WO2020196698A1 - Polymer composition, liquid crystal alignment film, liquid crystal display element, and method for producing substrate having liquid crystal alignment film - Google Patents

Polymer composition, liquid crystal alignment film, liquid crystal display element, and method for producing substrate having liquid crystal alignment film Download PDF

Info

Publication number
WO2020196698A1
WO2020196698A1 PCT/JP2020/013519 JP2020013519W WO2020196698A1 WO 2020196698 A1 WO2020196698 A1 WO 2020196698A1 JP 2020013519 W JP2020013519 W JP 2020013519W WO 2020196698 A1 WO2020196698 A1 WO 2020196698A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
alignment film
crystal alignment
carbon atoms
Prior art date
Application number
PCT/JP2020/013519
Other languages
French (fr)
Japanese (ja)
Inventor
永井 健太郎
正人 森内
司 藤枝
亮一 芦澤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2021509560A priority Critical patent/JPWO2020196698A1/ja
Priority to CN202080036686.3A priority patent/CN113841085A/en
Priority to KR1020217032610A priority patent/KR20210143802A/en
Publication of WO2020196698A1 publication Critical patent/WO2020196698A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133746Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for high pretilt angles, i.e. higher than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133749Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for low pretilt angles, i.e. lower than 15 degrees

Definitions

  • the present invention has a novel polymer composition or a novel liquid crystal alignment agent, a liquid crystal alignment film formed by using the novel polymer composition, a substrate having the liquid crystal alignment film, a liquid crystal display element having the substrate, and the alignment film. Regarding the method of manufacturing a substrate. Furthermore, the present invention relates to a novel method for manufacturing a liquid crystal display element having excellent tilt angle characteristics.
  • Liquid crystal display elements are known as lightweight, thin, and low power consumption display devices, and in recent years, they have made remarkable progress, such as being used for large-scale television applications.
  • the liquid crystal display element is configured by sandwiching the liquid crystal layer between, for example, a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired orientation state between the substrates.
  • the liquid crystal alignment film is a constituent member of the liquid crystal display element, is formed on the surface of the substrate that sandwiches the liquid crystal in contact with the liquid crystal, and plays a role of orienting the liquid crystal in a certain direction between the substrates.
  • the liquid crystal alignment film may be required to have a role of controlling the pretilt angle of the liquid crystal in addition to the role of orienting the liquid crystal in a certain direction such as a direction parallel to the substrate.
  • the ability to control the orientation of the liquid crystal in such a liquid crystal alignment film (hereinafter referred to as the orientation control ability) is given by performing an orientation treatment on the organic film constituting the liquid crystal alignment film.
  • the rubbing method has been conventionally known as an orientation treatment method for a liquid crystal alignment film for imparting orientation control ability.
  • the rubbing method is to rub the surface of an organic film such as polyvinyl alcohol, polyamide, or polyimide on a substrate with a cloth such as cotton, nylon, or polyester in a certain direction (rubbing) in a rubbing direction (rubbing direction).
  • This is a method of orienting a liquid crystal. Since this rubbing method can easily realize a relatively stable orientation state of a liquid crystal, it has been used in a conventional manufacturing process of a liquid crystal display element.
  • As the organic film used for the liquid crystal alignment film a polyimide-based organic film having excellent reliability such as heat resistance and electrical characteristics has been mainly selected.
  • the rubbing method of rubbing the surface of a liquid crystal alignment film made of polyimide or the like may cause problems such as dust generation and generation of static electricity.
  • the surface of the liquid crystal alignment film cannot be rubbed uniformly with a cloth, and is uniform. Sometimes the orientation of the liquid crystal could not be achieved.
  • the photo-alignment method is being actively studied as another alignment treatment method for the liquid crystal alignment film without rubbing.
  • anisotropy is formed in the organic film that constitutes the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is oriented according to the anisotropy.
  • a split-complex photo-alignment method is known as the main photo-orientation method.
  • the polyimide film is irradiated with polarized ultraviolet rays to cause anisotropic decomposition by utilizing the polarization direction dependence of the ultraviolet absorption of the molecular structure.
  • the liquid crystal is oriented by the polyimide left without decomposition (see, for example, Patent Document 1).
  • the liquid crystal alignment film also plays a role of imparting a certain inclination angle (pre-tilt angle) to the liquid crystal, and imparting the pre-tilt angle has become an important issue in the development of the liquid crystal alignment film (patented). References 2 to 5).
  • a photo-alignment method using a photocrosslinking type is also known.
  • polyvinyl synnamate is used to irradiate polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to polarized light.
  • a pre-tilt angle is developed by irradiating polarized ultraviolet rays in an oblique direction (see, for example, Non-Patent Document 1).
  • a specific polymer is used to irradiate light from an oblique direction (Patent Document 6 and Non-Patent Document 2).
  • the method of aligning the liquid crystal alignment film by the photoalignment method does not require rubbing, and there is no concern about dust generation or static electricity generation. Then, the alignment treatment can be performed even on the substrate of the liquid crystal display element having an uneven surface, which is a method of orientation treatment of the liquid crystal alignment film suitable for an industrial production process.
  • the optical orientation method can control the orientation direction of the liquid crystal by ultraviolet rays, it is possible to form multiple regions with different orientation directions (orientation division) in the pixels and compensate for the viewing angle dependence. It is useful for improving the display quality of the display element.
  • the photo-alignment method does not require the rubbing process itself as compared with the rubbing method that has been industrially used conventionally as an orientation processing method for liquid crystal display elements, and therefore has a great advantage. Then, as compared with the rubbing method in which the orientation control ability is substantially constant by rubbing, in the photoalignment method, the orientation control ability can be controlled by changing the irradiation amount of polarized light.
  • the photo-alignment method when trying to achieve the same orientation control ability as in the rubbing method, a large amount of polarized light irradiation may be required or stable liquid crystal orientation may not be realized. ..
  • the thermal stability and photostability of the liquid crystal orientation are inferior, so that there is a problem that misalignment and display burn-in occur when the liquid crystal display element is used. was there.
  • the tilt angle is lost due to the reverse reaction of the reaction during the orientation process by light, that is, so-called tilt return causes poor orientation. There was a problem.
  • a halogen-based solvent such as a chloroform solvent is used because the solubility of a specific polymer is low, and there is still a problem in using it in a practical situation.
  • An object of the present invention is to provide a substrate having a liquid crystal alignment film for a liquid crystal display element and a liquid crystal display element having the substrate, which are provided with high efficiency and orientation control ability and excellent in tilt angle characteristics.
  • an object of the present invention is to provide a liquid crystal display element having improved tilt angle characteristics and a liquid crystal alignment film for the element.
  • a method for producing a substrate having a liquid crystal alignment film which comprises obtaining a liquid crystal alignment film to which an orientation control ability is imparted.
  • the site that induces the in-plane orientation is preferably the site that causes photoisomerization.
  • the site that induces in-plane orientation is anisotropic in the irradiation direction of polarized ultraviolet rays containing S waves as the main component, that is, in the direction parallel to the vibration direction of the S waves. It should be a group that expresses sex.
  • the side chain having a site that induces in-plane orientation has a structure represented by a formula selected from the following formulas (1) to (3). It is preferably a chain.
  • A, B and D independently represent single bonds, -O-, -CH 2- , -COO-, -OCO-, -CONH- or -NH-CO-;
  • S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of the alkylene group may be independently replaced with a halogen atom;
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of the alkylene group may be replaced with a halogen atom;
  • T is a single bond
  • B also represents a single bond;
  • Y 1 is a divalent benzene ring;
  • P 1 , Q 1 and Q 2 are groups independently selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms, respectively;
  • R 1 is a hydrogen atom, -CN, a halogen atom, an alkyl group having 1 to 5 carbon atom
  • the hydrogen atom bonded to the benzene ring is independently -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and a (alkyl having 1 to 5 carbon atoms) carbonyl group.
  • Or may be substituted with an alkyloxy group having 1 to 5 carbon atoms;
  • X 1 and X 2 independently represent -O-, -COO- or -OCO-; n1 and n2 are 0, 1 or 2, respectively.
  • X 1 together may be the same or different, when the number of X 2 is 2, X 2 together may be the same or different;
  • Q 1 each other may be the same or different, when the number Q 2 'is 2, Q 2 together may be the same or different;
  • the broken line represents the bond with the polymerizable group.
  • ⁇ 5> A substrate having a liquid crystal alignment film produced by the production methods described in ⁇ 1> to ⁇ 4> above.
  • ⁇ 6> A liquid crystal display element having the substrate of ⁇ 5> above.
  • the present invention it is possible to provide a substrate having a liquid crystal alignment film having an orientation control ability with high efficiency and excellent tilt angle characteristics, and a liquid crystal display element having the substrate. Since the liquid crystal display element manufactured by the method of the present invention is endowed with the orientation control ability with high efficiency, the display characteristics are not impaired even if it is continuously driven for a long time.
  • the polymer composition used in the production method of the present invention has (A) a site that induces in-plane orientation in the direction perpendicular to the parallel direction (P-wave direction) of polarized ultraviolet rays (P-wave direction) and out-of-plane orientation. It has a polymer (hereinafter, also simply referred to as a side chain type polymer) having a site to induce in a different side chain.
  • the site that induces in-plane orientation is a site where the tilt angle formed by light-shielding exposure to polarized UV becomes ⁇ 1 ° and homogenius orientation is exhibited.
  • the site that induces in-plane orientation originally has a structure similar to that of liquid crystal, but has the property that the structure changes due to light irradiation and the structure is no longer similar to that of liquid crystal. Due to this property, when polarized light is applied to a portion having in-plane orientation, only the portion that induces in-plane orientation in a certain direction changes its structure and loses liquid crystal orientation, while inducing in-plane orientation in a different direction. Since the structure of the portion does not change and has a structure similar to that of the liquid crystal, the liquid crystals are lined up along the structure. As a result, the liquid crystal can be oriented in the plane.
  • the site that induces out-of-plane orientation is a site that can express homeotropic orientation by itself.
  • the coating film obtained by using the polymer composition is a film having a side chain type polymer.
  • This coating film is not subjected to a rubbing treatment, but is oriented by irradiation with polarized light from an oblique direction.
  • the side chain type polymer film is heated to obtain a coating film having an orientation control ability (hereinafter, also referred to as a liquid crystal alignment film).
  • the slight anisotropy developed by the polarization irradiation becomes the driving force, and the liquid crystal side chain polymer itself is efficiently reoriented by self-assembly.
  • the present invention is characterized in that S waves are used as polarized light. By irradiating the S wave from an oblique direction, the direction in which the tilt angle appears can be defined.
  • the portion that induces in-plane orientation that acquires orientation by light irradiation, and the tilt angle characteristic is imparted by orienting the portion that induces out-of-plane orientation. Therefore, since the tilt angle is given by the part that induces the out-of-plane orientation, even if the part that induces the in-plane orientation causes a reverse reaction due to, for example, a backlight, the part having the out-of-plane orientation is stable. Since it is maintained, so-called tilt return does not occur, and stable tilt angle characteristics can be exhibited.
  • the method for manufacturing a substrate having a liquid crystal alignment film of the present invention is [I] (A) A portion that induces in-plane orientation in a direction (S-wave direction) perpendicular to the parallel direction (P-wave direction) of polarized ultraviolet rays and a portion that induces out-of-plane orientation are separate side chains.
  • the manufacturing method of the liquid crystal display element is [IV] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so as to face each other so that the liquid crystal alignment films of the first and second substrates face each other via the liquid crystal. Have. As a result, a liquid crystal display element can be obtained.
  • step [I] on a substrate having an electrode for driving a liquid crystal, (A) a portion that induces in-plane orientation in a direction (S wave direction) perpendicular to the parallel direction (P wave direction) of polarized ultraviolet rays, and a surface.
  • a coating film is formed by applying a polymer composition containing a polymer having different side chains to the site that induces outer orientation and an organic solvent.
  • the substrate is not particularly limited, but when the liquid crystal display element to be manufactured is a transmissive type, it is preferable to use a highly transparent substrate.
  • the present invention is not particularly limited, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used.
  • ITO Indium Tin Oxide: indium tin oxide
  • IZO Indium Zinc Oxide: indium zinc oxide
  • an opaque object such as a silicon wafer can be used if only one substrate is used, and in this case, a material that reflects light such as aluminum can also be used as the electrode.
  • a method of forming an electrode on a substrate a conventionally known method can be used.
  • the polymer composition used in the production method of the present invention has (A) a site that induces in-plane orientation in the direction perpendicular to the parallel direction (P-wave direction) of polarized ultraviolet rays (P-wave direction) and out-of-plane orientation. It contains a polymer having an inducing site on a separate side chain and (B) an organic solvent.
  • the component (A) separates a portion that induces in-plane orientation in a direction (S wave direction) perpendicular to the parallel direction (P wave direction) of (A) polarized ultraviolet rays and a portion that induces out-of-plane orientation. It is a polymer having in the side chain of.
  • the side chain type polymer (A) preferably reacts with light in the wavelength range of 250 to 400 nm and exhibits liquid crystallinity in the temperature range of 100 to 300 ° C.
  • the side chain polymer (A) preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 to 400 nm.
  • the side chain polymer (A) preferably has a mesogen group because it exhibits liquid crystallinity in a temperature range of 100 to 300 ° C.
  • the portion that induces in-plane orientation in the direction perpendicular to the parallel direction (P wave direction) of polarized ultraviolet rays (P wave direction) is bonded to the main chain, and is sensitive to light. Can cause an isomerization reaction. In this case, even if it is exposed to external stress such as heat, the realized orientation control ability can be stably maintained for a long period of time.
  • the structure of the site that induces in-plane orientation is not particularly limited as long as it satisfies such characteristics, but it is preferable that the side chain structure has a rigid mesogen component. In this case, stable liquid crystal orientation can be obtained when the side chain polymer is used as a liquid crystal alignment film.
  • the side chain polymer (A) has a portion that induces out-of-plane orientation in the direction perpendicular to the parallel direction (P wave direction) of polarized ultraviolet rays (P wave direction), thereby achieving a desired tilt angle.
  • a liquid crystal alignment film to be expressed is given. It is considered that this is because when used as a liquid crystal alignment film, anisotropy is exhibited by the side chain type polymer being close to the site where the out-of-plane orientation is induced, and a tilt angle can be obtained.
  • the structure of the polymer has, for example, a main chain and a side chain bonded thereto, and the side chain contains a mesogen component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, or an azobenzene group, and light
  • the structure can have a photosensitive group that undergoes an isomerization reaction in response to the above.
  • More specific examples of the structure of the photosensitive side chain polymer film capable of exhibiting liquidity include hydrocarbons, (meth) acrylates, itaconates, fumarates, maleates, ⁇ -methylene- ⁇ -butyrolactone, styrene, and the like.
  • the side chain having a site that induces in-plane orientation in the side chain type polymer of the component (A) is preferably a side chain having a structure consisting of at least one of the following formulas (1) to (3). ..
  • A, B and D independently represent single bonds, -O-, -CH 2- , -COO-, -OCO-, -CONH- or -NH-CO-;
  • S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of the alkylene group may be independently replaced with a halogen atom;
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of the alkylene group may be replaced with a halogen atom;
  • T is a single bond
  • B also represents a single bond;
  • Y 1 is a divalent benzene ring;
  • P 1 , Q 1 and Q 2 are groups independently selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms, respectively;
  • R 1 is a hydrogen atom, -CN, a halogen atom, an alkyl group having 1 to 5 carbon atom
  • the hydrogen atom bonded to the benzene ring is independently -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and a (alkyl having 1 to 5 carbon atoms) carbonyl group.
  • Or may be substituted with an alkyloxy group having 1 to 5 carbon atoms;
  • X 1 and X 2 independently represent -O-, -COO- or -OCO-; n1 and n2 are 0, 1 or 2, respectively.
  • X 1 together may be the same or different, when the number of X 2 is 2, X 2 together may be the same or different;
  • Q 1 each other may be the same or different, when the number Q 2 'is 2, Q 2 together may be the same or different;
  • the broken line represents the bond with the polymerizable group.
  • the photo-oriented side chain preferably has a total of 3 or less benzene rings and naphthalene rings in one side chain.
  • the anisotropy is easily imparted by the irradiation of the polarized ultraviolet rays containing the S wave as the main component from the oblique direction.
  • the group exhibits anisotropy in the parallel direction.
  • the site that induces out-of-plane orientation is not particularly limited, but a group containing a hydrocarbon group having 1 to 17 carbon atoms is preferable, and specifically, a group represented by the formula (4) is preferable. Is.
  • Y 1 represents a single bond or -O-, -CH 2 O-, -COO-, -OCO-, -NH 2- , -NHCO-, -NH-CO-O- And represents a binding group selected from -NH-CO-NH- Y 2 represents a single bond, an alkylene group having 1 to 15 carbon atoms or a -CH 2- CH (OH) -CH 2- group, or a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocycle. Represented, any hydrogen atom on the cyclic group may be substituted with Z.
  • Y 3 represents a single bond or an alkylene group having 1 to 15 carbon atoms
  • Y 4 represents a single bond, a benzene ring, a divalent organic group having a divalent cyclic group or a steroid skeleton having a carbon number of 17-30, selected from the cyclohexane ring or heterocyclic ring, any hydrogen on the cyclic group
  • the atom may be replaced with Z
  • Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocycle, and any hydrogen atom on these cyclic groups may be substituted with Z
  • m is an integer of 0 to 4.
  • Y 5 may be the same or different from each other.
  • Y 6 represents a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, an alkyl fluoride group having 1 to 17 carbon atoms, an alkoxyalkyl group having 2 to 17 carbon atoms, or an alkoxyalkyl group having 2 to 17 carbon atoms.
  • Z represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkyl fluoride group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms or a fluorine atom, and an alkyl group.
  • Alkoxy group, alkyl fluoride group and alkoxy fluoride group may have 1 to 3 of the above-mentioned bonding groups in the group as long as the bonding groups are not adjacent to each other.
  • the group and the fluorinated alkoxyalkyl group may be bonded to a group adjacent to them via the above-mentioned bonding group.
  • the total number of carbon atoms of the substituents Y 2 ⁇ Y 6 represents is 1-30, including the number of carbon atoms of the linking group.
  • alkylene group having 1 to 15 carbon atoms examples include a divalent group obtained by removing one hydrogen atom from the alkyl group having 1 to 15 carbon atoms among the alkyl groups having 1 to 17 carbon atoms, which will be described later.
  • examples thereof include methylene, ethylene, propylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene group and the like.
  • heterocycle examples include a pyrazole ring, an imidazole ring, an oxazole ring, a thiazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a quinoline ring, an isoquinoline ring, a carbazole ring, a purine ring, a thiazizole ring, a pyridazine ring, and a pyrazoline ring.
  • Examples thereof include a triazine ring, a pyrazolidine ring, a triazole ring, a pyrazine ring, a benzimidazole ring, a synnoline ring, a phenanthroline ring, an indole ring, a quinoxaline ring, a benzthiazole ring, a phenothiazine ring, an oxadiazole ring, and an acrydin ring.
  • Pyrazole ring imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, carbazole ring, pyridazine ring, pyrazoline ring, triazole ring, pyrazolidine ring, triazole ring, pyrazine ring, benzimidazole ring are preferable.
  • divalent organic group having a steroid skeleton having 17 to 30 carbon atoms include cholesteryl, androsteryl, ⁇ -cholesteryl, epiandrosteryl, ergosteryl, estryl, 11 ⁇ -hydroxymethylsteryl, 11 ⁇ -progesteryl, and lanosteryl. , Melatranil, Methyltestrosteryl, Noretisteryl, Pregnenonyl, ⁇ -Cytosteryl, Stigmasteryl, Testosteryl, and Divalent organic groups having a structure in which two hydrogen atoms are removed from a structure selected from cholesterol acetate and the like. , Not limited to these.
  • alkyl groups having 1 to 17 carbon atoms methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, 1 -Methyl-n-hexyl, 2-methyl-n-hexyl, 3-methyl-n-hexyl, 1,1-dimethyl-n-pentyl, 1,2-dimethyl-n-pentyl, 1,3-dimethyl-n -Pentyl, 2,2-dimethyl-n-pentyl, 2,3-dimethyl-n-pentyl, 3,3-dimethyl-n-pentyl, 1-ethyl-n-pentyl, 2-ethyl-n-pentyl, 3 -Ethyl-n-pentyl, 1-methyl-1-ethyl-n-
  • alkyl fluoride group having 1 to 17 carbon atoms examples include a group in which at least one hydrogen atom in the alkyl group having 1 to 17 carbon atoms is replaced with a fluorine atom, and specific examples thereof include fluoromethyl and difluoromethyl.
  • Trifluoromethyl pentafluoroethyl, 2,2,2-trifluoroethyl, heptafluoropropyl, 2,2,3,3,3-pentafluoropropyl, 2,2,3,3-tetrafluoropropyl, 2 , 2,2-Trifluoro-1- (trifluoromethyl) ethyl, nonafluorobutyl, 4,4,4-trifluorobutyl, undecafluoropentyl, 2,2,3,3,4,5, 5,5-Nonafluoropentyl, 2,2,3,3,4,5,5-octafluoropentyl, tridecafluorohexyl, 2,2,3,3,4,5,5,6 , 6,6-Undecafluorohexyl, 2,2,3,3,4,5,5,6,6-decafluorohexyl, 3,3,4,4,5,5,6,6 , 6-Nonafluorohexyl and the like.
  • fluorinated alkoxy group having 1 to 17 carbon atoms include a group in which an oxygen atom (—O—) is bonded to the above-mentioned alkyl fluoride group having 1 to 17 carbon atoms, and specific examples thereof include fluoro.
  • Examples of the alkyl group having 1 to 3 carbon atoms in Z include those having 1 to 3 carbon atoms among the groups exemplified in 1 to 17 carbon atoms, and the alkoxy group having 1 to 3 carbon atoms includes Among the groups exemplified by the above-mentioned alkoxy groups having 1 to 17 carbon atoms, those having 1 to 3 carbon atoms can be mentioned, and examples of the alkyl fluoride group having 1 to 3 carbon atoms include the above-mentioned alkyl fluoride having 1 to 17 carbon atoms.
  • the groups exemplified by the groups those having 1 to 3 carbon atoms can be mentioned, and as the fluorinated alkoxy group having 1 to 3 carbon atoms, among the groups exemplified by the fluorinated alkoxy groups having 1 to 17 carbon atoms, carbon The number 1 to 3 can be mentioned.
  • Y 1 is preferably a single bond
  • Y 2 is preferably a benzene ring or a cyclohexane ring
  • Y 3 is preferably an alkylene group having 1 to 15 carbon atoms and having 1 to 15 carbon atoms. 1 to 9 alkylene groups are more preferable
  • Y 4 is preferably a benzene ring, a cyclohexane ring or a divalent organic group having a steroid skeleton having 17 to 30 carbon atoms
  • Y 5 is a benzene ring or a cyclohexane ring.
  • Y 6 represents an alkyl group having 1 to 17 carbon atoms, fluorinated alkyl group having 1 to 10 carbon atoms, fluorinated alkoxyalkyl group an alkoxyalkyl group or a C 2-17 having 2 to 17 carbon atoms preferably, carbon Alkyl groups having a number of 1 to 12 are more preferable, and alkyl groups having 1 to 9 carbon atoms are even more preferable.
  • Y 4 is a divalent organic group having a steroid skeleton
  • Y 6 is preferably a hydrogen atom
  • m is preferably 0 to 3, more preferably 0 to 2, and even more preferably 0 or 1.
  • the alkylene group, alkyl group, alkyl fluoride group, alkoxy group and alkoxy fluoride group may have 1 to 3 of the above-mentioned bonding groups as long as the bonding groups are not adjacent to each other.
  • the total carbon number of the substituents represented by Y 2 to Y 6 is 1 to 30, but 1 to 20 is preferable.
  • the terminal alkyl group is preferably an alkyl group having 1 to 17 carbon atoms.
  • Y 1 ⁇ Y 4 is a single bond
  • m is 2 or 3
  • Y 5 is a benzene ring or
  • a site (a-2) which is a cyclohexane ring and Y 6 is an alkyl group having 1 to 17 carbon atoms and which induces out-of-plane orientation can also be preferably used.
  • Y 6 is the same as above, and Y represents a single bond, or -O-, -CH 2 O-, -COO-, -OCO-, -NH 2- , -NHCO-, -NH-CO. Represents a binding group selected from -O- and -NH-CO-NH-.
  • Y 1 ⁇ Y 3 is a single bond
  • Y 4 is a steroid skeleton having 17-30 carbon atoms
  • a site (a-3) that induces out-of-plane orientation, which is a divalent organic group having, m is 0, and Y 6 is a hydrogen atom, can also be preferably used.
  • Examples of the site (a-3) that induces such out-of-plane orientation include, but are limited to, the groups shown in the following (a-3-1) to (a-3-8). It's not a thing. In the formula, * represents the bonding position.
  • the site for inducing the out-of-plane orientation described above is a polymer having an unsaturated double bond such as a (meth) acrylic monomer, a vinyl monomer, a styrene monomer, or a maleimide monomer. Although it can be introduced, in this case as well, it is preferable to introduce it into the polymer using a (meth) acrylic monomer having a site that induces the out-of-plane orientation.
  • the side chain type polymer (A) preferably has one or more liquid crystal side chains selected from the group consisting of the following formulas (21) to (31).
  • a and B have the same definition as above; q1 and q2 are independently 0 or 1, respectively.
  • R 2 is a hydrogen atom, -NO 2 , -CN, a halogen atom, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocycle, and an alicyclic hydrocarbon having 5 to 8 carbon atoms.
  • a monomer having an organic site for in-plane orientation is a monomer capable of forming a polymer having a site for inducing in-plane orientation in the side chain site of the polymer when the polymer is formed. ..
  • Examples of the monomer having an organic site for in-plane orientation include the monomer (A-1) having the structure of the formula (1), the monomer (A-2) having the structure of the formula (2), and the structure of the formula (3).
  • the monomer (A-3) having is preferable.
  • the monomer (A-1) and the monomer (A-2) are radically polymerizable groups such as hydrocarbons, (meth) acrylates, itacones, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, and norbornene.
  • a monomer having a polymerizable group composed of at least one selected from the group consisting of a trialkoxysilyl group and a photosensitive side chain selected from the structures represented by the above formulas (1) and (2) is preferable. ..
  • the polymerizable group is preferably selected from the groups represented by the following formulas PG1 to PG8. Of these, an acrylic group or a methacrylic group represented by PG1 is preferable from the viewpoint of easy control of the polymerization reaction and stability of the polymer.
  • the broken line represents the bond with the photosensitive side chain represented by the above formulas (1), (2) or (3).
  • M1 is a hydrogen atom or a methyl group.
  • Examples of the monomer (A-1) include monomers selected from the following formulas A-1-1 to A-1-12.
  • PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups and is an integer of 2 to 9.
  • Examples of the monomer (A-2) include monomers selected from the following formulas A-2-1 to A-2-8.
  • PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 and s2 each independently represent the number of methylene groups of 2 to 9. It is an integer.
  • the monomer (A-3) is a monomer having a group (3), and although this group (3) does not have liquid crystal properties by itself, it has a structure similar to that of liquid crystals by being dimerized by hydrogen bonds in the plane. It becomes. When the structure is changed by light irradiation, the hydrogen bond is cleaved and the structure is not similar to that of the liquid crystal. As a result, it can be a site that induces in-plane orientation by the above mechanism.
  • Examples of the monomer (A-3) having such a group (3) include a monomer selected from the following formulas A-3-1 to A-3-5.
  • PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups, which is an integer of 2 to 9.
  • Examples of the monomer (A-3) having the structure represented by the above formula (3) include 4- (6-methacryloxyhexyl-1-oxy) cinnamic acid and 4- (6-acrylicoxyhexyl-1). -Oxy) cinnamic acid, 4- (3-methacryloxypropyl-1-oxy) cinnamic acid, 4- (4- (6-methacryloxyhexyl-1-oxy) benzoyloxy) cinnamic acid and the like. ..
  • Specific monomers include alkyl esters of (meth) acrylic acid, alkyl vinyl ethers, 2-alkyl styrenes, 3-alkyl styrenes, 4-alkyl styrenes, and N-alkyl maleimides, the alkyl groups having 1 to 20 carbon atoms. Things can be mentioned. These monomers can be produced by known methods, and some are commercially available.
  • a monomer represented by a formula selected from the group consisting of the following formulas M3-1 to M3-4 is preferable.
  • X and Y independently represent a single bond, -O-, -CH 2- , -NH-, -CO-, -COO- or -OCO-, and R is a methyl group, a methoxy group or a tri.
  • PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, s1 represents the number of methylene groups, is an integer of 2 to 9, and s2 is the number of methylene groups. Is an integer of 2 to 12.
  • the liquid crystal side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogen group at a side chain site.
  • the mesogen group of the side chain even if it is a group having a mesogen structure by itself such as biphenyl or phenylbenzoate, or a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid. Good.
  • the following structure is preferable as the mesogen group contained in the side chain.
  • liquid side chain monomers include hydrocarbons, (meth) acrylates, itaconates, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene and other radically polymerizable groups. It is preferable that the structure has a polymerizable group composed of at least one selected from the group consisting of siloxane and a side chain composed of at least one of the above formulas (21) to (31).
  • a monomer represented by a formula selected from the group consisting of the following formulas M2-1 to M2-5 can also be used as the monomer having a carboxyl group.
  • PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups, which is an integer of 2 to 9.
  • a monomer having a substituent that expresses liquid crystallinity which is an example of the other monomer
  • a monomer represented by a formula selected from the group consisting of the following formulas M2-10 to M2-16 can also be used.
  • PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups, which is an integer of 2 to 9.
  • the polymer which is the component (A) of the present application has a side chain (a) having a group selected from a nitrogen-containing aromatic heterocyclic group, an amide group and a urethane group in order to obtain a more durable liquid crystal alignment film. You may also have.
  • the monomer having a side chain (a) may be copolymerized.
  • Examples of the monomer having such a side chain (a) include hydrocarbons, (meth) acrylates, itacones, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene and other radically polymerizable groups and siloxanes. It is preferable that the structure has a polymerizable group composed of at least one selected from the above group and a side chain having a nitrogen-containing aromatic heterocyclic group, an amide group and a urethane group. The NH of the amide group and the urethane group may or may not be substituted. Examples of the substituent which may be substituted include an alkyl group, an amino group protecting group, a benzyl group and the like.
  • the nitrogen-containing aromatic heterocycle consists of a group consisting of the following formulas [20a], [20b] and [20c] (in the formula, Z 2 is a linear or branched alkyl group having 1 to 5 carbon atoms). It is preferably an aromatic heterocycle containing at least one selected structure, preferably 1 to 4 structures.
  • examples of the monomer having a nitrogen-containing aromatic heterocyclic group include, for example, 2- (2-pyridylcarbonyloxy) ethyl (meth) acrylate and 2- (3-pyridylcarbonyloxy).
  • Ethyl (meth) acrylate, 2- (4-pyridylcarbonyloxy) ethyl (meth) acrylate, and the like can be mentioned.
  • the monomer having an amide group or a urethane group examples include 2- (4-methylpiperidin-1-ylcarbonylamino) ethyl (meth) acrylate and 4- (6-methacryloyloxyhexyloxy) benzoic acid.
  • Examples thereof include N- (tert-butyloxycarbonyl) piperidine-4-yl ester and 4- (6-methacryloyloxyhexyloxy) benzoic acid 2- (tert-butyloxycarbonylamino) ethyl ester.
  • the side chain type polymer (A) includes the above-mentioned monomer having a site for inducing in-plane orientation, a monomer having a site for inducing out-of-plane orientation, a monomer having a liquid liquid side chain if desired, and a side chain if desired. It can be obtained by a copolymerization reaction with the monomer having (a). Furthermore, it can be copolymerized with other monomers as long as the effects of the present invention are not impaired.
  • Examples of other monomers include industrially available radical polymerization-reactive monomers. Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic acid anhydrides, styrene compounds and vinyl compounds.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
  • acrylic acid ester compound examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-butyl.
  • methacrylate ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate and tert-butyl.
  • vinyl compound examples include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
  • styrene compound examples include styrene, 2-methylstyrene, 3-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 2-bromostyrene, 3-bromostyrene and the like.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
  • the content of the site that induces out-of-plane orientation in the side chain polymer of the present invention is preferably 0.1 mol% to 50 mol%, preferably 0.5 mol% to 40, from the viewpoint of affecting the liquid crystal orientation. More preferably, 1 mol% to 35 mol%.
  • the content of the side chain having a site that induces in-plane orientation in the side chain type polymer of the present invention is preferably 20 mol% to 99.9 mol%, preferably 30 mol% to 95 mol, from the viewpoint of liquid crystal orientation. % Is more preferable, and 40 mol% to 90 mol% is further preferable.
  • the content of the liquid crystal side chain in the side chain polymer of the present invention is preferably 80 mol% or less, more preferably 10 mol% to 70 mol%, and 20 mol% when it is contained, from the viewpoint of liquid crystal orientation. -60 mol% is more preferred.
  • the content of the side chain (a) in the side chain type polymer of the present invention is preferably 60 mol% or less, and more preferably 0.3 mol% to 50 mol% when it is contained, from the viewpoint of expression of tilt angle. More preferably, it is 0.5 mol% to 30 mol%.
  • the side chain type polymer of the present invention includes a side chain having a site that induces out-of-plane orientation, a side chain having a site that induces in-plane orientation, a liquid crystal side chain, and other side chains other than the side chain (a). It may be contained.
  • the total content of the side chain having a site that induces out-of-plane orientation, the side chain having a site that induces in-plane orientation, the liquid crystal side chain, and the side chain (a) is less than 100%. If so, the rest.
  • the method for producing the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is industrially handled can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystal side chain monomer or a photoreactive side chain monomer. Of these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
  • polymerization initiator for radical polymerization known compounds such as a radical polymerization initiator and a reversible addition-cracking chain transfer (RAFT) polymerization reagent can be used.
  • RAFT reversible addition-cracking chain transfer
  • the radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature.
  • radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), and hydroperoxides (peroxidation).
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone and 2-hydroxy.
  • the radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a massive polymerization method, a solution polymerization method and the like can be used.
  • the organic solvent used for the polymerization reaction of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as the produced polymer dissolves. Specific examples are given below.
  • organic solvents may be used alone or in combination. Further, even if the solvent does not dissolve the produced polymer, it may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate. Further, in radical polymerization, oxygen in the organic solvent causes inhibition of the polymerization reaction, so it is preferable to use an organic solvent degassed to the extent possible.
  • the polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 to 150 ° C, but is preferably in the range of 50 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a polymer having a high mass, and if the concentration is too high, the viscosity of the reaction solution becomes too high, making uniform stirring difficult. Therefore, the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial reaction can be carried out at a high concentration and then an organic solvent can be added.
  • the ratio of the radical polymerization initiator when the ratio of the radical polymerization initiator is large with respect to the monomer, the molecular weight of the obtained polymer is small, and when the ratio of the radical polymerization initiator is small, the molecular weight of the obtained polymer is large. It is preferably 0.1 to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added at the time of polymerization.
  • the polymer which has been put into a poor solvent and precipitated can be collected by filtration and then dried at normal temperature or by heating under normal pressure or reduced pressure. Further, if the operation of redistributing the polymer recovered by precipitation in an organic solvent and repeating the operation of recovering the precipitate again 2 to 10 times, impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the purification efficiency is further improved.
  • the molecular weight of the side chain polymer (A) of the present invention is measured by the GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, the workability at the time of forming the coating film, and the uniformity of the coating film.
  • the weight average molecular weight obtained is preferably 2000 to 1000000, more preferably 5000 to 500,000.
  • the polymer composition used in the present invention is preferably prepared as a coating liquid so as to be suitable for forming a liquid crystal alignment film. That is, the polymer composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
  • the resin component is a resin component containing a photosensitive side-chain type polymer capable of exhibiting liquid crystallinity as described above.
  • the content of the resin component is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass.
  • all of the above-mentioned resin components may be photosensitive side-chain polymers capable of exhibiting the above-mentioned liquid crystallinity, but the liquid crystal expression ability and photosensitive performance are not impaired.
  • Other polymers may be mixed in the range.
  • the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
  • examples of such other polymers include polymers composed of poly (meth) acrylate, polyamic acid, polyimide, etc., and are not photosensitive side chain polymers capable of exhibiting liquid crystallinity.
  • the organic solvent used in the polymer composition used in the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, Dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-Dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethylamyl ketone, methyl nonyl ketone, methyl e
  • the polymer composition used in the present invention may contain components other than the above components (A) and (B). Examples thereof include solvents and compounds that improve film thickness uniformity and surface smoothness when the polymer composition is applied, compounds that improve the adhesion between the liquid crystal alignment film and the substrate, (C) amine compounds, and the like. However, it is not limited to this.
  • the solvent (poor solvent) for improving the uniformity of the film thickness and the surface smoothness include the following.
  • These poor solvents may be used alone or in admixture of a plurality of types.
  • the above-mentioned solvent it is preferably 5 to 80% by mass, more preferably 20% by mass, so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. ⁇ 60% by mass.
  • Examples of the compound for improving the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant. More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd.), Megafuck (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (3M Japan Ltd.), Asahi Guard (registered trademark) AG710 (AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (AGC Seimi Chemical), etc. Can be mentioned.
  • the ratio of these surfactants used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, based on 100 parts by mass of the resin component contained in the polymer composition. ..
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
  • functional silane-containing compounds For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane.
  • the following phenoplast-based or epoxy group-containing compounds are added for the purpose of preventing deterioration of electrical characteristics due to the backlight when the liquid crystal display element is configured.
  • the agent may be contained in the polymer composition. Specific phenoplast-based additives are shown below, but are not limited to this structure.
  • Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-Hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N', N'-tetraglycidyl-m-xylene diamine, 1,3-bis (N, N-diglycidyl aminomethyl) cyclohexane, N, N, N', N'-tetraglycidyl-4, 4'-diaminodiphenylmethane, etc.
  • the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the polymer composition. It is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it is more than 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the polymer composition used in the present invention has a specific amine compound as the component (C), specifically, one primary amino group in the molecule and a nitrogen-containing aromatic heterocycle, and is described above. It can have an amine compound in which the primary amino group is attached to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group. Such a compound is described as a component (B) in WO2008 / 013285. By containing such an amine compound, elution of ionic impurities can be reduced when the liquid crystal alignment film is formed.
  • the specific amine compound is not particularly limited as long as it exhibits the following effects i) and / or ii) when the polymer composition used in the present invention forms a liquid crystal alignment film. i) Adsorbs ionic impurities in the liquid crystal at the liquid crystal alignment film interface and / or ii) exhibits an improved voltage retention rate.
  • the amount of the specific amine compound is not particularly limited as long as it exhibits the above effects, but is 0.01 to 10 parts by mass, preferably 0.1 to 5 parts by mass, out of 100 parts by mass of the polymer composition used in the present invention. It should be parts by mass.
  • a photosensitizer can also be used as the additive. Colorless sensitizers and triplet sensitizers are preferred. Photosensitizers include aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy-4-methylcoumarin), ketocoumarins, carbonylbiscoumarins, aromatic 2-hydroxyketones, and amino substitutions. Also, aromatic 2-hydroxyketone (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthron, thiazolin (2-benzoylmethylene-).
  • dielectrics and conductive substances can be used for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired.
  • a crosslinkable compound may be added for the purpose of increasing the hardness and the density of the film when the liquid crystal alignment film is formed.
  • the method of applying the above-mentioned polymer composition onto a substrate having an electrode for driving a liquid crystal is not particularly limited.
  • the coating method is generally screen printing, offset printing, flexographic printing, an inkjet method, or the like.
  • Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method (rotary coating method), a spray method, and the like, and these may be used depending on the purpose.
  • the temperature is 50 to 230 ° C., preferably 50 to 220 ° C. by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven.
  • the coating film can be obtained by evaporating the solvent for 0.4 to 60 minutes, preferably 0.5 to 10 minutes.
  • the drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer.
  • the thickness of the coating film is preferably 5 to 300 nm, more preferably 10 to 150 nm. Is. It is also possible to provide a step of cooling the substrate on which the coating film is formed to room temperature after the step [I] and before the subsequent step [II].
  • the coating film obtained in the step [I] is irradiated with ultraviolet rays polarized so that the S wave is the main component from an oblique direction.
  • the substrate is irradiated with polarized ultraviolet rays from a certain direction via a polarizing plate.
  • ultraviolet rays to be used ultraviolet rays having a wavelength in the range of 100 to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of coating film used.
  • ultraviolet rays having a wavelength in the range of 290 to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
  • the ultraviolet rays for example, light emitted from a high-pressure mercury lamp can be used.
  • the irradiation amount of ultraviolet rays polarized so that the S wave is the main component depends on the coating film used.
  • the irradiation amount is a polarized ultraviolet ray that realizes the maximum value of ⁇ A (hereinafter, also referred to as ⁇ Amax), which is the difference between the ultraviolet ray absorbance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet ray absorbance in the vertical direction in the coating film.
  • the amount is preferably in the range of 1 to 70%, and more preferably in the range of 1 to 50%.
  • the irradiation direction of the polarized ultraviolet rays is usually 1 ° to 89 ° with respect to the substrate, but is preferably 10 ° to 80 °, particularly preferably 20 ° to 70 °. If this angle is too small, there is a problem that the pre-tilt angle becomes small, and if it is too large, there is a problem that the pre-tilt angle becomes high.
  • step [III] the coating film irradiated with ultraviolet rays polarized in step [II] is heated.
  • Orientation control ability can be imparted to the coating film by heating.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used.
  • the heating temperature can be determined in consideration of the temperature at which the liquid crystal property of the coating film to be used is exhibited.
  • the heating temperature is preferably within the temperature range of the temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as the liquid crystal expression temperature).
  • the liquid crystal expression temperature is expected to be lower than the liquid crystal development temperature when a photosensitive side chain polymer capable of exhibiting liquid crystal properties is observed in bulk.
  • the liquid crystal therefore, the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the surface of the coating film. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is set to a temperature 10 ° C.
  • the temperature is preferably in the range up to. If the heating temperature is lower than the above temperature range, the effect of amplifying the anisotropy due to heat in the coating film tends to be insufficient, and if the heating temperature is too high above the above temperature range, the state of the coating film is in a state. Tends to be close to an isotropic liquid state (isotropic phase), in which case self-assembly can make it difficult to reorient in one direction.
  • the liquid crystal development temperature is equal to or higher than the glass transition temperature (Tg) at which the side chain polymer or the coating surface undergoes a phase transition from the solid phase to the liquid crystal phase, and the liquid crystal phase changes to the isotropic phase (isotropic phase).
  • Tg glass transition temperature
  • Tiso isotropic phase transition temperature
  • the thickness of the coating film formed after heating is preferably 5 to 300 nm, more preferably 50 to 150 nm for the same reason described in step [I].
  • the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. Then, a substrate with a liquid crystal alignment film can be manufactured with high efficiency.
  • step [IV] the substrate obtained in the two steps [III] arranged so that the sides on which the liquid crystal alignment film of the substrate was formed face each other, the liquid crystal layer provided between the substrates, and the substrate and the liquid crystal.
  • step [IV] the substrate obtained in the two steps [III] arranged so that the sides on which the liquid crystal alignment film of the substrate was formed face each other, the liquid crystal layer provided between the substrates, and the substrate and the liquid crystal.
  • Such liquid crystal display elements of the present invention include a twisted nematic (TN: Twisted Nematic) method, a vertical alignment (VA: Vertical Alignment) method, a horizontal alignment (IPS: In-Plane Switching) method, and an OCB alignment (OCB:). Optically Compensated Bend) and the like.
  • TN Twisted Nematic
  • VA Vertical Alignment
  • IPS In-Plane Switch
  • the above-mentioned first and second substrates are prepared, a spacer is sprayed on the liquid crystal alignment film of one of the substrates, and the liquid crystal alignment film surface is on the inside.
  • the other substrate is bonded so that the ultraviolet exposure directions are orthogonal to each other, and the liquid crystal is injected under reduced pressure to seal the liquid crystal, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacer is sprayed, and then the substrate is used.
  • the diameter of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m. This spacer diameter determines the distance between the pair of substrates sandwiching the liquid crystal layer, that is, the thickness of the liquid crystal layer.
  • the heating temperature is the phase transition temperature of the liquid crystal, preferably 10 to 160 ° C, more preferably 50 to 140 ° C.
  • the polymer composition is applied onto the substrate to form a coating film, and then polarized ultraviolet rays are irradiated from an oblique direction.
  • highly efficient anisotropy is introduced into the side chain type polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal orientation control ability is manufactured.
  • the coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the photoreaction of side chains and self-assembly based on liquid crystallinity. ..
  • the coating film used in the method of the present invention is a liquid crystal alignment film having excellent orientation control ability because anisotropy is introduced with high efficiency by sequentially irradiating the coating film with polarized ultraviolet rays and heat treatment. can do.
  • the irradiation amount and irradiation direction of polarized ultraviolet rays on the coating film and the heating temperature in the heat treatment are optimized.
  • highly efficient introduction of anisotropy into the coating film can be realized.
  • the optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the coating film used in the present invention is the irradiation amount of polarized ultraviolet rays that optimizes the amount of photoisomerization reaction of photosensitive groups in the coating film. Corresponds to.
  • polarized ultraviolet rays if the number of photosensitive groups in the side chain undergoing photoisomerization reaction is small, the amount of photoreaction is not sufficient. In that case, even if it is heated after that, sufficient self-organization does not proceed.
  • the optimum amount of photoisomerization reaction of the photosensitive groups of the side chain by irradiation with polarized ultraviolet rays is 0.1 to 0.1 to 0.1 to the photosensitive groups of the side chain type polymer film. It is preferably 40 mol%, more preferably 0.1 to 20 mol%.
  • the amount of photoisomerization reaction of the photosensitive group in the side chain of the side chain type polymer film is optimized by optimizing the irradiation amount of polarized ultraviolet rays. Then, in combination with the subsequent heat treatment, highly efficient introduction of anisotropy into the coating film used in the present invention is realized. In that case, the suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the coating film used in the present invention.
  • the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorption in the vertical direction after irradiation with polarized ultraviolet rays are measured, respectively.
  • ⁇ A which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction
  • ⁇ Amax the maximum value ( ⁇ Amax) of ⁇ A realized in the coating film used in the present invention and the irradiation amount of polarized ultraviolet rays to realize it are obtained.
  • a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined based on the amount of polarized ultraviolet rays that realizes this ⁇ Amax.
  • the irradiation amount of polarized ultraviolet rays on the coating film used in the present invention is preferably in the range of 1 to 70% of the amount of polarized ultraviolet rays that realize ⁇ Amax, and 1 to 50%. It is more preferable that the content is within the range of.
  • the irradiation amount of polarized ultraviolet rays in the range of 1 to 50% of the amount of polarized ultraviolet rays that realize ⁇ Amax is 0.1 of the entire photosensitive groups of the side chain type polymer film. Corresponds to the amount of polarized ultraviolet light that photocrosslinks up to 20 mol%.
  • the suitable heating temperature as described above is set based on the liquid crystal temperature range of the side chain polymer. It is better to determine. Therefore, for example, when the liquid crystal temperature range of the side chain polymer used in the present invention is 100 to 200 ° C., it is desirable that the heating temperature after irradiation with polarized ultraviolet rays is 90 to 190 ° C. By doing so, the coating film used in the present invention is imparted with greater anisotropy. By doing so, the liquid crystal display element provided by the present invention exhibits high reliability against external stress such as light and heat.
  • the liquid crystal display element substrate or the liquid crystal display element having the substrate manufactured by the method of the present invention has excellent reliability and orientation stability, and is a large-screen, high-definition liquid crystal television or the like. Can be suitably used for.
  • the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
  • MA-1 was synthesized by the synthetic method described in Patent Document (WO2011-084546).
  • MA-2 was synthesized by the synthetic method described in Patent Document (Japanese Patent Laid-Open No. 9-118717).
  • MA-3 and MA-4 were synthesized by the synthetic method described in Patent Document (WO2011-125876).
  • MA-6 was synthesized by the synthetic method described in the international patent application publication WO2014 / 054785 pamphlet.
  • MA-7 was synthesized by the synthetic method described in the non-patent document (Macromolecules 2007, 40, 6355-6360).
  • MA-8 was synthesized by the synthetic method described in the non-patent document (Macromolecules 2002, 35, 706-713).
  • MA-10 was synthesized by the synthetic method described in Patent Document (Japanese Patent Laid-Open No. 9-118717).
  • MA-11 was synthesized by the synthetic method described in Patent Document (WO2017-018501).
  • MA-12 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
  • MA-13 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
  • MA-5 is a novel compound which has not been published in the literature, and its synthesis method will be described in detail in the following Monomer Synthesis Example 1.
  • liquid crystal alignment agents A2 to 9 and B1 to 5 under the conditions shown in Table 1 liquid crystal alignment agents were prepared by using the same method as the liquid crystal alignment agents A1.
  • a substrate for measuring the photoreaction rate was prepared by the procedure shown below.
  • a quartz substrate having a size of 40 mm ⁇ 40 mm and a thickness of 1.0 mm was used as the substrate.
  • the liquid crystal alignment agent A1 was filtered through a filter having a filter pore size of 1.0 ⁇ m, spin-coated on a quartz substrate, and dried on a hot plate at 70 ° C. for 90 seconds to form a liquid crystal alignment film having a film thickness of 100 nm.
  • Example 1 After tilting the coating film surface by 45 ° and irradiating the substrate with S-wave 313 nm ultraviolet rays at 40 mJ / cm 2 through a polarizing plate, the substrate with a liquid crystal alignment film that has been photoreacted is heated on a hot plate at 130 ° C. for 20 minutes. Obtained.
  • a para represents the absorbance in the direction parallel to the irradiated polarized UV direction
  • a per represents the absorbance in the direction perpendicular to the irradiated polarized UV direction.
  • a large represents the absorbance having a larger value by comparing the absorbances in the parallel direction and the vertical direction
  • a small represents the absorbance having a smaller value by comparing the absorbances in the parallel direction and the vertical direction. The closer the absolute value of the in-plane orientation is to 1, the more uniform the orientation is.
  • the liquid crystal alignment agent (A1) was filtered through a 0.45 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 70 ° C. for 90 seconds, and then a liquid crystal alignment film having a film thickness of 100 nm was formed. ..
  • Example 10 The coating film surface was tilted by 45 °, and after irradiating the substrate with S-wave 313 nm ultraviolet rays 2 at 40 mJ / cm 2 through a polarizing plate, the substrate was heated on a hot plate at 130 ° C. for 20 minutes to obtain a substrate with a liquid crystal alignment film.
  • Two such substrates with a liquid crystal alignment film are prepared, a spacer of 4 ⁇ m is installed on the liquid crystal alignment film surface of one of the substrates, and then the two substrates are combined so that the orientation directions are parallel to each other.
  • the periphery was sealed leaving the above, and an empty cell having a cell gap of 4 ⁇ m was prepared.
  • Liquid crystal MLC-3018 manufactured by Merck & Co., Inc.
  • liquid crystal cells were prepared by the same method as in Example 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention provides: a liquid crystal alignment film to which alignment control ability is imparted with high efficiency and which has excellent tilt angle characteristics; a polymer composition that provides the liquid crystal alignment film; and a liquid crystal display element. The present invention provides a method for producing a substrate having a liquid crystal alignment film to which alignment control ability is imparted, the method comprising: [I] a step for forming a coating film by applying a polymer composition containing an organic solvent (B) and a polymer (A) having, in separate side chains, a moiety that induces in-plane alignment in a direction (S-wave direction) perpendicular to a parallel direction (P-wave direction) of polarized ultraviolet light and a moiety that induces out-of-plane alignment, to a substrate having an electrode for liquid crystal driving; [II] a step for irradiating the coating film obtained in [I] with polarized ultraviolet light having S waves as a main component from a diagonal direction; and [III] a step for heating the coating film obtained in [II].

