WO2020196636A1 - Storage device for house - Google Patents

Storage device for house Download PDF

Info

Publication number
WO2020196636A1
WO2020196636A1 PCT/JP2020/013369 JP2020013369W WO2020196636A1 WO 2020196636 A1 WO2020196636 A1 WO 2020196636A1 JP 2020013369 W JP2020013369 W JP 2020013369W WO 2020196636 A1 WO2020196636 A1 WO 2020196636A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
house
handwriting
change
context
Prior art date
Application number
PCT/JP2020/013369
Other languages
French (fr)
Japanese (ja)
Inventor
信孝 井出
Original Assignee
株式会社ワコム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワコム filed Critical 株式会社ワコム
Priority to JP2020530543A priority Critical patent/JP6746267B1/en
Publication of WO2020196636A1 publication Critical patent/WO2020196636A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • the present invention detects a change in the house, does not over-interfere with the context of the change, and gives the members of the house a sense of belonging to the house. Regarding the device.
  • Patent Document 1 discloses an example of an object-oriented digital ink as a data model inside a computer
  • Patent Document 2 discloses an example of a serialized format of digital ink.
  • Patent Document 3 contains digital ink as digital ink that makes it possible to identify who wrote stroke data indicating a locus
  • Patent Document 4 contains author as context data when stroke data is input.
  • Digital ink that acquires information such as pen ID, time information, and regional information acquired by GPS (Global Positioning System) and makes it possible to record them as metadata is disclosed.
  • Patent Document 5 discloses a method and an apparatus for grasping and determining the mental, psychological, and physiological states of a writer by quantifying the spatiotemporal information of handwritten characters and pictures and extracting feature quantities.
  • Patent Document 6 discloses an emotion estimation system that associates a writing state such as writing pressure with biological information corresponding to an emotion and derives biological information corresponding to the emotion only from the writing state.
  • Such digital ink that indicates "when, where, and what kind of handwriting was done” can be said to be the history data of the human trajectory, that is, the behavior or emotion.
  • personalized AI Artificial Intelligence
  • Patent Document 7 describes a system using AI used in a house.
  • a smart home system that proposes or executes a house policy according to prior criteria based on the results (data before and after changes and changes) sensed using sensors in the home environment is disclosed. ..
  • AI is learned in the direction of minimizing the error (loss function value, error) between the past data and the predicted data based on the learning data obtained in the past. Therefore, there is a high probability that the proposal made by AI in the house will be compatible with the environment of the house, the data before and after making the proposal, or the context data (context) which is the environmental data.
  • Non-Patent Document 1 In order to solve them, there are several known methods of applying a genetic algorithm incorporating mutations to the learning of neural network-based AI (Non-Patent Document 2, etc.).
  • AI produces random output at the practical stage, it will not be familiar to the home environment at all and will be visually or audibly. It becomes noise and cannot withstand long-term use in a home environment.
  • the first storage device of the house is a storage unit that stores handwritten handwriting data made in a house, which is a family residence, as recollection handwriting data in association with context data indicating the handwritten context.
  • a sensor that detects changes in physical quantities related to light, sound, air, or handwriting in the house, or changes in estimated quantities related to the emotions of members of the family, and that the sensors have detected the changes.
  • An analysis unit that randomly selects weakly correlated context data having a relatively small relevance to the change from a plurality of sets of context data accumulated by the storage unit, and no analysis unit.
  • a control unit that reads one recollection stroke data associated with the weakly correlated context data randomly selected from the storage unit and instructs a reproduction device provided in the house to project the recollection stroke data. To be equipped with.
  • the second home storage device of the present invention stores handwritten handwriting data made in the house, which is the residence of the family, as recollection handwriting data in association with the event type for classifying the handwriting context.
  • the storage unit a sensor that detects changes in physical quantities related to light, sound, air, or handwriting in the house, or changes in estimated quantities related to the emotions of members of the family, and the sensors detect the changes.
  • an analysis unit that randomly selects a weakly correlated event type that has a relatively small relevance to the change from a plurality of event types accumulated by the storage unit, and the analysis unit.
  • a control unit that reads one recollection handwriting data associated with a weakly correlated event type randomly selected by the method from the storage unit and instructs a reproduction device provided in the house to project the recollection handwriting data. And.
  • FIG. It is a schematic diagram of the storage device of a house in one Embodiment of this invention. It is a flowchart about the operation of the system shown in FIG. It is a figure which shows an example of the handwriting detected by the handwriting sensor group. It is a figure which shows an example of the event data and context data which are accumulated. It is a figure which shows an example of the data structure which a context data has. It is the first detailed flowchart about the selection of contextual data. It is a figure which shows an example of the classification method of a feature space. It is a second detailed flowchart regarding the selection of contextual data. It is a figure which shows an example of the structure of the learner for acquiring the feature vector about an event type.
  • FIG. 1 is a schematic view of a home storage device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart relating to the operation of the storage device of the house shown in FIG. This device is realized by a sensing system 1, a control device 2, a reproduction device 3, and a network 4.
  • the sensing system 1 and the reproduction device 3 are provided in the house.
  • the "house” means a place where a person who is a member of a family lives, and is a broad concept including not only a residential building but also a garden, a parking lot, a storeroom, and the like.
  • Contextual data SC is transmitted (step S112 in FIG. 2).
  • the sensing system 1 includes an IoT (Internet of Things) sensor group 11 capable of acquiring a measured amount in the house and a handwriting sensor group 12 for detecting the handwriting of a member.
  • the IoT sensor group 11 includes an optical sensor including an imaging sensor 111, a sound collecting sensor 112 including a microphone, and an air sensor including a temperature sensor.
  • the handwriting sensor group 12 is an aggregate of contact type or non-contact type handwriting sensors. As a result, the sensing system 1 is configured to be able to supply various data generated by itself to the control device 2 via the network 4.
  • the handwriting sensor group 12 is not limited to the handwriting written by the members inside the house, and may be configured to be able to detect the handwriting written outside the house.
  • the sound collecting sensor 112 is provided, for example, at a position in the dining room or garden (hereinafter, position 2).
  • the sound collecting sensor 112 has a temporary memory that holds sound data for a predetermined time. For example, when an event that emits a louder voice than usual, an event that the tableware falls and cracks, or an event that steps on a fallen leaf is detected, the sound collecting sensor 112 uses the sound data sd2, which is one aspect of the event data S. Read from memory and extract.
  • the first sensor 121 is, for example, a capacitance type touch sensor that detects a position indicated by an electronic pen, and is embedded in the back surface of a mirror (position 1) of a washbasin.
  • the second sensor 122 is, for example, an image scanner that captures an image of the writing surface, and is installed around the dining table (position 2). For example, when an event in which a family member writes is detected, the first sensor 121 or the second sensor 122 reads the handwriting data sd3, which is one aspect of the event data S, from the memory and extracts it.
  • the analysis unit 22 identifies a playback device located near the sensor installation location (step S223 in FIG. 2). This is a process for executing reproduction at a position close to the occurrence point of the event that triggered the event, based on the prediction that it is highly probable that the family members are moving before and after the occurrence of the event.
  • the image sensor 111 provided on the mirror measures the facial expression as a physical quantity and detects a change in the state of a person, which is an estimated quantity predicted from the physical quantity.
  • the control device 2 displays handwriting data sd31 indicating a "shopping memo" having a low relevance to "washing the face” at position 1. It is transmitted to the device 31.
  • the handwriting data sd31 is data obtained by detecting the handwriting left by the person 2 on the dining table at 6 pm by the second sensor 122 provided at the position 2.
  • the analysis unit 22 calculates the feature vectors related to the first context data SCcur and the past context data SCpst.
  • this feature vector consists of N vector components corresponding to N context elements.
  • This vector component is a feature quantity that quantitatively expresses a context element, and may be either a discrete value or a continuous value.
  • each feature vector consists of N vector components normalized in the range of [0,1].
  • this feature vector may be calculated through machine learning using a neural network, as will be described later in FIG.
  • the number of dimensions is reduced from N to P (1 ⁇ P ⁇ N) by using the output value of the intermediate layer 93 (first part 93A) with respect to the feature vector input from the first input layer 91.
  • the feature vector is obtained.
  • step S602 the analysis unit 22 classifies the feature amount space 70 using the feature vector acquired in step S601.
  • the strength of the relationship between the context data SCs is evaluated by the norm (distance D) on the feature space 70.
