WO2020196750A1 - Organic-inorganic composite resin and method for manufacturing same - Google Patents

Organic-inorganic composite resin and method for manufacturing same Download PDF

Info

Publication number
WO2020196750A1
WO2020196750A1 PCT/JP2020/013657 JP2020013657W WO2020196750A1 WO 2020196750 A1 WO2020196750 A1 WO 2020196750A1 JP 2020013657 W JP2020013657 W JP 2020013657W WO 2020196750 A1 WO2020196750 A1 WO 2020196750A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
weight
composite resin
meth
Prior art date
Application number
PCT/JP2020/013657
Other languages
French (fr)
Japanese (ja)
Inventor
洋樹 深海
松尾 陽一
宙是 横井
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202080024097.3A priority Critical patent/CN113631601A/en
Priority to JP2021509586A priority patent/JP7433295B2/en
Publication of WO2020196750A1 publication Critical patent/WO2020196750A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences

Definitions

  • the present invention relates to an organic-inorganic composite resin, a method for producing the same, a curable resin composition containing the composite resin, and a cured product thereof.
  • polysiloxane-based paints are known as paints aimed at achieving a long life of the coating film, particularly high weather resistance and high heat resistance.
  • Polysiloxane is a curable resin formed by hydrolyzing and dehydrating condensation reaction of organoalkoxysilane. Since the siloxane bond forming this resin is energetically strong, polysiloxane has the property of being difficult to decompose by heat or ultraviolet rays.
  • the obtained coating film has low flexibility, and has a problem that cracks are likely to occur due to curing shrinkage of the coating film and a problem that the adhesion to various substrates is low.
  • acrylic silicone-based paints mainly composed of acrylic resins having a hydrolyzable silyl group are also known.
  • the coating film obtained from the acrylic silicone-based paint has flexibility and is less likely to cause cracks.
  • this coating film has a problem of low weather resistance.
  • Patent Document 1 describes a method for producing a composite resin by reacting an organopolysiloxane and acrylic silicon in the presence of an acid catalyst by a hydrolysis / dehydration condensation reaction of reactive silicon groups of both resins. Has been done.
  • Patent Document 2 a cocondensate obtained by hydrolyzing and condensing a silane compound having a polymerizable unsaturated group such as a (meth) acrylic loyl group and a silane compound having an epoxy group, and a (meth) acrylic type. It is described that a composite resin is produced by reacting with a polymerizable monomer such as a monomer.
  • Patent Document 1 describes an organic-inorganic composite resin in which a polysiloxane resin and an acrylic resin are composited, but the graft ratio is not sufficiently high because the production involves a reaction of binding different polymers.
  • the storage stability and the transparency and gloss of the coating film were not sufficiently improved, and in particular, the glossiness of the coating film when a paint containing a pigment was used was not sufficiently improved.
  • Patent Document 2 since an alkoxysilane having a (meth) acryloyl group is used to form a polyorganosiloxane chain, the radical reactivity of the group is too high, so that gelation easily proceeds during radical polymerization. This tended to make manufacturing difficult. Further, the organic-inorganic composite resin described in Patent Document 2 has an epoxy group as an essential functional group, and exhibits curability when used in combination with a photoacid generator.
  • the present invention is a novel organic-inorganic composite resin capable of forming a coating film having excellent transparency or gloss as well as being easy to manufacture by suppressing gelation during production and having excellent storage stability. And its manufacturing method.
  • the present inventors have found that the radical reactivity is lower than the growth reactivity of the methacryloyl group in radical polymerization, instead of the (meth) acryloyl group disclosed in Patent Document 2.
  • An alkoxysilane having the radical-reactive functional groups shown is used to satisfy an equal amount of radical-reactive functional groups in a specific range to obtain a polyorganosiloxane, and in the presence of the polyorganosiloxane, a (meth) acrylic acid ester is obtained. It has been found that a novel organic-inorganic composite resin can be produced by radically polymerizing a radically polymerizable monomer such as a monomer.
  • the new organic-inorganic composite resin produced has a poly (meth) acrylic chain and a polyorganosiloxane chain bonded only via a hydrocarbon group, and the polyorganosiloxane chain has a reactive silicon group.
  • the present invention comprises a monoorganotrialkoxysilane and / or a diorganodialkoxysilane (a-1) having a radical-reactive functional group that exhibits a radical reactivity lower than the growth reactivity of a methacryloyl group in radical polymerization, and a radical.
  • Monoorganotrialkoxysilanes and / or diorganodialkoxysilanes (a-2), which do not have reactive functional groups A step of hydrolyzing and dehydrating and condensing a alkoxysilane component containing water in the presence of water and a condensation catalyst to obtain a polyorganosiloxane, and in the presence of the polyorganosiloxane, a (meth) acrylic acid ester monomer is contained.
  • the radical-reactive functional group exhibiting a radical reactivity lower than the growth reactivity of the methacryloyl group in the radical polymerization contains at least a vinyl group.
  • the ratio of (a-2) to the total of (a-1) and (a-2) is 70% by weight or more and 99% by weight or less, and 50% by weight of the organic group contained in (a-2).
  • % Or more is at least one selected from the group consisting of a methyl group, an ethyl group, and a phenyl group.
  • the radically reactive functional group equivalent amount calculated from the alkoxysilane component is in the range of 280 or more and less than 5000.
  • the amount of water added is 30 mol% or more and 60 mol% or less with respect to 100% of the total number of moles of alkoxy groups directly bonded to silicon atoms contained in the alkoxysilane component.
  • the present invention relates to a method for producing an organic-inorganic composite resin containing a poly (meth) acrylic chain and a polyorganosiloxane chain.
  • 50% by weight or more of the organic group contained in (a-2) is a methyl group.
  • the ratio of monoorganotrialkoxysilane and / or diorganodialkoxysilane having a vinyl group to the entire alkoxysilane component is 2% by weight or more and 30% by weight or less.
  • the hydrolysis and dehydration condensation reaction gives a polyorganosiloxane having a reactive silicon group.
  • the weight ratio of the polyorganosiloxane chain to the entire organic-inorganic composite resin is 20% by weight or more and 80% by weight or less.
  • the temperature is controlled so that the temperature of the reaction system does not substantially decrease from the hydrolysis and dehydration condensation reaction to the end of the radical polymerization.
  • the radical polymerization is carried out in the presence of a ⁇ -dicarbonyl compound.
  • the hydrolysis and dehydration condensation reactions and the radical polymerization are carried out in an atmosphere substantially free of oxygen molecules.
  • the present invention is an organic-inorganic composite resin containing a poly (meth) acrylic chain and a polyorganosiloxane chain bonded to the poly (meth) acrylic chain.
  • the weight ratio of the polyorganosiloxane chain to the entire organic-inorganic composite resin is 20% by weight or more and 80% by weight or less.
  • the polyorganosiloxane chain is a hydrolysis condensate of an alkoxysilane component containing 70 to 100 mol% of monoorganotrialkoxysilane and 30 to 0 mol% of diorganodialkoxysilane.
  • the polyorganosiloxane chain has a reactive silicon group and has The carbon atom in the monomer unit constituting the poly (meth) acrylic chain and the silicon atom in the polyorganosiloxane chain are bonded via only a hydrocarbon group.
  • the hydrocarbon group contains at least an ethylene group and contains Of the total of the monoorganotrialkoxysilane and the diorganodialkoxysilane, the proportion of the monoorganotrialkoxysilane and / or the diorganodialkoxysilane (a-2) having no radically reactive functional group is 70.
  • Organic, which is at least 99% by weight and 50% by weight or more of the organic group contained in (a-2) is at least one selected from the group consisting of a methyl group, an ethyl group, and a phenyl group. Also related to inorganic composite resins.
  • the structural unit derived from the monoorganotrialkoxysilane is formed of the structural unit T1 forming one siloxane bond, the structural unit T2 forming two siloxane bonds, and three siloxane bonds.
  • the ratio (%) of the number of moles of T1, T2, and T3 to the total number of moles of T1, T2, and T3 measured by 29 Si-NMR, which are classified into the constituent units T3, is X, Y, respectively.
  • Z the following formula: (1 x X + 2 x Y + 3 x Z) / 3
  • the siloxane bond formation rate calculated by is 60% or more and 80% or less.
  • the solubility parameter value (SP value) of the poly (meth) acrylic chain is 9.0 to 11.0 (cal / cm 3 ) 1/2 .
  • the present invention also relates to a curable resin composition containing the organic-inorganic composite resin or a cured product obtained by curing the curable resin composition.
  • a novel organic-inorganic composite resin capable of forming a coating film having excellent transparency or gloss as well as being easy to manufacture by suppressing gelation during production and having excellent storage stability, and its manufacture.
  • a method can be provided. Since the organic-inorganic composite resin according to the preferred embodiment of the present invention has a reactive silicon group, it can be cured by a hydrolysis / dehydration condensation reaction of the reactive silicon group.
  • the organic-inorganic composite resin according to a preferred embodiment of the present invention generally has excellent storage stability and gloss even when a colored paint containing a pigment whose coating film gloss and storage stability tends to decrease is formed. Can form an excellent coating film.
  • the organic-inorganic composite resin according to the preferred embodiment of the present invention has high miscibility with pigments and dyes, and can achieve excellent toning properties.
  • the monomer species constituting the poly (meth) acrylic chain can be selected from a large number of options, and there is an advantage that the degree of freedom in designing the poly (meth) acrylic chain is high.
  • the poly (meth) acrylic chain and the polyorganosiloxane chain are hydrocarbonized without interposing a heteroatom-containing group such as an ester group such as a (meth) acryloyl group. Since it is bonded only by a hydrogen group, it is not easily affected by main chain cleavage due to hydrolysis or photooxidation, and it can be expected to have excellent weather resistance.
  • the alkoxysilane component used in the present invention includes at least a monoorganotrialkoxysilane and / or a diorganodialkoxysilane (a-1) having a radical-reactive functional group and a monoorganotrialkoxy having no radical-reactive functional group.
  • a-1 monoorganotrialkoxysilane and / or a diorganodialkoxysilane
  • silanes and / or diorganodialkoxysilanes (a-2) may be simply referred to as alkoxysilane (a-1) and alkoxysilane (a-2), respectively.
  • Alkoxysilane (a-1) is an alkoxysilane that does not have an acryloyl group or a methacryloyl group as an organic group on a silicon atom and has a radically reactive functional group.
  • the radical-reactive functional group one that exhibits radical reactivity lower than the growth reactivity of the methacryloyl group in radical polymerization is selected.
  • the poly (meth) acrylic chain and the polyorganosiloxane chain can be bonded, gelation during production of the organic-inorganic composite resin is suppressed, and organic.
  • the storage stability of the inorganic composite resin can be improved.
  • Radical-reactive functional groups that exhibit radical reactivity lower than the growth reactivity of methacryloyl groups in radical polymerization include at least vinyl groups.
  • the vinyl group referred to here refers to a vinyl group directly bonded to a silicon atom, and does not refer to a vinyl group contained in an allyl group or a p-styryl group.
  • the radical-reactive functional group may be a vinyl group alone, or a vinyl group and at least one group selected from the group consisting of an allyl group, a p-styryl group, and a mercapto group may be used in combination. May be good.
  • Such a radical-reactive functional group is preferably directly bonded to the silicon atom of the alkoxysilane (a-1).
  • the alkoxysilane (a-1) may be a monoorganotrialkoxysilane, a diorganodialkoxysilane, or may contain both, but the monoorganotrialkoxysilane may be used.
  • Silane is preferred.
  • the monoorganotrialkoxysilane refers to a silane compound having one organic group and three alkoxy groups as a substituent on the silicon atom, and the diorganodialkoxysilane is on the silicon atom.
  • a substituent it refers to a silane compound having two organic groups and two alkoxy groups.
  • the organic group contained in the alkoxysilane (a-1) refers to an organic group other than the alkoxy group, and specific examples thereof are not particularly limited.
  • the above-mentioned vinyl group, allyl group, p-styryl group, and mercapto group are used.
  • an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms such as a phenyl group, and the like can be mentioned.
  • the alkyl group or aryl group may be an unsubstituted group or may have a non-radical reactive substituent such as a glycidyloxy group or an epoxycyclohexyl group.
  • the alkyl group having 1 to 6 carbon atoms is a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or a hexyl group.
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, still more preferably 1 to 3 carbon atoms, and even more preferably 1 to 2 carbon atoms.
  • As the organic group only one type may be used, or two or more types may be mixed.
  • the alkoxy group contained in the alkoxysilane (a-1) is not particularly limited, and examples thereof include an alkoxy group having 1 to 3 carbon atoms. Specifically, it is a methoxy group, an ethoxy group, or a propoxy group, preferably a methoxy group or an ethoxy group, and more preferably a methoxy group.
  • the alkoxy group only one type may be used, or two or more types may be mixed.
  • alkoxysilane (a-1) are not particularly limited, but for example, vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, divinyldimethoxysilane, divinyldiethoxysilane; allyl.
  • the proportion of monoorganotrialkoxysilane and / or diorganodialkoxysilane having a vinyl group with respect to the entire alkoxysilane component is preferably 2% by weight or more and 30% by weight or less, preferably 3% by weight. 28% by weight or more is preferable, and 4% by weight or more and 25% by weight or less is more preferable.
  • Alkoxysilane (a-2) is an alkoxylan having no radically reactive functional group such as a (meth) alicloyl group or a vinyl group, and may be a monoorganotrialkoxysilane or a diorganodialkoxysilane. It may be present or may contain both, but monoorganotrialkoxysilane is preferable.
  • the organic group that the alkoxysilane (a-2) has as a substituent on the silicon atom refers to an organic group other than the alkoxy group that does not contain a radical reactive functional group. Specific examples thereof are not particularly limited, and examples thereof include an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms such as a phenyl group.
  • the alkyl group or aryl group may be an unsubstituted group or may have a non-radical reactive substituent such as a glycidyloxy group or an epoxycyclohexyl group.
  • the alkyl group having 1 to 6 carbon atoms is a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or a hexyl group.
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, still more preferably 1 to 3 carbon atoms, and even more preferably 1 to 2 carbon atoms.
  • As the organic group only one type may be used, or two or more types may be mixed.
  • the organic group contained in the alkoxysilane (a-2) at least one selected from the group consisting of a methyl group, an ethyl group, and a phenyl group is preferable.
  • the ratio of the total of the methyl group, the ethyl group, and the phenyl group to the total organic group of (a-2) is preferably 50% by weight or more, more preferably 70% by weight or more, and 80% by weight. % Or more is more preferable.
  • the upper limit of the ratio may be 100% by weight.
  • the organic group of (a-2) is more preferably containing a methyl group and / or an ethyl group, and is methyl. It is more preferable to include a group. Further, it preferably contains a methyl group and / or an ethyl group and a phenyl group, and particularly preferably contains a methyl group and a phenyl group.
  • the ratio of the methyl group to the total organic group of (a-2) is preferably 50% by weight or more, more preferably 70% by weight or more. , 80% by weight or more is more preferable.
  • the upper limit of the proportion of the methyl group may be 100% by weight, but when an ethyl group and / or a phenyl group are used in combination as described above, it is preferably 99% by weight or less.
  • the ratio of the ethyl group and / or the phenyl group to the total organic group of (a-2) is preferably 0 to 45% by weight.
  • Examples of the alkoxy group that the alkoxysilane (a-2) has as a substituent on the silicon atom include the same group as the above-mentioned alkoxy group for the alkoxysilane (a-1).
  • alkoxysilane (a-2) are not particularly limited, but examples of the monoorganotrialkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, and ethyltri.
  • diorganodialkoxysilane examples include dimethyldimethoxysilane, dimethyldiethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, and the like.
  • dimethyldimethoxysilane dimethyldiethoxysilane
  • methylphenyldimethoxysilane methylphenyldiethoxysilane
  • diphenyldimethoxysilane diphenyldiethoxysilane
  • vinylmethyldimethoxysilane vinylmethyldiethoxysilane
  • vinylmethyldiethoxysilane examples include cyclohexylmethyldimethoxysilane and cyclohexylmethyldiethoxysilane.
  • alkoxysilane (a-2) having an epoxy group such as the above-mentioned glycidyloxy group and epoxycyclohexyl group include 3-glycidyloxypropyltrimethoxysilane and 3-glycidyloxypropyltriethoxysilane. , 3-Glysidyloxypropylmethyldimethoxysilane, 8-glycidyloxyoctyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like.
  • the amount used is preferably 0.1% by weight or more as a ratio of the total amount of the alkoxysilane component.
  • the amount used is preferably 20% by weight or less, more preferably 15% by weight or less, and even more preferably 10% by weight or less.
  • the alkoxysilane (a-2) it is particularly preferable to use at least one selected from the group consisting of methyltrialkoxysilane, ethyltrialkoxysilane, and phenyltrialkoxysilane.
  • the ratio of the total of methyltrialkoxysilane, ethyltrialkoxysilane, and phenyltrialkoxysilane to the entire alkoxysisilane component is preferably 70% by weight or more, preferably 80% by weight or more. Is more preferable.
  • the proportion of methyltrialkoxysilane to the entire alkoxysilane component is preferably 40% by weight or more and less than 100% by weight, more preferably 40% by weight or more and 95% by weight or less, and 45% by weight or more and 95% by weight or more. It is more preferably 50% by weight or more, particularly preferably 50% by weight or more and 95% by weight or less, and most preferably 50% by weight or more and 90% by weight or less.
  • the condensate of methyltrialkoxysilane has the highest silicon content.
  • the produced polyorganosiloxane chain is peculiar to the inorganic resin. It is preferable because the effect is easily exhibited. Conventionally, when the content of methyltrialkoxysilane is increased, gelation during production tends to occur, but according to the production method of the present invention, the gelation can be suppressed.
  • the alkoxysilane component used in the present invention includes a radical-reactive functional group contained in the alkoxysilane (a-1) and an alkoxy group on the silicon atom of the alkoxysilane (a-1) and the alkoxysilane (a-2).
  • the content ratio of the compound of the alkoxysilane component is set so that the content ratio falls within a specific range.
  • an equal amount of radical-reactive functional groups is used as an index indicating the content ratio of radical-reactive functional groups and alkoxy groups in the alkoxysilane component.
  • the radical-reactive functional group equal amount is a radical when it is assumed that all the alkoxy groups on the silicon atom contained in the alkoxysilane component are converted into siloxane bonds by the hydrolysis / dehydration condensation reaction to form a polysiloxane. It is a value calculated as the molecular weight of the polysiloxane per reactive functional group. A specific calculation method will be described in the section of Examples described later.
  • the equivalent amount of radical-reactive functional groups calculated from the total amount of the alkoxysilane component used as a raw material satisfies 280 or more and less than 5000.
  • a small value of the equivalent amount of radical-reactive functional groups means that the relative amount of radical-reactive functional groups is large, and conversely, a large value of the equivalent amount of radical-reactive functional groups means that the radicals are large. It means that the relative amount of reactive radicals is small.
  • the amount of radical-reactive functional groups is smaller than the above range, gelation proceeds during radical polymerization described later, making it difficult to produce an organic-inorganic composite resin, or even if it can be produced, the storage stability of the resin is lowered. Tend.
  • the radical reactive functional group equivalent amount is preferably 300 or more, more preferably 500 or more, further preferably 800 or more, and particularly preferably 1000 or more.
  • the radical-reactive functional group equivalent is preferably 4000 or less, more preferably 3000 or less, further preferably 2500 or less, and particularly preferably 2000 or less.
  • the ratio of alkoxysilane (a-1) and alkoxysilane (a-2) used can be appropriately set in consideration of the above radical reactive functional group equivalents, the molecular weight of the polyorganosiloxane chain, and the like. Specifically, the ratio of (a-1) to the total of alkoxysilane (a-1) and alkoxysilane (a-2) is 1% by weight or more and 30% by weight or less, and (a-2) occupies. The ratio is preferably 70% by weight or more and 99% by weight or less, the ratio of (a-1) is 5% by weight or more and 25% by weight or less, and the ratio of (a-2) is 75% by weight or more and 95% by weight or less. preferable.
  • the proportion of (a-1) to the entire alkoxysilane component is preferably 1% by weight or more and 30% by weight or less, and the proportion of (a-2) is preferably 70% by weight or more and 99% by weight or less, and (a).
  • the proportion of -1) is more preferably 5% by weight or more and 25% by weight or less, and the proportion of (a-2) is more preferably 75% by weight or more and 95% by weight or less.
  • the alkoxysilane component may be composed of only alkoxysilane (a-1) and alkoxysilane (a-2), or in addition to these, alkoxysilane (a-1) and alkoxysilane (a). It may further contain an alkoxysilane (a-3) that does not belong to any of -2).
  • alkoxysilane (a-3) include an alkoxysilane having a (meth) acryloyl group, a triorganomonoalkoxysilane, and a tetraalkoxysilane.
  • Alkoxysilane (a-3) does not have to be used, but when alkoxysilane (a-3) is used, the amount used may be determined within a range that does not impair the effects of the present invention.
  • the alkoxysilane component 10% by weight or less is preferable, 5% by weight or less is more preferable, and 1% by weight or less is further preferable.
  • Polyorganosiloxane can be formed by hydrolyzing and dehydrating and condensing the alkoxysilane component described above in the presence of water and a condensation catalyst.
  • the produced polyorganosiloxane has a radically reactive functional group derived from alkoxysilane (a-1).
  • the produced polyorganosiloxane can further have a reactive silicon group.
  • the reactive silicon group is a concept including both an alkoxysilyl group and a silanol group.
  • the amount of water used is 100% based on the total number of moles of alkoxy groups directly bonded to the silicon atom contained in the alkoxysilane component, and is 30 mol% or more and 60 mol% or less.
  • the upper limit is preferably 55 mol% or less.
  • the lower limit is preferably 35 mol% or more, more preferably 40 mol% or more, and particularly preferably 45 mol% or more.
  • an organic solvent other than water may be used in addition to water.
  • a water-soluble organic solvent is preferable because it is used in combination with water.
  • an organic solvent having 4 or more carbon atoms is preferable.
  • preferred organic solvents include, for example, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, diethylene glycol monoisopropyl ether, and ethylene glycol monobutyl ether.
  • an organic solvent having a boiling point of 150 ° C. or lower under atmospheric pressure is preferable.
  • ethylene glycol monoethyl ether ethylene glycol monoethyl ether.
  • the hydrolysis and dehydration condensation reactions are carried out in the presence of a condensation catalyst to promote the reaction.
  • a condensation catalyst a known one can be used.
  • Condensation catalysts are roughly classified into basic catalysts and acidic catalysts.
  • the acidic catalyst has an action of accelerating hydrolysis compared to condensation, and as a result, the obtained polyorganosiloxane has a relatively large number of silanol groups. Since the silanol group is stabilized in an acidic solution, the storage stability of the organic-inorganic composite resin is improved. Therefore, it is preferable to carry out the hydrolysis and dehydration condensation steps of the present invention in the presence of an acidic catalyst as the condensation catalyst.
  • an organic acid is preferable, and a phosphoric acid ester or a carboxylic acid is more preferable, because of compatibility with an alkoxysilane component and an organic solvent.
  • organic acids include ethyl acid phosphate, butyl acid phosphate, butyl pyrophosphate (or dibutylpyrophosphate), butoxyethyl acid phosphate, 2-ethylhexyl acid phosphate, isotridecyl acid phosphate, dibutyl phosphate, and bis (2-).
  • Ethylhexyl) phosphate formic acid, acetic acid, butyric acid, isobutyric acid and the like can be mentioned.
  • Examples of the basic catalyst include N-ethylmorpholine, N-methyldiethanolamine, N-ethyldiethanolamine, Nn-butyldiethanolamine, Nt-butyldiethanolamine, triethylamine, n-butylamine, hexylamine, and triethanolamine.
  • Examples thereof include amine compounds such as diazabicycloundecene and ammonia, and metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • a neutral salt can also be used as the condensation catalyst. Even if a neutral salt is used, the same effect as when an acidic catalyst is used can be obtained.
  • the neutral salt is a normal salt composed of a strong acid and a strong base, and is, for example, a group consisting of a group 1 element ion, a group 2 element ion, a tetraalkylammonium ion, and a guanidium ion as cations. It is a salt composed of a combination of any one selected from the above and one selected from the group consisting of Group 17 element ions excluding fluoride ions, sulfate ions, nitrate ions, and perchlorate ions as anions.
  • the anion is preferably a group 17 element ion because it has high nucleophilicity
  • the cation is a group 1 element ion or a group 2 ion as a non-bulky ion so as not to inhibit the nucleophilic action.
  • Element ions are preferred.
  • the specific compound of the neutral salt is not particularly limited, but for example, preferred neutral salts include lithium chloride, sodium chloride, potassium chloride, ravidium chloride, cesium chloride, magnesium chloride, calcium chloride, strontium chloride, lithium bromide, and the like.
  • Examples include magnesium, calcium iodide, and strontium iodide.
  • the amount of the condensation catalyst added can be adjusted as appropriate, but may be, for example, about 50 ppm to 3% by weight with respect to the alkoxysilane component. However, in order to suppress the progress of gelation during the production or storage of the organic-inorganic composite resin, the smaller the amount of the condensation catalyst used, the more suitable it is within the range in which the effect of shortening the reaction time by the condensation catalyst is achieved.
  • reaction temperature when carrying out the hydrolysis and dehydration condensation steps, but for example, it is preferable to heat the reaction solution in the range of 50 to 150 ° C.
  • the reaction time can be appropriately set by those skilled in the art, but may be, for example, about 10 minutes to 12 hours.
  • the hydrolysis reaction that produces alcohol as a by-product can be further promoted.
  • the alcohol removal step can be carried out by subjecting the reaction solution after the hydrolysis and dehydration condensation steps to vacuum distillation to distill off the alcohol.
  • the conditions for vacuum distillation can be appropriately set by those skilled in the art.
  • the radical-reactive functional groups of the alkoxysilane (a-1) are substantially unaffected. Therefore, the polyorganosiloxane produced in the reaction is as described above. It will have a radically reactive functional group derived from alkoxysilane (a-1).
  • the number of radical-reactive functional groups per molecule of polyorganosiloxane is not particularly limited, but may be about 1 or more. When the number is one or more, the graft ratio of the poly (meth) acrylic chain and the polyorganosiloxane chain can be increased, and good transparency and gloss of the coating film can be achieved. Further, the number may exceed 3 or 4 or more. Even if a polyorganosiloxane having such a large number of radical-reactive functional groups is used, gelation during production can be suppressed according to the production method of the present invention.
  • the number is preferably 8 or less from the viewpoint of suppressing gelation and improving storage stability.
  • a polyorganosiloxane is obtained by hydrolysis and dehydration condensation reaction of the alkoxysilane component, and then a radically polymerizable monomer component containing a (meth) acrylic acid ester monomer is radically polymerized in the presence of the polyorganosiloxane.
  • a radically polymerizable monomer component containing a (meth) acrylic acid ester monomer is radically polymerized in the presence of the polyorganosiloxane.
  • an organic-inorganic composite resin containing a poly (meth) acrylic chain and a polyorganosiloxane chain is produced.
  • the polymerization of the radically polymerizable monomer component containing the (meth) acrylic acid ester monomer having high growth reactivity in the radical polymerization proceeds to form a poly (meth) acrylic chain, and then the poly (meth) acrylic chain is formed.
  • a poly (meth) acrylic chain and a polyorganosiloxane chain are composited by reacting a radical-reactive functional group that exhibits a radical reactivity lower than the growth reactivity of the methacryloyl group in radical polymerization at the end of the meta) acrylic chain. Is realized. However, some of the radically reactive functional groups exhibiting low radical reactivity may copolymerize with a portion other than the terminal of the poly (meth) acrylic chain.
  • the (meth) acrylic refers to acrylic and / or methacrylic.