Description

重合体組成物、液晶配向膜、液晶表示素子、及び液晶配向膜を有する基板の製造方法A method for producing a polymer composition, a liquid crystal alignment film, a liquid crystal display element, and a substrate having a liquid crystal alignment film.
 本発明は、新規な重合体組成物又は新規な液晶配向剤、それを用いて形成される液晶配向膜、該液晶配向膜を有する基板、該基板を有する液晶表示素子、および当該配向膜を有する基板の製造方法に関する。さらには、チルト角特性に優れる液晶表示素子を製造するための新規な方法に関する。 The present invention has a novel polymer composition or a novel liquid crystal alignment agent, a liquid crystal alignment film formed by using the novel polymer composition, a substrate having the liquid crystal alignment film, a liquid crystal display element having the substrate, and the alignment film. Regarding the method of manufacturing a substrate. Furthermore, the present invention relates to a novel method for manufacturing a liquid crystal display element having excellent tilt angle characteristics.
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられるなど、目覚ましい発展を遂げている。液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。 Liquid crystal display elements are known as lightweight, thin, and low power consumption display devices, and in recent years, they have made remarkable progress, such as being used for large-scale television applications. The liquid crystal display element is configured by sandwiching the liquid crystal layer between, for example, a pair of transparent substrates provided with electrodes. In the liquid crystal display element, an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired orientation state between the substrates.
 すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。そして、液晶配向膜には、液晶を、例えば、基板に対して平行な方向など、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割を求められることがある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。 That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, is formed on the surface of the substrate that sandwiches the liquid crystal in contact with the liquid crystal, and plays a role of orienting the liquid crystal in a certain direction between the substrates. The liquid crystal alignment film may be required to have a role of controlling the pretilt angle of the liquid crystal in addition to the role of orienting the liquid crystal in a certain direction such as a direction parallel to the substrate. The ability to control the orientation of the liquid crystal in such a liquid crystal alignment film (hereinafter referred to as the orientation control ability) is given by performing an orientation treatment on the organic film constituting the liquid crystal alignment film.
 配向制御能を付与するための液晶配向膜の配向処理方法としては、従来からラビング法が知られている。ラビング法とは、基板上のポリビニルアルコールやポリアミドやポリイミド等の有機膜に対し、その表面を綿、ナイロン、ポリエステル等の布で一定方向に擦り(ラビングし)、擦った方向(ラビング方向)に液晶を配向させる方法である。このラビング法は簡便に比較的安定した液晶の配向状態を実現できるため、従来の液晶表示素子の製造プロセスにおいて利用されてきた。そして、液晶配向膜に用いられる有機膜としては、耐熱性等の信頼性や電気的特性に優れたポリイミド系の有機膜が主に選択されてきた。 The rubbing method has been conventionally known as an orientation treatment method for a liquid crystal alignment film for imparting orientation control ability. The rubbing method is to rub the surface of an organic film such as polyvinyl alcohol, polyamide, or polyimide on a substrate with a cloth such as cotton, nylon, or polyester in a certain direction (rubbing) in a rubbing direction (rubbing direction). This is a method of orienting a liquid crystal. Since this rubbing method can easily realize a relatively stable orientation state of a liquid crystal, it has been used in a conventional manufacturing process of a liquid crystal display element. As the organic film used for the liquid crystal alignment film, a polyimide-based organic film having excellent reliability such as heat resistance and electrical characteristics has been mainly selected.
 しかしながら、ポリイミドなどからなる液晶配向膜の表面を擦るラビング法は、発塵や静電気の発生が問題となることがあった。また、近年の液晶表素子の高精細化や、対応する基板上の電極や液晶駆動用のスイッチング能動素子による凹凸のため、液晶配向膜の表面を布で均一に擦ることができず、均一な液晶の配向を実現できないことがあった。 However, the rubbing method of rubbing the surface of a liquid crystal alignment film made of polyimide or the like may cause problems such as dust generation and generation of static electricity. In addition, due to the recent high definition of liquid crystal surface elements and the unevenness of the corresponding electrodes on the substrate and switching active elements for driving the liquid crystal, the surface of the liquid crystal alignment film cannot be rubbed uniformly with a cloth, and is uniform. Sometimes the orientation of the liquid crystal could not be achieved.
 そこで、ラビングを行わない液晶配向膜の別の配向処理方法として、光配向法が盛んに検討されている。 Therefore, the photo-alignment method is being actively studied as another alignment treatment method for the liquid crystal alignment film without rubbing.
 光配向法には様々な方法があるが、直線偏光またはコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。 There are various photo-alignment methods, but anisotropy is formed in the organic film that constitutes the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is oriented according to the anisotropy.
 主な光配向法としては、分解型の光配向法が知られている。例えば、ポリイミド膜に偏光紫外線を照射し、分子構造の紫外線吸収の偏光方向依存性を利用して異方的な分解を生じさせる。そして、分解せずに残されたポリイミドにより液晶を配向させるようにする(例えば、特許文献1を参照のこと。)。 A split-complex photo-alignment method is known as the main photo-orientation method. For example, the polyimide film is irradiated with polarized ultraviolet rays to cause anisotropic decomposition by utilizing the polarization direction dependence of the ultraviolet absorption of the molecular structure. Then, the liquid crystal is oriented by the polyimide left without decomposition (see, for example, Patent Document 1).
 一方、液晶配向膜は液晶に対し、ある一定の傾斜角(プレチルト角)を付与する役割も担っており、プレチルト角の付与が液晶配向膜の開発において重要な課題となって来ている(特許文献2~5参照)。 On the other hand, the liquid crystal alignment film also plays a role of imparting a certain inclination angle (pre-tilt angle) to the liquid crystal, and imparting the pre-tilt angle has become an important issue in the development of the liquid crystal alignment film (patented). References 2 to 5).
 また、光架橋型による光配向法も知られている。例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせる。更に、斜め方向に偏光紫外線を照射することでプレチルト角が発現する(例えば、非特許文献1を参照のこと。)。また、光配向法によりプレチルト角を付与するために、特定の重合体を用いて、斜方から光照射をするものが知られている(特許文献6、非特許文献2)。 In addition, a photo-alignment method using a photocrosslinking type is also known. For example, polyvinyl synnamate is used to irradiate polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to polarized light. Further, a pre-tilt angle is developed by irradiating polarized ultraviolet rays in an oblique direction (see, for example, Non-Patent Document 1). Further, in order to impart a pre-tilt angle by a photo-alignment method, it is known that a specific polymer is used to irradiate light from an oblique direction (Patent Document 6 and Non-Patent Document 2).
 以上の例のように、光配向法による液晶配向膜の配向処理方法では、ラビングを不要とし、発塵や静電気の発生の懸念が無い。そして、表面に凹凸のある液晶表示素子の基板に対しても配向処理を施すことができ、工業的な生産プロセスに好適な液晶配向膜の配向処理の方法となる。加えて、光配向法は液晶の配向方向を紫外線によって制御できる事から、画素のなかに配向方向の異なる領域を複数形成(配向分割)し,視野角依存性を補償することが可能であり液晶表示素子の表示品位の向上に役立つ。 As in the above example, the method of aligning the liquid crystal alignment film by the photoalignment method does not require rubbing, and there is no concern about dust generation or static electricity generation. Then, the alignment treatment can be performed even on the substrate of the liquid crystal display element having an uneven surface, which is a method of orientation treatment of the liquid crystal alignment film suitable for an industrial production process. In addition, since the optical orientation method can control the orientation direction of the liquid crystal by ultraviolet rays, it is possible to form multiple regions with different orientation directions (orientation division) in the pixels and compensate for the viewing angle dependence. It is useful for improving the display quality of the display element.
日本特許第3893659号公報Japanese Patent No. 38936559 日本特開平02-223916号Japanese Patent Application Laid-Open No. 02-223916 日本特開平04-281427号公報Japanese Patent Application Laid-Open No. 04-281427 日本特開平05-043687号公報Japanese Patent Application Laid-Open No. 05-043687 日本特開平10-333153号公報Japanese Patent Application Laid-Open No. 10-333153 日本特開2000-212310号Japanese Patent Application Laid-Open No. 2000-212310
 以上のように、光配向法は、液晶表示素子の配向処理方法として従来から工業的に利用されてきたラビング法と比べてラビング工程そのものを不要とし、そのため大きな利点を備える。そして、ラビングによって配向制御能がほぼ一定となるラビング法に比べ、光配向法では、偏光した光の照射量を変化させて配向制御能を制御することができる。しかしながら、光配向法では、ラビング法による場合と同程度の配向制御能を実現しようとする場合、大量の偏光した光の照射量が必要となったり、安定な液晶の配向が実現できない場合がある。 As described above, the photo-alignment method does not require the rubbing process itself as compared with the rubbing method that has been industrially used conventionally as an orientation processing method for liquid crystal display elements, and therefore has a great advantage. Then, as compared with the rubbing method in which the orientation control ability is substantially constant by rubbing, in the photoalignment method, the orientation control ability can be controlled by changing the irradiation amount of polarized light. However, in the photo-alignment method, when trying to achieve the same orientation control ability as in the rubbing method, a large amount of polarized light irradiation may be required or stable liquid crystal orientation may not be realized. ..
 例えば、上記した特許文献1に記載の分解型の光配向法では、ポリイミド膜に出力500Wの高圧水銀灯からの紫外光を60分間照射する必要があるなど、長時間かつ大量の紫外線照射が必要となる。また、二量化型や光異性化型の光配向法の場合においても、数J(ジュール)~数十J程度の多くの量の紫外線照射が必要となる場合がある。さらに、光架橋型や光異性化型の光配向法の場合、液晶の配向の熱安定性や光安定性に劣るため、液晶表示素子とした場合に、配向不良や表示焼き付きが発生するといった問題があった。例えば、バックライトが当たる環境で長く使用していると、バックライトによって、光による配向処理時の反応の逆反応が進行することによりチルト角を失う、いわゆるチルト戻りにより、配向不良が発生するという問題があった。 For example, in the decomposition type photoalignment method described in Patent Document 1 described above, it is necessary to irradiate the polyimide film with ultraviolet light from a high-pressure mercury lamp having an output of 500 W for 60 minutes, which requires a long period of time and a large amount of ultraviolet irradiation. Become. Further, even in the case of the dimerization type or photoisomerization type photoalignment method, it may be necessary to irradiate a large amount of ultraviolet rays of about several J (joules) to several tens of J. Further, in the case of the photocrosslinking type or photoisomerization type photoalignment method, the thermal stability and photostability of the liquid crystal orientation are inferior, so that there is a problem that misalignment and display burn-in occur when the liquid crystal display element is used. was there. For example, if the product is used for a long time in an environment where it is exposed to a backlight, the tilt angle is lost due to the reverse reaction of the reaction during the orientation process by light, that is, so-called tilt return causes poor orientation. There was a problem.
 また、特許文献6の方法では、特定の重合体の溶解性が低いために、クロロホルム溶媒等のハロゲン系溶媒を用いており、実用場面に用いるにはなお課題がある。 Further, in the method of Patent Document 6, a halogen-based solvent such as a chloroform solvent is used because the solubility of a specific polymer is low, and there is still a problem in using it in a practical situation.
 したがって、光配向法では、配向処理の高効率化や安定な液晶配向の実現が求められており、液晶配向膜への高い配向制御能の付与を高効率に行うことができる液晶配向膜や液晶配向剤が求められている。 Therefore, in the photo-alignment method, high efficiency of alignment processing and realization of stable liquid crystal alignment are required, and a liquid crystal alignment film or liquid crystal capable of imparting high orientation control ability to the liquid crystal alignment film with high efficiency. Aligners are required.
 本発明は、高効率で配向制御能が付与され、チルト角特性に優れた、液晶表示素子用液晶配向膜を有する基板及び該基板を有する液晶表示素子を提供することを目的とする。
 また、本発明の目的は、上記目的に加えて、向上したチルト角特性を有する液晶表示素子及び該素子のための液晶配向膜を提供することにある。
An object of the present invention is to provide a substrate having a liquid crystal alignment film for a liquid crystal display element and a liquid crystal display element having the substrate, which are provided with high efficiency and orientation control ability and excellent in tilt angle characteristics.
In addition to the above object, an object of the present invention is to provide a liquid crystal display element having improved tilt angle characteristics and a liquid crystal alignment film for the element.
 本発明者らは、上記課題を達成するべく鋭意検討を行った結果、以下の発明を見出した。
 <1> [I](A)偏光紫外線の平行方向(P波方向)に対し垂直方向(S波方向)に面内配向を誘起する部位と、面外配向を誘起する部位とを、それぞれ別の側鎖に有する重合体、及び
 (B)有機溶媒
を含有する重合体組成物を、液晶駆動用の電極を有する基板上に塗布して塗膜を形成する工程;
 [II] [I]で得られた塗膜に、S波が主成分となるように偏光した紫外線を斜め方向から照射する工程;及び
 [III] [II]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された液晶配向膜を得ることを特徴とする、液晶配向膜を有する基板の製造方法。
 <2> 上記<1>において、上記面内配向を誘起する部位が光異性化を起こす部位であるのがよい。
 <3> 上記<1>または<2>において、面内配向を誘起する部位が、S波を主成分とする偏光紫外線の照射方向、すなわち、S波の振動方向に対して平行方向に異方性を発現する基であるのがよい。
 <4> 上記<1>~<3>のいずれかにおいて、面内配向を誘起する部位を有する側鎖が、下記式(1)~(3)から選ばれる式で表される構造を有する側鎖であることが好ましい。
As a result of diligent studies to achieve the above problems, the present inventors have found the following inventions.
<1> [I] (A) A portion that induces in-plane orientation in a direction (S-wave direction) perpendicular to the parallel direction (P-wave direction) of polarized ultraviolet rays and a portion that induces out-of-plane orientation are separated. A step of applying a polymer having a side chain of (B) and a polymer composition containing (B) an organic solvent onto a substrate having an electrode for driving a liquid crystal to form a coating film;
[II] The step of irradiating the coating film obtained in [I] with ultraviolet rays polarized so that the S wave is the main component from an oblique direction; and [III] The coating film obtained in [II] is heated. Process;
A method for producing a substrate having a liquid crystal alignment film, which comprises obtaining a liquid crystal alignment film to which an orientation control ability is imparted.
<2> In the above <1>, the site that induces the in-plane orientation is preferably the site that causes photoisomerization.
<3> In <1> or <2> above, the site that induces in-plane orientation is anisotropic in the irradiation direction of polarized ultraviolet rays containing S waves as the main component, that is, in the direction parallel to the vibration direction of the S waves. It should be a group that expresses sex.
<4> In any of the above <1> to <3>, the side chain having a site that induces in-plane orientation has a structure represented by a formula selected from the following formulas (1) to (3). It is preferably a chain.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-又は-NH-CO-を表す;
 Sは、炭素数1~12のアルキレン基であり、該アルキレン基の水素原子はそれぞれ独立にハロゲン原子に置き換えられていてもよい;
 Tは、単結合または炭素数1~12のアルキレン基であり、該アルキレン基の水素原子はハロゲン原子に置き換えられていてもよい;
 Tが単結合であるときはBも単結合を表す;
 Yは、2価のベンゼン環である;
 P、Q及びQは、それぞれ独立にベンゼン環及び炭素数5~8の脂環式炭化水素環からなる群から選ばれる基である;
 Rは、水素原子、-CN、ハロゲン原子、炭素数1~5のアルキル基、(炭素数1~5のアルキル)カルボニル基、炭素数3~7のシクロアルキル基又は炭素数1~5のアルキルオキシ基である。
 Y、P、Q及びQにおいて、ベンゼン環に結合する水素原子はそれぞれ独立に-CN、ハロゲン原子、炭素数1~5のアルキル基、(炭素数1~5のアルキル)カルボニル基、又は炭素数1~5のアルキルオキシ基で置換されてもよい;
 X及びXは、それぞれ独立に-O-、-COO-又は-OCO-を表す;
 n1及びn2はそれぞれ独立に0、1または2である、
 Xの数が2となるときは、X同士は同一でも異なっていてもよく、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 Qの数が2となるときは、Q同士は同一でも異なっていてもよく、Qの数が2となるときは、Q同士は同一でも異なっていてもよい;
 破線は重合性基との結合手を表す。
In the formula, A, B and D independently represent single bonds, -O-, -CH 2- , -COO-, -OCO-, -CONH- or -NH-CO-;
S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of the alkylene group may be independently replaced with a halogen atom;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of the alkylene group may be replaced with a halogen atom;
When T is a single bond, B also represents a single bond;
Y 1 is a divalent benzene ring;
P 1 , Q 1 and Q 2 are groups independently selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms, respectively;
R 1 is a hydrogen atom, -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, a carbonyl group (alkyl having 1 to 5 carbon atoms), a cycloalkyl group having 3 to 7 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. It is an alkyloxy group.
In Y 1 , P 1 , Q 1 and Q 2 , the hydrogen atom bonded to the benzene ring is independently -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and a (alkyl having 1 to 5 carbon atoms) carbonyl group. , Or may be substituted with an alkyloxy group having 1 to 5 carbon atoms;
X 1 and X 2 independently represent -O-, -COO- or -OCO-;
n1 and n2 are 0, 1 or 2, respectively.
When the number of X 1 is 2, X 1 together may be the same or different, when the number of X 2 is 2, X 2 together may be the same or different;
When the number of Q 1 is a 2, Q 1 each other may be the same or different, when the number Q 2 'is 2, Q 2 together may be the same or different;
The broken line represents the bond with the polymerizable group.
 <5> 上記<1>~<4>記載の製造方法により製造された液晶配向膜を有する基板。
 <6> 上記<5>の基板を有する液晶表示素子。
<5> A substrate having a liquid crystal alignment film produced by the production methods described in <1> to <4> above.
<6> A liquid crystal display element having the substrate of <5> above.
 <7> 上記<5>の基板(第1の基板)を準備する工程;
 [I’] 第2の基板上に、上記<1>~<5>のいずれかに記載の重合体組成物を、塗布して塗膜を形成する工程;
 [II’] [I’]で得られた塗膜に、S波が主成分となるように偏光した紫外線を照射する工程;及び
 [III’] [II’]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された液晶配向膜を得る、該液晶配向膜を有する第2の基板を得る工程;及び
 [IV] 液晶を介して第1及び第2の基板の液晶配向膜が相対するように、露光方向が互いに直交するように第1及び第2の基板を対向配置して液晶表示素子を得る工程;
を有することにより、液晶表示素子を得る、該液晶表示素子の製造方法。
 <8> 上記<7>により製造された液晶表示素子。
 <9> (A)偏光紫外線の平行方向(P波方向)に対し垂直方向(S波方向)に面内配向を誘起する部位と、面外配向を誘起する部位とを、それぞれ別の側鎖に有する重合体、及び(B)有機溶媒を含有する重合体組成物。
 <10> 上記<9>に記載の重合体組成物から得られる液晶配向膜。
<7> Step of preparing the substrate (first substrate) of <5>above;
[I'] A step of applying the polymer composition according to any one of <1> to <5> above on a second substrate to form a coating film;
[II'] The step of irradiating the coating film obtained in [I'] with ultraviolet rays polarized so that the S wave is the main component; and heating the coating film obtained in [III'] [II']. Process to do;
A step of obtaining a second substrate having the liquid crystal alignment film, which obtains a liquid crystal alignment film to which the orientation control ability is imparted by having the liquid crystal alignment film; and [IV] the liquid crystal alignment film of the first and second substrates via the liquid crystal. A step of obtaining a liquid crystal display element by arranging the first and second substrates facing each other so that the exposure directions are orthogonal to each other so as to face each other;
A method for manufacturing a liquid crystal display element, wherein the liquid crystal display element is obtained.
<8> The liquid crystal display element manufactured by the above <7>.
<9> (A) A portion that induces in-plane orientation in a direction (S-wave direction) perpendicular to the parallel direction (P-wave direction) of polarized ultraviolet rays and a portion that induces out-of-plane orientation are separate side chains. A polymer composition containing the polymer contained in (B) and an organic solvent (B).
<10> A liquid crystal alignment film obtained from the polymer composition according to <9> above.
 本発明により、高効率で配向制御能が付与され、チルト角特性に優れた液晶配向膜を有する基板及び該基板を有する液晶表示素子を提供することができる。
 本発明の方法によって製造された液晶表示素子は、高効率に配向制御能が付与されているため長時間連続駆動しても表示特性が損なわれることがない。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a substrate having a liquid crystal alignment film having an orientation control ability with high efficiency and excellent tilt angle characteristics, and a liquid crystal display element having the substrate.
Since the liquid crystal display element manufactured by the method of the present invention is endowed with the orientation control ability with high efficiency, the display characteristics are not impaired even if it is continuously driven for a long time.
 本発明の製造方法において用いられる重合体組成物は、(A)偏光紫外線の平行方向(P波方向)に対し垂直方向(S波方向)に面内配向を誘起する部位と、面外配向を誘起する部位とを、それぞれ別の側鎖に有する重合体(以下、単に側鎖型高分子とも呼ぶ)を有している。ここで、面内配向を誘起する部位とは、偏光UVを遮光露光することにより、形成されるチルト角が<1°となり、ホモジニアス配向を発現する部位のことである。面内配向を誘起する部位は、もともとは液晶と近い構造を有しているが、光照射によって構造が変化し、液晶と近い構造ではなくなるという性質を有している。この性質によって、面内配向を有する部位に偏光を照射すると、ある方向の面内配向を誘起する部位のみが構造が変化して液晶配向性を失う一方、それと異なる方向の面内配向を誘起する部位は構造が変化せず、液晶と近い構造を有していることから、それに沿って液晶が並ぶことになる。その結果、面内で液晶を配向させることができる。 The polymer composition used in the production method of the present invention has (A) a site that induces in-plane orientation in the direction perpendicular to the parallel direction (P-wave direction) of polarized ultraviolet rays (P-wave direction) and out-of-plane orientation. It has a polymer (hereinafter, also simply referred to as a side chain type polymer) having a site to induce in a different side chain. Here, the site that induces in-plane orientation is a site where the tilt angle formed by light-shielding exposure to polarized UV becomes <1 ° and homogenius orientation is exhibited. The site that induces in-plane orientation originally has a structure similar to that of liquid crystal, but has the property that the structure changes due to light irradiation and the structure is no longer similar to that of liquid crystal. Due to this property, when polarized light is applied to a portion having in-plane orientation, only the portion that induces in-plane orientation in a certain direction changes its structure and loses liquid crystal orientation, while inducing in-plane orientation in a different direction. Since the structure of the portion does not change and has a structure similar to that of the liquid crystal, the liquid crystals are lined up along the structure. As a result, the liquid crystal can be oriented in the plane.
 そして、面外配向を誘起する部位とは、その部位単独においてホメオトロピック配向を発現させうる部位のことである。 And, the site that induces out-of-plane orientation is a site that can express homeotropic orientation by itself.
 前記重合体組成物を用いて得られる塗膜は、側鎖型高分子を有する膜である。この塗膜にはラビング処理を行うこと無く、斜め方向からの偏光照射によって配向処理を行う。そして、偏光照射の後、その側鎖型高分子膜を加熱する工程を経て、配向制御能が付与された塗膜(以下、液晶配向膜とも称する)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、液晶性の側鎖型高分子自体が自己組織化により効率的に再配向する。その結果、液晶配向膜として高効率な配向処理が実現し、高い配向制御能が付与された液晶配向膜を得ることができる。本願発明は、偏光として、S波を用いることを特徴とする。S波を斜め方向から照射することにより、チルト角が発現する方向を規定することができる。 The coating film obtained by using the polymer composition is a film having a side chain type polymer. This coating film is not subjected to a rubbing treatment, but is oriented by irradiation with polarized light from an oblique direction. Then, after the polarization irradiation, the side chain type polymer film is heated to obtain a coating film having an orientation control ability (hereinafter, also referred to as a liquid crystal alignment film). At this time, the slight anisotropy developed by the polarization irradiation becomes the driving force, and the liquid crystal side chain polymer itself is efficiently reoriented by self-assembly. As a result, highly efficient alignment processing can be realized as a liquid crystal alignment film, and a liquid crystal alignment film with high orientation control ability can be obtained. The present invention is characterized in that S waves are used as polarized light. By irradiating the S wave from an oblique direction, the direction in which the tilt angle appears can be defined.
 また、本願発明では、光照射により配向性を獲得するのが面内配向を誘起する部位であり、それによって面外配向を誘起する部位が配向することでチルト角特性が付与される。したがって、チルト角は面外配向を誘起する部位によって付与されていることから、例えばバックライト等により、面内配向を誘起する部位が逆反応を起こしても、面外配向を有する部位は安定に保たれているため、いわゆるチルト戻りが発生せず、安定なチルト角特性を示すことができる。 Further, in the present invention, it is the portion that induces in-plane orientation that acquires orientation by light irradiation, and the tilt angle characteristic is imparted by orienting the portion that induces out-of-plane orientation. Therefore, since the tilt angle is given by the part that induces the out-of-plane orientation, even if the part that induces the in-plane orientation causes a reverse reaction due to, for example, a backlight, the part having the out-of-plane orientation is stable. Since it is maintained, so-called tilt return does not occur, and stable tilt angle characteristics can be exhibited.
 以下、本発明の実施形態について詳しく説明する。
<液晶配向膜を有する基板の製造方法>及び<液晶表示素子の製造方法>
 本発明の液晶配向膜を有する基板の製造方法は、
 [I](A)偏光紫外線の平行方向(P波方向)に対し垂直方向(S波方向)に面内配向を誘起する部位と、面外配向を誘起する部位とを、それぞれ別の側鎖に有する重合体、及び
 (B)有機溶媒
を含有する重合体組成物を、液晶駆動用の電極を有する基板上に塗布して塗膜を形成する工程;
 [II] [I]で得られた塗膜に、S波が主成分となるように偏光した紫外線を斜め方向から照射する工程;及び
 [III] [II]で得られた塗膜を加熱する工程;
を有する。
 上記工程により、配向制御能が付与された液晶配向膜を得ることができ、該液晶配向膜を有する基板を得ることができる。
Hereinafter, embodiments of the present invention will be described in detail.
<Manufacturing method of substrate having liquid crystal alignment film> and <Manufacturing method of liquid crystal display element>
The method for manufacturing a substrate having a liquid crystal alignment film of the present invention is
[I] (A) A portion that induces in-plane orientation in a direction (S-wave direction) perpendicular to the parallel direction (P-wave direction) of polarized ultraviolet rays and a portion that induces out-of-plane orientation are separate side chains. (B) A step of applying a polymer composition containing an organic solvent to a substrate having an electrode for driving a liquid crystal to form a coating film;
[II] The step of irradiating the coating film obtained in [I] with ultraviolet rays polarized so that the S wave is the main component from an oblique direction; and [III] The coating film obtained in [II] is heated. Process;
Have.
By the above steps, a liquid crystal alignment film having an orientation control ability can be obtained, and a substrate having the liquid crystal alignment film can be obtained.
 液晶表示素子の製造方法は、
 [IV] 上記で得られた第1及び第2の基板を、液晶を介して第1及び第2の基板の液晶配向膜が相対するように、対向配置して液晶表示素子を得る工程;
を有する。これにより液晶表示素子を得ることができる。
The manufacturing method of the liquid crystal display element is
[IV] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so as to face each other so that the liquid crystal alignment films of the first and second substrates face each other via the liquid crystal.
Have. As a result, a liquid crystal display element can be obtained.
 以下、本発明の製造方法の有する[I]~[III]、および[IV]の各工程について説明する。
<工程[I]>
 工程[I]では、液晶駆動用の電極を有する基板上に、(A)偏光紫外線の平行方向(P波方向)に対し垂直方向(S波方向)に面内配向を誘起する部位と、面外配向を誘起する部位とを、それぞれ別の側鎖に有する重合体、及び有機溶媒を含有する重合体組成物を塗布して塗膜を形成する。
Hereinafter, each of the steps [I] to [III] and [IV] included in the production method of the present invention will be described.
<Step [I]>