  • FIG. 7 is a diagram showing an example of a method for classifying the feature space 70. For convenience of illustration, only two components (i, j) are shown.
  • the reference point 71 shows a feature vector for the first contextual data SCcur.
  • the entire region forming the feature space 70 includes [1] first strongly correlated region 72, [2] second strongly correlated region 73, and [3] weakly correlated region 74, depending on the distance D from the reference point 71. It is classified into three areas.
  • the first strongly correlated region 72 corresponds to a region having a strong positive correlation (0 ⁇ D ⁇ D1).
  • the second strongly correlated region 73 corresponds to a region having a strong negative correlation (D ⁇ D2).
  • the weakly correlated region 74 corresponds to the remaining region (D1 ⁇ D ⁇ D2).
  • the number of groups to be classified is not limited to the example (3) in FIG. 7, and may be two or four or more. Further, the classification method is not limited to the above-mentioned distance-based method, and various clustering methods including the K-means method may be applied.
  • step S603 the analysis unit 22 randomly selects one set from the plurality of sets of context data SCps belonging to the weak correlation region 74 classified in step S602 to select the second context data SCrep to be reproduced. get. Instead, the analysis unit 22 may acquire the second context data SCrep from the context data SCpst belonging to the second strongly correlated region 73. Alternatively, the analysis unit 22 may select the second contextual data SCrep accumulated before a predetermined period (for example, one year) retroactively from the time of occurrence of the first event.
  • a predetermined period for example, one year
  • step S604 the analysis unit 22 reads out the second event data Srep corresponding to the second context data SCrep selected in step S604 from the storage unit 21 and acquires it. In this way, the first selection operation by the analysis unit 22 is completed.
  • the analysis unit 22 calculates the feature vectors related to M event types including the first event.
  • this feature vector consists of Q (1 ⁇ Q ⁇ M) vector components and is calculated through machine learning using a neural network.
  • a P-dimensional feature vector can be obtained by extracting the row components corresponding to the event types from the combined weight matrix ⁇ W2 ⁇ of the M ⁇ Q matrix determined by machine learning.
  • FIG. 9 is a diagram showing an example of the structure of the learner 90 for acquiring the feature vector related to the event type.
  • the learner 90 is a hierarchical neural network in which the first input layer 91, the second input layer 92, the intermediate layer 93, and the output layer 94 are sequentially connected.
  • the first input layer 91 is composed of N arithmetic units for inputting feature vectors having N feature quantities. Each feature quantity is a value that quantifies the features related to the contextual data SC before the occurrence of the event.
  • the second input layer 92 is composed of M arithmetic units for inputting classification vectors having M labels. This classification vector is a one-hot vector that expresses an event type using two values of applicable (1) and non-applicable (0).
  • the intermediate layer 93 is composed of (P + Q) arithmetic units.
  • the first portion 93A (P arithmetic units) of the intermediate layer 93 is connected to the first input layer 91 by full coupling.
  • the second portion 93B (Q arithmetic units) of the intermediate layer 93 is connected to the second input layer 92 by full coupling.
  • ⁇ W1 ⁇ and ⁇ W2 ⁇ indicate the coupling weight matrix between the first input layer 91 and the first portion 93A, and between the second input layer 92 and the second portion 93B, respectively.
  • the output layer 94 is composed of N arithmetic units for outputting a feature vector having N feature quantities. Each feature quantity is a value that quantifies the features related to the contextual data SC after the occurrence of the event.
  • the output layer 94 is connected to the intermediate layer 93 by full coupling.
  • ⁇ W3 ⁇ indicates a coupling weight matrix between the intermediate layer 93 and the output layer 94.
  • connection weight matrix ⁇ W2 ⁇ ⁇ W3 ⁇ is updated / optimized through machine learning in which the event type and the feature vector before the occurrence of the event are used as input values and the feature vector after the event occurs is used as the correct answer value. ..
  • the connection weight matrix ⁇ W1 ⁇ is pre-optimized through pre-learning and is fixed at the time of actual learning. This pre-learning corresponds to unsupervised learning by a self-encoder using a partial neural network consisting of a first input layer 91, a first portion 93A, and an output layer 94.
  • step S802 of FIG. 8 the analysis unit 22 classifies the feature amount space 70 using the feature vector acquired in step S801.
  • the analysis unit 22 may perform classification using the method already described in step S602 of FIG.
  • it is assumed that the feature space 70 is classified into three regions, a first strongly correlated region 72, a second strongly correlated region 73, and a weakly correlated region 74.
  • step S803 the analysis unit 22 acquires the event type to be reproduced by randomly selecting one of the plurality of event types belonging to the weak correlation region 74 classified in step S802.
  • step S804 the analysis unit 22 acquires the second context data SCrep to be reproduced by randomly selecting one of the plurality of event data Spsts corresponding to the event types selected in step S803. .. Alternatively, the analysis unit 22 may select the second contextual data SCrep accumulated before a predetermined period (for example, one year) retroactively from the time of occurrence of the first event.
  • a predetermined period for example, one year
  • Recollection writing data (second event data) associated with analysis unit 22 that randomly selects data (corresponding to "second context data SCrep”) and weakly correlated context data randomly selected by analysis unit 22. It is provided with a control unit 23 that reads one (corresponding to “Srep”) from the storage unit 21 and instructs the reproduction device 3 provided in the house to project the recollection stroke data.
  • the storage device of the house may further include one or a plurality of reproduction devices 3 provided in the house and projecting the recollection writing data.
  • the analysis unit 22 may select weak correlation context data accumulated before a predetermined period from the time when the change is detected. Further, the analysis unit 22 analyzes the relationship between the accumulated plurality of sets of context data SCs, classifies the plurality of sets of context data into two or more groups, and changes context data indicating the context of change (“No. 1”. Weakly correlated context data may be selected from a group different from the group to which (corresponding to 1 context data SCcur) belongs. Further, the analysis unit 22 may generate feature vectors for each context data SC through machine learning, and classify a plurality of sets of context data SCs into two or more groups based on the relationships between the feature vectors.
  • control unit 23 may specify the reproduction device 3 for projecting the recollection handwriting data based on the position where the change is detected. Further, the control unit 23 may instruct the sensor to detect a change over the acquisition period (P2) including the reproduction period (P1) of the recollection written data.
  • control unit 23 that reads from the storage unit 21 and instructs a reproduction device 3 provided in the house to project the recollection handwriting data.
  • the storage device of the house may further include one or more reproduction devices 3 provided in the house and projecting the recollection writing data.
  • Sensing system 11 ... IoT sensor group, 12 ... Handwriting sensor group, 2 ... Control device, 21 ... Storage unit, 22 ... Analysis unit, 23 ... Control unit, 3 ... Reproduction device, 31 ... Display device, 32 ... Speaker Device, S ... event data, Scur ... first event data, Srep ... second event data, SC ... context data, SCcur ... first context data, SCrep ... second context data

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Human Computer Interaction (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

The present invention implements a storage device for a house, which detects a change in the house and can reproduce the change so as not to excessively interfere with the context of the change and so as to impart, to members of the house, a sense of belonging to the house. The storage device for a house: accumulates, as reminiscent handwriting data, handwriting data obtained from autograph performed in the house of family residence in association with context data indicating autograph context; detects a change in a physical quantity pertaining to light, sound, or air in the house, or the handwriting, or a change in an estimation quantity pertaining to feelings of family members; randomly selects, from among a plurality of sets of the accumulated context data, weak correlation context data having relatively small relevance with the change by taking, as an opportunity, the detection of the change; and instructs a playback device provided in the house to project one piece of the reminiscent handwriting data associated with the weak correlation context data.

Description

家の記憶装置Home storage
 本発明は、家の中の変化を検出し、変化のコンテキストに対して過干渉とならず、かつ家の構成員に家への帰属感を与えるように、当該変化を再生可能な家の記憶装置に関する。 The present invention detects a change in the house, does not over-interfere with the context of the change, and gives the members of the house a sense of belonging to the house. Regarding the device.
 電子ペンから生成されるデジタルインクは、従来のペンが紙の上に筆跡を残すように、電子ペンの軌跡を再現するために用いられるデータである。デジタルインクとして、特許文献1には、コンピュータ内部のデータモデルとしてオブジェクト指向に基づくデジタルインクの例が、特許文献2にはデジタルインクのシリアライズフォーマットの例がそれぞれ開示されている。 The digital ink generated from the electronic pen is data used to reproduce the trajectory of the electronic pen, just as a conventional pen leaves a handwriting on paper. As digital ink, Patent Document 1 discloses an example of an object-oriented digital ink as a data model inside a computer, and Patent Document 2 discloses an example of a serialized format of digital ink.
