脂(A)の中でも特に好ましい、反応性ケイ素基を有するポリオキシアルキレン系重合体と、(メタ)アクリル酸エステル系共重合体について詳細に説明する。 Hereinafter, a polyoxyalkylene-based polymer having a reactive silicon group and a (meth) acrylic acid ester-based copolymer, which are particularly preferable among the base resin (A), will be described in detail.
(ポリオキシアルキレン系重合体)
 ポリオキシアルキレン系重合体の主鎖構造は下記式(3a)で示される繰り返し単位からなるのが好ましい。
-R4a-O-   (3a)
 ここで、式(3a)において、R4aは炭素原子数1以上14以下の直鎖状又は分岐状アルキレン基を示し、炭素原子数2以上4以下がより好ましい。
(Polyoxyalkylene polymer)
The main chain structure of the polyoxyalkylene polymer is preferably composed of a repeating unit represented by the following formula (3a).
-R 4a -O- (3a)
Here, in the formula (3a), R 4a represents a linear or branched alkylene group having 1 or more and 14 or less carbon atoms, and more preferably 2 or more and 4 or less carbon atoms.
 式(3a)で示される繰り返し単位としては、例えば、-CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CHO-、及び-CHCHCHCHO-等が挙げられる。 The repeating unit represented by formula (3a), for example, -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, -CH 2 C (CH 3 ) 2 O-, -CH 2 CH 2 CH 2 CH 2 O- and the like can be mentioned.
 ポリオキシアルキレン系重合体の主鎖は、1種類だけの繰り返し単位からなっていてもよく、2種類以上の繰り返し単位からなっていてもよい。ポリオキシアルキレン系重合体は、非晶質且つ比較的低粘度であるポリオキシプロピレン系重合体であることが好ましい。 The main chain of the polyoxyalkylene polymer may consist of only one type of repeating unit or may consist of two or more types of repeating units. The polyoxyalkylene polymer is preferably an amorphous polyoxypropylene polymer having a relatively low viscosity.
 ポリオキシアルキレン系重合体の合成法としては、例えば、KOH等のアルカリ触媒による重合法;特開昭61-215623号に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体等の遷移金属化合物-ポルフィリン錯体触媒による重合法;特公昭46-27250号公報、特公昭59-15336号公報、米国特許第3278457号、米国特許3278458号、米国特許3278459号、米国特許3427256号、米国特許3427334号、及び米国特許3427335号等に示される複合金属シアン化物錯体触媒(例えば、亜鉛ヘキサシアノコバルテートグライム錯体触媒)による重合法;特開平10-273512号公報に示されるポリホスファゼン塩からなる触媒を用いる重合法;特開平11-060722号公報に示されるホスファゼン化合物からなる触媒を用いる重合法等が挙げられる。ポリオキシアルキレン系重合体の合成方法は、これらに限定されない。 Examples of the method for synthesizing the polyoxyalkylene polymer include a polymerization method using an alkali catalyst such as KOH; a transition metal such as a complex obtained by reacting an organic aluminum compound shown in JP-A-61-215623 with porphyrin. Compound-Porphyrin Complex Catalyzed Polymerization Method; Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, US Patent No. 3278457, US Patent No. 3278458, US Patent No. 3278459, US Patent No. 3427256, US Patent No. 3427334 , And a polymerization method using a composite metal cyanide complex catalyst (for example, zinc hexacyanocobaltate glyme complex catalyst) shown in US Pat. No. 3,427,335; a weight using a catalyst composed of a polyphosphazene salt shown in JP-A-10-273512. Legal; Examples thereof include a polymerization method using a catalyst composed of a phosphazene compound shown in JP-A-11-060722. The method for synthesizing the polyoxyalkylene polymer is not limited to these.
 これらの合成法の中では、複合金属シアン化物錯体触媒の存在下、開始剤にアルキレンオキシドを反応させる重合法が分子量分布の狭い重合体を得られることから好ましい。 Among these synthetic methods, a polymerization method in which an alkylene oxide is reacted with an initiator in the presence of a composite metal cyanide complex catalyst is preferable because a polymer having a narrow molecular weight distribution can be obtained.
 複合金属シアン化物錯体触媒としては、Zn[Co(CN)(亜鉛ヘキサシアノコバルテート錯体)等が挙げられる。また、これらにアルコール及び/又はエーテルが有機配位子として配位した触媒も使用できる。 Examples of the composite metal cyanide complex catalyst include Zn 3 [Co (CN) 6 ] 2 (zinc hexacyanocobaltate complex). Further, a catalyst in which alcohol and / or ether is coordinated as an organic ligand can also be used.
 開始剤としては、少なくとも2個の活性水素基を有する化合物が好ましい。活性水素含有化合物は、エチレングリコール、ジエチレングリコール、プロピレングリコール、及びグリセリン等の多価アルコールや、数平均分子量500以上20000以下の直鎖状又は分岐鎖状のポリエーテル化合物等が挙げられる。 As the initiator, a compound having at least two active hydrogen groups is preferable. Examples of the active hydrogen-containing compound include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and glycerin, and linear or branched polyether compounds having a number average molecular weight of 500 or more and 20000 or less.
 アルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、及びイソブチレンオキシド等が挙げられる。 Examples of the alkylene oxide include ethylene oxide, propylene oxide, and isobutylene oxide.
 反応性ケイ素基を有するポリオキシアルキレン系重合体としては、例えば、特公昭45-36319号公報、特公昭46-12154号公報、特開昭50-156599号公報、特開昭54-6096号公報、特開昭55-13767号公報、特開昭55-13468号公報、特開昭57-164123号公報、特公平3-2450号公報、米国特許3632557号、米国特許4345053号、米国特許4366307号、米国特許4960844号等の各公報に提案されている重合体が挙げられる。また、特開昭61-197631号公報、特開昭61-215622号公報、特開昭61-215623号公報、特開昭61-218632号公報、特開平3-72527号公報、特開平3-47825号公報、特開平8-231707号公報の各公報に提案されている数平均分子量6000以上、分子量分布(Mw/Mn)が1.6以下や1.3以下の高分子量で分子量分布が狭い反応性ケイ素基を有するポリオキシアルキレン系重合体等も好ましい。このような反応性ケイ素基を有するポリオキシアルキレン系重合体は単独で使用してもよく、2種以上を併用してもよい。 Examples of the polyoxyalkylene polymer having a reactive silicon group include JP-A-45-363319, JP-A-46-12154, JP-A-50-156599, and JP-A-54-6096. , Japanese Patent Application Laid-Open No. 55-13767, Japanese Patent Application Laid-Open No. 55-13468, Japanese Patent Application Laid-Open No. 57-164123, Japanese Patent Application Laid-Open No. 362550, US Pat. No. 3632557, US Pat. No. 4345053, US Pat. No. 4,366,307 , US Pat. No. 4,960,844, etc., and the polymers proposed in each publication. Further, Japanese Patent Application Laid-Open No. 61-197631, Japanese Patent Application Laid-Open No. 61-215622, Japanese Patent Application Laid-Open No. 61-215623, Japanese Patent Application Laid-Open No. 61-218632, Japanese Patent Application Laid-Open No. 3-72527, Japanese Patent Application Laid-Open No. 3-72527 The molecular weight distribution is narrow with a number average molecular weight of 6000 or more and a molecular weight distribution (Mw / Mn) of 1.6 or less or 1.3 or less proposed in each of the publications No. 47825 and Japanese Patent Application Laid-Open No. 8-231707. A polyoxyalkylene polymer having a reactive silicon group and the like are also preferable. Such a polyoxyalkylene polymer having a reactive silicon group may be used alone or in combination of two or more.
((メタ)アクリル酸エステル系(共)重合体)
 反応性ケイ素基を有する(メタ)アクリル酸エステル系(共)重合体は種々の(メタ)アクリル酸エステル系単量体を、単独で又は複数組み合わせて重合することによって得ることができる。
((Meta) acrylic acid ester-based (co) polymer)
The (meth) acrylic acid ester-based (co) polymer having a reactive silicon group can be obtained by polymerizing various (meth) acrylic acid ester-based monomers alone or in combination of two or more.
 (メタ)アクリル酸エステル系単量体としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、3-((メタ)アクリロイルオキシ)-n-プロピルトリメトキシシラン、3-((メタ)アクリロイルオキシ)-n-プロピルジメトキシメチルシラン、(メタ)アクリロイルオキシメチルトリメトキシシラン、(メタ)アクリロイルオキシメチルトリエトキシシラン、(メタ)アクリロイルオキシメチルジメトキシメチルシラン、(メタ)アクリロイルオキシメチルジエトキシメチルシラン、及び(メタ)アクリル酸のエチレンオキサイド付加物等の(メタ)アクリル酸系単量体が挙げられる。(メタ)アクリル酸エステル系単量体は、これらに限定されない。 Examples of the (meth) acrylic acid ester-based monomer include (meth) acrylic acid, methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, and isopropyl (meth) acrylic acid. , (Meta) n-butyl acrylate, (meth) isobutyl acrylate, (meth) tert-butyl acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate , (Meta) n-heptyl acrylate, (meth) n-octyl acrylate, (meth) 2-ethylhexyl acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate (meth) ) Phenyl acrylate, toluyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, ( 2-Hydroxypropyl acrylate, stearyl (meth) acrylate, glycidyl (meth) acrylate, 2-aminoethyl (meth) acrylate, 3-((meth) acryloyloxy) -n-propyltrimethoxysilane, 3-((Meta) Acryloyloxy) -n-propyldimethoxymethylsilane, (Meta) Acryloyloxymethyltrimethoxysilane, (Meta) Acryloyloxymethyltriethoxysilane, (Meta) Acryloyloxymethyldimethoxymethylsilane, (Meta) Examples thereof include (meth) acrylic acid-based monomers such as acryloyloxymethyldiethoxymethylsilane and an ethylene oxide adduct of (meth) acrylic acid. The (meth) acrylic acid ester-based monomer is not limited to these.
 (メタ)アクリル酸エステル系(共)重合体は、(メタ)アクリル酸エステル系単量体とともに、以下のビニル系単量体を共重合することもできる。 The (meth) acrylic acid ester-based (co) polymer can also copolymerize the following vinyl-based monomers together with the (meth) acrylic acid ester-based monomer.
 ビニル系単量体としては、例えば、スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸、及びスチレンスルホン酸塩等のスチレン系単量体;ビニルトリメトキシシラン、及びビニルトリエトキシシラン等のケイ素含有ビニル系単量体;無水マレイン酸、マレイン酸、並びにマレイン酸のモノアルキルエステル及びジアルキルエステル等のマレイン酸又はマレイン酸誘導体;フマル酸、並びにフマル酸のモノアルキルエステル及びジアルキルエステル等のフマル酸又はフマル酸誘導体;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、及びシクロヘキシルマレイミド等のマレイミド系単量体;アクリロニトリル、及びメタクリロニトリル等のニトリル基含有ビニル系単量体;アクリルアミド、及びメタクリルアミド等のアミド基含有ビニル系単量体;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、及び桂皮酸ビニル等のビニルエステル類;エチレン、及びプロピレン等のアルケン類;ブタジエン、及びイソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。これらは単独で重合させてもよく、複数を共重合させてもよい。 Examples of the vinyl-based monomer include styrene-based monomers such as styrene, vinyltoluene, α-methylstyrene, chlorostyrene, styrenesulfonic acid, and styrenesulfonate; vinyltrimethoxysilane and vinyltriethoxysilane. Silicon-containing vinyl-based monomers such as; maleic anhydride, maleic acid, and maleic acid or maleic acid derivatives such as maleic acid monoalkyl esters and dialkyl esters; fumaric acid, and fumaric acid monoalkyl esters and dialkyl esters, etc. Fumaric acid or fumaric acid derivative; maleimide-based monomers such as maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, dodecylmaleimide, stearylmaleimide, phenylmaleimide, and cyclohexylmaleimide; acrylonitrile, And nitrile group-containing vinyl monomers such as methacrylonitrile; acrylamide and amide group-containing vinyl monomers such as methacrylicamide; vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, and vinyl cinnate. Vinyl esters such as; alkens such as ethylene and propylene; conjugated dienes such as butadiene and isoprene; vinyl chloride, vinylidene chloride, allyl chloride, allyl alcohol and the like. These may be polymerized alone, or a plurality of them may be copolymerized.
 (メタ)アクリル酸エステル系(共)重合体としては、物性等の点から(メタ)アクリル酸エステル系単量体の(共)重合体、スチレン系単量体と(メタ)アクリル酸系単量体との共重合体が好ましく、(メタ)アクリル酸エステル系単量体の(共)重合体がより好ましく、アクリル酸エステル系単量体の(共)重合体がさらに好ましい。 Examples of the (meth) acrylic acid ester-based (co) polymer include a (co) polymer of a (meth) acrylic acid ester-based monomer, a styrene-based monomer and a (meth) acrylic acid-based simple compound from the viewpoint of physical properties and the like. A copolymer with a polymer is preferable, a (co) polymer of a (meth) acrylic acid ester-based monomer is more preferable, and a (co) polymer of an acrylic acid ester-based monomer is further preferable.
 (メタ)アクリル酸エステル系(共)重合体の製造方法は、特に限定されない。(メタ)アクリル酸エステル系(共)重合体は、公知の方法により製造することができる。ただし、重合開始剤としてアゾ系化合物、過酸化物等を用いる通常のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2より大きく、粘度が高くなりやすい。従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系(共)重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系(共)重合体を得るためには、リビングラジカル重合法を用いることが好ましい。 The method for producing the (meth) acrylic acid ester-based (co) polymer is not particularly limited. The (meth) acrylic acid ester-based (co) polymer can be produced by a known method. However, a polymer obtained by a normal free radical polymerization method using an azo compound, a peroxide or the like as a polymerization initiator generally has a molecular weight distribution value of more than 2, and tends to have a high viscosity. Therefore, it is a (meth) acrylic acid ester-based (co) polymer having a narrow molecular weight distribution and low viscosity, and has a high proportion of crosslinkable functional groups at the ends of the molecular chain (meth) acrylic acid ester-based (co) weight. In order to obtain coalescence, it is preferable to use the living radical polymerization method.
 「リビングラジカル重合法」の中でも、有機ハロゲン化物、及びハロゲン化スルホニル化合物等を開始剤として用い、遷移金属錯体を触媒として用いて(メタ)アクリル酸エステル系単量体を重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有する(メタ)アクリル酸エステル系重合体の製造方法としてさらに好ましい。この原子移動ラジカル重合法は、例えば、Matyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁等に記載されている。 Among the "living radical polymerization methods", "atom transfer radicals" that polymerize (meth) acrylic acid ester-based monomers using organic halides, sulfonyl halide compounds, etc. as initiators and transition metal complexes as catalysts. In addition to the above-mentioned features of the "living radical polymerization method", the "polymerization method" has halogen and the like at the ends, which are relatively advantageous for the functional group conversion reaction, and has a large degree of freedom in designing the initiator and catalyst. It is more preferable as a method for producing a (meth) acrylic acid ester-based polymer having a specific functional group. This atom transfer radical polymerization method is described, for example, in Mattyjaszewski et al., Journal of the American Chemical Society (J. Am. Chem. Soc), 1995, Vol. 117, p. 5614.
 反応性ケイ素基を有する(メタ)アクリル酸エステル系(共)重合体の製造方法としては、例えば、特公平3-14068号公報、特公平4-55444号公報、及び特開平6-211922号公報等に、連鎖移動剤を用いたフリーラジカル重合法を用いた製法が開示されている。また、特開平9-272714号公報等に、原子移動ラジカル重合法を用いた製法が開示されている。反応性ケイ素基を有する(メタ)アクリル酸エステル系(共)重合体の製造方法は、これらの方法に限定されない。上記の反応性ケイ素基を有する(メタ)アクリル酸エステル系(共)重合体は、単独で使用されてもよく、2種以上を併用されてもよい。 Examples of the method for producing a (meth) acrylic acid ester-based (co) polymer having a reactive silicon group include JP-A-3-14068, JP-A-4-55444, and JP-A-6-21922. Etc., a production method using a free radical polymerization method using a chain transfer agent is disclosed. Further, Japanese Patent Application Laid-Open No. 9-272714 and the like disclose a production method using an atom transfer radical polymerization method. The method for producing a (meth) acrylic acid ester-based (co) polymer having a reactive silicon group is not limited to these methods. The (meth) acrylic acid ester-based (co) polymer having the above-mentioned reactive silicon group may be used alone or in combination of two or more.
 これらの反応性ケイ素基を有する基材樹脂(A)は、単独で使用してもよく、2種以上を併用してもよい。具体的には、2種以上の基材樹脂(A)を併用する場合、同種の主鎖を有する基材樹脂(A)を組み合わせて用いてもよいし、例えば、反応性ケイ素基を有するポリオキシアルキレン系重合体と反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体との組み合わせのように、異種の主鎖を有する基材樹脂(A)を組み合わせて用いてもよい。 The base resin (A) having these reactive silicon groups may be used alone or in combination of two or more. Specifically, when two or more types of base resin (A) are used in combination, the base resin (A) having the same type of main chain may be used in combination, for example, a polymer having a reactive silicon group. A base resin (A) having a different main chain may be used in combination, such as a combination of an oxyalkylene polymer and a (meth) acrylic acid ester polymer having a reactive silicon group.
〔化学発泡剤(B)〕
 好適な発泡体用樹脂組成物は、化学発泡剤(B)を含む。化学発泡剤(B)としては、発泡反応後に、副生物として無機微粒子や金属塩等を発生させない化合物が好ましい。このような観点から、化学発泡剤(B)は、二炭酸ジエステル(B-1)を含むのが好ましい。二炭酸ジエステル(B-1)は、発泡体用樹脂組成物の調製後に、室温程度の低温条件下であっても、基材樹脂(A)の硬化反応の速度に応じた好ましい速度で分解して発泡し得る。二炭酸ジエステル(B-1)は、水(C)の存在下では、無水条件よりも良好に発泡しやすい。
 また、二炭酸ジエステル(B-1)は発泡時の分解後に、揮発性の分解物のみを生じさせる。発泡体が、例えば、金属塩類等をある程度多量に含む場合、例えば1000Hz以下の低い周波数帯域における吸音特性が良好な発泡体を得にくい場合がある。しかし、二炭酸ジエステル(B-1)を用いて発泡を行うと、金属塩等をほとんど含まず、低い周波数帯域において良好な吸音特性を示す発泡体を容易に製造できる。
[Chemical foaming agent (B)]
A suitable foam resin composition contains a chemical foaming agent (B). As the chemical foaming agent (B), a compound that does not generate inorganic fine particles or metal salts as by-products after the foaming reaction is preferable. From this point of view, the chemical foaming agent (B) preferably contains a dicarbonate diester (B-1). After preparing the resin composition for foam, the dicarbonate diester (B-1) is decomposed at a preferable rate according to the rate of the curing reaction of the base resin (A) even under low temperature conditions of about room temperature. Can foam. The dicarbonate diester (B-1) tends to foam better in the presence of water (C) than in anhydrous conditions.
Further, the dicarbonate diester (B-1) produces only a volatile decomposition product after decomposition during foaming. When the foam contains, for example, a large amount of metal salts or the like, it may be difficult to obtain a foam having good sound absorption characteristics in a low frequency band of, for example, 1000 Hz or less. However, when foaming is performed using the dicarbonate diester (B-1), it is possible to easily produce a foam that contains almost no metal salt or the like and exhibits good sound absorption characteristics in a low frequency band.
 例えば、特公昭46-35992号公報には、不飽和ポリエステルを付加反応により硬化される発泡体用樹脂組成物に、二炭酸ジエチルを発泡剤として加える場合、室温で発泡体を製造する際に、20分程度の時間をかけて発泡による樹脂組成物の膨張が進行し、20分を超える長い時間をかけて樹脂組成物の硬化が進行することが開示されている(特公昭46-35992号公報の実施例8を参照。)。
 しかしながら、例えば、反応性ケイ素基を有する基材樹脂(A)を硬化させつつ発泡させる場合、基材樹脂(A)の硬化が5分程度でかなり進行してしまう場合がある。このため、反応性ケイ素基を有する基材樹脂(A)を含む発泡体用樹脂組成物に、20分もの時間をかけて発泡する化学発泡剤(B)を適用してしまうと、所望する発泡倍率に達する前に、基材樹脂(A)が速やかに硬化してしまい低発泡倍率の発泡体しか得られないと予測される。
 ところが、本発明者らが検討したところ、意外にも、基材樹脂(A)と、シラノール縮合触媒(D)とを含む発泡体用樹脂組成物に、二炭酸ジエステル(B-1)を含む化学発泡剤(B)を配合する場合、短時間で樹脂組成物を所望する程度に発泡させることができることが見出された。
For example, Japanese Patent Application Laid-Open No. 46-35992 states that when diethyl dicarbonate is added as a foaming agent to a foam resin composition in which unsaturated polyester is cured by an addition reaction, when a foam is produced at room temperature, It is disclosed that the expansion of the resin composition by foaming proceeds over a time of about 20 minutes, and the curing of the resin composition proceeds over a long time of more than 20 minutes (Japanese Patent Publication No. 46-35992). 8).
However, for example, when the base resin (A) having a reactive silicon group is foamed while being cured, the curing of the base resin (A) may proceed considerably in about 5 minutes. Therefore, if the chemical foaming agent (B) that foams over a period of as long as 20 minutes is applied to the resin composition for a foam containing the base resin (A) having a reactive silicon group, the desired foaming occurs. It is predicted that the base resin (A) will be rapidly cured before reaching the magnification, and only a foam having a low expansion ratio can be obtained.
However, as a result of examination by the present inventors, surprisingly, the resin composition for a foam containing the base resin (A) and the silanol condensation catalyst (D) contains the dicarbonate diester (B-1). It has been found that when the chemical foaming agent (B) is blended, the resin composition can be foamed to a desired degree in a short time.
 二炭酸ジエステルは、下記式(B1)で表される。
-O-CO-O-CO-O-R・・・(B1)
 式(B1)中、Rは有機基である。Rとしての有機基は、炭化水素基であるのが好ましい。2つのRは、同一であっても異なっていてもよく、同一であるのが好ましい。
The dicarbonate diester is represented by the following formula (B1).
R b- O-CO-O-CO-O-R b ... (B1)
In formula (B1), R b is an organic group. The organic group as R b is preferably a hydrocarbon group. The two R bs may be the same or different, and are preferably the same.
 Rとしての、炭化水素基の炭素原子数は、1以上16以下が好ましく、1以上12以下がより好ましく、1以上8以下がさらに好ましく、1以上6以下が特に好ましい。
 Rとしての炭化水素基としては、例えば、アルキル基、シクロアルキル基等の脂環式基、アラルキル基、及びアリール基が挙げられる。アルキル基について、直鎖状でも分岐鎖状でもよく、直鎖状が好ましい。
The number of carbon atoms of the hydrocarbon group as R b is preferably 1 or more and 16 or less, more preferably 1 or more and 12 or less, further preferably 1 or more and 8 or less, and particularly preferably 1 or more and 6 or less.
Examples of the hydrocarbon group as R b include an alicyclic group such as an alkyl group and a cycloalkyl group, an aralkyl group, and an aryl group. The alkyl group may be linear or branched, preferably linear.
 アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、及びn-ドデシル基等が挙げられる。
 シクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、及びシクロオクチル基等が挙げられる。
 アラルキル基の具体例としては、ベンジル基、フェネチル基、ナフタレン-1-イルメチル基、及びナフタレン-2-イルメチル基等が挙げられる。
 アリール基の具体例としては、フェニル、ナフタレン-1-イル基、ナフタレン-2-イル基、4-フェニルフェニル基、3-フェニルフェニル基、及び2-フェニルフェニル基等が挙げられる。
Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and n-hexyl group. Examples thereof include n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group and n-dodecyl group.
Specific examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group and the like.
Specific examples of the aralkyl group include a benzyl group, a phenethyl group, a naphthalene-1-ylmethyl group, a naphthalene-2-ylmethyl group and the like.
Specific examples of the aryl group include phenyl, naphthalene-1-yl group, naphthalene-2-yl group, 4-phenylphenyl group, 3-phenylphenyl group, 2-phenylphenyl group and the like.
 式(B1)で表される二炭酸ジエステル(B-1)としては、二炭酸ジメチル、二炭酸ジエチル、二炭酸ジ-n-プロピル、二炭酸ジイソプロピル、二炭酸ジ-n-ブチル、二炭酸ジイソブチル、二炭酸ジ-sec-ブチル、二炭酸ジ-tert-ブチル、二炭酸ジ-n-ペンチル、及び二炭酸ジ-n-ヘキシルが好ましい。入手が容易であることや、分子量が小さく単位重量当たりの発泡量が多いことから、二炭酸ジエステル(B-1)としては、二炭酸ジメチル、二炭酸ジエチル、二炭酸ジ-n-プロピル、及び二炭酸ジイソプロピルが好ましく、二炭酸ジメチル、及び二炭酸ジエチルがより好ましい。さらに、二炭酸ジエステルが加水分解された後の生成物の揮発性の高さ及び毒性の低さの観点により、二炭酸ジエステル(B-1)としては、二炭酸ジエチルが特に好ましい。 Examples of the dicarbonate diester (B-1) represented by the formula (B1) include dimethyl dicarbonate, diethyl dicarbonate, di-n-propyl dicarbonate, diisopropyl dicarbonate, di-n-butyl dicarbonate, and diisobutyl dicarbonate. , Di-sec-butyl dicarbonate, di-tert-butyl dicarbonate, di-n-pentyl dicarbonate, and di-n-hexyl dicarbonate are preferred. Dimethyl dicarbonate (B-1) includes dimethyl dicarbonate, diethyl dicarbonate, di-n-propyl dicarbonate, and dicarbonate because it is easily available and has a small molecular weight and a large amount of foaming per unit weight. Diisopropyl dicarbonate is preferred, and dimethyl dicarbonate and diethyl dicarbonate are more preferred. Further, from the viewpoint of high volatility and low toxicity of the product after the dicarbonate diester is hydrolyzed, diethyl dicarbonate is particularly preferable as the dicarbonate diester (B-1).
 発泡体用樹脂組成物が、水(C)を含まないか、少量の水(C)しか含まなくてもよい点や、化学発泡剤(B)の使用量が少量でも高発泡倍率を達成しやすい点で、化学発泡剤(B)が、主に二炭酸ジエステル(B-1)からなるのが好ましい。
 化学発泡剤(B)の重量に対する、二炭酸ジエステル(B-1)の重量の比率は、50重量%以上が好ましく、70重量%以上がより好ましく、80重量%以上がさらに好ましく、90重量%以上が特に好ましく、100重量%以上が最も好ましい。
 化学発泡剤(B)が二炭酸ジエステル(B-1)以外の他の化学発泡剤を含む場合、当該他の化学発泡剤としては、本発明の目的を阻害しない範囲で公知の種々の化学発泡剤を用いることができる。
 二炭酸ジエステル(B-1)以外の好ましい化学発泡剤(B)としては、テトライソシアネートシラン(Si(NCO))、メチルトリイソシアネートシラン(SiCH(NCO))、イソシアナトメチルトリメトキシシラン、イソシアナトメチルトリエトキシシラン、2-イソシアナトエチルトリメトキシシラン、2-イソシアナトエチルトリエトキシシラン、3-イソシアナト-n-プロピルトリメトキシシラン、3-イソシアナト-n-プロピルトリエトキシシラン、4-イソシアナト-n-ブチルトリメトキシシラン、及び4-イソシアナト-n-ブチルトリエトキシシラン等のイソシアネートシラン化合物(B-2)が挙げられる。特にアルコキシシリル基を有するイソシアネートシランはポリマーに固定化される点で好ましい。
 イソシアネートシラン化合物(B-2)は、二炭酸ジエステル(B-1)と併用されてもよい。
The resin composition for foams does not contain water (C) or may contain only a small amount of water (C), and achieves a high foaming ratio even when the amount of the chemical foaming agent (B) used is small. From the point of view of ease, it is preferable that the chemical foaming agent (B) is mainly composed of dicarbonate diester (B-1).
The ratio of the weight of the dicarbonate diester (B-1) to the weight of the chemical foaming agent (B) is preferably 50% by weight or more, more preferably 70% by weight or more, further preferably 80% by weight or more, and 90% by weight. The above is particularly preferable, and 100% by weight or more is most preferable.
When the chemical foaming agent (B) contains a chemical foaming agent other than the dicarbonate diester (B-1), the other chemical foaming agents are known as various chemical foaming agents as long as the object of the present invention is not impaired. Agents can be used.
The dicarbonate (B-1) other than the preferred chemical blowing agent (B), tetraisocyanatesilane (Si (NCO) 4), methyl triisocyanate silane (SiCH 3 (NCO) 3) , isocyanatomethyl-trimethoxysilane , Isocyanatomethyltriethoxysilane, 2-isocyanatoethyltrimethoxysilane, 2-isocyanatoethyltriethoxysilane, 3-isocyanato-n-propyltrimethoxysilane, 3-isocyanato-n-propyltriethoxysilane, 4- Examples thereof include isocyanate silane compounds (B-2) such as isocyanato-n-butyltrimethoxysilane and 4-isocyanato-n-butyltriethoxysilane. In particular, isocyanate silane having an alkoxysilyl group is preferable in that it is immobilized on the polymer.
The isocyanate silane compound (B-2) may be used in combination with the dicarbonate diester (B-1).
 化学発泡剤(B)の使用量は、発泡体の発泡倍率を勘案して適宜選択され得る。
 化学発泡剤(B)の含有量は、基材樹脂(A)100重量部に対して2重量部以上200重量部以下が好ましく、5重量部以上170重量部以下がより好ましく、5重量部以上130重量部以下がさらに好ましく、5重量部以上100重量部以下が特に好ましい。
The amount of the chemical foaming agent (B) used can be appropriately selected in consideration of the foaming ratio of the foam.