In step [I], on a substrate having an electrode for driving a liquid crystal, (A) a portion that induces in-plane orientation in a direction (S wave direction) perpendicular to the parallel direction (P wave direction) of polarized ultraviolet rays, and a surface. A coating film is formed by applying a polymer composition containing a polymer having different side chains to the site that induces outer orientation and an organic solvent.
<基板>
 基板については、特に限定はされないが、製造される液晶表示素子が透過型である場合、透明性の高い基板が用いられることが好ましい。その場合、特に限定はされず、ガラス基板、またはアクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。
<Board>
The substrate is not particularly limited, but when the liquid crystal display element to be manufactured is a transmissive type, it is preferable to use a highly transparent substrate. In that case, the present invention is not particularly limited, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used.
 液晶駆動のための電極としてはITO(Indium Tin Oxide:酸化インジウムスズ)、IZO(Indium Zinc Oxide:酸化インジウム亜鉛)などが好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
 基板に電極を形成する方法は、従来公知の手法を用いることができる。
As the electrode for driving the liquid crystal, ITO (Indium Tin Oxide: indium tin oxide), IZO (Indium Zinc Oxide: indium zinc oxide) and the like are preferable. Further, in the reflective liquid crystal display element, an opaque object such as a silicon wafer can be used if only one substrate is used, and in this case, a material that reflects light such as aluminum can also be used as the electrode.
As a method of forming an electrode on a substrate, a conventionally known method can be used.
<重合体組成物>
 本発明の製造方法に用いられる重合体組成物は、(A)偏光紫外線の平行方向(P波方向)に対し垂直方向(S波方向)に面内配向を誘起する部位と、面外配向を誘起する部位とを、それぞれ別の側鎖に有する重合体及び(B)有機溶媒を含有する。
<Polymer composition>
The polymer composition used in the production method of the present invention has (A) a site that induces in-plane orientation in the direction perpendicular to the parallel direction (P-wave direction) of polarized ultraviolet rays (P-wave direction) and out-of-plane orientation. It contains a polymer having an inducing site on a separate side chain and (B) an organic solvent.
<<(A)側鎖型高分子>>
 (A)成分は、(A)偏光紫外線の平行方向(P波方向)に対し垂直方向(S波方向)に面内配向を誘起する部位と、面外配向を誘起する部位とを、それぞれ別の側鎖に有する重合体である。
 (A)側鎖型高分子は、250~400nmの波長範囲の光で反応し、かつ100~300℃の温度範囲で液晶性を示すのがよい。
 (A)側鎖型高分子は、250~400nmの波長範囲の光に反応する感光性側鎖を有することが好ましい。
 (A)側鎖型高分子は、100~300℃の温度範囲で液晶性を示すためメソゲン基を有することが好ましい。
<< (A) Side chain polymer >>
The component (A) separates a portion that induces in-plane orientation in a direction (S wave direction) perpendicular to the parallel direction (P wave direction) of (A) polarized ultraviolet rays and a portion that induces out-of-plane orientation. It is a polymer having in the side chain of.
The side chain type polymer (A) preferably reacts with light in the wavelength range of 250 to 400 nm and exhibits liquid crystallinity in the temperature range of 100 to 300 ° C.
The side chain polymer (A) preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 to 400 nm.
The side chain polymer (A) preferably has a mesogen group because it exhibits liquid crystallinity in a temperature range of 100 to 300 ° C.
 (A)側鎖型高分子は、偏光紫外線の平行方向(P波方向)に対し垂直方向(S波方向)に面内配向を誘起する部位が主鎖に結合しており、光に感応して異性化反応を起こすことができる。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。面内配向を誘起する部位の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。この場合、該側鎖型高分子を液晶配向膜とした際に、安定な液晶配向を得ることができる。 In the side chain polymer (A), the portion that induces in-plane orientation in the direction perpendicular to the parallel direction (P wave direction) of polarized ultraviolet rays (P wave direction) is bonded to the main chain, and is sensitive to light. Can cause an isomerization reaction. In this case, even if it is exposed to external stress such as heat, the realized orientation control ability can be stably maintained for a long period of time. The structure of the site that induces in-plane orientation is not particularly limited as long as it satisfies such characteristics, but it is preferable that the side chain structure has a rigid mesogen component. In this case, stable liquid crystal orientation can be obtained when the side chain polymer is used as a liquid crystal alignment film.
 (A)側鎖型高分子は、偏光紫外線の平行方向(P波方向)に対し垂直方向(S波方向)に面外配向を誘起する部位を有していることにより、所望のチルト角を発現する液晶配向膜を与える。これは、液晶配向膜として用いたときに、側鎖型高分子が面外配向を誘起する部位に寄り添うことで異方性が発現し、チルト角が得られると考えられる。 The side chain polymer (A) has a portion that induces out-of-plane orientation in the direction perpendicular to the parallel direction (P wave direction) of polarized ultraviolet rays (P wave direction), thereby achieving a desired tilt angle. A liquid crystal alignment film to be expressed is given. It is considered that this is because when used as a liquid crystal alignment film, anisotropy is exhibited by the side chain type polymer being close to the site where the out-of-plane orientation is induced, and a tilt angle can be obtained.
 該高分子の構造は、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などのメソゲン成分と、光に感応して異性化反応をする感光性基とを有する構造とすることができる。 The structure of the polymer has, for example, a main chain and a side chain bonded thereto, and the side chain contains a mesogen component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, or an azobenzene group, and light The structure can have a photosensitive group that undergoes an isomerization reaction in response to the above.
 液晶性を発現し得る感光性の側鎖型高分子膜の構造のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、面内配向を誘起する部位を有する側鎖と、面外配向を誘起する部位を有する側鎖と、所望により液晶性を有する側鎖とを有する構造であることが好ましい。 More specific examples of the structure of the photosensitive side chain polymer film capable of exhibiting liquidity include hydrocarbons, (meth) acrylates, itaconates, fumarates, maleates, α-methylene-γ-butyrolactone, styrene, and the like. A main chain composed of at least one selected from the group consisting of radically polymerizable groups such as vinyl, maleimide, and norbornene and siloxane, a side chain having a site that induces in-plane orientation, and an out-of-plane orientation are induced. It is preferable that the structure has a side chain having a site and, if desired, a side chain having liquidity.
 (A)成分の側鎖型高分子における面内配向を誘起する部位を有する側鎖としては、下記式(1)~(3)の少なくとも1種からなる構造を有する側鎖であることが好ましい。 The side chain having a site that induces in-plane orientation in the side chain type polymer of the component (A) is preferably a side chain having a structure consisting of at least one of the following formulas (1) to (3). ..
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-又は-NH-CO-を表す;
 Sは、炭素数1~12のアルキレン基であり、該アルキレン基の水素原子はそれぞれ独立にハロゲン原子に置き換えられていてもよい;
 Tは、単結合または炭素数1~12のアルキレン基であり、該アルキレン基の水素原子はハロゲン原子に置き換えられていてもよい;
 Tが単結合であるときはBも単結合を表す;
 Yは、2価のベンゼン環である;
 P、Q及びQは、それぞれ独立にベンゼン環及び炭素数5~8の脂環式炭化水素環からなる群から選ばれる基である;
 Rは、水素原子、-CN、ハロゲン原子、炭素数1~5のアルキル基、(炭素数1~5のアルキル)カルボニル基、炭素数3~7のシクロアルキル基又は炭素数1~5のアルキルオキシ基である。
 Y、P、Q及びQにおいて、ベンゼン環に結合する水素原子はそれぞれ独立に-CN、ハロゲン原子、炭素数1~5のアルキル基、(炭素数1~5のアルキル)カルボニル基、又は炭素数1~5のアルキルオキシ基で置換されてもよい;
 X及びXは、それぞれ独立に-O-、-COO-又は-OCO-を表す;
 n1及びn2はそれぞれ独立に0、1または2である、
 Xの数が2となるときは、X同士は同一でも異なっていてもよく、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 Qの数が2となるときは、Q同士は同一でも異なっていてもよく、Qの数が2となるときは、Q同士は同一でも異なっていてもよい;
 破線は重合性基との結合手を表す。
In the formula, A, B and D independently represent single bonds, -O-, -CH 2- , -COO-, -OCO-, -CONH- or -NH-CO-;
S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of the alkylene group may be independently replaced with a halogen atom;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of the alkylene group may be replaced with a halogen atom;
When T is a single bond, B also represents a single bond;
Y 1 is a divalent benzene ring;
P 1 , Q 1 and Q 2 are groups independently selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms, respectively;
R 1 is a hydrogen atom, -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, a carbonyl group (alkyl having 1 to 5 carbon atoms), a cycloalkyl group having 3 to 7 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. It is an alkyloxy group.
In Y 1 , P 1 , Q 1 and Q 2 , the hydrogen atom bonded to the benzene ring is independently -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and a (alkyl having 1 to 5 carbon atoms) carbonyl group. , Or may be substituted with an alkyloxy group having 1 to 5 carbon atoms;
X 1 and X 2 independently represent -O-, -COO- or -OCO-;
n1 and n2 are 0, 1 or 2, respectively.
When the number of X 1 is 2, X 1 together may be the same or different, when the number of X 2 is 2, X 2 together may be the same or different;
When the number of Q 1 is a 2, Q 1 each other may be the same or different, when the number Q 2 'is 2, Q 2 together may be the same or different;
The broken line represents the bond with the polymerizable group.
 光配向性側鎖は、溶媒への溶解性の観点から、一つの側鎖が有するベンゼン環の数とナフタレン環の数の合計は3つ以内が好ましい。
 また、S波を主成分とする偏光紫外線の斜め方向からの照射により、異方性が付与しやすいという点で、本願記載のプロセスにおいて、偏光紫外線の照射方向、すなわち、S波の振動方向に対して平行方向に異方性を発現する基であることが好ましい。
From the viewpoint of solubility in a solvent, the photo-oriented side chain preferably has a total of 3 or less benzene rings and naphthalene rings in one side chain.
Further, in the process described in the present application, in the process described in the present application, in the irradiation direction of the polarized ultraviolet rays, that is, the vibration direction of the S waves, the anisotropy is easily imparted by the irradiation of the polarized ultraviolet rays containing the S wave as the main component from the oblique direction. On the other hand, it is preferable that the group exhibits anisotropy in the parallel direction.
 面外配向を誘起する部位としては、特に限定されるものではないが、炭素数が1~17の炭化水素基を含む基が好ましく、具体的には式(4)で表される基が好適である。 The site that induces out-of-plane orientation is not particularly limited, but a group containing a hydrocarbon group having 1 to 17 carbon atoms is preferable, and specifically, a group represented by the formula (4) is preferable. Is.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(4)中、Yは、単結合を表すか、-O-、-CHO-、-COO-、-OCO-、-NH-、-NHCO-、-NH-CO-O-および-NH-CO-NH-から選ばれる結合基を表し、
 Yは、単結合、炭素数1~15のアルキレン基または-CH-CH(OH)-CH-基を表すか、ベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を表し、環状基上の任意の水素原子がZで置換されていてもよく、
 Yは、単結合または炭素数1~15のアルキレン基を表し、
 Yは、単結合、ベンゼン環、シクロヘキサン環もしくは複素環から選ばれる2価の環状基、または炭素数17~30のステロイド骨格を有する2価の有機基を表し、環状基上の任意の水素原子がZで置換されていてもよく、
 Yは、ベンゼン環、シクロヘキサン環または複素環から選ばれる2価の環状基を表し、これらの環状基上の任意の水素原子がZで置換されていてもよく、mは0~4の整数を表し、mが2以上の場合、Yは互いに同一でも異なっていてもよく、
 Yは、水素原子、炭素数1~17のアルキル基、炭素数1~17のフッ化アルキル基、炭素数2~17のアルコキシアルキル基または炭素数2~17のフッ化アルコキシアルキル基を表し、
 Zは、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ化アルキル基、炭素数1~3のフッ化アルコキシ基またはフッ素原子を表し、アルキル基、アルコキシ基、フッ化アルキル基およびフッ化アルコキシ基は、結合基同士が隣り合わない限り、その中に1~3の上記結合基を有していてもよく、
 Y~Yにおいて、アルキレン基、-CH-CH(OH)-CH-基、2価の環状基、ステロイド骨格を有する2価の有機基、アルキル基、アルコキシアルキル基、フッ化アルキル基およびフッ化アルコキシアルキル基は、それらに隣接する基と上記結合基を介して結合していてもよい。
 但し、Y~Yが表す置換基の総炭素数は、結合基の炭素数も含めて1~30である。
In formula (4), Y 1 represents a single bond or -O-, -CH 2 O-, -COO-, -OCO-, -NH 2- , -NHCO-, -NH-CO-O- And represents a binding group selected from -NH-CO-NH-
Y 2 represents a single bond, an alkylene group having 1 to 15 carbon atoms or a -CH 2- CH (OH) -CH 2- group, or a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocycle. Represented, any hydrogen atom on the cyclic group may be substituted with Z.
Y 3 represents a single bond or an alkylene group having 1 to 15 carbon atoms,
Y 4 represents a single bond, a benzene ring, a divalent organic group having a divalent cyclic group or a steroid skeleton having a carbon number of 17-30, selected from the cyclohexane ring or heterocyclic ring, any hydrogen on the cyclic group The atom may be replaced with Z,
Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring or a heterocycle, and any hydrogen atom on these cyclic groups may be substituted with Z, and m is an integer of 0 to 4. When m is 2 or more, Y 5 may be the same or different from each other.
Y 6 represents a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, an alkyl fluoride group having 1 to 17 carbon atoms, an alkoxyalkyl group having 2 to 17 carbon atoms, or an alkoxyalkyl group having 2 to 17 carbon atoms. ,
Z represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkyl fluoride group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms or a fluorine atom, and an alkyl group. , Alkoxy group, alkyl fluoride group and alkoxy fluoride group may have 1 to 3 of the above-mentioned bonding groups in the group as long as the bonding groups are not adjacent to each other.
In Y 2 ~ Y 6, alkylene group, -CH 2 -CH (OH) -CH 2 - group, a divalent cyclic group, a divalent organic group having a steroid skeleton, an alkyl group, an alkoxyalkyl group, fluorinated alkyl The group and the fluorinated alkoxyalkyl group may be bonded to a group adjacent to them via the above-mentioned bonding group.
However, the total number of carbon atoms of the substituents Y 2 ~ Y 6 represents is 1-30, including the number of carbon atoms of the linking group.
 上記炭素数1~15のアルキレン基は、後述する炭素数1~17のアルキル基のうち炭素数1~15のアルキル基から水素原子を1つ除去した2価の基が挙げられ、その具体例としては、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン基等が挙げられる。 Examples of the alkylene group having 1 to 15 carbon atoms include a divalent group obtained by removing one hydrogen atom from the alkyl group having 1 to 15 carbon atoms among the alkyl groups having 1 to 17 carbon atoms, which will be described later. Examples thereof include methylene, ethylene, propylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene group and the like.
 複素環の具体例としては、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、イソキノリン環、カルバゾール環、プリン環、チアジアゾール環、ピリダジン環、ピラゾリン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、シンノリン環、フェナントロリン環、インドール環、キノキサリン環、ベンゾチアゾール環、フェノチアジン環、オキサジアゾール環、アクリジン環等が挙げられ、これらの中でも、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、カルバゾール環、ピリダジン環、ピラゾリン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環が好ましい。 Specific examples of the heterocycle include a pyrazole ring, an imidazole ring, an oxazole ring, a thiazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a quinoline ring, an isoquinoline ring, a carbazole ring, a purine ring, a thiazizole ring, a pyridazine ring, and a pyrazoline ring. Examples thereof include a triazine ring, a pyrazolidine ring, a triazole ring, a pyrazine ring, a benzimidazole ring, a synnoline ring, a phenanthroline ring, an indole ring, a quinoxaline ring, a benzthiazole ring, a phenothiazine ring, an oxadiazole ring, and an acrydin ring. , Pyrazole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, carbazole ring, pyridazine ring, pyrazoline ring, triazole ring, pyrazolidine ring, triazole ring, pyrazine ring, benzimidazole ring are preferable.
 炭素数17~30のステロイド骨格を有する2価の有機基の具体例としては、コレステリル、アンドロステリル、β-コレステリル、エピアンドロステリル、エリゴステリル、エストリル、11α-ヒドロキシメチルステリル、11α-プロゲステリル、ラノステリル、メラトラニル、メチルテストロステリル、ノレチステリル、プレグネノニル、β-シトステリル、スチグマステリル、テストステリル、および酢酸コレステロ-ルエステル等から選ばれる構造から水素原子を2個取り去った構造を有する2価の有機基が挙げられるが、これらに限定されるものではない。 Specific examples of the divalent organic group having a steroid skeleton having 17 to 30 carbon atoms include cholesteryl, androsteryl, β-cholesteryl, epiandrosteryl, ergosteryl, estryl, 11α-hydroxymethylsteryl, 11α-progesteryl, and lanosteryl. , Melatranil, Methyltestrosteryl, Noretisteryl, Pregnenonyl, β-Cytosteryl, Stigmasteryl, Testosteryl, and Divalent organic groups having a structure in which two hydrogen atoms are removed from a structure selected from cholesterol acetate and the like. , Not limited to these.
 炭素数1~17のアルキル基としては、メチル、エチル、プロピル、i-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、1-メチル-n-ヘキシル、2-メチル-n-ヘキシル、3-メチル-n-ヘキシル、1,1-ジメチル-n-ペンチル、1,2-ジメチル-n-ペンチル、1,3-ジメチル-n-ペンチル、2,2-ジメチル-n-ペンチル、2,3-ジメチル-n-ペンチル、3,3-ジメチル-n-ペンチル、1-エチル-n-ペンチル、2-エチル-n-ペンチル、3-エチル-n-ペンチル、1-メチル-1-エチル-n-ブチル、1-メチル-2-エチル-n-ブチル、1-エチル-2-メチル-n-ブチル、2-メチル-2-エチル-n-ブチル、2-エチル-3-メチル-n-ブチル、n-オクチル、1-メチル-n-ヘプチル、2-メチル-n-ヘプチル、3-メチル-n-ヘプチル、1,1-ジメチル-n-ヘキシル、1,2-ジメチル-n-ヘキシル、1,3-ジメチル-n-ヘキシル、2,2-ジメチル-n-ヘキシル、2,3-ジメチル-n-ヘキシル、3,3-ジメチル-n-ヘキシル、1-エチル-n-ヘキシル、2-エチル-n-ヘキシル、3-エチル-n-ヘキシル、1-メチル-1-エチル-n-ペンチル、1-メチル-2-エチル-n-ペンチル、1-メチル-3-エチル-n-ペンチル、2-メチル-2-エチル-n-ペンチル、2-メチル-3-エチル-n-ペンチル、3-メチル-3-エチル-n-ペンチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル等が挙げられる。 As alkyl groups having 1 to 17 carbon atoms, methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, 1 -Methyl-n-hexyl, 2-methyl-n-hexyl, 3-methyl-n-hexyl, 1,1-dimethyl-n-pentyl, 1,2-dimethyl-n-pentyl, 1,3-dimethyl-n -Pentyl, 2,2-dimethyl-n-pentyl, 2,3-dimethyl-n-pentyl, 3,3-dimethyl-n-pentyl, 1-ethyl-n-pentyl, 2-ethyl-n-pentyl, 3 -Ethyl-n-pentyl, 1-methyl-1-ethyl-n-butyl, 1-methyl-2-ethyl-n-butyl, 1-ethyl-2-methyl-n-butyl, 2-methyl-2-ethyl -N-Butyl, 2-Ethyl-3-methyl-n-Butyl, n-octyl, 1-methyl-n-Heptyl, 2-Methyl-n-Heptyl, 3-Methyl-n-Heptyl, 1,1-dimethyl -N-hexyl, 1,2-dimethyl-n-hexyl, 1,3-dimethyl-n-hexyl, 2,2-dimethyl-n-hexyl, 2,3-dimethyl-n-hexyl, 3,3-dimethyl -N-hexyl, 1-ethyl-n-hexyl, 2-ethyl-n-hexyl, 3-ethyl-n-hexyl, 1-methyl-1-ethyl-n-pentyl, 1-methyl-2-ethyl-n -Pentyl, 1-methyl-3-ethyl-n-pentyl, 2-methyl-2-ethyl-n-pentyl, 2-methyl-3-ethyl-n-pentyl, 3-methyl-3-ethyl-n-pentyl , N-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl and the like.
 炭素数1~17のフッ化アルキル基としては、上記炭素数1~17のアルキル基における少なくとも1つの水素原子をフッ素原子で置換した基が挙げられ、その具体例としては、フルオロメチル、ジフルオロメチル、トリフルオロメチル、ペンタフルオロエチル、2,2,2-トリフルオロエチル、ヘプタフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、2,2,3,3-テトラフルオロプロピル、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル、ノナフルオロブチル、4,4,4-トリフルオロブチル、ウンデカフルオロペンチル、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル、2,2,3,3,4,4,5,5-オクタフルオロペンチル、トリデカフルオロヘキシル、2,2,3,3,4,4,5,5,6,6,6-ウンデカフロオロヘキシル、2,2,3,3,4,4,5,5,6,6-デカフルオロヘキシル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル等が挙げられる。 Examples of the alkyl fluoride group having 1 to 17 carbon atoms include a group in which at least one hydrogen atom in the alkyl group having 1 to 17 carbon atoms is replaced with a fluorine atom, and specific examples thereof include fluoromethyl and difluoromethyl. , Trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, heptafluoropropyl, 2,2,3,3,3-pentafluoropropyl, 2,2,3,3-tetrafluoropropyl, 2 , 2,2-Trifluoro-1- (trifluoromethyl) ethyl, nonafluorobutyl, 4,4,4-trifluorobutyl, undecafluoropentyl, 2,2,3,3,4,5, 5,5-Nonafluoropentyl, 2,2,3,3,4,5,5-octafluoropentyl, tridecafluorohexyl, 2,2,3,3,4,5,5,6 , 6,6-Undecafluorohexyl, 2,2,3,3,4,5,5,6,6-decafluorohexyl, 3,3,4,4,5,5,6,6 , 6-Nonafluorohexyl and the like.
 炭素数1~17のフッ化アルコキシ基の具体例としては、上記炭素数1~17のフッ化アルキル基に酸素原子(-O-)が結合した基が挙げられ、その具体例としては、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、ペンタフルオロエトキシ、2,2,2-トリフルオロエトキシ、ヘプタフルオロプロポキシ、2,2,3,3,3-ペンタフルオロプロポキシ、2,2,3,3-テトラフルオロプロポキシ、2,2,2-トリフルオロ-1-(トリフルオロメチル)エトキシ、ノナフルオロブトキシ、4,4,4-トリフルオロブトキシ、ウンデカフルオロペンチルオキシ、2,2,3,3,4,4,5,5,5-ノナフルオロペンチルオキシ、2,2,3,3,4,4,5,5-オクタフルオロペンチルオキシ、トリデカフルオロヘキシルオキシ、2,2,3,3,4,4,5,5,6,6,6-ウンデカフロオロヘキシルオキシ、2,2,3,3,4,4,5,5,6,6-デカフルオロヘキシルオキシ、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシルオキシ基等が挙げられる。 Specific examples of the fluorinated alkoxy group having 1 to 17 carbon atoms include a group in which an oxygen atom (—O—) is bonded to the above-mentioned alkyl fluoride group having 1 to 17 carbon atoms, and specific examples thereof include fluoro. Methoxy, difluoromethoxy, trifluoromethoxy, pentafluoroethoxy, 2,2,2-trifluoroethoxy, heptafluoropropoxy, 2,2,3,3,3-pentafluoropropoxy, 2,2,3,3-tetra Fluoropropoxy, 2,2,2-trifluoro-1- (trifluoromethyl) ethoxy, nonafluorobutoxy, 4,4,4-trifluorobutoxy, undecafluoropentyloxy, 2,2,3,3,4 , 4,5,5,5-nonafluoropentyloxy, 2,2,3,3,4,5,5-octafluoropentyloxy, tridecafluorohexyloxy, 2,2,3,3,4 , 4,5,5,6,6-6-Undecafluorohexyloxy, 2,2,3,3,4,5,5,6,6-decafluorohexyloxy, 3,3,4 , 4,5,5,6,6,6-nonafluorohexyloxy group and the like.
 なお、上記Zにおける、炭素数1~3のアルキル基としては、上記炭素数1~17で例示した基のうち炭素数1~3のものが挙げられ、炭素数1~3のアルコキシ基としては、上記炭素数1~17のアルコキシ基で例示した基のうち炭素数1~3のものが挙げられ、炭素数1~3のフッ化アルキル基としては、上記炭素数1~17のフッ化アルキル基で例示した基のうち炭素数1~3のものが挙げられ、炭素数1~3のフッ化アルコキシ基としては、上記炭素数1~17のフッ化アルコキシ基で例示した基のうち、炭素数1~3のものが挙げられる。 Examples of the alkyl group having 1 to 3 carbon atoms in Z include those having 1 to 3 carbon atoms among the groups exemplified in 1 to 17 carbon atoms, and the alkoxy group having 1 to 3 carbon atoms includes Among the groups exemplified by the above-mentioned alkoxy groups having 1 to 17 carbon atoms, those having 1 to 3 carbon atoms can be mentioned, and examples of the alkyl fluoride group having 1 to 3 carbon atoms include the above-mentioned alkyl fluoride having 1 to 17 carbon atoms. Among the groups exemplified by the groups, those having 1 to 3 carbon atoms can be mentioned, and as the fluorinated alkoxy group having 1 to 3 carbon atoms, among the groups exemplified by the fluorinated alkoxy groups having 1 to 17 carbon atoms, carbon The number 1 to 3 can be mentioned.
 これらの中でも、合成の容易さ等の点から、Yは単結合が好ましく、Yはベンゼン環またはシクロへキサン環が好ましく、Yは炭素数1~15のアルキレン基が好ましく、炭素数1~9のアルキレン基がより好ましく、Yはベンゼン環、シクロへキサン環または炭素数17~30のステロイド骨格を有する2価の有機基が好ましく、Yはベンゼン環またはシクロへキサン環が好ましく、Yは炭素数1~17のアルキル基、炭素数1~10のフッ化アルキル基、炭素数2~17のアルコキシアルキル基または炭素数2~17のフッ化アルコキシアルキル基が好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~9のアルキル基がより一層好ましい。 Among these, from the viewpoint of ease of synthesis and the like, Y 1 is preferably a single bond, Y 2 is preferably a benzene ring or a cyclohexane ring, and Y 3 is preferably an alkylene group having 1 to 15 carbon atoms and having 1 to 15 carbon atoms. 1 to 9 alkylene groups are more preferable, Y 4 is preferably a benzene ring, a cyclohexane ring or a divalent organic group having a steroid skeleton having 17 to 30 carbon atoms, and Y 5 is a benzene ring or a cyclohexane ring. preferably, Y 6 represents an alkyl group having 1 to 17 carbon atoms, fluorinated alkyl group having 1 to 10 carbon atoms, fluorinated alkoxyalkyl group an alkoxyalkyl group or a C 2-17 having 2 to 17 carbon atoms preferably, carbon Alkyl groups having a number of 1 to 12 are more preferable, and alkyl groups having 1 to 9 carbon atoms are even more preferable.
 ただし、Yがステロイド骨格を有する2価の有機基である場合は、Yは水素原子が好ましい。 However, when Y 4 is a divalent organic group having a steroid skeleton, Y 6 is preferably a hydrogen atom.
 また、原料の入手性や合成の容易さ等の点から、mは0~3が好ましく、0~2がより好ましく、0または1がより一層好ましい。 Further, from the viewpoint of availability of raw materials, ease of synthesis, etc., m is preferably 0 to 3, more preferably 0 to 2, and even more preferably 0 or 1.
 なお、上記アルキレン基、アルキル基、フッ化アルキル基、アルコキシ基およびフッ化アルコキシ基は、結合基同士が隣り合わない限り、その中に1~3の上述した結合基を有していてもよく、Y~Yにおいて、アルキレン基、-CH-CH(OH)-CH-基、2価の環状基、ステロイド骨格を有する2価の有機基、アルキル基およびフッ化アルキル基は、それらに隣接する基と上述した結合基を介して結合していてもよい。 The alkylene group, alkyl group, alkyl fluoride group, alkoxy group and alkoxy fluoride group may have 1 to 3 of the above-mentioned bonding groups as long as the bonding groups are not adjacent to each other. in Y 2 ~ Y 6, alkylene group, -CH 2 -CH (OH) -CH 2 - group, a divalent cyclic group, a divalent organic group, an alkyl group and fluorinated alkyl group having a steroid skeleton, It may be bonded to the groups adjacent to them via the above-mentioned bonding group.
 また、Y~Yがそれぞれ表す置換基の総炭素数は1~30であるが、1~20が好ましい。末端にアルキル基を有する場合は、末端のアルキル基は炭素数1~17のアルキル基であることが好ましい。 The total carbon number of the substituents represented by Y 2 to Y 6 is 1 to 30, but 1 to 20 is preferable. When the terminal has an alkyl group, the terminal alkyl group is preferably an alkyl group having 1 to 17 carbon atoms.
 また、上記面外配向を誘起する部位(a-1)以外にも、例えば、上記Y~Yが、単結合であり、mが、2または3であり、Yが、ベンゼン環またはシクロヘキサン環であり、Yが、炭素数1~17のアルキル基である面外配向を誘起する部位(a-2)も好適に用いることができる。 In addition to sites for inducing the out-of-plane orientation (a-1), for example, the Y 1 ~ Y 4 is a single bond, m is 2 or 3, Y 5 is a benzene ring or A site (a-2) which is a cyclohexane ring and Y 6 is an alkyl group having 1 to 17 carbon atoms and which induces out-of-plane orientation can also be preferably used.
 このような面外配向を誘起する部位(a-2)の具体例としては、下記(a-2-1)~(a-2-7)で示される基が挙げられるが、これらに限定されるものではない。
 式中、Yは上記と同で、Yは単結合を表すか、-O-、-CHO-、-COO-、-OCO-、-NH-、-NHCO-、-NH-CO-O-および-NH-CO-NH-から選ばれる結合基を表す。
Specific examples of the site (a-2) that induces such out-of-plane orientation include the groups shown in the following (a-2-1) to (a-2-7), but are limited to these. It's not something.
In the formula, Y 6 is the same as above, and Y represents a single bond, or -O-, -CH 2 O-, -COO-, -OCO-, -NH 2- , -NHCO-, -NH-CO. Represents a binding group selected from -O- and -NH-CO-NH-.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 さらに、上記面外配向を誘起する部位(a-1)および(a-2)に加え、例えば、上記Y~Yが単結合であり、Yが炭素数17~30のステロイド骨格を有する2価の有機基であり、mが0であり、Yが水素原子である面外配向を誘起する部位(a-3)も好適に用いることができる。 Furthermore, in addition to the site of inducing the out-of-plane orientation (a-1) and (a-2), for example, the Y 1 ~ Y 3 is a single bond, Y 4 is a steroid skeleton having 17-30 carbon atoms A site (a-3) that induces out-of-plane orientation, which is a divalent organic group having, m is 0, and Y 6 is a hydrogen atom, can also be preferably used.
 このような面外配向を誘起する部位(a-3)としては、例えば、下記(a-3-1)~(a-3-8)で示される基が挙げられるが、これらに限定されるものではない。なお、式中、*は結合位置を表す。 Examples of the site (a-3) that induces such out-of-plane orientation include, but are limited to, the groups shown in the following (a-3-1) to (a-3-8). It's not a thing. In the formula, * represents the bonding position.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 以上で説明した面外配向を誘起する部位は、これを有する(メタ)アクリル系モノマー、ビニル系モノマー、スチレン系モノマー、マレイミド系モノマー等の不飽和二重結合を有するモノマーを用いてポリマー中に導入することができるが、この場合も、上記面外配向を誘起する部位を有する(メタ)アクリル系モノマーを用いてポリマー中に導入することが好ましい。 The site for inducing the out-of-plane orientation described above is a polymer having an unsaturated double bond such as a (meth) acrylic monomer, a vinyl monomer, a styrene monomer, or a maleimide monomer. Although it can be introduced, in this case as well, it is preferable to introduce it into the polymer using a (meth) acrylic monomer having a site that induces the out-of-plane orientation.
 また、(A)側鎖型高分子は、下記式(21)~(31)からなる群から選ばれる1種または複数の液晶性側鎖を有するのがよい。
 式中、A及びBは上記と同じ定義を有する;
 q1及びq2は、それぞれ独立して0または1である。
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、ハロゲン原子、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン原子、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
 lは1~12の整数を表し、mは0から2の整数を表し、但し、式(23)~(24)において、全てのmの合計は2以上であり、式(25)~(26)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
 Rは、水素原子、-NO、-CN、ハロゲン原子、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
 Z、Zは単結合、-CO-、-CHO-、-CH=N-、-CF-を表す。