 さらに、デジタルインクに、単なる筆跡を再現するためのデータという枠を超え、人間の行動の軌跡として「いつ、誰が、どこで、どんな状況で」書いたのかを記録可能としたデジタルインクデータが知られている。例えば、特許文献3には、デジタルインクとして、軌跡を示すストロークデータを誰が書いたのかを特定可能にするデジタルインクが、特許文献4には、ストロークデータを入力した際のコンテキストデータとして、著者、ペンID、時刻情報、GPS(Global Positioning System)で取得された地域情報、などの情報を取得し、それらをメタデータとして記録可能にするデジタルインクが開示されている。 Furthermore, digital ink data is known that makes it possible to record "when, who, where, under what circumstances" as a trajectory of human behavior, beyond the framework of data for reproducing mere handwriting in digital ink. ing. For example, Patent Document 3 contains digital ink as digital ink that makes it possible to identify who wrote stroke data indicating a locus, and Patent Document 4 contains author as context data when stroke data is input. Digital ink that acquires information such as pen ID, time information, and regional information acquired by GPS (Global Positioning System) and makes it possible to record them as metadata is disclosed.
 また、近年では、「どのような思いあるいは感情で書いたか」の推定を支援するためにデジタルインクを用いることが検討されている。例えば、特許文献5には、手書きの文字や絵の時空間情報を定量化し特徴量を抽出することで、書き手の精神・心理・生理状態を把握し、判定する方法と装置が開示されている。特許文献6には、筆圧等の筆記状態と感情に対応する生体情報を関連付け、筆記状態のみから前記感情に対応する生体情報を導き出す感情推定システムが開示されている。 In recent years, the use of digital ink has been considered to support the estimation of "what kind of thoughts or feelings you wrote". For example, Patent Document 5 discloses a method and an apparatus for grasping and determining the mental, psychological, and physiological states of a writer by quantifying the spatiotemporal information of handwritten characters and pictures and extracting feature quantities. .. Patent Document 6 discloses an emotion estimation system that associates a writing state such as writing pressure with biological information corresponding to an emotion and derives biological information corresponding to the emotion only from the writing state.
 このような、「いつ、どこで、どのような手書きをしたのか」を示すデジタルインクは、いわばその人間の軌跡、つまり行動あるいは感情のヒストリーデータと言える。このようなデジタルインクと、パーソナライズされたAI(Artificial Intelligence)とを組み合わせることにより、さらに高度な生活の実現が期待される。 Such digital ink that indicates "when, where, and what kind of handwriting was done" can be said to be the history data of the human trajectory, that is, the behavior or emotion. By combining such digital ink with personalized AI (Artificial Intelligence), it is expected that a more advanced life will be realized.
 例えば、特許文献7には、家の中で用いられるAIを利用したシステムが記載されている。特に、家の環境の中にあるセンサを用いてセンスした結果(変化及び変化の前後のデータ)に基づいて、事前のクライテリアに沿って家のポリシーを提案又は実行するスマートホームシステムが開示される。 For example, Patent Document 7 describes a system using AI used in a house. In particular, a smart home system that proposes or executes a house policy according to prior criteria based on the results (data before and after changes and changes) sensed using sensors in the home environment is disclosed. ..
 AIは、過去に得られた学習データに基づいて過去のデータと予測によるデータとのエラー(損失関数の値、誤差)を最小化する方向に学習される。そのためAIが家の中で行う提案は、家の環境や提案を行う前後のデータ、あるいは環境データである文脈データ(コンテキスト)に、適合したものとなる確率が高い。 AI is learned in the direction of minimizing the error (loss function value, error) between the past data and the predicted data based on the learning data obtained in the past. Therefore, there is a high probability that the proposal made by AI in the house will be compatible with the environment of the house, the data before and after making the proposal, or the context data (context) which is the environmental data.
 反面、AIを用いた学習は、局所的には正解となり大局的な解にたどりつかない局所解や環境データに対してオーバーフィットした学習を行ってしまう過学習の問題が知られている。この過学習の問題は、AIの提案に従った人の行動のパターンにあてはまる可能性があると考える。家での行動のコンテキストに過度に適合した提案をそのまま人が採用続けていくことは、大局的には家を構成する人の選択の範囲に制限を設けてしまうことになる可能性があると考える。 On the other hand, learning using AI is known to have the problem of overfitting, in which learning that is locally correct and does not reach a global solution or that overfits environmental data. We believe that this problem of overfitting may apply to the behavioral patterns of people who follow AI's suggestions. Continuing to adopt proposals that are overly adapted to the context of behavior at home may, in the big picture, limit the choices of those who make up the home. Think.
 換言すれば、合理性と利便性の最適化を追求する従来のAIは、偶発性や非合理から生み出される人の創造性を発展させることにはならず、人間あるいは家族を構成する人の生活や社会そのものをエラーの最小化を軸とした無味乾燥なものに押さえ込んでしまう可能性がある(非特許文献1)。それらを解決するうえで、ニューラルネットワークベースのAIの学習に、突然変異を取りいれた遺伝的アルゴリズムを適用する手法がいくつか知られている(非特許文献2等)。 In other words, traditional AI, which pursues optimization of rationality and convenience, does not develop the creativity of people created by contingency or irrationality, but the lives and societies of human beings or those who make up their families. There is a possibility that it will be suppressed to a tasteless and dry product centered on minimizing errors (Non-Patent Document 1). In order to solve them, there are several known methods of applying a genetic algorithm incorporating mutations to the learning of neural network-based AI (Non-Patent Document 2, etc.).
米国特許第07158675号明細書U.S. Pat. No. 07158675 米国特許第07397949号明細書U.S. Pat. No. 07397949 特許第5886487号公報Japanese Patent No. 5886487 米国特許出願公開第2016/0224239号明細書U.S. Patent Application Publication No. 2016/0224239 特開2010-131280号公報Japanese Unexamined Patent Publication No. 2010-131280 国際公開第2018/043061号パンフレットInternational Publication No. 2018/043061 Pamphlet 米国特許出願公開第2016/0259308号明細書U.S. Patent Application Publication No. 2016/0259308
 しかし、乱数を用いた処理を持ち込むことは、AIの学習過程では有益であろうが、実用段階でAIがランダムな出力を行うとすれば、家の環境にまったくなじまず、視覚的又は聴覚的ノイズとなってしまい家という環境において長期の使用には耐えないものとなってしまう。 However, while bringing in processing using random numbers may be useful in the learning process of AI, if AI produces random output at the practical stage, it will not be familiar to the home environment at all and will be visually or audibly. It becomes noise and cannot withstand long-term use in a home environment.
 第1の本発明における家の記憶装置は、家族の住居である家の中でなされた手書きによる筆跡データを、前記手書きのコンテキストを示す文脈データと対応付けて回想筆跡データとして蓄積する蓄積部と、前記家の中の光、音、空気、若しくは筆跡に関する物理量の変化、又は、前記家族の構成員の感情に関する推定量の変化を検出するセンサと、前記センサにより前記変化が検出されたことを契機に、前記蓄積部により蓄積されている複数組の文脈データの中から、前記変化との関連性が相対的に小さい弱相関文脈データを無作為に選択する分析部と、前記分析部により無作為に選択された弱相関文脈データに対応付けられた回想筆跡データを1つ前記蓄積部から読み出し、前記回想筆跡データの投影を前記家の中に設けられた再生装置に指示する制御部と、を備える。 The first storage device of the house according to the present invention is a storage unit that stores handwritten handwriting data made in a house, which is a family residence, as recollection handwriting data in association with context data indicating the handwritten context. A sensor that detects changes in physical quantities related to light, sound, air, or handwriting in the house, or changes in estimated quantities related to the emotions of members of the family, and that the sensors have detected the changes. An analysis unit that randomly selects weakly correlated context data having a relatively small relevance to the change from a plurality of sets of context data accumulated by the storage unit, and no analysis unit. A control unit that reads one recollection stroke data associated with the weakly correlated context data randomly selected from the storage unit and instructs a reproduction device provided in the house to project the recollection stroke data. To be equipped with.