The content of the chemical foaming agent (B) is preferably 2 parts by weight or more and 200 parts by weight or less, more preferably 5 parts by weight or more and 170 parts by weight or less, and 5 parts by weight or more with respect to 100 parts by weight of the base resin (A). It is more preferably 130 parts by weight or less, and particularly preferably 5 parts by weight or more and 100 parts by weight or less.
 化学発泡剤(B)としての二炭酸ジエステル(B-1)の含有量は、基材樹脂(A)100重量部に対して1重量部以上50重量部以下が好ましく、2重量部以上40重量部以下がより好ましく、5重量部以上30重量部以下が特に好ましい。 The content of the dicarbonate diester (B-1) as the chemical foaming agent (B) is preferably 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the base resin (A), and is 2 parts by weight or more and 40 parts by weight. More preferably, it is 5 parts by weight or more and 30 parts by weight or less.
 以上化学発泡剤(B)について説明したが、化学発泡剤による発泡に加え、発泡体用樹脂組成物に物理発泡剤を加えて発泡を補助してもよい。物理発泡剤の沸点は、発泡性、作業性、及び安全性の点から、100℃以下が好ましく、50℃以下がより好ましい。物理発泡剤の具体例としては、炭化水素(例えば、LPG(プロパン)、ブタン等)、ハロゲン化炭化水素、エーテル(例えば、ジエチルエーテル)、クロロフルオロカーボン(CFC)、ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)、フルオロオレフィン(FO)、クロロフルオロオレフィン(CFO)、ハイドロフルオロオレフィン(HFO)、ハイドロクロロフルオロフルオロオレフィン(HCFO)、二酸化炭素、窒素、及び空気等が挙げられる。これらの物理発泡剤の中では、環境適合性の観点から、炭化水素、エーテル、二酸化炭素、窒素、及び空気が好ましい。 Although the chemical foaming agent (B) has been described above, in addition to foaming by the chemical foaming agent, a physical foaming agent may be added to the resin composition for foam to assist foaming. The boiling point of the physical foaming agent is preferably 100 ° C. or lower, more preferably 50 ° C. or lower, from the viewpoint of foamability, workability, and safety. Specific examples of the physical foaming agent include hydrocarbons (eg, LPG (propane), butane, etc.), halogenated hydrocarbons, ethers (eg, diethyl ethers), chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), and hydrochloros. Examples thereof include fluorocarbons (HCFCs), fluoroolefins (FOs), chlorofluoroolefins (CFOs), hydrofluoroolefins (HFOs), hydrochlorofluorofluoroolefins (HCFOs), carbon dioxide, nitrogen, and air. Among these physical foaming agents, hydrocarbons, ethers, carbon dioxide, nitrogen, and air are preferable from the viewpoint of environmental compatibility.
〔水(C)〕
 上記の好適な発泡体用樹脂組成物は、水(C)を含むか、又は含まない。発泡体用樹脂組成物が水(C)を含まない場合でも、硬化及び発泡が進行する。他方、水(C)としては、化学発泡剤(B)の発泡反応及び基材樹脂(A)の硬化反応を促進させる働きがある。
 発泡体用樹脂組成物が水(C)を含む場合、水(C)の含有量は、基材樹脂(A)100重量部に対して1重量部以上70重量部以下が好ましく、2重量部以上60重量部以下がより好ましく、2重量部以上50重量部以下がさらに好ましい。水(C)の含有量が上記の範囲内であると、十分に発泡させつつ良好に硬化を進行させやすく、微細且つ緻密な発泡セルを有し、柔軟性に優れる発泡体を得やすい。
[Water (C)]
The above-mentioned suitable foam resin composition contains or does not contain water (C). Curing and foaming proceed even when the resin composition for foam does not contain water (C). On the other hand, water (C) has a function of accelerating the foaming reaction of the chemical foaming agent (B) and the curing reaction of the base resin (A).
When the resin composition for a foam contains water (C), the content of water (C) is preferably 1 part by weight or more and 70 parts by weight or less with respect to 100 parts by weight of the base resin (A), and 2 parts by weight. More than 60 parts by weight is more preferable, and 2 parts by weight or more and 50 parts by weight or less is further preferable. When the content of water (C) is within the above range, it is easy to proceed with curing satisfactorily while sufficiently foaming, and it is easy to obtain a foam having fine and dense foam cells and excellent flexibility.
 水(C)の含有量は、二炭酸ジエステル(B-1)1重量部に対して、0.05重量部以上が好ましく、0.1重量部以上であるのがより好ましい。このような量の水を使用することにより、二炭酸ジエステル(B-1)を良好に水(C)と反応させ、特に良好な発泡を生じさせることができるとともに、基材樹脂(A)が有する反応性ケイ素基間の加水分解縮合反応が良好に進行する。
 特に、発泡体用樹脂組成物が化学発泡剤(B)として二炭酸ジエステル(B-1)のみを含む場合、発泡体用樹脂組成物中の水(C)の含有量は、二炭酸ジエステル(B-1)1重量部に対して0.05重量部以上0.5重量部以下であることが好ましく、0.05重量部以上0.3重量部以下であることがより好ましい。
 この場合、特に良好な発泡を生じさせながらも、発泡体作成後の発泡体中の水(C)の含有量を少なくでき、発泡体製造時の水等の揮発性成分を除去するための乾燥工程を省略することができる。
 発泡体中の水(C)の含有量の低減の観点のみからは、発泡体用樹脂組成物中の水(C)の含有量は、二炭酸ジエステル(B-1)1重量部に対して、0重量部以上0.05重量部以下であるのも好ましく、0重量部以上0.03重量部以下がより好ましく、0重量部、つまり水(C)を含まないのが特に好ましい。
 なお、二炭酸ジエステル(B-1)1モルは、水(C)1モルと反応し、炭酸ガス(二酸化炭素)2モルを発生させる。このため、二炭酸ジエステル(B-1)を、発泡体用樹脂組成物中の水(C)によって効率よく発泡させる観点からは、二炭酸ジエステル(B-1)と、水(C)とのモル比が、二炭酸ジエステル(B-1):水(C)として0.8:1~1:0.8であるのが好ましく、0.9:1~1:0.9であるのがより好ましく、0.95:1~1:0.95であるのがさらに好ましい。
 水(C)が不足している場合でも二炭酸ジエステル(B-1)から良好に発泡が生じる理由は不明であるが、空気中及び材料中の水分による二炭酸ジエステル(B-1)の加水分解が生じているか、加水分解とは別の分解反応により二酸化炭素が発生していると思われる。
The content of water (C) is preferably 0.05 parts by weight or more, and more preferably 0.1 parts by weight or more with respect to 1 part by weight of the dicarbonate diester (B-1). By using such an amount of water, the dicarbonate diester (B-1) can be satisfactorily reacted with water (C) to cause particularly good foaming, and the base resin (A) can be formed. The hydrolysis-condensation reaction between the reactive silicon groups has proceeded well.
In particular, when the foam resin composition contains only dicarbonate diester (B-1) as the chemical foaming agent (B), the content of water (C) in the foam resin composition is the dicarbonate diester (B-1). B-1) It is preferably 0.05 parts by weight or more and 0.5 parts by weight or less, and more preferably 0.05 parts by weight or more and 0.3 parts by weight or less with respect to 1 part by weight.
In this case, the content of water (C) in the foam after forming the foam can be reduced while causing particularly good foaming, and drying is performed to remove volatile components such as water during the production of the foam. The step can be omitted.
From the viewpoint of reducing the content of water (C) in the foam, the content of water (C) in the resin composition for foam is based on 1 part by weight of the dicarbonate diester (B-1). , 0 parts by weight or more and 0.05 parts by weight or less, more preferably 0 parts by weight or more and 0.03 parts by weight or less, and particularly preferably 0 parts by weight, that is, no water (C) is contained.
In addition, 1 mol of dicarbonate diester (B-1) reacts with 1 mol of water (C) to generate 2 mol of carbon dioxide gas (carbon dioxide). Therefore, from the viewpoint of efficiently foaming the dicarbonate diester (B-1) with water (C) in the resin composition for foam, the dicarbonate diester (B-1) and water (C) are used. The molar ratio of dicarbonate diester (B-1): water (C) is preferably 0.8: 1 to 1: 0.8, preferably 0.9: 1 to 1: 0.9. More preferably, it is 0.95: 1 to 1: 0.95.
The reason why foaming occurs well from the dicarbonate diester (B-1) even when water (C) is insufficient is unknown, but the water content of the dicarbonate diester (B-1) is added to the water in the air and in the material. It is considered that carbon dioxide is generated by decomposition or a decomposition reaction different from hydrolysis.
〔シラノール縮合触媒(D)〕
 発泡体用樹脂組成物は、シラノール縮合触媒(D)を含む。シラノール縮合触媒(D)としては、縮合触媒として使用し得るものである限り、特に制限はなく、任意のものを使用し得るが、二炭酸ジエステル(B-1)の発泡反応により発生する炭酸の影響による触媒活性の低下が生じにくい点から、中性あるいは弱酸性のシラノール縮合触媒(D)が好ましい。炭酸は二酸化炭素が水に溶解することで発生する。
[Silanol condensation catalyst (D)]
The resin composition for a foam contains a silanol condensation catalyst (D). The silanol condensation catalyst (D) is not particularly limited as long as it can be used as a condensation catalyst, and any one can be used, but the carbonic acid generated by the foaming reaction of the dicarbonate diester (B-1) can be used. A neutral or weakly acidic silanol condensation catalyst (D) is preferable because the catalytic activity is unlikely to decrease due to the influence. Carbonic acid is generated when carbon dioxide dissolves in water.
 シラノール縮合触媒(D)の例としては、4価の錫化合物類、2価の錫化合物物類、前述の2価の錫化合物類と後述のラウリルアミン等のアミン系化合物との反応物及び混合物、モノアルキル錫類、チタン酸エステル類、有機アルミニウム化合物、カルボン酸金属塩、カルボン酸金属塩と後述のラウリルアミン等のアミン系化合物との反応物及び混合物、キレート化合物、飽和脂肪族第一級アミン類、飽和脂肪族第二級アミン類、飽和脂肪族第三級アミン類、脂肪族不飽和アミン類、芳香族アミン類、これらのアミン類以外のその他のアミン類、これらのアミン類とカルボン酸等との塩、アミン系化合物と有機錫化合物との反応物及び混合物、過剰のポリアミンと多塩基酸とから得られる低分子量ポリアミド樹脂、過剰のポリアミンとエポキシ化合物との反応生成物、アミノ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤を変性した誘導体等が挙げられる。 Examples of the silanol condensation catalyst (D) include tetravalent tin compounds, divalent tin compounds, and reactants and mixtures of the above-mentioned divalent tin compounds and amine-based compounds such as laurylamine described below. , Monoalkyltins, titanic acid esters, organic aluminum compounds, carboxylic acid metal salts, carboxylic acid metal salts and amine compounds such as laurylamine described below, chelate compounds, saturated aliphatic primary Amines, saturated aliphatic secondary amines, saturated aliphatic tertiary amines, aliphatic unsaturated amines, aromatic amines, other amines other than these amines, these amines and carboxylics. Salts with acids, etc., reactants and mixtures of amine compounds and organic tin compounds, low molecular weight polyamide resins obtained from excess polyamines and polybasic acids, reaction products of excess polyamines with epoxy compounds, amino groups Examples thereof include a silane coupling agent having an amino group, a modified derivative of a silane coupling agent having an amino group, and the like.
 4価の錫化合物類としては、ジアルキル錫ジカルボキシレート類、ジアルキル錫アルコキサイド類、ジアルキル錫の分子内配位性誘導体類、ジアルキル錫オキサイドとエステル化合物との反応物、ジアルキル錫オキサイドとカルボン酸とアルコール化合物との反応物、ジアルキル化合物、ジアルキル錫オキサイドとシリケート化合物との反応物、及びこれらのジアルキル錫化合物のオキシ誘導体(スタノキサン化合物)等が挙げられる。 Examples of tetravalent tin compounds include dialkyltin dicarboxylates, dialkyltin alcoxides, intramolecular coordinating derivatives of dialkyltin, reactants of dialkyltin oxide and ester compounds, dialkyltin oxide and carboxylic acid. Examples thereof include a reaction product with an alcohol compound, a dialkyl compound, a reaction product between a dialkyl tin oxide and a silicate compound, and an oxy derivative (stanoxane compound) of these dialkyl tin compounds.
 ジアルキル錫ジカルボキシレート類の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジ(2-エチルヘキサノエート)、ジブチル錫ジオクテート、ジブチル錫ジバーサテート、ジブチル錫ジステアレート、ジブチル錫ジ(メチルマレエート)、ジブチル錫ジ(エチルマレエート)、ジブチル錫ジ(ブチルマレエート)、ジブチル錫ジ(イソオクチルマレエート)、ジブチル錫ジ(トリデシルマレエート)、ジブチル錫ジ(オレイルマレエート)、ジブチル錫ジ(ベンジルマレエート)、ジブチル錫マレエート、ジオクチル錫ジアセテート、ジオクチル錫ジバーサテート、ジオクチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジ(エチルマレエート)、ジオクチル錫ジ(イソオクチルマレエート)等が挙げられる。
 なお、ジブチル錫マレエートは、下記式:
-Sn(-n-C-OCO―CH=CH=COO-
で表される構成単位からなるオリゴマー又はポリマーである。
Specific examples of dialkyltin dicarboxylates include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin di (2-ethylhexanoate), dibutyltin dioctate, dibutyltin diversate, dibutyltin distearate, and dibutyltin di (methyl). Maleate), Dibutyltin Di (Ethylmaleate), Dibutyltin Di (Butyl Maleate), Dibutyltin Di (Isooctyl Maleate), Dibutyltin Di (Tridecyl Maleate), Dibutyltin Di (Oleyl Maleate) , Dibutyltin di (benzylmaleate), dibutyltin maleate, dioctyltin diacetate, dioctyltin diversate, dioctyltin disteareate, dioctyltin dilaurate, dioctyltin di (ethylmaleate), dioctyltin di (isooctylmalate), etc. Can be mentioned.
The dibutyltin maleate is expressed by the following formula:
-Sn (-n-C 4 H 9 ) 2 -OCO-CH = CH = COO-
It is an oligomer or polymer composed of a structural unit represented by.
 ジアルキル錫アルコキサイド類の具体例としては、ジブチル錫ジメトキシド、ジブチル錫ジフェノキシド等が挙げられる。 Specific examples of dialkyltin alcoxysides include dibutyltin dimethoxyde and dibutyltin diphenoxide.
 ジアルキル錫の分子内配位性誘導体類の具体例としては、ジブチル錫ジアセチルアセトナート、ジブチル錫ジエチルアセトアセテート等が挙げられる。 Specific examples of the intramolecular coordinating derivatives of dialkyltin include dibutyltin diacetylacetonate and dibutyltin diethylacetacetate.
 ジアルキル錫オキサイドとエステル化合物との反応物の具体例としては、ジブチル錫オキサイドやジオクチル錫オキサイド等のジアルキル錫オキサイドと、ジオクチルフタレート、ジイソデシルフタレート、メチルマレエート等のエステル化合物との反応物が挙げられる。 Specific examples of the reaction product of the dialkyl tin oxide and the ester compound include a reaction product of a dialkyl tin oxide such as dibutyl tin oxide and dioctyl tin oxide and an ester compound such as dioctyl phthalate, diisodecyl phthalate and methyl maleate. ..
 ジアルキル錫オキサイドとシリケート化合物との反応物としては、ジブチル錫ビストリエトキシシリケート、ジオクチル錫ビストリエトキシシリケート等が挙げられる。 Examples of the reaction product of the dialkyltin oxide and the silicate compound include dibutyltin bistriethoxysilicate and dioctyltin bistriethoxysilicate.
 2価の錫化合物物類の具体例としては、オクチル酸錫、ナフテン酸錫、ステアリン酸錫、フェルザチック酸錫等が挙げられる。 Specific examples of the divalent tin compounds include tin octylate, tin naphthenate, tin stearate, tin ferzaticate and the like.
 モノアルキル錫類の具体例としては、モノブチル錫トリスオクトエートやモノブチル錫トリイソプロポキシド等のモノブチル錫化合物やモノオクチル錫化合物等が挙げられる。 Specific examples of monoalkyl tins include monobutyl tin compounds such as monobutyl tin trisoctate and monobutyl tin triisopropoxide, and monooctyl tin compounds.
 チタン酸エステル類の具体例としては、テトラブチルチタネート、テトラプロピルチタネート、テトラ(2-エチルヘキシル)チタネート、イソプロポキシチタンビス(エチルアセトアセテート)等が挙げられる。 Specific examples of the titanic acid esters include tetrabutyl titanate, tetrapropyl titanate, tetra (2-ethylhexyl) titanate, isopropoxytitanium bis (ethylacetoacetate) and the like.
 有機アルミニウム化合物の具体例としては、アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジ-イソプロポキシアルミニウムエチルアセトアセテート等が挙げられる。 Specific examples of the organoaluminum compound include aluminum trisacetylacetonate, aluminumtrisethylacetate, di-isopropoxyaluminum ethylacetate and the like.
 カルボン酸金属塩の具体例としては、カルボン酸ビスマス、カルボン酸鉄、カルボン酸チタニウム、カルボン酸鉛、カルボン酸バナジウム、カルボン酸ジルコニウム、カルボン酸カルシウム、カルボン酸カリウム、カルボン酸バリウム、カルボン酸マンガン、カルボン酸セリウム、カルボン酸ニッケル、カルボン酸コバルト、カルボン酸亜鉛、カルボン酸アルミニウム等が挙げられる。当該カルボン酸金属塩を与えるカルボン酸の具体例としては2-エチルヘキサン酸、ネオデカン酸、バーサチック酸、オレイン酸、ナフテン酸等が挙げられる。 Specific examples of the metal carboxylate salt include bismuth carboxylate, iron carboxylate, titanium carboxylate, lead carboxylate, vanadium carboxylate, zirconium carboxylate, calcium carboxylate, potassium carboxylate, barium carboxylate, manganese carboxylate, Examples thereof include cerium carboxylate, nickel carboxylate, cobalt carboxylate, zinc carboxylate, aluminum carboxylate and the like. Specific examples of the carboxylic acid that gives the carboxylic acid metal salt include 2-ethylhexanoic acid, neodecanoic acid, versatic acid, oleic acid, and naphthenic acid.
 キレート化合物類の具体例としては、ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジブトキシジルコニウムジアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート)、チタンテトラアセチルアセトナート等が挙げられる。 Specific examples of the chelate compounds include zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, dibutoxyzirconium diacetylacetonate, zirconium acetylacetonatebis (ethylacetacetone), titanium tetraacetylacetonate and the like.
 飽和脂肪族第一級アミン類の具体例としては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、アミルアミン、ヘキシルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ラウリルアミン、ペンタデシルアミン、セチルアミン、ステアリルアミン、シクロヘキシルアミン等が挙げられる。 Specific examples of saturated aliphatic primary amines include methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, laurylamine and pentadecylamine. , Cetylamine, stearylamine, cyclohexylamine and the like.
 飽和脂肪族第二級アミン類の具体例としては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジアミルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、ジデシルアミン、ジラウリルアミン、ジセチルアミン、ジステアリルアミン、メチルステアリルアミン、エチルステアリルアミン、ブチルステアリルアミン等が挙げられる。 Specific examples of saturated aliphatic secondary amines include dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diamylamine, dioctylamine, di (2-ethylhexyl) amine, didecylamine, dilaurylamine, and disetylamine. Examples thereof include distearylamine, methylstearylamine, ethylstearylamine, butylstearylamine and the like.
 飽和脂肪族第三級アミン類の具体例としては、トリアミルアミン、トリヘキシルアミン、トリオクチルアミン、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等が挙げられる。 Specific examples of saturated aliphatic tertiary amines include triamylamine, trihexylamine, trioctylamine, 1,4-diazabicyclo [2.2.2] octane (DABCO) and the like.
 脂肪族不飽和アミン類の具体例としては、トリアリルアミン、オレイルアミン等が挙げられる。 Specific examples of aliphatic unsaturated amines include triallylamine, oleylamine and the like.
 芳香族アミン類の具体例としては、ラウリルアニリン、ステアリルアニリン、トリフェニルアミン等が挙げられる。 Specific examples of aromatic amines include laurylaniline, stearylaniline, triphenylamine and the like.
 上記のアミン類以外のその他のアミン類の具体例としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、オレイルアミン、ベンジルアミン、ジエチルアミノプロピルアミン、キシリレンジアミン、エチレンジアミン、ヘキサメチレンジアミン、トリエチレンジアミン、グアニジン、ジフェニルグアニジン、2,4,6-トリス(ジメチルアミノメチル)フェノール、モルホリン、N-メチルモルホリン、2-エチル-4-メチルイミダゾール、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等のアミン系化合物が挙げられる。 Specific examples of amines other than the above amines include monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, oleylamine, benzylamine, diethylaminopropylamine, xylylenediamine, ethylenediamine, hexamethylenediamine. , Triethylenediamine, guanidine, diphenylguanidine, 2,4,6-tris (dimethylaminomethyl) phenol, morpholin, N-methylmorpholin, 2-ethyl-4-methylimidazole, 1,8-diazabicyclo [5.4.0] ] -7-Amine-based compounds such as undecene (DBU) can be mentioned.
 アミン系化合物と有機錫化合物との反応物及び混合物としては、ラウリルアミンとオクチル酸錫の反応物あるいは混合物等が挙げられる。 Examples of the reaction product and mixture of the amine compound and the organic tin compound include a reaction product or a mixture of laurylamine and tin octylate.
 アミノ基を有するシランカップリング剤の具体例としては、3-アミノ-n-プロピルトリメトキシシラン、3-アミノ-n-プロピルトリエトキシシラン、3-アミノ-n-プロピルトリイソプロポキシシラン、3-アミノ-n-プロピルメチルジメトキシシラン、3-アミノ-n-プロピルメチルジエトキシシラン、N-(β-アミノエチル)-3-アミノ-n-プロピルトリメトキシシラン、N-(β-アミノエチル)-3-アミノ-n-プロピルメチルジメトキシシラン、N-(β-アミノエチル)-3-アミノ-n-プロピルトリエトキシシラン、N-(β-アミノエチル)-3-アミノ-n-プロピルメチルジエトキシシラン、N-(β-アミノエチル)-3-アミノ-n-プロピルトリイソプロポキシシラン、3-ウレイド-n-プロピルトリメトキシシラン、N-フェニル-3-アミノ-n-プロピルトリメトキシシラン、N-ベンジル-3-アミノ-n-プロピルトリメトキシシラン、N-ビニルベンジル-3-アミノ-n-プロピルトリエトキシシラン等を挙げることができる。 Specific examples of the silane coupling agent having an amino group include 3-amino-n-propyltrimethoxysilane, 3-amino-n-propyltriethoxysilane, 3-amino-n-propyltriisopropoxysilane, and 3-. Amino-n-propylmethyldimethoxysilane, 3-amino-n-propylmethyldiethoxysilane, N- (β-aminoethyl) -3-amino-n-propyltrimethoxysilane, N- (β-aminoethyl)- 3-Amino-n-propylmethyldimethoxysilane, N- (β-aminoethyl) -3-amino-n-propyltriethoxysilane, N- (β-aminoethyl) -3-amino-n-propylmethyldiethoxy Silane, N- (β-aminoethyl) -3-amino-n-propyltriisopropoxysilane, 3-ureido-n-propyltrimethoxysilane, N-phenyl-3-amino-n-propyltrimethoxysilane, N Examples thereof include -benzyl-3-amino-n-propyltrimethoxysilane and N-vinylbenzyl-3-amino-n-propyltriethoxysilane.
 上記のアミノ基を有するシランカップリング剤を変性した誘導体としては、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン等が挙げられる。 Examples of the derivative obtained by modifying the above-mentioned silane coupling agent having an amino group include an amino-modified silyl polymer, a silylated amino polymer, an unsaturated amino silane complex, a phenylamino long chain alkyl silane, and an amino silylated silicone.
 さらにはフェルザチック酸等の脂肪酸や有機酸性リン酸エステル化合物等他の酸性触媒、塩基性触媒等を、公知のシラノール縮合触媒として例示できる。 Further, fatty acids such as ferzatic acid, other acidic catalysts such as organic acidic phosphoric acid ester compounds, basic catalysts and the like can be exemplified as known silanol condensation catalysts.
 酸性触媒の有機酸性リン酸エステル化合物としては、(CHO)-P(=O)(-OH)、(CHO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(CO)-P(=O)(-OH)、(C17O)-P(=O)(-OH)、(C17O)-P(=O)(-OH)、(C1021O)-P(=O)(-OH)、(C1021O)-P(=O)(-OH)、(C1327O)-P(=O)(-OH)、(C1327O)-P(=O)(-OH)、(C1633O)-P(=O)(-OH)、(C1633O)-P(=O)(-OH)、(HO-C12O)-P(=O)(-OH)、(HO-C12O)-P(=O)(-OH)、(HO-C16O)-P(=O)(-OH)、(HO-C16O)-P(=O)(-OH)、[(CHOH)(CHOH)O]-P(=O)(-OH)、[(CHOH)(CHOH)O]-P(=O)(-OH)、[(CHOH)(CHOH)CO]-P(=O)(-OH)、[(CHOH)(CHOH)CO]-P(=O)(-OH)等が挙げられるが、例示物質に限定されるものではない。 Examples of the organic acidic phosphoric acid ester compound of the acidic catalyst include (CH 3 O) 2- P (= O) (-OH), (CH 3 O) -P (= O) (-OH) 2 , (C 2 H). 5 O) 2- P (= O) (-OH), (C 2 H 5 O) -P (= O) (-OH) 2 , (C 3 H 7 O) 2- P (= O) (- OH), (C 3 H 7 O) -P (= O) (-OH) 2 , (C 4 H 9 O) 2- P (= O) (-OH), (C 4 H 9 O) -P (= O) (-OH) 2 , (C 8 H 17 O) 2- P (= O) (-OH), (C 8 H 17 O) -P (= O) (-OH) 2 , (C 10 H 21 O) 2- P (= O) (-OH), (C 10 H 21 O) -P (= O) (-OH) 2 , (C 13 H 27 O) 2- P (= O) (-OH), (C 13 H 27 O) -P (= O) (-OH) 2 , (C 16 H 33 O) 2- P (= O) (-OH), (C 16 H 33 O) -P (= O) (-OH) 2 , (HO-C 6 H 12 O) 2- P (= O) (-OH), (HO-C 6 H 12 O) -P (= O) (- OH) 2, (HO-C 8 H 16 O) -P (= O) (- OH), (HO-C 8 H 16 O) -P (= O) (- OH) 2, [(CH 2 OH ) (CHOH) O] 2- P (= O) (-OH), [(CH 2 OH) (CHOH) O] -P (= O) (-OH) 2 , [(CH 2 OH) (CHOH) C 2 H 4 O] 2- P (= O) (-OH), [(CH 2 OH) (CHOH) C 2 H 4 O] -P (= O) (-OH) 2, etc. It is not limited to the exemplary substance.
 発泡体用樹脂組成物の硬化を良好に進行させる観点からは、前述のシラノール縮合触媒(D)の好適な例の中でも、Snを含む錫含有触媒が好ましく、ジアルキル錫ジカルボキシレート類、ジアルキル錫アルコキサイド類、ジアルキル錫の分子内配位性誘導体類、ジアルキル錫オキサイドとエステル化合物との反応物、ジアルキル錫オキサイド、カルボン酸及びアルコール化合物を反応させて得られる錫化合物、ジアルキル錫オキサイドとシリケート化合物との反応物、及びこれらのジアルキル錫化合物のオキシ誘導体(スタノキサン化合物)等の4価の錫化合物類を含むのが好ましい。
 錫含有触媒としては、その質量における錫原子の質量の比率が高いほど、触媒活性が高く好ましい。
 また、発泡体製造後の発泡体の経時的なシュリンクの抑制の観点からは、シラノール縮合触媒(D)として、ジアルキル錫ジカルボキシレート類が好ましく、ジブチル錫ジアセテートがより好ましい。
From the viewpoint of satisfactorily curing the resin composition for foam, among the preferred examples of the silanol condensation catalyst (D) described above, a tin-containing catalyst containing Sn is preferable, and dialkyltin dicarboxylates and dialkyltin. Alcoxides, intramolecular coordinating derivatives of dialkyl tin, reaction products of dialkyl tin oxide and ester compounds, tin compounds obtained by reacting dialkyl tin oxide, carboxylic acids and alcohol compounds, dialkyl tin oxide and silicate compounds , And tetravalent tin compounds such as oxy derivatives (stanoxane compounds) of these dialkyl tin compounds are preferably contained.
As the tin-containing catalyst, the higher the ratio of the mass of tin atoms to the mass, the higher the catalytic activity, which is preferable.
Further, from the viewpoint of suppressing shrinkage of the foam over time after the production of the foam, dialkyltin dicarboxylates are preferable as the silanol condensation catalyst (D), and dibutyltin diacetate is more preferable.
 二炭酸ジエステル(B-1)の発泡反応により発生する炭酸の影響による触媒活性の低下が生じにくく、二炭酸ジエステル(B-1)と水との発泡反応と、基材樹脂(A)の硬化反応とを特にバランスよく進行させるという観点から、上記に挙げられるシラノール縮合触媒(D)の中でも、中性又は弱酸性のシラノール縮合触媒が好ましく、弱酸性のシラノール縮合触媒がより好ましい。炭酸は二酸化炭素が水に溶解することで発生する。
 また、中性又は弱酸性のシラノール縮合触媒を用いる場合、発泡開始時の、二炭酸ジエステル(B-1)の水との発泡反応の進行を阻害しにくい。
 シラノール縮合触媒(D)は、基材樹脂(A)を良好に硬化させやすい点から、中性又は弱酸性のシラノール縮合触媒として、前述の種々の錫含有触媒のうち中性又は弱酸性の触媒を含むのが好ましい。
 このような観点からも、シラノール縮合触媒(D)に関して、中性又は弱酸性の錫含有触媒として、ジアルキル錫ジカルボキシレート類が好ましい。
 中性又は弱酸性のジアルキル錫ジカルボキシレートとしては、下記式(D1)で表される化合物、又は下記式(D2)で表される構成単位からなるオリゴマー又はポリマーが好ましい。
(Rd1)(Rd2)(Rd3COO)(Rd4COO)Sn・・・(D1)
-(-(Rd1)(Rd2)Sn-OCORd5COO-)-・・・(D2)
 式(D1)及び式(D2)において、Rd1及びRd2は、それぞれ同一でも異なっていてもよい。Rd1及びRd2は、直鎖状又は分岐状のアルキル基であり、直鎖アルキル基が好ましい。Rd1及びRd2としてのアルキル基の炭素原子数は特に限定されず、1以上20以下が好ましく、2以上16以下がより好ましく、3以上10以下がさらに好ましい。錫含有触媒の入手が容易な点や、錫含有触媒のシラノール縮合触媒(D)としての活性が良好であることから、Rd1及びRd2としては、n-ブチル基、及びn-オクチル基が好ましい。
 式(D1)中、Rd3及びRd4は、それぞれ、炭素原子数1以上40以下の有機基である。Rd3及びRd4としての有機基の炭素原子数は、1以上30以下が好ましい。Rd3及びRd4としての有機基は、O、S、N、及びSi等のヘテロ原子を含んでいてもよい。
 錫含有触媒の入手が容易な点や、錫含有触媒のシラノール縮合触媒(D)としての活性が良好であることから、Rd3及びRd4としては、炭素原子数1以上30以下の直鎖状又は分岐鎖状のアルキル基と、下記式(D3):
-CH=CH-CO-ORd6・・・(D3)
で表される基が好ましい。Rd6は炭素原子数1以上30以下の炭化水素基である。当該炭化水素基は、脂肪族炭化水素基であっても、芳香族炭化水素基であっても、脂肪族炭化水素基と芳香族炭化水素基との組み合わせであってもよい。Rd6としての炭化水素基の炭素原子数は1以上20以下が好ましい。
 式(D2)中、Rd5は、炭素原子数1以上40以下の2価の有機基である。Rd5としての有機基の炭素原子数は、1以上30以下が好ましく、1以上10以下がより好ましく、1以上4以下がさらに好ましい。Rd5としての有機基は、O、S、N、及びSi等のヘテロ原子を含んでいてもよい。Rd5としての有機基としては、炭化水素基が好ましく、-CH=CH-、及び-CHCH-がより好ましい。
 上記式(D1)で表される化合物、又は上記式(D2)で表される構成単位からなるオリゴマー又はポリマーの好適な具体例は、ジアルキル錫ジカルボキシレート類の具体例として前述した通りであり、ジブチル錫ジアセテートが特に好ましい。
 シラノール縮合触媒が中性又は弱酸性であるかは、シラノール縮合触媒の濃度1質量%の水/アセトン=10/90溶液の20℃でのpHを測定することにより判別することができる。具体的には、pHが6.0以上8.0未満である場合を中性とし、pHが3.5以上6.0未満である場合を弱酸性とする。
 中性又は弱酸性のシラノール縮合触媒(D)を含む発泡体用樹脂組成物を用いる場合、短時間で、発泡及び効果を進行させやすい。このため、中性又は弱酸性のシラノール縮合触媒(D)を含む発泡体用樹脂組成物は、建築現場や種々の工業製品の製造現場等における現場において、発泡体を施工する場合に、特に有用である。
 現場での発泡体の施工には、短時間での発泡及び硬化が要求されるためである。
The catalytic activity is unlikely to decrease due to the influence of carbon dioxide generated by the foaming reaction of the dicarbonate diester (B-1), and the foaming reaction between the dicarbonate diester (B-1) and water and the curing of the base resin (A) Among the silanol condensation catalysts (D) listed above, a neutral or weakly acidic silanol condensation catalyst is preferable, and a weakly acidic silanol condensation catalyst is more preferable, from the viewpoint of allowing the reaction to proceed in a particularly well-balanced manner. Carbonic acid is generated when carbon dioxide dissolves in water.
Further, when a neutral or weakly acidic silanol condensation catalyst is used, it is difficult to inhibit the progress of the foaming reaction of the dicarbonate diester (B-1) with water at the start of foaming.