  • the (meth) acrylic acid ester monomer is not particularly limited, and for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • the radically polymerizable monomer component to be subjected to radical polymerization may be only the (meth) acrylic acid ester monomer described above, but the (meth) acrylic acid ester monomer may be used in combination with another radically polymerizable monomer. Good.
  • the radically polymerizable monomer is not particularly limited, but for example, unsaturated carboxylic acids such as (meth) acrylic acid; (meth) acrylamide, ⁇ -ethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, Acrylamides such as N-dimethyl (meth) acrylamide, N-methyl (meth) acrylamide, N-methylol (meth) acrylamide; styrene, ⁇ -methylstyrene, chlorostyrene, styrenesulfonic acid, 4-hydroxystyrene, vinyltoluene Aromatic hydrocarbon vinyl compounds such as; acid anhydrides of unsaturated carboxylic acids such as maleic anhydride, diesters of these acid anhydrides with alcohols or amines having linear or branched chains of 1 to 20 carbon atoms or Saturated carboxylic acid esters such as half esters; vinyl esters and aryl compounds such as vinyl acetate,
  • the ratio of the (meth) acrylic acid ester monomer to the entire radically polymerizable monomer component can be appropriately set.
  • the methacrylic acid ester monomer accounts for 60% by weight or more, and 65% by weight, based on the entire radically polymerizable monomer component. The above is more preferable, and 70% by weight or more is further preferable.
  • the solubility parameter value (SP value) of the formed poly (meth) acrylic chain is 9.0 to 11.0 (cal / cm 3 ) 1. It is preferably selected so that it is in the range of / 2 .
  • SP value of the poly (meth) acrylic chain is in this range, it becomes easy to dissolve the produced organic-inorganic composite resin in a weak solvent to provide a coating material.
  • an organic-inorganic composite resin in which a poly (meth) acrylic chain showing such an SP value is composited can be preferably produced.
  • the SP value is more preferably 9.2 to 10.0 (cal / cm 3 ) 1/2, and particularly preferably 9.4 to 9.9 (cal / cm 3 ) 1/2 .
  • the SP value is Fedors [Robert F. et al. Fedors, Polymer Engineering and Science, 14, 147-154 (1974)], and the value ⁇ is calculated by the following formula.
  • Fedors formula: ⁇ ( ⁇ ei / ⁇ vi) 1/2
  • ⁇ ei indicates the evaporation energy (cal / mol) of atoms and atomic groups
  • ⁇ vi indicates the molar volume (cm 3 / mol).
  • the number of carbon atoms contained in the monomer unit constituting the poly (meth) acrylic chain is not particularly limited, but for example, when an organic-inorganic composite resin is dissolved in a weak solvent to form a coating material, the number of carbon atoms in the side chain of the monomer unit is limited. Is preferably in the range of 3 to 7, more preferably in the range of 3.3 to 6.7, and even more preferably in the range of 3.5 to 6.2.
  • the carbon number of the side chain is, for example, the carbon number of the ester portion in the case of a (meth) acrylic acid ester monomer, and in the case of other monomers, the carbon-carbon unsaturated bond forming the main chain of the polymer is formed. It is the carbon number of the part to be excluded.
  • the side chain of methyl methacrylate has a carbon number of 1
  • the side chain of butyl methacrylate has a carbon number of 4
  • cyclohexyl methacrylate has a carbon number of 6
  • the side chain of 2-hirodoxyethyl methacrylate has a carbon number of 2.
  • the side chain of 3-methacryloyloxypropyltrimethoxysilane has 6 carbon atoms
  • the styrene side chain has 6 carbon atoms.
  • an organic-inorganic composite resin in which a polyorganosiloxane chain and a poly (meth) acrylic chain are compounded can be produced even if a large amount of such a monomer having a large carbon number is used. be able to.
  • the radically polymerizable monomer component containing the (meth) acrylic acid ester monomer described above is mixed with the polyorganosiloxane to carry out radical polymerization.
  • the method of radical polymerization can be a conventional method, and known polymerization methods such as a massive radical polymerization method, a solution radical polymerization method, and a non-aqueous dispersion radical polymerization method can be used.
  • Radical polymerization is carried out in the presence of a radical polymerization initiator.
  • the radical polymerization initiator is not particularly limited, and is, for example, 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,2'-azobis).
  • 2-Methylbutylonitrile tert-butylperoxypivalate, tert-butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroperoxide, diisopropyl Examples thereof include peroxycarbonate. Only one of these may be used, or two or more thereof may be used in combination.
  • the amount of the radical polymerization initiator used is not particularly limited, but the molecular weight of the produced organic-inorganic composite resin can be controlled by adjusting the amount used, and gelation during radical polymerization can be suppressed. Can be done.
  • the amount of the radical polymerization initiator used may be, for example, 0.1 to 10 parts by weight, preferably 0.5 to 7 parts by weight, based on 100 parts by weight of the radically polymerizable monomer component.
  • the radical polymerization can be preferably carried out by adding a radically polymerizable monomer component and a radical polymerization initiator to the system containing the polyorganosiloxane obtained by the hydrolysis / dehydration condensation reaction. That is, it is not necessary to take out the produced polyorganosiloxane from the reaction vessel and transfer it to another reaction vessel, and the hydrolysis / dehydration condensation reaction and radical polymerization can be continuously carried out in one reaction vessel.
  • the production method of the present invention has a process advantage that an organic-inorganic composite resin can be produced while suppressing gelation by such a simple method.
  • the radical polymerization may be carried out in the presence of a ⁇ -dicarbonyl compound.
  • the ⁇ -dicarbonyl compound is a compound having a structure in which two carbonyl groups are bonded with one carbon atom sandwiched between them.
  • the ⁇ -dicarbonyl compound is not particularly limited, and examples thereof include acetylacetone, dimedone, cyclohexane-1,3-dione, methyl acetoacetate, ethyl acetoacetate, dimethyl malonate, diethyl malonate, and meldrum's acid.
  • the amount of the ⁇ -dicarbonyl compound used may be set so as to achieve the above effect. For example, it may be 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyorganosiloxane, and 0.1 to 5 parts by weight. It may be about a part by weight.
  • the polymerization temperature during radical polymerization can be determined by a conventional method.
  • the temperature of the reaction system decreases after the polyorganosiloxane containing silanol groups is produced by hydrolysis and dehydration condensation reaction, the dehydration condensation reaction between silanol groups tends to proceed, and the produced organic-inorganic composite resin
  • the molecular weight of the siloxane may fluctuate, and gelation may easily proceed during radical polymerization. Therefore, from the viewpoint of suppressing fluctuations in molecular weight and progress of gelation, temperature control is performed from the hydrolysis and dehydration condensation reaction to the end of the radical polymerization so that the temperature of the reaction system does not substantially decrease. Is preferable.
  • the temperature at the time of radical polymerization is set to be substantially the same as the temperature at the time of hydrolysis and dehydration condensation reaction, or the temperature at the time of hydrolysis and dehydration condensation reaction is substantially the same. It means setting it higher than the hour temperature.
  • the term "substantially does not decrease” includes the case where the temperature of the reaction system decreases slightly within a range that does not cause a substantial problem from the viewpoint of suppressing fluctuations in molecular weight and progress of gelation. Specifically, it also includes a case where the temperature decreases in the range of less than 5 ° C., preferably less than 3 ° C.
  • the hydrolysis and dehydration condensation reaction and the radical polymerization are carried out in an atmosphere substantially free of oxygen molecules.
  • the reaction of the radically reactive functional group exhibiting low radical reactivity is promoted, the graft ratio of the poly (meth) acrylic chain and the polyorganosiloxane chain is improved, and the transparency or gloss of the coating film is improved. Can be done.
  • the polyorganosiloxane chain contained in the produced organic-inorganic composite resin can have a reactive silicon group (alkoxysilyl group and / or silanol group). With this reactive silicon, the organic-inorganic composite resin can exhibit curability utilizing the hydrolysis / dehydration reaction of the reactive silicon group.
  • the dehydrating agent known ones can be used and are not particularly limited, and for example, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane. , Methyl orthoate, ethyl orthoate, methyl orthoacetate, or ethyl orthoacetate is preferred. Only one of these may be used, or a plurality of these may be used.
  • the amount of the dehydrating agent used is not particularly limited, and can be appropriately determined by those skilled in the art in consideration of the amount of water contained in the organic-inorganic composite resin before dehydration and the target water content after dehydration. As an example, it is about 0.01 to 20 parts by weight, and may be about 0.1 to 10 parts by weight with respect to 100 parts by weight of the organic-inorganic composite resin.
  • the organic-inorganic composite resin of the present invention is formed by bonding a poly (meth) acrylic chain and a polyorganosiloxane chain, and the bond between the two chains is carbon in the monomer unit constituting the poly (meth) acrylic chain. This is achieved by linking the atom and the silicon atom in the polyorganosiloxane chain not via a heteroatomic group such as an ester group, an ether group, an amide group, or an imide group, but via a hydrocarbon group only.
  • the carbon atom in the monomer unit constituting the poly (meth) acrylic chain refers to a carbon atom forming the main chain of the poly (meth) acrylic chain, and refers to the poly (meth) acrylic chain. It does not refer to the carbon atom contained in the side chain.
  • C represents a carbon atom contained in the monomer unit constituting the poly (meth) acrylic chain.
  • the carbon atom is a carbon atom that constitutes a carbon-carbon double bond in the monomer before polymerization for producing a poly (meth) acrylic chain.
  • R represents a divalent hydrocarbon group.
  • Si represents a silicon atom contained in a polyorganosiloxane chain.
  • the poly (meth) acrylic chain and the polyorganosiloxane chain are not bonded by a heteroatom-containing group such as an ester group or an ether group, but are bonded only via a hydrocarbon group.
  • the hydrocarbon group is a divalent bonding group that bonds a carbon atom in the monomer unit constituting the poly (meth) acrylic chain and a silicon atom in the polyorganosiloxane chain.
  • the number of carbon atoms is not particularly limited, but is preferably 2 to 20, more preferably 2 to 8, further preferably 2 to 4, further preferably 2 to 3, and particularly preferably 2.
  • the hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group. It may be linear or branched. Specifically, an ethylene group (including 1,2-ethylene group and 1,1-ethylene group), a propylene group (1,3-propylene group, 2,3-propylene group, etc.), or a p-phenylene ethylene group.
  • the hydrocarbon group is preferably derived from the radically reactive double bond-containing group contained in the above-mentioned alkoxysilane (a-1), for example, an alkoxy having a vinyl group as the alkoxysilane (a-1).
  • a-1 alkoxy having a vinyl group as the alkoxysilane
  • silane silane is used, an ethylene group is formed as the hydrocarbon group.
  • the hydrocarbon group preferably contains at least an ethylene group.
  • the ethylene group referred to here does not mean an ethylene group contained in a propylene group or a p-phenylene ethylene group.
  • the poly (meth) acrylic chain refers to a homopolymer or copolymer of a radically polymerizable monomer component containing a (meth) acrylic acid ester monomer. Details of the types and proportions of the monomers forming the poly (meth) acrylic chain are as described above.
  • the polyorganosiloxane chain refers to a hydrolyzed condensate of an alkoxysilane component containing 70 to 100 mol% of monoorganotrialkoxysilane and 30 to 0 mol% of diorganodialkoxysilane.
  • the definitions of the monoorganotrialkoxysilane and the diorganodialkoxysilane are as described above.
  • the monoorganotrialkoxysilane is an essential component, but the diorganodialkoxysilane may or may not be used.
  • the proportion of diorganodialkoxysilane in the total of monoorganotrialkoxysilane and diorganodialkoxysilane is 30% by weight or less, preferably 20% by weight or more, more preferably 10% by weight or less, and 5% by weight. The following is even more preferable, and 1% by weight or less is even more preferable.
  • a radically reactive double bond-containing group is used as a monoorganotrialkoxysilane and / or a diorganodialkoxysilane.
  • Monoorganotrialkoxysilanes and / or diorganodialkoxysilanes (a-1) having the above are used.
  • the polyorganosiloxane chain according to the preferred embodiment has a reactive silicon group as described above. Due to the presence of the reactive silicon group, the organic-inorganic composite resin of the present invention can exhibit curability by hydrolysis / dehydration condensation reaction.
  • the siloxane bond formation rate (also referred to as the condensation rate) of the polyorganosiloxane chain needs to be less than 100%.
  • the siloxane bond formation rate is a numerical value indicating the conversion rate of the alkoxy group on the silicon atom contained in the alkoxysilane component of the raw material into a siloxane bond, and when all the alkoxy groups are converted into siloxane bonds, It becomes 100%.
  • the siloxane bond formation rate is a structural unit derived from monoorganotrialkoxysilane, a structural unit T1 forming one siloxane bond, a structural unit T2 forming two siloxane bonds, and a siloxane bond.
  • Y, Z it is a value calculated by the following formula. The total of X, Y, and Z is 100.
  • Siloxane bond formation rate (1 x X + 2 x Y + 3 x Z) / 3
  • the organic-inorganic composite resin of the present invention preferably has a siloxane bond formation rate of 20% or more and 80% or less.
  • the siloxane bond formation rate is more preferably 75% or less, still more preferably 72% or less.
  • the siloxane bond formation rate adjusts the amount of water used during the hydrolysis / dehydration condensation reaction for forming a polyorganosiloxane chain, the type / amount of catalyst, and the reaction of components that stabilize silanol groups. It can be adjusted by coexisting with the system.
  • the ratio of the poly (meth) acrylic chain to the polyorganosiloxane chain can be set so that the physical properties based on each chain can be compatible.
  • the ratio of the polyorganosiloxane chain is determined in consideration of the expression of physical properties based on this inorganic chain, the pigment dispersibility when the organic-inorganic composite resin is used for the paint, the transparency and gloss of the coating film, and the mechanical properties. It is preferable to do so.
  • the weight ratio of the polyorganosiloxane chain to the entire organic-inorganic composite resin is preferably 20% by weight or more and 80% by weight or less. More preferably, it is 30% by weight or more, and even more preferably 40% by weight or more. Further, it is more preferably 70% by weight or less, further preferably 60% by weight or less, and particularly preferably 50% by weight or less.
  • the weight average molecular weight (MW) of the organic-inorganic composite resin of the present invention can be appropriately determined according to desired physical properties, but is preferably in the range of 2,000 to 500,000, more preferably in the range of 5,000 to 300,000. In this range, the organic-inorganic composite resin can form a coating film having excellent storage stability and excellent transparency or gloss while avoiding gelation during production.
  • the weight average molecular weight of the organic-inorganic composite resin can be determined by the method described in the section of Examples.
  • the organic-inorganic composite resin of the present invention can be used as a main component of a curable resin composition for paints, that is, a coating liquid.
  • a curable resin composition for paints that is, a coating liquid.
  • paints such as pigments, plasticizers, dispersants, anti-settling agents, anti-skinning agents, desiccants, anti-dripping agents, matting agents, antistatic agents, conductive agents, flame retardants, etc.
  • Additives can be added as appropriate.
  • the organic-inorganic composite resin of the present invention can be used as any coating liquid, but since it has excellent weather resistance and high transparency, it is a pigment-free coating liquid for clear coatings or a coating liquid for clear coatings. It can also be suitably used as a colored coating liquid containing a pigment or dye.
  • the curable resin composition or coating liquid of the present invention contains a curing agent because the curing reaction of the coating film is promoted in the presence of the curing agent and the working time at the time of forming the coating film can be shortened.
  • a curing agent because the curing reaction of the coating film is promoted in the presence of the curing agent and the working time at the time of forming the coating film can be shortened.
  • it is preferably a two-component composition or coating containing the curing agent in a separate package.
  • a curing agent known as a curing agent used for a curable resin composition utilizing a hydrolysis reaction and a dehydration condensation reaction of a reactive silyl group can be appropriately used.
  • the curing agent the above-mentioned condensation catalyst can be used, and an organic tin compound, a titanium chelate compound, an aluminum chelate compound, an organic amine compound and the like can be used.
  • organic tin compounds include dioctyl tin bis (2-ethylhexyl malate), dioctyl tin oxide or a condensate of dibutyl tin oxide and silicate, dibutyl tin dioctate, dibutyl tin dilaurate, dibutyl tin distearate, and dibutyl tin diacetyl.
  • Acetonate, dibutyltin bis (ethylmalate), dibutyltin bis (butylmalate), dibutyltin bis (2-ethylhexylmalate), dibutyltin bis (oleylmalate), stanas octoate, tin stearate, di-n- Examples include butyltin laurate oxide.
  • Specific examples of the organotin compound having an S atom in the molecule include dibutyltin bisisononyl-3-mercaptopropionate, dioctyltin bisisononyl-3-mercaptopropionate, and octylbutyltin bisisononyl-3-mercaptopropio.
  • titanium chelate compound examples include titanium acetylacetonate, titaniumtetraacetylacetonate, titanium ethylacetate, titanium phosphate compound, titanium octylene glycolate, titanium ethylacetate acetate and the like.
  • the aluminum chelate compound examples include ethyl acetoacetate aluminum diisopropylate, aluminum tris (acetylacetone), aluminum tris (ethylacetate acetate), aluminum monoacetylacetate bis (ethylacetate acetate), and alkylacetylacetate aluminum diisopropi. The rate etc. can be mentioned.
  • organic amine compound examples include triethylamine, triethylenediamine, trimethylamine, tetramethylenediamine, N-methylmorpholine, N-ethylmorpholine, N, N'-diethyl-2-methylpiperazine, laurylamine, dimethyllaurylamine and the like. Can be mentioned.
  • the amount of the curing agent used can be appropriately adjusted according to the curing temperature and the curing time. For example, it is preferably about 0.01 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the organic-inorganic composite resin, and is 0.1. It is more preferably about 10 parts by weight or more by weight.
  • the curable resin composition of the present invention can be applied to a substrate and cured to form a coating film.
  • the conditions for coating and curing are not particularly limited, but it is preferable to use a heat source to promote the evaporation of the solvent during curing.
  • the thickness of the coating film formed is not particularly limited, but in the present invention, the thickness after drying is preferably 5 ⁇ m or more and 100 ⁇ m or less. If the thickness is thinner than 5 ⁇ m, the water resistance and moisture resistance of the coating film may be insufficient. If the thickness exceeds 100 ⁇ m, cracks may occur due to curing shrinkage during formation of the coating film. It is more preferably 5 ⁇ m or more and 50 ⁇ m or less, and further preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the base material to which the curable resin composition of the present invention can be applied is not particularly limited, and for example, an organic base material such as polycarbonate (PC), acrylic, ABS, ABS / PC, polyethylene terephthalate (PET), glass, aluminum, etc. , SUS, copper, iron, stone and other inorganic substrates can be used.
  • an organic base material such as polycarbonate (PC), acrylic, ABS, ABS / PC, polyethylene terephthalate (PET), glass, aluminum, etc. , SUS, copper, iron, stone and other inorganic substrates can be used.
  • Alkoxysilane component Vi (A-171: Vinyltrimethoxysilane manufactured by Momentive Performance Materials Japan LLC, molecular weight 148.2) Me (OFS-6070: Methyltrimethoxysilane manufactured by Dow Toray Co., Ltd., molecular weight 136.2) Ph (Z-6124: Phenyltrimexisilane manufactured by Dow Toray Co., Ltd., molecular weight 198.3) MA (A-174: Momentive Performance Materials Japan GK, 3-methacryloyloxypropyltrimethoxysilane, molecular weight 248.4) Ge (OFS-6040: manufactured by Dow Toray Co., Ltd., 3-glycidyloxypropyltrimethoxysilane, molecular weight 236.3).
  • Condensation catalyst DBP (manufactured by Johoku Chemical Industry Co., Ltd., dibutyl phosphate, molecular weight 210.2).
  • MgCl 2 (manufactured by Tokyo Kasei Co., Ltd., magnesium chloride hexahydrate, molecular weight 203.3).
  • LiCl (manufactured by Tokyo Kasei Co., Ltd., lithium chloride, molecular weight 42.4).
  • (Meta) Acrylic resin raw material monomer and radical polymerization initiator MMA (manufactured by Mitsubishi Gas Chemical Company, Inc., methyl methacrylate, molecular weight 100.1) TSMA (A-174: Momentive Performance Materials Japan LLC, 3-methacryloyloxypropyltrimethoxysilane, molecular weight 248.4) BA (manufactured by Nippon Shokubai Co., Ltd., butyl acrylate, molecular weight 128.2) CHMA (manufactured by Nippon Shokubai Co., Ltd., cyclohexyl methacrylate, molecular weight 168.0) BMA (manufactured by Mitsubishi Gas Chemical Company, Inc., butyl methacrylate, molecular weight 142.2) AA (manufactured by Nippon Shokubai Co., Ltd., acrylic acid, molecular weight 72.1) HEMA (manufactured by Nippon Shokubai Co., Ltd., 2-hirodoxy
  • Dehydrating agent MOA (manufactured by Tokyo Chemical Industry Co., Ltd., trimethyl orthoformate, molecular weight 106.1).
  • Solvent S100 (manufactured by Sanwa Chemical Co., Ltd., mineral oil, cumene, xylene, trimethylbenzene mixture)
  • LAWS Mineral Spirit, Xylene, Trimethylbenzene, Nonane Mixture, manufactured by Shell Chemicals Japan Co., Ltd.
  • PMA manufactured by Sankyo Chemical Co., Ltd., propylene glycol monomethyl ether acetate, molecular weight 132.2
  • Stabilizer AcAc manufactured by Daicel Corporation, acetylacetone, molecular weight 100.1
  • Curing catalyst U-20 manufactured by Nitto Kasei Co., Ltd., dibutyltin dilaurate, 631.6
  • the resin solution obtained by reacting for 6 hours is composed of polysiloxane, alcohol generated in the reaction process, and a small amount of residual water.
  • the resin solution is heated with an oil bath heated to 120 ° C. and slightly pressurized with nitrogen to obtain the set content liquid amount while measuring the recovered liquid amount. Distillation continued until.
  • the amount of alcohol that needs to be removed by distillation was calculated according to the following formula. (When the condensation catalyst is DBP or MgCl 2 ) Amount of added water x 32/18 x 2 x 85% (When the condensation catalyst is LiCl) Amount of added water x 32/18 x 2 x 100%
  • the total weight of alcohol that can be generated was calculated assuming that 1 mol of alcohol is generated with respect to 1 mol of the alkoxysilyl group contained in the alkoxysilane component used in the reaction.
  • 1 mol of a trimethoxysilicate group has 3 mol of a methoxysilyl group and generates 3 mol of methanol
  • 1 mol of a methyldimethoxysilyl group has 2 mol of a methoxysilyl group and generates 2 mol of methanol.
  • 1 mol of water produces 1 mol to 1 mol of silanol groups and 1 mol of alcohol of an alkoxysilyl group.
  • the distillation apparatus was recombined while heating while being careful not to substantially lower the internal temperature, and the generated methanol and residual water were removed to obtain 59.2 g of a polysiloxane solution.
  • a distillation apparatus avoid mixing oxygen as much as possible by installing a nitrogen immigration pipe and pressurizing nitrogen, carry out under nitrogen bubbling conditions during distillation, and substantially during radical polymerization after distillation and thereafter. The condition that almost no oxygen was present was maintained.
  • Example 2 to 39 and Comparative Examples 1 to 5 a polysiloxane solution was obtained in the same manner as in Example 1 except that the alkoxysilane component, the condensation catalyst, and water were used according to the description in Table 1.
  • Table 1 the unit of the blending amount of each component is gram (g).
  • the radical reactive functional group equivalent was calculated by the following formula. (Molecular weight of alkoxysilane having radical-reactive functional group-Molecular weight of structure desorbed from alkoxysilane by hydrolysis / dehydration condensation reaction) ⁇ (Akoxysilane having radical-reactive functional group with respect to the total amount of alkoxysilane component used) Mol%)
  • the molecular weight of the structure desorbed from alkoxysilane by hydrolysis / dehydration condensation reaction is set to "69" in the above formula is as follows. Trimethoxysilane: In -Si (OCH 3 ) 3 , when all the methoxy groups form a siloxane bond by the condensation reaction, the structure represented by -Si (O 0.5 ) 3- is formed. Correspondingly, the structure desorbed by the hydrolysis / dehydration condensation reaction is represented by (O 0.5 CH 3 ) 3 , and its molecular weight is “69”.
  • the weight average molecular weight of polyorganosiloxane was measured by GPC.
  • GPC was carried out using HLC-8320GPC manufactured by Toso Co., Ltd. as a liquid feeding system, TSK-GEL H type manufactured by Toso Co., Ltd. as a column, and THF as a solvent, and the weight average molecular weight was calculated in terms of polystyrene.
  • Table 1 it is shown as the IP molecular weight.
  • a solution consisting of 0.2 g of V59, 5.6 g of S100, and 13.1 g of LAWS was added to the pump over 1 hour, and further heated for 1 hour to obtain 204.4 g of a composite resin solution.
  • the carbon atom in the monomer unit constituting the poly (meth) acrylic chain and the silicon atom in the polyorganosiloxane chain are bonded via only an ethylene group, and the polyorganosiloxane chain is formed. It has a reactive silicon group.
  • Example 2 to 39 and Comparative Examples 1 to 5 in Table 2 the polysiloxane solutions, solvents, monomers, and radicals generated in Examples 2 to 39 and Comparative Examples 1 to 5 in Table 1 were generated according to the description in Table 2.
  • a composite resin solution was obtained in the same manner as in the above-mentioned "Synthesis of composite resin of Example 1" except that the agent was used. However, in Comparative Examples 2 to 5, gelation occurred in the polymerization process of the (meth) acrylic acid ester monomer, and the composite resin could not be produced.
  • a dehydrating agent was added to the obtained composite resin solution according to the description in Table 2, and in Examples 37 to 39, a stabilizer was added together with the initial solvent according to the description in Table 2. did.
  • the unit of the blending amount of each component is gram (g).
  • IP amount is the weight ratio of the total amount of the polyorganosiloxane to the total amount of the polyorganosiloxane formed by hydrolysis and dehydration condensation of the alkoxysilane component and the total amount of the radically polymerizable monomer component.
  • the weight average molecular weight of the organic-inorganic composite resin was measured by GPC. GPC was carried out using HLC-8320GPC manufactured by Tosoh Corporation as a liquid feeding system, TSK-GEL H type manufactured by Tosoh Corporation as a column, and THF as a solvent, and the weight average molecular weight was calculated in terms of polystyrene. did.
  • the structural units derived from the monoorganotrialkoxysilane are the structural unit T1 forming one siloxane bond, the structural unit T2 forming two siloxane bonds, and the structural unit T2 forming three siloxane bonds. It is classified into the unit T3.
  • 29 Si-NMR of the organic-inorganic composite resin was measured using AVANCE III HD500 manufactured by BRUKER, and the peak area ratio derived from each obtained structure was determined by the moles of the T1, T2, and T3 structures contained in the organic-inorganic composite resin. It was a ratio.
  • a clear coating solution is prepared by mixing 10.0 g of the composite resin solution obtained in each Example and Comparative Example with 0.050 g of the organic tin compound U-20 as the curing catalyst and 0.050 g of S-100 as the diluting solvent. did.
  • the prepared clear coating liquid is coated on a 70 ⁇ 150 ⁇ 2 mm float glass plate and a 50 ⁇ 150 ⁇ 1 mm black ABS plate with a 6 mil applicator, and a dry clear coating film having a thickness of about 0.076 mm is applied. Obtained.
  • the composite resin obtained in each example had good storage stability, and the transparency and gloss of the clear coating film obtained by using the composite resin were both good. On the other hand, in Comparative Example 1, the transparency and gloss of the clear coating film were both insufficient. Further, in Comparative Examples 2 to 5, gelation occurred and the composite resin could not be produced.
  • Titanium oxide fine particles were dispersed in the composite resin solutions obtained in Comparative Examples 1 and 9 to 12, 15, 16, 21, 25, and 27 to 39 to obtain a resin solution for white enamel paint.
  • BYK-142 was added as a dispersant to help disperse titanium oxide
  • MOA was added as a dehydrating agent to remove water derived from titanium oxide
  • glass beads were used to crush the agglomeration of titanium oxide fine particles. There was.
  • a mill base was prepared by mixing with a small amount of composite resin solution so that the titanium oxide fine particles were easily dispersed so as to have a high concentration. Then, an additional composite resin solution was added and diluted to obtain a white enamel paint. Specifically, it is as follows.
  • the prepared white enamel coating solution containing a curing catalyst was coated on a 70 ⁇ 150 ⁇ 2 mm float glass plate with a 6 mil applicator to obtain a dry white enamel coating film having a thickness of about 0.090 mm.
  • the white enamel coating film obtained in each example had good storage stability, and the white enamel coating film obtained using this had good gloss.
  • the white enamel coating film obtained in Examples 31-33 had the best appearance, good pigment dispersibility, and good toning property.