 第2の本発明における家の記憶装置は、家族の住居である家の中でなされた手書きによる筆跡データを、前記手書きのコンテキストを分類するためのイベント種別と対応付けて回想筆跡データとして蓄積する蓄積部と、前記家の中の光、音、空気、若しくは筆跡に関する物理量の変化、又は、前記家族の構成員の感情に関する推定量の変化を検出するセンサと、前記センサにより前記変化が検出されたことを契機に、前記蓄積部により蓄積されている複数のイベント種別の中から、前記変化との関連性が相対的に小さい弱相関イベント種別を無作為に選択する分析部と、前記分析部により無作為に選択された弱相関イベント種別に対応付けられた回想筆跡データを1つ前記蓄積部から読み出し、前記回想筆跡データの投影を前記家の中に設けられた再生装置に指示する制御部と、を備える。 The second home storage device of the present invention stores handwritten handwriting data made in the house, which is the residence of the family, as recollection handwriting data in association with the event type for classifying the handwriting context. The storage unit, a sensor that detects changes in physical quantities related to light, sound, air, or handwriting in the house, or changes in estimated quantities related to the emotions of members of the family, and the sensors detect the changes. Taking this opportunity, an analysis unit that randomly selects a weakly correlated event type that has a relatively small relevance to the change from a plurality of event types accumulated by the storage unit, and the analysis unit. A control unit that reads one recollection handwriting data associated with a weakly correlated event type randomly selected by the method from the storage unit and instructs a reproduction device provided in the house to project the recollection handwriting data. And.
 家の環境で用いられる装置であって、家の中の変化の文脈と離れた出力を行うので人の創造性や判断に過度に干渉せず、過去に家の中で記録された筆跡又は音などを出力するので家の環境との帰属感を提供することが期待される。 It is a device used in the home environment, and because it outputs out of the context of changes in the house, it does not excessively interfere with human creativity and judgment, and handwriting or sounds recorded in the house in the past, etc. It is expected to provide a sense of belonging to the environment of the house because it outputs.
本発明の一実施形態における家の記憶装置の概要図である。It is a schematic diagram of the storage device of a house in one Embodiment of this invention. 図1に示すシステムの動作に関するフローチャートである。It is a flowchart about the operation of the system shown in FIG. 筆跡センサ群により検出される筆跡の一例を示す図である。It is a figure which shows an example of the handwriting detected by the handwriting sensor group. 蓄積されるイベントデータ及び文脈データの一例を示す図である。It is a figure which shows an example of the event data and context data which are accumulated. 文脈データが有するデータ構造の一例を示す図である。It is a figure which shows an example of the data structure which a context data has. 文脈データの選択に関する第1の詳細フローチャートである。It is the first detailed flowchart about the selection of contextual data. 特徴量空間の分類方法の一例を示す図である。It is a figure which shows an example of the classification method of a feature space. 文脈データの選択に関する第2の詳細フローチャートである。It is a second detailed flowchart regarding the selection of contextual data. イベント種別に関する特徴ベクトルを獲得するための学習器の構造の一例を示す図である。It is a figure which shows an example of the structure of the learner for acquiring the feature vector about an event type.
 本発明における家の記憶装置について、添付の図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素及びステップに対して可能な限り同一の符号を付するとともに、重複する説明を省略する場合がある。なお、本発明は、以下に示す実施形態に限定されるものではなく、この発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。あるいは、技術的に矛盾が生じない範囲で各々の構成を任意に組み合わせてもよい。 The home storage device in the present invention will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same components and steps may be designated as the same reference numerals as possible in each drawing, and duplicate description may be omitted. It should be noted that the present invention is not limited to the embodiments shown below, and of course, the present invention can be freely changed without departing from the gist of the present invention. Alternatively, each configuration may be arbitrarily combined as long as there is no technical contradiction.
<システムの構成及び動作>
 図1は、本発明の一実施形態における家の記憶装置の概要図である。図2は、図1に示す家の記憶装置の動作に関するフローチャートである。この装置は、センシングシステム1、制御装置2、再生装置3、及びネットワーク4によって実現される。センシングシステム1及び再生装置3は、家の中に設けられている。ここで、「家」とは、家族の構成員である人が住む場所を意味し、居住建物のみならず、庭、駐車場、物置などを含む広い概念である。
<System configuration and operation>
FIG. 1 is a schematic view of a home storage device according to an embodiment of the present invention. FIG. 2 is a flowchart relating to the operation of the storage device of the house shown in FIG. This device is realized by a sensing system 1, a control device 2, a reproduction device 3, and a network 4. The sensing system 1 and the reproduction device 3 are provided in the house. Here, the "house" means a place where a person who is a member of a family lives, and is a broad concept including not only a residential building but also a garden, a parking lot, a storeroom, and the like.
 図1に示すセンシングシステム1は、家の中における測定量、又はこの測定量を用いて算出される推定量を取得するとともに、測定量又は推定量の変化に関するイベント(あるいは、単に「変化」ともいう)を検出する(図2のステップS111)。ここで「測定量」は、家の中の光、音、空気、筆跡などの物理量の測定結果を示す特徴量である。また、「推定量」は、家族の構成員の感情などを示す特徴量である。また、センシングシステム1は、上記したイベントを検出した場合、検出時における測定量又は推定量の変化を示すデータ(以下、イベントデータSという)のみならず、当該イベントの発生状況を示すデータ(以下、文脈データSCという)を送信する(図2のステップS112)。 The sensing system 1 shown in FIG. 1 acquires a measured amount in a house or an estimated amount calculated by using this measured amount, and also includes an event (or simply "change") related to the measured amount or a change in the estimated amount. Is detected (step S111 in FIG. 2). Here, the "measured quantity" is a feature quantity indicating the measurement result of physical quantities such as light, sound, air, and handwriting in the house. The "estimated amount" is a feature amount indicating the emotions of family members. Further, when the sensing system 1 detects the above-mentioned event, not only the data indicating the change in the measured amount or the estimated amount at the time of detection (hereinafter referred to as event data S) but also the data indicating the occurrence status of the event (hereinafter referred to as event data S). , Contextual data SC) is transmitted (step S112 in FIG. 2).
 センシングシステム1は、家の中の測定量を取得可能なIoT(Internet of Things)センサ群11と、構成員の筆跡を検出する筆跡センサ群12と、を含み構成される。IoTセンサ群11は、撮像センサ111を含む光センサ、マイクロフォンを含む集音センサ112、又は、温度センサを含む空気センサが含まれる。筆跡センサ群12は、接触式又は非接触式の筆跡センサの集合体である。これにより、センシングシステム1は、自身が生成した各種データを、ネットワーク4を介して制御装置2に供給可能に構成される。なお、筆跡センサ群12は、構成員が家の中で書いた筆跡に限られず、家の外で書いた筆跡を検出可能に構成されてもよい。 The sensing system 1 includes an IoT (Internet of Things) sensor group 11 capable of acquiring a measured amount in the house and a handwriting sensor group 12 for detecting the handwriting of a member. The IoT sensor group 11 includes an optical sensor including an imaging sensor 111, a sound collecting sensor 112 including a microphone, and an air sensor including a temperature sensor. The handwriting sensor group 12 is an aggregate of contact type or non-contact type handwriting sensors. As a result, the sensing system 1 is configured to be able to supply various data generated by itself to the control device 2 via the network 4. The handwriting sensor group 12 is not limited to the handwriting written by the members inside the house, and may be configured to be able to detect the handwriting written outside the house.
 撮像センサ111は、例えば、洗面台の鏡の位置(以下、位置1)に設けられている。撮像センサ111は、撮像データを所定時間分保持する一時メモリを有している。例えば、顔を洗うために人が近づくイベントが検出された際に、撮像センサ111は、イベントデータSの一態様である映像データsd1をメモリから読み出して抽出する。この場合における文脈データSC1は、映像データsd1の発生時点や空間位置などのメタデータsmc1と、イベントの発生時点において時間的又は空間的に隣接する映像データ(以下、隣接映像データsdc1)と、を含み構成される。 The image sensor 111 is provided, for example, at the position of the mirror on the washbasin (hereinafter referred to as position 1). The image pickup sensor 111 has a temporary memory that holds the image pickup data for a predetermined time. For example, when an event in which a person approaches to wash the face is detected, the image sensor 111 reads out the video data sd1 which is one aspect of the event data S from the memory and extracts it. In this case, the context data SC1 includes metadata smc1 such as the time of occurrence of the video data sd1 and the spatial position, and video data (hereinafter, adjacent video data sdc1) that is temporally or spatially adjacent at the time of the occurrence of the event. Consists of.