The silanol condensation catalyst (D) is a neutral or weakly acidic catalyst among the various tin-containing catalysts described above as a neutral or weakly acidic silanol condensation catalyst because the base resin (A) can be easily cured. Is preferably included.
From this point of view, dialkyltin dicarboxylates are preferable as the neutral or weakly acidic tin-containing catalyst with respect to the silanol condensation catalyst (D).
As the neutral or weakly acidic dialkyltin dicarboxylate, a compound represented by the following formula (D1) or an oligomer or polymer composed of a structural unit represented by the following formula (D2) is preferable.
(R d1 ) (R d2 ) (R d3 COO) (R d4 COO) Sn ... (D1)
-(-(R d1 ) (R d2 ) Sn-OCOR d5 COO-)-... (D2)
In formulas (D1) and (D2), R d1 and R d2 may be the same or different, respectively. R d1 and R d2 are linear or branched alkyl groups, and a linear alkyl group is preferable. The number of carbon atoms of the alkyl group as R d1 and R d2 is not particularly limited, and is preferably 1 or more and 20 or less, more preferably 2 or more and 16 or less, and further preferably 3 or more and 10 or less. Since the tin-containing catalyst is easily available and the activity of the tin-containing catalyst as a silanol condensation catalyst (D) is good, n-butyl group and n-octyl group are used as R d1 and R d2. preferable.
In the formula (D1), R d3 and R d4 are organic groups having 1 or more and 40 or less carbon atoms, respectively. The number of carbon atoms of the organic group as R d3 and R d4 is preferably 1 or more and 30 or less. The organic groups as R d3 and R d4 may contain heteroatoms such as O, S, N, and Si.
Since the tin-containing catalyst is easily available and the activity of the tin-containing catalyst as a silanol condensation catalyst (D) is good, the R d3 and R d4 are linear with 1 to 30 carbon atoms. Alternatively, a branched alkyl group and the following formula (D3):
-CH = CH-CO-OR d6 ... (D3)
The group represented by is preferable. R d6 is a hydrocarbon group having 1 or more and 30 or less carbon atoms. The hydrocarbon group may be an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a combination of an aliphatic hydrocarbon group and an aromatic hydrocarbon group. The number of carbon atoms of the hydrocarbon group as R d6 is preferably 1 or more and 20 or less.
In the formula (D2), R d5 is a divalent organic group having 1 or more and 40 or less carbon atoms. The number of carbon atoms of the organic group as R d5 is preferably 1 or more and 30 or less, more preferably 1 or more and 10 or less, and further preferably 1 or more and 4 or less. The organic group as R d5 may contain heteroatoms such as O, S, N, and Si. As the organic group as R d5 , a hydrocarbon group is preferable, and -CH = CH- and -CH 2 CH 2 --are more preferable.
Preferable specific examples of the compound represented by the above formula (D1) or the oligomer or polymer composed of the structural unit represented by the above formula (D2) are as described above as specific examples of dialkyltin dicarboxylates. , Dibutyltin diacetate is particularly preferred.
Whether the silanol condensation catalyst is neutral or weakly acidic can be determined by measuring the pH of a water / acetone = 10/90 solution having a concentration of 1% by mass of the silanol condensation catalyst at 20 ° C. Specifically, the case where the pH is 6.0 or more and less than 8.0 is regarded as neutral, and the case where the pH is 3.5 or more and less than 6.0 is regarded as weakly acidic.
When a resin composition for a foam containing a neutral or weakly acidic silanol condensation catalyst (D) is used, foaming and the effect can be easily promoted in a short time. Therefore, the resin composition for a foam containing a neutral or weakly acidic silanol condensation catalyst (D) is particularly useful when constructing a foam at a construction site or a manufacturing site of various industrial products. Is.
This is because foaming and curing in a short time are required for the construction of the foam on site.
 塩基性のシラノール縮合触媒(D)の好適な例としては、それぞれ上記される、脂肪族第一級アミン類、脂肪族第二級アミン類、脂肪族第三級アミン類、脂肪族不飽和アミン類、及び芳香族アミン類と、これらのアミン類以外のその他のアミン類と、アミノ基を有するシランカップリング剤が挙げられる。
 なお、上記のアミン類や、アミノ基を有するシランカップリング剤を単独でシラノール縮合触媒として用いる場合、基材樹脂(A)の硬化反応がやや遅い場合がある。このため、上記のアミン類や、アミノ基を有するシランカップリング剤は、前述の種々の錫含有触媒のように基材樹脂(A)の硬化反応の促進効果が高い触媒と併用されるのが好ましい。
 特に、塩基性のシラノール縮合触媒(D)は、中性又は弱酸性の錫含有触媒と併用されるのが好ましく、ジアルキル錫ジカルボキシレート類と併用されるのがより好ましく、ジブチル錫ジカルボキシレート類が最も好ましい。
Preferable examples of the basic silanol condensation catalyst (D) are the above-mentioned aliphatic primary amines, aliphatic secondary amines, aliphatic tertiary amines, and aliphatic unsaturated amines, respectively. , And aromatic amines, other amines other than these amines, and silane coupling agents having an amino group.
When the above amines or a silane coupling agent having an amino group is used alone as a silanol condensation catalyst, the curing reaction of the base resin (A) may be slightly slow. Therefore, the above-mentioned amines and the silane coupling agent having an amino group are used in combination with a catalyst having a high effect of accelerating the curing reaction of the base resin (A), such as the above-mentioned various tin-containing catalysts. preferable.
In particular, the basic silanol condensation catalyst (D) is preferably used in combination with a neutral or weakly acidic tin-containing catalyst, more preferably in combination with dialkyltin dicarboxylates, and dibutyltin dicarboxylate. Is most preferred.
 シラノール縮合触媒(D)の含有量は、基材樹脂(A)100重量部に対して90重量部以下が好ましく、0.05重量部以上80重量部以下がさらに好ましく、0.05重量部以上20重量部以下がより好ましく、1重量部以上15重量部以下がさらにより好ましい。シラノール縮合触媒(D)の含有量が80重量部よりも多いと、得られた発泡体の圧縮により底付きする場合がある。シラノール縮合触媒の量を調整することにより、発泡体用樹脂組成物の硬化性を調整することができる。 The content of the silanol condensation catalyst (D) is preferably 90 parts by weight or less, more preferably 0.05 parts by weight or more and 80 parts by weight or less, and 0.05 parts by weight or more with respect to 100 parts by weight of the base resin (A). 20 parts by weight or less is more preferable, and 1 part by weight or more and 15 parts by weight or less is even more preferable. If the content of the silanol condensation catalyst (D) is more than 80 parts by weight, the foam may bottom out due to compression of the obtained foam. By adjusting the amount of silanol condensation catalyst, the curability of the resin composition for foam can be adjusted.
〔発泡助剤(E)〕
 発泡体用樹脂組成物は、発泡助剤(E)、及び/又は発泡助剤(E)として作用するシラノール縮合触媒(D)を含むのが好ましい。
 発泡助剤(E)は、二炭酸ジエステル(B-1)の分解による発泡を促進させる成分である。発泡助剤(E)は、水と二炭酸ジエステル(B-1)とを含む混合物に添加された場合に、発泡を促進する化合物であれば特に限定されない。
[Effervescent aid (E)]
The foam resin composition preferably contains a silanol condensation catalyst (D) that acts as a foaming aid (E) and / or a foaming aid (E).
The foaming aid (E) is a component that promotes foaming due to the decomposition of the dicarbonate diester (B-1). The foaming aid (E) is not particularly limited as long as it is a compound that promotes foaming when added to a mixture containing water and a dicarbonate diester (B-1).
 典型的には、発泡助剤(E)としては、有機又は無機の塩基性化合物が好ましく挙げられる。このため、シラノール縮合触媒として前述した塩基性の触媒は、発泡助剤(E)としての作用を奏する場合がある。
 例えば、発泡体用樹脂組成物が、シラノール縮合触媒(D)として上記の塩基性のシラノール縮合触媒のような発泡助剤(E)としての作用を奏する成分を含有する場合、便宜的に、発泡体用樹脂組成物が、シラノール縮合触媒(D)と発泡助剤(E)との双方を含むとして扱う。
Typically, the foaming aid (E) preferably includes an organic or inorganic basic compound. Therefore, the basic catalyst described above as the silanol condensation catalyst may act as a foaming aid (E).
For example, when the resin composition for a foam contains a component that acts as a foaming aid (E) such as the above-mentioned basic silanol condensation catalyst as the silanol condensation catalyst (D), foaming is conveniently performed. The body resin composition is treated as containing both the silanol condensation catalyst (D) and the foaming aid (E).
 発泡助剤(E)として作用するシラノール縮合触媒(D)の好適な例としては、ビス(N,N-ジメチルアミノ-2-エチル)エーテル、トリエチレンジアミン及びN,N,N’,N’-テトラメチルヘキサメチレンジアミン、N-エチルモルホリン、テトラメチルエチレンジアミン、ジアミノビシクロオクタン、1,2-ジメチルイミダゾール、1-メチルイミダゾール及び1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等の活性水素を含有しない第三級アミン類や、ジメチルエタノールアミン、ジエチルエタノールアミン、ジメチルヘキサノールアミン等の、水酸基、チオール基、カルボキシ基等の活性水素含有基を有する活性水素を含有する第三級アミンが挙げられる。 Preferable examples of the silanol condensation catalyst (D) acting as a foaming aid (E) are bis (N, N-dimethylamino-2-ethyl) ether, triethylenediamine and N, N, N', N'-. Tetramethylhexamethylenediamine, N-ethylmorpholin, tetramethylethylenediamine, diaminobicyclooctane, 1,2-dimethylimidazole, 1-methylimidazole and 1,8-diazabicyclo- [5.4.0] -7-undecene (DBU) ), 1,4-diazabicyclo [2.2.2] Octane (DABCO) and other tertiary amines that do not contain active hydrogen, and hydroxyl and thiol groups such as dimethylethanolamine, diethylethanolamine and dimethylhexanolamine. , Tertiary amine containing active hydrogen having an active hydrogen-containing group such as a carboxy group.
 シラノール縮合触媒(D)に該当しない発泡助剤(E)の含有量は、基材樹脂(A)100重量部に対して0.05重量部以上20重量部以下が好ましく、0.1重量部以上10重量部以下がより好ましく、0.5重量部以上5重量部以下がさらに好ましい。
 発泡助剤(E)として作用するシラノール縮合触媒(D)の含有量は、前述のシラノール縮合触媒(D)の含有量と同様である。
The content of the foaming aid (E) that does not correspond to the silanol condensation catalyst (D) is preferably 0.05 parts by weight or more and 20 parts by weight or less, preferably 0.1 parts by weight, based on 100 parts by weight of the base resin (A). More than 10 parts by weight is more preferable, and 0.5 parts by weight or more and 5 parts by weight or less is further preferable.
The content of the silanol condensation catalyst (D) acting as the foaming aid (E) is the same as the content of the silanol condensation catalyst (D) described above.
〔その他添加剤〕
 発泡体用樹脂組成物には、発泡体の柔軟性や成形加工性を調整する目的で可塑剤、反応性調整剤、染料を添加することができる。
[Other additives]
A plasticizer, a reactivity modifier, and a dye can be added to the foam resin composition for the purpose of adjusting the flexibility and molding processability of the foam.
 可塑剤としては、オキシアルキレン系単位からなる繰り返し単位から構成される主鎖を有する可塑剤が好ましい。主鎖の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド;エチレンオキシド、プロピレンオキシド、及びブチレンオキシドから選ばれる2種以上のランダム又はブロック共重合体等が挙げられ、これらは単独で使用してもよく、二種類以上を併用してもよい。これらのうち、基材樹脂(A)との相溶性の点で、ポリプロピレンオキシドが好ましい。また、これらのオキシアルキレンをイソシアネート変性したものも添加することができる。 As the plasticizer, a plasticizer having a main chain composed of repeating units composed of oxyalkylene-based units is preferable. Specific examples of the main chain include polyethylene oxide, polypropylene oxide, polybutylene oxide; two or more random or block copolymers selected from ethylene oxide, propylene oxide, and butylene oxide, which are used alone. Alternatively, two or more types may be used in combination. Of these, polypropylene oxide is preferable in terms of compatibility with the base resin (A). Further, those obtained by modifying these oxyalkylenes with isocyanate can also be added.
 可塑剤の分子量は、得られる発泡体の柔軟性や、可塑剤の系外への流出防止の観点から数平均分子量で1000以上であり、3000以上が好ましい。数平均分子量が前述の範囲内であると、熱や圧縮等による可塑剤の経時的な系外への流出を抑制でき、初期の物性を長期に渡り維持しやすく、柔軟性への悪影響が少ない。また、上限値は特に限定は無いが、数平均分子量が高くなりすぎると粘度が高くなり、作業性が悪化するため50000以下が好ましく、30000以下がより好ましい。なお、可塑剤は、発泡体に柔軟性を付与できるものであれば、直鎖状でも分岐状でも特に限定はない。 The molecular weight of the plasticizer has a number average molecular weight of 1000 or more, preferably 3000 or more, from the viewpoint of the flexibility of the obtained foam and the prevention of the plasticizer from flowing out of the system. When the number average molecular weight is within the above range, it is possible to suppress the outflow of the plasticizer from the system over time due to heat, compression, etc., it is easy to maintain the initial physical properties for a long period of time, and there is little adverse effect on flexibility. .. The upper limit is not particularly limited, but if the number average molecular weight becomes too high, the viscosity increases and workability deteriorates. Therefore, 50,000 or less is preferable, and 30,000 or less is more preferable. The plasticizer is not particularly limited as long as it can impart flexibility to the foam, and may be linear or branched.
 可塑剤の添加量は、基材樹脂(A)100重量部に対して、好ましくは、5重量部以上150重量部以下、より好ましくは10重量部以上120重量部以下、さらに好ましくは20重量部以上100重量部以下である。可塑剤の添加量が前述の範囲内であると、柔軟性や成形加工性を調整しやすく、良好な機械強度を有し、所望する発泡倍率である発泡体を形成しやすい。可塑剤の製造方法は特に限定なく、公知の製造方法を適用することができ、さらに市販の化合物を用いてもよい。 The amount of the plasticizer added is preferably 5 parts by weight or more and 150 parts by weight or less, more preferably 10 parts by weight or more and 120 parts by weight or less, and further preferably 20 parts by weight with respect to 100 parts by weight of the base resin (A). It is 100 parts by weight or less. When the amount of the plasticizer added is within the above range, it is easy to adjust the flexibility and moldability, have good mechanical strength, and easily form a foam having a desired foaming ratio. The method for producing the plasticizer is not particularly limited, and a known production method can be applied, and a commercially available compound may be used.
 反応性調整剤は、反応性ケイ素基を有するのが好ましい。反応性調整剤は、メチルシリケート、エチルシリケート等のシリケート化合物であってもよく、反応性ケイ素基を有するビニルモノマーの共重合体であってもよく、チオール等の連鎖移動基を有する反応性ケイ素モノマーを使用した共重合体であってもよい。これらは単独で使用してもよく、二種類以上を併用してもよい。 The reactivity modifier preferably has a reactive silicon group. The reactivity modifier may be a silicate compound such as methyl silicate or ethyl silicate, a copolymer of a vinyl monomer having a reactive silicon group, or a reactive silicon having a chain transfer group such as thiol. It may be a copolymer using a monomer. These may be used alone or in combination of two or more.
 反応性調整剤の分子量は、得られる発泡体の硬化及び発泡の観点から数平均分子量で1000以上が好ましく、3000以上がより好ましい。また、上限値は特に限定は無いが、発泡体用樹脂組成物の粘度を作業しやすい範囲内としやすいことから、50000以下が好ましく、30000以下がより好ましい。なお、反応性調整剤は、発泡体用樹脂組成物の硬化性を調整できるものであれば、直鎖状でも分岐状でも特に限定はない。 The molecular weight of the reactivity modifier is preferably 1000 or more, more preferably 3000 or more, in terms of number average molecular weight from the viewpoint of curing and foaming of the obtained foam. The upper limit is not particularly limited, but is preferably 50,000 or less, more preferably 30,000 or less, because the viscosity of the resin composition for foam can be easily set within a workable range. The reactivity modifier is not particularly limited as long as it can adjust the curability of the foam resin composition, whether it is linear or branched.
 反応性調整剤の添加量は、基材樹脂(A)100重量部に対して、好ましくは、2重量部以上120重量部以下、より好ましくは5重量部以上80重量部以下、さらに好ましくは10重量部以上50重量部以下である。かかる範囲内の量の反応調整剤を用いると、硬化性を適切な範囲内に調整しやすく、適切な速度で硬化を進行させ発泡倍率の高い発泡体を得やすい。反応性調整剤の製造方法は特に限定なく、公知の製造方法を適用することができ、さらに市販の化合物を用いてもよい。 The amount of the reactivity adjusting agent added is preferably 2 parts by weight or more and 120 parts by weight or less, more preferably 5 parts by weight or more and 80 parts by weight or less, and further preferably 10 parts by weight with respect to 100 parts by weight of the base resin (A). It is 50 parts by weight or more and 50 parts by weight or less. When an amount of the reaction modifier within such a range is used, the curability can be easily adjusted within an appropriate range, and curing can proceed at an appropriate rate to easily obtain a foam having a high foaming ratio. The method for producing the reactivity adjusting agent is not particularly limited, and a known production method can be applied, and a commercially available compound may be used.
 発泡体用樹脂組成物には、本発明の効果を損なわない限り、耐光性安定剤、紫外線吸収剤、貯蔵安定剤、気泡調整剤、潤滑剤、難燃剤等を必要に応じて添加してもよい。 A light resistance stabilizer, an ultraviolet absorber, a storage stabilizer, a bubble modifier, a lubricant, a flame retardant, etc. may be added to the foam resin composition as necessary, as long as the effects of the present invention are not impaired. Good.
 耐光性安定剤としては、ヒンダードフェノール系酸化防止剤、及びイオウ原子、リン原子、1級アミン、2級アミンを含まないヒンダードアミン系光安定剤が挙げられる。ここで、耐光性安定剤とは、紫外線領域の波長の光を吸収してラジカルの生成を抑制する機能、又は、光吸収により生成したラジカルを捕捉して熱エネルギーに変換し無害化する機能等を有し、光に対する安定性を高める化合物である。 Examples of the light resistance stabilizer include a hindered phenol-based antioxidant and a hindered amine-based light stabilizer containing no sulfur atom, phosphorus atom, primary amine, or secondary amine. Here, the light resistance stabilizer has a function of absorbing light having a wavelength in the ultraviolet region to suppress the generation of radicals, or a function of capturing radicals generated by light absorption and converting them into thermal energy to make them harmless. It is a compound that enhances the stability against light.
 紫外線吸収剤としては、特に限定されるものではないが、ベンゾオキサジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤等が例示される。ここで、紫外線吸収剤とは、紫外線領域の波長の光を吸収してラジカルの生成を抑制する機能を有する化合物である。 The ultraviolet absorber is not particularly limited, and examples thereof include a benzoxazine-based ultraviolet absorber, a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, and a triazine-based ultraviolet absorber. Here, the ultraviolet absorber is a compound having a function of absorbing light having a wavelength in the ultraviolet region and suppressing the generation of radicals.
 耐光性安定剤、及び紫外線吸収剤の添加量としては、それぞれ、基材樹脂(A)100重量部に対して、0.01重量部以上5重量部以下が好ましく、0.1重量部以上3重量部以下がより好ましく、0.3重量部以上2.0重量部以下がさらに好ましい。耐光性安定剤、紫外線吸収剤の添加量が当該範囲内であると、経時的な表面粘着性の上昇を抑制する効果が得やすい。 The amount of the light-resistant stabilizer and the ultraviolet absorber added is preferably 0.01 parts by weight or more and 5 parts by weight or less, and 0.1 parts by weight or more and 3 parts by weight or more, respectively, with respect to 100 parts by weight of the base resin (A). More preferably, it is 0.3 parts by weight or more, and further preferably 2.0 parts by weight or less. When the amount of the light-resistant stabilizer and the ultraviolet absorber added is within the above range, the effect of suppressing an increase in surface adhesiveness with time can be easily obtained.
 貯蔵安定性改良剤の好ましい例としては、例えば、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機硫黄化合物、チッ素含有化合物、スズ系化合物、有機過酸化物等が挙げられる。これらを単独使用、又は2種以上併用してもよい。具体的には、2-ベンゾチアゾリルサルファイド、ベンゾチアゾール、チアゾール、ジメチルアセチレンダイカルボキシレート、ジエチルアセチレンダイカルボキシレート、2,6-ジ-t-ブチル-4-メチルフェノール、ブチルヒドロキシアニソール、ビタミンE、2-(4-モルフォジニルジチオ)ベンゾチアゾール、3-メチル-1-ブテン-3-オール、アセチレン性不飽和基含有オルガノシロキサン、アセチレンアルコール、3-メチル-1-ブチン-3-オール、2-メチル-3-ブチン-2-オール、ジアリルフマレート、ジアリルマレエート、ジエチルフマレート、ジエチルマレエート、ジメチルマレエート、2-ペンテンニトリル、2,3-ジクロロプロペン等が挙げられる。 Preferred examples of the storage stability improving agent include, for example, a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic sulfur compound, a nitrogen-containing compound, a tin compound, and an organic peroxide. These may be used alone or in combination of two or more. Specifically, 2-benzothiazolyl sulfate, benzothiazole, thiazole, dimethylacetylene dicarboxylate, diethylacetylene dicarboxylate, 2,6-di-t-butyl-4-methylphenol, butylhydroxyanisole, vitamins. E, 2- (4-morphozynyldithio) benzothiazole, 3-methyl-1-buten-3-ol, acetylene unsaturated group-containing organosiloxane, acetylene alcohol, 3-methyl-1-butyne-3-ol , 2-Methyl-3-butyne-2-ol, diallyl fumarate, diallyl maleate, diethyl fumarate, diethyl maleate, dimethyl maleate, 2-pentenenitrile, 2,3-dichloropropene and the like.
 発泡体用樹脂組成物には、必要であれば、気泡調整剤を添加してもよい。気泡調整剤の種類には特に限定はなく、通常使用される、例えば、タルク、酸化マグネシウム、酸化チタン、酸化亜鉛、カーボンブラック、シリカ等の無機固体粉末が挙げられる。これらは、単独で使用してもよいし、2種以上を併用してもよい。
 ただし、無機固体粉末は、発泡体の低周波数帯域での吸音を阻害する傾向がある。このため、無機固体粉末を用いる場合、その使用量は低周波数帯域での吸音が過度に阻害されない程度の少量であるのが好ましい。
If necessary, a bubble modifier may be added to the foam resin composition. The type of the bubble adjusting agent is not particularly limited, and examples thereof include inorganic solid powders such as talc, magnesium oxide, titanium oxide, zinc oxide, carbon black, and silica, which are usually used. These may be used alone or in combination of two or more.
However, the inorganic solid powder tends to inhibit the sound absorption of the foam in the low frequency band. Therefore, when an inorganic solid powder is used, the amount used is preferably a small amount so that sound absorption in the low frequency band is not excessively hindered.
 気泡調整剤の使用量は、基材樹脂(A)100重量部に対して、0.1重量部以上100重量部以下が好ましく、0.5重量部以上50重量部以下がより好ましい。 The amount of the bubble adjusting agent used is preferably 0.1 part by weight or more and 100 parts by weight or less, and more preferably 0.5 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the base resin (A).
 発泡体用樹脂組成物には、必要であれば、整泡剤を添加してもよい。整泡剤の種類には特に限定はなく、通常使用される、例えば、ポリエーテル変成シリコーンオイル等のシリコーンオイル系化合物、フッ素系化合物等が挙げられる。これらは、単独で使用してもよいし、2種以上を併用してもよい。特に、ポリプロピレン及びポリエチレン変性シリコーンは少量での整泡力が期待できる場合がある。 If necessary, a foam stabilizer may be added to the resin composition for foam. The type of the foam stabilizer is not particularly limited, and examples thereof include silicone oil-based compounds such as polyether-modified silicone oil and fluorine-based compounds, which are usually used. These may be used alone or in combination of two or more. In particular, polypropylene and polyethylene-modified silicone may be expected to have foam-regulating power in a small amount.
 整泡剤の使用量は、基材樹脂(A)100重量部に対して、0.2重量部以上30重量部以下が好ましく、0.5重量部以上15重量部以下がより好ましい。 The amount of the foam stabilizer used is preferably 0.2 parts by weight or more and 30 parts by weight or less, and more preferably 0.5 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the base resin (A).
 発泡体用樹脂組成物には、必要であれば、中空粒子を添加してもよい。中空粒子の種類には特に限定はなく、通常使用される、例えば、熱可塑性のシェルポリマーの中にシェルポリマーの軟化点以下の温度でガス状になる揮発性液体を内包し、加熱された揮発性液体がガス状になるとともに、シェルポリマーが軟化して膨張したものが挙げられる。また、膨張する前の中空粒子を添加し、成形時に発泡させることも可能である。 Hollow particles may be added to the resin composition for foam, if necessary. The type of hollow particles is not particularly limited, and is generally used, for example, a thermoplastic shell polymer containing a volatile liquid that becomes gaseous at a temperature below the softening point of the shell polymer and heated to volatilize. Examples thereof include those in which the sex liquid becomes gaseous and the shell polymer is softened and expanded. It is also possible to add hollow particles before expansion and foam them during molding.
 中空粒子の使用量は、基材樹脂(A)100重量部に対して、0.2重量部以上30重量部以下が好ましく、0.5重量部以上15重量部以下がより好ましい。 The amount of the hollow particles used is preferably 0.2 parts by weight or more and 30 parts by weight or less, and more preferably 0.5 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the base resin (A).
 さらに、基材樹脂(A)、化学発泡剤(B)、水(C)を含んでなる発泡体用樹脂組成物の相溶性を向上する目的で、潤滑剤を添加することもできる。 Further, a lubricant can be added for the purpose of improving the compatibility of the foam resin composition containing the base resin (A), the chemical foaming agent (B), and water (C).
 潤滑剤を含有することで、発泡体用樹脂組成物を発泡してなる発泡体の発泡セル内における摩擦や粘着を少なくし、所望の柔軟性を有する発泡体を得ることができる。また、潤滑剤は、基材樹脂(A)間のシラノール縮合反応によって形成される三次元網目構造体に保持されて、発泡体系外へのブリードアウトが抑えられる傾向にあるため、長期間にわたって柔軟性を維持することが可能となる。 By containing a lubricant, friction and adhesion in the foam cell of the foam formed by foaming the resin composition for foam can be reduced, and a foam having desired flexibility can be obtained. Further, the lubricant is held by the three-dimensional network structure formed by the silanol condensation reaction between the base resins (A), and tends to suppress bleeding out of the foam system, so that it is flexible for a long period of time. It becomes possible to maintain sex.
 潤滑剤としては、液状の潤滑剤が好ましい。液体潤滑剤の具体的な例としてはパラフィン系鉱油、ナフテン系鉱油、脂肪酸グリセライド等の動植物油;ポリ-1-デセン、ポリブテン等のアルキル構造を有するオレフィン系潤滑剤;アラルキル構造を有するアルキル芳香族化合物系潤滑剤;ポリアルキレングリコール系潤滑剤;ポリアルキレングリコールエーテル、パーフロロポリエーテル、ポリフェニルエーテル等のエーテル系潤滑剤;脂肪酸エステル、脂肪酸ジエステル、ポリオールエステル、ケイ酸エステル、リン酸エステル等のエステル構造を有するエステル系潤滑剤;ジメチルシリコーン(すなわち、両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン)、及びジメチルシリコーンのメチル基の一部をポリエーテル基、フェニル基、アルキル基、アラルキル基、フッ素化アルキル基等で置換したシリコーンオイル等のシリコーン系潤滑剤;クロロフロロカーボン等のフッ素原子含有系潤滑剤等が挙げられる。これらは、単独で使用してもよいし、2種以上を併用してもよい。 As the lubricant, a liquid lubricant is preferable. Specific examples of liquid lubricants include animal and vegetable oils such as paraffin mineral oil, naphthenic mineral oil, and fatty acid glyceride; olefin lubricants having an alkyl structure such as poly-1-decene and polybutene; alkyl aromatics having an aralkyl structure. Compound-based lubricants; Polyalkylene glycol-based lubricants; Ether-based lubricants such as polyalkylene glycol ethers, perfluoropolyethers, and polyphenyl ethers; fatty acid esters, fatty acid diesters, polyol esters, silicic acid esters, phosphoric acid esters, etc. Ester-based lubricants with an ester structure; dimethyl silicone (ie, dimethylpolysiloxane with both terminal trimethylsiloxy groups blocked), and some of the methyl groups of dimethylsilicone are polyether groups, phenyl groups, alkyl groups, aralkyl groups, and fluorinated Examples thereof include silicone-based lubricants such as silicone oil substituted with an alkyl group and the like; fluorine atom-containing lubricants such as chlorofluorocarbon. These may be used alone or in combination of two or more.