Abstract

An organic-inorganic composite resin containing a poly(meth)acryl chain and a polyorganosiloxane chain is manufactured by subjecting an alkoxysilane component, which contains an alkoxysilane (a-1) having a radical reactive functional group at least containing a vinyl group and an alkoxysilane (a-2) having no radical reactive functional group, to hydrolysis and dehydration condensation reactions in the presence of water and a condensation catalyst to give a polyorganosiloxane and then radically polymerizing the same with a (meth)acrylate ester monomer. Relative to the sum of (a-1) and (a-2), the ratio of (a-2) is 70-99 wt%. In organic groups contained in (a-2), methyl, ethyl or phenyl group amounts to 50 wt% or more. The equivalence of the radical reactive functional group, which is calculated on the basis of the alkoxysilane component, is 280 or more and less than 5000. Water is added in an amount of 30-60 mol% relative to the sum of the alkoxy groups in the alkoxysilane component.

Description

有機無機複合樹脂及びその製造方法Organic-inorganic composite resin and its manufacturing method
 本発明は、有機無機複合樹脂、その製造方法、該複合樹脂を含む硬化性樹脂組成物、及びその硬化物に関する。 The present invention relates to an organic-inorganic composite resin, a method for producing the same, a curable resin composition containing the composite resin, and a cured product thereof.
 塗料として使用可能な硬化性組成物を構成する硬化性を示す樹脂成分としては種々の樹脂が検討されている。なかでも、塗膜の長寿命化、特に高耐候性や高耐熱性を達成することを目的とした塗料として、ポリシロキサン系塗料が知られている。ポリシロキサンとは、オルガノアルコキシシランが加水分解・脱水縮合反応をすることで形成される硬化性樹脂である。この樹脂を形成しているシロキサン結合はエネルギー的に強固であるため、ポリシロキサンは熱や紫外線によって分解しにくい特性を有する。しかし、得られる塗膜は柔軟性が低く、塗膜の硬化収縮によりクラックを生じやすいという問題や、各種基材に対して密着性が低いという問題があった。 Various resins have been studied as resin components exhibiting curability that constitute a curable composition that can be used as a paint. Among them, polysiloxane-based paints are known as paints aimed at achieving a long life of the coating film, particularly high weather resistance and high heat resistance. Polysiloxane is a curable resin formed by hydrolyzing and dehydrating condensation reaction of organoalkoxysilane. Since the siloxane bond forming this resin is energetically strong, polysiloxane has the property of being difficult to decompose by heat or ultraviolet rays. However, the obtained coating film has low flexibility, and has a problem that cracks are likely to occur due to curing shrinkage of the coating film and a problem that the adhesion to various substrates is low.
 一方、加水分解性シリル基を有するアクリル樹脂を主体とするアクリルシリコン系塗料も知られている。アクリルシリコン系塗料から得られる塗膜は柔軟性を有しており、クラックを生じにくい。しかし、この塗膜には耐候性が低いという問題があった。 On the other hand, acrylic silicone-based paints mainly composed of acrylic resins having a hydrolyzable silyl group are also known. The coating film obtained from the acrylic silicone-based paint has flexibility and is less likely to cause cracks. However, this coating film has a problem of low weather resistance.
 ポリシロキサン系塗料の持つ利点とアクリルシリコン系塗料の持つ利点を併せ有する塗料を提供するため、両塗料を混合することが考えられる。しかし、ポリシロキサン系塗料とアクリルシリコン系塗料を単に混合すると、両樹脂は相溶性が低いため、塗料の貯蔵安定性が低下したり、該混合塗料から形成される塗膜で相分離が生じ、塗膜が白濁して透明性が低下するという難点がある。この場合、塗膜内部で生じている界面が原因となって、劣化しやすくなるという問題も生じる。 In order to provide a paint that has both the advantages of a polysiloxane-based paint and the advantages of an acrylic silicone-based paint, it is conceivable to mix both paints. However, when the polysiloxane-based paint and the acrylic silicone-based paint are simply mixed, the compatibility between the two resins is low, so that the storage stability of the paint is lowered and the coating film formed from the mixed paint causes phase separation. There is a drawback that the coating film becomes cloudy and the transparency is lowered. In this case, there is also a problem that deterioration is likely to occur due to the interface formed inside the coating film.
 そこで、ポリシロキサンとアクリルシリコンを複合化することが検討されている。例えば、特許文献1では、オルガノポリシロキサンと、アクリルシリコンとを酸触媒の存在下で、両樹脂が有する反応性ケイ素基の加水分解・脱水縮合反応によって反応させることによる複合樹脂の製造方法が記載されている。 Therefore, it is being considered to combine polysiloxane and acrylic silicon. For example, Patent Document 1 describes a method for producing a composite resin by reacting an organopolysiloxane and acrylic silicon in the presence of an acid catalyst by a hydrolysis / dehydration condensation reaction of reactive silicon groups of both resins. Has been done.
 また、特許文献2では、(メタ)アクリルロイル基等の重合性不飽和基を有するシラン化合物とエポキシ基を有するシラン化合物を加水分解・縮合させて得られる共縮合物と、(メタ)アクリル系モノマー等の重合性モノマーとを反応させて複合樹脂を製造することが記載されている。 Further, in Patent Document 2, a cocondensate obtained by hydrolyzing and condensing a silane compound having a polymerizable unsaturated group such as a (meth) acrylic loyl group and a silane compound having an epoxy group, and a (meth) acrylic type. It is described that a composite resin is produced by reacting with a polymerizable monomer such as a monomer.
国際公開第2017/169459号International Publication No. 2017/16495 国際公開第2016/052636号International Publication No. 2016/052636
 特許文献1では、ポリシロキサン樹脂とアクリル系樹脂を複合化させた有機無機複合樹脂が記載されているが、その製造に異種の重合体を結合させる反応を伴うためグラフト率が十分に高くならず、貯蔵安定性や、塗膜の透明性と光沢が十分に改善されず、特に、顔料を含む塗料とした時の塗膜の光沢が十分に改善されなかった。また、原料であるアクリル系樹脂に反応性ケイ素基を持たせる必要があったことに加え、ポリシロキサン樹脂との相溶性が高いアクリル系樹脂の組成にするためメタクリル酸メチルを主要モノマーにする必要があった等、アクリル系樹脂を構成するモノマーの種類が限定的になる傾向があった。 Patent Document 1 describes an organic-inorganic composite resin in which a polysiloxane resin and an acrylic resin are composited, but the graft ratio is not sufficiently high because the production involves a reaction of binding different polymers. The storage stability and the transparency and gloss of the coating film were not sufficiently improved, and in particular, the glossiness of the coating film when a paint containing a pigment was used was not sufficiently improved. Further, in addition to having to give a reactive silicon group to the acrylic resin as a raw material, it is necessary to use methyl methacrylate as a main monomer in order to obtain an acrylic resin composition having high compatibility with a polysiloxane resin. There was a tendency that the types of monomers constituting the acrylic resin were limited.
 また、特許文献2では、(メタ)アクリロイル基を有するアルコキシシランを使用してポリオルガノシロキサン鎖を構成するため、該基のラジカル反応性が高すぎることにより、ラジカル重合時にゲル化が進行しやすく、これにより製造が困難となる傾向があった。更に、特許文献2に記載の有機無機複合樹脂はエポキシ基を必須の官能基として有するもので、光酸発生剤と併用することにより硬化性を示すものであった。 Further, in Patent Document 2, since an alkoxysilane having a (meth) acryloyl group is used to form a polyorganosiloxane chain, the radical reactivity of the group is too high, so that gelation easily proceeds during radical polymerization. This tended to make manufacturing difficult. Further, the organic-inorganic composite resin described in Patent Document 2 has an epoxy group as an essential functional group, and exhibits curability when used in combination with a photoacid generator.
 本発明は、上記現状に鑑み、製造時のゲル化が抑制されて製造が容易で、貯蔵安定性に優れると共に、透明性又は光沢に優れた塗膜を形成可能な新規の有機無機複合樹脂、及びその製造方法を提供することを目的とする。 In view of the above situation, the present invention is a novel organic-inorganic composite resin capable of forming a coating film having excellent transparency or gloss as well as being easy to manufacture by suppressing gelation during production and having excellent storage stability. And its manufacturing method.
 本発明者らが上記課題を解決すべく鋭意検討したところ、特許文献2に開示されているような(メタ)アクリロイル基ではなく、ラジカル重合におけるメタクリロイル基の成長反応性よりも低いラジカル反応性を示すラジカル反応性官能基を有するアルコキシシランを、特定範囲のラジカル反応性官能基等量を満たすように使用してポリオルガノシロキサンを得、該ポリオルガノシロキサンの存在下で、(メタ)アクリル酸エステルモノマー等のラジカル重合性モノマーをラジカル重合させることにより新規の有機無機複合樹脂を製造できることを見出した。また、製造された新規の有機無機複合樹脂は、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖が炭化水素基のみを介して結合し、かつ、ポリオルガノシロキサン鎖に反応性ケイ素基を有することを見出した。以上によって上記課題を解決できることを見出し、本発明に至った。 As a result of diligent studies to solve the above problems, the present inventors have found that the radical reactivity is lower than the growth reactivity of the methacryloyl group in radical polymerization, instead of the (meth) acryloyl group disclosed in Patent Document 2. An alkoxysilane having the radical-reactive functional groups shown is used to satisfy an equal amount of radical-reactive functional groups in a specific range to obtain a polyorganosiloxane, and in the presence of the polyorganosiloxane, a (meth) acrylic acid ester is obtained. It has been found that a novel organic-inorganic composite resin can be produced by radically polymerizing a radically polymerizable monomer such as a monomer. In addition, the new organic-inorganic composite resin produced has a poly (meth) acrylic chain and a polyorganosiloxane chain bonded only via a hydrocarbon group, and the polyorganosiloxane chain has a reactive silicon group. I found it. We have found that the above problems can be solved by the above, and have arrived at the present invention.
 すなわち本発明は、ラジカル重合におけるメタクリロイル基の成長反応性よりも低いラジカル反応性を示すラジカル反応性官能基を有するモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシラン(a-1)、及び
ラジカル反応性官能基を有しないモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシラン(a-2)、
 を含むアルコキシシラン成分を、水及び縮合触媒の存在下、加水分解及び脱水縮合反応させて、ポリオルガノシロキサンを得る工程、及び
 前記ポリオルガノシロキサンの存在下で、(メタ)アクリル酸エステルモノマーを含むラジカル重合性モノマー成分をラジカル重合する工程、を含み、
 前記ラジカル重合におけるメタクリロイル基の成長反応性よりも低いラジカル反応性を示すラジカル反応性官能基が、少なくともビニル基を含み、
 (a-1)及び(a-2)の合計に対して(a-2)の占める割合が、70重量%以上99重量%以下であり、(a-2)に含まれる有機基の50重量%以上が、メチル基、エチル基、及びフェニル基からなる群より選択される少なくとも1種であり、
 前記アルコキシシラン成分から算出したラジカル反応性官能基等量は、280以上5000未満の範囲にあり、
 前記水の添加量が、前記アルコキシシラン成分に含まれる、ケイ素原子に直結したアルコキシ基の合計モル数100%に対して、30モル%以上60モル%以下である、
 ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖を含む有機無機複合樹脂の製造方法に関する。
 好ましくは、(a-2)に含まれる有機基の50重量%以上が、メチル基である。
 好ましくは、前記アルコキシシラン成分全体に対して、ビニル基を有するモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシランの占める割合が2重量%以上30重量%以下である。
 好ましくは、前記加水分解及び脱水縮合反応によって、反応性ケイ素基を有するポリオルガノシロキサンを得る。
 好ましくは、前記有機無機複合樹脂全体に対する前記ポリオルガノシロキサン鎖の重量割合は20重量%以上80重量%以下である。
 好ましくは、前記加水分解及び脱水縮合反応から、前記ラジカル重合の終了まで、反応系の温度が実質的に低下しないように温度制御を行う。
 好ましくは、前記ラジカル重合を、β-ジカルボニル化合物の存在下で実施する。
 好ましくは、前記加水分解及び脱水縮合反応、並びに、前記ラジカル重合を、酸素分子を実質的に含まない雰囲気下で実施する。
 また本発明は、ポリ(メタ)アクリル鎖と、該ポリ(メタ)アクリル鎖に結合したポリオルガノシロキサン鎖と、を含む有機無機複合樹脂であって、
 前記有機無機複合樹脂全体に対する前記ポリオルガノシロキサン鎖の重量割合は20重量%以上80重量%以下であり、
 前記ポリオルガノシロキサン鎖は、モノオルガノトリアルコキシシラン70~100モル%及びジオルガノジアルコキシシラン30~0モル%を含有するアルコキシシラン成分の加水分解縮合物であり、
 前記ポリオルガノシロキサン鎖は、反応性ケイ素基を有し、
 前記ポリ(メタ)アクリル鎖を構成するモノマー単位中の炭素原子と、ポリオルガノシロキサン鎖中のケイ素原子が、炭化水素基のみを介して結合しており、
 前記炭化水素基が、少なくともエチレン基を含み、
 前記モノオルガノトリアルコキシシランと前記ジオルガノジアルコキシシランの合計のうち、ラジカル反応性官能基を有しないモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシラン(a-2)の占める割合が、70重量%以上99重量%以下であり、(a-2)に含まれる有機基の50重量%以上が、メチル基、エチル基、及びフェニル基からなる群より選択される少なくとも1種である、有機無機複合樹脂にも関する。
 好ましくは、前記モノオルガノトリアルコキシシランに由来する構成単位を、シロキサン結合を1個形成している構成単位T1、シロキサン結合を2個形成している構成単位T2、及び、シロキサン結合を3個形成している構成単位T3に分類し、29Si-NMRにより測定されたT1、T2、T3の合計モル数に対するT1、T2、T3の各モル数の割合(%)を、それぞれ、X、Y、Zとした時、下記式:
 (1×X+2×Y+3×Z)/3
 によって算出されるシロキサン結合形成率が60%以上80%以下である。
 好ましくは、前記ポリ(メタ)アクリル鎖の溶解度パラメータ値(SP値)が、9.0~11.0(cal/cm1/2である。
 さらに本発明は、前記有機無機複合樹脂を含む硬化性樹脂組成物、又は、当該硬化性樹脂組成物を硬化させてなる硬化物にも関する。
That is, the present invention comprises a monoorganotrialkoxysilane and / or a diorganodialkoxysilane (a-1) having a radical-reactive functional group that exhibits a radical reactivity lower than the growth reactivity of a methacryloyl group in radical polymerization, and a radical. Monoorganotrialkoxysilanes and / or diorganodialkoxysilanes (a-2), which do not have reactive functional groups,
A step of hydrolyzing and dehydrating and condensing a alkoxysilane component containing water in the presence of water and a condensation catalyst to obtain a polyorganosiloxane, and in the presence of the polyorganosiloxane, a (meth) acrylic acid ester monomer is contained. Including the step of radically polymerizing a radically polymerizable monomer component.
The radical-reactive functional group exhibiting a radical reactivity lower than the growth reactivity of the methacryloyl group in the radical polymerization contains at least a vinyl group.
The ratio of (a-2) to the total of (a-1) and (a-2) is 70% by weight or more and 99% by weight or less, and 50% by weight of the organic group contained in (a-2). % Or more is at least one selected from the group consisting of a methyl group, an ethyl group, and a phenyl group.
The radically reactive functional group equivalent amount calculated from the alkoxysilane component is in the range of 280 or more and less than 5000.
The amount of water added is 30 mol% or more and 60 mol% or less with respect to 100% of the total number of moles of alkoxy groups directly bonded to silicon atoms contained in the alkoxysilane component.
The present invention relates to a method for producing an organic-inorganic composite resin containing a poly (meth) acrylic chain and a polyorganosiloxane chain.
Preferably, 50% by weight or more of the organic group contained in (a-2) is a methyl group.
Preferably, the ratio of monoorganotrialkoxysilane and / or diorganodialkoxysilane having a vinyl group to the entire alkoxysilane component is 2% by weight or more and 30% by weight or less.
Preferably, the hydrolysis and dehydration condensation reaction gives a polyorganosiloxane having a reactive silicon group.
Preferably, the weight ratio of the polyorganosiloxane chain to the entire organic-inorganic composite resin is 20% by weight or more and 80% by weight or less.
Preferably, the temperature is controlled so that the temperature of the reaction system does not substantially decrease from the hydrolysis and dehydration condensation reaction to the end of the radical polymerization.
Preferably, the radical polymerization is carried out in the presence of a β-dicarbonyl compound.
Preferably, the hydrolysis and dehydration condensation reactions and the radical polymerization are carried out in an atmosphere substantially free of oxygen molecules.
The present invention is an organic-inorganic composite resin containing a poly (meth) acrylic chain and a polyorganosiloxane chain bonded to the poly (meth) acrylic chain.
The weight ratio of the polyorganosiloxane chain to the entire organic-inorganic composite resin is 20% by weight or more and 80% by weight or less.
The polyorganosiloxane chain is a hydrolysis condensate of an alkoxysilane component containing 70 to 100 mol% of monoorganotrialkoxysilane and 30 to 0 mol% of diorganodialkoxysilane.
The polyorganosiloxane chain has a reactive silicon group and has
The carbon atom in the monomer unit constituting the poly (meth) acrylic chain and the silicon atom in the polyorganosiloxane chain are bonded via only a hydrocarbon group.
The hydrocarbon group contains at least an ethylene group and contains
Of the total of the monoorganotrialkoxysilane and the diorganodialkoxysilane, the proportion of the monoorganotrialkoxysilane and / or the diorganodialkoxysilane (a-2) having no radically reactive functional group is 70. Organic, which is at least 99% by weight and 50% by weight or more of the organic group contained in (a-2) is at least one selected from the group consisting of a methyl group, an ethyl group, and a phenyl group. Also related to inorganic composite resins.
Preferably, the structural unit derived from the monoorganotrialkoxysilane is formed of the structural unit T1 forming one siloxane bond, the structural unit T2 forming two siloxane bonds, and three siloxane bonds. The ratio (%) of the number of moles of T1, T2, and T3 to the total number of moles of T1, T2, and T3 measured by 29 Si-NMR, which are classified into the constituent units T3, is X, Y, respectively. When Z is used, the following formula:
(1 x X + 2 x Y + 3 x Z) / 3
The siloxane bond formation rate calculated by is 60% or more and 80% or less.
Preferably, the solubility parameter value (SP value) of the poly (meth) acrylic chain is 9.0 to 11.0 (cal / cm 3 ) 1/2 .
Furthermore, the present invention also relates to a curable resin composition containing the organic-inorganic composite resin or a cured product obtained by curing the curable resin composition.
 本発明によれば、製造時のゲル化が抑制されて製造が容易で、貯蔵安定性に優れると共に、透明性又は光沢に優れた塗膜を形成可能な新規の有機無機複合樹脂、及びその製造方法を提供することができる。
 本発明の好適な実施態様による有機無機複合樹脂は、反応性ケイ素基を有するので、反応性ケイ素基の加水分解・脱水縮合反応により硬化することができる。
 本発明の好適な実施態様による有機無機複合樹脂は、一般的に塗膜の光沢や貯蔵安定性が低下しやすい顔料を含む着色塗料を構成した場合においても、貯蔵安定性に優れており、光沢に優れた塗膜を形成できる。また、本発明の好適な実施態様による有機無機複合樹脂は、顔料や染料との混和性が高く、優れた調色性を達成することができる。
 さらに、本発明によると、ポリ(メタ)アクリル鎖を構成するモノマー種を多数の選択肢から選択することができ、ポリ(メタ)アクリル鎖の設計の自由度が高いという利点もある。
 さらに、本発明の好適な実施態様による有機無機複合樹脂は、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖が、(メタ)アクリロイル基のようなエステル基等のヘテロ原子含有基を介さず、炭化水素基のみによって結合しているため、加水分解や光酸化による主鎖開裂の影響を受けにくく、耐候性に優れることを期待できる。
According to the present invention, a novel organic-inorganic composite resin capable of forming a coating film having excellent transparency or gloss as well as being easy to manufacture by suppressing gelation during production and having excellent storage stability, and its manufacture. A method can be provided.
Since the organic-inorganic composite resin according to the preferred embodiment of the present invention has a reactive silicon group, it can be cured by a hydrolysis / dehydration condensation reaction of the reactive silicon group.
The organic-inorganic composite resin according to a preferred embodiment of the present invention generally has excellent storage stability and gloss even when a colored paint containing a pigment whose coating film gloss and storage stability tends to decrease is formed. Can form an excellent coating film. In addition, the organic-inorganic composite resin according to the preferred embodiment of the present invention has high miscibility with pigments and dyes, and can achieve excellent toning properties.
Further, according to the present invention, the monomer species constituting the poly (meth) acrylic chain can be selected from a large number of options, and there is an advantage that the degree of freedom in designing the poly (meth) acrylic chain is high.
Further, in the organic-inorganic composite resin according to the preferred embodiment of the present invention, the poly (meth) acrylic chain and the polyorganosiloxane chain are hydrocarbonized without interposing a heteroatom-containing group such as an ester group such as a (meth) acryloyl group. Since it is bonded only by a hydrogen group, it is not easily affected by main chain cleavage due to hydrolysis or photooxidation, and it can be expected to have excellent weather resistance.
 以下、本発明の実施形態を詳細に説明するが、本発明はこれらの実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to these embodiments.
 (有機無機複合樹脂の製造方法)
 まず、本発明の実施形態に係る有機無機複合樹脂の製造方法について説明する。
 (加水分解及び脱水縮合反応)
 本発明の製造方法では、まず、アルコキシシラン成分の加水分解及び脱水縮合反応を実施してポリオルガノシロキサンを得る。本発明で用いるアルコキシシラン成分は、少なくとも、ラジカル反応性官能基を有するモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシラン(a-1)と、ラジカル反応性官能基を有しないモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシラン(a-2)を含む。以下、それぞれ、単にアルコキシシラン(a-1)、アルコキシシラン(a-2)ということがある。
(Manufacturing method of organic-inorganic composite resin)
First, a method for producing an organic-inorganic composite resin according to an embodiment of the present invention will be described.
(Hydrolysis and dehydration condensation reaction)
In the production method of the present invention, first, hydrolysis of the alkoxysilane component and dehydration condensation reaction are carried out to obtain polyorganosiloxane. The alkoxysilane component used in the present invention includes at least a monoorganotrialkoxysilane and / or a diorganodialkoxysilane (a-1) having a radical-reactive functional group and a monoorganotrialkoxy having no radical-reactive functional group. Includes silanes and / or diorganodialkoxysilanes (a-2). Hereinafter, they may be simply referred to as alkoxysilane (a-1) and alkoxysilane (a-2), respectively.
 アルコキシシラン(a-1)は、ケイ素原子上の有機基として、アクリロイル基やメタクリロイル基を持たず、ラジカル反応性官能基を有するアルコキシシランである。該ラジカル反応性官能基としては、ラジカル重合におけるメタクリロイル基の成長反応性よりも低いラジカル反応性を示すものが選択される。このようなラジカル反応性官能基を使用することによって、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖の結合が可能になると共に、有機無機複合樹脂の製造時のゲル化が抑制され、また、有機無機複合樹脂の貯蔵安定性を改善することができる。 Alkoxysilane (a-1) is an alkoxysilane that does not have an acryloyl group or a methacryloyl group as an organic group on a silicon atom and has a radically reactive functional group. As the radical-reactive functional group, one that exhibits radical reactivity lower than the growth reactivity of the methacryloyl group in radical polymerization is selected. By using such a radical-reactive functional group, the poly (meth) acrylic chain and the polyorganosiloxane chain can be bonded, gelation during production of the organic-inorganic composite resin is suppressed, and organic. The storage stability of the inorganic composite resin can be improved.
 ラジカル重合におけるメタクリロイル基の成長反応性よりも低いラジカル反応性を示すラジカル反応性官能基は、少なくともビニル基を含む。尚、ここで言うビニル基は、ケイ素原子に直接結合したビニル基を指し、アリル基やp-スチリル基に含まれるビニル基を指すものではない。当該ラジカル反応性官能基は、ビニル基のみであってもよいし、ビニル基と、アリル基、p-スチリル基、及びメルカプト基からなる群より選択される少なくとも1種の基とを併用してもよい。このようなラジカル反応性官能基は、アルコキシシラン(a-1)のケイ素原子に直接結合していることが好ましい。このようなラジカル反応性官能基を使用することによって、炭化水素基のみを介したポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖の結合が可能になると共に、製造時のゲル化が抑制され、また、有機無機複合樹脂の貯蔵安定性を改善することができる。ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖の結合を炭化水素基のみを介して実現するため、アクリロイル基やメタクリロイル基等のエステル含有基や、ビニルオキシ等のエーテル結合含有基などを有するアルコキシシランを使用しないことが好ましい。 Radical-reactive functional groups that exhibit radical reactivity lower than the growth reactivity of methacryloyl groups in radical polymerization include at least vinyl groups. The vinyl group referred to here refers to a vinyl group directly bonded to a silicon atom, and does not refer to a vinyl group contained in an allyl group or a p-styryl group. The radical-reactive functional group may be a vinyl group alone, or a vinyl group and at least one group selected from the group consisting of an allyl group, a p-styryl group, and a mercapto group may be used in combination. May be good. Such a radical-reactive functional group is preferably directly bonded to the silicon atom of the alkoxysilane (a-1). By using such a radically reactive functional group, it is possible to bond the poly (meth) acrylic chain and the polyorganosiloxane chain only through the hydrocarbon group, and gelation during production is suppressed, and gelation during production is suppressed. , The storage stability of the organic-inorganic composite resin can be improved. In order to realize the bond between the poly (meth) acrylic chain and the polyorganosiloxane chain only through the hydrocarbon group, an alkoxysilane having an ester-containing group such as an acryloyl group or a methacryloyl group or an ether bond-containing group such as vinyloxy is used. It is preferable not to use it.
 また、アルコキシシラン(a-1)は、モノオルガノトリアルコキシシランであってもよいし、ジオルガノジアルコキシシランであってもよいし、両者を含むものであってもよいが、モノオルガノトリアルコキシシランが好ましい。ここで、モノオルガノトリアルコキシシランとは、ケイ素原子上の置換基として、1個の有機基と、3個のアルコキシ基を有するシラン化合物を指し、ジオルガノジアルコキシシランとは、ケイ素原子上の置換基として、2個の有機基と、2個のアルコキシ基を有するシラン化合物を指す。 Further, the alkoxysilane (a-1) may be a monoorganotrialkoxysilane, a diorganodialkoxysilane, or may contain both, but the monoorganotrialkoxysilane may be used. Silane is preferred. Here, the monoorganotrialkoxysilane refers to a silane compound having one organic group and three alkoxy groups as a substituent on the silicon atom, and the diorganodialkoxysilane is on the silicon atom. As a substituent, it refers to a silane compound having two organic groups and two alkoxy groups.
 アルコキシシラン(a-1)が有する有機基とは、アルコキシ基以外の有機基を指し、その具体例は特に限定されないが、例えば、前述したビニル基、アリル基、p-スチリル基、及びメルカプト基の他、炭素数1~6のアルキル基や、フェニル基等の炭素数6~12のアリール基等が挙げられる。前記アルキル基やアリール基は、無置換の基であってもよいし、グリシジルオキシ基、エポキシシクロヘキシル基等の、非ラジカル反応性置換基を有しても良い。前記炭素数1~6のアルキル基とは、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、又は、ヘキシル基である。前記アルキル基の炭素数は、好ましくは1~5であり、より好ましくは1~4であり、さらに好ましくは1~3であり、より更に好ましくは1~2である。前記有機基としては1種類のみであってもよいし、2種以上が混在していてもよい。 The organic group contained in the alkoxysilane (a-1) refers to an organic group other than the alkoxy group, and specific examples thereof are not particularly limited. For example, the above-mentioned vinyl group, allyl group, p-styryl group, and mercapto group are used. In addition, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms such as a phenyl group, and the like can be mentioned. The alkyl group or aryl group may be an unsubstituted group or may have a non-radical reactive substituent such as a glycidyloxy group or an epoxycyclohexyl group. The alkyl group having 1 to 6 carbon atoms is a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or a hexyl group. The alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, still more preferably 1 to 3 carbon atoms, and even more preferably 1 to 2 carbon atoms. As the organic group, only one type may be used, or two or more types may be mixed.