 集音センサ112は、例えば、ダイニングルームや庭の位置(以下、位置2)に設けられている。集音センサ112は、音データを所定時間分保持する一時メモリを有している。例えば、通常よりも大きい声を発するイベント、食器が落下して割れるイベント、又は、落ち葉を踏むイベントが検出された際に、集音センサ112は、イベントデータSの一態様である音データsd2をメモリから読み出して抽出する。この場合における文脈データSC2は、音データsd2の発生時点や空間位置などのメタデータsmc2と、イベントの発生時点において時間的又は空間的に隣接する音データ(以下、隣接音データsdc2)と、を含み構成される。 The sound collecting sensor 112 is provided, for example, at a position in the dining room or garden (hereinafter, position 2). The sound collecting sensor 112 has a temporary memory that holds sound data for a predetermined time. For example, when an event that emits a louder voice than usual, an event that the tableware falls and cracks, or an event that steps on a fallen leaf is detected, the sound collecting sensor 112 uses the sound data sd2, which is one aspect of the event data S. Read from memory and extract. In this case, the context data SC2 includes metadata smc2 such as the time of occurrence of sound data sd2 and spatial position, and sound data (hereinafter referred to as adjacent sound data sdc2) that are temporally or spatially adjacent to each other at the time of event occurrence. Consists of.
 第1センサ121は、例えば、電子ペンが指示する位置を検出する静電容量方式のタッチセンサであり、洗面台の鏡(位置1)の裏面に埋め込まれる。第2センサ122は、例えば、筆記面を撮像するイメージスキャナであり、ダイニングテーブル(位置2)の周辺に設置される。例えば、家族の構成員が筆記を行うイベントが検出された際に、第1センサ121又は第2センサ122は、イベントデータSの一態様である筆跡データsd3をメモリから読み出して抽出する。この場合における文脈データSC3は、筆跡データsd3の筆記時点、筆記位置、筆記者などのメタデータsmc3と、イベントの発生時点において時間的又は空間的に隣接する音データ(以下、隣接筆跡データsdc3)と、を含み構成される。筆記者は、電子ペンの送信信号に含まれるペンIDから特定されてもよいし、イメージセンサを備えるコンピュータの所有者又はログイン情報から特定されてもよい。 The first sensor 121 is, for example, a capacitance type touch sensor that detects a position indicated by an electronic pen, and is embedded in the back surface of a mirror (position 1) of a washbasin. The second sensor 122 is, for example, an image scanner that captures an image of the writing surface, and is installed around the dining table (position 2). For example, when an event in which a family member writes is detected, the first sensor 121 or the second sensor 122 reads the handwriting data sd3, which is one aspect of the event data S, from the memory and extracts it. In this case, the context data SC3 is the sound data (hereinafter, adjacent handwriting data sdc3) that is temporally or spatially adjacent to the metadata scc3 of the handwriting data sd3 at the time of writing, the writing position, the writer, etc. And are included. The writer may be identified from the pen ID included in the transmission signal of the electronic pen, or from the owner of the computer provided with the image sensor or the login information.
 図3は、筆跡センサ群12により検出される筆跡の一例を示す図である。1番目の筆跡301は、ちょっとした買い物メモを示しており、筆跡データsd31を可視化したものである。2番目の筆跡302は、走り書きのメッセージを示しており、筆跡データsd32を可視化したものである。3番目の筆跡303は、あまり意味のないスケッチを示しており、筆跡データsd33を可視化したものである。4番目の筆跡304は、感謝の手紙を示しており、筆跡データsd34を可視化したものである。この他にも、無心で描き続けた家族の肖像、学びのノート、古い日記、将来のスケッチ、などが筆跡データsd3として記録され得る。つまり、筆跡データsd3は、家の中で、その家族が、少なくとも1年の長期的な変化の中で無数に書き残し、構成員の様々な想いによって創造されたデータであるとも言えよう。以下、現在から遡って所定の期間(例えば、1年、5年、10年など)よりも前に蓄積されるイベントデータSのことを「回想イベントデータ」ともいう。 FIG. 3 is a diagram showing an example of handwriting detected by the handwriting sensor group 12. The first handwriting 301 shows a small shopping memo and is a visualization of the handwriting data sd31. The second handwriting 302 shows a scribbled message, and is a visualization of the handwriting data sd32. The third handwriting 303 shows a sketch that has little meaning, and is a visualization of the handwriting data sd33. The fourth handwriting 304 shows a thank-you letter and is a visualization of the handwriting data sd34. In addition to this, a portrait of a family who continued to draw innocently, a notebook of learning, an old diary, a sketch of the future, etc. can be recorded as handwriting data sd3. In other words, it can be said that the handwriting data sd3 is the data created by the family members in the house, leaving innumerable numbers in the long-term change of at least one year, and by the various thoughts of the members. Hereinafter, the event data S accumulated before a predetermined period (for example, 1 year, 5 years, 10 years, etc.) retroactively from the present is also referred to as "recollection event data".
 次に、制御装置2について説明する。制御装置2は、その家あるいは家族の構成員が生れ落ちてから絶えるまでというように、長い期間についての記憶を行う。家を構成する要素には、家屋、家具、匂い、音、光、空気、及び家に住む人などの物理的な要素のみならず、それら物理量を生成する人同士の関係やそれら人の感情の推定量が含まれる。これらの要素は、時の経過とともに移ろうものであり、その経年変化の積み重ねがその家の歴史を形成し、その移ろいの連続がその家を唯一無二のユニークな存在にさせると考えられる。そこで、制御装置2は、このような移ろいの連続としての「家の記憶」に関する様々な処理を行う。 Next, the control device 2 will be described. The control device 2 stores a memory for a long period of time, such as from the birth to the death of a member of the house or family. The elements that make up a house include not only physical elements such as the house, furniture, smell, sound, light, air, and the people who live in the house, but also the relationships between the people who generate those physical quantities and their emotions. Estimators are included. These elements change over time, and it is thought that the accumulation of aging forms the history of the house, and the continuity of the changes makes the house unique and unique. Therefore, the control device 2 performs various processes related to "house memory" as a series of such transitions.
 この制御装置2は、ネットワーク4に接続された1以上のコンピュータ群により実現される。各々のコンピュータは、メモリ、プロセッサ、通信インターフェイスを含み構成される。図1に示すように、制御装置2は、機能的に、蓄積部21(「蓄積手段」に相当)、分析部22、及び制御部23を有する。 This control device 2 is realized by one or more computers connected to the network 4. Each computer is configured to include a memory, a processor, and a communication interface. As shown in FIG. 1, the control device 2 functionally includes a storage unit 21 (corresponding to a “storage means”), an analysis unit 22, and a control unit 23.
 蓄積部21は、センシングシステム1から送信されたイベントデータSと文脈データSCとを関連付けて蓄積する(図2のステップS210)。以下、蓄積された過去のデータであることを明示するため、イベントデータを「Spst」及び文脈データを「SCpst」とそれぞれ表記する場合がある。 The storage unit 21 stores the event data S transmitted from the sensing system 1 in association with the context data SC (step S210 in FIG. 2). Hereinafter, in order to clearly indicate that the data is the accumulated past data, the event data may be referred to as "Spst" and the context data may be referred to as "SCpst".
 図4は、蓄積されるイベントデータS及び文脈データSCの一例を示す図である。S11、 S12、…は、撮像センサ111により取得されたイベントデータS1と、文脈データSC1との間の対応関係を示している。S21、S22、…は、集音センサ112により取得されたイベントデータS2と、文脈データSC2との間の対応関係を示している。S31、S32、…は、筆跡センサ群12により取得されたイベントデータS3と、文脈データSC3との間の対応関係を示している。 FIG. 4 is a diagram showing an example of the accumulated event data S and context data SC. S11, S12, ... Show the correspondence between the event data S1 acquired by the image pickup sensor 111 and the context data SC1. S21, S22, ... Show the correspondence between the event data S2 acquired by the sound collecting sensor 112 and the context data SC2. S31, S32, ... Show the correspondence between the event data S3 acquired by the handwriting sensor group 12 and the context data SC3.