 これらの潤滑剤の中では、発泡セル内における摩擦係数の低下や分散性、加工性、安全性等の観点から、特にシリコーン系潤滑剤が好ましい。 Among these lubricants, silicone-based lubricants are particularly preferable from the viewpoint of reducing the coefficient of friction in the foam cell, dispersibility, workability, safety, and the like.
 潤滑剤の添加量は、基材樹脂(A)100重量部に対して、1重量部以上が好ましく、2重量部以上がより好ましく、3重量部以上がさらに好ましい。潤滑剤の添加量の上限値に特に制限はないが、25重量部以下、さらには20重量部以下が好ましい。かかる範囲内の量の潤滑剤を用いると、発泡セル内の摩擦や粘着を抑制しやすく、発泡倍率を高めやすく、潤滑剤の系外へのブリードアウトを抑制しやすく、所望する柔軟性の発泡体を得やすい。 The amount of the lubricant added is preferably 1 part by weight or more, more preferably 2 parts by weight or more, and further preferably 3 parts by weight or more with respect to 100 parts by weight of the base resin (A). The upper limit of the amount of the lubricant added is not particularly limited, but is preferably 25 parts by weight or less, more preferably 20 parts by weight or less. When an amount of lubricant within such a range is used, friction and adhesion in the foam cell can be easily suppressed, the foaming ratio can be easily increased, bleeding out of the lubricant to the outside of the system can be easily suppressed, and foaming with desired flexibility can be easily performed. Easy to get a body.
 難燃剤の好適な具体例としては、赤リン、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤、及び金属水酸化物が挙げられる。これらは、単独で使用してもよいし、2種以上を併用してもよい。難燃剤としては、赤リンと、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤、及び金属水酸化物から選ばれる少なくとも1つとが組み合わせて使用されるのが好ましい。 Preferable specific examples of the flame retardant include red phosphorus, phosphoric acid ester, phosphate-containing flame retardant, bromine-containing flame retardant, boron-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. These may be used alone or in combination of two or more. As the flame retardant, red phosphorus is used in combination with at least one selected from phosphoric acid ester, phosphate-containing flame retardant, bromine-containing flame retardant, boron-containing flame retardant, antimony-containing flame retardant, and metal hydroxide. It is preferable to be done.
 化学発泡剤(B)と、水(C)とが共存する環境下では発泡が進行しやすいため、発泡体用樹脂組成物は、2液又は3液以上の多液型液状組成物として使用される場合がある。混合による発泡体用樹脂組成物の調製が容易であることから、発泡体用樹脂組成物は2液型樹脂組成物であるのが好ましい。 Since foaming easily proceeds in an environment where the chemical foaming agent (B) and water (C) coexist, the resin composition for a foam is used as a two-component or three-component or more liquid type liquid composition. May occur. Since it is easy to prepare the resin composition for foam by mixing, the resin composition for foam is preferably a two-component resin composition.
 多液型樹脂組成物は、基材樹脂(A)と、二炭酸エステル(B-1)とを含む第1液と、少なくともシラノール縮合触媒(D)を含む第2液とを含むのが好ましい。
 また、第2液が水(C)を含むのも好ましい。シラノール縮合触媒(D)を第1液に含有させる場合、基材樹脂(A)間の架橋による硬化が進行する場合がある。しかし、シラノール縮合触媒(D)を、第1液と別の液に含有させることにより、発泡体の製造前の基材樹脂(A)の硬化を防ぐことができる。第2液がシラノール縮合触媒(D)を含む場合、当該シラノール縮合触媒(D)は中性又は弱酸性のシラノール縮合触媒を含むのが好ましく、弱酸性のシラノール縮合触媒を含むがより好ましい。
The multi-component resin composition preferably contains a first liquid containing the base resin (A), a dicarbonate ester (B-1), and at least a second liquid containing a silanol condensation catalyst (D). ..
It is also preferable that the second liquid contains water (C). When the silanol condensation catalyst (D) is contained in the first liquid, curing due to cross-linking between the base resin (A) may proceed. However, by containing the silanol condensation catalyst (D) in a liquid different from the first liquid, it is possible to prevent the base resin (A) from being cured before the foam is produced. When the second liquid contains a silanol condensation catalyst (D), the silanol condensation catalyst (D) preferably contains a neutral or weakly acidic silanol condensation catalyst, and more preferably contains a weakly acidic silanol condensation catalyst.
 また、多液型樹脂組成物において、シラノール縮合触媒(D)を含む第2液か、第1液及び第2液以外の液に、発泡助剤(E)、及び/又は発泡助剤(E)として作用するシラノール縮合触媒(D)を含有させるのが好ましい。 Further, in the multi-component resin composition, the foaming aid (E) and / or the foaming aid (E) are added to the second liquid containing the silanol condensation catalyst (D) or the liquids other than the first liquid and the second liquid. ), It is preferable to contain a silanol condensation catalyst (D).
〔発泡体の製造方法〕
 前述の好ましい発泡体用樹脂組成物を用いる発泡体の製造方法は、例えば、発泡体用樹脂組成物を型枠に充填した後に、型枠内で発泡、及び硬化を行うバッチ式であってもよく、連続的に移動する帯状の支持体上で、発泡体用樹脂組成物の発泡及び硬化を連続的に行う連続式であってもよい。支持体としては不織布を用いることができる。
[Manufacturing method of foam]
The method for producing a foam using the preferable resin composition for a foam described above may be, for example, a batch method in which the resin composition for a foam is filled in a mold, and then foamed and cured in the mold. Often, a continuous type may be used in which the foam resin composition is continuously foamed and cured on a continuously moving band-shaped support. A non-woven fabric can be used as the support.
 また、上記の発泡体用樹脂組成物は、化学発泡剤(B)として二炭酸ジエステル(B-1)を用いることによって、完全な液状であるか、顔料(例えば、カーボンブラック)等の不溶分を少量しか含まない低粘度の組成とすることができる。
 発泡体用樹脂組成物が低粘度である場合、1液、2液以上の多液型の発泡体用樹脂組成物を施工面に対して吐出して、施工面上で衝突混合させることにより、施工面上に被膜状の発泡体を形成することが可能である。
Further, the above resin composition for a foam is completely liquid or insoluble in a pigment (for example, carbon black) by using dicarbonate diester (B-1) as the chemical foaming agent (B). Can be made into a low viscosity composition containing only a small amount of.
When the resin composition for foam has a low viscosity, a one-component, two-component or more multi-component resin composition for foam is discharged onto the construction surface and collided and mixed on the construction surface. It is possible to form a film-like foam on the construction surface.
 発泡体は、典型的には、反応性ケイ素基を有する基材樹脂(A)と、二炭酸ジエステル(B-1)を含む第1液と、シラノール縮合触媒(D)とを混合して混合液を得る、混合工程を含む方法によって製造される。
 当該方法では、混合液において、二炭酸ジエステル(B-1)の分解による発泡速度と、反応性ケイ素基間の反応による混合液の硬化反応の速度とが、発泡倍率が2倍以上60倍以下である発泡体が得られるように、それぞれ調整される。
The foam is typically a mixture of a base resin (A) having a reactive silicon group, a first liquid containing a dicarbonate diester (B-1), and a silanol condensation catalyst (D). Manufactured by a method involving a mixing step to obtain a liquid.
In this method, in the mixed solution, the foaming rate due to the decomposition of the dicarbonate diester (B-1) and the rate of the curing reaction of the mixed solution due to the reaction between the reactive silicon groups are 2 times or more and 60 times or less. Each is adjusted so that a foam is obtained.
 二炭酸ジエステル(B-1)の分解による発泡速度は、例えば、二炭酸ジエステル(B-1)の種類及び使用量、混合液中の水(C)の含有量、発泡体を製造する環境の温度、並びに混合液中の発泡助剤(E)、及び/又は発泡助剤(E)として作用するシラノール縮合触媒(D)の種類及び含有量等を適宜変更することにより調整することができる。
 混合液の硬化反応の速度は、例えば、基材樹脂(A)が有する反応性ケイ素の種類、及び量、混合液中のシラノール縮合触媒(D)の種類及び含有量、混合液中の水(C)の含有量、並びに発泡体を製造する環境の温度等を適宜変更することにより調整することができる。
 二炭酸ジエステル(B-1)の分解による発泡速度と、混合液の硬化反応の速度とは、得られる発泡体の発泡倍率が2倍以上60倍以下であるように調整されるのが好ましく、発泡倍率が5倍以上40倍以下であるように調整されるのがより好ましい。
The foaming rate due to the decomposition of the dicarbonate diester (B-1) is determined by, for example, the type and amount of the dicarbonate diester (B-1) used, the content of water (C) in the mixed solution, and the environment for producing the foam. It can be adjusted by appropriately changing the temperature and the type and content of the silanol condensation catalyst (D) acting as the foaming aid (E) and / or the foaming aid (E) in the mixed solution.
The rate of curing reaction of the mixed solution is, for example, the type and amount of reactive silicon contained in the base resin (A), the type and content of the silanol condensation catalyst (D) in the mixed solution, and the water in the mixed solution ( It can be adjusted by appropriately changing the content of C), the temperature of the environment in which the foam is produced, and the like.
The foaming rate due to the decomposition of the dicarbonate diester (B-1) and the curing reaction rate of the mixed solution are preferably adjusted so that the foaming ratio of the obtained foam is 2 times or more and 60 times or less. It is more preferable that the foaming ratio is adjusted to be 5 times or more and 40 times or less.
 上記の製造方法における、二炭酸ジエステル(B-1)の使用量、及びシラノール縮合触媒(D)の使用量は、組成物について前述の通りである。
 二炭酸ジエステル(B-1)の使用量は、基材樹脂(A)100重量部に対して1重量部以上50重量部以下であるのが好ましく、2重量部以上40重量部以下がより好ましく、5重量部以上30重量部以下が特に好ましい。
 シラノール縮合触媒(D)の使用量は、基材樹脂(A)100重量部に対して0.05重量部以上20重量部以下であるのが好ましく、1重量部以上15重量部以下がさらに好ましい。
The amount of the dicarbonate diester (B-1) used and the amount of the silanol condensation catalyst (D) used in the above production method are as described above for the composition.
The amount of the dicarbonate diester (B-1) used is preferably 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the base resin (A), and more preferably 2 parts by weight or more and 40 parts by weight or less. 5, 5 parts by weight or more and 30 parts by weight or less are particularly preferable.
The amount of the silanol condensation catalyst (D) used is preferably 0.05 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the base resin (A), and more preferably 1 part by weight or more and 15 parts by weight or less. ..
 上記の混合工程において、発泡助剤(E)、及び/又は発泡助剤(E)として作用するシラノール縮合触媒(D)が、第1液に混合されるのが好ましい。発泡助剤(E)として作用するシラノール縮合触媒(D)としては、1,4-ジアザビシクロ[2.2.2]オクタンが好ましい。 In the above mixing step, it is preferable that the silanol condensation catalyst (D) acting as the foaming aid (E) and / or the foaming aid (E) is mixed with the first liquid. As the silanol condensation catalyst (D) acting as a foaming aid (E), 1,4-diazabicyclo [2.2.2] octane is preferable.
 発泡体用樹脂組成物を硬化及び発泡させる温度は特に限定されない。発泡体用樹脂組成物を硬化及び発泡させる温度は、例えば、-10℃以上40℃以下が好ましく、0℃以上37℃以下がより好ましい。かかる温度条件であれば、発泡体を使用する現場での、発泡体用樹脂組成物を用いる発泡体の製造が容易である。
 硬化及び発泡が完了する時間に特に制限はない。例えば、12分以下が好ましく、10分以下がより好ましい。
The temperature at which the resin composition for a foam is cured and foamed is not particularly limited. The temperature at which the resin composition for a foam is cured and foamed is, for example, preferably −10 ° C. or higher and 40 ° C. or lower, and more preferably 0 ° C. or higher and 37 ° C. or lower. Under such temperature conditions, it is easy to produce a foam using the resin composition for foam at the site where the foam is used.
There is no particular limitation on the time required for curing and foaming to complete. For example, 12 minutes or less is preferable, and 10 minutes or less is more preferable.
 このようにして製造された発泡体は、好ましくは乾燥された後に他の吸音材として、流通、販売される。
 乾燥の温度及び時間の条件は、発泡体用樹脂組成物に由来するか、硬化反応により副生する水、アルコール等を所望する程度まで低減できればよく、特に制約はない。乾燥条件は、例えば約80℃雰囲気下で約1時間であればよい。また、乾燥の温度及び時間の条件は、例えば約60℃雰囲気下で約12時間であってもよい。
 ただし、前述の通り、化学発泡剤(B)として二炭酸ジエステルのみを用い、水(C)の使用量を低めに設定する場合、乾燥を行うことなく他の吸音材の製品とすることが可能である。
The foam produced in this manner is preferably distributed and sold as another sound absorbing material after being dried.
The conditions of the drying temperature and time are not particularly limited as long as they can be derived from the resin composition for foam or the water, alcohol, etc. produced by the curing reaction can be reduced to a desired degree. The drying conditions may be, for example, about 1 hour in an atmosphere of about 80 ° C. The drying temperature and time conditions may be, for example, about 12 hours in an atmosphere of about 60 ° C.
However, as described above, when only dicarbonate diester is used as the chemical foaming agent (B) and the amount of water (C) used is set low, it is possible to use other sound absorbing material products without drying. Is.
 また、以上説明した他の吸音材を構成する発泡体の形成に用いられる樹脂組成物は、通常液状であり、良好な流動性を示す。このため、かかる樹脂組成物は、微細な流路や凹部を有する型枠においても良好に充填発泡できる。さらに、この発泡は発泡圧が小さいため簡易な型枠を使用することができる。
 従って、かかる樹脂組成物を用いる発泡体の製造に使用される型枠の製造には、微細であったり複雑であったりする内部形状を有する型枠を容易に製造し得る3Dプリンターを好適に用いることができる。
 従って、3Dプリンターを用いて型枠を形成することと、
 型枠に反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)を含む液状の樹脂組成物を注入することと、
 樹脂組成物を発泡させながら硬化させて発泡体を形成することと、を含む方法によって、発泡体又は前述の他の吸音材を良好に製造することができる。
 3Dプリンターを用いて形成される型枠の素材は特に限定されないが、中身の状態が確認できる透明且つ軽量な樹脂材料であるのが好ましい。
 樹脂組成物が多液型の樹脂組成物である場合、多液型の樹脂組成物を構成する複数の液を、同時に又は順次型枠内に注入してもよく、複数の液が混合された状態で型枠内に注入されてもよく、複数の液が混合された状態で型枠内に注入されるのが好ましい。
Further, the resin composition used for forming the foams constituting the other sound absorbing materials described above is usually liquid and exhibits good fluidity. Therefore, the resin composition can be satisfactorily filled and foamed even in a mold having fine flow paths and recesses. Further, since the foaming pressure is small, a simple mold can be used.
Therefore, for the production of the mold used for the production of the foam using the resin composition, a 3D printer capable of easily producing the mold having an internal shape which is fine or complicated is preferably used. be able to.
Therefore, forming a formwork using a 3D printer
Injecting a liquid resin composition containing a polyoxyalkylene polymer (A1) having a reactive silicon group into a mold, and
The foam or the other sound absorbing material described above can be satisfactorily produced by a method including the formation of a foam by curing the resin composition while foaming.
The material of the mold formed by using the 3D printer is not particularly limited, but it is preferably a transparent and lightweight resin material whose contents can be confirmed.
When the resin composition is a multi-component resin composition, a plurality of liquids constituting the multi-component resin composition may be injected into the mold simultaneously or sequentially, and the plurality of liquids are mixed. It may be injected into the mold in a state, and it is preferable to inject into the mold in a state where a plurality of liquids are mixed.
≪吸音方法≫
 以上説明した他の吸音材を用いて、種々の音、特に騒音を吸音させることができる。上記の他の吸音材は、幅広い周波数帯域の音を吸収可能であるので、前述の他の吸音材を用いて周波数650Hz以上4500Hz以下の範囲内の成分を含む音を吸音させるのが好ましい。
 また、上記の他の吸音材は、低周波数帯域の音を吸収可能であるので、前述の他の吸音材を用いて周波数650Hz以上1000Hz以下の範囲内の成分を含む音を吸収させるのが好ましい。
≪Sound absorption method≫
Various sounds, especially noise, can be absorbed by using the other sound absorbing materials described above. Since the above-mentioned other sound absorbing material can absorb sound in a wide frequency band, it is preferable to use the above-mentioned other sound absorbing material to absorb sound containing a component having a frequency in the range of 650 Hz or more and 4500 Hz or less.
Further, since the other sound absorbing material described above can absorb sound in a low frequency band, it is preferable to use the other sound absorbing material described above to absorb sound containing a component having a frequency in the range of 650 Hz or more and 1000 Hz or less. ..
≪遮音方法≫
 以上説明した他の吸音材を用いて、種々の音、特に騒音を遮音することができる。上記の他の吸音材は、幅広い周波数帯域の音を吸音可能であると同時に、幅広い周波数帯域の音を遮音可能であるので、前述の他の吸音材を用いて周波数1000Hz以上4500Hz以下の範囲内の成分を含む音を、他の吸音材に吸収させつつ遮音させるのが好ましい。
 これにより、他の吸音材を通過する音が顕著に減衰するとともに、他の吸音材で反射される音も顕著に減衰する。
 例えば、モーターとモーターを収容するケーシングとからなる支持体において、モーターとケーシングとの間の空隙に他の吸音材が充填された、後述の吸音構造体においては、吸音構造体の内部でモーターが発生させる騒音を、遮音しつつ吸音することができるため、モーターの運転を極めて静音化できる。
 上記の吸音構造体において、従来知られる発泡体では吸音性と遮音性を両立することは難しい。これは両者のメカニズムが相反するからだ。従来の吸音材は音波が通過することで音を吸音・減衰するため、遮音性が高めることが困難である。また、遮音材は音波を通過させず反射するため、隙間のあるケーシングではこの隙間から音が漏れてしまい、防音性を高めることができない。
≪Sound insulation method≫
Various sounds, especially noise, can be insulated by using the other sound absorbing materials described above. Since the above-mentioned other sound absorbing materials can absorb sound in a wide frequency band and at the same time can insulate sound in a wide frequency band, the other sound absorbing materials mentioned above can be used in a frequency range of 1000 Hz or more and 4500 Hz or less. It is preferable to insulate the sound containing the above components while absorbing it by another sound absorbing material.
As a result, the sound passing through the other sound absorbing material is significantly attenuated, and the sound reflected by the other sound absorbing material is also significantly attenuated.
For example, in a support composed of a motor and a casing accommodating the motor, in a sound absorbing structure described later in which a gap between the motor and the casing is filled with another sound absorbing material, the motor is inside the sound absorbing structure. Since the generated noise can be absorbed while being insulated, the operation of the motor can be made extremely quiet.
In the above sound absorbing structure, it is difficult to achieve both sound absorbing property and sound insulating property with conventionally known foams. This is because both mechanisms are in conflict. Since the conventional sound absorbing material absorbs and attenuates sound by passing sound waves, it is difficult to improve the sound insulation. Further, since the sound insulating material reflects sound waves without passing through them, sound leaks from the gaps in a casing having a gap, and soundproofing cannot be improved.
≪吸音構造体≫
 吸音構造体は、前述の他の吸音材と、他の吸音材を支持する支持体とからなる。支持体は、他の吸音材を支持可能であれば特に限定されない。支持体としては、特に限定されず、布帛でもよく、樹脂製や木製や石膏製の板でもよく、樹脂製や木製のパイプ等であってもよい。
≪Sound absorbing structure≫
The sound absorbing structure includes the above-mentioned other sound absorbing material and a support that supports the other sound absorbing material. The support is not particularly limited as long as it can support other sound absorbing materials. The support is not particularly limited, and may be a cloth, a plate made of resin, wood, or gypsum, or a pipe made of resin or wood.
 例えば、建築物用の吸音構造体の例としては、樹脂製や木製や石膏製の板にシート状の他の吸音材が支持された吸音構造体や、樹脂製や木製や石膏製の内部に空洞を有する箱形のシート状の部材と、シート状の部材の内部の空洞に充填された他の吸音材とからなる吸音構造体が挙げられる。
 このような他の吸音材は、建築物において、壁面、床面、天井面の材料として使用され得る。
For example, examples of sound absorbing structures for buildings include sound absorbing structures in which other sheet-shaped sound absorbing materials are supported on resin, wooden, or gypsum boards, or inside resin, wooden, or gypsum. Examples thereof include a sound absorbing structure composed of a box-shaped sheet-shaped member having a cavity and another sound absorbing material filled in the cavity inside the sheet-shaped member.
Such other sound absorbing materials can be used as materials for walls, floors, and ceilings in buildings.
 また、車両用途では、ドア、ボンネット、屋根材(ルーフ)、床材、フェンダー、ピラー、シート等の外装材や内装材に前述の他の吸音材を支持させて、吸音構造体としてもよい。
 車両用の吸音構造体としては、空気入りタイヤの内腔側の面の少なくとも一部を被覆するように他の吸音材が、空気入りタイヤに支持されている吸音構造体も好ましい。
 かかる、空気入りタイヤを支持体として備える吸音構造体によれば、ロードノイズの車内への伝播を抑制しやすい。
 さらに、支持体がモーターと、モーターを収容するケーシングとからなり、モーターとケーシングとの間の空隙に他の吸音材が充填されている吸音構造体も好ましい。
 モーターとしては、例えば、電気自動車やハイブリッド自動車等に搭載される駆動用モーター、ポンプ用モーター、発電用モーター、ファンモーター、発電用モーター、電動パワーステアリングモーター、空調装置や空冷装置用のブロワモーター、パワーウインド用モーター、及び電動パワーシート用モーター等が挙げられる。
 モーターを備えるかかる吸音構造体によれば、モーターの駆動に起因する騒音の、吸音構造体からの吸音構造体外部への伝播を抑制し、車両内の空間を静音化できる。
Further, in vehicle applications, the sound absorbing structure may be formed by supporting the other sound absorbing materials described above on exterior materials and interior materials such as doors, bonnets, roofing materials (roofs), floor materials, fenders, pillars, and seats.
As the sound absorbing structure for a vehicle, a sound absorbing structure in which another sound absorbing material is supported by the pneumatic tire so as to cover at least a part of the surface on the lumen side of the pneumatic tire is also preferable.
According to the sound absorbing structure provided with the pneumatic tire as a support, it is easy to suppress the propagation of road noise into the vehicle.
Further, a sound absorbing structure in which the support is composed of a motor and a casing accommodating the motor, and the gap between the motor and the casing is filled with another sound absorbing material is also preferable.
Examples of the motor include a drive motor, a pump motor, a power generation motor, a fan motor, a power generation motor, an electric power steering motor, a blower motor for an air conditioner and an air cooling device, which are mounted on electric vehicles and hybrid vehicles. Examples include motors for power windows and motors for electric power seats.
According to such a sound absorbing structure including a motor, it is possible to suppress the propagation of noise caused by driving the motor from the sound absorbing structure to the outside of the sound absorbing structure, and to reduce the noise in the space inside the vehicle.
≪吸音構造体の製造方法≫
 前述の吸音構造体は、他の吸音材を、支持体の表面に固定するか、他の吸音材を支持体により規定される空間内に充填する方法により製造することができる。
 他の吸音材を支持体の表面に固定する方法としては、釘、ねじ、ビス、クリップ等の固定具を用いる方法であってもよく、接着剤や粘着テープ等を用いる方法であってもよい。
≪Manufacturing method of sound absorbing structure≫
The above-mentioned sound absorbing structure can be manufactured by fixing another sound absorbing material to the surface of the support or filling the space defined by the support with the other sound absorbing material.
As a method of fixing the other sound absorbing material to the surface of the support, a method using a fixture such as a nail, a screw, a screw, or a clip may be used, or a method using an adhesive, an adhesive tape or the like may be used. ..
 他の吸音材としての発泡体の形成に用いられる発泡体用樹脂組成物が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)を含む液状の硬化性組成物である場合、液状の硬化性組成物を支持体の表面に塗布した後に液状の硬化性組成物を発泡させながら硬化させるか、支持体により規定される空間内に液状の硬化性組成物を充填した後に液状の硬化性組成物を発泡させながら硬化させることにより吸音構造体を製造することができる。
 なお、液状の硬化性組成物の発泡及び硬化は、前述の発泡体の製造方法に準じて行われる。
 支持体により規定される空間内に液状の硬化性組成物を充填した後に液状の硬化性組成物を発泡させながら硬化させる場合、支持体には発泡反応により発生したガスを抜くためのベントが設けられているのが好ましい。
 反応性ケイ素基を有するオキシアルキレン系重合体(A1)を含む液状の硬化性組成物の硬化物が、種々の材質に対する接着性を有するため、上記の方法により吸音構造体を製造することができる。
When the resin composition for a foam used for forming a foam as another sound absorbing material is a liquid curable composition containing a polyoxyalkylene polymer (A1) having a reactive silicon group, it is liquid. The curable composition is applied to the surface of the support and then cured while foaming the liquid curable composition, or the space defined by the support is filled with the liquid curable composition and then the liquid curable. A sound absorbing structure can be produced by curing the composition while foaming it.
The foaming and curing of the liquid curable composition is carried out according to the above-mentioned method for producing a foam.
When the liquid curable composition is filled in the space defined by the support and then cured while foaming the liquid curable composition, the support is provided with a vent for releasing the gas generated by the foaming reaction. It is preferable that it is.
Since the cured product of the liquid curable composition containing the oxyalkylene polymer (A1) having a reactive silicon group has adhesiveness to various materials, a sound absorbing structure can be produced by the above method. ..
 より具体的には、支持体としてのタイヤの内腔側の面に、反応性ケイ素基を有するオキシアルキレン重合体(A1)を含む液状の硬化性組成物を塗布した後に、塗布された液状の硬化性組成物を発泡させながら硬化させることにより、他の吸音材を備えるタイヤを吸音構造体として製造することができる。 More specifically, a liquid curable composition containing an oxyalkylene polymer (A1) having a reactive silicon group is applied to the inner surface of the tire as a support, and then the applied liquid. By curing the curable composition while foaming it, a tire provided with another sound absorbing material can be produced as a sound absorbing structure.
 また、モーターとモーターを収容するケーシングとからなる支持体において、モーターとケーシングとの間の空隙に反応性ケイ素基を有するオキシアルキレン重合体(A)を含む液状の硬化性組成物を充填した後、充填された液状の硬化性組成物を発泡させながら硬化させることにより、モーターをケーシング内に内包する吸音構造体を製造することができる。 Further, in the support composed of the motor and the casing accommodating the motor, after filling the gap between the motor and the casing with a liquid curable composition containing the oxyalkylene polymer (A) having a reactive silicon group. By curing the filled liquid curable composition while foaming, a sound absorbing structure containing a motor in a casing can be manufactured.
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、特に断りがない場合、実施例及び比較例での「部」及び「%」は、「重量部」及び「重量%」を示す。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Unless otherwise specified, "parts" and "%" in Examples and Comparative Examples indicate "parts by weight" and "% by weight".
[合成例1]
<ポリマーA>