Further, the side chain type polymer (A) preferably has one or more liquid crystal side chains selected from the group consisting of the following formulas (21) to (31).
In the formula, A and B have the same definition as above;
q1 and q2 are independently 0 or 1, respectively.
Y 3 is a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocycle, and alicyclic hydrocarbons having 5 to 8 carbon atoms, and, with a group selected from the group consisting of Yes, the hydrogen atoms attached to them may be independently substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 contains hydrogen atom, -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen atom, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, and nitrogen. Represents a heterocycle, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, but in equations (23) to (24), the sum of all m is 2 or more, and equations (25) to (26). ), The sum of all m is 1 or more, and m1, m2, and m3 independently represent integers of 1 to 3;
R 2 is a hydrogen atom, -NO 2 , -CN, a halogen atom, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocycle, and an alicyclic hydrocarbon having 5 to 8 carbon atoms. And represents an alkyl group or an alkyloxy group;
Z 1 and Z 2 represent a single bond, -CO-, -CH 2 O-, -CH = N-, -CF 2- .
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[面内配向を誘起する部位を有するモノマー] 
 面内配向を有機する部位を有するモノマーとは、高分子を形成した場合に、高分子の側鎖部位に面内配向を誘起する部位を有する高分子を形成することができるモノマーのことである。
 面内配向を有機する部位を有するモノマーとしては、式(1)の構造を有するモノマー(A-1)、式(2)の構造を有するモノマー(A-2)および式(3)の構造を有するモノマー(A-3)が好ましい。
[Monomer having a site that induces in-plane orientation]
A monomer having an organic site for in-plane orientation is a monomer capable of forming a polymer having a site for inducing in-plane orientation in the side chain site of the polymer when the polymer is formed. ..
Examples of the monomer having an organic site for in-plane orientation include the monomer (A-1) having the structure of the formula (1), the monomer (A-2) having the structure of the formula (2), and the structure of the formula (3). The monomer (A-3) having is preferable.
 モノマー(A-1)およびモノマー(A-2)は、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびトリアルコキシシリル基からなる群から選択される少なくとも1種から構成された重合性基と、上記式(1)及び(2)で表される構造から選ばれる感光性側鎖を有するモノマーが好ましい。 The monomer (A-1) and the monomer (A-2) are radically polymerizable groups such as hydrocarbons, (meth) acrylates, itacones, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, and norbornene. And a monomer having a polymerizable group composed of at least one selected from the group consisting of a trialkoxysilyl group and a photosensitive side chain selected from the structures represented by the above formulas (1) and (2) is preferable. ..
 重合性基としては、下記式PG1~PG8で表される基から選ばれるのが好ましい。なかでも、重合反応の制御が容易であるという点と重合体の安定性の観点では、PG1で表されるアクリル基またはメタクリル基が好ましい。なお、式中、破線は上記式(1)、(2)または(3)で表される感光性側鎖との結合手を表す。また、式PG1中、M1は水素原子又はメチル基である。 The polymerizable group is preferably selected from the groups represented by the following formulas PG1 to PG8. Of these, an acrylic group or a methacrylic group represented by PG1 is preferable from the viewpoint of easy control of the polymerization reaction and stability of the polymer. In the formula, the broken line represents the bond with the photosensitive side chain represented by the above formulas (1), (2) or (3). Further, in the formula PG1, M1 is a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 モノマー(A-1)としては、例えば、下記式A-1-1~A-1-12から選ばれるモノマーが挙げられる。下記式A1-1~A1-12中、PGは上記式PG1~PG8で表される基から選ばれる重合性基を表し、s1はメチレン基の数を表し、2~9の整数である。 Examples of the monomer (A-1) include monomers selected from the following formulas A-1-1 to A-1-12. In the following formulas A1-1 to A1-12, PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups and is an integer of 2 to 9.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 モノマー(A-2)としては、例えば、下記式A-2-1~A-2-8から選ばれるモノマーが挙げられる。下記式A2-1~A2-8中、PGは上記式PG1~PG8で表される基から選ばれる重合性基を表し、s1およびs2はそれぞれ独立にメチレン基の数を表し、2~9の整数である。 Examples of the monomer (A-2) include monomers selected from the following formulas A-2-1 to A-2-8. In the following formulas A2-1 to A2-8, PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 and s2 each independently represent the number of methylene groups of 2 to 9. It is an integer.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記モノマー(A-1)およびモノマー(A-2)は、あるものは市販されており、あるものは、例えば国際特許出願公開WO2014/074785等に記載の方法で製造することができる。 Some of the above-mentioned monomers (A-1) and (A-2) are commercially available, and some can be produced by the method described in, for example, International Patent Application Publication WO2014 / 074785.
 モノマー(A-3)は、基(3)を有するモノマーであり、この基(3)はそれだけでは液晶性は有していないが、面内で水素結合により二量化することによって液晶に近い構造となる。これが、光照射によって構造変化を起こすと、水素結合が開裂することによって液晶と近い構造ではなくなる。これにより、上記の機構で面内配向を誘起する部位となりえる。
 このような基(3)を有するモノマー(A-3)としては、例えば、下記式A-3-1~A-3-5から選ばれるモノマーが挙げられる。下記式中、PGは上記式PG1~PG8で表される基から選ばれる重合性基を表し、s1はメチレン基の数を表し、2~9の整数である。
The monomer (A-3) is a monomer having a group (3), and although this group (3) does not have liquid crystal properties by itself, it has a structure similar to that of liquid crystals by being dimerized by hydrogen bonds in the plane. It becomes. When the structure is changed by light irradiation, the hydrogen bond is cleaved and the structure is not similar to that of the liquid crystal. As a result, it can be a site that induces in-plane orientation by the above mechanism.
Examples of the monomer (A-3) having such a group (3) include a monomer selected from the following formulas A-3-1 to A-3-5. In the following formula, PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups, which is an integer of 2 to 9.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(3)で表される構造を有するモノマー(A-3)としては、例えば、4-(6-メタクリルオキシヘキシル-1-オキシ)けい皮酸、4-(6-アクリルオキシヘキシル-1-オキシ)けい皮酸、4-(3-メタクリルオキシプロピル-1-オキシ)けい皮酸、4-(4-(6-メタクリルオキシヘキシル-1-オキシ)ベンゾイルオキシ)けい皮酸などが挙げられる。 Examples of the monomer (A-3) having the structure represented by the above formula (3) include 4- (6-methacryloxyhexyl-1-oxy) cinnamic acid and 4- (6-acrylicoxyhexyl-1). -Oxy) cinnamic acid, 4- (3-methacryloxypropyl-1-oxy) cinnamic acid, 4- (4- (6-methacryloxyhexyl-1-oxy) benzoyloxy) cinnamic acid and the like. ..
[面外配向を誘起する部位を有するモノマー] 
 具体的なモノマーとしては、(メタ)アクリル酸のアルキルエステル、アルキルビニルエーテル、2-アルキルスチレン、3-アルキルスチレン、4-アルキルスチレン、N-アルキルマレイミドで、当該アルキル基が炭素数1~20のものが挙げられる。
 これらのモノマーは、公知の方法により製造することができ、また市販品として入手可能なものもある。
[Monomer having a site that induces out-of-plane orientation]
Specific monomers include alkyl esters of (meth) acrylic acid, alkyl vinyl ethers, 2-alkyl styrenes, 3-alkyl styrenes, 4-alkyl styrenes, and N-alkyl maleimides, the alkyl groups having 1 to 20 carbon atoms. Things can be mentioned.
These monomers can be produced by known methods, and some are commercially available.
 なお、上記式(4)で表される面外配向を誘起する部位を有する(メタ)アクリル系モノマーを用いてポリマー中に面外配向を誘起する部位を導入する場合、その面外配向を誘起する部位を有する側鎖は下記式(4′)で示される。 When a (meth) acrylic monomer having a site that induces out-of-plane orientation represented by the above formula (4) is used to introduce a site that induces out-of-plane orientation into the polymer, the out-of-plane orientation is induced. The side chain having the site to be formed is represented by the following formula (4').
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 このような面外配向性基を有するモノマーとしては、例えば、下記式M3-1~M3-4からなる群から選ばれる式で表されるモノマーが好ましい。下記式中、X及びYはそれぞれ独立に単結合、-O-、-CH-、-NH-、-CO-、-COO-または-OCO-を表し、Rはメチル基、メトキシ基またはトリフルオロメチル基を表し、PGは上記式PG1~PG8で表される基から選ばれる重合性基を表し、s1はメチレン基の数を表し、2~9の整数であり、s2はメチレン基の数を表し、2~12の整数である。 As the monomer having such an out-of-plane orientation group, for example, a monomer represented by a formula selected from the group consisting of the following formulas M3-1 to M3-4 is preferable. In the following formula, X and Y independently represent a single bond, -O-, -CH 2- , -NH-, -CO-, -COO- or -OCO-, and R is a methyl group, a methoxy group or a tri. It represents a fluoromethyl group, PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, s1 represents the number of methylene groups, is an integer of 2 to 9, and s2 is the number of methylene groups. Is an integer of 2 to 12.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[液晶性側鎖モノマー]
 液晶性側鎖モノマーとは、該モノマー由来の高分子が液晶性を発現し、該高分子が側鎖部位にメソゲン基を形成することができるモノマーのことである。
[Liquid crystal side chain monomer]
The liquid crystal side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogen group at a side chain site.
 側鎖の有するメソゲン基として、ビフェニルやフェニルベンゾエートなどの単独でメソゲン構造となる基であっても、安息香酸などのように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては下記の構造が好ましい。 As the mesogen group of the side chain, even if it is a group having a mesogen structure by itself such as biphenyl or phenylbenzoate, or a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid. Good. The following structure is preferable as the mesogen group contained in the side chain.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 液晶性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、上記式(21)~(31)の少なくとも1種からなる側鎖を有する構造であることが好ましい。 More specific examples of liquid side chain monomers include hydrocarbons, (meth) acrylates, itaconates, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene and other radically polymerizable groups. It is preferable that the structure has a polymerizable group composed of at least one selected from the group consisting of siloxane and a side chain composed of at least one of the above formulas (21) to (31).
 このような液晶性モノマーのうち、カルボキシル基を有するモノマーとしては、下記式M2-1~M2-5からなる群から選ばれる式で表されるモノマーを用いることもできる。下記式中、PGは上記式PG1~PG8で表される基から選ばれる重合性基を表し、s1はメチレン基の数を表し、2~9の整数である。 Among such liquid crystal monomers, as the monomer having a carboxyl group, a monomer represented by a formula selected from the group consisting of the following formulas M2-1 to M2-5 can also be used. In the following formula, PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups, which is an integer of 2 to 9.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 また、当該その他モノマーの一例である液晶性を発現する置換基を有するモノマーとして、下記式M2-10~M2-16からなる群から選ばれる式で表されるモノマーを用いることもできる。下記式中、PGは上記式PG1~PG8で表される基から選ばれる重合性基を表し、s1はメチレン基の数を表し、2~9の整数である。 Further, as a monomer having a substituent that expresses liquid crystallinity, which is an example of the other monomer, a monomer represented by a formula selected from the group consisting of the following formulas M2-10 to M2-16 can also be used. In the following formula, PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups, which is an integer of 2 to 9.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[側鎖(a)を有するモノマー]
 本願の(A)成分である重合体は、より耐久性の高い液晶配向膜を得るために、窒素含有芳香族複素環基、アミド基及びウレタン基から選ばれる基を有する側鎖(a)をさらに有していてもよい。側鎖(a)を有する重合体を製造するには、側鎖(a)を有するモノマーを共重合させればよい。
[Monomer having side chain (a)]
The polymer which is the component (A) of the present application has a side chain (a) having a group selected from a nitrogen-containing aromatic heterocyclic group, an amide group and a urethane group in order to obtain a more durable liquid crystal alignment film. You may also have. In order to produce a polymer having a side chain (a), the monomer having a side chain (a) may be copolymerized.
 かかる側鎖(a)を有するモノマーとしては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、窒素含有芳香族複素環基、アミド基及びウレタン基を有する側鎖を有する構造であることが好ましい。アミド基及びウレタン基のNHは置換されていてもいなくても良い。置換されていても良い場合の置換基としては、アルキル基、アミノ基の保護基、ベンジル基等が挙げられる。 Examples of the monomer having such a side chain (a) include hydrocarbons, (meth) acrylates, itacones, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene and other radically polymerizable groups and siloxanes. It is preferable that the structure has a polymerizable group composed of at least one selected from the above group and a side chain having a nitrogen-containing aromatic heterocyclic group, an amide group and a urethane group. The NH of the amide group and the urethane group may or may not be substituted. Examples of the substituent which may be substituted include an alkyl group, an amino group protecting group, a benzyl group and the like.
 窒素含有芳香族複素環は、下記の式[20a]、式[20b]及び式[20c](式中、Zは炭素数1~5の直鎖または分岐アルキル基である)からなる群から選ばれる構造を少なくとも1個、好ましくは1~4個含有する芳香族複素環であるのがよい。 The nitrogen-containing aromatic heterocycle consists of a group consisting of the following formulas [20a], [20b] and [20c] (in the formula, Z 2 is a linear or branched alkyl group having 1 to 5 carbon atoms). It is preferably an aromatic heterocycle containing at least one selected structure, preferably 1 to 4 structures.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 具体的には、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、ピラゾリン環、イソキノリン環、カルバゾール環、プリン環、チアジアゾール環、ピリダジン環、ピラゾリン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンゾイミダゾール環、チノリン環、フェナントロリン環、インドール環、キノキサリン環、ベンゾチアゾール環、フェノチアジン環、オキサジアゾール環、アクリジン環などを挙げることができる。さらに、これら窒素含有芳香族複素環の炭素原子には、ヘテロ原子を含む置換基を有していてもよい。
 これらのうち、例えば、ピリジン環が好ましい。
Specifically, pyrol ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, isoquinoline ring, carbazole ring, purine ring, thiaziazole ring, pyridazine ring, pyrazoline ring, Examples thereof include a triazine ring, a pyrazoline ring, a triazole ring, a pyrazine ring, a benzimidazole ring, a tynoline ring, a phenanthroline ring, an indole ring, a quinoxaline ring, a benzothiazole ring, a phenothiazine ring, an oxaziazole ring, and an aclysin ring. Further, the carbon atom of these nitrogen-containing aromatic heterocycles may have a substituent containing a heteroatom.
Of these, for example, a pyridine ring is preferable.
 そのようなモノマーのうち、窒素含有芳香族複素環基を有するモノマーとして、具体的には、例えば、2-(2-ピリジルカルボニルオキシ)エチル(メタ)アクリレート、2-(3-ピリジルカルボニルオキシ)エチル(メタ)アクリレート、2-(4-ピリジルカルボニルオキシ)エチル(メタ)アクリレート、等が挙げられる。 Among such monomers, examples of the monomer having a nitrogen-containing aromatic heterocyclic group include, for example, 2- (2-pyridylcarbonyloxy) ethyl (meth) acrylate and 2- (3-pyridylcarbonyloxy). Ethyl (meth) acrylate, 2- (4-pyridylcarbonyloxy) ethyl (meth) acrylate, and the like can be mentioned.
 アミド基またはウレタン基を有するモノマーとしては、具体的には、例えば、2-(4-メチルピペリジン-1-イルカルボニルアミノ)エチル(メタ)アクリレート、4-(6-メタクリロイルオキシヘキシルオキシ)安息香酸 N-(tert-ブチルオキシカルボニル)ピペリジン-4-イルエステル、4-(6-メタクリロイルオキシヘキシルオキシ)安息香酸 2-(tert-ブチルオキシカルボニルアミノ)エチルエステル等が挙げられる。 Specific examples of the monomer having an amide group or a urethane group include 2- (4-methylpiperidin-1-ylcarbonylamino) ethyl (meth) acrylate and 4- (6-methacryloyloxyhexyloxy) benzoic acid. Examples thereof include N- (tert-butyloxycarbonyl) piperidine-4-yl ester and 4- (6-methacryloyloxyhexyloxy) benzoic acid 2- (tert-butyloxycarbonylamino) ethyl ester.
 (A)側鎖型高分子は、上述した面内配向を誘起する部位を有するモノマー及び面外配向を誘起する部位を有するモノマーと、所望により液晶性側鎖を有するモノマーと、所望により側鎖(a)を有するモノマーとの共重合反応により得ることができる。さらに、本発明の効果を損なわない範囲でその他のモノマーと共重合することができる。 The side chain type polymer (A) includes the above-mentioned monomer having a site for inducing in-plane orientation, a monomer having a site for inducing out-of-plane orientation, a monomer having a liquid liquid side chain if desired, and a side chain if desired. It can be obtained by a copolymerization reaction with the monomer having (a). Furthermore, it can be copolymerized with other monomers as long as the effects of the present invention are not impaired.
 その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。
 その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。
Examples of other monomers include industrially available radical polymerization-reactive monomers.
Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic acid anhydrides, styrene compounds and vinyl compounds.
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。 Specific examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、及び、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。 Examples of the acrylic acid ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-butyl. Acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2- Examples thereof include propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, and 8-ethyl-8-tricyclodecyl acrylate.
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、及び、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。 Examples of the methacrylate ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate and tert-butyl. Methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2- Examples thereof include propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, 8-ethyl-8-tricyclodecyl methacrylate and the like.
 ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、及び、プロピルビニルエーテル等が挙げられる。 Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
 スチレン化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、2-クロロスチレン、3-クロロスチレン、2-ブロモスチレン、3-ブロモスチレン等が挙げられる。 Examples of the styrene compound include styrene, 2-methylstyrene, 3-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 2-bromostyrene, 3-bromostyrene and the like.
 マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。  Examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
 本発明の側鎖型高分子における面外配向を誘起する部位の含有量は、液晶配向性への影響といった点から、0.1モル%~50モル%が好ましく、0.5モル%~40モル%がより好ましく、1モル%~35モル%が更に好ましい。 The content of the site that induces out-of-plane orientation in the side chain polymer of the present invention is preferably 0.1 mol% to 50 mol%, preferably 0.5 mol% to 40, from the viewpoint of affecting the liquid crystal orientation. More preferably, 1 mol% to 35 mol%.
 本発明の側鎖型高分子における面内配向を誘起する部位を有する側鎖の含有量は、液晶配向性といった点から、20モル%~99.9モル%が好ましく、30モル%~95モル%がより好ましく、40モル%~90モル%が更に好ましい。 The content of the side chain having a site that induces in-plane orientation in the side chain type polymer of the present invention is preferably 20 mol% to 99.9 mol%, preferably 30 mol% to 95 mol, from the viewpoint of liquid crystal orientation. % Is more preferable, and 40 mol% to 90 mol% is further preferable.
 本発明の側鎖型高分子における液晶性側鎖の含有量は、液晶配向性といった点から、80モル%以下が好ましく、含有する場合は10モル%~70モル%がより好ましく、20モル%~60モル%が更に好ましい。 The content of the liquid crystal side chain in the side chain polymer of the present invention is preferably 80 mol% or less, more preferably 10 mol% to 70 mol%, and 20 mol% when it is contained, from the viewpoint of liquid crystal orientation. -60 mol% is more preferred.
 本発明の側鎖型高分子における側鎖(a)の含有量は、チルト角発現といった点から、60モル%以下が好ましく、含有する場合は0.3モル%~50モル%がより好ましく、0.5モル%~30モル%が更に好ましい。 The content of the side chain (a) in the side chain type polymer of the present invention is preferably 60 mol% or less, and more preferably 0.3 mol% to 50 mol% when it is contained, from the viewpoint of expression of tilt angle. More preferably, it is 0.5 mol% to 30 mol%.
 本発明の側鎖型高分子は、面外配向を誘起する部位を有する側鎖、面内配向を誘起する部位を有する側鎖、液晶性側鎖及び側鎖(a)以外のその他側鎖を含有していてもよい。その含有量は、面外配向を誘起する部位を有する側鎖、面内配向を誘起する部位を有する側鎖、液晶性側鎖及び側鎖(a)の含有量の合計が100%に満たない場合に、その残りの部分である。 The side chain type polymer of the present invention includes a side chain having a site that induces out-of-plane orientation, a side chain having a site that induces in-plane orientation, a liquid crystal side chain, and other side chains other than the side chain (a). It may be contained. The total content of the side chain having a site that induces out-of-plane orientation, the side chain having a site that induces in-plane orientation, the liquid crystal side chain, and the side chain (a) is less than 100%. If so, the rest.
 本実施の形態の側鎖型高分子の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、液晶性側鎖モノマーや光反応性側鎖モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。 The method for producing the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is industrially handled can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystal side chain monomer or a photoreactive side chain monomer. Of these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。 As the polymerization initiator for radical polymerization, known compounds such as a radical polymerization initiator and a reversible addition-cracking chain transfer (RAFT) polymerization reagent can be used.
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシ シクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、および2,2’-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。 The radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), and hydroperoxides (peroxidation). Hydrogen, tert-butylhydroxide, cumenehydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketars (dibutylperoxy cyclohexane, etc.) Etc.), alkyl peresters (peroxyneodecanic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy2-ethylcyclohexanoic acid-tert-amyl ester, etc.), persulfates (potassium persulfate, etc.) Examples thereof include sodium persulfate, ammonium persulfate, etc.) and azo compounds (azobisisobutyronitrile, and 2,2′-di (2-hydroxyethyl) azobisisobutyronitrile, etc.). As such a radical thermal polymerization initiator, one type may be used alone, or two or more types may be used in combination.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、又は2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等を挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。 The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone and 2-hydroxy. -2-Methylpropiophenone, 2-Hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenylketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthron, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-( 4-Molholinophenyl) -butanone-1, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4,4'-tri ( t-Butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2- (4'-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3' , 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2 -(2'-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4'-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [PN, N-di (ethoxycarbonylmethyl)]-2,6-di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2'-chlorophenyl) -s- Triazine, 1,3-bis (trichloromethyl) -5- (4'-methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-Mercaptobenzothiazole, 3,3'-carbonylbis (7-diethylaminocoumarin), 2- (o-chlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2 , 2'-bi Su (2-chlorophenyl) -4,4', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4, 4', 5,5'-Tetraphenyl-1,2'-biimidazole, 2,2'bis (2,4-dibromophenyl) -4,4', 5,5'-Tetraphenyl-1,2' -Bimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-bimidazole, 3- (2-methyl-2) -Dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexylphenylketone, bis (5-2,4-cyclopentadiene-1- Il) -bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3 ', 4,4'-Tetra (t-hexylperoxycarbonyl) benzophenone, 3,3'-di (methoxycarbonyl) -4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4'-di ( Methylcarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxycarbonyl) -3,3'-di (t-butylperoxycarbonyl) benzophenone, 2- (3- (3-) Methyl-3H-benzothiazole-2-ylidene) -1-naphthalen-2-yl-etanone, or 2- (3-methyl-1,3-benzothiazole-2 (3H) -iriden) -1- (2-) Benzoyl) Etanone and the like can be mentioned. These compounds may be used alone or in admixture of two or more.
 ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。 The radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a massive polymerization method, a solution polymerization method and the like can be used.
 液晶性を発現し得る感光性の側鎖型高分子の重合反応に用いる有機溶媒としては、生成した高分子が溶解するものであれば特に限定されない。その具体例を以下に挙げる。 The organic solvent used for the polymerization reaction of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as the produced polymer dissolves. Specific examples are given below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。 N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide , Γ-Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cell solve, ethyl cell solve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl Carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl Ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene Glycol monoacetate Monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butylate, butyl ether , Diisobutylketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, acetate Ethyl, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropio Acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglime, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3 Examples thereof include -ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like.
 これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
 また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
These organic solvents may be used alone or in combination. Further, even if the solvent does not dissolve the produced polymer, it may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate.
Further, in radical polymerization, oxygen in the organic solvent causes inhibition of the polymerization reaction, so it is preferable to use an organic solvent degassed to the extent possible.
 ラジカル重合の際の重合温度は30~150℃の任意の温度を選択することができるが、好ましくは50~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、モノマー濃度が、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 to 150 ° C, but is preferably in the range of 50 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a polymer having a high mass, and if the concentration is too high, the viscosity of the reaction solution becomes too high, making uniform stirring difficult. Therefore, the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial reaction can be carried out at a high concentration and then an organic solvent can be added.
 上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。 In the above-mentioned radical polymerization reaction, when the ratio of the radical polymerization initiator is large with respect to the monomer, the molecular weight of the obtained polymer is small, and when the ratio of the radical polymerization initiator is small, the molecular weight of the obtained polymer is large. It is preferably 0.1 to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added at the time of polymerization.
[重合体の回収]
 上述の反応により得られた、液晶性を発現し得る感光性の側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
[Recovery of polymer]
When recovering the produced polymer from the reaction solution of the photosensitive side chain polymer capable of expressing liquidity obtained by the above reaction, the reaction solution is put into a poor solvent and their weights are increased. The coalescence may be precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water and the like. The polymer which has been put into a poor solvent and precipitated can be collected by filtration and then dried at normal temperature or by heating under normal pressure or reduced pressure. Further, if the operation of redistributing the polymer recovered by precipitation in an organic solvent and repeating the operation of recovering the precipitate again 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the purification efficiency is further improved.