 アルコキシシラン(a-1)が有するアルコキシ基としては特に限定されないが、例えば、炭素数1~3のアルコキシ基等が挙げられる。具体的には、メトキシ基、エトキシ基、プロポキシ基であり、メトキシ基、エトキシ基が好ましく、メトキシ基がより好ましい。前記アルコキシ基としては1種類のみであってもよいし、2種以上が混在していてもよい。 The alkoxy group contained in the alkoxysilane (a-1) is not particularly limited, and examples thereof include an alkoxy group having 1 to 3 carbon atoms. Specifically, it is a methoxy group, an ethoxy group, or a propoxy group, preferably a methoxy group or an ethoxy group, and more preferably a methoxy group. As the alkoxy group, only one type may be used, or two or more types may be mixed.
 アルコキシシラン(a-1)の具体例としては特に限定されないが、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ジビニルジメトキシシラン、ジビニルジエトキシシラン;アリルトリメトキシシラン、アリルトリエトキシシラン、アリルメチルジメトキシシラン、アリルメチルジエトキシシラン;p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、p-スチリルメチルジメトキシシラン、p-スチリルメチルジエトキシシラン;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン等が挙げられる。このうち、ビニル基を有するモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシランが好ましく、ビニルトリアルコキシシランがより好ましい。 Specific examples of the alkoxysilane (a-1) are not particularly limited, but for example, vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, divinyldimethoxysilane, divinyldiethoxysilane; allyl. Trimethoxysilane, allyltriethoxysilane, allylmethyldimethoxysilane, allylmethyldiethoxysilane; p-styryltrimethoxysilane, p-styryltriethoxysilane, p-styrylmethyldimethoxysilane, p-styrylmethyldiethoxysilane; 3 -Mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane and the like can be mentioned. Of these, monoorganotrialkoxysilanes and / or diorganodialkoxysilanes having a vinyl group are preferable, and vinyltrialkoxysilanes are more preferable.
 前記ビニル基を有するモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシランの使用量は少ないほうが製造時のゲル化を抑制することができ、また、多いほうがポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖のグラフト率を高めて塗膜の透明性や光沢を高めることができる。これらの観点から、前記アルコキシシラン成分全体に対して、ビニル基を有するモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシランの占める割合は、2重量%以上30重量%以下が好ましく、3重量%以上28重量%以下が好ましく、4重量%以上25重量%以下がさらに好ましい。 The smaller the amount of the monoorganotrialkoxysilane and / or the diorganodialkoxysilane having a vinyl group used, the more the gelation during production can be suppressed, and the larger the amount, the poly (meth) acrylic chain and the polyorganosiloxane. The graft ratio of the chains can be increased to enhance the transparency and gloss of the coating film. From these viewpoints, the proportion of monoorganotrialkoxysilane and / or diorganodialkoxysilane having a vinyl group with respect to the entire alkoxysilane component is preferably 2% by weight or more and 30% by weight or less, preferably 3% by weight. 28% by weight or more is preferable, and 4% by weight or more and 25% by weight or less is more preferable.
 アルコキシシラン(a-2)は、(メタ)アリクロイル基やビニル基等のラジカル反応性官能基を有しないアルコキシランであり、モノオルガノトリアルコキシシランであってもよいし、ジオルガノジアルコキシシランであってもよいし、両者を含むものであってもよいが、モノオルガノトリアルコキシシランが好ましい。 Alkoxysilane (a-2) is an alkoxylan having no radically reactive functional group such as a (meth) alicloyl group or a vinyl group, and may be a monoorganotrialkoxysilane or a diorganodialkoxysilane. It may be present or may contain both, but monoorganotrialkoxysilane is preferable.
 アルコキシシラン(a-2)がケイ素原子上の置換基として有する有機基とは、ラジカル反応性官能基を含まない、アルコキシ基以外の有機基を指す。その具体例は特に限定されないが、例えば、炭素数1~6のアルキル基や、フェニル基等の炭素数6~12のアリール基等が挙げられる。前記アルキル基やアリール基は、無置換の基であってもよいし、グリシジルオキシ基、エポキシシクロヘキシル基等の、非ラジカル反応性置換基を有しても良い。前記炭素数1~6のアルキル基とは、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、又は、ヘキシル基である。前記アルキル基の炭素数は、好ましくは1~5であり、より好ましくは1~4であり、さらに好ましくは1~3であり、より更に好ましくは1~2である。前記有機基としては1種類のみであってもよいし、2種以上が混在していてもよい。 The organic group that the alkoxysilane (a-2) has as a substituent on the silicon atom refers to an organic group other than the alkoxy group that does not contain a radical reactive functional group. Specific examples thereof are not particularly limited, and examples thereof include an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms such as a phenyl group. The alkyl group or aryl group may be an unsubstituted group or may have a non-radical reactive substituent such as a glycidyloxy group or an epoxycyclohexyl group. The alkyl group having 1 to 6 carbon atoms is a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or a hexyl group. The alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, still more preferably 1 to 3 carbon atoms, and even more preferably 1 to 2 carbon atoms. As the organic group, only one type may be used, or two or more types may be mixed.
 アルコキシシラン(a-2)が有する有機基としては、メチル基、エチル基、及びフェニル基からなる群より選択される少なくとも1種が好ましい。この場合、(a-2)が有する有機基の全体に対するメチル基、エチル基、及びフェニル基の合計が占める割合は50重量%以上であることが好ましく、70重量%以上がより好ましく、80重量%以上がさらに好ましい。当該割合の上限値は100重量%であってもよい。製造される有機無機複合樹脂を塗液の主成分として用いる時に硬化性が高くなることから、(a-2)が有する有機基は、メチル基及び/又はエチル基を含むことがより好ましく、メチル基を含むことが更に好ましい。さらに、メチル基及び/又はエチル基と、フェニル基とを含むことが好ましく、メチル基とフェニル基を含むことが特に好ましい。フェニル基を併用することで、後述するラジカル重合時のゲル化を抑制しやすくなり、また、有機無機複合樹脂の貯蔵安定性と、塗膜の透明性及び光沢を、高いレベルで両立することができる。 As the organic group contained in the alkoxysilane (a-2), at least one selected from the group consisting of a methyl group, an ethyl group, and a phenyl group is preferable. In this case, the ratio of the total of the methyl group, the ethyl group, and the phenyl group to the total organic group of (a-2) is preferably 50% by weight or more, more preferably 70% by weight or more, and 80% by weight. % Or more is more preferable. The upper limit of the ratio may be 100% by weight. Since the curability becomes high when the produced organic-inorganic composite resin is used as the main component of the coating liquid, the organic group of (a-2) is more preferably containing a methyl group and / or an ethyl group, and is methyl. It is more preferable to include a group. Further, it preferably contains a methyl group and / or an ethyl group and a phenyl group, and particularly preferably contains a methyl group and a phenyl group. By using a phenyl group in combination, it becomes easier to suppress gelation during radical polymerization, which will be described later, and it is possible to achieve both storage stability of the organic-inorganic composite resin and transparency and gloss of the coating film at a high level. it can.
 特に好適な実施形態では、硬化性の観点から、(a-2)が有する有機基の全体に対してメチル基が占める割合は50重量%以上であることが好ましく、70重量%以上がより好ましく、80重量%以上がさらに好ましい。当該メチル基の割合の上限値は100重量%であってもよいが、上述のようにエチル基及び/又はフェニル基を併用する場合、99重量%以下であることが好ましい。エチル基及び/又はフェニル基を併用する場合、(a-2)が有する有機基の全体に対してエチル基及び/又はフェニル基が占める割合は0~45重量%であることが好ましい。 In a particularly preferable embodiment, from the viewpoint of curability, the ratio of the methyl group to the total organic group of (a-2) is preferably 50% by weight or more, more preferably 70% by weight or more. , 80% by weight or more is more preferable. The upper limit of the proportion of the methyl group may be 100% by weight, but when an ethyl group and / or a phenyl group are used in combination as described above, it is preferably 99% by weight or less. When an ethyl group and / or a phenyl group are used in combination, the ratio of the ethyl group and / or the phenyl group to the total organic group of (a-2) is preferably 0 to 45% by weight.
 アルコキシシラン(a-2)がケイ素原子上の置換基として有するアルコキシ基としては、アルコキシシラン(a-1)について上述したアルコキシ基と同じ基が挙げられる。 Examples of the alkoxy group that the alkoxysilane (a-2) has as a substituent on the silicon atom include the same group as the above-mentioned alkoxy group for the alkoxysilane (a-1).
 アルコキシシラン(a-2)の具体例としては特に限定されないが、モノオルガノトリアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリイソプロポキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリイソプロポキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルトリイソプロポキシシラン等が挙げられる。ジオルガノジアルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン等が挙げられる。 Specific examples of the alkoxysilane (a-2) are not particularly limited, but examples of the monoorganotrialkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, and ethyltri. Ethoxysilane, ethyltriisopropoxysilane, propyltrimethoxysilane, propyltriethoxysilane, propyltriisopropoxysilane, butyltrimethoxysilane, butyltriethoxysilane, butyltriisopropoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane , Hexyltriisopropoxysilane and the like. Examples of the diorganodialkoxysilane include dimethyldimethoxysilane, dimethyldiethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, and the like. Examples thereof include cyclohexylmethyldimethoxysilane and cyclohexylmethyldiethoxysilane.
 上述したグリシジルオキシ基、エポキシシクロヘキシル基等の、エポキシ基を有する場合のアルコキシシラン(a-2)の具体例としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシプロピルメチルジメトキシシラン、8-グリシジルオキシオクチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。このようなエポキシ基を有するアルコキシシランを使用することで、得られる有機無機複合樹脂の分子量を大きくすることができる。エポキシ基を有するアルコキシシランを使用する場合、その使用量は、アルコキシシラン成分の全体に対する割合として0.1重量%以上が好ましい。また、該使用量は、20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下がさらに好ましい。しかし、エポキシ基を有するアルコキシシランを使用しなくてもよく、その場合には、有機無機複合樹脂を用いて得られる塗膜の透明性や光沢を高めることができる。 Specific examples of the alkoxysilane (a-2) having an epoxy group such as the above-mentioned glycidyloxy group and epoxycyclohexyl group include 3-glycidyloxypropyltrimethoxysilane and 3-glycidyloxypropyltriethoxysilane. , 3-Glysidyloxypropylmethyldimethoxysilane, 8-glycidyloxyoctyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like. By using such an alkoxysilane having an epoxy group, the molecular weight of the obtained organic-inorganic composite resin can be increased. When an alkoxysilane having an epoxy group is used, the amount used is preferably 0.1% by weight or more as a ratio of the total amount of the alkoxysilane component. The amount used is preferably 20% by weight or less, more preferably 15% by weight or less, and even more preferably 10% by weight or less. However, it is not necessary to use an alkoxysilane having an epoxy group, and in that case, the transparency and gloss of the coating film obtained by using the organic-inorganic composite resin can be enhanced.
 アルコキシシラン(a-2)としては、メチルトリアルコキシシラン、エチルトリアルコキシシラン、及びフェニルトリアルコキシシランからなる群より選択される少なくとも1種を使用することが特に好ましい。その場合、アルコキシシシラン成分全体に対して、メチルトリアルコキシシラン、エチルトリアルコキシシラン、及びフェニルトリアルコキシシランの合計が占める割合が、70重量%以上であることが好ましく、80重量%以上であることがより好ましい。 As the alkoxysilane (a-2), it is particularly preferable to use at least one selected from the group consisting of methyltrialkoxysilane, ethyltrialkoxysilane, and phenyltrialkoxysilane. In that case, the ratio of the total of methyltrialkoxysilane, ethyltrialkoxysilane, and phenyltrialkoxysilane to the entire alkoxysisilane component is preferably 70% by weight or more, preferably 80% by weight or more. Is more preferable.
 また、アルコキシシラン(a-2)としては、メチルトリアルコキシシランを使用することが特に好ましい。この場合、アルコキシシラン成分全体に対して、メチルトリアルコキシシランの占める割合が40重量%以上100重量%未満であることが好ましく、40重量%以上95重量%以下がより好ましく、45重量%以上95重量%以下がさらに好ましく、50重量%以上95重量%以下が特に好ましく、50重量%以上90重量%以下が最も好ましい。オルガノアルコキシシランのうちメチルトリアルコキシシランの縮合物が最もケイ素含有量が多くなるため、アルコキシシラン成分全体に対するメチルトリアルコキシシランの含有量が多くなるほど、製造されるポリオルガノシロキサン鎖が無機樹脂特有の効果を発現しやすくなり、好ましい。従来メチルトリアルコキシシランの含有量が多くなると、製造時のゲル化が生じやすくなったが、本発明の製造方法によると該ゲル化を抑制することができる。 Further, it is particularly preferable to use methyltrialkoxysilane as the alkoxysilane (a-2). In this case, the proportion of methyltrialkoxysilane to the entire alkoxysilane component is preferably 40% by weight or more and less than 100% by weight, more preferably 40% by weight or more and 95% by weight or less, and 45% by weight or more and 95% by weight or more. It is more preferably 50% by weight or more, particularly preferably 50% by weight or more and 95% by weight or less, and most preferably 50% by weight or more and 90% by weight or less. Of the organoalkoxysilanes, the condensate of methyltrialkoxysilane has the highest silicon content. Therefore, as the content of methyltrialkoxysilane in the entire alkoxysilane component increases, the produced polyorganosiloxane chain is peculiar to the inorganic resin. It is preferable because the effect is easily exhibited. Conventionally, when the content of methyltrialkoxysilane is increased, gelation during production tends to occur, but according to the production method of the present invention, the gelation can be suppressed.
 本発明で使用するアルコキシシラン成分には、アルコキシシラン(a-1)が有するラジカル反応性官能基と、アルコキシシラン(a-1)及びアルコキシシラン(a-2)が有するケイ素原子上のアルコキシ基とが含まれているが、その含有比率が特定範囲に収まるよう、アルコキシシラン成分の化合物の含有比率が設定される。本発明では、アルコキシシラン成分中のラジカル反応性官能基とアルコキシ基の含有比率を示す指標として、ラジカル反応性官能基等量を用いる。ラジカル反応性官能基等量は、アルコキシシラン成分に含まれるケイ素原子上の全てのアルコキシ基が、加水分解・脱水縮合反応によりシロキサン結合に変換されてポリシロキサンが生成したと仮定した場合に、ラジカル反応性官能基1個あたりの該ポリシロキサンの分子量として算出される値である。具体的な計算方法は、後述する実施例の項で説明する。 The alkoxysilane component used in the present invention includes a radical-reactive functional group contained in the alkoxysilane (a-1) and an alkoxy group on the silicon atom of the alkoxysilane (a-1) and the alkoxysilane (a-2). However, the content ratio of the compound of the alkoxysilane component is set so that the content ratio falls within a specific range. In the present invention, an equal amount of radical-reactive functional groups is used as an index indicating the content ratio of radical-reactive functional groups and alkoxy groups in the alkoxysilane component. The radical-reactive functional group equal amount is a radical when it is assumed that all the alkoxy groups on the silicon atom contained in the alkoxysilane component are converted into siloxane bonds by the hydrolysis / dehydration condensation reaction to form a polysiloxane. It is a value calculated as the molecular weight of the polysiloxane per reactive functional group. A specific calculation method will be described in the section of Examples described later.
 本発明において、原料として使用するアルコキシシラン成分の総体から算出したラジカル反応性官能基等量は、280以上5000未満を満足する。なお、ラジカル反応性官能基等量の数値が小さいことは、ラジカル反応性官能基の相対的な量が多いことを意味し、逆にラジカル反応性官能基等量の数値が大きいことは、ラジカル反応性官能基の相対的な量が少ないことを意味する。ラジカル反応性官能基等量が前記範囲より小さくなると、後述するラジカル重合時にゲル化が進行して有機無機複合樹脂の製造が困難になったり、製造できても該樹脂の貯蔵安定性が低下する傾向がある。逆にラジカル反応性官能基等量が前記範囲より大きくなると、得られる有機無機複合樹脂の分子量を小さくすることができるものの、後述するラジカル重合で、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖の結合が十分に進行せず、塗膜中で相分離が生じてしまい該塗膜の透明性や光沢が低下する傾向がある。 In the present invention, the equivalent amount of radical-reactive functional groups calculated from the total amount of the alkoxysilane component used as a raw material satisfies 280 or more and less than 5000. A small value of the equivalent amount of radical-reactive functional groups means that the relative amount of radical-reactive functional groups is large, and conversely, a large value of the equivalent amount of radical-reactive functional groups means that the radicals are large. It means that the relative amount of reactive radicals is small. When the amount of radical-reactive functional groups is smaller than the above range, gelation proceeds during radical polymerization described later, making it difficult to produce an organic-inorganic composite resin, or even if it can be produced, the storage stability of the resin is lowered. Tend. On the contrary, when the equivalent amount of radical-reactive functional groups is larger than the above range, the molecular weight of the obtained organic-inorganic composite resin can be reduced, but in the radical polymerization described later, the poly (meth) acrylic chain and the polyorganosiloxane chain are separated. Bonding does not proceed sufficiently, phase separation occurs in the coating film, and the transparency and gloss of the coating film tend to decrease.
 前記範囲内において、前記ラジカル反応性官能基等量が小さいほど、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖とのグラフト率が向上し、有機樹脂と無機樹脂の相溶性や塗料の貯蔵安定性、塗膜の光沢を高くすることができる。また、前記範囲内において、ラジカル反応性官能基等量が大きいほど、製造時におけるゲル化がより抑制され、また、生産の再現性を高めることができる。以上の観点から、前記ラジカル反応性官能基等量は、300以上が好ましく、500以上がより好ましく、800以上がさらに好ましく、1000以上が特に好ましい。また、前記ラジカル反応性官能基等量は、4000以下が好ましく、3000以下がより好ましく、2500以下がさらに好ましく、2000以下が特に好ましい。 Within the above range, the smaller the amount of the radical reactive functional group is, the better the graft ratio between the poly (meth) acrylic chain and the polyorganosiloxane chain, the compatibility between the organic resin and the inorganic resin, and the storage stability of the paint. , The gloss of the coating film can be increased. Further, within the above range, the larger the equivalent amount of radical-reactive functional groups, the more the gelation during production can be suppressed, and the reproducibility of production can be improved. From the above viewpoint, the radical reactive functional group equivalent amount is preferably 300 or more, more preferably 500 or more, further preferably 800 or more, and particularly preferably 1000 or more. The radical-reactive functional group equivalent is preferably 4000 or less, more preferably 3000 or less, further preferably 2500 or less, and particularly preferably 2000 or less.
 アルコキシシラン(a-1)及びアルコキシシラン(a-2)の使用比率は、以上のラジカル反応性官能基等量やポリオルガノシロキサン鎖の分子量等を考慮して適宜設定することができる。具体的には、アルコキシシラン(a-1)及びアルコキシシラン(a-2)の合計に対して(a-1)の占める割合は1重量%以上30重量%以下、(a-2)の占める割合は70重量%以上99重量%以下が好ましく、(a-1)の占める割合は5重量%以上25重量%以下、(a-2)の占める割合は75重量%以上95重量%以下がより好ましい。また、アルコキシシラン成分の全体に対して(a-1)の占める割合は1重量%以上30重量%以下、(a-2)の占める割合は70重量%以上99重量%以下が好ましく、(a-1)の占める割合は5重量%以上25重量%以下、(a-2)の占める割合は75重量%以上95重量%以下がより好ましい。 The ratio of alkoxysilane (a-1) and alkoxysilane (a-2) used can be appropriately set in consideration of the above radical reactive functional group equivalents, the molecular weight of the polyorganosiloxane chain, and the like. Specifically, the ratio of (a-1) to the total of alkoxysilane (a-1) and alkoxysilane (a-2) is 1% by weight or more and 30% by weight or less, and (a-2) occupies. The ratio is preferably 70% by weight or more and 99% by weight or less, the ratio of (a-1) is 5% by weight or more and 25% by weight or less, and the ratio of (a-2) is 75% by weight or more and 95% by weight or less. preferable. Further, the proportion of (a-1) to the entire alkoxysilane component is preferably 1% by weight or more and 30% by weight or less, and the proportion of (a-2) is preferably 70% by weight or more and 99% by weight or less, and (a). The proportion of -1) is more preferably 5% by weight or more and 25% by weight or less, and the proportion of (a-2) is more preferably 75% by weight or more and 95% by weight or less.
 アルコキシシラン成分は、アルコキシシラン(a-1)とアルコキシシラン(a-2)のみから構成されるものであってもよいし、これらに加えて、アルコキシシラン(a-1)とアルコキシシラン(a-2)のいずれにも属しないアルコキシシラン(a-3)をさらに含有してもよい。アルコキシシラン(a-3)としては、例えば、(メタ)アクリロイル基を有するアルコキシシランや、トリオルガノモノアルコキシシラン、テトラアルコキシシラン等が挙げられる。アルコキシシラン(a-3)は使用しなくともよいが、アルコキシシラン(a-3)を使用する場合、その使用量は本発明の効果を阻害しない範囲で決定すればよく、例えば、アルコキシシラン成分の全体に対する割合として10重量%以下が好ましく、5重量%以下がより好ましく、1重量%以下がさらに好ましい。 The alkoxysilane component may be composed of only alkoxysilane (a-1) and alkoxysilane (a-2), or in addition to these, alkoxysilane (a-1) and alkoxysilane (a). It may further contain an alkoxysilane (a-3) that does not belong to any of -2). Examples of the alkoxysilane (a-3) include an alkoxysilane having a (meth) acryloyl group, a triorganomonoalkoxysilane, and a tetraalkoxysilane. Alkoxysilane (a-3) does not have to be used, but when alkoxysilane (a-3) is used, the amount used may be determined within a range that does not impair the effects of the present invention. For example, the alkoxysilane component. 10% by weight or less is preferable, 5% by weight or less is more preferable, and 1% by weight or less is further preferable.
 以上説明したアルコキシシラン成分を、水と縮合触媒の存在下で、加水分解及び脱水縮合反応させることによって、ポリオルガノシロキサンを形成することができる。製造されたポリオルガノシロキサンは、アルコキシシラン(a-1)に由来するラジカル反応性官能基を有する。 Polyorganosiloxane can be formed by hydrolyzing and dehydrating and condensing the alkoxysilane component described above in the presence of water and a condensation catalyst. The produced polyorganosiloxane has a radically reactive functional group derived from alkoxysilane (a-1).
 また、好ましい実施形態によると、アルコキシシラン成分に含まれていた一部のアルコキシ基が未反応で残留し、または、該アルコキシシラン成分が加水分解反応を受けた後、脱水縮合反応は進行せずにシラノール基として残留することで、製造されたポリオルガノシロキサンは、反応性ケイ素基をさらに有することができる。ここで、反応性ケイ素基とは、アルコキシシリル基とシラノール基の双方を含む概念である。 Further, according to a preferred embodiment, after some of the alkoxy groups contained in the alkoxysilane component remain unreacted or the alkoxysilane component undergoes a hydrolysis reaction, the dehydration condensation reaction does not proceed. By remaining as a silanol group in, the produced polyorganosiloxane can further have a reactive silicon group. Here, the reactive silicon group is a concept including both an alkoxysilyl group and a silanol group.
 前記加水分解及び脱水縮合反応では水を添加して該反応を進行させる。この時、水の使用量を制御することによって、ラジカル重合時のゲル化を抑制し、有機無機複合樹脂の貯蔵安定性を改善することができる。この観点から、水の使用量は、アルコキシシラン成分に含まれるケイ素原子に直接結合したアルコキシ基の合計モル数を100%とし、これに対して30モル%以上60モル%以下である。上限は55モル%以下が好ましい。下限は35モル%以上が好ましく、40モル%以上がより好ましく、45モル%以上が特に好ましい。 In the hydrolysis and dehydration condensation reaction, water is added to proceed the reaction. At this time, by controlling the amount of water used, gelation during radical polymerization can be suppressed and the storage stability of the organic-inorganic composite resin can be improved. From this point of view, the amount of water used is 100% based on the total number of moles of alkoxy groups directly bonded to the silicon atom contained in the alkoxysilane component, and is 30 mol% or more and 60 mol% or less. The upper limit is preferably 55 mol% or less. The lower limit is preferably 35 mol% or more, more preferably 40 mol% or more, and particularly preferably 45 mol% or more.
 前記加水分解および脱水縮合工程では、水に加えて、水以外の有機溶剤を使用してもよい。このような有機溶剤としては、水と併用するため水溶性の有機溶剤が好ましい。また、アルコキシシラン成分の溶解性を確保するため、炭素数が4以上の有機溶剤が好ましい。以上の観点から、好ましい有機溶剤としては、例えば、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、ジエチレングリコールモノイソブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールジエチルエーテル等が挙げられるが、これらに限定されるものではない。 In the hydrolysis and dehydration condensation steps, an organic solvent other than water may be used in addition to water. As such an organic solvent, a water-soluble organic solvent is preferable because it is used in combination with water. Further, in order to ensure the solubility of the alkoxysilane component, an organic solvent having 4 or more carbon atoms is preferable. From the above viewpoint, preferred organic solvents include, for example, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, diethylene glycol monoisopropyl ether, and ethylene glycol monobutyl ether. Diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, diethylene glycol monoisobutyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol Examples thereof include, but are not limited to, monopropyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, and ethylene glycol diethyl ether.
 有機無機複合樹脂の製造後や、塗膜の形成時に有機溶剤を揮発させることになるため、大気圧下における沸点が150℃以下の有機溶剤が好ましく、具体的には、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテルが特に好ましい。 Since the organic solvent will be volatilized after the production of the organic-inorganic composite resin or when the coating film is formed, an organic solvent having a boiling point of 150 ° C. or lower under atmospheric pressure is preferable. Specifically, ethylene glycol monoethyl ether. Ethylene glycol monoisopropyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol monoethyl ether, and propylene glycol dimethyl ether are particularly preferable.
 前記加水分解及び脱水縮合反応は、反応促進のため、縮合触媒の存在下で行う。縮合触媒としては公知のものを使用することができる。縮合触媒には、大別して塩基性触媒と酸性触媒とがあるが、酸性触媒は縮合よりも加水分解を速める作用を有し、結果、得られるポリオルガノシロキサンがシラノール基を比較的多く有することとなり、シラノール基は酸性溶液中で安定化するため、有機無機複合樹脂の貯蔵安定性が向上する。そのため、縮合触媒として酸性触媒の存在下で本発明の加水分解および脱水縮合工程を実施することが好ましい。 The hydrolysis and dehydration condensation reactions are carried out in the presence of a condensation catalyst to promote the reaction. As the condensation catalyst, a known one can be used. Condensation catalysts are roughly classified into basic catalysts and acidic catalysts. The acidic catalyst has an action of accelerating hydrolysis compared to condensation, and as a result, the obtained polyorganosiloxane has a relatively large number of silanol groups. Since the silanol group is stabilized in an acidic solution, the storage stability of the organic-inorganic composite resin is improved. Therefore, it is preferable to carry out the hydrolysis and dehydration condensation steps of the present invention in the presence of an acidic catalyst as the condensation catalyst.