 分子量約3,000のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量が16,400(送液システムとして東ソー製HLC-8120GPCを用い、カラムは東ソー製TSK-GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)のヒドロキシ基末端ポリオキシプロピレンを得た。続いてこのヒドロキシ基末端ポリオキシプロピレンのヒドロキシ基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに1.5倍当量の3-クロロ-1-プロペンを添加して末端のヒドロキシ基をアリル基に変換した。次に得られたアリル基末端ポリオキシプロピレン重合体100重量部に対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロピルアルコール溶液)36ppmを加え撹拌しながら、トリエトキシシラン3.3重量部をゆっくりと滴下し、90℃で2時間反応させた。さらにメタノール30重量部、HCl12ppmを添加して末端のエトキシ基をメトキシ基に変換した後、過剰のメタノールを除去することにより、末端にトリメトキシシリル基を1分子中に2.1個有する分岐状の反応性ケイ素基含有ポリオキシプロピレンを得た。また、上記重合体のガラス転移温度は-60℃である。
[Synthesis Example 1]
<Polymer A>
Polyoxypropylene triol having a molecular weight of about 3,000 was used as an initiator, and propylene oxide was polymerized with a zinc hexacyanocovalent glyme complex catalyst, and the number average molecular weight was 16,400 (using HLC-8120GPC manufactured by Tosoh as a liquid feeding system). , TSK-GEL H type manufactured by Tosoh Co., Ltd. was used as the column, and polystyrene-equivalent molecular weight measured using THF was used as the solvent to obtain hydroxy group-terminated polyoxypropylene. Subsequently, 1.2 times equivalent of a methanol solution of NaOMe was added to the hydroxy group of the hydroxy group-terminated polyoxypropylene to distill off methanol, and 1.5 times equivalent of 3-chloro-1-propene was added. It was added to convert the terminal hydroxy group to an allyl group. Next, to 100 parts by weight of the obtained allyl group-terminated polyoxypropylene polymer, 36 ppm of a platinum divinyldisiloxane complex (isopropyl alcohol solution of 3% by weight in terms of platinum) was added, and while stirring, 3.3 weight by weight of triethoxysilane. The portion was slowly added dropwise and reacted at 90 ° C. for 2 hours. Further, 30 parts by weight of methanol and 12 ppm of HCl are added to convert the ethoxy group at the terminal into a methoxy group, and then excess methanol is removed to form a branched product having 2.1 trimethoxysilyl groups at the terminal in one molecule. Reactive silicon group-containing polyoxypropylene was obtained. The glass transition temperature of the polymer is −60 ° C.
[合成例2]
<ポリマーB>
 数平均分子量約2,000のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒を用いてプロピレンオキシドの重合を行い、数平均分子量が27900(送液システムとして東ソー製HLC-8120GPCを用い、カラムは東ソー製TSK-GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)のヒドロキシ基末端ポリオキシプロピレンを得た。続いてこのヒドロキシ基末端ポリオキシプロピレンの水酸基に対して1.05倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに1.16倍当量の臭化プロパルギルを添加して末端の水酸基をプロパルギル基に変換した。得られた未精製のプロパルギル基末端ポリオキシプロピレンをn-ヘキサンと、水を混合撹拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端部位にプロパルギル基を有するポリオキシプロピレンを得た。この重合体500gに対して白金ジビニルジシロキサン錯体(白金換算で3重量%のイソプロピルアルコール溶液)150μL、及びトリメトキシシラン8.37gを添加し、90℃で2時間反応させた後、未反応のトリメトキシシランを減圧下留去することにより、末端にトリメトキシシリル基を有する数平均分子量28500のポリオキシプロピレンを得た。かかるポリオキシプロピレンは、プロパルギル基にトリメトキシシランが付加した末端構造を有する。得られたポリオキシプロピレンはトリメトキシシリル基を1分子中に平均2.0個有することが分かった。また、上記重合体のガラス転移温度は-60℃である。
[Synthesis Example 2]
<Polymer B>
Polyoxypropylene glycol having a number average molecular weight of about 2,000 was used as an initiator, and propylene oxide was polymerized using a zinc hexacyanocobaltate glyme complex catalyst to obtain a number average molecular weight of 27900 (Tosoh HLC-8120GPC as a liquid feed system). The column used was TSK-GEL H type manufactured by Tosoh, and the solvent was polystyrene-equivalent molecular weight measured using THF) to obtain hydroxy group-terminated polyoxypropylene. Subsequently, 1.05 times equivalent of a methanol solution of NaOMe was added to the hydroxyl group of the hydroxy group-terminated polyoxypropylene to distill off methanol, and 1.16 times equivalent of propargyl bromide was added to the terminal. The hydroxyl group was converted to a propargyl group. The obtained unpurified propargyl group-terminated polyoxypropylene was mixed with n-hexane and water, and then water was removed by centrifugation. Hexane was devolatile from the obtained hexane solution under reduced pressure to give the polymer. The metal salt was removed. From the above, polyoxypropylene having a propargyl group at the terminal site was obtained. To 500 g of this polymer, 150 μL of a platinum divinyldisiloxane complex (3 wt% isopropyl alcohol solution in terms of platinum) and 8.37 g of trimethoxysilane were added, reacted at 90 ° C. for 2 hours, and then unreacted. By distilling off trimethoxysilane under reduced pressure, polyoxypropylene having a trimethoxysilyl group at the terminal and having a number average molecular weight of 28500 was obtained. Such polyoxypropylene has a terminal structure in which trimethoxysilane is added to a propargyl group. It was found that the obtained polyoxypropylene had an average of 2.0 trimethoxysilyl groups in one molecule. The glass transition temperature of the polymer is −60 ° C.
[調製例1]
<ポリマーD>
 ポリマーA60重量部と、メタクリル酸メチル(MMA)、アクリル酸2-エチルヘキシル(2EHA)、メタクリル酸ステアリル(SMA)、メタクリル酸3-(トリメトキシシリル)プロピル(TSMA)、及び(3-メルカプトプロピル)トリメトキシシラン(A189Z)の共重合体40重量部と、共重合体の溶媒であるイソブチルアルコール27重量部とを、ロータリーエバポレーターを用いて脱気及び均一混合して、反応性ケイ素基含有ポリオキシプロピレン(ポリマーA)60重量部とアクリル樹脂40重量部とのブレンドである固形分100%のポリマーDを得た。
 上記共重合体の共重合比率(質量比)は、MMA/2EHA/SMA/TSMA/A189Zとして、65/24/1/10/8である。また、上記共重合体のガラス転移温度は43℃である。上記重合体の数平均分子量は、2,200(送液システムとして東ソー製HLC-8120GPCを用い、カラムは東ソー製TSK-GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)である。
[Preparation Example 1]
<Polymer D>
60 parts by weight of polymer A, methyl methacrylate (MMA), 2-ethylhexyl acrylate (2EHA), stearyl methacrylate (SMA), 3- (trimethoxysilyl) propyl methacrylate (TSMA), and (3-mercaptopropyl). 40 parts by weight of the copolymer of trimethoxysilane (A189Z) and 27 parts by weight of isobutyl alcohol which is the solvent of the copolymer are degassed and uniformly mixed using a rotary evaporator, and a reactive silicon group-containing polyoxy is mixed. A polymer D having a solid content of 100%, which is a blend of 60 parts by weight of propylene (polymer A) and 40 parts by weight of acrylic resin, was obtained.
The copolymerization ratio (mass ratio) of the copolymer is 65/24/1/10/8 as MMA / 2EHA / SMA / TSMA / A189Z. The glass transition temperature of the copolymer is 43 ° C. The number average molecular weight of the polymer is 2,200 (polystyrene-equivalent molecular weight measured using HLC-8120GPC manufactured by Tosoh as a liquid feeding system, TSK-GEL H type manufactured by Tosoh as a column, and THF as a solvent). is there.
[調製例2]
<ポリマーE>
 ポリマーA60重量部と、メタクリル酸メチル(MMA)、アクリル酸ブチル(BA)、アクリル酸2-エチルヘキシル(2EHA)、メタクリル酸ステアリル(SMA)、メタクリル酸3-(トリメトキシシリル)プロピル(TSMA)、メタクリル酸tert-ブチル(tBMA)、及び(3-メルカプトプロピル)トリメトキシシラン(A189Z)の共重合体40重量部と、共重合体の溶媒であるイソブチルアルコール27重量部とを、ロータリーエバポレーターを用いて脱気及び均一混合して、反応性ケイ素基含有ポリオキシプロピレン(ポリマーA)60重量部とアクリル樹脂40重量部とのブレンドである固形分100%のポリマーEを得た。
 上記共重合体の共重合比率(質量比)は、MMA/BA/2EHA/SMA/TSMA/tBMA/A189Zとして、64/0.3/0.3/10/10/15/7.2である。また、上記共重合体のガラス転移温度は70℃である。上記重合体の数平均分子量は、2,300(送液システムとして東ソー製HLC-8120GPCを用い、カラムは東ソー製TSK-GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)である。
[Preparation Example 2]
<Polymer E>
60 parts by weight of polymer A, methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (2EHA), stearyl methacrylate (SMA), 3- (trimethoxysilyl) propyl methacrylate (TSMA), Using a rotary evaporator, 40 parts by weight of a copolymer of tert-butyl methacrylate (tBMA) and (3-mercaptopropyl) trimethoxysilane (A189Z) and 27 parts by weight of isobutyl alcohol which is a solvent of the copolymer are used. After degassing and uniformly mixing, 60 parts by weight of the reactive silicon group-containing polyoxypropylene (polymer A) and 40 parts by weight of the acrylic resin were blended to obtain a polymer E having a solid content of 100%.
The copolymerization ratio (mass ratio) of the copolymer is 64 / 0.3 / 0.3 / 10/10/15 / 7.2 as MMA / BA / 2EHA / SMA / TSMA / tBMA / A189Z. .. The glass transition temperature of the copolymer is 70 ° C. The number average molecular weight of the polymer is 2,300 (polystyrene-equivalent molecular weight measured using HLC-8120GPC manufactured by Tosoh as a liquid feeding system, TSK-GEL H type manufactured by Tosoh as a column, and THF as a solvent). is there.
[調製例3]
<ポリマーF>
 ポリマーA60重量部と、メタクリル酸メチル(MMA)、アクリル酸ブチル(BA)、アクリル酸2-エチルヘキシル(2EHA)、メタクリル酸ステアリル(SMA)、メタクリル酸3-(トリメトキシシリル)プロピル(TSMA)、イソボロニルメタクリレート(iBOMA)、及び(3-メルカプトプロピル)トリメトキシシラン(A189Z)の共重合体40重量部と、共重合体の溶媒であるイソブチルアルコール27重量部とを、ロータリーエバポレーターを用いて脱気及び均一混合して、反応性ケイ素基含有ポリオキシプロピレン(ポリマーA)60重量部とアクリル樹脂40重量部とのブレンドである固形分100%のポリマーFを得た。
 上記共重合体の共重合比率(質量比)は、MMA/BA/2EHA/SMA/TSMA/iBoMA/A189Zとして、20/0.3/0.3/10/10/60/1.8である。また、上記共重合体のガラス転移温度は100℃である。上記重合体の素平均分子量は、5,300(送液システムとして東ソー製HLC-8120GPCを用い、カラムは東ソー製TSK-GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)である。
[Preparation Example 3]
<Polymer F>
60 parts by weight of polymer A, methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (2EHA), stearyl methacrylate (SMA), 3- (trimethoxysilyl) propyl methacrylate (TSMA), Using a rotary evaporator, 40 parts by weight of a copolymer of isoboronyl methacrylate (iBOMA) and (3-mercaptopropyl) trimethoxysilane (A189Z) and 27 parts by weight of isobutyl alcohol as a solvent for the copolymer were used. Degassed and uniformly mixed to obtain a polymer F having a solid content of 100%, which is a blend of 60 parts by weight of the reactive silicon group-containing polyoxypropylene (polymer A) and 40 parts by weight of the acrylic resin.
The copolymerization ratio (mass ratio) of the copolymer is 20 / 0.3 / 0.3 / 10/10/60 / 1.8 as MMA / BA / 2EHA / SMA / TSMA / iBoMA / A189Z. .. The glass transition temperature of the copolymer is 100 ° C. The elementary average molecular weight of the polymer is 5,300 (polystyrene-equivalent molecular weight measured using HLC-8120GPC manufactured by Tosoh as a liquid feeding system, TSK-GEL H type manufactured by Tosoh as a column, and THF as a solvent). is there.
[実施例1]
 基材樹脂(A)[ポリマーA]80重量部、基材樹脂(A)[ポリマーD]20重量部、二炭酸ジエステル(B-1)[富士フイルム和光純薬(株)製、二炭酸ジエチル]10重量部、及び水(C)4重量部を添加し、十分に混合して第1液を作製した。
 この第1液114重量部に、整泡剤[エボニックジャパン(株)製、テゴスターブBF2470]2重量部、シラノール縮合触媒(D)[日東化成(株)製、ネオスタンU200(ジブチル錫ジアセテート)]6重量部、及びシラノール縮合触媒(D)[DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)]4重量部を添加し、室温(23℃雰囲気)下で、容積の目盛がついた樹脂製のカップ内で合計10ccとなるよう調合し、幅10mmスパチュラで10秒間手撹拌し、発泡させた。撹拌開始から5分経過後の発泡倍率と、発泡体の密度とを表1に記す。
 また、得られた発泡体の0℃でのASKER FP硬度を測定した。FP硬度を表1に記す。
[Example 1]
Base resin (A) [polymer A] 80 parts by weight, base resin (A) [polymer D] 20 parts by weight, dicarbonate diester (B-1) [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., diethyl dicarbonate ] 10 parts by weight and 4 parts by weight of water (C) were added and mixed thoroughly to prepare a first liquid.
In 114 parts by weight of this first liquid, 2 parts by weight of a foam stabilizer [Ebonic Japan Co., Ltd., Tegostarve BF2470], silanol condensation catalyst (D) [Nitto Kasei Co., Ltd., Neostan U200 (dibutyltin diacetate)] 6 parts by weight and 4 parts by weight of silanol condensation catalyst (D) [DABCO (1,4-diazabicyclo [2.2.2] octane)] are added, and the volume is graduated at room temperature (23 ° C atmosphere). A total of 10 cc was prepared in a resin cup, and the mixture was manually stirred with a 10 mm wide spatula for 10 seconds to foam. Table 1 shows the foaming ratio after 5 minutes from the start of stirring and the density of the foam.
In addition, the ASKER FP hardness of the obtained foam at 0 ° C. was measured. The FP hardness is shown in Table 1.
[実施例2]
 基材樹脂(A)[ポリマーA]80重量部、基材樹脂(A)[ポリマーE]20重量部、二炭酸ジエステル(B-1)[富士フイルム和光純薬(株)製、二炭酸ジエチル]10重量部、及び水(C)2重量部を添加し、十分に混合して第1液を作製した。
 この第1液112重量部に、整泡剤[エボニックジャパン(株)製、テゴスターブBF2470]2重量部、シラノール縮合触媒(D)[日東化成(株)製、ネオスタンU200(ジブチル錫ジアセテート)]6重量部、及びシラノール縮合触媒(D)[DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)]1.2重量部を添加し、室温(23℃雰囲気)下で、容積の目盛がついた樹脂製のカップ内で合計10ccとなるよう調合し、幅10mmスパチュラで10秒間手撹拌し、発泡させた。撹拌開始から5分経過後の発泡倍率と、発泡体の密度とを表1に記す。
 また、得られた発泡体の0℃でのASKER FP硬度を測定した。FP硬度を表1に記す。
[Example 2]
Base resin (A) [polymer A] 80 parts by weight, base resin (A) [polymer E] 20 parts by weight, dicarbonate diester (B-1) [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., diethyl dicarbonate ] 10 parts by weight and 2 parts by weight of water (C) were added and mixed thoroughly to prepare a first liquid.
To 112 parts by weight of this first liquid, 2 parts by weight of a foam stabilizer [Ebonic Japan Co., Ltd., Tegostarve BF2470], silanol condensation catalyst (D) [Nitto Kasei Co., Ltd., Neostan U200 (dibutyltin diacetate)] Add 6 parts by weight and 1.2 parts by weight of silanol condensation catalyst (D) [DABCO (1,4-diazabicyclo [2.2.2] octane)], and scale the volume at room temperature (23 ° C atmosphere). A total of 10 cc was prepared in a resin cup with a mark, and the mixture was manually stirred with a 10 mm wide spatula for 10 seconds to foam. Table 1 shows the foaming ratio after 5 minutes from the start of stirring and the density of the foam.
In addition, the ASKER FP hardness of the obtained foam at 0 ° C. was measured. The FP hardness is shown in Table 1.
[実施例3]
 基材樹脂(A)[ポリマーA]40重量部、基材樹脂(A)[ポリマーF]60重量部、二炭酸ジエステル(B-1)[富士フイルム和光純薬(株)製、二炭酸ジエチル]13重量部、及び水(C)4重量部を添加し、十分に混合して第1液を作製した。
 この第1液117重量部に、整泡剤[エボニックジャパン(株)製、テゴスターブBF2470]0.3重量部、シラノール縮合触媒(D)[日東化成(株)製、ネオスタンU200(ジブチル錫ジアセテート)]4重量部、及びシラノール縮合触媒(D)[DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)]1.2重量部を添加し、室温(23℃雰囲気)下で、容積の目盛がついた樹脂製のカップ内で合計10ccとなるよう調合し、幅10mmスパチュラで10秒間手撹拌し、発泡させた。撹拌開始から5分経過後の発泡倍率と、発泡体の密度とを表1に記す。
 また、得られた発泡体の0℃でのASKER FP硬度を測定した。FP硬度を表1に記す。
[Example 3]
40 parts by weight of base resin (A) [polymer A], 60 parts by weight of base resin (A) [polymer F], dicarbonate diester (B-1) [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., diethyl dicarbonate ] 13 parts by weight and 4 parts by weight of water (C) were added and mixed thoroughly to prepare a first liquid.
In addition to 117 parts by weight of the first liquid, 0.3 parts by weight of a foam stabilizer [Ebonic Japan Co., Ltd., Tegostarve BF2470], silanol condensation catalyst (D) [Nitto Kasei Co., Ltd., Neostan U200 (dibutyltin diacetate) )] 4 parts by weight and 1.2 parts by weight of silanol condensation catalyst (D) [DABCO (1,4-diazabicyclo [2.2.2] octane)] were added, and the volume was increased at room temperature (23 ° C. atmosphere). A total of 10 cc was prepared in a resin cup with the scale of No. 1 and hand-stirred with a 10 mm wide spatula for 10 seconds to foam. Table 1 shows the foaming ratio after 5 minutes from the start of stirring and the density of the foam.
In addition, the ASKER FP hardness of the obtained foam at 0 ° C. was measured. The FP hardness is shown in Table 1.
[比較例1]
 ポリウレタンフォーム(ソノーライズ(株)製、ウレタンスポンジ吸音材ZS)を、比較例1の発泡体として用いた。
[Comparative Example 1]
Polyurethane foam (urethane sponge sound absorbing material ZS manufactured by Sonorize Co., Ltd.) was used as the foam of Comparative Example 1.
<吸音率測定>
 吸音率測定用の実施例2の発泡体を以下の方法に従い作成した。
 まず、[ポリマーA]80重量部、[ポリマーE]20重量部、発泡剤(B-1)[富士フイルム和光純薬工業(株)製、二炭酸ジエチル]10重量部、及び水(C)2重量部を添加し、十分に混合してA液を作製した。このA液とB液成分である整泡剤[エボニック・デグサ・ジャパン(株)製、TEGOSTAB BF2470]2重量部、発泡助剤[エボニック・デグサ・ジャパン(株)製、DABCO NE1070]1.2重量部、及びSn触媒(D)[ジブチル錫ジアセテート(日東化成(株)製、NEOSTANN U-200)]6重量部とを添加し、十分に混合して発泡体を作製した。発泡体成形は、東京理化器械(株)製撹拌機マゼラZZ-2221を用いて、以下の条件で撹拌を行うことにより作製した。
撹拌回転数:610rpm
撹拌翼:ディスクエッジを交互に上下に幅10mm×曲げ長さ5mmで折り曲げた直径4cm円形ディスパー
混合量:120g
混合時間:10秒間
 撹拌直後に20cm×20cm×5cmのポリエチレンタッパーに液状の組成物を流し込み、上蓋をした状態で発泡させ、12時間放置した。作業条件は23℃条件であった。(発泡成形工程)。得られた発泡硬化物を、ポリエチレンタッパーから離型して23℃雰囲気下で1週間放置した後に軟質樹脂発泡体を得た(乾燥工程)。得られた軟質樹脂発泡体のスキン層をカットして25mm又は20mmの厚みとし、B管サンプルは直径29mmに打ち抜き、吸音率測定サンプルを得た(スキン層カット工程)。
 吸音率測定用の実施例3の発泡体を以下の方法に従い作成した。
 まず、[ポリマーA]40重量部、[ポリマーD]60重量部、発泡剤(B-1)[和光純薬工業(株)製 二炭酸ジエチル]13重量部、及び水(C)4重量部を添加し、十分に混合してA液を作製した。このA液とB液成分である整泡剤[エボニック・デグサ・ジャパン(株)製、TEGOSTAB BF2470]0.3重量部、発泡助剤[エボニック・デグサ・ジャパン(株)製、DABCO NE1070]1.2重量部、及びSn触媒(D)[ジブチル錫ジアセテート(日東化成(株)製、NEOSTANN U-200)]4重量部とを添加し、十分に混合して発泡体を作製した。発泡体成形は、東京理化器械(株)製撹拌機マゼラZZ-2221を用いて、以下の条件で撹拌を行うことにより作製した。
撹拌回転数:610rpm
撹拌翼:ディスクエッジを交互に上下に幅10mm×曲げ長さ5mmで折り曲げた直径4cm円形ディスパー
混合量:80g
混合時間:10秒間
 撹拌直後に20cm×20cm×5cmのポリエチレンタッパーに液状の組成物を流し込み、上蓋をした状態で発泡させ、12時間放置した。作業条件は23℃条件であった。(発泡成形工程)。得られた発泡硬化物を、ポリエチレンタッパーから離型して23℃雰囲気下で1週間放置した後に軟質樹脂発泡体を得た(乾燥工程)。得られた軟質樹脂発泡体のスキン層をカットして20mmの厚みとし、B管サンプルは直径29mmに打ち抜き、吸音率測定サンプルを得た(スキン層カット工程)。
 比較例1の発泡体としては、ソノーライズ社製、ウレタンスポンジ吸音材ZSの厚み25mmを直径29mmに打ち抜き、B管の吸音率測定サンプルを得た。
 作成された試験片を用いて、JISA-1405-2に準拠して、20℃においてB管を用いて、500Hz~6400Hzの周波数範囲における発泡体の吸音率を測定した。なお、試験片はスキン層をすべてカットした状態である。
 吸音率の測定結果を、図1に示す。
<Measurement of sound absorption coefficient>
The foam of Example 2 for measuring the sound absorption coefficient was prepared according to the following method.
First, 80 parts by weight of [Polymer A], 20 parts by weight of [Polymer E], 10 parts by weight of foaming agent (B-1) [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., diethyl carbonate], and water (C). 2 parts by weight was added and mixed sufficiently to prepare a solution A. 2 parts by weight of the foam stabilizer [Evonik Degussa Japan Co., Ltd., TEGOSTAB BF2470], which is a component of the liquid A and liquid B, and the foaming aid [Evonik Degussa Japan Co., Ltd., DABCO NE1070] 1.2. A foam was prepared by adding 6 parts by weight and 6 parts by weight of Sn catalyst (D) [dibutyltin diacetate (NEOSTANN U-200, manufactured by Nitto Kasei Co., Ltd.)] and thoroughly mixing them. Foam molding was produced by stirring under the following conditions using a stirrer Magella ZZ-2221 manufactured by Tokyo Rika Kikai Co., Ltd.
Stirring speed: 610 rpm
Stirring blade: Circular dispar with a diameter of 4 cm, in which the disc edges are alternately bent vertically with a width of 10 mm and a bending length of 5 mm. Mixing amount: 120 g
Mixing time: Immediately after stirring for 10 seconds, the liquid composition was poured into a 20 cm × 20 cm × 5 cm polyethylene tapper, foamed with the top lid on, and left for 12 hours. The working conditions were 23 ° C. (Foam molding process). The obtained foamed cured product was released from a polyethylene tapper and left to stand in an atmosphere of 23 ° C. for 1 week to obtain a soft resin foam (drying step). The skin layer of the obtained soft resin foam was cut to a thickness of 25 mm or 20 mm, and the B tube sample was punched to a diameter of 29 mm to obtain a sound absorption coefficient measurement sample (skin layer cutting step).
The foam of Example 3 for measuring the sound absorption coefficient was prepared according to the following method.
First, 40 parts by weight of [Polymer A], 60 parts by weight of [Polymer D], 13 parts by weight of foaming agent (B-1) [diethyl carbonate manufactured by Wako Pure Chemical Industries, Ltd.], and 4 parts by weight of water (C). Was added and mixed thoroughly to prepare a solution A. 0.3 parts by weight of the foam stabilizer [Evonik Degussa Japan Co., Ltd., TEGOSTAB BF2470], which is a component of the liquid A and liquid B, and the foaming aid [Evonik Degussa Japan Co., Ltd., DABCO NE1070] 1 .2 parts by weight and 4 parts by weight of Sn catalyst (D) [dibutyltin diacetate (NEOSTANN U-200, manufactured by Nitto Kasei Co., Ltd.)] were added and thoroughly mixed to prepare a foam. Foam molding was produced by stirring under the following conditions using a stirrer Magella ZZ-2221 manufactured by Tokyo Rika Kikai Co., Ltd.
Stirring speed: 610 rpm
Stirring blade: Circular dispar with a diameter of 4 cm, in which the disc edges are alternately bent vertically with a width of 10 mm and a bending length of 5 mm. Mixing amount: 80 g
Mixing time: Immediately after stirring for 10 seconds, the liquid composition was poured into a 20 cm × 20 cm × 5 cm polyethylene tapper, foamed with the top lid on, and left for 12 hours. The working conditions were 23 ° C. (Foam molding process). The obtained foamed cured product was released from a polyethylene tapper and left to stand in an atmosphere of 23 ° C. for 1 week to obtain a soft resin foam (drying step). The skin layer of the obtained soft resin foam was cut to a thickness of 20 mm, and the B tube sample was punched to a diameter of 29 mm to obtain a sound absorption coefficient measurement sample (skin layer cutting step).
As the foam of Comparative Example 1, a urethane sponge sound absorbing material ZS manufactured by Sonorize Co., Ltd. was punched to a diameter of 29 mm to obtain a sound absorption coefficient measurement sample of a B tube.
Using the prepared test piece, the sound absorption coefficient of the foam in the frequency range of 500 Hz to 6400 Hz was measured using a B tube at 20 ° C. according to JISA-1405-2. The test piece is in a state where the skin layer is completely cut.
The measurement result of the sound absorption coefficient is shown in FIG.
<水ゲル分率測定>
 実施例1~3の発泡体の試験片を、室温(23℃雰囲気)下で3日間水に浸漬させた後、100℃12時間乾燥させた。乾燥後の試験片の重量の、水浸漬前の試験片の重量に対する比率(%)を、水ゲル分率(%)とした。なお、約10gの発泡体の試験片を225mL瓶の水に浸漬した。
<Water gel fraction measurement>
The foam test pieces of Examples 1 to 3 were immersed in water at room temperature (23 ° C. atmosphere) for 3 days and then dried at 100 ° C. for 12 hours. The ratio (%) of the weight of the test piece after drying to the weight of the test piece before immersion in water was defined as the water gel fraction (%). A test piece of about 10 g of foam was immersed in a 225 mL bottle of water.
Figure JPOXMLDOC01-appb-T000019
*1:シラノール縮合触媒(D)のうち、DABCOは、DABCO NE1070であり、発泡助剤(E)として作用する。
Figure JPOXMLDOC01-appb-T000019
* 1: Of the silanol condensation catalysts (D), DABCO is DABCO NE1070 and acts as a foaming aid (E).
 表1及び図1によれば、ポリオキシアルキレン系重合体(A1)を含む反応性ケイ素基を有する基材樹脂(A)を、発泡及び硬化させることにより、所定の方法で測定された吸音率が周波数1000Hz~5500Hzの広い範囲において70%以上である発泡体を製造し得ることが分かる。
 他方、公知のポリウレタンフォームである比較例1の発泡体の吸音率は、図1に示されるグラフにおける全周波数範囲において、実施例の発泡体の吸音率よりも低く、800Hz~2500Hzの範囲で特に低い。
According to Table 1 and FIG. 1, the sound absorption coefficient measured by a predetermined method by foaming and curing the base resin (A) having a reactive silicon group containing the polyoxyalkylene polymer (A1). It can be seen that a foam having a frequency of 70% or more can be produced in a wide range of frequencies from 1000 Hz to 5500 Hz.
On the other hand, the sound absorption coefficient of the foam of Comparative Example 1, which is a known polyurethane foam, is lower than the sound absorption coefficient of the foam of Example in the entire frequency range in the graph shown in FIG. 1, especially in the range of 800 Hz to 2500 Hz. Low.
 また、実施例1~3によれば、化学発泡剤(B)として、二炭酸ジエステル(B-1)を用いる場合、水ゲル分率が高く、発泡体の耐水性が良好であることが分かる。 Further, according to Examples 1 to 3, it can be seen that when the dicarbonate diester (B-1) is used as the chemical foaming agent (B), the water gel fraction is high and the water resistance of the foam is good. ..
 また、実施例2の発泡体と、実施例3の発泡体とについて、それぞれ厚さ20mmであり、スキン層がカットされた試験片を作製した。作成された試験片を用いて、JISA-1405-2に準拠して、20℃においてB管を用いて、500Hz~6400Hzの周波数範囲における発泡体の吸音率を測定した。吸音率の測定結果を図2に示す。
 図2によれば、実施例2の発泡体と、実施例3の発泡体とで、吸音率に大きな差がないとこと分かる。
Further, each of the foam of Example 2 and the foam of Example 3 had a thickness of 20 mm, and a test piece having a cut skin layer was prepared. Using the prepared test piece, the sound absorption coefficient of the foam in the frequency range of 500 Hz to 6400 Hz was measured using a B tube at 20 ° C. according to JISA-1405-2. The measurement result of the sound absorption coefficient is shown in FIG.
According to FIG. 2, it can be seen that there is no significant difference in sound absorption coefficient between the foam of Example 2 and the foam of Example 3.
 また、実施例1~3では、発泡体の製造に用いる材料として、金属塩及び無機微粒子を使用していない。実際、実施例1~3で得られた発泡体について、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)によりアルカリ金属含有量、特にナトリウム含有量を確認したが、アルカリ金属の含有量は0.005質量%未満の極少量であった。
 このように、金属塩及び無機粒子の発泡体中の含有量が少ないことは、発泡体の高い吸音性、特に、周波数1000Hz以下や800Hz以下での高い吸音性に寄与していると考えられる。
 なお、発明者が試験したところ、発泡体における金属塩や無機微粒子の含有量の増加にともない、周波数1000Hz以下や800Hz以下での吸音性がわずかに低下する傾向が確認された。
Further, in Examples 1 to 3, metal salts and inorganic fine particles are not used as materials used for producing the foam. In fact, the alkali metal content, especially the sodium content, of the foams obtained in Examples 1 to 3 was confirmed by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy), but the alkali metal content. Was a very small amount of less than 0.005% by mass.
It is considered that the low content of the metal salt and the inorganic particles in the foam contributes to the high sound absorption of the foam, particularly the high sound absorption at frequencies of 1000 Hz or less and 800 Hz or less.
As a result of the test by the inventor, it was confirmed that the sound absorption property at a frequency of 1000 Hz or less or 800 Hz or less tends to decrease slightly as the content of the metal salt or the inorganic fine particles in the foam increases.