 本発明の(A)側鎖型高分子の分子量は、得られる塗膜の強度、塗膜形成時の作業性、および塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000~1000000が好ましく、より好ましくは、5000~500000である。 The molecular weight of the side chain polymer (A) of the present invention is measured by the GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, the workability at the time of forming the coating film, and the uniformity of the coating film. The weight average molecular weight obtained is preferably 2000 to 1000000, more preferably 5000 to 500,000.
[重合体組成物の調製]
 本発明に用いられる重合体組成物は、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、その樹脂成分とは、既に説明した液晶性を発現し得る感光性の側鎖型高分子を含む樹脂成分である。その際、樹脂成分の含有量は、1~20質量%が好ましく、より好ましくは3~15質量%、特に好ましくは3~10質量%である。
[Preparation of polymer composition]
The polymer composition used in the present invention is preferably prepared as a coating liquid so as to be suitable for forming a liquid crystal alignment film. That is, the polymer composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent. Here, the resin component is a resin component containing a photosensitive side-chain type polymer capable of exhibiting liquid crystallinity as described above. At that time, the content of the resin component is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass.
 本実施形態の重合体組成物において、前述の樹脂成分は、全てが上述した液晶性を発現し得る感光性の側鎖型高分子であってもよいが、液晶発現能および感光性能を損なわない範囲でそれら以外の他の重合体が混合されていてもよい。その際、樹脂成分中における他の重合体の含有量は、0.5~80質量%、好ましくは1~50質量%である。
 そのような他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド等からなり、液晶性を発現し得る感光性の側鎖型高分子ではない重合体等が挙げられる。
In the polymer composition of the present embodiment, all of the above-mentioned resin components may be photosensitive side-chain polymers capable of exhibiting the above-mentioned liquid crystallinity, but the liquid crystal expression ability and photosensitive performance are not impaired. Other polymers may be mixed in the range. At that time, the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
Examples of such other polymers include polymers composed of poly (meth) acrylate, polyamic acid, polyimide, etc., and are not photosensitive side chain polymers capable of exhibiting liquid crystallinity.
<(B)有機溶媒>
 本発明に用いられる重合体組成物に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチル-ε-カプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-2-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは単独で使用しても、混合して使用してもよい。
<(B) Organic solvent>
The organic solvent used in the polymer composition used in the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl-ε-caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, Dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-Dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglime, 4-hydroxy- 4-Methyl-2-pentanone, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene Glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl Examples include ether. These may be used alone or in combination.
 本発明に用いられる重合体組成物は、上記(A)及び(B)成分以外の成分を含有してもよい。その例としては、重合体組成物を塗布した際の、膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物、(C)アミン化合物等を挙げることができるが、これに限定されない。 The polymer composition used in the present invention may contain components other than the above components (A) and (B). Examples thereof include solvents and compounds that improve film thickness uniformity and surface smoothness when the polymer composition is applied, compounds that improve the adhesion between the liquid crystal alignment film and the substrate, (C) amine compounds, and the like. However, it is not limited to this.
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール等の低表面張力を有する溶媒等が挙げられる。
Specific examples of the solvent (poor solvent) for improving the uniformity of the film thickness and the surface smoothness include the following.
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol mono. Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether , Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tri Propropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1-hexanol, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, isoamyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoacetate Ethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, 3-methoxypropionic acid Propyl, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate , Propylene glycol-1-monomethi Examples thereof include solvents having a low surface tension such as ruether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, and 2- (2-ethoxypropoxy) propanol.
 これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。上述のような溶媒を用いる場合は、重合体組成物に含まれる溶媒全体の溶解性を著しく低下させることが無いように、溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。 These poor solvents may be used alone or in admixture of a plurality of types. When the above-mentioned solvent is used, it is preferably 5 to 80% by mass, more preferably 20% by mass, so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. ~ 60% by mass.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤およびノ二オン系界面活性剤等が挙げられる。
 より具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(三菱マテリアル電子化成社製)、メガファック(登録商標)F171、F173、R-30(DIC社製)、フロラードFC430、FC431(スリーエムジャパン社製)、アサヒガード(登録商標)AG710(AGC社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、重合体組成物に含有される樹脂成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
Examples of the compound for improving the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant.
More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd.), Megafuck (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (3M Japan Ltd.), Asahi Guard (registered trademark) AG710 (AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (AGC Seimi Chemical), etc. Can be mentioned. The ratio of these surfactants used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, based on 100 parts by mass of the resin component contained in the polymer composition. ..
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物などが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン等が挙げられる。
Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane. , N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl- 1,4,7-Triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyltrimethoxy Examples thereof include silane and N-bis (oxyethylene) -3-aminopropyltriethoxysilane.
 さらに、基板と液晶配向膜の密着性の向上に加え、液晶表示素子を構成した時のバックライトによる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系やエポキシ基含有化合物の添加剤を、重合体組成物中に含有させても良い。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。 Furthermore, in addition to improving the adhesion between the substrate and the liquid crystal alignment film, the following phenoplast-based or epoxy group-containing compounds are added for the purpose of preventing deterioration of electrical characteristics due to the backlight when the liquid crystal display element is configured. The agent may be contained in the polymer composition. Specific phenoplast-based additives are shown below, but are not limited to this structure.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 具体的なエポキシ基含有化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが例示される。 Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-Hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N', N'-tetraglycidyl-m-xylene diamine, 1,3-bis (N, N-diglycidyl aminomethyl) cyclohexane, N, N, N', N'-tetraglycidyl-4, 4'-diaminodiphenylmethane, etc. Illustrated.
 基板との密着性を向上させる化合物を使用する場合、その使用量は、重合体組成物に含有される樹脂成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When a compound that improves adhesion to a substrate is used, the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the polymer composition. It is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it is more than 30 parts by mass, the orientation of the liquid crystal may deteriorate.
<(C)アミン化合物>
 本発明に用いられる重合体組成物は、(C)成分として特定のアミン化合物、具体的には分子内に第一級アミノ基を1個と窒素含有芳香族複素環とを有し、かつ前記第一級アミノ基が脂肪族炭化水素基又は非芳香族環式炭化水素基に結合しているアミン化合物を有することができる。そのような化合物は、WO2008/013285号公報に(B)成分として記載されているものである。かかるアミン化合物を含有することにより、液晶配向膜としたときに、イオン性不純物の溶出を低減することができる。
 特定のアミン化合物は、本発明に用いられる重合体組成物が液晶配向膜を形成した際、次の効果i)及び/又はii)を奏するものであれば、特に限定されない。i)液晶配向膜界面において液晶中のイオン性不純物を吸着するか、及び/又はii)向上した電圧保持率を奏する。
 特定のアミン化合物の量は、上記効果を奏するのであれば、特に限定されないが、本発明に用いられる重合体組成物100質量部中、0.01~10質量部、好ましくは0.1~5質量部であるのがよい。
<(C) Amine compound>
The polymer composition used in the present invention has a specific amine compound as the component (C), specifically, one primary amino group in the molecule and a nitrogen-containing aromatic heterocycle, and is described above. It can have an amine compound in which the primary amino group is attached to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group. Such a compound is described as a component (B) in WO2008 / 013285. By containing such an amine compound, elution of ionic impurities can be reduced when the liquid crystal alignment film is formed.
The specific amine compound is not particularly limited as long as it exhibits the following effects i) and / or ii) when the polymer composition used in the present invention forms a liquid crystal alignment film. i) Adsorbs ionic impurities in the liquid crystal at the liquid crystal alignment film interface and / or ii) exhibits an improved voltage retention rate.
The amount of the specific amine compound is not particularly limited as long as it exhibits the above effects, but is 0.01 to 10 parts by mass, preferably 0.1 to 5 parts by mass, out of 100 parts by mass of the polymer composition used in the present invention. It should be parts by mass.
 添加剤として、光増感剤を用いることもできる。無色増感剤および三重項増感剤が好ましい。
 光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ-4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、およびアミノ置換された、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-もしくはジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン)、ベンゾチアゾール、ニトロアニリン(m-もしくはp-ニトロアニリン、2,4,6-トリニトロアニリン)またはニトロアセナフテン(5-ニトロアセナフテン)、(2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン)、ナフタレン、アントラセン(2-ナフタレンメタノール、2-ナフタレンカルボン酸、9-アントラセンメタノール、および9-アントラセンカルボン酸)、ベンゾピラン、アゾインドリジン、メチルクマリン等がある。
 好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン、およびアセトフェノンケタールである。
A photosensitizer can also be used as the additive. Colorless sensitizers and triplet sensitizers are preferred.
Photosensitizers include aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy-4-methylcoumarin), ketocoumarins, carbonylbiscoumarins, aromatic 2-hydroxyketones, and amino substitutions. Also, aromatic 2-hydroxyketone (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthron, thiazolin (2-benzoylmethylene-). 3-Methyl-β-naphthiazoline, 2- (β-naphthoylmethylene) -3-methylbenzothiazolin, 2- (α-naphthoylmethylene) -3-methylbenzothiazolin, 2- (4-biphenoylmethylene) -3-Methylbenzothiazolin, 2- (β-naphthoylmethylene) -3-methyl-β-naphthiazoline, 2- (4-biphenoylmethylene) -3-methyl-β-naphthiazoline, 2- (p- Fluorobenzoylmethylene) -3-methyl-β-naphthiazoline), oxazoline (2-benzoylmethylene-3-methyl-β-naphthoxazoline, 2- (β-naphthoylmethylene) -3-methylbenzoxazoline, 2-( α-Naftylmethylene) -3-methylbenzoxazoline, 2- (4-biphenoylmethylene) -3-methylbenzoxazoline, 2- (β-naphthoylmethylene) -3-methyl-β-naphthoxazoline, 2- (4-Bifenoylmethylene) -3-methyl-β-naphthoxazoline, 2- (p-fluorobenzoylmethylene) -3-methyl-β-naphthoxazoline), benzothiazole, nitroaniline (m- or p-nitroaniline) , 2,4,6-trinitroaniline) or nitroacenaften (5-nitroacenaften), (2-[(m-hydroxy-p-methoxy) styryl] benzothiazole, benzoin alkyl ether, N-alkylated phthalone , Acetphenon ketal (2,2-dimethoxyphenyletanone), naphthalene, anthracene (2-naphthalene methanol, 2-naphthalenecarboxylic acid, 9-anthracenemethanol, and 9-anthracenecarboxylic acid), benzopyrane, azoindrinsin, methylcoumarin And so on.
Preferred are aromatic 2-hydroxyketone (benzophenone), coumarin, ketocoumarin, carbonylbiscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal.
 重合体組成物には、上述したものの他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。 In addition to the above-mentioned polymer compositions, dielectrics and conductive substances can be used for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. Further, a crosslinkable compound may be added for the purpose of increasing the hardness and the density of the film when the liquid crystal alignment film is formed.
 上述した重合体組成物を液晶駆動用の電極を有する基板上に塗布する方法は特に限定されない。
 塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)またはスプレー法などがあり、目的に応じてこれらを用いてもよい。
The method of applying the above-mentioned polymer composition onto a substrate having an electrode for driving a liquid crystal is not particularly limited.
Industrially, the coating method is generally screen printing, offset printing, flexographic printing, an inkjet method, or the like. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method (rotary coating method), a spray method, and the like, and these may be used depending on the purpose.
 液晶駆動用の電極を有する基板上に重合体組成物を塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50~230℃、好ましくは50~220℃で0.4~60分間、好ましくは0.5~10分間溶媒を蒸発させて塗膜を得ることができる。このときの乾燥温度は、側鎖型高分子の液晶相発現温度よりも低いことが好ましい。 After the polymer composition is applied onto a substrate having electrodes for driving a liquid crystal, the temperature is 50 to 230 ° C., preferably 50 to 220 ° C. by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven. The coating film can be obtained by evaporating the solvent for 0.4 to 60 minutes, preferably 0.5 to 10 minutes. The drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer.
 塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~150nmである。
 尚、工程[I]の後、続く工程[II]の前に塗膜の形成された基板を室温にまで冷却する工程を設けることも可能である。
If the thickness of the coating film is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may decrease. Therefore, the thickness is preferably 5 to 300 nm, more preferably 10 to 150 nm. Is.
It is also possible to provide a step of cooling the substrate on which the coating film is formed to room temperature after the step [I] and before the subsequent step [II].
<工程[II]>
 工程[II]では、工程[I]で得られた塗膜に、S波が主成分となるように偏光した紫外線を斜め方向から照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
<Step [II]>
In the step [II], the coating film obtained in the step [I] is irradiated with ultraviolet rays polarized so that the S wave is the main component from an oblique direction. When the film surface of the coating film is irradiated with polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays from a certain direction via a polarizing plate. As the ultraviolet rays to be used, ultraviolet rays having a wavelength in the range of 100 to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of coating film used. Then, for example, ultraviolet rays having a wavelength in the range of 290 to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced. As the ultraviolet rays, for example, light emitted from a high-pressure mercury lamp can be used.
 S波が主成分となるように偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値(以下、ΔAmaxとも称する)を実現する偏光紫外線の量の1~70%の範囲内とすることが好ましく、1~50%の範囲内とすることがより好ましい。 The irradiation amount of ultraviolet rays polarized so that the S wave is the main component depends on the coating film used. The irradiation amount is a polarized ultraviolet ray that realizes the maximum value of ΔA (hereinafter, also referred to as ΔAmax), which is the difference between the ultraviolet ray absorbance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet ray absorbance in the vertical direction in the coating film. The amount is preferably in the range of 1 to 70%, and more preferably in the range of 1 to 50%.
 偏光した紫外線の照射方向は、通常、基板に対して1°~89°であるが、好ましくは10°~80°、特に好ましくは20°~70°である。この角度が小さすぎる場合はプレチルト角が小さくなるという問題があり、大きすぎる場合はプレチルト角が高くなるという問題がある。 The irradiation direction of the polarized ultraviolet rays is usually 1 ° to 89 ° with respect to the substrate, but is preferably 10 ° to 80 °, particularly preferably 20 ° to 70 °. If this angle is too small, there is a problem that the pre-tilt angle becomes small, and if it is too large, there is a problem that the pre-tilt angle becomes high.
 照射方向を上記の角度に調節する方法としては、基板自体を傾ける方法と、光線を傾ける方法があるが、光線自体を傾けるのが液晶表示素子の生産スループットの観点からより好ましい。 As a method of adjusting the irradiation direction to the above angle, there are a method of tilting the substrate itself and a method of tilting the light beam, but tilting the light beam itself is more preferable from the viewpoint of the production throughput of the liquid crystal display element.
<工程[III]>
 工程[III]では、工程[II]で偏光した紫外線の照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
 加熱は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。
<Step [III]>
In step [III], the coating film irradiated with ultraviolet rays polarized in step [II] is heated. Orientation control ability can be imparted to the coating film by heating.
For heating, a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used. The heating temperature can be determined in consideration of the temperature at which the liquid crystal property of the coating film to be used is exhibited.
 加熱温度は、側鎖型高分子が液晶性を発現する温度(以下、液晶発現温度という)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、液晶性を発現し得る感光性の側鎖型高分子をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、使用する側鎖型高分子の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。
 なお、液晶発現温度は、側鎖型高分子または塗膜表面が固体相から液晶相に相転移がおきるガラス転移温度(Tg)以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。
The heating temperature is preferably within the temperature range of the temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as the liquid crystal expression temperature). In the case of a thin film surface such as a coating film, the liquid crystal development temperature on the coating film surface is expected to be lower than the liquid crystal development temperature when a photosensitive side chain polymer capable of exhibiting liquid crystal properties is observed in bulk. The liquid crystal. Therefore, the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the surface of the coating film. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is set to a temperature 10 ° C. lower than the lower limit of the temperature range of the liquid crystal expression temperature of the side chain polymer to be used, and is 10 ° C. lower than the upper limit of the liquid crystal temperature range. The temperature is preferably in the range up to. If the heating temperature is lower than the above temperature range, the effect of amplifying the anisotropy due to heat in the coating film tends to be insufficient, and if the heating temperature is too high above the above temperature range, the state of the coating film is in a state. Tends to be close to an isotropic liquid state (isotropic phase), in which case self-assembly can make it difficult to reorient in one direction.
The liquid crystal development temperature is equal to or higher than the glass transition temperature (Tg) at which the side chain polymer or the coating surface undergoes a phase transition from the solid phase to the liquid crystal phase, and the liquid crystal phase changes to the isotropic phase (isotropic phase). The temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.
 加熱後に形成される塗膜の厚みは、工程[I]で記した同じ理由から、好ましくは5~300nm、より好ましくは50~150nmであるのがよい。 The thickness of the coating film formed after heating is preferably 5 to 300 nm, more preferably 50 to 150 nm for the same reason described in step [I].
 以上の工程を有することにより、本発明の製造方法では、高効率な、塗膜への異方性の導入を実現することができる。そして、高効率に液晶配向膜付基板を製造することができる。 By having the above steps, the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. Then, a substrate with a liquid crystal alignment film can be manufactured with high efficiency.
<工程[IV]>
 工程[IV]は、基板の液晶配向膜が形成された側が対向するように配置された2枚の工程[III]で得られた基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する液晶表示素子を作製する工程である。このような本発明の液晶表示素子としては、ツイストネマティック(TN:Twisted Nematic)方式、垂直配向(VA:Vertical Alignment)方式や、水平配向(IPS:In-Plane Switching)方式、OCB配向(OCB:Optically Compensated Bend)等、種々のものが挙げられる。
<Step [IV]>
In step [IV], the substrate obtained in the two steps [III] arranged so that the sides on which the liquid crystal alignment film of the substrate was formed face each other, the liquid crystal layer provided between the substrates, and the substrate and the liquid crystal. This is a step of producing a liquid crystal display element including a liquid crystal cell having the liquid crystal alignment film provided between the layers and formed by the liquid crystal alignment agent of the present invention. Such liquid crystal display elements of the present invention include a twisted nematic (TN: Twisted Nematic) method, a vertical alignment (VA: Vertical Alignment) method, a horizontal alignment (IPS: In-Plane Switching) method, and an OCB alignment (OCB:). Optically Compensated Bend) and the like.
 液晶セル又は液晶表示素子の作製の一例を挙げるならば、上述の第1及び第2の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、紫外線露光方向が互いに直交するようにもう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このときのスペーサの径は、好ましくは1~30μm、より好ましくは2~10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。 To give an example of manufacturing a liquid crystal cell or a liquid crystal display element, the above-mentioned first and second substrates are prepared, a spacer is sprayed on the liquid crystal alignment film of one of the substrates, and the liquid crystal alignment film surface is on the inside. In this way, the other substrate is bonded so that the ultraviolet exposure directions are orthogonal to each other, and the liquid crystal is injected under reduced pressure to seal the liquid crystal, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacer is sprayed, and then the substrate is used. Can be exemplified, such as a method of laminating and sealing. The diameter of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm. This spacer diameter determines the distance between the pair of substrates sandwiching the liquid crystal layer, that is, the thickness of the liquid crystal layer.
 得られた液晶表示素子は、さらに配向安定性のためにアニール処理をすることが好ましい。加熱温度は液晶の相転移温度である、好ましくは10~160℃、より好ましくは50~140℃であるのがよい。 It is preferable that the obtained liquid crystal display element is further annealed for orientation stability. The heating temperature is the phase transition temperature of the liquid crystal, preferably 10 to 160 ° C, more preferably 50 to 140 ° C.
 本発明の塗膜付基板の製造方法は、重合体組成物を基板上に塗布し塗膜を形成した後、偏光した紫外線を斜め方向から照射する。次いで、加熱を行うことにより側鎖型高分子膜への高効率な異方性の導入を実現し、液晶の配向制御能を備えた液晶配向膜付基板を製造する。
 本発明に用いる塗膜では、側鎖の光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、塗膜への高効率な異方性の導入を実現する。本発明の製造方法では、側鎖型高分子に光反応性基として光架橋性基を有する構造の場合、側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、液晶表示素子を作成する。
In the method for producing a coated substrate of the present invention, the polymer composition is applied onto the substrate to form a coating film, and then polarized ultraviolet rays are irradiated from an oblique direction. Next, by heating, highly efficient anisotropy is introduced into the side chain type polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal orientation control ability is manufactured.
The coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the photoreaction of side chains and self-assembly based on liquid crystallinity. .. In the production method of the present invention, in the case of a structure having a photocrosslinkable group as a photoreactive group in the side chain polymer, after forming a coating film on the substrate using the side chain polymer, polarized ultraviolet rays are emitted. After irradiating and then heating, a liquid crystal display element is produced.
 したがって、本発明の方法に用いる塗膜は、塗膜への偏光した紫外線の照射と加熱処理を順次行うことにより、高効率に異方性が導入され、配向制御能に優れた液晶配向膜とすることができる。 Therefore, the coating film used in the method of the present invention is a liquid crystal alignment film having excellent orientation control ability because anisotropy is introduced with high efficiency by sequentially irradiating the coating film with polarized ultraviolet rays and heat treatment. can do.
 そして、本発明の方法に用いる塗膜では、塗膜への偏光した紫外線の照射量と照射方向、加熱処理における加熱温度を最適化する。それにより高効率な、塗膜への異方性の導入を実現することができる。 Then, in the coating film used in the method of the present invention, the irradiation amount and irradiation direction of polarized ultraviolet rays on the coating film and the heating temperature in the heat treatment are optimized. As a result, highly efficient introduction of anisotropy into the coating film can be realized.
 本発明に用いられる塗膜への高効率な異方性の導入に最適な偏光紫外線の照射量は、その塗膜において感光性基が光異性化反応する量を最適にする偏光紫外線の照射量に対応する。本発明に用いられる塗膜に対して偏光した紫外線を照射した結果、光異性化反応する側鎖の感光性基が少ないと、十分な光反応量とならない。その場合、その後に加熱しても十分な自己組織化は進行しない。 The optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the coating film used in the present invention is the irradiation amount of polarized ultraviolet rays that optimizes the amount of photoisomerization reaction of photosensitive groups in the coating film. Corresponds to. As a result of irradiating the coating film used in the present invention with polarized ultraviolet rays, if the number of photosensitive groups in the side chain undergoing photoisomerization reaction is small, the amount of photoreaction is not sufficient. In that case, even if it is heated after that, sufficient self-organization does not proceed.
 したがって、本発明に用いられる塗膜において、偏光紫外線の照射によって側鎖の感光性基が光異性化反応する最適な量は、その側鎖型高分子膜の有する感光性基の0.1~40モル%にすることが好ましく、0.1~20モル%にすることがより好ましい。光反応する側鎖の感光性基の量をこのような範囲にすることにより、その後の加熱処理での自己組織化が効率良く進み、膜中での高効率な異方性の形成が可能となる。 Therefore, in the coating film used in the present invention, the optimum amount of photoisomerization reaction of the photosensitive groups of the side chain by irradiation with polarized ultraviolet rays is 0.1 to 0.1 to 0.1 to the photosensitive groups of the side chain type polymer film. It is preferably 40 mol%, more preferably 0.1 to 20 mol%. By setting the amount of photosensitive groups in the side chain that photoreacts in such a range, self-assembly in the subsequent heat treatment proceeds efficiently, and highly efficient anisotropy can be formed in the film. Become.