 酸性触媒としては、アルコキシシラン成分や有機溶剤との相溶性から、有機酸が好ましく、リン酸エステルやカルボン酸がより好ましい。有機酸の具体例としては、エチルアシッドホスフェート、ブチルアシッドホスフェート、ピロリン酸ブチル(又はジブチルピロホスフェート)、ブトキシエチルアシッドホスフェート、2-エチルヘキシルアシッドホスフェート、イソトリデシルアシッドホスフェート、ジブチルホスフェート、ビス(2-エチルヘキシル)ホスフェート、ギ酸、酢酸、酪酸、イソ酪酸等が挙げられる。 As the acidic catalyst, an organic acid is preferable, and a phosphoric acid ester or a carboxylic acid is more preferable, because of compatibility with an alkoxysilane component and an organic solvent. Specific examples of organic acids include ethyl acid phosphate, butyl acid phosphate, butyl pyrophosphate (or dibutylpyrophosphate), butoxyethyl acid phosphate, 2-ethylhexyl acid phosphate, isotridecyl acid phosphate, dibutyl phosphate, and bis (2-). Ethylhexyl) phosphate, formic acid, acetic acid, butyric acid, isobutyric acid and the like can be mentioned.
 塩基性触媒としては、例えば、N-エチルモルホリン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N-n-ブチルジエタノールアミン、N-t-ブチルジエタノールアミン、トリエチルアミン、n-ブチルアミン、ヘキシルアミン、トリエタノールアミン、ジアザビシクロウンデセン、アンモニア等のアミン系化合物や、水酸化ナトリウム、水酸化カリウム等の金属水酸化物等が挙げられる。 Examples of the basic catalyst include N-ethylmorpholine, N-methyldiethanolamine, N-ethyldiethanolamine, Nn-butyldiethanolamine, Nt-butyldiethanolamine, triethylamine, n-butylamine, hexylamine, and triethanolamine. Examples thereof include amine compounds such as diazabicycloundecene and ammonia, and metal hydroxides such as sodium hydroxide and potassium hydroxide.
 また、縮合触媒として、中性塩を使用することもできる。中性塩を使用しても、酸性触媒を使用した場合と同等の効果を得ることができる。ここで、中性塩とは、強酸と強塩基からなる正塩のことであり、例えば、カチオンとして第一族元素イオン、第二族元素イオン、テトラアルキルアンモニウムイオン、グアニジウムイオンよりなる群から選ばれるいずれかと、アニオンとしてフッ化物イオンを除く第十七族元素イオン、硫酸イオン、硝酸イオン、過塩素酸イオンよりなる群から選ばれるいずれかとの組合せからなる塩のことである。特に、アニオンとしては、求核性が高いため、第十七族元素イオンが好ましく、カチオンとしては、求核作用を阻害しないように、嵩高くないイオンとして、第一族元素イオン、第二族元素イオンが好ましい。 A neutral salt can also be used as the condensation catalyst. Even if a neutral salt is used, the same effect as when an acidic catalyst is used can be obtained. Here, the neutral salt is a normal salt composed of a strong acid and a strong base, and is, for example, a group consisting of a group 1 element ion, a group 2 element ion, a tetraalkylammonium ion, and a guanidium ion as cations. It is a salt composed of a combination of any one selected from the above and one selected from the group consisting of Group 17 element ions excluding fluoride ions, sulfate ions, nitrate ions, and perchlorate ions as anions. In particular, the anion is preferably a group 17 element ion because it has high nucleophilicity, and the cation is a group 1 element ion or a group 2 ion as a non-bulky ion so as not to inhibit the nucleophilic action. Element ions are preferred.
 中性塩の具体的な化合物は特に限定されないが、例えば、好ましい中性塩として、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化ラビジウム、塩化セシウム、塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化ラビジウム、臭化セシウム、臭化マグネシウム、臭化カルシウム、臭化ストロンチウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化ラビジウム、ヨウ化セシウム、ヨウ化マグネシウム、ヨウ化カルシウム、ヨウ化ストロンチウムが挙げられる。 The specific compound of the neutral salt is not particularly limited, but for example, preferred neutral salts include lithium chloride, sodium chloride, potassium chloride, ravidium chloride, cesium chloride, magnesium chloride, calcium chloride, strontium chloride, lithium bromide, and the like. Sodium bromide, potassium bromide, ravidium bromide, cesium bromide, magnesium bromide, calcium bromide, strontium bromide, lithium iodide, sodium iodide, potassium iodide, ravidium iodide, cesium iodide, iodide Examples include magnesium, calcium iodide, and strontium iodide.
 縮合触媒の添加量は適宜調節できるが、例えば、アルコキシシラン成分に対して50ppm~3重量%程度であってよい。しかし、有機無機複合樹脂の製造時又は貯蔵時のゲル化の進行を抑制するため、縮合触媒による反応時間短縮の効果が達成される範囲内で、縮合触媒の使用量は少ないほど好適である。 The amount of the condensation catalyst added can be adjusted as appropriate, but may be, for example, about 50 ppm to 3% by weight with respect to the alkoxysilane component. However, in order to suppress the progress of gelation during the production or storage of the organic-inorganic composite resin, the smaller the amount of the condensation catalyst used, the more suitable it is within the range in which the effect of shortening the reaction time by the condensation catalyst is achieved.
 前記加水分解および脱水縮合工程を実施する際の反応温度は当業者が適宜設定できるが、例えば反応液を50~150℃の範囲に加熱することが好ましい。反応時間に関しても当業者が適宜設定できるが、例えば10分間~12時間程度であってよい。 A person skilled in the art can appropriately set the reaction temperature when carrying out the hydrolysis and dehydration condensation steps, but for example, it is preferable to heat the reaction solution in the range of 50 to 150 ° C. The reaction time can be appropriately set by those skilled in the art, but may be, for example, about 10 minutes to 12 hours.
 前記加水分解および脱水縮合工程を実施した後、加水分解工程で発生したアルコールを反応液から除去する工程を実施することが好ましい。アルコールを除去することによって、アルコールを副生する加水分解反応をより進めることができる。当該アルコールの除去工程は、加水分解および脱水縮合工程後の反応液を減圧蒸留に付してアルコールを留去することで実施できる。減圧蒸留の条件は当業者が適宜設定することが可能である。 After performing the hydrolysis and dehydration condensation steps, it is preferable to carry out a step of removing the alcohol generated in the hydrolysis step from the reaction solution. By removing the alcohol, the hydrolysis reaction that produces alcohol as a by-product can be further promoted. The alcohol removal step can be carried out by subjecting the reaction solution after the hydrolysis and dehydration condensation steps to vacuum distillation to distill off the alcohol. The conditions for vacuum distillation can be appropriately set by those skilled in the art.
 加水分解及び脱水縮合反応では、アルコキシシラン(a-1)が有するラジカル反応性官能基は実質的に影響を受けることがないため、当該反応で製造されたポリオルガノシロキサンは、上述したように、アルコキシシラン(a-1)に由来するラジカル反応性官能基を有することになる。 In the hydrolysis and dehydration condensation reactions, the radical-reactive functional groups of the alkoxysilane (a-1) are substantially unaffected. Therefore, the polyorganosiloxane produced in the reaction is as described above. It will have a radically reactive functional group derived from alkoxysilane (a-1).
 ポリオルガノシロキサン1分子あたりのラジカル反応性官能基の個数は特に限定されないが、約1個以上であればよい。1個以上であることで、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖のグラフト率を高めることができ、塗膜の良好な透明性や光沢を達成することができる。また、前記個数は3個を超えてもよく、4個以上でもよい。そのように多くのラジカル反応性官能基を有するポリオルガノシロキサンを使用しても、本発明の製造方法によると製造時のゲル化を抑制することができる。前記個数は、ゲル化の抑制や貯蔵安定性の改善の観点から、8個以下であることが好ましい。 The number of radical-reactive functional groups per molecule of polyorganosiloxane is not particularly limited, but may be about 1 or more. When the number is one or more, the graft ratio of the poly (meth) acrylic chain and the polyorganosiloxane chain can be increased, and good transparency and gloss of the coating film can be achieved. Further, the number may exceed 3 or 4 or more. Even if a polyorganosiloxane having such a large number of radical-reactive functional groups is used, gelation during production can be suppressed according to the production method of the present invention. The number is preferably 8 or less from the viewpoint of suppressing gelation and improving storage stability.
 (ラジカル重合)
 本発明では、アルコキシシラン成分の加水分解及び脱水縮合反応によってポリオルガノシロキサンを得た後、該ポリオルガノシロキサンの存在下で、(メタ)アクリル酸エステルモノマーを含むラジカル重合性モノマー成分をラジカル重合することによって、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖を含む有機無機複合樹脂が製造される。当該ラジカル重合では、まず、ラジカル重合における成長反応性が高い(メタ)アクリル酸エステルモノマーを含むラジカル重合性モノマー成分の重合が進行してポリ(メタ)アクリル鎖が形成された後、該ポリ(メタ)アクリル鎖の末端に、ラジカル重合におけるメタクリロイル基の成長反応性よりも低いラジカル反応性を示すラジカル反応性官能基が反応することで、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖の複合化が実現される。ただし、前記低いラジカル反応性を示すラジカル反応性官能基の一部が、ポリ(メタ)アクリル鎖の末端ではない部分に共重合する場合もあり得る。なお、(メタ)アクリルとは、アクリル及び/又はメタクリルを指す。
(Radical polymerization)
In the present invention, a polyorganosiloxane is obtained by hydrolysis and dehydration condensation reaction of the alkoxysilane component, and then a radically polymerizable monomer component containing a (meth) acrylic acid ester monomer is radically polymerized in the presence of the polyorganosiloxane. As a result, an organic-inorganic composite resin containing a poly (meth) acrylic chain and a polyorganosiloxane chain is produced. In the radical polymerization, first, the polymerization of the radically polymerizable monomer component containing the (meth) acrylic acid ester monomer having high growth reactivity in the radical polymerization proceeds to form a poly (meth) acrylic chain, and then the poly (meth) acrylic chain is formed. A poly (meth) acrylic chain and a polyorganosiloxane chain are composited by reacting a radical-reactive functional group that exhibits a radical reactivity lower than the growth reactivity of the methacryloyl group in radical polymerization at the end of the meta) acrylic chain. Is realized. However, some of the radically reactive functional groups exhibiting low radical reactivity may copolymerize with a portion other than the terminal of the poly (meth) acrylic chain. The (meth) acrylic refers to acrylic and / or methacrylic.
 前記(メタ)アクリル酸エステルモノマーとしては特に限定されないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の、炭素数が1~22のアルキル基を有するアルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート等のアラルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;2-メトキシエチル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート等のω-アルコキシアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等の水酸基含有(メタ)アクリレート類;3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジエトキシシラン、(メタ)アクリロイルオキシオクチルトリメトキシシラン、及び、(メタ)アクリロイルオキシオクチルトリエトキシシラン等のシリル基含有(メタ)アクリレート類等が挙げられる。これらは1種のみを用いてもよいし、2種以上を併用してもよい。 The (meth) acrylic acid ester monomer is not particularly limited, and for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , Tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate and other alkyl (meth) acrylates having an alkyl group having 1 to 22 carbon atoms; benzyl (meth) acrylate, 2 -Aralkyl (meth) acrylates such as phenylethyl (meth) acrylate; cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; 2-methoxyethyl (meth) acrylate, 4-methoxybutyl Ω-alkoxyalkyl (meth) acrylates such as (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) Hydroxyl-containing (meth) acrylates such as acrylates and glycerol mono (meth) acrylates; 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropylmethyldimethoxysilane, 3- (meth) acryloyloxypropyl Cyril group-containing (meth) acrylates such as triethoxysilane, 3- (meth) acryloyloxypropylmethyldiethoxysilane, (meth) acryloyloxyoctylrimethoxysilane, and (meth) acryloyloxyoctylriethoxysilane Can be mentioned. Only one of these may be used, or two or more thereof may be used in combination.
 ラジカル重合に付するラジカル重合性モノマー成分としては、上述した(メタ)アクリル酸エステルモノマーのみであってもよいが、(メタ)アクリル酸エステルモノマーと、他のラジカル重合性モノマーを併用してもよい。該ラジカル重合性モノマーとしては特に限定されないが、例えば、(メタ)アクリル酸等の不飽和カルボン酸;(メタ)アクリルアミド、α-エチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-メチロ-ル(メタ)アクリルアミド等のアクリルアミド;スチレン、α-メチルスチレン、クロロスチレン、スチレンスルホン酸、4-ヒドロキシスチレン、ビニルトルエンなどの芳香族炭化水素系ビニル化合物;無水マレイン酸などの不飽和カルボン酸の酸無水物、これら酸無水物と炭素数1~20の直鎖状または分岐鎖を有するアルコールまたはアミンとのジエステルまたはハーフエステルなどの不飽和カルボン酸のエステル;酢酸ビニル、プロピオン酸ビニル、ジアリルフタレ-トなどのビニルエステルやアリール化合物;ビニルピリジン、アミノエチルビニルエーテルなどのアミノ基含有ビニル系化合物;イタコン酸ジアミド、クロトン酸アミド、マレイン酸ジアミド、フマル酸ジアミド、N-ビニルピロリドンなどのアミド基含有ビニル系化合物;(メタ)アクリロニトリル、2-ヒドロキシエチルビニルエ-テル、メチルビニルエーテル、シクロヘキシルビニルエーテル、塩化ビニル、塩化ビニリデン、クロロプレン、プロピレン、ブタジエン、イソプレン、フルオロオレフィンマレイミド、N-ビニルイミダゾール、ビニルスルホン酸等が挙げられる。これらは1種のみを用いてもよいし、2種以上を併用してもよい。 The radically polymerizable monomer component to be subjected to radical polymerization may be only the (meth) acrylic acid ester monomer described above, but the (meth) acrylic acid ester monomer may be used in combination with another radically polymerizable monomer. Good. The radically polymerizable monomer is not particularly limited, but for example, unsaturated carboxylic acids such as (meth) acrylic acid; (meth) acrylamide, α-ethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, Acrylamides such as N-dimethyl (meth) acrylamide, N-methyl (meth) acrylamide, N-methylol (meth) acrylamide; styrene, α-methylstyrene, chlorostyrene, styrenesulfonic acid, 4-hydroxystyrene, vinyltoluene Aromatic hydrocarbon vinyl compounds such as; acid anhydrides of unsaturated carboxylic acids such as maleic anhydride, diesters of these acid anhydrides with alcohols or amines having linear or branched chains of 1 to 20 carbon atoms or Saturated carboxylic acid esters such as half esters; vinyl esters and aryl compounds such as vinyl acetate, vinyl propionate, diallyl phthalate; amino group-containing vinyl compounds such as vinyl pyridine and aminoethyl vinyl ether; itaconic acid diamide, crotonic acid Amide group-containing vinyl compounds such as amide, maleic acid diamide, fumaric acid diamide, N-vinylpyrrolidone; (meth) acrylonitrile, 2-hydroxyethyl vinyl ether, methyl vinyl ether, cyclohexyl vinyl ether, vinyl chloride, vinylidene chloride, chloroprene. , Propylene, butadiene, isoprene, fluoroolefin maleimide, N-vinylimidazole, vinyl sulfonic acid and the like. Only one of these may be used, or two or more thereof may be used in combination.
 ラジカル重合性モノマー成分全体に対して前記(メタ)アクリル酸エステルモノマーが占める割合は適宜設定できる。しかし、製造される有機無機複合樹脂の基材への密着性の観点から、前記ラジカル重合性モノマー成分全体に対して、メタアクリル酸エステルモノマーが60重量%以上を占めることが好ましく、65重量%以上がより好ましく、70重量%以上がさらに好ましい。 The ratio of the (meth) acrylic acid ester monomer to the entire radically polymerizable monomer component can be appropriately set. However, from the viewpoint of adhesion of the produced organic-inorganic composite resin to the base material, it is preferable that the methacrylic acid ester monomer accounts for 60% by weight or more, and 65% by weight, based on the entire radically polymerizable monomer component. The above is more preferable, and 70% by weight or more is further preferable.
 前記ポリ(メタ)アクリル鎖を構成するモノマーの種類及び割合は、形成されるポリ(メタ)アクリル鎖の溶解度パラメータ値(SP値)が、9.0~11.0(cal/cm1/2の範囲にあるように選択されることが好ましい。ポリ(メタ)アクリル鎖のSP値がこの範囲にあると、製造される有機無機複合樹脂を弱溶剤に溶かして塗料を提供することが容易になる。特に、SP値が9.0~10.0(cal/cm1/2の範囲にあるポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖との複合化は従来の方法では困難であったが、本発明によると、このようなSP値を示すポリ(メタ)アクリル鎖が複合化した有機無機複合樹脂を好適に製造することができる。前記SP値は、9.2~10.0(cal/cm1/2がより好ましく、9.4~9.9(cal/cm1/2が特に好ましい。 Regarding the types and proportions of the monomers constituting the poly (meth) acrylic chain, the solubility parameter value (SP value) of the formed poly (meth) acrylic chain is 9.0 to 11.0 (cal / cm 3 ) 1. It is preferably selected so that it is in the range of / 2 . When the SP value of the poly (meth) acrylic chain is in this range, it becomes easy to dissolve the produced organic-inorganic composite resin in a weak solvent to provide a coating material. In particular, it was difficult to combine a poly (meth) acrylic chain and a polyorganosiloxane chain having an SP value in the range of 9.0 to 10.0 (cal / cm 3 ) 1/2 by the conventional method. According to the present invention, an organic-inorganic composite resin in which a poly (meth) acrylic chain showing such an SP value is composited can be preferably produced. The SP value is more preferably 9.2 to 10.0 (cal / cm 3 ) 1/2, and particularly preferably 9.4 to 9.9 (cal / cm 3 ) 1/2 .
 SP値は、Fedors[Robert F.Fedors,Polymer Engineering and Science,14,147-154(1974)]に記載の方法に基づき、下記の式によって算出される値δである。
Fedorsの式:δ=(ΣΔei/ΣΔvi)1/2
 式中、Δei:原子及び原子団の蒸発エネルギー(cal/mol)を示し、Δvi:モル体積(cm/mol)を示す。
The SP value is Fedors [Robert F. et al. Fedors, Polymer Engineering and Science, 14, 147-154 (1974)], and the value δ is calculated by the following formula.
Fedors formula: δ = (ΣΔei / ΣΔvi) 1/2
In the formula, Δei: indicates the evaporation energy (cal / mol) of atoms and atomic groups, and Δvi: indicates the molar volume (cm 3 / mol).
 前記ポリ(メタ)アクリル鎖を構成するモノマー単位に含まれる炭素数は、特に限定されないが、例えば有機無機複合樹脂を弱溶剤に溶かして塗料とするに際しては、前記モノマー単位の側鎖の炭素数が平均で3~7の範囲にあることが好ましく、3.3~6.7の範囲にあることがより好ましく、3.5~6.2の範囲にあることがさらに好ましい。前記側鎖の炭素数とは、例えば(メタ)アクリル酸エステルモノマーの場合、エステル部分の炭素数であり、それ以外のモノマーの場合、重合体の主鎖を形成する炭素-炭素不飽和結合を除く部位の炭素数である。具体的に述べると、メタクリル酸メチルの側鎖の炭素数は1、メタクリル酸ブチルの側鎖の炭素数は4、メタクリル酸シクロヘキシルは6、メタクリル酸2-ヒロドキシエチルの側鎖の炭素数は2、3-メタクリロイルオキシプロピルトリメトキシシランの側鎖の炭素数は6、スチレンの側鎖の炭素数は6である。メタクリル酸ブチルやメタクリル酸シクロヘキシル等の、主鎖周りの立体障害が大きいモノマーを多く使用すると、ポリオルガノシロキサンとの相溶性が低下するため一般にはポリオルガノシロキサン鎖とポリ(メタ)アクリル鎖との複合化が困難になるが、本発明によると、このような炭素数が大きいモノマーを多く使用しても、ポリオルガノシロキサン鎖とポリ(メタ)アクリル鎖が複合化した有機無機複合樹脂を製造することができる。 The number of carbon atoms contained in the monomer unit constituting the poly (meth) acrylic chain is not particularly limited, but for example, when an organic-inorganic composite resin is dissolved in a weak solvent to form a coating material, the number of carbon atoms in the side chain of the monomer unit is limited. Is preferably in the range of 3 to 7, more preferably in the range of 3.3 to 6.7, and even more preferably in the range of 3.5 to 6.2. The carbon number of the side chain is, for example, the carbon number of the ester portion in the case of a (meth) acrylic acid ester monomer, and in the case of other monomers, the carbon-carbon unsaturated bond forming the main chain of the polymer is formed. It is the carbon number of the part to be excluded. Specifically, the side chain of methyl methacrylate has a carbon number of 1, the side chain of butyl methacrylate has a carbon number of 4, cyclohexyl methacrylate has a carbon number of 6, and the side chain of 2-hirodoxyethyl methacrylate has a carbon number of 2. The side chain of 3-methacryloyloxypropyltrimethoxysilane has 6 carbon atoms, and the styrene side chain has 6 carbon atoms. If a large amount of monomers with large steric damage around the main chain, such as butyl methacrylate and cyclohexyl methacrylate, are used, the compatibility with polyorganosiloxane decreases, so in general, polyorganosiloxane chains and poly (meth) acrylic chains are used. Although compounding becomes difficult, according to the present invention, an organic-inorganic composite resin in which a polyorganosiloxane chain and a poly (meth) acrylic chain are compounded can be produced even if a large amount of such a monomer having a large carbon number is used. be able to.
 以上説明した(メタ)アクリル酸エステルモノマーを含むラジカル重合性モノマー成分を、前記ポリオルガノシロキサンと混合して、ラジカル重合を行う。ラジカル重合の手法は常法によることができ、塊状ラジカル重合法、溶液ラジカル重合法、非水分散ラジカル重合法など、公知の重合方法を使用することができる。 The radically polymerizable monomer component containing the (meth) acrylic acid ester monomer described above is mixed with the polyorganosiloxane to carry out radical polymerization. The method of radical polymerization can be a conventional method, and known polymerization methods such as a massive radical polymerization method, a solution radical polymerization method, and a non-aqueous dispersion radical polymerization method can be used.
 ラジカル重合は、ラジカル重合開始剤の存在下で実施する。該ラジカル重合開始剤としては特に限定されないが、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルパーオキシカーボネート等が挙げられる。これらは1種のみを用いてもよいし、2種以上を併用してもよい。 Radical polymerization is carried out in the presence of a radical polymerization initiator. The radical polymerization initiator is not particularly limited, and is, for example, 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,2'-azobis). 2-Methylbutylonitrile), tert-butylperoxypivalate, tert-butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroperoxide, diisopropyl Examples thereof include peroxycarbonate. Only one of these may be used, or two or more thereof may be used in combination.
 ラジカル重合開始剤の使用量は特に限定されないが、該使用量を調節することによって、製造される有機無機複合樹脂の分子量を制御することができ、また、ラジカル重合時のゲル化を抑制することができる。具体的には、ラジカル重合開始剤の使用量は、例えば、ラジカル重合性モノマー成分100重量部に対して、0.1~10重量部であってよく、0.5~7重量部が好ましい。 The amount of the radical polymerization initiator used is not particularly limited, but the molecular weight of the produced organic-inorganic composite resin can be controlled by adjusting the amount used, and gelation during radical polymerization can be suppressed. Can be done. Specifically, the amount of the radical polymerization initiator used may be, for example, 0.1 to 10 parts by weight, preferably 0.5 to 7 parts by weight, based on 100 parts by weight of the radically polymerizable monomer component.
 前記ラジカル重合は、好ましくは、前記加水分解・脱水縮合反応によって得たポリオルガノシロキサンを含む系に、ラジカル重合性モノマー成分とラジカル重合開始剤を添加することによって実施することができる。すなわち、製造されたポリオルガノシロキサンを反応容器から取り出して別の反応容器に移す必要がなく、1つの反応容器内で加水分解・脱水縮合反応とラジカル重合を連続的に実施することができる。本発明の製造方法には、このような簡易な手法によって、ゲル化を抑制しつつ有機無機複合樹脂を製造できるプロセス上の利点がある。 The radical polymerization can be preferably carried out by adding a radically polymerizable monomer component and a radical polymerization initiator to the system containing the polyorganosiloxane obtained by the hydrolysis / dehydration condensation reaction. That is, it is not necessary to take out the produced polyorganosiloxane from the reaction vessel and transfer it to another reaction vessel, and the hydrolysis / dehydration condensation reaction and radical polymerization can be continuously carried out in one reaction vessel. The production method of the present invention has a process advantage that an organic-inorganic composite resin can be produced while suppressing gelation by such a simple method.
 前記ラジカル重合は、β-ジカルボニル化合物の存在下で実施してもよい。β-ジカルボニル化合物とは、2個のカルボニル基が1個の炭素原子を挟んで結合している構造を有する化合物のことをいう。β-ジカルボニル化合物を重合系に存在させることで、ラジカル重合時に、ポリオルガノシロキサンが有するシラノール基の脱水縮合反応が進行するのを抑制できる。これによって、製造される有機無機複合樹脂に、シラノール基を保持させることが容易になる。β-ジカルボニル化合物としては特に限定されないが、例えば、アセチルアセトン、ジメドン、シクロヘキサン-1,3-ジオン、アセト酢酸メチル、アセト酢酸エチル、マロン酸ジメチル、マロン酸ジエチル、メルドラム酸等が挙げられる。β-ジカルボニル化合物の使用量は上記効果を達成できるように設定すればよいが、例えば、ポリオルガノシロキサン100重量部に対して0.01~10重量部であってよく、0.1~5重量部程度であってもよい。 The radical polymerization may be carried out in the presence of a β-dicarbonyl compound. The β-dicarbonyl compound is a compound having a structure in which two carbonyl groups are bonded with one carbon atom sandwiched between them. By allowing the β-dicarbonyl compound to exist in the polymerization system, it is possible to suppress the progress of the dehydration condensation reaction of the silanol group of the polyorganosiloxane during radical polymerization. This makes it easy for the produced organic-inorganic composite resin to retain a silanol group. The β-dicarbonyl compound is not particularly limited, and examples thereof include acetylacetone, dimedone, cyclohexane-1,3-dione, methyl acetoacetate, ethyl acetoacetate, dimethyl malonate, diethyl malonate, and meldrum's acid. The amount of the β-dicarbonyl compound used may be set so as to achieve the above effect. For example, it may be 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyorganosiloxane, and 0.1 to 5 parts by weight. It may be about a part by weight.
 ラジカル重合時の重合温度は常法によることができる。しかし、加水分解及び脱水縮合反応によってシラノール基を含むポリオルガノシロキサンが製造された後、反応系の温度が低下すると、シラノール基間の脱水縮合反応が進行しやすくなり、製造される有機無機複合樹脂の分子量が変動したり、ラジカル重合中にゲル化が進行しやすくなる場合がある。そのため、分子量の変動やゲル化の進行を抑制する観点より、前記加水分解及び脱水縮合反応から、前記ラジカル重合の終了までを、反応系の温度が実質的に低下しないように温度制御を行うことが好ましい。ここで、反応系の温度が実質的に低下しないとは、ラジカル重合時の温度を、加水分解及び脱水縮合反応時の温度と実質的に同一に設定するか、あるいは、加水分解及び脱水縮合反応時の温度よりも高く設定することを意味する。また、「実質的に低下しない」との用語には、分子量の変動やゲル化の進行を抑制する観点から実質的な問題にならない範囲で反応系の温度がわずかに低下する場合も含まれ、具体的には5℃未満、好ましくは3℃未満の範囲で低下する場合も含まれる。 The polymerization temperature during radical polymerization can be determined by a conventional method. However, when the temperature of the reaction system decreases after the polyorganosiloxane containing silanol groups is produced by hydrolysis and dehydration condensation reaction, the dehydration condensation reaction between silanol groups tends to proceed, and the produced organic-inorganic composite resin The molecular weight of the siloxane may fluctuate, and gelation may easily proceed during radical polymerization. Therefore, from the viewpoint of suppressing fluctuations in molecular weight and progress of gelation, temperature control is performed from the hydrolysis and dehydration condensation reaction to the end of the radical polymerization so that the temperature of the reaction system does not substantially decrease. Is preferable. Here, when the temperature of the reaction system does not substantially decrease, the temperature at the time of radical polymerization is set to be substantially the same as the temperature at the time of hydrolysis and dehydration condensation reaction, or the temperature at the time of hydrolysis and dehydration condensation reaction is substantially the same. It means setting it higher than the hour temperature. In addition, the term "substantially does not decrease" includes the case where the temperature of the reaction system decreases slightly within a range that does not cause a substantial problem from the viewpoint of suppressing fluctuations in molecular weight and progress of gelation. Specifically, it also includes a case where the temperature decreases in the range of less than 5 ° C., preferably less than 3 ° C.