〔スキン層の吸音率への影響の検討〕
 実施例3の発泡体と、比較例2の発泡体(サンゴバン社製ポリウレタン発泡体、AGP200、密度30kg/m)について、それぞれ厚さ20mmであり、スキン層がカットされた試験片とスキン層を有する試験片とを作製した。作成された試験片を用いて、JISA-1405-2に準拠して、20℃においてB管を用いて、500Hz~6400Hzの周波数範囲における発泡体の吸音率を測定した。
 その結果、実施例3の発泡体については、スキン層を有する試験片と、スキン層がカットされた試験片とで、各周波数毎の吸音率はほとんど変わらなかった。
 他方、比較例2の発泡体は、スキン層を有する試験片の吸音率が、1000~3000Hzの周波数の範囲において、スキン層がカットされた試験片の吸音率よりも大きく劣っていた。
 つまり、実施例3の発泡体は、スキン層の有無の吸音特性への影響が小さい。例えば、建築現場や、種々の製品の製造現場で、発泡体用樹脂組成物を用いて発泡体を施工する場合、スキン層のカットを行いにくい場合がある。しかしながら、実施例の発泡体については、スキン層の有無の吸音特性への影響が小さいため、建築現場や、種々の製品の製造現場で発泡体を施工しても、十分に発泡体の吸音特性を発揮させることができる。
[Examination of the effect on the sound absorption coefficient of the skin layer]
The foam of Example 3 and the foam of Comparative Example 2 (polyurethane foam manufactured by Saint-Gobain, AGP200, density 30 kg / m 3 ) were 20 mm thick, respectively, and the skin layer was cut off. A test piece having the above was prepared. Using the prepared test piece, the sound absorption coefficient of the foam in the frequency range of 500 Hz to 6400 Hz was measured using a B tube at 20 ° C. according to JISA-1405-2.
As a result, with respect to the foam of Example 3, the sound absorption coefficient for each frequency was almost the same between the test piece having the skin layer and the test piece having the skin layer cut.
On the other hand, in the foam of Comparative Example 2, the sound absorption coefficient of the test piece having the skin layer was significantly inferior to the sound absorption coefficient of the test piece having the skin layer cut in the frequency range of 1000 to 3000 Hz.
That is, the foam of Example 3 has a small influence on the sound absorption characteristics with and without the skin layer. For example, when a foam is constructed using a resin composition for a foam at a construction site or a manufacturing site of various products, it may be difficult to cut the skin layer. However, since the foam of the example has a small influence on the sound absorption characteristics of the presence or absence of the skin layer, even if the foam is applied at the construction site or the manufacturing site of various products, the sound absorption characteristics of the foam are sufficiently sufficient. Can be demonstrated.
[参考例1]
 基材樹脂(A)[ポリマーA]100重量部、二炭酸ジエステル(B-1)[富士フイルム和光純薬(株)製、二炭酸ジエチル]10重量部、及び水(C)2重量部を添加し、十分に混合して第1液を作製した。
 この第1液112重量部に、整泡剤[エボニックジャパン(株)製、テゴスターブBF2470]2重量部、シラノール縮合触媒(D)[日東化成(株)製、ネオスタンU200(ジブチル錫ジアセテート)]6重量部、及びシラノール縮合触媒[DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)]4重量部を添加し、室温(23℃雰囲気)下で、容積の目盛がついた樹脂製のカップ内で合計10ccとなるよう調合し、幅10mmスパチュラで10秒間手撹拌し、発泡させた。撹拌開始から5分経過後の発泡倍率と、発泡体の密度とを表2に記す。また、撹拌開始から24時間後の発泡倍率を表2に記す。
[Reference example 1]
Base resin (A) [polymer A] 100 parts by weight, dicarbonate diester (B-1) [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., diethyl dicarbonate] 10 parts by weight, and water (C) 2 parts by weight. The first solution was prepared by adding and mixing well.
To 112 parts by weight of this first liquid, 2 parts by weight of a foam stabilizer [Ebonic Japan Co., Ltd., Tegostarve BF2470], silanol condensation catalyst (D) [Nitto Kasei Co., Ltd., Neostan U200 (dibutyltin diacetate)] Made of resin with a volume scale at room temperature (23 ° C atmosphere) with the addition of 6 parts by weight and 4 parts by weight of silanol condensation catalyst [DABCO (1,4-diazabicyclo [2.2.2] octane)]. The mixture was prepared so as to have a total of 10 cc in the cup, and was manually stirred with a 10 mm wide spatula for 10 seconds to foam. Table 2 shows the foaming ratio after 5 minutes from the start of stirring and the density of the foam. Table 2 shows the foaming ratio 24 hours after the start of stirring.
[比較例2]
 基材樹脂(A)[ポリマーC、ジメトキシ(メチル)シリルメチルカルバメート末端を有するポリエーテル、WACKER CHEMIE社製、GENIOSIL(登録商標)STP E-10]100重量部、二炭酸ジエステル(B-1)[富士フイルム和光純薬(株)製、二炭酸ジエチル]10重量部、及び水(C)2重量部を添加し、十分に混合して第1液を作製した。ポリマーCは室温で液状である。ポリマーCのガラス転移温度は-60℃である。
 この第1液112重量部に、整泡剤[エボニックジャパン(株)製、テゴスターブBF2470]2重量部、シラノール縮合触媒(D)[日東化成(株)製、ネオスタンU200(ジブチル錫ジアセテート)]6重量部、及びシラノール縮合触媒[DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)]1.2重量部を添加し、室温(23℃雰囲気)下で、容積の目盛がついた樹脂製のカップ内で合計10ccとなるよう調合し、幅10mmスパチュラで10秒間手撹拌し、発泡させた。撹拌開始から5分経過後の発泡倍率と、発泡体の密度とを表2に記す。また、撹拌開始から24時間後の発泡倍率を表2に記す。
[Comparative Example 2]
Base resin (A) [Polymer C, polyether having dimethoxy (methyl) silylmethyl carbamate terminal, manufactured by WACKER CHEMIE, GENIOSIL (registered trademark) STP E-10] 100 parts by weight, dicarbonate diester (B-1) [Fujifilm Wako Pure Chemical Industries, Ltd., diethyl carbonate] 10 parts by weight and 2 parts by weight of water (C) were added and mixed thoroughly to prepare a first solution. Polymer C is liquid at room temperature. The glass transition temperature of Polymer C is −60 ° C.
To 112 parts by weight of this first liquid, 2 parts by weight of a foam stabilizer [Ebonic Japan Co., Ltd., Tegostarve BF2470], silanol condensation catalyst (D) [Nitto Kasei Co., Ltd., Neostan U200 (dibutyltin diacetate)] 6 parts by weight and 1.2 parts by weight of silanol condensation catalyst [DABCO (1,4-diazabicyclo [2.2.2] octane)] were added, and the volume was graduated at room temperature (23 ° C. atmosphere). The mixture was mixed in a resin cup so as to have a total of 10 cc, and was manually stirred with a 10 mm wide spatula for 10 seconds to foam. Table 2 shows the foaming ratio after 5 minutes from the start of stirring and the density of the foam. Table 2 shows the foaming ratio 24 hours after the start of stirring.
[実施例1]
 前述の実施例1と同様にして、第1液の調製と、発泡体の調製とを行った。撹拌開始から5分経過後の発泡倍率及び発泡体の密度と、撹拌開始から24時間経過後の発泡倍率とを表2に記す。
[Example 1]
In the same manner as in Example 1 described above, the first liquid was prepared and the foam was prepared. Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
[実施例4]
 第1液において、水(C)の量を4重量部から2重量部に変えることと、シラノール縮合触媒[DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)]の量を4重量部から1.2重量部に変えることとの他は、実施例1と同様に、第1液の調製と、発泡体の調製とを行った。撹拌開始から5分経過後の発泡倍率及び発泡体の密度と、撹拌開始から24時間経過後の発泡倍率とを表2に記す。
[Example 4]
In the first liquid, the amount of water (C) was changed from 4 parts by weight to 2 parts by weight, and the amount of silanol condensation catalyst [DABCO (1,4-diazabicyclo [2.2.2] octane)] was changed to 4 parts by weight. Other than changing from 1 part to 1.2 parts by weight, the first liquid was prepared and the foam was prepared in the same manner as in Example 1. Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
[実施例5]
 第1液において、水(C)を用いないことの他は、実施例1と同様に、第1液の調製と、発泡体の調製とを行った。撹拌開始から5分経過後の発泡倍率及び発泡体の密度と、撹拌開始から24時間経過後の発泡倍率とを表2に記す。
[Example 5]
In the first liquid, the preparation of the first liquid and the preparation of the foam were carried out in the same manner as in Example 1 except that water (C) was not used. Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
[実施例2]
 前述の実施例2と同様にして、第1液の調製と、発泡体の調製とを行った。撹拌開始から5分経過後の発泡倍率及び発泡体の密度と、撹拌開始から24時間経過後の発泡倍率とを表2に記す。
[Example 2]
In the same manner as in Example 2 described above, the first liquid was prepared and the foam was prepared. Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
[実施例6]
 ポリマーAをポリマーBに変えることの他は、実施例2と同様に、第1液の調製と、発泡体の調製とを行った。撹拌開始から5分経過後の発泡倍率及び発泡体の密度と、撹拌開始から24時間経過後の発泡倍率とを表2に記す。
[Example 6]
Except for changing the polymer A to the polymer B, the first liquid was prepared and the foam was prepared in the same manner as in Example 2. Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
[実施例7]
 ポリマーAをポリマーCに変えることの他は、実施例2と同様に、第1液の調製と、発泡体の調製とを行った。撹拌開始から5分経過後の発泡倍率及び発泡体の密度と、撹拌開始から24時間経過後の発泡倍率とを表2に記す。
[Example 7]
Except for changing the polymer A to the polymer C, the first liquid and the foam were prepared in the same manner as in Example 2. Table 2 shows the foaming ratio and the density of the foam after 5 minutes from the start of stirring, and the foaming ratio 24 hours after the start of stirring.
Figure JPOXMLDOC01-appb-T000020
*2:シラノール縮合触媒(D)のうち、DABCOは、DABCO NE1070であり、発泡助剤(E)として作用する。
*3:シュリンク率(%)=(5分後発泡倍率-24時間後発泡倍率)/5分後発泡倍率×100
Figure JPOXMLDOC01-appb-T000020
* 2: Of the silanol condensation catalysts (D), DABCO is DABCO NE1070 and acts as a foaming aid (E).
* 3: Shrink rate (%) = (foaming ratio after 5 minutes-24 hours after foaming ratio) / 5 minutes after foaming ratio x 100
 表2によれば、反応性ケイ素基を有する基材樹脂(A)と、化学発泡剤(B)と、シラノール縮合触媒(D)とを含む発泡体用樹脂組成物において、基材樹脂(A)として、ガラス転移温度が35℃以上であるアクリル樹脂(A2)と、ガラス転移温度が35℃未満であるポリオキシアルキレン系重合体(A1)とを組み合わせて用いる場合、発泡開始から24時間後において発泡体がほとんどシュリンクしていないことが分かる。
 他方、基材樹脂(A)として、ガラス転移温度が35℃未満であるポリオキシアルキレン系重合体(A1)のみを含む発泡体用樹脂組成物を用いた参考例1では、発泡開始から24時間後において発泡体の大幅なシュリンクが生じた。
According to Table 2, in the resin composition for a foam containing the base resin (A) having a reactive silicon group, the chemical foaming agent (B), and the silanol condensation catalyst (D), the base resin (A) ), When the acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher and the polyoxyalkylene polymer (A1) having a glass transition temperature of less than 35 ° C. are used in combination, 24 hours after the start of foaming. It can be seen that the foam hardly shrinks in.
On the other hand, in Reference Example 1 using a foam resin composition containing only the polyoxyalkylene polymer (A1) having a glass transition temperature of less than 35 ° C. as the base resin (A), 24 hours from the start of foaming. Later, a significant shrink of the foam occurred.
 なお、実施例1、2、及び4~7で得た発泡体について、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1000Hz~5500Hzにおける吸音率が70%以上であった。 The foams obtained in Examples 1, 2 and 4 to 7 are measured using a sample having a thickness of 25 mm and using a B tube at 20 ° C. in accordance with JIS A 1405-2. The sound absorption coefficient at frequencies of 1000 Hz to 5500 Hz was 70% or more.
 以下、前述の他の吸音材について、実施例8、実施例9、及び比較例3~10により説明する。実施例8、実施例9、及び比較例3~5において、基材樹脂(A)として前述の合成例1で調製されたポリマーAを用いた。実施例8、比較例4、及び比較例5において、基材樹脂(A)として前述の調製例3で調製されたポリマーFを用いた。 Hereinafter, the other sound absorbing materials described above will be described with reference to Examples 8, 9, and Comparative Examples 3 to 10. In Examples 8, 9, and Comparative Examples 3 to 5, the polymer A prepared in the above-mentioned Synthesis Example 1 was used as the base resin (A). In Example 8, Comparative Example 4, and Comparative Example 5, the polymer F prepared in Preparation Example 3 described above was used as the base resin (A).
[実施例8]
 基材樹脂(A)としてのポリマーA、及びポリマーFと、発泡剤[富士フイルム和光純薬工業(株)製、二炭酸ジエチル(B-1)]と、整泡剤[エボニック・デグサ・ジャパン(株)製、TEGOSTAB B8244]と、水(C)とを、それぞれ表3に記載の量添加し、十分に混合してA液を作製した。このA液に、それぞれ表3に記載の量の発泡助剤[エボニック・デグサ・ジャパン(株)製、DABCO NE1070]及びシラノール縮合触媒(D)[テトラエトキシシラン変性ジブチル錫塩(日東化成(株)製、NEOSTANN U-700)]を順次添加・混合して発泡体を作製した。発泡体成形は、東京理化器械(株)製撹拌機マゼラZZ-2221を用いて、以下の条件で撹拌を行うことにより作製した。
撹拌回転数:610rpm
撹拌翼:ディスクエッジを交互に上下に幅10mm×曲げ長さ5mmで折り曲げた直径4cm円形ディスパー
混合量:84g
混合時間:10秒間
 撹拌直後に縦:20cm×横:20cm×高さ:5cmのポリエチレンタッパーに混合した液状組成物を流し込み、上蓋をセットした状態で発泡させ、12時間放置した。作業条件は23℃条件であった。(発泡成形工程)。12時間後に得られた発泡硬化物を、ポリエチレンタッパーから離型して80℃雰囲気下で1時間放置した後に軟質樹脂発泡体を得た(乾燥工程)。得られた軟質樹脂発泡体のスキン層をカットして指定厚みとし、吸音材の各測定サンプルを準備した(スキン層カット工程)。
[Example 8]
Polymer A and polymer F as the base resin (A), foaming agent [Fujifilm Wako Pure Chemical Industries, Ltd., diethyl carbonate (B-1)], and foam stabilizer [Evonik Degussa Japan] TEGOSTAB B8244 manufactured by Co., Ltd.] and water (C) were added in the amounts shown in Table 3 and sufficiently mixed to prepare a solution A. In this solution A, the amounts of foaming aid [DABCO NE1070 manufactured by Evonik Degussa Japan Co., Ltd.] and silanol condensation catalyst (D) [tetraethoxysilane-modified dibutyltin salt (Nitto Kasei Co., Ltd.) are added to each of the amounts shown in Table 3. ), NEOSTANN U-700)] was sequentially added and mixed to prepare a foam. Foam molding was produced by stirring under the following conditions using a stirrer Magella ZZ-2221 manufactured by Tokyo Rika Kikai Co., Ltd.
Stirring speed: 610 rpm
Stirring blade: Circular dispar with a diameter of 4 cm, in which the disc edges are alternately bent vertically with a width of 10 mm and a bending length of 5 mm. Mixing amount: 84 g
Mixing time: 10 seconds Immediately after stirring, the mixed liquid composition was poured into a polyethylene tapper of length: 20 cm × width: 20 cm × height: 5 cm, foamed with the upper lid set, and left to stand for 12 hours. The working conditions were 23 ° C. (Foam molding process). The foamed cured product obtained after 12 hours was released from the polyethylene tapper and left to stand in an atmosphere of 80 ° C. for 1 hour to obtain a soft resin foam (drying step). The skin layer of the obtained soft resin foam was cut to a specified thickness, and each measurement sample of the sound absorbing material was prepared (skin layer cutting step).
〔実施例9〕
 基材樹脂(A)としてのポリマーAと、発泡剤[富士フイルム和光純薬工業(株)製、二炭酸ジエチル(B-1)]と、整泡剤[エボニック・デグサ・ジャパン(株)製、TEGOSTAB B8244]と、水(C)とを、それぞれ表3に記載の量添加し、十分に混合してA液を作製した。このA液に、それぞれ表3に記載の量の発泡助剤[エボニック・デグサ・ジャパン(株)製、DABCO NE1070]及びシラノール縮合触媒(D)[テトラエトキシシラン変性ジブチル錫塩(日東化成(株)製、NEOSTANN U-700)]を順次添加・混合して発泡体を作製した。発泡体成形は、東京理化器械(株)製撹拌機マゼラZZ-2221を用いて、以下の条件で撹拌を行うことにより作製した。
撹拌回転数:610rpm
撹拌翼:ディスクエッジを交互に上下に幅10mm×曲げ長さ5mmで折り曲げた直径4cm円形ディスパー
混合量:84g
混合時間:15秒間
 撹拌直後に縦:20cm×横:20cm×高さ:5cmのポリエチレンタッパーに混合した液状組成物を流し込み、上蓋をセットした状態で発泡させ、12時間放置した。作業条件は23℃条件であった。(発泡成形工程)。12時間後に得られた発泡硬化物を、ポリエチレンタッパーから離型して80℃雰囲気下で1時間放置した後に軟質樹脂発泡体を得た(乾燥工程)。得られた軟質樹脂発泡体のスキン層をカットして指定厚みとし、吸音材の各測定サンプルを準備した(スキン層カット工程)。
[Example 9]
Polymer A as the base resin (A), foaming agent [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., diethyl carbonate (B-1)], and foam stabilizer [manufactured by Ebonic Degussa Japan Co., Ltd.] , TEGOSTAB B8244] and water (C) were added in the amounts shown in Table 3 and mixed sufficiently to prepare a solution A. In this solution A, the amounts of foaming aid [DABCO NE1070 manufactured by Evonik Degussa Japan Co., Ltd.] and silanol condensation catalyst (D) [tetraethoxysilane-modified dibutyltin salt (Nitto Kasei Co., Ltd.) are added to each of the amounts shown in Table 3. ), NEOSTANN U-700)] was sequentially added and mixed to prepare a foam. Foam molding was produced by stirring under the following conditions using a stirrer Magella ZZ-2221 manufactured by Tokyo Rika Kikai Co., Ltd.
Stirring speed: 610 rpm
Stirring blade: Circular dispar with a diameter of 4 cm, in which the disc edges are alternately bent vertically with a width of 10 mm and a bending length of 5 mm. Mixing amount: 84 g
Mixing time: 15 seconds Immediately after stirring, the mixed liquid composition was poured into a polyethylene tapper of length: 20 cm × width: 20 cm × height: 5 cm, foamed with the upper lid set, and left to stand for 12 hours. The working conditions were 23 ° C. (Foam molding process). The foamed cured product obtained after 12 hours was released from the polyethylene tapper and left to stand in an atmosphere of 80 ° C. for 1 hour to obtain a soft resin foam (drying step). The skin layer of the obtained soft resin foam was cut to a specified thickness, and each measurement sample of the sound absorbing material was prepared (skin layer cutting step).
[比較例3]
 基材樹脂(A)としてのポリマーAと、重曹(炭酸水素ナトリウム)[永和化成工業(株)製、FE-507]と、酸化防止剤[BASFジャパン製IRGASTAB PUR68]と、カーボンブラック[旭カーボン(株)製、アサヒサーマル]とを、それぞれ表3に記載の量添加し、十分に混合してA液を作製した。それぞれ表3に記載の量のサリチル酸[キシダ化学(株)製1級サリチル酸(pKa:2.97)]、水(C)、シラノール縮合触媒(D)[2-エチルアシッドホスフェート(城北化学工業(株)製、酸性リン酸エステル、JP-502)]、及び整泡剤[エボニックジャパン(株)製、テゴスターブB8123]を添加し、十分に混合してB液を作製した。
 得られたA液及びB液をA液:B液=2:1の重量比率で、2液型ディスペンサ(ツインフローVR50(トミタエンジニアリング(株)製))を用いて、以下の混合条件で発泡体作製を行った。
ダイナミックミキサー:75cc4段、1700rpm
スタティックミキサー:24エレメント、先端吐出径8mm
吐出速度:1ショット(75cc)/2.4秒で連続混合吐出を行い、ポリエチレン製型枠に混合液を流し込み、上蓋をセットした状態で発泡させ、12時間放置した。作業条件は23℃条件であった。(発泡成形工程)12時間後の発泡硬化物を、ポリエチレン製型枠から離型して90℃雰囲気下で12時間放置した後に軟質樹脂発泡体を得た(乾燥工程)。得られた軟質樹脂発泡体のスキン層をカットして指定厚みとし、各測定サンプルを準備した(スキン層カット工程)。
[Comparative Example 3]
Polymer A as the base resin (A), baking soda (sodium hydrogen carbonate) [FE-507 manufactured by Eiwa Kasei Kogyo Co., Ltd.], antioxidant [IRGASTAB PUR68 manufactured by BASF Japan], and carbon black [Asahi Carbon]. Asahi Thermal Co., Ltd.] was added in the amounts shown in Table 3 and mixed sufficiently to prepare a solution A. The amounts of salicylic acid [primary salicylic acid (pKa: 2.97) manufactured by Kishida Chemical Co., Ltd.], water (C), silanol condensation catalyst (D) [2-ethylacid phosphate (Johoku Chemical Industry Co., Ltd.), respectively, shown in Table 3 Co., Ltd., acidic phosphoric acid ester, JP-502)], and foam stabilizer [Ebonic Japan Co., Ltd., Tegostave B8123] were added and mixed thoroughly to prepare a solution B.
The obtained solutions A and B are foamed under the following mixing conditions using a two-component dispenser (Twinflow VR50 (manufactured by Tomita Engineering Co., Ltd.)) at a weight ratio of solution A: solution B = 2: 1. Body preparation was performed.
Dynamic mixer: 75cc 4 steps, 1700rpm
Static mixer: 24 elements, tip discharge diameter 8 mm
Discharge rate: Continuous mixing and discharging was performed at 1 shot (75 cc) / 2.4 seconds, the mixed solution was poured into a polyethylene mold, foamed with the upper lid set, and left for 12 hours. The working conditions were 23 ° C. (Foam molding step) The foamed cured product after 12 hours was released from the polyethylene mold and left to stand in an atmosphere of 90 ° C. for 12 hours to obtain a soft resin foam (drying step). The skin layer of the obtained soft resin foam was cut to a specified thickness, and each measurement sample was prepared (skin layer cutting step).
[比較例4]
 二炭酸ジエステルの使用量、水(C)の使用量、及びシラノール縮合触媒(D)の使用量を表3に記載の量に変更することと、混合量を214gに変更することとの他は、実施例8と同様にして、吸音材の各測定サンプルを得た。
[Comparative Example 4]
Except for changing the amount of dicarbonate diester used, the amount of water (C) used, and the amount of silanol condensation catalyst (D) used to the amounts shown in Table 3, and changing the mixing amount to 214 g. , Each measurement sample of the sound absorbing material was obtained in the same manner as in Example 8.
[比較例5]
 二炭酸ジエステルを用いないことと、水(C)の使用量、及びシラノール縮合触媒(D)の使用量を表3に記載の量に変更することと、混合量を1000gに変更することとの他は、実施例8と同様にして、吸音材の各測定サンプルを得た。
[Comparative Example 5]
Not using the dicarbonate diester, changing the amount of water (C) used and the amount of silanol condensation catalyst (D) used to the amounts shown in Table 3, and changing the mixing amount to 1000 g. Other than that, each measurement sample of the sound absorbing material was obtained in the same manner as in Example 8.
[比較例6~10]
 比較例6では、グラスウール(GW 64K、旭ファイバーグラス株式会社製)を測定サンプルとして用いた。比較例7では、ポリウレタンフォーム(イノアックF2、株式会社イノアックコーポレーション製)を測定サンプルとして用いた。比較例8では、ポリウレタンフォーム(イノアックF9M、株式会社イノアックコーポレーション製)を測定サンプルとして用いた。比較例9では、エチレンプロピレンジエンゴム製フォーム(エプトシーラーEV-1000、日東電工株式会社製)を測定サンプルとして用いた。比較例10では、シンサレート(登録商標)(3M社製、型番TAI 2047)を測定サンプルとして用いた。
[Comparative Examples 6 to 10]
In Comparative Example 6, glass wool (GW 64K, manufactured by Asahi Fiber Glass Co., Ltd.) was used as a measurement sample. In Comparative Example 7, polyurethane foam (Inoac F2, manufactured by Inoac Corporation) was used as a measurement sample. In Comparative Example 8, polyurethane foam (Inoac F9M, manufactured by Inoac Corporation) was used as a measurement sample. In Comparative Example 9, an ethylene propylene diene rubber foam (Eptsealer EV-1000, manufactured by Nitto Denko KK) was used as a measurement sample. In Comparative Example 10, Thinsulate (registered trademark) (manufactured by 3M, model number TAI 2047) was used as a measurement sample.
 実施例8、実施例9及び比較例3~10の測定サンプルについて、前述の方法でせん断弾性率と単位厚さ当たりの流れ抵抗と、密度と、多孔度と、ヤング率とを測定した。これらの値を表3に記す。なお、実施例9については、多孔度及びヤング率の測定を行わなかった。また、比較例6~8については、ヤング率の測定を行わなかった。 For the measurement samples of Examples 8, 9 and Comparative Examples 3 to 10, the shear modulus, the flow resistance per unit thickness, the density, the porosity, and the Young's modulus were measured by the above-mentioned methods. These values are shown in Table 3. In Example 9, the porosity and Young's modulus were not measured. In addition, Young's modulus was not measured for Comparative Examples 6 to 8.
 また、実施例8、実施例9及び比較例3~10の測定サンプルの厚さ10mmの試料を用いて、JIS A 1405-2に準拠して、20℃において内径40mmの音響管を用いて垂直入射吸音率を測定した。発泡体からなる吸音材はスキン層をすべてカットした状態である。
 これらの測定結果を、図3~図12に示す。
Further, using a sample having a thickness of 10 mm as a measurement sample of Examples 8, 9 and Comparative Examples 3 to 10, vertical using an acoustic tube having an inner diameter of 40 mm at 20 ° C. in accordance with JIS A 1405-2. The incident sound absorption coefficient was measured. The sound absorbing material made of foam is in a state where the skin layer is completely cut.
The measurement results are shown in FIGS. 3 to 12.
Figure JPOXMLDOC01-appb-T000021
*4:シラノール縮合触媒(D)としてのDABCOは、DABCO NE1070であり、発泡助剤(E)として作用する。
Figure JPOXMLDOC01-appb-T000021
* 4: DABCO as the silanol condensation catalyst (D) is DABCO NE1070, which acts as a foaming aid (E).
 表3及び図3~12によれば、せん断弾性率が7000Pa以下であり、単位厚さ当たりの流れ抵抗が1000000N・s/m以上である発泡体からなる実施例8、及び実施例9の吸音材は、幅広い周波数範囲内の音を良好に吸収することが分かる。
 他方、せん断弾性率は7000Pa以下であるが、単位厚さ当たりの流れ抵抗が1000000N・s/m未満である発泡体からなる比較例3の吸音材は、周波数650Hz以上1000Hz以下の低周波数帯域での吸音特性が劣っていた。
 また、単位厚さ当たりの流れ抵抗が1000000N・s/m以上であるが、せん断弾性率が7000Pa超である発泡体からなる比較例4の吸音材は、周波数650Hz以上1000Hz以下の低周波数帯域での吸音特性がやや劣り、周波数2000Hz以上4000Hz以上の範囲での吸音特性が劣っていた。
 さらに、せん断弾性率が所定の値よりも高く、単位厚さ当たりの流れ抵抗が過度に高いため測定不可である比較例5の吸音材は、周波数650Hz以上4500Hz以下における吸音特性に劣っていた。
According to Table 3 and FIGS. 3 to 12, Examples 8 and 9 are made of foam having a shear modulus of 7,000 Pa or less and a flow resistance of 1,000,000 N · s / m 4 or more per unit thickness. It can be seen that the sound absorbing material absorbs sound well in a wide frequency range.
On the other hand, the sound absorbing material of Comparative Example 3 made of a foam having a shear modulus of 7,000 Pa or less but a flow resistance per unit thickness of less than 1,000,000 N · s / m 4 has a low frequency band of 650 Hz or more and 1000 Hz or less. The sound absorption characteristics were inferior.
Further, the sound absorbing material of Comparative Example 4 made of a foam having a flow resistance of 1000000 N · s / m 4 or more per unit thickness but a shear elastic modulus of more than 7000 Pa has a low frequency band of 650 Hz or more and 1000 Hz or less. The sound absorption characteristics in the above range were slightly inferior, and the sound absorption characteristics in the frequency range of 2000 Hz or more and 4000 Hz or more were inferior.
Further, the sound absorbing material of Comparative Example 5, which cannot be measured because the shear modulus is higher than a predetermined value and the flow resistance per unit thickness is excessively high, is inferior in sound absorbing characteristics at a frequency of 650 Hz or more and 4500 Hz or less.
 また、実施例8、実施例9、比較例3、比較例4、比較例8、及び比較例9の吸音材について前述の方法に基づき、厚さ10mmの試料を作成した。この試料を用いて、ASTM E2611に従い内径40mmの音響管を用いて測定される、周波数1000Hz~4500Hzにおいて垂直入射透過損失を測定した。これらの試料の垂直入射透過損失の測定結果を図13に示す。
 図3、図4、及び図13によれば、せん断弾性率が7000Pa以下であり、単位厚さ当たりの流れ抵抗が1000000N・s/m以上である発泡体からなる実施例8、及び実施例9の吸音材は、幅広い範囲内の周波数帯域における良好な吸音性と遮音性とを両立できることが分かる。
 図5、図6、図10、図11、及び図13によれば、7000Pa以下のせん断弾性率と、1000000N・s/m以上の単位厚さ当たりの流れ抵抗とを兼ね備えない、比較例3、比較例4、比較例8、及び比較例9の吸音材は、幅広い範囲内の周波数帯域における良好な吸音性と遮音性とを両立できないことが分かる。
Further, a sample having a thickness of 10 mm was prepared for the sound absorbing materials of Example 8, Example 9, Comparative Example 3, Comparative Example 4, Comparative Example 8 and Comparative Example 9 based on the above method. Using this sample, the vertical incident transmission loss was measured at frequencies of 1000 Hz to 4500 Hz, measured using an acoustic tube with an inner diameter of 40 mm according to ASTM E2611. The measurement results of the vertical incident transmission loss of these samples are shown in FIG.
According to FIGS. 3, 4, and 13, Examples 8 and 8 are made of a foam having a shear modulus of 7,000 Pa or less and a flow resistance of 1,000,000 N · s / m 4 or more per unit thickness. It can be seen that the sound absorbing material of No. 9 can achieve both good sound absorbing property and sound insulating property in a frequency band within a wide range.
According to FIGS. 5, 6, 10, 11, and 13, a comparative example 3 in which a shear modulus of 7,000 Pa or less and a flow resistance per unit thickness of 1,000,000 N · s / m 4 or more are not combined. It can be seen that the sound absorbing materials of Comparative Example 4, Comparative Example 8 and Comparative Example 9 cannot achieve both good sound absorption and sound insulation in a frequency band within a wide range.