 図5は、文脈データSCが有するデータ構造の一例を示す図である。文脈データSCは、N個の文脈要素(E1~EN)を有する。文脈要素E1は、イベントの発生位置(例えば、位置1、位置2など)を示している。文脈要素E2は、イベントの発生時点(例えば、時・分・秒、時間帯など)を示している。文脈要素E3は、イベント発生時からの経過時間(例えば、日数、月数、年数など)を示している。文脈要素E4は、イベントの発生主体(例えば、人/物の区分、名前、名称など)を示している。文脈要素E5は、イベントデータSの記録態様(例えば、映像、音、筆跡など)を示している。 FIG. 5 is a diagram showing an example of the data structure of the context data SC. The context data SC has N context elements (E1 to EN). The context element E1 indicates the position where the event occurs (for example, position 1, position 2, etc.). The context element E2 indicates the time when the event occurs (for example, hour / minute / second, time zone, etc.). The context element E3 indicates the elapsed time from the occurrence of the event (for example, the number of days, the number of months, the number of years, etc.). The context element E4 indicates the subject of the event (for example, person / object classification, name, name, etc.). The context element E5 indicates the recording mode of the event data S (for example, video, sound, handwriting, etc.).
 なお、文脈要素の種類は、図5の例に限られることなく、イベントの発生状況と何らかの関連性を有する様々な要素であってもよい。例えば、イベントデータの記録態様が一致する場合は、隣接音データsdc2同士の周波数解析の類比や、隣接筆跡データsdc3間の類似度などが用いられてもよい。 The type of context element is not limited to the example shown in FIG. 5, and may be various elements having some relation to the event occurrence status. For example, when the recording modes of the event data match, the analogy of the frequency analysis between the adjacent sound data sdc2, the similarity between the adjacent handwriting data sdc3, and the like may be used.
 分析部22は、蓄積部21により蓄積されたデータに対して様々な分析処理を行う(図2のステップS22)。このステップS22は、3つのサブステップS221~S223から構成される。 The analysis unit 22 performs various analysis processes on the data accumulated by the storage unit 21 (step S22 in FIG. 2). This step S22 is composed of three sub-steps S221 to S223.
 まず、分析部22は、検出されたイベントが作動条件を満たすか否かを判定する(ステップS221)。この作動条件は、イベントの種類に応じて様々に設定されてもよく、例えば、音の発生に関するイベントに関して、音データsd21の音量レベルが隣接音データsdc21においても継続して発生することであってもよい。以下、現在発生したイベントのことを「第1イベント」と称するとともに、第1イベントに対応するデータを「第1イベントデータScur」及び「第1文脈データSCcur」という場合がある。 First, the analysis unit 22 determines whether or not the detected event satisfies the operating condition (step S221). This operating condition may be set variously according to the type of event. For example, regarding an event related to sound generation, the volume level of the sound data sd21 is continuously generated in the adjacent sound data sdc21. May be good. Hereinafter, the event that has occurred at present may be referred to as a "first event", and the data corresponding to the first event may be referred to as "first event data Scur" and "first context data SCcur".
 次に、分析部22は、蓄積部21により蓄積されている複数組のイベントデータSpstの中から、第1イベントとの関連性が相対的に低い第2イベントに属するイベントデータSを選択する(図2のステップS222)。以下、このイベントデータを「第2イベントデータSrep」と称するとともに、これに関連付けられた文脈データを「第2文脈データSCrep」という場合がある。なお、第2イベントデータSrepの選択方法については後で詳述する。 Next, the analysis unit 22 selects the event data S belonging to the second event, which has a relatively low relevance to the first event, from the plurality of sets of event data Spst accumulated by the storage unit 21 ( Step S222 in FIG. 2). Hereinafter, this event data may be referred to as "second event data Srep", and the context data associated therewith may be referred to as "second context data SCrep". The method of selecting the second event data Rep will be described in detail later.
 最後に、分析部22は、センサの設置場所に近い位置にある再生デバイスを特定する(図2のステップS223)。これは、イベントの発生前後において家族の構成員が動いている蓋然性が高いだろうという予測のもと、トリガーとなったイベントの発生地点に近い位置にて再生を実行するための処理である。 Finally, the analysis unit 22 identifies a playback device located near the sensor installation location (step S223 in FIG. 2). This is a process for executing reproduction at a position close to the occurrence point of the event that triggered the event, based on the prediction that it is highly probable that the family members are moving before and after the occurrence of the event.
 制御部23は、指示信号CTの送信を通じて、センシングシステム1又は再生装置3を制御する。制御部23は、分析部22により特定された再生装置3に対して、第2イベントデータSrepを含む再生指示信号CT1を送信する(図2のステップS231)。制御部23は、第1イベントが検出されたセンシングシステム1に対し、家の中における測定量又は推定量を取得する旨の取得指示信号CT2を送信する(図2のステップS232)。ここで、制御部23は、再生装置3による再生期間P1が、センシングシステム1による取得期間P2に包含されるようにタイミング制御を行ってもよい。 The control unit 23 controls the sensing system 1 or the reproduction device 3 through the transmission of the instruction signal CT. The control unit 23 transmits a reproduction instruction signal CT1 including the second event data Thread to the reproduction device 3 specified by the analysis unit 22 (step S231 in FIG. 2). The control unit 23 transmits an acquisition instruction signal CT2 to the effect that the measured amount or the estimated amount in the house is acquired to the sensing system 1 in which the first event is detected (step S232 in FIG. 2). Here, the control unit 23 may perform timing control so that the reproduction period P1 by the reproduction device 3 is included in the acquisition period P2 by the sensing system 1.
 再生装置3は、再生指示信号C1Tに含まれる第2イベントデータSrepに基づいて、第1イベントとの関連性が相対的に低い第2イベントを再生する(図2のステップS300)。図1の例では、再生装置3は、位置1に設けられる表示装置31と、位置2に設けられるスピーカ32と、を含み構成される。表示装置31は、第2イベントデータSrepの一態様である筆跡データに基づいて、過去に残された筆跡を投影又は表示可能に構成される。スピーカ32は、第2イベントデータSrepの一態様である音データに基づいて、過去に残された音を再生可能に構成される。なお、センシングシステム1と再生装置3とは、例えば、スマートスピーカのように単体の装置として組み込まれてもよい。 The reproduction device 3 reproduces the second event having a relatively low relevance to the first event based on the second event data Thread included in the reproduction instruction signal C1T (step S300 in FIG. 2). In the example of FIG. 1, the reproduction device 3 includes a display device 31 provided at the position 1 and a speaker 32 provided at the position 2. The display device 31 is configured to be able to project or display the handwriting left in the past based on the handwriting data which is one aspect of the second event data Thread. The speaker 32 is configured to be able to reproduce the sound left in the past based on the sound data which is one aspect of the second event data Sep. The sensing system 1 and the reproducing device 3 may be incorporated as a single device such as a smart speaker.
 この実施形態における家の記憶システムの構成及び動作は以上の通りである。このように構成されるシステムに期待される効果を、シナリオ例を用いて説明する。 The configuration and operation of the home storage system in this embodiment are as described above. The effects expected of the system configured in this way will be described using a scenario example.
 例えば、午前7時の朝に、人1が、顔を洗う際に位置1に設けられた鏡を見る。その鏡に設けられた撮像センサ111は、その表情を物理量として計測するとともに、その物理量から予測された推定量である人の状態の変化を検出する。制御装置2は、撮像センサ111により「顔を洗う」イベントが検出された場合、「顔を洗う」との関連性が低い「買い物メモ」を示す筆跡データsd31を、位置1に設けられた表示装置31に送信する。この筆跡データsd31は、位置2に設けられた第2センサ122が、人2が午後6時の夜にダイニングテーブルに残した筆跡を検出して得られたデータである。 For example, on the morning of 7:00 am, person 1 looks at the mirror provided at position 1 when washing his face. The image sensor 111 provided on the mirror measures the facial expression as a physical quantity and detects a change in the state of a person, which is an estimated quantity predicted from the physical quantity. When the image sensor 111 detects a "washing face" event, the control device 2 displays handwriting data sd31 indicating a "shopping memo" having a low relevance to "washing the face" at position 1. It is transmitted to the device 31. The handwriting data sd31 is data obtained by detecting the handwriting left by the person 2 on the dining table at 6 pm by the second sensor 122 provided at the position 2.