 本発明の方法に用いる塗膜では、偏光した紫外線の照射量の最適化により、側鎖型高分子膜の側鎖における、感光性基の光異性化反応の量を最適化する。そして、その後の加熱処理と併せて、高効率な、本発明に用いられる塗膜への異方性の導入を実現する。その場合、好適な偏光紫外線の量については、本発明に用いられる塗膜の紫外吸収の評価に基づいて行うことが可能である。 In the coating film used in the method of the present invention, the amount of photoisomerization reaction of the photosensitive group in the side chain of the side chain type polymer film is optimized by optimizing the irradiation amount of polarized ultraviolet rays. Then, in combination with the subsequent heat treatment, highly efficient introduction of anisotropy into the coating film used in the present invention is realized. In that case, the suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the coating film used in the present invention.
 すなわち、本発明に用いられる塗膜について、偏光紫外線照射後の、偏光した紫外線の偏光方向と平行な方向の紫外線吸収と、垂直な方向の紫外線吸収とをそれぞれ測定する。紫外吸収の測定結果から、その塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを評価する。そして、本発明に用いられる塗膜において実現されるΔAの最大値(ΔAmax)とそれを実現する偏光紫外線の照射量を求める。本発明の製造方法では、このΔAmaxを実現する偏光紫外線照射量を基準として、液晶配向膜の製造において照射する、好ましい量の偏光した紫外線量を決めることができる。 That is, for the coating film used in the present invention, the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorption in the vertical direction after irradiation with polarized ultraviolet rays are measured, respectively. From the measurement result of ultraviolet absorption, ΔA, which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction, is evaluated. Then, the maximum value (ΔAmax) of ΔA realized in the coating film used in the present invention and the irradiation amount of polarized ultraviolet rays to realize it are obtained. In the production method of the present invention, a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined based on the amount of polarized ultraviolet rays that realizes this ΔAmax.
 本発明の製造方法では、本発明に用いられる塗膜への偏光した紫外線の照射量を、ΔAmaxを実現する偏光紫外線の量の1~70%の範囲内とすることが好ましく、1~50%の範囲内とすることがより好ましい。本発明に用いられる塗膜において、ΔAmaxを実現する偏光紫外線の量の1~50%の範囲内の偏光紫外線の照射量は、その側鎖型高分子膜の有する感光性基全体の0.1~20モル%を光架橋反応させる偏光紫外線の量に相当する。 In the production method of the present invention, the irradiation amount of polarized ultraviolet rays on the coating film used in the present invention is preferably in the range of 1 to 70% of the amount of polarized ultraviolet rays that realize ΔAmax, and 1 to 50%. It is more preferable that the content is within the range of. In the coating film used in the present invention, the irradiation amount of polarized ultraviolet rays in the range of 1 to 50% of the amount of polarized ultraviolet rays that realize ΔAmax is 0.1 of the entire photosensitive groups of the side chain type polymer film. Corresponds to the amount of polarized ultraviolet light that photocrosslinks up to 20 mol%.
 以上より、本発明の製造方法では、塗膜への高効率な異方性の導入を実現するため、その側鎖型高分子の液晶温度範囲を基準として、上述したような好適な加熱温度を定めるのがよい。したがって、例えば、本発明に用いられる側鎖型高分子の液晶温度範囲が100~200℃である場合、偏光紫外線照射後の加熱の温度を90~190℃とすることが望ましい。こうすることにより、本発明に用いられる塗膜において、より大きな異方性が付与されることになる。こうすることにより、本発明によって提供される液晶表示素子は光や熱などの外部ストレスに対して高い信頼性を示すことになる。 Based on the above, in the production method of the present invention, in order to realize highly efficient introduction of anisotropy into the coating film, the suitable heating temperature as described above is set based on the liquid crystal temperature range of the side chain polymer. It is better to determine. Therefore, for example, when the liquid crystal temperature range of the side chain polymer used in the present invention is 100 to 200 ° C., it is desirable that the heating temperature after irradiation with polarized ultraviolet rays is 90 to 190 ° C. By doing so, the coating film used in the present invention is imparted with greater anisotropy. By doing so, the liquid crystal display element provided by the present invention exhibits high reliability against external stress such as light and heat.
 以上のようにして、本発明の方法によって製造された液晶表示素子用基板又は該基板を有する液晶表示素子は、信頼性や配向安定性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
 以下、実施例を用いて本発明を説明するが、本発明は、該実施例に限定されるものではない。
As described above, the liquid crystal display element substrate or the liquid crystal display element having the substrate manufactured by the method of the present invention has excellent reliability and orientation stability, and is a large-screen, high-definition liquid crystal television or the like. Can be suitably used for.
Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
 実施例で使用する略号は以下のとおりである。
<メタクリルモノマー>
The abbreviations used in the examples are as follows.
<Methyl monomer>
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 MA-1は特許文献(WO2011-084546)に記載の合成法にて合成した。
 MA-2は特許文献(特開平9-118717)に記載の合成法にて合成した。
 MA-3及びMA-4は特許文献(WO2011-125876)に記載の合成法にて合成した。
 MA-6は国際特許出願公開WO2014/054785号パンフレットに記載の合成法にて合成した。
 MA-7は非特許文献(Macromolecules 2007, 40, 6355-6360)に記載の合成法にて合成した。
 MA-8は非特許文献(Macromolecules 2002, 35, 706-713)に記載の合成法にて合成した。
 MA-10は特許文献(特開平9-118717)に記載の合成法にて合成した。
 MA-11は特許文献(WO2017-018501)に記載の合成法にて合成した。
 MA-12は東京化成工業株式会社より購入して使用した。
 MA-13は東京化成工業株式会社より購入して使用した。
MA-1 was synthesized by the synthetic method described in Patent Document (WO2011-084546).
MA-2 was synthesized by the synthetic method described in Patent Document (Japanese Patent Laid-Open No. 9-118717).
MA-3 and MA-4 were synthesized by the synthetic method described in Patent Document (WO2011-125876).
MA-6 was synthesized by the synthetic method described in the international patent application publication WO2014 / 054785 pamphlet.
MA-7 was synthesized by the synthetic method described in the non-patent document (Macromolecules 2007, 40, 6355-6360).
MA-8 was synthesized by the synthetic method described in the non-patent document (Macromolecules 2002, 35, 706-713).
MA-10 was synthesized by the synthetic method described in Patent Document (Japanese Patent Laid-Open No. 9-118717).
MA-11 was synthesized by the synthetic method described in Patent Document (WO2017-018501).
MA-12 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
MA-13 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
<有機溶媒>
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
 THF:テトラヒドロフラン
 DMF:N,N-ジメチルホルムアミド
 PhMe:トルエン
 EtOH:エタノール
<Organic solvent>
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve THF: tetrahydrofuran DMF: N, N-dimethylformamide PhMe: Toluene EtOH: Ethanol
<重合開始剤>
AIBN:2,2’-アゾビスイソブチロニトリル
<Polymerization initiator>
AIBN: 2,2'-azobisisobutyronitrile
HNMRの測定>
 装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER製)500MHz。
溶媒:重水素化クロロホルム(CDCl)又は重水素化N,N-ジメチルスルホキシド([D]-DMSO)。
標準物質:テトラメチルシラン(TMS)。
< 1 HNMR measurement>
Device: Fourier transform type superconducting nuclear magnetic resonance device (FT-NMR) "AVANCE III" (manufactured by BRUKER) 500 MHz.
Solvent: Deuterated chloroform (CDCl 3 ) or deuterated N, N-dimethyl sulfoxide ([D 6 ] -DMSO).
Standard substance: Tetramethylsilane (TMS).
<メタクリル化合物>
 MA-5は、文献等未公開の新規化合物であり、以下のモノマー合成例1でその合成法を詳述する。
<Methyl compound>
MA-5 is a novel compound which has not been published in the literature, and its synthesis method will be described in detail in the following Monomer Synthesis Example 1.
<モノマー合成例1:[MA-5]の合成> <Monomer synthesis example 1: Synthesis of [MA-5]>
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 1L四つ口フラスコに4-ヒドロキシ-4’-ヨードビフェニル(25.2g:85mmol)、1-ブロモプロパン(12.6g:102mmol)、炭酸カリウム(17.6g:128mmol)、DMF(250g)を仕込み、80℃で撹拌した。反応終了後、反応液を純水(1500g)に注ぎ、析出物を濾別した。得られた粗物に酢酸エチル(30g)、ヘキサン(20g)加え、室温でリパルプ洗浄することで、[MA-5-1]を21.8g得た。 4-Hydroxy-4'-iodobiphenyl (25.2 g: 85 mmol), 1-bromopropane (12.6 g: 102 mmol), potassium carbonate (17.6 g: 128 mmol), DMF (250 g) in a 1 L four-necked flask. It was charged and stirred at 80 ° C. After completion of the reaction, the reaction solution was poured into pure water (1500 g), and the precipitate was filtered off. Ethyl acetate (30 g) and hexane (20 g) were added to the obtained crude product, and repulp washing was performed at room temperature to obtain 21.8 g of [MA-5-1].
 1L四つ口フラスコに[MA-5-1](21.8g:64mmol)、2-プロピン-1-オール(5.0g:90mmol)、トリエチルアミン(13.0g:129mmol)、THF(220g)を仕込み、窒素置換後、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(4.5g:6mmol)、ヨウ化銅(I)(1.2g:6mmol)を加え、室温で撹拌した。反応終了後、沈殿物を濾過し、濾液を濃縮した。得られた残渣に酢酸エチル(400g)を加え、有機層を1規定-塩酸水溶液(500g)、飽和炭酸水素ナトリウム水溶液(500g)、純水(500g)で洗浄後、濃縮した。得られた粗物を酢酸エチル/ヘキサン(体積比1:3)溶液を用いて、シリカゲルによる原点カットを行ったのち、さらに、得られた粗物にヘキサン(700g)を加え、室温でリパルプ洗浄することで、[MA-5-2]を13.6g得た。 [MA-5-1] (21.8 g: 64 mmol), 2-propin-1-ol (5.0 g: 90 mmol), triethylamine (13.0 g: 129 mmol), THF (220 g) are placed in a 1 L four-necked flask. After preparation and nitrogen substitution, bis (triphenylphosphine) palladium (II) dichloride (4.5 g: 6 mmol) and copper (I) iodide (1.2 g: 6 mmol) were added, and the mixture was stirred at room temperature. After completion of the reaction, the precipitate was filtered and the filtrate was concentrated. Ethyl acetate (400 g) was added to the obtained residue, and the organic layer was washed with 1N-hydrochloric acid aqueous solution (500 g), saturated sodium hydrogen carbonate aqueous solution (500 g), and pure water (500 g), and then concentrated. The obtained crude product was subjected to origin cutting with silica gel using an ethyl acetate / hexane (volume ratio 1: 3) solution, and then hexane (700 g) was added to the obtained crude product and washed with repulp at room temperature. By doing so, 13.6 g of [MA-5-2] was obtained.
 300mL四つ口フラスコに[MA-5-2](13.6g:51mmol)、THF(100g)、EtOH(100g)を仕込み、窒素置換後、5% Pd/Cを加え、水素置換して室温で撹拌した。反応終了後、反応液をメンブレンフィルターで濾過することで、Pd/Cを除去した。得られた粗物を酢酸エチル/ヘキサン(体積比1:10)溶液を用いて、シリカゲルによる原点カットを行い、さらに、得られた粗物にヘキサン(50g)を加え、室温でリパルプ洗浄することで、[MA-5-3]を5.6g得た。 [MA-5-2] (13.6 g: 51 mmol), THF (100 g), EtOH (100 g) were charged in a 300 mL four-necked flask, nitrogen was replaced, 5% Pd / C was added, and hydrogen was replaced at room temperature. Was stirred with. After completion of the reaction, Pd / C was removed by filtering the reaction solution with a membrane filter. The obtained crude product is subjected to origin cutting with silica gel using an ethyl acetate / hexane (volume ratio 1:10) solution, and hexane (50 g) is further added to the obtained crude product and repulp-washed at room temperature. Then, 5.6 g of [MA-5-3] was obtained.
 300mL四つ口フラスコに[MA-5-3](5.6g:21mmol)、メタクリル酸(2.2g:25mmol)、p-トルエンスルホン酸一水和物(0.6g:3mmol)、2,6-ジ-tert-ブチル-p-クレゾール(0.05g:0.2mmol)、PhMe(60g)を仕込み、ディーン・スターク装置を用いて、還流状態で撹拌した。反応終了後、反応液を酢酸エチル(200g)に注ぎ、10質量%炭酸カリウム水溶液(300g)、純水(300g)で洗浄後、濃縮した。得られた残渣を酢酸エチル/ヘキサン(体積比1:10)溶液を用いて、シリカゲルによる原点カットを行いさらに、得られた粗物にヘキサン(30g)を加え、室温でリパルプ洗浄することで、[MA-5](黄色固体)を2.9g得た。目的物の1H-NMRの結果を以下に示す。この結果から、得られた固体が、目的の[MA-5]であることを確認した。
1H NMR (500 MHz, [D6]-DMSO):δ7.51-7.56 (q,4H), 7.25-7.27 (d,2H), 6.98-7.00 (d,2H), 6.03 (s,1H), 5.67 (s,1H), 4.10-4.12 (t,2H), 3.94-3.97 (t,2H), 2.68-2.71 (m,2H), 1.94-1.99 (m,2H), 1.93 (s,3H), 1.71-1.78 (m,2H), 0.98-1.00 (t,3H)
[MA-5-3] (5.6 g: 21 mmol), methacrylic acid (2.2 g: 25 mmol), p-toluenesulfonic acid monohydrate (0.6 g: 3 mmol), 2, in a 300 mL four-necked flask. 6-di-tert-butyl-p-cresol (0.05 g: 0.2 mmol) and PhMe (60 g) were charged and stirred in a reflux state using a Dean-Stark apparatus. After completion of the reaction, the reaction solution was poured into ethyl acetate (200 g), washed with 10 mass% potassium carbonate aqueous solution (300 g) and pure water (300 g), and then concentrated. The obtained residue was cut off from the origin with silica gel using an ethyl acetate / hexane (volume ratio 1:10) solution, and hexane (30 g) was added to the obtained crude product and repulp washed at room temperature. 2.9 g of [MA-5] (yellow solid) was obtained. The results of 1H-NMR of the target product are shown below. From this result, it was confirmed that the obtained solid was the target [MA-5].
1H NMR (500 MHz, [D 6 ] -DMSO): δ7.51-7.56 (q, 4H), 7.25-7.27 (d, 2H), 6.98-7.00 (d, 2H), 6.03 (s, 1H), 5.67 (s, 1H), 4.10-4.12 (t, 2H), 3.94-3.97 (t, 2H), 2.68-2.71 (m, 2H), 1.94-1.99 (m, 2H), 1.93 (s, 3H), 1.71-1.78 (m, 2H), 0.98-1.00 (t, 3H)
<合成例1: メタクリルポリマー>
 MA-1(10g:30mmol)、MA-2(15g:50mmol)、MA-3(8g:20mmol)をNMP(227g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P1を得た。
<Synthesis Example 1: Methacrylic Polymer>
MA-1 (10 g: 30 mmol), MA-2 (15 g: 50 mmol), MA-3 (8 g: 20 mmol) were dissolved in NMP (227 g), degassed with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain methacrylate polymer powder P1.
<合成例2: メタクリルポリマー>
 MA-1(10g:30mmol)、MA-2(15g:50mmol)、MA-4(9g:20mmol)をNMP(233g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P2を得た。
<Synthesis Example 2: Methacrylic Polymer>
MA-1 (10 g: 30 mmol), MA-2 (15 g: 50 mmol), MA-4 (9 g: 20 mmol) were dissolved in NMP (233 g), degassed with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain methacrylate polymer powder P2.
<合成例3: メタクリルポリマー>
 MA-1(10g:30mmol)、MA-2(15g:50mmol)、MA-5(7g:20mmol)をNMP(219g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P3を得た。
<Synthesis Example 3: Methacrylic Polymer>
MA-1 (10 g: 30 mmol), MA-2 (15 g: 50 mmol), and MA-5 (7 g: 20 mmol) were dissolved in NMP (219 g), degassed with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain methacrylate polymer powder P3.
<合成例4: メタクリルポリマー>
 MA-1(10g:30mmol)、MA-2(15g:50mmol)、MA-3(8g:20mmol)、MA-9(0.2g:1mmol)をNMP(229g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P4を得た。
<Synthesis Example 4: Methacrylic Polymer>
Dissolve MA-1 (10 g: 30 mmol), MA-2 (15 g: 50 mmol), MA-3 (8 g: 20 mmol), MA-9 (0.2 g: 1 mmol) in NMP (229 g) and use a diaphragm pump. After degassing, AIBN (0.5 g: 3 mmol) was added and degassed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P4.
<合成例5: メタクリルポリマー>
 MA-1(10g:30mmol)、MA-2(12g:40mmol)、MA-3(8g:20mmol)、MA-10(4g:10mmol)をNMP(230g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P5を得た。
<Synthesis Example 5: Methacrylic Polymer>
MA-1 (10 g: 30 mmol), MA-2 (12 g: 40 mmol), MA-3 (8 g: 20 mmol), MA-10 (4 g: 10 mmol) are dissolved in NMP (230 g) and degassed with a diaphragm pump. After that, AIBN (0.5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P5.
<合成例6: メタクリルポリマー>
 MA-1(10g:30mmol)、MA-2(9g:30mmol)、MA-3(8g:20mmol)、MA-10(7g:20mmol)をNMP(232g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P6を得た。
<Synthesis Example 6: Methacrylic Polymer>
MA-1 (10 g: 30 mmol), MA-2 (9 g: 30 mmol), MA-3 (8 g: 20 mmol), MA-10 (7 g: 20 mmol) are dissolved in NMP (232 g) and degassed with a diaphragm pump. After that, AIBN (0.5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P6.
<合成例7: メタクリルポリマー>
 MA-6(16g:30mmol)、MA-2(15g:50mmol)、MA-3(8g:20mmol)をNMP(265g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P7を得た。
<Synthesis Example 7: Methacrylic Polymer>
MA-6 (16 g: 30 mmol), MA-2 (15 g: 50 mmol), MA-3 (8 g: 20 mmol) were dissolved in NMP (265 g), degassed with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P7.
<合成例8: メタクリルポリマー>
 MA-7(17g:30mmol)、MA-2(15g:50mmol)、MA-3(8g:20mmol)をNMP(275g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P7を得た。
<Synthesis Example 8: Methacrylic Polymer>
MA-7 (17 g: 30 mmol), MA-2 (15 g: 50 mmol), MA-3 (8 g: 20 mmol) were dissolved in NMP (275 g), degassed with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P7.
<合成例9: メタクリルポリマー>
 MA-8(15g:30mmol)、MA-2(15g:50mmol)、MA-3(8g:20mmol)をNMP(263g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P9を得た。
<Synthesis Example 9: Methacrylic Polymer>
MA-8 (15 g: 30 mmol), MA-2 (15 g: 50 mmol), MA-3 (8 g: 20 mmol) were dissolved in NMP (263 g), degassed with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P9.
<合成例10: メタクリルポリマー>
 MA-1(13g:40mmol)、MA-2(18g:60mmol)をNMP(217g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P10を得た。
<Synthetic Example 10: Methacrylic Polymer>
MA-1 (13 g: 40 mmol) and MA-2 (18 g: 60 mmol) are dissolved in NMP (217 g), degassed with a diaphragm pump, and then AIBN (0.5 g: 3 mmol) is added and degassed again. Was done. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P10.
<合成例11: メタクリルポリマー>
 MA-2(15g:50mmol)、MA-3(4g:10mmol)、MA-11(22g:50mmol)をNMP(280g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P11を得た。
<Synthetic Example 11: Methacrylic Polymer>
MA-2 (15 g: 50 mmol), MA-3 (4 g: 10 mmol), MA-11 (22 g: 50 mmol) were dissolved in NMP (280 g), degassed with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P11.
<合成例12: メタクリルポリマー>
 MA-2(15g:50mmol)、MA-4(4g:10mmol)、MA-11(22g:50mmol)をNMP(282g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P12を得た。
<Synthetic Example 12: Methacrylic Polymer>
MA-2 (15 g: 50 mmol), MA-4 (4 g: 10 mmol), MA-11 (22 g: 50 mmol) were dissolved in NMP (282 g), degassed with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P12.
<合成例13: メタクリルポリマー>
 MA-2(15g:50mmol)、MA-12(2g:10mmol)、MA-11(22g:50mmol)をNMP(265g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P13を得た。
<Synthesis Example 13: Methacrylic Polymer>
MA-2 (15 g: 50 mmol), MA-12 (2 g: 10 mmol), and MA-11 (22 g: 50 mmol) were dissolved in NMP (265 g), degassed with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P13.
<合成例14: メタクリルポリマー>
 MA-2(15g:50mmol)、MA-13(4g:15mmol)、MA-11(22g:50mmol)をNMP(279g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P14を得た。
<Synthetic Example 14: Methacrylic Polymer>
MA-2 (15 g: 50 mmol), MA-13 (4 g: 15 mmol), and MA-11 (22 g: 50 mmol) were dissolved in NMP (279 g), degassed with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P14.
<液晶配向剤の作製:A1>
 上記合成例1にて得られたメタクリレートポリマー粉末P1(0.9g)にNMP(8.1g)を加え、室温で1時間撹拌して溶解させた。この溶液に、BCS(6.0g)を加え、固形分濃度が6.0質量%のポリマー溶液(A1)を得た。このポリマー溶液は、そのまま液晶配向膜を形成するための液晶配向剤となる。
<Preparation of liquid crystal alignment agent: A1>
NMP (8.1 g) was added to the methacrylate polymer powder P1 (0.9 g) obtained in Synthesis Example 1 above, and the mixture was dissolved by stirring at room temperature for 1 hour. BCS (6.0 g) was added to this solution to obtain a polymer solution (A1) having a solid content concentration of 6.0% by mass. This polymer solution serves as a liquid crystal alignment agent for forming a liquid crystal alignment film as it is.
 表1に示す条件にて液晶配向剤A2~9、B1~5に関しても、液晶配向剤A1と同様の方法を用い液晶配向剤を作製した。 For the liquid crystal alignment agents A2 to 9 and B1 to 5 under the conditions shown in Table 1, liquid crystal alignment agents were prepared by using the same method as the liquid crystal alignment agents A1.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
<面内配向度(In-plane order parameter)測定用基板の作成>
 上記で得られた液晶配向剤を用いて下記に示すような手順で光反応率測定用基板の作製を行った。基板は、40mm×40mmの大きさで、厚さが1.0mmの石英基板を用いた。液晶配向剤A1をフィルター孔径1.0μmのフィルターで濾過した後、石英基板上にスピンコートし、70℃のホットプレート上で90秒間乾燥後、膜厚100nmの液晶配向膜を形成した。
<Creation of substrate for in-plane order parameter measurement>
Using the liquid crystal alignment agent obtained above, a substrate for measuring the photoreaction rate was prepared by the procedure shown below. As the substrate, a quartz substrate having a size of 40 mm × 40 mm and a thickness of 1.0 mm was used. The liquid crystal alignment agent A1 was filtered through a filter having a filter pore size of 1.0 μm, spin-coated on a quartz substrate, and dried on a hot plate at 70 ° C. for 90 seconds to form a liquid crystal alignment film having a film thickness of 100 nm.
(実施例1)
 塗膜面を45°傾けて、偏光板を介してS波の313nmの紫外線を40mJ/cm照射した後に、130℃のホットプレートで20分間加熱し、光反応済みの液晶配向膜付き基板を得た。
(Example 1)
After tilting the coating film surface by 45 ° and irradiating the substrate with S-wave 313 nm ultraviolet rays at 40 mJ / cm 2 through a polarizing plate, the substrate with a liquid crystal alignment film that has been photoreacted is heated on a hot plate at 130 ° C. for 20 minutes. Obtained.
 表2に示す条件にて実施例2~9、比較例1~5に関しても、実施例1と同様の方法を用いて面内配向度測定用基板を作成した。 For Examples 2 to 9 and Comparative Examples 1 to 5 under the conditions shown in Table 2, substrates for measuring the degree of in-plane orientation were prepared by using the same method as in Example 1.
<面内配向度の測定>
 上記で作製した液晶配向膜付き基板を用い、液晶配向膜の光学的異方性を測定するために、偏光の吸光度から面内配向度であるSを下式より算出した。算出値は照射量範囲内で最も高い値を用いた。
 なお、吸光度の測定には、島津製作所製の紫外線可視近赤外分析光度計U-3100PCを使用した。
<Measurement of in-plane orientation>
In order to measure the optical anisotropy of the liquid crystal alignment film using the substrate with the liquid crystal alignment film prepared above, S, which is the in-plane orientation degree, was calculated from the absorbance of polarized light from the following formula. The calculated value used was the highest value within the irradiation dose range.
An ultraviolet-visible-near-infrared analysis photometer U-3100PC manufactured by Shimadzu Corporation was used for the measurement of the absorbance.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 ここで、Aparaは、照射した偏光UV方向に対して平行方向の吸光度、Aperは、照射した偏光UV方向に対して垂直方向の吸光度を表す。Alargeは、平行方向と垂直方向の吸光度を比較して値が大きい方の吸光度、Asmallは、平行方向と垂直方向の吸光度を比較して値が小さい方の吸光度を表す。面内配向度の絶対値が、1に近い程より一様な配向状態となっていることを示している。 Here, A para represents the absorbance in the direction parallel to the irradiated polarized UV direction, and A per represents the absorbance in the direction perpendicular to the irradiated polarized UV direction. A large represents the absorbance having a larger value by comparing the absorbances in the parallel direction and the vertical direction, and A small represents the absorbance having a smaller value by comparing the absorbances in the parallel direction and the vertical direction. The closer the absolute value of the in-plane orientation is to 1, the more uniform the orientation is.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表2に示す通り、実施例1~9の液晶配向剤を用いた場合はいずれも偏光UV方向に対して垂直方向の配向度が高いことが分かる。比較例2~5の液晶配向剤を用いた場合は偏光UV方向に対して平行方向の配向度が高い。これは感光性基の光反応が異性化に由来するか、二量化に由来するかによるものである。 As shown in Table 2, it can be seen that when the liquid crystal alignment agents of Examples 1 to 9 are used, the degree of orientation in the direction perpendicular to the polarized UV direction is high. When the liquid crystal alignment agents of Comparative Examples 2 to 5 are used, the degree of orientation in the direction parallel to the polarized UV direction is high. This is due to whether the photoreaction of the photosensitive group is derived from isomerization or dimerization.
 <液晶セルの作製>
 液晶配向剤(A1)を0.45μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で90秒間乾燥後、膜厚100nmの液晶配向膜を形成した。
<Manufacturing of liquid crystal cell>
The liquid crystal alignment agent (A1) was filtered through a 0.45 μm filter, spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 70 ° C. for 90 seconds, and then a liquid crystal alignment film having a film thickness of 100 nm was formed. ..
(実施例10)
 塗膜面を45°傾けて、偏光板を介しS波の313nmの紫外線を基板40mJ/cm照射した後に130℃のホットプレートで20分間加熱し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に4μmのスペーサを設置した後、2枚の基板の配向方向が平行になるようにして組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3018(メルク社製)を注入し、注入口を封止して、アンチパラレル液晶セルを得た。
(Example 10)
The coating film surface was tilted by 45 °, and after irradiating the substrate with S-wave 313 nm ultraviolet rays 2 at 40 mJ / cm 2 through a polarizing plate, the substrate was heated on a hot plate at 130 ° C. for 20 minutes to obtain a substrate with a liquid crystal alignment film. Two such substrates with a liquid crystal alignment film are prepared, a spacer of 4 μm is installed on the liquid crystal alignment film surface of one of the substrates, and then the two substrates are combined so that the orientation directions are parallel to each other. The periphery was sealed leaving the above, and an empty cell having a cell gap of 4 μm was prepared. Liquid crystal MLC-3018 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an anti-parallel liquid crystal cell.
 表3に示す条件にて実施例11~18、及び比較例6~10に関しても、実施例10と同様の方法を用いて液晶セルを作成した。 For Examples 11 to 18 and Comparative Examples 6 to 10 under the conditions shown in Table 3, liquid crystal cells were prepared by the same method as in Example 10.
(比較例11)
 塗膜面を40°傾けて、偏光板を介しP波の313nmの紫外線を基板80mJ/cm照射した後に210℃のホットプレートで20分間加熱し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に4μmのスペーサを設置した後、2枚の基板の配向方向が平行になるようにして組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3018(メルク社製)を注入し、注入口を封止して、アンチパラレル液晶セルを得た。
(Comparative Example 11)
The coating film surface was tilted by 40 °, and after irradiating the substrate with P-wave 313 nm ultraviolet rays 2 at 80 mJ / cm 2 through a polarizing plate, the substrate was heated on a hot plate at 210 ° C. for 20 minutes to obtain a substrate with a liquid crystal alignment film. Two such substrates with a liquid crystal alignment film are prepared, a spacer of 4 μm is installed on the liquid crystal alignment film surface of one of the substrates, and then the two substrates are combined so that the orientation directions are parallel to each other. The surrounding area was sealed, leaving a cell gap of 4 μm to prepare an empty cell. Liquid crystal MLC-3018 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a vacuum injection method, and the injection port was sealed to obtain an anti-parallel liquid crystal cell.
 表3に示す条件にて比較例12~14に関しても、比較例11と同様の方法を用いて液晶セルを作成した。 For Comparative Examples 12 to 14 under the conditions shown in Table 3, liquid crystal cells were prepared by the same method as in Comparative Example 11.
(プレチルト角)
 上記で得られた液晶表示素子に、温度120℃で30分間加熱の等方相処理を行った後、液晶セルのプレチルト角の測定は、Axometrics社製のAxoScanを用いて、ミューラーマトリックス法により測定した。評価結果を表3に示す。
(Pre-tilt angle)
After the liquid crystal display element obtained above is subjected to isotropic treatment by heating at a temperature of 120 ° C. for 30 minutes, the pretilt angle of the liquid crystal cell is measured by the Mueller matrix method using AxoScan manufactured by Axometrics. did. The evaluation results are shown in Table 3.
(配向安定性の評価)
 液晶セルを25℃環境下、336時間の間バックライトを照射し、ストレス前後のプレチルト角の測定を実施した。測定結果は下記の式に基づき計算し、評価した。評価結果を表3に示す。
(Evaluation of orientation stability)
The liquid crystal cell was backlit for 336 hours in an environment of 25 ° C., and the pretilt angle before and after stress was measured. The measurement results were calculated and evaluated based on the following formula. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表3に示す通り、実施例10~18の液晶配向剤を用いた場合はいずれもツイストネマティックモードやOCBに好適な液晶プレチルト角を得ることが可能であった。またストレス後の配向安定性も高い。これは、面内配向を誘起する部位と、面外配向を誘起する部位とを、それぞれ別の側鎖に有する重合体を用いていること、すなわち、面内配向性とプレチルト角形成を機能分離していることに由来していると考察される。 As shown in Table 3, when the liquid crystal alignment agents of Examples 10 to 18 were used, it was possible to obtain a liquid crystal pretilt angle suitable for the twist nematic mode and OCB. In addition, the orientation stability after stress is high. This is because a polymer having an in-plane orientation-inducing site and an out-of-plane orientation-inducing site in different side chains is used, that is, in-plane orientation and pretilt angle formation are functionally separated. It is considered that it is derived from doing.