Claims (37)

  1.  ポリオキシアルキレン系重合体(A1)を含む反応性ケイ素基を有する基材樹脂(A)を、発泡及び硬化させてなる発泡体であって、
     厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1000Hz~5500Hzにおける吸音率が70%以上である、発泡体。
    A foam obtained by foaming and curing a base resin (A) having a reactive silicon group containing a polyoxyalkylene polymer (A1).
    A foam having a sound absorption coefficient of 70% or more at a frequency of 1000 Hz to 5500 Hz, measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2.
  2.  厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される吸音率について、周波数1000Hz~1700Hzの範囲に極大を示す、請求項1に記載の発泡体。 The first aspect of the present invention, wherein the sound absorption coefficient measured by using a B tube at 20 ° C. in accordance with JIS A 1405-2 using a sample having a thickness of 25 mm is maximized in the frequency range of 1000 Hz to 1700 Hz. Foam.
  3.  厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数800Hzにおける吸音率が40%以上である、請求項1又は2に記載の発泡体。 The first or second claim, wherein the sound absorption coefficient at a frequency of 800 Hz, which is measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm in accordance with JIS A 1405-2, is 40% or more. Foam.
  4.  前記基材樹脂(A)と、化学発泡剤(B)とを含有する発泡体用樹脂組成物を発泡及び硬化させてなる発泡体であり、
     前記発泡体中の、金属塩及び/又は無機粒子の含有量が前記発泡体の重量に対して2.5重量%以下である、請求項1~3のいずれか1項に記載の発泡体。
    A foam obtained by foaming and curing a foam resin composition containing the base resin (A) and a chemical foaming agent (B).
    The foam according to any one of claims 1 to 3, wherein the content of the metal salt and / or inorganic particles in the foam is 2.5% by weight or less based on the weight of the foam.
  5.  前記化学発泡剤(B)が、非熱分解型である、請求項4に記載の発泡体。 The foam according to claim 4, wherein the chemical foaming agent (B) is a non-pyrolytic type.
  6.  前記化学発泡剤(B)が、二炭酸ジエステル(B-1)を含む、請求項4又は5に記載の発泡体。 The foam according to claim 4 or 5, wherein the chemical foaming agent (B) contains a dicarbonate diester (B-1).
  7.  前記基材樹脂(A)が、ガラス転移温度が35℃以上であるアクリル樹脂(A2)を含む、請求項1~6のいずれか1項に記載の発泡体。 The foam according to any one of claims 1 to 6, wherein the base resin (A) contains an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher.
  8.  前記反応性ケイ素基が、トリメトキシシリル基、(メトキシメチル)ジメトキシシリル基、下記式(1)~(3):
    Figure JPOXMLDOC01-appb-C000001
     