 例えば、午後7時の夜に、ダイニングルーム(位置2)で食事している最中に、皿(物体3)が割れてしまったとする。位置2に設けられた集音センサ112は、皿が割れる大きな音を発した後、周囲の音の変化を検出する。制御装置2は、無音状態が一定期間続くことの作動条件を満たすことで「皿」イベントが検出された場合、「皿」との関連性が低い「落ち葉」に関する音データsd23を位置2に設けられたスピーカ32に送信するとともに、「皿」との関連性が低い「意味のないスケッチ」に関する筆跡データsd33を位置1に設けられた表示装置31に送信する。これにより、家の庭で誰かが落ち葉を踏んだ音や、あまり意味のないスケッチを示す筆跡がそれぞれ再生される。 For example, suppose that the plate (object 3) broke while eating in the dining room (position 2) on the night of 7:00 pm. The sound collecting sensor 112 provided at the position 2 detects a change in the surrounding sound after emitting a loud sound that the dish cracks. When the "dish" event is detected by satisfying the operation condition that the silent state continues for a certain period of time, the control device 2 provides the sound data sd23 regarding the "fallen leaves", which is less related to the "dish", at the position 2. In addition to transmitting to the speaker 32, the handwriting data sd33 relating to the "meaningless sketch" having a low relevance to the "dish" is transmitted to the display device 31 provided at the position 1. This recreates the sound of someone stepping on a fallen leaf in the yard of the house and the handwriting showing a less meaningful sketch.
<第1の選択動作>
 続いて、分析部22による第1の選択動作(図2のステップS222)について、図6及び図7を参照しながら説明する。
<First selection operation>
Subsequently, the first selection operation (step S222 in FIG. 2) by the analysis unit 22 will be described with reference to FIGS. 6 and 7.
 図6のステップS601において、分析部22は、第1文脈データSCcur及び過去の文脈データSCpstに関する特徴ベクトルを算出する。例えば、この特徴ベクトルは、N個の文脈要素に対応するN個のベクトル成分からなる。このベクトル成分は、文脈要素を定量的に表現した特徴量であり、離散値又は連続値のいずれであってもよい。以下、各々の特徴ベクトルは、[0,1]の範囲で正規化されたN個のベクトル成分からなると想定する。 In step S601 of FIG. 6, the analysis unit 22 calculates the feature vectors related to the first context data SCcur and the past context data SCpst. For example, this feature vector consists of N vector components corresponding to N context elements. This vector component is a feature quantity that quantitatively expresses a context element, and may be either a discrete value or a continuous value. Hereinafter, it is assumed that each feature vector consists of N vector components normalized in the range of [0,1].
 なお、特徴ベクトルの算出方法は、様々な手法が用いられてもよい。例えば、この特徴ベクトルは、図9で後述するように、ニューラルネットワークを用いた機械学習を通じて算出されてもよい。図9の例では、第1入力層91から入力した特徴ベクトルに対する中間層93(第1部分93A)の出力値を用いることで、次元数がNからP(1<P<N)に削減された特徴ベクトルが求められる。 In addition, various methods may be used for the calculation method of the feature vector. For example, this feature vector may be calculated through machine learning using a neural network, as will be described later in FIG. In the example of FIG. 9, the number of dimensions is reduced from N to P (1 <P <N) by using the output value of the intermediate layer 93 (first part 93A) with respect to the feature vector input from the first input layer 91. The feature vector is obtained.
 ステップS602において、分析部22は、ステップS601で取得された特徴ベクトルを用いて、特徴量空間70の分類を行う。ここでは、文脈データSC同士の関連性の強弱が、特徴量空間70上のノルム(距離D)によって評価される点に留意する。 In step S602, the analysis unit 22 classifies the feature amount space 70 using the feature vector acquired in step S601. Here, it should be noted that the strength of the relationship between the context data SCs is evaluated by the norm (distance D) on the feature space 70.
 図7は、特徴量空間70の分類方法の一例を示す図である。図示の便宜上、2つの成分(i,j番目)のみを表記している。基準点71は、第1文脈データSCcurに関する特徴ベクトルを示している。特徴量空間70をなす全体領域は、基準点71からの距離Dに応じて、[1]第1強相関領域72、[2]第2強相関領域73、及び[3]弱相関領域74、の3つの領域に分類される。第1強相関領域72は、強い正の相関がある領域に相当する(0≦D≦D1)。第2強相関領域73は、強い負の相関がある領域に相当する(D≧D2)。弱相関領域74は、残余の領域に相当する(D1<D<D2)。 FIG. 7 is a diagram showing an example of a method for classifying the feature space 70. For convenience of illustration, only two components (i, j) are shown. The reference point 71 shows a feature vector for the first contextual data SCcur. The entire region forming the feature space 70 includes [1] first strongly correlated region 72, [2] second strongly correlated region 73, and [3] weakly correlated region 74, depending on the distance D from the reference point 71. It is classified into three areas. The first strongly correlated region 72 corresponds to a region having a strong positive correlation (0 ≦ D ≦ D1). The second strongly correlated region 73 corresponds to a region having a strong negative correlation (D ≧ D2). The weakly correlated region 74 corresponds to the remaining region (D1 <D <D2).
 なお、分類されるグループの個数は、図7の例(3つ)に限られることなく、2つであってもよいし4つ以上であってもよい。また、分類の手法は、上記した距離に基づく手法に限られず、K-means法を含む様々なクラスタリング手法が適用されてもよい。 The number of groups to be classified is not limited to the example (3) in FIG. 7, and may be two or four or more. Further, the classification method is not limited to the above-mentioned distance-based method, and various clustering methods including the K-means method may be applied.
 ステップS603において、分析部22は、ステップS602で分類された弱相関領域74に属する複数組の文脈データSCpstの中から1組を無作為に選択することで、再生対象の第2文脈データSCrepを取得する。これに代えて、分析部22は、第2強相関領域73に属する文脈データSCpstの中から第2文脈データSCrepを取得してもよい。あるいは、分析部22は、第1イベントの発生時点から遡って所定の期間(例えば、1年)よりも前に蓄積された第2文脈データSCrepを選択してもよい。 In step S603, the analysis unit 22 randomly selects one set from the plurality of sets of context data SCps belonging to the weak correlation region 74 classified in step S602 to select the second context data SCrep to be reproduced. get. Instead, the analysis unit 22 may acquire the second context data SCrep from the context data SCpst belonging to the second strongly correlated region 73. Alternatively, the analysis unit 22 may select the second contextual data SCrep accumulated before a predetermined period (for example, one year) retroactively from the time of occurrence of the first event.
 ステップS604において、分析部22は、ステップS604で選択された第2文脈データSCrepに対応する第2イベントデータSrepを、蓄積部21から読み出して取得する。このようにして、分析部22による第1の選択動作が終了する。 In step S604, the analysis unit 22 reads out the second event data Srep corresponding to the second context data SCrep selected in step S604 from the storage unit 21 and acquires it. In this way, the first selection operation by the analysis unit 22 is completed.
<第2の選択動作>
 続いて、分析部22による第2の選択動作(図2のステップS222)について、図8及び図9を参照しながら説明する。
<Second selection operation>
Subsequently, the second selection operation (step S222 in FIG. 2) by the analysis unit 22 will be described with reference to FIGS. 8 and 9.
 図8のステップS801において、分析部22は、第1イベントを含むM個のイベント種別に関する特徴ベクトルを算出する。例えば、この特徴ベクトルは、Q個(1<Q<M)のベクトル成分からなり、ニューラルネットワークを用いた機械学習を通じて算出される。具体的には、機械学習により決定されたM×Q行列の結合重み行列{W2}から、イベント種別に対応する行成分を抜き出すことで、P次元の特徴ベクトルが求められる。 In step S801 of FIG. 8, the analysis unit 22 calculates the feature vectors related to M event types including the first event. For example, this feature vector consists of Q (1 <Q <M) vector components and is calculated through machine learning using a neural network. Specifically, a P-dimensional feature vector can be obtained by extracting the row components corresponding to the event types from the combined weight matrix {W2} of the M × Q matrix determined by machine learning.
 図9は、イベント種別に関する特徴ベクトルを獲得するための学習器90の構造の一例を示す図である。この学習器90は、第1入力層91と、第2入力層92と、中間層93と、出力層94と、を順次接続してなる階層型ニューラルネットワークである。 FIG. 9 is a diagram showing an example of the structure of the learner 90 for acquiring the feature vector related to the event type. The learner 90 is a hierarchical neural network in which the first input layer 91, the second input layer 92, the intermediate layer 93, and the output layer 94 are sequentially connected.