Claims (8)

  1.  (A)偏光紫外線の平行方向(P波方向)に対し垂直方向(S波方向)に面内配向を誘起する部位と、面外配向を誘起する部位とを、それぞれ別の側鎖に有する重合体、及び
     (B)有機溶媒を含有する重合体組成物。
    (A) A weight having a portion that induces in-plane orientation in a direction (S-wave direction) perpendicular to the parallel direction (P-wave direction) of polarized ultraviolet rays and a portion that induces out-of-plane orientation in different side chains. A polymer composition containing a coalescence and (B) an organic solvent.
  2.  上記面内配向を誘起する部位が光異性化を起こす部位である請求項1に記載の組成物。 The composition according to claim 1, wherein the site that induces in-plane orientation is a site that causes photoisomerization.
  3.  面内配向を誘起する部位を有する側鎖が、下記式(1)~(3)
    (式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-又は-NH-CO-を表す;
     Sは、炭素数1~12のアルキレン基であり、該アルキレン基の水素原子はそれぞれ独立にハロゲン原子に置き換えられていてもよい;
     Tは、単結合または炭素数1~12のアルキレン基であり、該アルキレン基の水素原子はハロゲン原子に置き換えられていてもよい;
     Tが単結合であるときはBも単結合を表す;
     Yは、2価のベンゼン環である;
     P、Q及びQは、それぞれ独立にベンゼン環及び炭素数5~8の脂環式炭化水素環からなる群から選ばれる基である;
     Rは、水素原子、-CN、ハロゲン原子、炭素数1~5のアルキル基、(炭素数1~5のアルキル)カルボニル基、炭素数3~7のシクロアルキル基又は炭素数1~5のアルキルオキシ基である。
     Y、P、Q及びQにおいて、ベンゼン環に結合する水素原子はそれぞれ独立に-CN、ハロゲン原子、炭素数1~5のアルキル基、(炭素数1~5のアルキル)カルボニル基、又は炭素数1~5のアルキルオキシ基で置換されてもよい;
     X及びXは、それぞれ独立に-O-、-COO-又は-OCO-を表す;
     n1及びn2はそれぞれ独立に0、1または2である、
     Xの数が2となるときは、X同士は同一でも異なっていてもよく、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     Qの数が2となるときは、Q同士は同一でも異なっていてもよく、Qの数が2となるときは、Q同士は同一でも異なっていてもよい;
     破線は重合性基との結合手を表す。)
    からなる群から選ばれる式で表される構造を有する側鎖である請求項1又は2に記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000001
    The side chains having sites that induce in-plane orientation are represented by the following equations (1) to (3).
    (In the formula, A, B and D independently represent single bonds, -O-, -CH 2- , -COO-, -OCO-, -CONH- or -NH-CO-;
    S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of the alkylene group may be independently replaced with a halogen atom;
    T is a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of the alkylene group may be replaced with a halogen atom;
    When T is a single bond, B also represents a single bond;
    Y 1 is a divalent benzene ring;
    P 1 , Q 1 and Q 2 are groups independently selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms, respectively;
    R 1 is a hydrogen atom, -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, a carbonyl group (alkyl having 1 to 5 carbon atoms), a cycloalkyl group having 3 to 7 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. It is an alkyloxy group.
    In Y 1 , P 1 , Q 1 and Q 2 , the hydrogen atom bonded to the benzene ring is independently -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and a (alkyl having 1 to 5 carbon atoms) carbonyl group. , Or may be substituted with an alkyloxy group having 1 to 5 carbon atoms;
    X 1 and X 2 independently represent -O-, -COO- or -OCO-;
    n1 and n2 are 0, 1 or 2, respectively.
    When the number of X 1 is 2, X 1 together may be the same or different, when the number of X 2 is 2, X 2 together may be the same or different;
    When the number of Q 1 is a 2, Q 1 each other may be the same or different, when the number Q 2 'is 2, Q 2 together may be the same or different;
    The broken line represents the bond with the polymerizable group. )
    The polymer composition according to claim 1 or 2, which is a side chain having a structure represented by a formula selected from the group consisting of.
    Figure JPOXMLDOC01-appb-C000001
  4.  請求項1~3のいずれか一項に記載の重合体組成物から形成される液晶配向膜。 A liquid crystal alignment film formed from the polymer composition according to any one of claims 1 to 3.
  5.  請求項4に記載の液晶配向膜を有する基板。 A substrate having the liquid crystal alignment film according to claim 4.
  6.  請求項5に記載の基板を有する液晶表示素子。 A liquid crystal display element having the substrate according to claim 5.
  7.  [I] 請求項1~3のいずれか一項に記載の重合体組成物を、液晶駆動用の電極を有する基板上に塗布して塗膜を形成する工程;
     [II] [I]で得られた塗膜に、S波が主成分となるように偏光した紫外線を斜め方向から照射する工程;及び
     [III] [II]で得られた塗膜を加熱する工程;
    を有することによって配向制御能が付与された液晶配向膜を得る、前記液晶配向膜を有する基板の製造方法。
    [I] A step of applying the polymer composition according to any one of claims 1 to 3 onto a substrate having an electrode for driving a liquid crystal to form a coating film;
    [II] The step of irradiating the coating film obtained in [I] with ultraviolet rays polarized so that the S wave is the main component from an oblique direction; and [III] The coating film obtained in [II] is heated. Process;
    A method for producing a substrate having the liquid crystal alignment film, which obtains a liquid crystal alignment film to which the orientation control ability is imparted.
  8.  請求項5に記載の基板(第1の基板)を準備する工程;
     [I’] 第2の基板上に、請求項1~3のいずれか一項に記載の重合体組成物を、塗布して塗膜を形成する工程;
     [II’] [I’]で得られた塗膜に、S波が主成分となるように偏光した紫外線を照射する工程;及び
     [III’] [II’]で得られた塗膜を加熱する工程;
    を有することによって配向制御能が付与された液晶配向膜を得る、該液晶配向膜を有する第2の基板を得る工程;及び
     [IV] 液晶を介して第1及び第2の基板の液晶配向膜が相対するように、露光方向が互いに直交するように第1及び第2の基板を対向配置して液晶表示素子を得る工程;
    を有することにより、液晶表示素子を得る、該液晶表示素子の製造方法。
    The step of preparing the substrate (first substrate) according to claim 5;
    [I'] A step of applying the polymer composition according to any one of claims 1 to 3 on a second substrate to form a coating film;
    [II'] The step of irradiating the coating film obtained in [I'] with ultraviolet rays polarized so that the S wave is the main component; and heating the coating film obtained in [III'] [II']. Process to do;
    A step of obtaining a second substrate having the liquid crystal alignment film, which obtains a liquid crystal alignment film to which the orientation control ability is imparted by having the liquid crystal alignment film; and [IV] the liquid crystal alignment film of the first and second substrates via the liquid crystal. A step of obtaining a liquid crystal display element by arranging the first and second substrates facing each other so that the exposure directions are orthogonal to each other so as to face each other;
    A method for manufacturing a liquid crystal display element, wherein the liquid crystal display element is obtained.
PCT/JP2020/013519 2019-03-27 2020-03-26 Polymer composition, liquid crystal alignment film, liquid crystal display element, and method for producing substrate having liquid crystal alignment film WO2020196698A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021509560A JPWO2020196698A1 (en) 2019-03-27 2020-03-26
CN202080036686.3A CN113841085A (en) 2019-03-27 2020-03-26 Polymer composition, liquid crystal alignment film, liquid crystal display element, and method for producing substrate having liquid crystal alignment film
KR1020217032610A KR20210143802A (en) 2019-03-27 2020-03-26 Polymer composition, a liquid crystal aligning film, a liquid crystal display element, and the manufacturing method of the board|substrate which has a liquid crystal aligning film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061354 2019-03-27
JP2019061354 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196698A1 true WO2020196698A1 (en) 2020-10-01