 また、前記加水分解及び脱水縮合反応、並びに、前記ラジカル重合は、酸素分子を実質的に含まない雰囲気下で実施することが好ましい。これにより、前記低いラジカル反応性を示すラジカル反応性官能基の反応を促進し、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖のグラフト率を向上させ、塗膜の透明性又は光沢が改善することができる。 Further, it is preferable that the hydrolysis and dehydration condensation reaction and the radical polymerization are carried out in an atmosphere substantially free of oxygen molecules. As a result, the reaction of the radically reactive functional group exhibiting low radical reactivity is promoted, the graft ratio of the poly (meth) acrylic chain and the polyorganosiloxane chain is improved, and the transparency or gloss of the coating film is improved. Can be done.
 以上のラジカル重合によって、ポリ(メタ)アクリル鎖が形成されると共に、該ポリ(メタ)アクリル鎖の末端に、前記低いラジカル反応性を示すラジカル反応性官能基が反応してポリオルガノシロキサンが結合することで、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖を含む有機無機複合樹脂が製造される。 By the above radical polymerization, a poly (meth) acrylic chain is formed, and the radical reactive functional group exhibiting low radical reactivity reacts with the terminal of the poly (meth) acrylic chain to bond polyorganosiloxane. By doing so, an organic-inorganic composite resin containing a poly (meth) acrylic chain and a polyorganosiloxane chain is produced.
 好ましい実施形態によると、製造される有機無機複合樹脂に含まれるポリオルガノシロキサン鎖は、反応性ケイ素基(アルコキシシリル基及び/又はシラノール基)を有することができる。この反応性ケイ素によって、有機無機複合樹脂は反応性ケイ素基の加水分解・脱水反応を利用した硬化性を示すことができる。 According to a preferred embodiment, the polyorganosiloxane chain contained in the produced organic-inorganic composite resin can have a reactive silicon group (alkoxysilyl group and / or silanol group). With this reactive silicon, the organic-inorganic composite resin can exhibit curability utilizing the hydrolysis / dehydration reaction of the reactive silicon group.
 この場合、反応性ケイ素の安定性を確保するため、製造された有機無機複合樹脂に脱水剤を混合することが好ましい。これによって、ポリオルガノシロキサン鎖に反応性ケイ素基を有する有機無機複合樹脂の貯蔵安定性を向上させることができる。脱水剤としては、公知のものを使用することができ、特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン、オルソ蟻酸メチル、オルソ蟻酸エチル、オルソ酢酸メチル、又はオルソ酢酸エチルが好ましい。これらのうち1種のみを使用してもよいし、複数種を使用してもよい。 In this case, in order to ensure the stability of the reactive silicon, it is preferable to mix the dehydrating agent with the produced organic-inorganic composite resin. As a result, the storage stability of the organic-inorganic composite resin having a reactive silicon group in the polyorganosiloxane chain can be improved. As the dehydrating agent, known ones can be used and are not particularly limited, and for example, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane. , Methyl orthoate, ethyl orthoate, methyl orthoacetate, or ethyl orthoacetate is preferred. Only one of these may be used, or a plurality of these may be used.
 脱水剤の使用量は特に限定されず、脱水前の有機無機複合樹脂に含まれる水分量と、脱水後の目的の含水量を勘案して当業者が適宜決定できる。一例として、有機無機複合樹脂100重量部に対して0.01~20重量部程度であり、0.1~10重量部程度であってもよい。 The amount of the dehydrating agent used is not particularly limited, and can be appropriately determined by those skilled in the art in consideration of the amount of water contained in the organic-inorganic composite resin before dehydration and the target water content after dehydration. As an example, it is about 0.01 to 20 parts by weight, and may be about 0.1 to 10 parts by weight with respect to 100 parts by weight of the organic-inorganic composite resin.
 (有機無機複合樹脂)
 次に、本発明の実施形態に係る有機無機複合樹脂について説明する。
 本発明の有機無機複合樹脂は、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖が結合してなるものであり、両鎖の結合は、前記ポリ(メタ)アクリル鎖を構成するモノマー単位中の炭素原子と、ポリオルガノシロキサン鎖中のケイ素原子が、エステル基やエーテル基、アミド基、イミド基といったヘテロ原子含有基を介さず、炭化水素基のみを介して連結することで達成されている。なお、前記ポリ(メタ)アクリル鎖を構成するモノマー単位中の炭素原子とは、前記ポリ(メタ)アクリル鎖の主鎖を形成する炭素原子を指すものであり、前記ポリ(メタ)アクリル鎖の側鎖に含まれる炭素原子を指すものではない。
(Organic-inorganic composite resin)
Next, the organic-inorganic composite resin according to the embodiment of the present invention will be described.
The organic-inorganic composite resin of the present invention is formed by bonding a poly (meth) acrylic chain and a polyorganosiloxane chain, and the bond between the two chains is carbon in the monomer unit constituting the poly (meth) acrylic chain. This is achieved by linking the atom and the silicon atom in the polyorganosiloxane chain not via a heteroatomic group such as an ester group, an ether group, an amide group, or an imide group, but via a hydrocarbon group only. The carbon atom in the monomer unit constituting the poly (meth) acrylic chain refers to a carbon atom forming the main chain of the poly (meth) acrylic chain, and refers to the poly (meth) acrylic chain. It does not refer to the carbon atom contained in the side chain.
 両鎖の結合部分は次式のように表される。
-C-R-Si-
式中、Cは、ポリ(メタ)アクリル鎖を構成するモノマー単位に含まれる炭素原子を表す。当該炭素原子は、ポリ(メタ)アクリル鎖を製造するための重合前には、モノマー中の炭素-炭素二重結合を構成していた炭素原子である。Rは、2価の炭化水素基を表す。Siは、ポリオルガノシロキサン鎖に含まれるケイ素原子を表す。このように、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖は、エステル基やエーテル基等のヘテロ原子含有基によって結合しているものではなく、炭化水素基のみを介して結合している。
The connecting portion of both chains is expressed by the following equation.
-CR-Si-
In the formula, C represents a carbon atom contained in the monomer unit constituting the poly (meth) acrylic chain. The carbon atom is a carbon atom that constitutes a carbon-carbon double bond in the monomer before polymerization for producing a poly (meth) acrylic chain. R represents a divalent hydrocarbon group. Si represents a silicon atom contained in a polyorganosiloxane chain. As described above, the poly (meth) acrylic chain and the polyorganosiloxane chain are not bonded by a heteroatom-containing group such as an ester group or an ether group, but are bonded only via a hydrocarbon group.
 前記炭化水素基は、前記ポリ(メタ)アクリル鎖を構成するモノマー単位中の炭素原子と、ポリオルガノシロキサン鎖中のケイ素原子を結合する2価の結合基である。その炭素数は特に限定されないが、2~20が好ましく、2~8がより好ましく、2~4がさらに好ましく、2~3がより更に好ましく、2が特に好ましい。当該炭化水素基は、脂肪族系炭化水素基、芳香族炭化水素基のいずれであってもよい。直鎖状であってもよく、分岐鎖状であってもよい。具体的には、エチレン基(1,2-エチレン基、1,1-エチレン基を含む)、プロピレン基(1,3-プロピレン基、2,3-プロピレン基等)、又はp-フェニレンエチレン基(p-フェニレン-1,2-エチレン基、p-フェニレン-1,1-エチレン基を含む)が挙げられる。当該炭化水素基は、前述したアルコキシシラン(a-1)が有するラジカル反応性二重結合含有基に由来するものであることが好ましく、例えば、アルコキシシラン(a-1)としてビニル基を有するアルコキシシランを使用した場合には、前記炭化水素基として、エチレン基が形成される。前記炭化水素基としては、少なくともエチレン基を含むことが好ましい。尚、ここで言うエチレン基は、プロピレン基やp-フェニレンエチレン基に含まれるエチレン基を指すものではない。 The hydrocarbon group is a divalent bonding group that bonds a carbon atom in the monomer unit constituting the poly (meth) acrylic chain and a silicon atom in the polyorganosiloxane chain. The number of carbon atoms is not particularly limited, but is preferably 2 to 20, more preferably 2 to 8, further preferably 2 to 4, further preferably 2 to 3, and particularly preferably 2. The hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group. It may be linear or branched. Specifically, an ethylene group (including 1,2-ethylene group and 1,1-ethylene group), a propylene group (1,3-propylene group, 2,3-propylene group, etc.), or a p-phenylene ethylene group. (Including p-phenylene-1,2-ethylene group and p-phenylene-1,1-ethylene group). The hydrocarbon group is preferably derived from the radically reactive double bond-containing group contained in the above-mentioned alkoxysilane (a-1), for example, an alkoxy having a vinyl group as the alkoxysilane (a-1). When silane is used, an ethylene group is formed as the hydrocarbon group. The hydrocarbon group preferably contains at least an ethylene group. The ethylene group referred to here does not mean an ethylene group contained in a propylene group or a p-phenylene ethylene group.
 前記ポリ(メタ)アクリル鎖とは、(メタ)アクリル酸エステルモノマーを含むラジカル重合性モノマー成分の単独重合体又は共重合体を指す。当該ポリ(メタ)アクリル鎖を形成するモノマーの種類及び割合の詳細は上述のとおりである。 The poly (meth) acrylic chain refers to a homopolymer or copolymer of a radically polymerizable monomer component containing a (meth) acrylic acid ester monomer. Details of the types and proportions of the monomers forming the poly (meth) acrylic chain are as described above.
 前記ポリオルガノシロキサン鎖とは、モノオルガノトリアルコキシシラン70~100モル%及びジオルガノジアルコキシシラン30~0モル%を含有するアルコキシシラン成分の加水分解縮合物を指す。前記モノオルガノトリアルコキシシラン及び前記ジオルガノジアルコキシシランの定義は上述のとおりである。モノオルガノトリアルコキシシランは必須成分であるが、ジオルガノジアルコキシシランは使用してもよいし、使用しなくてもよい。モノオルガノトリアルコキシシラン及びジオルガノジアルコキシシランの合計のうちジオルガノジアルコキシシランが占める割合は30重量%以下であるが、20重量%以上が好ましく、10重量%以下がより好ましく、5重量%以下がさらに好ましく、1重量%以下がより更に好ましい。 The polyorganosiloxane chain refers to a hydrolyzed condensate of an alkoxysilane component containing 70 to 100 mol% of monoorganotrialkoxysilane and 30 to 0 mol% of diorganodialkoxysilane. The definitions of the monoorganotrialkoxysilane and the diorganodialkoxysilane are as described above. The monoorganotrialkoxysilane is an essential component, but the diorganodialkoxysilane may or may not be used. The proportion of diorganodialkoxysilane in the total of monoorganotrialkoxysilane and diorganodialkoxysilane is 30% by weight or less, preferably 20% by weight or more, more preferably 10% by weight or less, and 5% by weight. The following is even more preferable, and 1% by weight or less is even more preferable.
 本発明の有機無機複合樹脂におけるポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖の結合を実現するために、モノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシランとして、ラジカル反応性二重結合含有基を有するモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシラン(a-1)が使用される。また、該(a-1)と共に、ラジカル反応性二重結合含有基を有しないモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシラン(a-2)を併用することが好ましい。該(a-1)及び(a-2)の詳細については上述のとおりである。 In order to realize the bond between the poly (meth) acrylic chain and the polyorganosiloxane chain in the organic-inorganic composite resin of the present invention, a radically reactive double bond-containing group is used as a monoorganotrialkoxysilane and / or a diorganodialkoxysilane. Monoorganotrialkoxysilanes and / or diorganodialkoxysilanes (a-1) having the above are used. Further, it is preferable to use monoorganotrialkoxysilane and / or diorganodialkoxysilane (a-2) having no radical-reactive double bond-containing group together with (a-1). Details of the (a-1) and (a-2) are as described above.
 好適な実施形態によるポリオルガノシロキサン鎖は、上述のとおり、反応性ケイ素基を有するものである。反応性ケイ素基が存在することで、本発明の有機無機複合樹脂は加水分解・脱水縮合反応による硬化性を示すことができる。 The polyorganosiloxane chain according to the preferred embodiment has a reactive silicon group as described above. Due to the presence of the reactive silicon group, the organic-inorganic composite resin of the present invention can exhibit curability by hydrolysis / dehydration condensation reaction.
 前記ポリオルガノシロキサン鎖に反応性ケイ素基を持たせるには、ポリオルガノシロキサン鎖のシロキサン結合形成率(縮合率ともいう)が100%未満であることが必要である。ここで、シロキサン結合形成率とは、原料のアルコキシシラン成分に含まれるケイ素原子上のアルコキシ基の、シロキサン結合への変換率を示す数値であり、全てのアルコキシ基がシロキサン結合に変換した場合は100%となる。 In order for the polyorganosiloxane chain to have a reactive silicon group, the siloxane bond formation rate (also referred to as the condensation rate) of the polyorganosiloxane chain needs to be less than 100%. Here, the siloxane bond formation rate is a numerical value indicating the conversion rate of the alkoxy group on the silicon atom contained in the alkoxysilane component of the raw material into a siloxane bond, and when all the alkoxy groups are converted into siloxane bonds, It becomes 100%.
 前記シロキサン結合形成率は、モノオルガノトリアルコキシシランに由来する構成単位を、シロキサン結合を1個形成している構成単位T1、シロキサン結合を2個形成している構成単位T2、及び、シロキサン結合を3個形成している構成単位T3に分類し、29Si-NMRにより測定されたT1、T2、T3の合計モル数に対するT1、T2、T3の各モル数の割合(%)を、それぞれ、X、Y、Zとした時、下記式によって算出される値である。なお、X、Y、Zの合計は100である。
 シロキサン結合形成率 = (1×X+2×Y+3×Z)/3
The siloxane bond formation rate is a structural unit derived from monoorganotrialkoxysilane, a structural unit T1 forming one siloxane bond, a structural unit T2 forming two siloxane bonds, and a siloxane bond. Classified into three constituent units T3, the ratio (%) of the number of moles of T1, T2, and T3 to the total number of moles of T1, T2, and T3 measured by 29 Si-NMR is X, respectively. , Y, Z, it is a value calculated by the following formula. The total of X, Y, and Z is 100.
Siloxane bond formation rate = (1 x X + 2 x Y + 3 x Z) / 3
 前記シロキサン結合形成率が100%に近い値であると、ほぼ全てのアルコキシ基がシロキサン結合に変換されていることになるため、ポリオルガノシロキサン鎖が持つ反応性ケイ素基の数が少なくなる。逆にシロキサン結合形成率が低すぎると、十分な分子量のポリオルガノシロキサン鎖が形成されておらず、有機無機複合樹脂がポリオルガノシロキサン鎖に由来する物性を発現しにくくなる。以上の観点から、本発明の有機無機複合樹脂は、シロキサン結合形成率が20%以上80%以下であることが好ましい。より好ましくは30%以上、さらに好ましくは40%以上、より更に好ましくは50%以上、特に好ましくは60%以上であり、最も好ましくは65%以上である。また、ポリオルガノシロキサン鎖が有する反応性ケイ素基の反応性の観点から、前記シロキサン結合形成率は、より好ましくは75%以下、さらに好ましくは72%以下である。 When the siloxane bond formation rate is close to 100%, almost all the alkoxy groups are converted into siloxane bonds, so that the number of reactive silicon groups in the polyorganosiloxane chain is reduced. On the other hand, if the siloxane bond formation rate is too low, a polyorganosiloxane chain having a sufficient molecular weight is not formed, and it becomes difficult for the organic-inorganic composite resin to exhibit the physical properties derived from the polyorganosiloxane chain. From the above viewpoint, the organic-inorganic composite resin of the present invention preferably has a siloxane bond formation rate of 20% or more and 80% or less. It is more preferably 30% or more, further preferably 40% or more, still more preferably 50% or more, particularly preferably 60% or more, and most preferably 65% or more. Further, from the viewpoint of the reactivity of the reactive silicon group of the polyorganosiloxane chain, the siloxane bond formation rate is more preferably 75% or less, still more preferably 72% or less.
 なお、前記シロキサン結合形成率は、ポリオルガノシロキサン鎖を形成するための加水分解・脱水縮合反応時に使用する水の使用量や触媒の種類・量を調節したり、シラノール基を安定させる成分を反応系に共存させたりすることで調節できる。 The siloxane bond formation rate adjusts the amount of water used during the hydrolysis / dehydration condensation reaction for forming a polyorganosiloxane chain, the type / amount of catalyst, and the reaction of components that stabilize silanol groups. It can be adjusted by coexisting with the system.
 本発明の有機無機複合樹脂において、ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖の比率は、各鎖に基づいた物性を両立できるように設定できる。ポリオルガノシロキサン鎖の割合は、この無機鎖に基づいた物性の発現と、有機無機複合樹脂を塗料に用いる場合の顔料分散性や、塗膜の透明性や光沢、機械的物性を勘案して決定することが好ましい。具体的には、前記有機無機複合樹脂全体に対する前記ポリオルガノシロキサン鎖の重量割合は20重量%以上80重量%以下であることが好ましい。より好ましくは、30重量%以上であり、さらに好ましくは40重量%以上である。また、より好ましくは70重量%以下であり、さらに好ましくは60重量%以下であり、特に好ましくは50重量%以下である。 In the organic-inorganic composite resin of the present invention, the ratio of the poly (meth) acrylic chain to the polyorganosiloxane chain can be set so that the physical properties based on each chain can be compatible. The ratio of the polyorganosiloxane chain is determined in consideration of the expression of physical properties based on this inorganic chain, the pigment dispersibility when the organic-inorganic composite resin is used for the paint, the transparency and gloss of the coating film, and the mechanical properties. It is preferable to do so. Specifically, the weight ratio of the polyorganosiloxane chain to the entire organic-inorganic composite resin is preferably 20% by weight or more and 80% by weight or less. More preferably, it is 30% by weight or more, and even more preferably 40% by weight or more. Further, it is more preferably 70% by weight or less, further preferably 60% by weight or less, and particularly preferably 50% by weight or less.
 本発明の有機無機複合樹脂の重量平均分子量(MW)は、所望の物性に応じて適宜決定できるが、2000~50万の範囲が好ましく、5000~30万の範囲がより好ましい。この範囲では、製造時のゲル化を回避しつつ、有機無機複合樹脂は貯蔵安定性に優れ、透明性又は光沢に優れた塗膜を形成することができる。なお、有機無機複合樹脂の重量平均分子量は、実施例の項に記載した方法によって決定できる。 The weight average molecular weight (MW) of the organic-inorganic composite resin of the present invention can be appropriately determined according to desired physical properties, but is preferably in the range of 2,000 to 500,000, more preferably in the range of 5,000 to 300,000. In this range, the organic-inorganic composite resin can form a coating film having excellent storage stability and excellent transparency or gloss while avoiding gelation during production. The weight average molecular weight of the organic-inorganic composite resin can be determined by the method described in the section of Examples.
 (塗液)
 本発明の有機無機複合樹脂は、塗料用の硬化性樹脂組成物、すなわち塗液の主成分とすることができる。塗液を構成するにあたっては、顔料、可塑剤、分散剤、沈降防止剤、皮張り防止剤、乾燥剤、たれ防止剤、つや消し剤、帯電防止剤、導電剤、難燃剤など、公知の塗料用添加物を適宜配合できる。本発明の有機無機複合樹脂は、あらゆる塗液として使用することが可能であるが、耐候性に優れ、透明性が高いものであることから、顔料を含まないクリア塗膜用塗液、又は、顔料や染料を含んだ着色塗液としても好適に使用できる。
(Coating liquid)
The organic-inorganic composite resin of the present invention can be used as a main component of a curable resin composition for paints, that is, a coating liquid. For known paints such as pigments, plasticizers, dispersants, anti-settling agents, anti-skinning agents, desiccants, anti-dripping agents, matting agents, antistatic agents, conductive agents, flame retardants, etc. Additives can be added as appropriate. The organic-inorganic composite resin of the present invention can be used as any coating liquid, but since it has excellent weather resistance and high transparency, it is a pigment-free coating liquid for clear coatings or a coating liquid for clear coatings. It can also be suitably used as a colored coating liquid containing a pigment or dye.
 本発明の硬化性樹脂組成物または塗液は、硬化剤の存在下で塗膜の硬化反応が促進され、塗膜形成時の作業時間を短縮することができるので、硬化剤を含有するか、または、硬化剤を別のパッケージで含む2液の形態の組成物または塗液であることが好ましい。 The curable resin composition or coating liquid of the present invention contains a curing agent because the curing reaction of the coating film is promoted in the presence of the curing agent and the working time at the time of forming the coating film can be shortened. Alternatively, it is preferably a two-component composition or coating containing the curing agent in a separate package.
 当該硬化剤としては、反応性シリル基の加水分解反応および脱水縮合反応を利用した硬化性樹脂組成物に対して用いる硬化剤として公知の硬化剤を適宜使用することができる。具体的には、硬化剤として、上述した縮合触媒を使用することができ、また、有機錫化合物、チタンキレート化合物、アルミニウムキレート化合物、有機アミン化合物などを使用することができる。 As the curing agent, a curing agent known as a curing agent used for a curable resin composition utilizing a hydrolysis reaction and a dehydration condensation reaction of a reactive silyl group can be appropriately used. Specifically, as the curing agent, the above-mentioned condensation catalyst can be used, and an organic tin compound, a titanium chelate compound, an aluminum chelate compound, an organic amine compound and the like can be used.
 上記有機錫化合物の具体例としては、ジオクチル錫ビス(2-エチルヘキシルマレート)、ジオクチル錫オキサイドまたはジブチル錫オキサイドとシリケートとの縮合物、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジステアレート、ジブチル錫ジアセチルアセトナート、ジブチル錫ビス(エチルマレート)、ジブチル錫ビス(ブチルマレート)、ジブチル錫ビス(2-エチルヘキシルマレート)、ジブチル錫ビス(オレイルマレート)、スタナスオクトエート、ステアリン酸錫、ジ-n-ブチル錫ラウレートオキサイドが挙げられる。また、分子内にS原子を有する有機錫化合物の具体例としては、ジブチル錫ビスイソノニル-3-メルカプトプロピオネート、ジオクチル錫ビスイソノニル-3-メルカプトプロピオネート、オクチルブチル錫ビスイソノニル-3-メルカプトプロピオネート、ジブチル錫ビスイソオクチルチオグルコレート、ジオクチル錫ビスイソオクチルチオグルコレート、オクチルブチル錫ビスイソオクチルチオグルコレート等が挙げられる。 Specific examples of the above organic tin compounds include dioctyl tin bis (2-ethylhexyl malate), dioctyl tin oxide or a condensate of dibutyl tin oxide and silicate, dibutyl tin dioctate, dibutyl tin dilaurate, dibutyl tin distearate, and dibutyl tin diacetyl. Acetonate, dibutyltin bis (ethylmalate), dibutyltin bis (butylmalate), dibutyltin bis (2-ethylhexylmalate), dibutyltin bis (oleylmalate), stanas octoate, tin stearate, di-n- Examples include butyltin laurate oxide. Specific examples of the organotin compound having an S atom in the molecule include dibutyltin bisisononyl-3-mercaptopropionate, dioctyltin bisisononyl-3-mercaptopropionate, and octylbutyltin bisisononyl-3-mercaptopropio. Nate, dibutyltin bisisooctylthioglucolate, dioctyltin bisisooctylthioglucolate, octylbutyltin bisisooctylthioglucolate and the like can be mentioned.
 チタンキレート化合物の具体例としては、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート、リン酸チタン化合物、チタンオクチレングリコレート、チタンエチルアセトアセテート等が挙げられる。 Specific examples of the titanium chelate compound include titanium acetylacetonate, titaniumtetraacetylacetonate, titanium ethylacetate, titanium phosphate compound, titanium octylene glycolate, titanium ethylacetate acetate and the like.
 アルミニウムキレート化合物の具体例としては、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(アセチルアセテート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルキルアセチルアセテートアルミニウムジイソプロピレート等が挙げられる。 Specific examples of the aluminum chelate compound include ethyl acetoacetate aluminum diisopropylate, aluminum tris (acetylacetone), aluminum tris (ethylacetate acetate), aluminum monoacetylacetate bis (ethylacetate acetate), and alkylacetylacetate aluminum diisopropi. The rate etc. can be mentioned.
 有機アミン化合物の具体例としては、トリエチルアミン、トリエチレンジアミン、トリメチルアミン、テトラメチレンジアミン、N-メチルモルホリン、N-エチルモルホリン、N,N’-ジエチル-2-メチルピペラジン、ラウリルアミン、ジメチルラウリルアミン等が挙げられる。 Specific examples of the organic amine compound include triethylamine, triethylenediamine, trimethylamine, tetramethylenediamine, N-methylmorpholine, N-ethylmorpholine, N, N'-diethyl-2-methylpiperazine, laurylamine, dimethyllaurylamine and the like. Can be mentioned.
 硬化剤の使用量は、硬化温度と硬化時間とに応じて適宜調整できるが、例えば、有機無機複合樹脂100重量部に対して0.01重量部以上20重量部以下程度が好ましく、0.1重量部以上10重量部以下程度がより好ましい。 The amount of the curing agent used can be appropriately adjusted according to the curing temperature and the curing time. For example, it is preferably about 0.01 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the organic-inorganic composite resin, and is 0.1. It is more preferably about 10 parts by weight or more by weight.
 本発明の硬化性樹脂組成物は、基材に塗布し、硬化させることで塗膜を形成することができる。塗布や硬化の条件は特に限定されないが、硬化させる際には、熱源を用いて溶剤の蒸発を促進することが好ましい。 The curable resin composition of the present invention can be applied to a substrate and cured to form a coating film. The conditions for coating and curing are not particularly limited, but it is preferable to use a heat source to promote the evaporation of the solvent during curing.
 形成される塗膜の厚みは特に限定されないが、本発明では乾燥後の厚みとして5μm以上100μm以下が好ましい。厚みが5μmより薄くなると、塗膜の耐水性や耐湿性が不十分になる場合がある。厚みが100μmを超えると、塗膜の形成時における硬化収縮によってクラックを生じる場合がある。より好ましくは5μm以上50μm以下、さらに好ましくは10μm以上40μm以下である。 The thickness of the coating film formed is not particularly limited, but in the present invention, the thickness after drying is preferably 5 μm or more and 100 μm or less. If the thickness is thinner than 5 μm, the water resistance and moisture resistance of the coating film may be insufficient. If the thickness exceeds 100 μm, cracks may occur due to curing shrinkage during formation of the coating film. It is more preferably 5 μm or more and 50 μm or less, and further preferably 10 μm or more and 40 μm or less.
 本発明の硬化性樹脂組成物を塗布できる基材としては特に限定されず、例えば、ポリカーボネート(PC)、アクリル、ABS、ABS/PC、ポリエチレンテレフタレート(PET)等の有機基材や、ガラス、アルミニウム、SUS、銅、鉄、石材などの無機基材を使用できる。 The base material to which the curable resin composition of the present invention can be applied is not particularly limited, and for example, an organic base material such as polycarbonate (PC), acrylic, ABS, ABS / PC, polyethylene terephthalate (PET), glass, aluminum, etc. , SUS, copper, iron, stone and other inorganic substrates can be used.
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples.
 実施例および比較例で用いた物質は、以下のとおりである。
 アルコキシシラン成分
Vi(A-171:モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製ビニルトリメトキシシラン、分子量148.2)
Me(OFS-6070:ダウ・東レ株式会社製メチルトリメトキシシラン、分子量136.2)
Ph(Z-6124:ダウ・東レ株式会社製フェニルトリメキシシラン、分子量198.3)
MA(A-174:モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、3-メタクリロイルオキシプロピルトリメトキシシラン、分子量248.4)
Ge(OFS-6040:ダウ・東レ株式会社製、3-グリシジルオキシプロピルトリメトキシシラン、分子量236.3)。
The substances used in Examples and Comparative Examples are as follows.
Alkoxysilane component Vi (A-171: Vinyltrimethoxysilane manufactured by Momentive Performance Materials Japan LLC, molecular weight 148.2)
Me (OFS-6070: Methyltrimethoxysilane manufactured by Dow Toray Co., Ltd., molecular weight 136.2)
Ph (Z-6124: Phenyltrimexisilane manufactured by Dow Toray Co., Ltd., molecular weight 198.3)
MA (A-174: Momentive Performance Materials Japan GK, 3-methacryloyloxypropyltrimethoxysilane, molecular weight 248.4)
Ge (OFS-6040: manufactured by Dow Toray Co., Ltd., 3-glycidyloxypropyltrimethoxysilane, molecular weight 236.3).
 縮合触媒
DBP(城北化学工業株式会社製、ジブチルホスフェート、分子量210.2)。
MgCl(東京化成株式会社製、塩化マグネシウム・6水和物、分子量203.3)。
LiCl(東京化成株式会社製、塩化リチウム、分子量42.4)。
Condensation catalyst DBP (manufactured by Johoku Chemical Industry Co., Ltd., dibutyl phosphate, molecular weight 210.2).
MgCl 2 (manufactured by Tokyo Kasei Co., Ltd., magnesium chloride hexahydrate, molecular weight 203.3).
LiCl (manufactured by Tokyo Kasei Co., Ltd., lithium chloride, molecular weight 42.4).
 (メタ)アクリル樹脂の原料モノマー及びラジカル重合開始剤
MMA(三菱ガス化学株式会社製、メタクリル酸メチル、分子量100.1)
TSMA(A-174:モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、3-メタクリロイルオキシプロピルトリメトキシシラン、分子量248.4)
BA(株式会社日本触媒製、アクリル酸ブチル、分子量128.2)
CHMA(株式会社日本触媒製、メタクリル酸シクロヘキシル、分子量168.0)
BMA(三菱ガス化学株式会社製、メタクリル酸ブチル、分子量142.2)
AA(株式会社日本触媒製、アクリル酸、分子量72.1)
HEMA(株式会社日本触媒製、メタクリル酸2-ヒロドキシエチル、分子量130.1)
St(三協化学株式会社製、スチレン、分子量104.2)
V59(和光純薬工業株式会社製、2,2’-アゾビス(2-メチルブチロニトリル)、分子量192.3)。
(Meta) Acrylic resin raw material monomer and radical polymerization initiator MMA (manufactured by Mitsubishi Gas Chemical Company, Inc., methyl methacrylate, molecular weight 100.1)