    Figure JPOXMLDOC01-appb-C000002
     
    Figure JPOXMLDOC01-appb-C000003
     
    (式(1)~式(3)中、Rはそれぞれ独立に、炭素原子数1以上20以下の炭化水素基であり、Rとしての前記炭化水素基は、置換されていてもよく、且つヘテロ含有基を有してもよく、Xはヒドロキシ基又は加水分解性基であり、aは1、2、又は3であり、Rは2価の連結基であり、前記Rが有する2つの結合手は、それぞれ、前記連結基内の炭素原子、酸素原子、窒素原子、又は硫黄原子に結合しており、R、及びRは、それぞれ独立に水素原子、炭素原子数1以上20以下のアルキル基、炭素原子数6以上20以下のアリール基、炭素原子数7以上20以下のアラルキル基、又はシリル基のいずれかである。)
    で表される基、及び下記式(4):
    -R-CH-Si(R3-a(X) (4)
    (式(4)中、R、及びaは、式(1)~式(3)におけるR、及びaと同様であり、Rはヘテロ原子である。)
    で表される基からなる群から選択される基である、請求項1~7のいずれか1項に記載の発泡体。
    The reactive silicon group is a trimethoxysilyl group, a (methoxymethyl) dimethoxysilyl group, the following formulas (1) to (3):
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    (In formulas (1) to (3), R 1 is an independently hydrocarbon group having 1 or more and 20 or less carbon atoms, and the hydrocarbon group as R 1 may be substituted. Further, it may have a hetero-containing group, X is a hydroxy group or a hydrolyzable group, a is 1, 2, or 3, and R 4 is a divalent linking group, which R 4 has. The two bonds are bonded to a carbon atom, an oxygen atom, a nitrogen atom, or a sulfur atom in the linking group, respectively, and R 2 and R 3 are independently hydrogen atoms and 1 or more carbon atoms, respectively. It is either an alkyl group having 20 or less, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a silyl group.)
    The group represented by and the following formula (4):
    -R 5- CH 2- Si (R 1 ) 3-a (X) a (4)
    (In the formula (4), R 1, and a is the same as R 1, and a in equation (1) to (3), R 5 is a heteroatom.)
    The foam according to any one of claims 1 to 7, which is a group selected from the group consisting of the groups represented by.
  9.  発泡倍率が15~60倍である、請求項1~8のいずれか1項に記載の発泡体。 The foam according to any one of claims 1 to 8, which has a foaming ratio of 15 to 60 times.
  10.  0℃でのFP硬度が60以下である、請求項1~9のいずれか1項に記載の発泡体。 The foam according to any one of claims 1 to 9, wherein the FP hardness at 0 ° C. is 60 or less.
  11.  基材樹脂(A)、化学発泡剤(B)、及びシラノール縮合触媒(D)を含み、
     前記基材樹脂(A)が、反応性ケイ素基を有し、
     前記基材樹脂(A)が、ポリオキシアルキレン系重合体(A1)と、ガラス転移温度が35℃以上であるアクリル樹脂(A2)とを含み、
     厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1000Hz~5500Hzにおける吸音率が70%以上である発泡体を与える、樹脂組成物。
    It contains a base resin (A), a chemical foaming agent (B), and a silanol condensation catalyst (D).
    The base resin (A) has a reactive silicon group and has
    The base resin (A) contains a polyoxyalkylene polymer (A1) and an acrylic resin (A2) having a glass transition temperature of 35 ° C. or higher.
    A resin that gives a foam having a sound absorption coefficient of 70% or more at frequencies of 1000 Hz to 5500 Hz, measured using a B tube at 20 ° C., in accordance with JIS A 1405-2, using a sample having a thickness of 25 mm. Composition.
  12.  前記基材樹脂(A)が、主鎖構造において分岐を有し、且つ3つ以上の末端を有する、請求項11に記載の樹脂組成物。 The resin composition according to claim 11, wherein the base resin (A) has a branch in the main chain structure and has three or more ends.
  13.  請求項1~10のいずれか1項に記載の発泡体を備える吸音材。 A sound absorbing material comprising the foam according to any one of claims 1 to 10.
  14.  せん断弾性率が7000Pa以下であり、
     単位厚さ当たりの流れ抵抗が1000000N・s/m以上である発泡体からなる吸音材。
    Shear modulus is 7000 Pa or less,
    A sound absorbing material made of a foam having a flow resistance of 1000000 N · s / m 4 or more per unit thickness.
  15.  密度が100kg/m以下である、請求項14に記載の吸音材。 The sound absorbing material according to claim 14, which has a density of 100 kg / m 3 or less.
  16.  前記発泡体が、ポリオキシアルキレン系重合体を含む組成物からなる、請求項14又は15に記載の吸音材。 The sound absorbing material according to claim 14 or 15, wherein the foam comprises a composition containing a polyoxyalkylene polymer.
  17.  前記発泡体が、反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)を含む樹脂組成物の硬化物からなる、請求項16に記載の吸音材。 The sound absorbing material according to claim 16, wherein the foam is a cured product of a resin composition containing a polyoxyalkylene polymer (A1) having a reactive silicon group.
  18.  前記発泡体が、前記反応性ケイ素基を有するオキシアルキレン系重合体(A1)と、反応性ケイ素基を有するアクリル樹脂(A2)とを含む樹脂組成物の硬化物からなる、請求項17に記載の吸音材。 The 17th claim, wherein the foam comprises a cured product of a resin composition containing the oxyalkylene polymer (A1) having a reactive silicon group and an acrylic resin (A2) having a reactive silicon group. Sound absorbing material.
  19.  前記発泡体の無機微粒子の含有量と、前記発泡体の、前記発泡体に金属塩として含まれる金属原子の含有量との合計が2.5重量%以下である、請求項14~18のいずれか1項に記載の吸音材。 Any of claims 14 to 18, wherein the total of the content of the inorganic fine particles of the foam and the content of the metal atom contained in the foam as a metal salt in the foam is 2.5% by weight or less. The sound absorbing material according to item 1.
  20.  周波数650Hzにおいて、JIS A1405-2に準拠して、内径40mmの音響管と、厚さ10mmの試験片とを用いて測定される垂直入射吸音率として0.15以上の垂直入射吸音率を示し、周波数650Hz以上1000Hz以下の範囲内におけるいずれかの周波数において、0.4以上の垂直入射吸音率を示す、請求項14~19のいずれか1項に記載の吸音材。 At a frequency of 650 Hz, a vertical incident sound absorption coefficient of 0.15 or more is shown as a vertical incident sound absorption coefficient measured using an acoustic tube having an inner diameter of 40 mm and a test piece having a thickness of 10 mm in accordance with JIS A1405-2. The sound absorbing material according to any one of claims 14 to 19, which exhibits a vertically incident sound absorbing coefficient of 0.4 or more at any frequency within a frequency range of 650 Hz or more and 1000 Hz or less.
  21.  周波数1000Hz以上4500Hz以下の範囲内における、JIS A1405-2に準拠して、内径40mmの音響管と、厚さ10mmの試験片とを用いて測定される垂直入射吸音率が、0.45以上である、請求項14~20のいずれか1項に記載の吸音材。 The vertical incident sound absorption coefficient measured using an acoustic tube with an inner diameter of 40 mm and a test piece with a thickness of 10 mm in accordance with JIS A1405-2 in the frequency range of 1000 Hz or more and 4500 Hz or less is 0.45 or more. The sound absorbing material according to any one of claims 14 to 20.
  22.  前記発泡体について、厚さ25mmの試料を用いて、JIS A 1405-2に準拠して、20℃においてB管を用いて測定される、周波数1000Hz~5500Hzにおける吸音率が70%以上である、請求項17又は18に記載の吸音材。 The foam has a sound absorption coefficient of 70% or more at a frequency of 1000 Hz to 5500 Hz, which is measured using a B tube at 20 ° C. using a sample having a thickness of 25 mm and in accordance with JIS A 1405-2. The sound absorbing material according to claim 17 or 18.
  23.  前記発泡体について、厚さ10mmの試料を用いて、ASTM E2611に従い内径40mmの音響管を用いて測定される、周波数1000Hz~4500Hzにおいて垂直入射透過損失が7dB以上であって、
     遮音性を備える、請求項14~22のいずれか1項に記載の吸音材。
    The foam has a vertical incident transmission loss of 7 dB or more at a frequency of 1000 Hz to 4500 Hz, measured using a sample having a thickness of 10 mm and using an acoustic tube having an inner diameter of 40 mm according to ASTM E2611.
    The sound absorbing material according to any one of claims 14 to 22, which has sound insulating properties.
  24.  請求項14~23のいずれか1項に記載の吸音材に、周波数650Hz以上4500Hz以下の範囲内の成分を含む音を吸音させる、吸音方法。 A sound absorbing method for causing the sound absorbing material according to any one of claims 14 to 23 to absorb sound containing a component having a frequency in the range of 650 Hz or more and 4500 Hz or less.
  25.  吸音対象の音が、周波数650Hz以上1000Hz以下の範囲内の成分を含む、請求項24に記載の吸音方法。 The sound absorbing method according to claim 24, wherein the sound to be absorbed contains a component in the frequency range of 650 Hz or more and 1000 Hz or less.
  26.  請求項23に記載の吸音材により、周波数1000Hz~4500以下の範囲内の成分を含む音を遮音する、遮音方法。 A sound insulation method for insulating sound containing components in the frequency range of 1000 Hz to 4500 or less by using the sound absorbing material according to claim 23.
  27.  請求項14~23のいずれか1項に記載の吸音材と、前記吸音材を支持する支持体とからなる吸音構造体。 A sound absorbing structure comprising the sound absorbing material according to any one of claims 14 to 23 and a support supporting the sound absorbing material.
  28.  前記支持体が空気入りタイヤであり、前記吸音材が、前記空気入りタイヤの内腔側の面の少なくとも一部を被覆するようにタイヤに支持される、請求項27に記載の吸音構造体。 The sound absorbing structure according to claim 27, wherein the support is a pneumatic tire, and the sound absorbing material is supported by the tire so as to cover at least a part of a surface of the pneumatic tire on the lumen side.
  29.  前記支持体が、モーターと、モーターを収容するケーシングとからなり、
     前記モーターと前記ケーシングとの間の空隙に吸音材が充填されている、請求項27に記載の吸音構造体。
    The support comprises a motor and a casing that houses the motor.
    The sound absorbing structure according to claim 27, wherein the gap between the motor and the casing is filled with a sound absorbing material.
  30.  請求項27~29のいずれか1項に記載の吸音構造体を備える、車両。 A vehicle having the sound absorbing structure according to any one of claims 27 to 29.
  31.  請求項14~23のいずれか1項に記載の吸音材と、前記吸音材を支持する支持体とからなる吸音構造体の製造方法であって、
     前記吸音材を、前記支持体の表面に固定するか、前記吸音材を前記支持体により規定される空間内に充填する、吸音構造体の製造方法。
    A method for manufacturing a sound absorbing structure, comprising the sound absorbing material according to any one of claims 14 to 23 and a support supporting the sound absorbing material.
    A method for manufacturing a sound absorbing structure, wherein the sound absorbing material is fixed to the surface of the support or the sound absorbing material is filled in a space defined by the support.
  32.  反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)を含む液状の樹脂組成物を、前記支持体の表面に塗布するか、又は前記支持体により規定される前記空間内に充填することと、
     前記樹脂組成物を発泡させながら硬化させて発泡体を形成することにより、前記吸音材としての発泡体を前記支持体の表面に接着させることと、
    を含む、請求項31に記載の吸音構造体の製造方法。
    A liquid resin composition containing a polyoxyalkylene polymer (A1) having a reactive silicon group is applied to the surface of the support or filled in the space defined by the support. ,
    By curing the resin composition while foaming to form a foam, the foam as a sound absorbing material is adhered to the surface of the support.
    31. The method for manufacturing a sound absorbing structure according to claim 31.
  33.  前記支持体としてのタイヤの内腔側の面に、前記液状の樹脂組成物を塗布する、請求項32に記載の吸音構造体の製造方法。 The method for manufacturing a sound absorbing structure according to claim 32, wherein the liquid resin composition is applied to the inner surface of the tire as the support.
  34.  モーターと前記モーターを収容するケーシングとからなる前記支持体において、前記モーターと前記ケーシングとの間の空隙に前記液状の樹脂組成物を充填する、請求項32に記載の吸音構造体の製造方法。 The method for manufacturing a sound absorbing structure according to claim 32, wherein in the support including the motor and the casing accommodating the motor, the gap between the motor and the casing is filled with the liquid resin composition.
  35.  3Dプリンターを用いて型枠を形成することと、
     前記型枠に反応性ケイ素基を有するポリオキシアルキレン系重合体(A1)を含む液状の樹脂組成物を注入することと、
     前記樹脂組成物を発泡させながら硬化させて発泡体を形成することと、を含む請求項14~23のいずれか1項に記載の吸音材の製造方法。
    Forming a formwork using a 3D printer
    Injecting a liquid resin composition containing a polyoxyalkylene polymer (A1) having a reactive silicon group into the mold, and
    The method for producing a sound absorbing material according to any one of claims 14 to 23, wherein the resin composition is cured while being foamed to form a foam.
  36.  請求項13~23のいずれか1項に記載の吸音材を備える、建築物。 A building provided with the sound absorbing material according to any one of claims 13 to 23.
  37.  請求項13~23のいずれか1項に記載の吸音材を備える、車両。 A vehicle provided with the sound absorbing material according to any one of claims 13 to 23.
PCT/JP2020/014160 2019-03-27 2020-03-27 Foam, sound-absorbing material, resin composition, sound-absorbing method, sound-absorbing structure, sound-absorbing structure production method, sound-absorbing material production method, building, and vehicle WO2020196864A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019061823A JP7412891B2 (en) 2019-03-27 2019-03-27 Foams, sound absorbing materials, buildings, and vehicles
JP2019-061823 2019-03-27
JP2019-061384 2019-03-27
JP2019061384A JP7320364B2 (en) 2019-03-27 2019-03-27 FOAM RESIN COMPOSITION, FOAM, AND FOAM MANUFACTURING METHOD
JP2019148673 2019-08-13
JP2019-148673 2019-08-13

Publications (1)

Publication Number Publication Date
WO2020196864A1 true WO2020196864A1 (en) 2020-10-01

Family

ID=72609465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014160 WO2020196864A1 (en) 2019-03-27 2020-03-27 Foam, sound-absorbing material, resin composition, sound-absorbing method, sound-absorbing structure, sound-absorbing structure production method, sound-absorbing material production method, building, and vehicle

Country Status (1)

Country Link
WO (1) WO2020196864A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021224500A1 (en) * 2020-05-08 2021-11-11 Cruette Fabrice Device for absorbing sound and vibration waves in emission and in transmission on the basis of a mixture containing silicone, suitable for all types of audio transducers
CN114166949A (en) * 2021-10-27 2022-03-11 东风汽车集团股份有限公司 In-vehicle acoustic absorption test method, device and equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007745A1 (en) * 2003-07-18 2005-01-27 Kaneka Corporation Curable composition
JP2005290274A (en) * 2004-04-01 2005-10-20 Sekisui Chem Co Ltd Curable composition
JP2013237815A (en) * 2012-05-17 2013-11-28 Kaneka Corp Curable composition and cured product thereof
WO2016021630A1 (en) * 2014-08-06 2016-02-11 株式会社カネカ Modified silicone resin foamed body
WO2017119396A1 (en) * 2016-01-08 2017-07-13 株式会社カネカ Modified silicone resin foam
WO2018105704A1 (en) * 2016-12-07 2018-06-14 株式会社カネカ Liquid resin composition
JP2019137827A (en) * 2018-02-13 2019-08-22 株式会社カネカ Sound absorbing method, and sound absorbing material
WO2019235034A1 (en) * 2018-06-07 2019-12-12 株式会社カネカ Resin composition for foamed object, foamed object, and method for producing foamed object

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007745A1 (en) * 2003-07-18 2005-01-27 Kaneka Corporation Curable composition
JP2005290274A (en) * 2004-04-01 2005-10-20 Sekisui Chem Co Ltd Curable composition
JP2013237815A (en) * 2012-05-17 2013-11-28 Kaneka Corp Curable composition and cured product thereof
WO2016021630A1 (en) * 2014-08-06 2016-02-11 株式会社カネカ Modified silicone resin foamed body
WO2017119396A1 (en) * 2016-01-08 2017-07-13 株式会社カネカ Modified silicone resin foam
WO2018105704A1 (en) * 2016-12-07 2018-06-14 株式会社カネカ Liquid resin composition
JP2019137827A (en) * 2018-02-13 2019-08-22 株式会社カネカ Sound absorbing method, and sound absorbing material
WO2019235034A1 (en) * 2018-06-07 2019-12-12 株式会社カネカ Resin composition for foamed object, foamed object, and method for producing foamed object

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021224500A1 (en) * 2020-05-08 2021-11-11 Cruette Fabrice Device for absorbing sound and vibration waves in emission and in transmission on the basis of a mixture containing silicone, suitable for all types of audio transducers
CN114166949A (en) * 2021-10-27 2022-03-11 东风汽车集团股份有限公司 In-vehicle acoustic absorption test method, device and equipment
CN114166949B (en) * 2021-10-27 2024-04-02 东风汽车集团股份有限公司 In-vehicle sound absorption testing method, device and equipment

Similar Documents

Publication Publication Date Title
EP3178872B1 (en) Modified silicone resin foamed body
US11104776B2 (en) Liquid resin composition
JP6669778B2 (en) Modified silicone resin foam
JP7194734B2 (en) FOAM RESIN COMPOSITION, FOAM, AND FOAM MANUFACTURING METHOD
WO2020196864A1 (en) Foam, sound-absorbing material, resin composition, sound-absorbing method, sound-absorbing structure, sound-absorbing structure production method, sound-absorbing material production method, building, and vehicle
CN103635513B (en) Hydrophilic rubber material with and preparation method thereof
JP2009074041A (en) Foam and its production method
JP7141269B2 (en) Sound absorbing method and sound absorbing material
JP7412891B2 (en) Foams, sound absorbing materials, buildings, and vehicles
JP2019163436A (en) Resin composition, expanded material, and continuous manufacturing method of expanded material
JP7320364B2 (en) FOAM RESIN COMPOSITION, FOAM, AND FOAM MANUFACTURING METHOD
JP2021033295A (en) Sound absorption material, sound absorption method, sound insulation method, sound absorption structure, architectural structure, vehicle, method of manufacturing sound absorption material, and method of manufacturing sound absorption structure
JP2022054103A (en) Resin composition for foam, foam, and method for producing foam
JP2018162368A (en) Modified silicone resin foam
JP2019210425A (en) Method for producing porous body, and porous body
JP2024032476A (en) Method for manufacturing resin composition
JP2024032477A (en) Method for manufacturing resin composition
JP2019210424A (en) Liquid resin composition, and expanded material
JP2024017371A (en) Resin composition for foam and its use
JP2023036374A (en) Foam, and method for producing the same
JP3540466B2 (en) Floor structure
WO2021261383A1 (en) Thermally curable composition and cured product of same
JP2019156931A (en) Heat-insulation material and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776457

Country of ref document: EP

Kind code of ref document: A1