Family

ID=72611637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013519 WO2020196698A1 (en) 2019-03-27 2020-03-26 Polymer composition, liquid crystal alignment film, liquid crystal display element, and method for producing substrate having liquid crystal alignment film

Country Status (5)

Country Link
JP (1) JPWO2020196698A1 (en)
KR (1) KR20210143802A (en)
CN (1) CN113841085A (en)
TW (1) TW202104306A (en)
WO (1) WO2020196698A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125876A1 (en) * 2010-03-31 2011-10-13 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2013002260A1 (en) * 2011-06-30 2013-01-03 Dic株式会社 Copolymer, and liquid crystal alignment layer comprising hardened product thereof
WO2017126459A1 (en) * 2016-01-21 2017-07-27 シャープ株式会社 Method for manufacturing liquid crystal panel, method for manufacturing retardation plate, and wire grid polarizing plate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2780183B2 (en) 1989-02-27 1998-07-30 セイコーエプソン株式会社 Alignment film and liquid crystal device
JP2893671B2 (en) 1991-03-11 1999-05-24 ジェイエスアール株式会社 Liquid crystal alignment agent
JP3097702B2 (en) 1991-08-13 2000-10-10 日産化学工業株式会社 New liquid crystal alignment agent
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JP3840743B2 (en) 1997-06-03 2006-11-01 Jsr株式会社 Liquid crystal alignment agent
JP2000212310A (en) 1999-01-19 2000-08-02 Hayashi Telempu Co Ltd Oriented film, its production and liquid crystal display device
WO2017199986A1 (en) * 2016-05-18 2017-11-23 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125876A1 (en) * 2010-03-31 2011-10-13 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2013002260A1 (en) * 2011-06-30 2013-01-03 Dic株式会社 Copolymer, and liquid crystal alignment layer comprising hardened product thereof
WO2017126459A1 (en) * 2016-01-21 2017-07-27 シャープ株式会社 Method for manufacturing liquid crystal panel, method for manufacturing retardation plate, and wire grid polarizing plate

Also Published As

Publication number Publication date
CN113841085A (en) 2021-12-24
KR20210143802A (en) 2021-11-29
TW202104306A (en) 2021-02-01
JPWO2020196698A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
KR102674352B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6784593B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6992746B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR102324573B1 (en) Polymer composition and liquid crystal alignment film for transverse electric field driving liquid crystal display element
JP7055281B2 (en) A liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element containing a polymer having an isocyanate group and / or a blocked isocyanate group and a photoreactive moiety and a cross-linking agent.
KR102290811B1 (en) Polymer, polymer composition, and liquid crystal alignment film for horizontal-electric-field drive-type liquid crystal display element
KR102311484B1 (en) Polarized ultraviolet-anisotropic material
JP2022036952A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102244413B1 (en) Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
JP2021140186A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6877698B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6823458B2 (en) A composition for producing a liquid crystal alignment film for a transverse electric field drive type liquid crystal display element, a liquid crystal alignment film using the composition and a method for producing the same, and a liquid crystal display element having a liquid crystal alignment film and a method for producing the same.
JP6872315B2 (en) Liquid crystal alignment film for polymer composition and transverse electric field drive type liquid crystal display element
JP6794257B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6723523B2 (en) Polymer composition, liquid crystal aligning agent, liquid crystal aligning film, substrate having the liquid crystal aligning film, and liquid crystal display device having the liquid crystal aligning film
KR102254609B1 (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
WO2020196698A1 (en) Polymer composition, liquid crystal alignment film, liquid crystal display element, and method for producing substrate having liquid crystal alignment film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032610

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20778363

Country of ref document: EP

Kind code of ref document: A1