TSMA (A-174: Momentive Performance Materials Japan LLC, 3-methacryloyloxypropyltrimethoxysilane, molecular weight 248.4)
BA (manufactured by Nippon Shokubai Co., Ltd., butyl acrylate, molecular weight 128.2)
CHMA (manufactured by Nippon Shokubai Co., Ltd., cyclohexyl methacrylate, molecular weight 168.0)
BMA (manufactured by Mitsubishi Gas Chemical Company, Inc., butyl methacrylate, molecular weight 142.2)
AA (manufactured by Nippon Shokubai Co., Ltd., acrylic acid, molecular weight 72.1)
HEMA (manufactured by Nippon Shokubai Co., Ltd., 2-hirodoxyethyl methacrylate, molecular weight 130.1)
St (manufactured by Sankyo Chemical Co., Ltd., styrene, molecular weight 104.2)
V59 (manufactured by Wako Pure Chemical Industries, Ltd., 2,2'-azobis (2-methylbutyronitrile), molecular weight 192.3).
 脱水剤
MOA(東京化成工業株式会社製、オルトギ酸トリメチル、分子量106.1)。
Dehydrating agent MOA (manufactured by Tokyo Chemical Industry Co., Ltd., trimethyl orthoformate, molecular weight 106.1).
 溶剤
S100(三和化学株式会社製、鉱油、クメン、キシレン、トリメチルベンゼン混合物)
LAWS(シェルケミカルズジャパン株式会社製、ミネラルスピリット、キシレン、トリメチルベンゼン、ノナン混合物)
PMA(三協化学株式会社製、プロピレングリコールモノメチルエーテルアセテート、分子量132.2)
Solvent S100 (manufactured by Sanwa Chemical Co., Ltd., mineral oil, cumene, xylene, trimethylbenzene mixture)
LAWS (Mineral Spirit, Xylene, Trimethylbenzene, Nonane Mixture, manufactured by Shell Chemicals Japan Co., Ltd.)
PMA (manufactured by Sankyo Chemical Co., Ltd., propylene glycol monomethyl ether acetate, molecular weight 132.2)
 安定剤
AcAc(株式会社ダイセル製、アセチルアセトン、分子量100.1)
 硬化触媒
U-20(日東化成株式会社製、ジブチル錫ジラウレート、631.6)
Stabilizer AcAc (manufactured by Daicel Corporation, acetylacetone, molecular weight 100.1)
Curing catalyst U-20 (manufactured by Nitto Kasei Co., Ltd., dibutyltin dilaurate, 631.6)
 (ポリシロキサン反応時間)
 室温下においてアルコキシシラン成分、縮合触媒、及び、水を混合した後、該混合物を、90℃に昇温したオイルバスで加熱し、内温が70℃に達した時を反応の開始点とし、その後90℃のオイルバスにて加熱した時間を反応時間とし、6時間反応させた。
(Polysiloxane reaction time)
After mixing the alkoxysilane component, the condensation catalyst, and water at room temperature, the mixture is heated in an oil bath heated to 90 ° C., and the reaction start point is when the internal temperature reaches 70 ° C. Then, the reaction time was defined as the time of heating in an oil bath at 90 ° C., and the reaction was carried out for 6 hours.
 (ポリシロキサン合成における脱アルコール)
 上記の通り6時間反応させて得られた樹脂溶液は、ポリシロキサン、反応の過程で発生したアルコール、及び、僅かに残った水から構成されている。ポリシロキサン以外の揮発成分を蒸留により除去するため、120℃に加熱したオイルバスで前記樹脂溶液を加熱しながら、窒素にて微加圧し、回収液量を計量しながら設定の内容液量になるまで蒸留を続けた。
(Dealcohol in polysiloxane synthesis)
As described above, the resin solution obtained by reacting for 6 hours is composed of polysiloxane, alcohol generated in the reaction process, and a small amount of residual water. In order to remove volatile components other than polysiloxane by distillation, the resin solution is heated with an oil bath heated to 120 ° C. and slightly pressurized with nitrogen to obtain the set content liquid amount while measuring the recovered liquid amount. Distillation continued until.
 蒸留により除去する必要があるアルコール量を、下記式に従い算出した。
(縮合触媒がDBP又はMgClの場合) 添加した水の量×32/18×2×85%
(縮合触媒がLiClの場合) 添加した水の量×32/18×2×100%
The amount of alcohol that needs to be removed by distillation was calculated according to the following formula.
(When the condensation catalyst is DBP or MgCl 2 ) Amount of added water x 32/18 x 2 x 85%
(When the condensation catalyst is LiCl) Amount of added water x 32/18 x 2 x 100%
 発生可能な全アルコール重量は、反応に用いたアルコキシシラン成分が有するアルコキシシリル基1モルに対して1モルのアルコールが発生するものとして算出した。例えば、トリメトキシシシリル基1モルはメトキシシリル基を3モル有し、メタノールを3モル発生させ、メチルジメトキシシリル基1モルはメトキシシリル基を2モル有し、メタノールを2モル発生させるものとする。また、水1モルによってアルコキシシリル基1モルから1モルのシラノール基と1モルのアルコールが発生する。更に発生した1モルのシラノール基が1モルのアルコキシシリル基と反応して1モルのアルコールを発生する。すなわち、水1モルからアルコールが2モル発生することになる。縮合触媒によってはこの反応の進行具合に違いがあり、LiClでは100%進行するのに対し、DBP,MgClでは85%程度しか進行しないため、この点を考慮して、上記のとおり計算式に補正をかけた。 The total weight of alcohol that can be generated was calculated assuming that 1 mol of alcohol is generated with respect to 1 mol of the alkoxysilyl group contained in the alkoxysilane component used in the reaction. For example, 1 mol of a trimethoxysilicate group has 3 mol of a methoxysilyl group and generates 3 mol of methanol, and 1 mol of a methyldimethoxysilyl group has 2 mol of a methoxysilyl group and generates 2 mol of methanol. To do. In addition, 1 mol of water produces 1 mol to 1 mol of silanol groups and 1 mol of alcohol of an alkoxysilyl group. Further, 1 mol of silanol group generated reacts with 1 mol of alkoxysilyl group to generate 1 mol of alcohol. That is, 2 mol of alcohol is generated from 1 mol of water. There is a difference in the progress of this reaction depending on the condensation catalyst, and LiCl progresses 100%, whereas DBP and MgCl 2 progress only about 85%. Therefore, in consideration of this point, the calculation formula is as described above. Corrected.
 (実施例1のポリオルガノシロキサンの合成)
 冷却管を設置した300ml容積の4口フラスコにビニルトリメトキシシラン4.7g、メチルトリメトキシシラン79.7g、ジブチルホスフェート0.0042g、純水12.7gを入れ、90℃に設定したオイルバスで加熱し、6時間反応させた。加水分解によって生じたメタノールがフラスコ内で還流し内温は約67℃となった。その後、内温が実質的に低下しないように気を付けながら加温しながら蒸留装置に組み替え、発生したメタノール、及び残存水を除去し、59.2gのポリシロキサン溶液を得た。尚、蒸留装置に組み替える際は、窒素同入管の設置、及び窒素加圧によって出来るだけ酸素の混入を避け、蒸留中も窒素バブリング条件下で実施し、蒸留後、及びその後のラジカル重合時には実質的に酸素がほとんど存在しない条件を維持した。
(Synthesis of Polyorganosiloxane of Example 1)
Put 4.7 g of vinyltrimethoxysilane, 79.7 g of methyltrimethoxysilane, 0.0042 g of dibutyl phosphate, and 12.7 g of pure water in a 300 ml volume 4-necked flask equipped with a cooling tube, and use an oil bath set at 90 ° C. It was heated and reacted for 6 hours. Methanol produced by hydrolysis was refluxed in the flask, and the internal temperature became about 67 ° C. Then, the distillation apparatus was recombined while heating while being careful not to substantially lower the internal temperature, and the generated methanol and residual water were removed to obtain 59.2 g of a polysiloxane solution. When recombining with a distillation apparatus, avoid mixing oxygen as much as possible by installing a nitrogen immigration pipe and pressurizing nitrogen, carry out under nitrogen bubbling conditions during distillation, and substantially during radical polymerization after distillation and thereafter. The condition that almost no oxygen was present was maintained.
 実施例2~39及び比較例1~5については、表1の記載に従ってアルコキシシラン成分、縮合触媒、及び水を使用した以外は、実施例1と同様にしてポリシロキサン溶液を得た。なお、表1中、各成分の配合量の単位はグラム(g)である。 For Examples 2 to 39 and Comparative Examples 1 to 5, a polysiloxane solution was obtained in the same manner as in Example 1 except that the alkoxysilane component, the condensation catalyst, and water were used according to the description in Table 1. In Table 1, the unit of the blending amount of each component is gram (g).
 (ラジカル反応性官能基等量)
 ラジカル反応性官能基等量は、次の式により算出した。
 (ラジカル反応性官能基を有するアルコキシシランの分子量-加水分解・脱水縮合反応によりアルコキシシランから脱離する構造の分子量)÷(使用したアルコキシシラン成分全量に対する、ラジカル反応性官能基を有するアルコキシシランのモル%)
(Equivalent amount of radical reactive functional groups)
The radical reactive functional group equivalent was calculated by the following formula.
(Molecular weight of alkoxysilane having radical-reactive functional group-Molecular weight of structure desorbed from alkoxysilane by hydrolysis / dehydration condensation reaction) ÷ (Akoxysilane having radical-reactive functional group with respect to the total amount of alkoxysilane component used) Mol%)
 一例として実施例1についてラジカル反応性官能基等量の計算方法を以下に説明する。「ラジカル反応性官能基を有するアルコキシシランの分子量-加水分解・脱水縮合反応によりアルコキシシランから脱離する構造の分子量」は、148.23-69=79.23である。使用したビニルトリメトキシシランのモル数は4.7÷148.23=0.0317、使用したメチルトリメトキシシランの仕込みモル数は79.7÷136.22=0.585である。以上より、ラジカル反応性官能基等量は、79.23÷(0.0317÷(0.0317+0.585))≒1542と算出される。 As an example, a method for calculating the equivalent amount of radical-reactive functional groups will be described below for Example 1. "Molecular weight of alkoxysilane having a radical reactive functional group-molecular weight of structure desorbed from alkoxysilane by hydrolysis / dehydration condensation reaction" is 148.23-69 = 79.23. The number of moles of vinyltrimethoxysilane used is 4.7 ÷ 148.23 = 0.0317, and the number of moles of methyltrimethoxysilane used is 79.7 ÷ 136.22 = 0.585. From the above, the radical reactive functional group equivalent amount is calculated as 79.23 ÷ (0.0317 ÷ (0.0317 + 0.585)) ≈1542.
 なお、上記式中で「加水分解・脱水縮合反応によりアルコキシシランから脱離する構造の分子量」を「69」とした理由は次のとおりである。トリメトキシシラン:-Si(OCHにおいて、縮合反応によって全てのメトキシ基がシロキサン結合を形成すると、-Si(O0.5-で表される構造が形成される。これに対応して、加水分解・脱水縮合反応によって脱離する構造は、(O0.5CHで表されるので、その分子量が「69」である。 The reason why "the molecular weight of the structure desorbed from alkoxysilane by hydrolysis / dehydration condensation reaction" is set to "69" in the above formula is as follows. Trimethoxysilane: In -Si (OCH 3 ) 3 , when all the methoxy groups form a siloxane bond by the condensation reaction, the structure represented by -Si (O 0.5 ) 3- is formed. Correspondingly, the structure desorbed by the hydrolysis / dehydration condensation reaction is represented by (O 0.5 CH 3 ) 3 , and its molecular weight is “69”.
 (重量平均分子量)
 ポリオルガノシロキサンの重量平均分子量をGPCで測定した。GPCは、送液システムとして東ソー(株)製HLC-8320GPCを用い、カラムとして東ソー(株)製TSK-GEL Hタイプを用い、溶媒としてTHFを用いて行い、重量平均分子量は、ポリスチレン換算で算出し、表1ではIP分子量として示した。
(Weight average molecular weight)
The weight average molecular weight of polyorganosiloxane was measured by GPC. GPC was carried out using HLC-8320GPC manufactured by Toso Co., Ltd. as a liquid feeding system, TSK-GEL H type manufactured by Toso Co., Ltd. as a column, and THF as a solvent, and the weight average molecular weight was calculated in terms of polystyrene. However, in Table 1, it is shown as the IP molecular weight.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 (複合樹脂の合成)
 上記蒸留装置から、冷却管を変え、還流するように装置を組み替えた。窒素ガスを流しながら内温が110℃となるようにオイルバスを設定し、上記で得たポリシロキサン溶液に表2中の「初期溶剤」を加え、内温を110℃に設定した。
(Synthesis of composite resin)
From the above distillation apparatus, the cooling pipe was changed and the apparatus was rearranged so as to reflux. The oil bath was set so that the internal temperature became 110 ° C. while flowing nitrogen gas, and the "initial solvent" in Table 2 was added to the polysiloxane solution obtained above to set the internal temperature to 110 ° C.
 上記4口フラスコとは別で、褐色瓶に表2中の「AC組成モノマー」+「ラジカル発生剤」+「重合溶剤」を加えて、ポンプ追加用のモノマー溶液を作製した。作製したモノマー溶液を、ダイヤフラム式ポンプを用いて、3時間かけて前記4口フラスコに滴下した。 Separately from the above 4-neck flask, "AC composition monomer" + "radical generator" + "polymerization solvent" in Table 2 was added to a brown bottle to prepare a monomer solution for adding a pump. The prepared monomer solution was added dropwise to the four-necked flask over 3 hours using a diaphragm pump.
 残存モノマーを消費するため、褐色瓶に表2中の「残モノマー用ラジカル発生剤」+「残モノマー用重合溶剤」を加えて、残存モノマー用ラジカル発生剤溶液を作製し、ポンプを用いて1時間かけて反応液に滴下した。滴下終了後、更に1時間加熱することで、目的の複合樹脂溶液を得た。具体的には次のとおりである。 In order to consume the residual monomer, add the "radical generator for residual monomer" + "polymerization solvent for residual monomer" in Table 2 to a brown bottle to prepare a radical generator solution for residual monomer, and use a pump to prepare 1 It was added dropwise to the reaction solution over time. After completion of the dropping, the mixture was further heated for 1 hour to obtain the desired composite resin solution. Specifically, it is as follows.
 (実施例1の複合樹脂の合成)
 上述した実施例1のポリオルガノシロキサンの合成で得た59.2gのポリシロキサン溶液に、S100を19.7g、LAWSを46.1g加え、内温が110℃となるように加熱した。
 褐色瓶内でMMA5.0g、TSMA1.0g、BA3.0g、BMA41.0g、V59 2.0g、S100 2.5g、LAWS5.9gを混合し、3時間かけてポンプ追加した。
 更に、V59 0.2g、S100 5.6g、LAWS13.1gからなる溶液を1時間かけてポンプ追加し、更に1時間加熱することで、複合樹脂溶液を204.4g得た。得られた複合樹脂では、ポリ(メタ)アクリル鎖を構成するモノマー単位中の炭素原子と、ポリオルガノシロキサン鎖中のケイ素原子が、エチレン基のみを介して結合しており、ポリオルガノシロキサン鎖は反応性ケイ素基を有している。
(Synthesis of Composite Resin of Example 1)
To the 59.2 g of the polysiloxane solution obtained in the synthesis of the polyorganosiloxane of Example 1 described above, 19.7 g of S100 and 46.1 g of LAWS were added and heated so that the internal temperature became 110 ° C.
MMA 5.0 g, TSMA 1.0 g, BA 3.0 g, BMA 41.0 g, V59 2.0 g, S100 2.5 g, and LAWS 5.9 g were mixed in a brown bottle, and a pump was added over 3 hours.
Further, a solution consisting of 0.2 g of V59, 5.6 g of S100, and 13.1 g of LAWS was added to the pump over 1 hour, and further heated for 1 hour to obtain 204.4 g of a composite resin solution. In the obtained composite resin, the carbon atom in the monomer unit constituting the poly (meth) acrylic chain and the silicon atom in the polyorganosiloxane chain are bonded via only an ethylene group, and the polyorganosiloxane chain is formed. It has a reactive silicon group.
 表2の実施例2~39及び比較例1~5では、表2の記載に従って、表1の実施例2~39及び比較例1~5で得たポリシロキサン溶液、溶剤、モノマー、及びラジカル発生剤を使用した以外は、上記の「実施例1の複合樹脂の合成」と同様にして複合樹脂溶液を得た。但し、比較例2~5では、(メタ)アクリル酸エステルモノマーの重合過程でゲル化が生じて複合樹脂を製造できなかった。なお、実施例25と26では、得られた複合樹脂溶液に対して、表2の記載に従って脱水剤を添加し、実施例37~39では、初期溶剤と共に、表2の記載に従って安定剤を添加した。なお、表2中、各成分の配合量の単位はグラム(g)である。 In Examples 2 to 39 and Comparative Examples 1 to 5 in Table 2, the polysiloxane solutions, solvents, monomers, and radicals generated in Examples 2 to 39 and Comparative Examples 1 to 5 in Table 1 were generated according to the description in Table 2. A composite resin solution was obtained in the same manner as in the above-mentioned "Synthesis of composite resin of Example 1" except that the agent was used. However, in Comparative Examples 2 to 5, gelation occurred in the polymerization process of the (meth) acrylic acid ester monomer, and the composite resin could not be produced. In Examples 25 and 26, a dehydrating agent was added to the obtained composite resin solution according to the description in Table 2, and in Examples 37 to 39, a stabilizer was added together with the initial solvent according to the description in Table 2. did. In Table 2, the unit of the blending amount of each component is gram (g).
 (IP量)
 IP量は、アルコキシシラン成分が加水分解及び脱水縮合して形成されたポリオルガノシロキサンの全量およびラジカル重合性モノマー成分の全量の合計に対して、前記ポリオルガノシロキサンの全量が占める重量割合である。
(IP amount)
The IP amount is the weight ratio of the total amount of the polyorganosiloxane to the total amount of the polyorganosiloxane formed by hydrolysis and dehydration condensation of the alkoxysilane component and the total amount of the radically polymerizable monomer component.
 (重量平均分子量)
 有機無機複合樹脂の重量平均分子量をGPCで測定した。GPCは、送液システムとして東ソー(株)製HLC-8320GPCを用い、カラムとして東ソー(株)製TSK-GEL Hタイプを用い、溶媒としてTHFを用いて行い、重量平均分子量は、ポリスチレン換算で算出した。
(Weight average molecular weight)
The weight average molecular weight of the organic-inorganic composite resin was measured by GPC. GPC was carried out using HLC-8320GPC manufactured by Tosoh Corporation as a liquid feeding system, TSK-GEL H type manufactured by Tosoh Corporation as a column, and THF as a solvent, and the weight average molecular weight was calculated in terms of polystyrene. did.
 (29Si-NMR)
 モノオルガノトリアルコキシシランに由来する構成単位は、シロキサン結合を1個形成している構成単位T1、シロキサン結合を2個形成している構成単位T2、及び、シロキサン結合を3個形成している構成単位T3に分類される。BRUKER社製AVANCEIIIHD500を用いて、有機無機複合樹脂の29Si-NMRを測定し、得られた各構造に由来するピーク面積比を、有機無機複合樹脂に含まれるT1、T2、及びT3構造のモル比とした。
( 29 Si-NMR)
The structural units derived from the monoorganotrialkoxysilane are the structural unit T1 forming one siloxane bond, the structural unit T2 forming two siloxane bonds, and the structural unit T2 forming three siloxane bonds. It is classified into the unit T3. 29 Si-NMR of the organic-inorganic composite resin was measured using AVANCE III HD500 manufactured by BRUKER, and the peak area ratio derived from each obtained structure was determined by the moles of the T1, T2, and T3 structures contained in the organic-inorganic composite resin. It was a ratio.
 (シロキサン結合形成率)
 T1、T2、及びT3構造のモル比をX、Y、Zとした時、
式:(1×X+2×Y+3×Z)/3
によって算出された値を、シロキサン結合形成率(縮合率)とした。
(Siloxane bond formation rate)
When the molar ratios of the T1, T2, and T3 structures are X, Y, and Z,
Formula: (1 x X + 2 x Y + 3 x Z) / 3
The value calculated by the above was taken as the siloxane bond formation rate (condensation rate).
 (複合樹脂溶液の貯蔵安定性)
 得られた複合樹脂溶液を密閉したガラス瓶内に封入したものを2本用意した。片方は50℃の乾燥機に4週間入れ、もう片方は23℃に制御された恒温室で同期間保管し、4週間後の複合樹脂溶液の粘度を目視で評価した。結果を表2に示す。
A:粘度変化なし~目視概算で10倍未満の増粘、B:目視概算で10倍以上の増粘、C:ゲル化
(Storage stability of composite resin solution)
Two bottles of the obtained composite resin solution sealed in a closed glass bottle were prepared. One was placed in a dryer at 50 ° C. for 4 weeks, and the other was stored in a thermostatic chamber controlled at 23 ° C. for the same period, and the viscosity of the composite resin solution after 4 weeks was visually evaluated. The results are shown in Table 2.
A: No change in viscosity to less than 10 times thickening by visual estimation, B: 10 times or more thickening by visual estimation, C: Gelation
 (クリア塗液の作製と塗装)
 各実施例及び比較例で得た複合樹脂溶液10.0gに、硬化触媒として有機錫化合物であるU-20 0.050g、希釈溶剤としてS-100 0.050gを混合してクリア塗液を作製した。
(Preparation and painting of clear coating liquid)
A clear coating solution is prepared by mixing 10.0 g of the composite resin solution obtained in each Example and Comparative Example with 0.050 g of the organic tin compound U-20 as the curing catalyst and 0.050 g of S-100 as the diluting solvent. did.
 作製したクリア塗液を、70×150×2mmのフロートガラス板上、及び50×150×1mmの黒色ABS板上に6mil、アプリケータで塗装し、ドライで約0.076mm厚のクリア塗膜を得た。 The prepared clear coating liquid is coated on a 70 × 150 × 2 mm float glass plate and a 50 × 150 × 1 mm black ABS plate with a 6 mil applicator, and a dry clear coating film having a thickness of about 0.076 mm is applied. Obtained.
 (クリア塗膜の透明性)
 クリア塗液をガラス板上に塗装した後、23℃に調整された恒温室にて1週間養生後に、色彩・濁度同時測定器 COH400(日本電色工業株式会社製)を用いてクリア塗膜のヘイズ値を測定して評価した。結果を表2に示した。
A:濁度がない(ヘイズ値<5)、B:濁度がある(ヘイズ値≧5)
(Transparency of clear coating film)
After applying the clear coating film on a glass plate and curing it in a thermostatic chamber adjusted to 23 ° C for one week, the clear coating film is used with the simultaneous color and turbidity measuring device COH400 (manufactured by Nippon Denshoku Industries Co., Ltd.). The haze value of was measured and evaluated. The results are shown in Table 2.
A: No turbidity (haze value <5), B: Turbidity (haze value ≥ 5)
 (クリア塗膜の光沢)
 クリア塗液を黒色ABS板上に塗装した後、23℃に調整された恒温室にて1週間養生後に、光沢計を用いて、クリア塗膜の60°における光沢値を測定して評価した。結果を表2に示した。
A:60以上、B:60未満
(Gloss of clear coating film)
After coating the clear coating liquid on a black ABS plate and curing it in a thermostatic chamber adjusted to 23 ° C. for 1 week, the gloss value of the clear coating film at 60 ° was measured and evaluated using a gloss meter. The results are shown in Table 2.
A: 60 or more, B: less than 60
 (タックフリータイム)
 クリア塗液をガラス板上に塗装した後、23℃に調整された恒温室にて養生し、クリア塗膜の表面に人差し指を軽く押し当てて離した際のベタつきを感じなくなるまでの時間を計測した。塗装直後を開始時点とする。結果を表2に示した。
(Tack free time)
After applying the clear coating film on a glass plate, it is cured in a thermostatic chamber adjusted to 23 ° C, and the time until the stickiness is not felt when the index finger is lightly pressed against the surface of the clear coating film and released is measured. did. Immediately after painting is the starting point. The results are shown in Table 2.
 (ゲル分)
 0.1mm厚のアルミシートを2.5×2.5×0.1mmのサイズにハサミでカットし、その上にクリア塗液を0.2g滴下し、23℃に調整された恒温室にて1週間養生した後、アセトン浴に漬け込み、(不溶分重量)÷(塗膜重量)×100からゲル分を算出した。なお、アセトン浴に漬け込む際は、200メッシュの金網で作製した袋の中に入れた状態で漬け込み、不溶分と溶出分を分離・回収した。結果を表2に示した。
(Gel)
A 0.1 mm thick aluminum sheet is cut with scissors to a size of 2.5 x 2.5 x 0.1 mm, 0.2 g of clear coating film is dropped onto it, and in a constant temperature room adjusted to 23 ° C. After curing for 1 week, it was immersed in an acetone bath, and the gel content was calculated from (insoluble content weight) ÷ (coating film weight) × 100. When soaking in an acetone bath, it was soaked in a bag made of a 200-mesh wire mesh to separate and recover the insoluble and eluted components. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
 表2から分かるように、各実施例で得られた複合樹脂は貯蔵安定性が良好で、これを用いて得られたクリア塗膜の透明性及び光沢はいずれも良好であった。一方、比較例1ではクリア塗膜の透明性、光沢がいずれも不十分であった。また、比較例2~5では、ゲル化が生じて複合樹脂を製造できなかった。 As can be seen from Table 2, the composite resin obtained in each example had good storage stability, and the transparency and gloss of the clear coating film obtained by using the composite resin were both good. On the other hand, in Comparative Example 1, the transparency and gloss of the clear coating film were both insufficient. Further, in Comparative Examples 2 to 5, gelation occurred and the composite resin could not be produced.
 (白エナメル塗料の作製)
 比較例1、実施例9~12、15、16、21、25、27~39で得た複合樹脂溶液に、酸化チタン微粒子を分散させて白エナメル塗料用樹脂溶液を得た。酸化チタンの分散を助けるために分散剤としてBYK-142を添加し、酸化チタン由来の水分を除去するために脱水剤としてMOAを添加し、酸化チタン微粒子の凝集を破砕するためにガラスビーズを用いた。
(Making white enamel paint)
Titanium oxide fine particles were dispersed in the composite resin solutions obtained in Comparative Examples 1 and 9 to 12, 15, 16, 21, 25, and 27 to 39 to obtain a resin solution for white enamel paint. BYK-142 was added as a dispersant to help disperse titanium oxide, MOA was added as a dehydrating agent to remove water derived from titanium oxide, and glass beads were used to crush the agglomeration of titanium oxide fine particles. There was.
 まずは酸化チタン微粒子が分散しやすいように高濃度となるように少量の複合樹脂溶液と混合しミルベースを作製した。その後、更に追加で複合樹脂溶液を加えて希釈し、白エナメル塗料を得た。具体的には次のとおりである。 First, a mill base was prepared by mixing with a small amount of composite resin solution so that the titanium oxide fine particles were easily dispersed so as to have a high concentration. Then, an additional composite resin solution was added and diluted to obtain a white enamel paint. Specifically, it is as follows.
 [ミルベース]
 225ml容量のマヨネーズビンに、表3中の「ミルベース」の記載に従って、複合樹脂溶液を30.15g、酸化チタンを33.50g、分散剤を0.56g、脱水剤を0.50g、希釈溶剤としてS100 0.35g及びLAWS 0.15g、ガラスビーズ50gを加え、ペイントコンディショナーを用いて2時間高速振動させることでミルベースを得た。
[Mill base]
In a 225 ml volume of mayonnaise bottle, according to the description of "Mill base" in Table 3, 30.15 g of the composite resin solution, 33.50 g of titanium oxide, 0.56 g of the dispersant, 0.50 g of the dehydrating agent, as a diluting solvent. A mill base was obtained by adding 0.35 g of S100, 0.15 g of Laws, and 50 g of glass beads and vibrating at high speed for 2 hours using a paint conditioner.
 [カットバック]
 次いで、表3中の「カットバック」の記載に従って、複合樹脂溶液70.35g、希釈溶剤としてS100 3.2g及びLAWS1.37gを追加し、ペイントコンディショナーで30分高速振動させることで白エナメル塗料140.1g(ガラスビーズ重量は除く)を得た。
[Cutback]
Then, according to the description of "cutback" in Table 3, 70.35 g of the composite resin solution, 3.2 g of S100 and 1.37 g of LAWS as the diluting solvent were added, and the white enamel paint 140 was vibrated at high speed for 30 minutes with a paint conditioner. .1 g (excluding the weight of glass beads) was obtained.
 (白エナメル塗料の貯蔵安定性)
 得られた白エナメル塗料を密閉したガラス瓶内に封入したものを2本用意した。片方は50℃の乾燥機に4週間入れ、もう片方は23℃に制御された恒温室で同期間保管し、4週間後の塗料の粘度を目視で評価した。結果を表3に示した。
A:粘度変化なし~目視概算で10倍未満の増粘、B:目視概算で10倍以上の増粘、C:ゲル化
(Storage stability of white enamel paint)
Two bottles of the obtained white enamel paint enclosed in a sealed glass bottle were prepared. One was placed in a dryer at 50 ° C. for 4 weeks, and the other was stored in a thermostatic chamber controlled at 23 ° C. for the same period, and the viscosity of the paint after 4 weeks was visually evaluated. The results are shown in Table 3.
A: No change in viscosity to less than 10 times thickening by visual estimation, B: 10 times or more thickening by visual estimation, C: Gelation
 (白エナメル塗液の作成と塗装)
 得られた白エナメル塗料10.0gに、硬化触媒として有機錫化合物であるU-20 0.060g、希釈溶剤としてS-100 0.060gを混合して、硬化触媒が添加された白エナメル塗液を作製した。
 作製された硬化触媒入りの白エナメル塗液を、70×150×2mmのフロートガラス板上に6mil、アプリケータで塗装し、ドライで約0.090mm厚の白エナメル塗膜を得た。
(Creation and painting of white enamel coating liquid)
A white enamel coating solution to which a curing catalyst was added by mixing 10.0 g of the obtained white enamel paint with 0.060 g of an organic tin compound U-20 as a curing catalyst and 0.060 g of S-100 as a diluting solvent. Was produced.
The prepared white enamel coating solution containing a curing catalyst was coated on a 70 × 150 × 2 mm float glass plate with a 6 mil applicator to obtain a dry white enamel coating film having a thickness of about 0.090 mm.
 (白エナメル塗膜の光沢)
 白エナメル塗液をガラス板上に塗装した後、23℃に調整された恒温室にて1週間養生後に、光沢計を用いて、白エナメル塗膜の60°における光沢値を測定して評価した。結果を表3に示した。
A:60以上、B:55以上60未満、C:55未満
(Gloss of white enamel coating)
After applying the white enamel coating film on a glass plate and curing it in a thermostatic chamber adjusted to 23 ° C. for 1 week, the gloss value of the white enamel coating film at 60 ° was measured and evaluated using a gloss meter. .. The results are shown in Table 3.
A: 60 or more, B: 55 or more and less than 60, C: 55 or less
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
 表3から分かるように、各実施例で得られた白エナメル塗料は貯蔵安定性が良好で、これを用いて得られた白エナメル塗膜は光沢も良好であった。特に実施例31-33で得られた白エナメル塗膜は、外観が最も良好で顔料分散性が良く、調色性も良好であった。
 
As can be seen from Table 3, the white enamel coating film obtained in each example had good storage stability, and the white enamel coating film obtained using this had good gloss. In particular, the white enamel coating film obtained in Examples 31-33 had the best appearance, good pigment dispersibility, and good toning property.

Claims (13)

  1.  ラジカル重合におけるメタクリロイル基の成長反応性よりも低いラジカル反応性を示すラジカル反応性官能基を有するモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシラン(a-1)、及び
     ラジカル反応性官能基を有しないモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシラン(a-2)、
     を含むアルコキシシラン成分を、水及び縮合触媒の存在下、加水分解及び脱水縮合反応させて、ポリオルガノシロキサンを得る工程、及び
     前記ポリオルガノシロキサンの存在下で、(メタ)アクリル酸エステルモノマーを含むラジカル重合性モノマー成分をラジカル重合する工程、を含み、
     前記ラジカル重合におけるメタクリロイル基の成長反応性よりも低いラジカル反応性を示すラジカル反応性官能基が、少なくともビニル基を含み、
     (a-1)及び(a-2)の合計に対して(a-2)の占める割合が、70重量%以上99重量%以下であり、(a-2)に含まれる有機基の50重量%以上が、メチル基、エチル基、及びフェニル基からなる群より選択される少なくとも1種であり、
     前記アルコキシシラン成分から算出したラジカル反応性官能基等量は、280以上5000未満の範囲にあり、
     前記水の添加量が、前記アルコキシシラン成分に含まれる、ケイ素原子に直結したアルコキシ基の合計モル数100%に対して、30モル%以上60モル%以下である、
     ポリ(メタ)アクリル鎖とポリオルガノシロキサン鎖を含む有機無機複合樹脂の製造方法。
    Monoorganotrialkoxysilanes and / or diorganodialkoxysilanes (a-1) having radical-reactive functional groups that exhibit radical reactivity lower than the growth reactivity of methacryloyl groups in radical polymerization, and radical-reactive functional groups. Monoorganotrialkoxysilanes and / or diorganodialkoxysilanes (a-2) that do not have,
    A step of hydrolyzing and dehydrating and condensing a alkoxysilane component containing water in the presence of water and a condensation catalyst to obtain a polyorganosiloxane, and in the presence of the polyorganosiloxane, a (meth) acrylic acid ester monomer is contained. Including the step of radically polymerizing a radically polymerizable monomer component.
    The radical-reactive functional group exhibiting a radical reactivity lower than the growth reactivity of the methacryloyl group in the radical polymerization contains at least a vinyl group.
    The ratio of (a-2) to the total of (a-1) and (a-2) is 70% by weight or more and 99% by weight or less, and 50% by weight of the organic group contained in (a-2). % Or more is at least one selected from the group consisting of a methyl group, an ethyl group, and a phenyl group.
    The radically reactive functional group equivalent amount calculated from the alkoxysilane component is in the range of 280 or more and less than 5000.
    The amount of water added is 30 mol% or more and 60 mol% or less with respect to 100% of the total number of moles of alkoxy groups directly bonded to silicon atoms contained in the alkoxysilane component.
    A method for producing an organic-inorganic composite resin containing a poly (meth) acrylic chain and a polyorganosiloxane chain.
  2.  (a-2)に含まれる有機基の50重量%以上が、メチル基である、請求項1に記載の有機無機複合樹脂の製造方法。 The method for producing an organic-inorganic composite resin according to claim 1, wherein 50% by weight or more of the organic group contained in (a-2) is a methyl group.
  3.  前記アルコキシシラン成分全体に対して、ビニル基を有するモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシランの占める割合が2重量%以上30重量%以下である、請求項1又は2に記載の有機無機複合樹脂の製造方法。 The organic according to claim 1 or 2, wherein the ratio of the monoorganotrialkoxysilane having a vinyl group and / or the diorganodialkoxysilane to the whole alkoxysilane component is 2% by weight or more and 30% by weight or less. A method for producing an inorganic composite resin.
  4.  前記加水分解及び脱水縮合反応によって、反応性ケイ素基を有するポリオルガノシロキサンを得る、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein a polyorganosiloxane having a reactive silicon group is obtained by the hydrolysis and dehydration condensation reaction.
  5.  前記有機無機複合樹脂全体に対する前記ポリオルガノシロキサン鎖の重量割合は20重量%以上80重量%以下である、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the weight ratio of the polyorganosiloxane chain to the entire organic-inorganic composite resin is 20% by weight or more and 80% by weight or less.
  6.  前記加水分解及び脱水縮合反応から、前記ラジカル重合の終了まで、反応系の温度が実質的に低下しないように温度制御を行う、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the temperature is controlled so that the temperature of the reaction system does not substantially decrease from the hydrolysis and dehydration condensation reaction to the end of the radical polymerization.
  7.  前記ラジカル重合を、β-ジカルボニル化合物の存在下で実施する、請求項1~6のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the radical polymerization is carried out in the presence of a β-dicarbonyl compound.
  8.  前記加水分解及び脱水縮合反応、並びに、前記ラジカル重合を、酸素分子を実質的に含まない雰囲気下で実施する、請求項1~7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the hydrolysis and dehydration condensation reaction and the radical polymerization are carried out in an atmosphere substantially free of oxygen molecules.
  9.  ポリ(メタ)アクリル鎖と、該ポリ(メタ)アクリル鎖に結合したポリオルガノシロキサン鎖と、を含む有機無機複合樹脂であって、
     前記有機無機複合樹脂全体に対する前記ポリオルガノシロキサン鎖の重量割合は20重量%以上80重量%以下であり、
     前記ポリオルガノシロキサン鎖は、モノオルガノトリアルコキシシラン70~100モル%及びジオルガノジアルコキシシラン30~0モル%を含有するアルコキシシラン成分の加水分解縮合物であり、
     前記ポリオルガノシロキサン鎖は、反応性ケイ素基を有し、
     前記ポリ(メタ)アクリル鎖を構成するモノマー単位中の炭素原子と、ポリオルガノシロキサン鎖中のケイ素原子が、炭化水素基のみを介して結合しており、
     前記炭化水素基が、少なくともエチレン基を含み、
     前記モノオルガノトリアルコキシシランと前記ジオルガノジアルコキシシランの合計のうち、ラジカル反応性官能基を有しないモノオルガノトリアルコキシシラン及び/又はジオルガノジアルコキシシラン(a-2)の占める割合が、70重量%以上99重量%以下であり、(a-2)に含まれる有機基の50重量%以上が、メチル基、エチル基、及びフェニル基からなる群より選択される少なくとも1種である、有機無機複合樹脂。
    An organic-inorganic composite resin containing a poly (meth) acrylic chain and a polyorganosiloxane chain bonded to the poly (meth) acrylic chain.
    The weight ratio of the polyorganosiloxane chain to the entire organic-inorganic composite resin is 20% by weight or more and 80% by weight or less.
    The polyorganosiloxane chain is a hydrolysis condensate of an alkoxysilane component containing 70 to 100 mol% of monoorganotrialkoxysilane and 30 to 0 mol% of diorganodialkoxysilane.
    The polyorganosiloxane chain has a reactive silicon group and has
    The carbon atom in the monomer unit constituting the poly (meth) acrylic chain and the silicon atom in the polyorganosiloxane chain are bonded via only a hydrocarbon group.
    The hydrocarbon group contains at least an ethylene group and contains
    Of the total of the monoorganotrialkoxysilane and the diorganodialkoxysilane, the proportion of the monoorganotrialkoxysilane and / or the diorganodialkoxysilane (a-2) having no radically reactive functional group is 70. Organic, which is at least 99% by weight and 50% by weight or more of the organic group contained in (a-2) is at least one selected from the group consisting of a methyl group, an ethyl group, and a phenyl group. Inorganic composite resin.
  10.  前記モノオルガノトリアルコキシシランに由来する構成単位を、シロキサン結合を1個形成している構成単位T1、シロキサン結合を2個形成している構成単位T2、及び、シロキサン結合を3個形成している構成単位T3に分類し、29Si-NMRにより測定されたT1、T2、T3の合計モル数に対するT1、T2、T3の各モル数の割合(%)を、それぞれ、X、Y、Zとした時、下記式:
     (1×X+2×Y+3×Z)/3
     によって算出されるシロキサン結合形成率が60%以上80%以下である、請求項9に記載の有機無機複合樹脂。
    The structural unit derived from the monoorganotrialkoxysilane forms a structural unit T1 forming one siloxane bond, a structural unit T2 forming two siloxane bonds, and three siloxane bonds. Classified into the structural unit T3, the ratio (%) of the number of moles of T1, T2, and T3 to the total number of moles of T1, T2, and T3 measured by 29 Si-NMR was set to X, Y, and Z, respectively. At the time, the following formula:
    (1 x X + 2 x Y + 3 x Z) / 3
    The organic-inorganic composite resin according to claim 9, wherein the siloxane bond formation rate calculated by the above method is 60% or more and 80% or less.
  11.  前記ポリ(メタ)アクリル鎖の溶解度パラメータ値(SP値)が、9.0~11.0(cal/cm1/2である、請求項9又は10に記載の有機無機複合樹脂。 The organic-inorganic composite resin according to claim 9 or 10, wherein the solubility parameter value (SP value) of the poly (meth) acrylic chain is 9.0 to 11.0 (cal / cm 3 ) 1/2 .
  12.  請求項9~11のいずれか1項に記載の有機無機複合樹脂を含む硬化性樹脂組成物。 A curable resin composition containing the organic-inorganic composite resin according to any one of claims 9 to 11.
  13.  請求項12に記載の硬化性樹脂組成物を硬化させてなる硬化物。
     
    A cured product obtained by curing the curable resin composition according to claim 12.
PCT/JP2020/013657 2019-03-28 2020-03-26 Organic-inorganic composite resin and method for manufacturing same WO2020196750A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080024097.3A CN113631601A (en) 2019-03-28 2020-03-26 Organic-inorganic composite resin and method for producing same
JP2021509586A JP7433295B2 (en) 2019-03-28 2020-03-26 Method for producing organic-inorganic composite resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-064115 2019-03-28
JP2019064115 2019-03-28
JP2019-064112 2019-03-28
JP2019064112 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196750A1 true WO2020196750A1 (en) 2020-10-01

Family

ID=72608934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013657 WO2020196750A1 (en) 2019-03-28 2020-03-26 Organic-inorganic composite resin and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP7433295B2 (en)
CN (1) CN113631601A (en)
WO (1) WO2020196750A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632903A (en) * 1992-05-19 1994-02-08 Nippon Shokubai Co Ltd Production of polysiloxane macromonomer
JPH06228457A (en) * 1993-02-03 1994-08-16 Nippon Shokubai Co Ltd Method for modifying surface of inorganic material, resin composition for molding material and production of silicic polymer therefor
JPH06287307A (en) * 1993-04-06 1994-10-11 Showa Denko Kk Polymethylstilsesquioxane polymer and vinyl copolymer resin having polymethylsilsesquioxane structure
JPH0848734A (en) * 1994-08-09 1996-02-20 Showa Denko Kk Coating film improved in stain resistance
JPH08134308A (en) * 1994-11-08 1996-05-28 Showa Denko Kk Aqueous emulsion and its production
JPH1160733A (en) * 1997-08-14 1999-03-05 Showa Denko Kk Polymer, resist resin composition and formation of pattern using the same
JP2008248239A (en) * 2007-03-08 2008-10-16 Toray Ind Inc Siloxane resin composition, cured film and optical device using the same
JP2014082467A (en) * 2012-09-27 2014-05-08 Dic Corp Insulative material, dielectric film, and transistor arranged by use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626933B (en) * 2013-10-14 2015-11-18 杭州师范大学 A kind of polysilsesquioxane-polyacrylic ester-nanosized SiO_2 composite emulsion and preparation method thereof and application
JP6925147B2 (en) * 2016-03-31 2021-08-25 Koa株式会社 Thermosetting silicone resin paste composition and its use
CN107033296A (en) * 2017-05-08 2017-08-11 南京长江涂料有限公司 Extra-weather-proof polysiloxane-modified acrylic resin and finish paint preparation method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632903A (en) * 1992-05-19 1994-02-08 Nippon Shokubai Co Ltd Production of polysiloxane macromonomer
JPH06228457A (en) * 1993-02-03 1994-08-16 Nippon Shokubai Co Ltd Method for modifying surface of inorganic material, resin composition for molding material and production of silicic polymer therefor
JPH06287307A (en) * 1993-04-06 1994-10-11 Showa Denko Kk Polymethylstilsesquioxane polymer and vinyl copolymer resin having polymethylsilsesquioxane structure
JPH0848734A (en) * 1994-08-09 1996-02-20 Showa Denko Kk Coating film improved in stain resistance
JPH08134308A (en) * 1994-11-08 1996-05-28 Showa Denko Kk Aqueous emulsion and its production
JPH1160733A (en) * 1997-08-14 1999-03-05 Showa Denko Kk Polymer, resist resin composition and formation of pattern using the same
JP2008248239A (en) * 2007-03-08 2008-10-16 Toray Ind Inc Siloxane resin composition, cured film and optical device using the same
JP2014082467A (en) * 2012-09-27 2014-05-08 Dic Corp Insulative material, dielectric film, and transistor arranged by use thereof

Also Published As

Publication number Publication date
CN113631601A (en) 2021-11-09
JPWO2020196750A1 (en) 2020-10-01
JP7433295B2 (en) 2024-02-19

Similar Documents

Publication Publication Date Title
US6051665A (en) Coating composition
KR20160045593A (en) Active energy ray-curable silicone coating composition and coated article
JP7401977B2 (en) Polyorganosiloxane and its manufacturing method, and coating composition
US20140323677A1 (en) Thermal-shock-resistant cured product and method for producing same
JP6108514B2 (en) Curable composition
JPS61127765A (en) Curable composition
JP7433295B2 (en) Method for producing organic-inorganic composite resin
US9663598B2 (en) Organosilicon compound-containing thermosetting composition and cured product thereof
JP2010270202A (en) Active energy ray-curable coating material composition and laminate
MXPA03002311A (en) Coating compositions.
JP2022191026A (en) Method for producing polysiloxane and the use of polysiloxane
JP7418411B2 (en) Method for producing silanol group-containing polyorganosiloxane and composition thereof
WO2019151469A1 (en) Curable resin composition and method for producing same
JP6841816B2 (en) Method of manufacturing composite resin
JP2841113B2 (en) Paint composition
JP5370369B2 (en) Curable composition
CN112673069A (en) Primer composition for bonding silicone resin and polyolefin resin, and method for bonding silicone resin and polyolefin resin
JP7390827B2 (en) Polysiloxane resin and its use
WO2022202173A1 (en) Curable resin composition and use thereof
JP5087752B2 (en) β-ketoester group-containing organopolysiloxane compound
WO2023162782A1 (en) Method for producing curable resin composition
JP2023034847A (en) Method for producing solution or dispersion containing polysiloxane resin with water as medium
WO2023214526A1 (en) Organopolysiloxane containing mercapto group and alkoxysilyl group, and composition comprising same
WO2021235286A1 (en) Organopolysiloxane and composition containing same
JP2023125460A (en) Method for producing curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778823

Country of ref document: EP

Kind code of ref document: A1