 第1入力層91は、N個の特徴量を有する特徴ベクトルを入力するためのN個の演算ユニットから構成される。各々の特徴量は、イベントの発生前における文脈データSCに関する特徴を定量化した値である。第2入力層92は、M個のラベルを有する分類ベクトルを入力するためのM個の演算ユニットから構成される。この分類ベクトルは、該当(1)又は非該当(0)の2値を用いてイベント種別を表現するワンホットベクトルである。 The first input layer 91 is composed of N arithmetic units for inputting feature vectors having N feature quantities. Each feature quantity is a value that quantifies the features related to the contextual data SC before the occurrence of the event. The second input layer 92 is composed of M arithmetic units for inputting classification vectors having M labels. This classification vector is a one-hot vector that expresses an event type using two values of applicable (1) and non-applicable (0).
 中間層93は、(P+Q)個の演算ユニットから構成される。中間層93の第1部分93A(P個の演算ユニット)は、全結合により第1入力層91と接続される。中間層93の第2部分93B(Q個の演算ユニット)は、全結合により第2入力層92と接続される。ここで、{W1}及び{W2}はそれぞれ、第1入力層91と第1部分93Aの間、第2入力層92と第2部分93Bの間における結合重み行列を示している。 The intermediate layer 93 is composed of (P + Q) arithmetic units. The first portion 93A (P arithmetic units) of the intermediate layer 93 is connected to the first input layer 91 by full coupling. The second portion 93B (Q arithmetic units) of the intermediate layer 93 is connected to the second input layer 92 by full coupling. Here, {W1} and {W2} indicate the coupling weight matrix between the first input layer 91 and the first portion 93A, and between the second input layer 92 and the second portion 93B, respectively.
 出力層94は、N個の特徴量を有する特徴ベクトルを出力するためのN個の演算ユニットから構成される。各々の特徴量は、イベントの発生後における文脈データSCに関する特徴を定量化した値である。出力層94は、全結合により中間層93と接続される。ここで、{W3}は、中間層93と出力層94の間における結合重み行列を示している。 The output layer 94 is composed of N arithmetic units for outputting a feature vector having N feature quantities. Each feature quantity is a value that quantifies the features related to the contextual data SC after the occurrence of the event. The output layer 94 is connected to the intermediate layer 93 by full coupling. Here, {W3} indicates a coupling weight matrix between the intermediate layer 93 and the output layer 94.
 ここで、イベント種別及びイベントの発生前の特徴ベクトルを入力値とし、イベント発生後の特徴ベクトルを正解値とする機械学習を通じて、結合重み行列{W2}{W3}の更新・最適化がなされる。一方、結合重み行列{W1}は、事前学習を通じて予め最適化されており、本番の学習時には固定されている。なお、この事前学習は、第1入力層91、第1部分93A、及び出力層94からなる部分的なニューラルネットワークを用いた、自己符号化器による教師なし学習に相当する。 Here, the connection weight matrix {W2} {W3} is updated / optimized through machine learning in which the event type and the feature vector before the occurrence of the event are used as input values and the feature vector after the event occurs is used as the correct answer value. .. On the other hand, the connection weight matrix {W1} is pre-optimized through pre-learning and is fixed at the time of actual learning. This pre-learning corresponds to unsupervised learning by a self-encoder using a partial neural network consisting of a first input layer 91, a first portion 93A, and an output layer 94.
 図8のステップS802において、分析部22は、ステップS801で取得された特徴ベクトルを用いて、特徴量空間70の分類を行う。分析部22は、図6のステップS602で既に説明した手法を用いて分類を行ってもよい。ここでは、図7に示すように、特徴量空間70が、第1強相関領域72、第2強相関領域73、及び弱相関領域74、の3つの領域に分類された場合を想定する。 In step S802 of FIG. 8, the analysis unit 22 classifies the feature amount space 70 using the feature vector acquired in step S801. The analysis unit 22 may perform classification using the method already described in step S602 of FIG. Here, as shown in FIG. 7, it is assumed that the feature space 70 is classified into three regions, a first strongly correlated region 72, a second strongly correlated region 73, and a weakly correlated region 74.
 ステップS803において、分析部22は、ステップS802で分類された弱相関領域74に属する複数のイベント種別の中から1つを無作為に選択することで、再生対象のイベント種別を取得する。 In step S803, the analysis unit 22 acquires the event type to be reproduced by randomly selecting one of the plurality of event types belonging to the weak correlation region 74 classified in step S802.
 ステップS804において、分析部22は、ステップS803で選択されたイベント種別に対応する複数のイベントデータSpstの中から1つを無作為に選択することで、再生対象の第2文脈データSCrepを取得する。あるいは、分析部22は、第1イベントの発生時点から遡って所定の期間(例えば、1年)よりも前に蓄積された第2文脈データSCrepを選択してもよい。 In step S804, the analysis unit 22 acquires the second context data SCrep to be reproduced by randomly selecting one of the plurality of event data Spsts corresponding to the event types selected in step S803. .. Alternatively, the analysis unit 22 may select the second contextual data SCrep accumulated before a predetermined period (for example, one year) retroactively from the time of occurrence of the first event.
<実施形態のまとめ>
 以上のように、この実施形態における家の記憶装置は、家族の住居である家の中でなされた手書きによる筆跡データ(「イベントデータS」に相当)を、手書きのコンテキストを示す文脈データSCと対応付けて回想筆跡データとして蓄積する蓄積部21と、家の中の光、音、空気、若しくは筆跡に関する物理量の変化、又は、家族の構成員の感情に関する推定量の変化を検出するセンサと、変化(「第1イベント」に相当)が検出されたことを契機に、蓄積部21により蓄積されている複数組の文脈データSCの中から、変化との関連性が相対的に小さい弱相関文脈データ(「第2文脈データSCrep」に相当)を無作為に選択する分析部22と、分析部22により無作為に選択された弱相関文脈データに対応付けられた回想筆跡データ(第2イベントデータ「Srep」に相当)を1つ蓄積部21から読み出し、回想筆跡データの投影を家の中に設けられた再生装置3に指示する制御部23を備える。ここで、家の記憶装置は、家の中に設けられて回想筆記データを投影する1つ又は複数の再生装置3をさらに備えてもよい。
<Summary of Embodiment>
As described above, the home storage device in this embodiment uses handwritten handwriting data (corresponding to "event data S") made in the house, which is the residence of the family, as context data SC indicating the context of handwriting. A storage unit 21 that is associated and accumulated as recollection handwriting data, and a sensor that detects a change in the physical quantity of light, sound, air, or handwriting in the house, or a change in the estimated amount of emotions of family members. When a change (corresponding to the "first event") is detected, a weak correlation context having a relatively small relevance to the change is selected from a plurality of sets of context data SCs accumulated by the storage unit 21. Recollection writing data (second event data) associated with analysis unit 22 that randomly selects data (corresponding to "second context data SCrep") and weakly correlated context data randomly selected by analysis unit 22. It is provided with a control unit 23 that reads one (corresponding to “Srep”) from the storage unit 21 and instructs the reproduction device 3 provided in the house to project the recollection stroke data. Here, the storage device of the house may further include one or a plurality of reproduction devices 3 provided in the house and projecting the recollection writing data.
 また、分析部22は、変化の検出時点から遡って所定の期間よりも前に蓄積された弱相関文脈データを選択してもよい。また、分析部22は、蓄積されている複数組の文脈データSCの関連性を分析し、複数組の文脈データを2つ以上のグループに分類し、変化のコンテキストを示す変化文脈データ(「第1文脈データSCcur」に相当)が属するグループとは別のグループの中から弱相関文脈データを選択してもよい。また、分析部22は、機械学習を通じて文脈データSC毎の特徴ベクトルを生成し、特徴ベクトル同士の関連性に基づいて複数組の文脈データSCを2つ以上のグループに分類してもよい。また、制御部23は、家の中に複数の再生装置3が設けられている場合、変化が検出された位置に基づいて回想筆跡データを投影させる再生装置3を特定してもよい。また、制御部23は、回想筆記データの再生期間(P1)を含む取得期間(P2)にわたる変化の検出をセンサに指示してもよい。 Further, the analysis unit 22 may select weak correlation context data accumulated before a predetermined period from the time when the change is detected. Further, the analysis unit 22 analyzes the relationship between the accumulated plurality of sets of context data SCs, classifies the plurality of sets of context data into two or more groups, and changes context data indicating the context of change (“No. 1”. Weakly correlated context data may be selected from a group different from the group to which (corresponding to 1 context data SCcur) belongs. Further, the analysis unit 22 may generate feature vectors for each context data SC through machine learning, and classify a plurality of sets of context data SCs into two or more groups based on the relationships between the feature vectors. Further, when a plurality of reproduction devices 3 are provided in the house, the control unit 23 may specify the reproduction device 3 for projecting the recollection handwriting data based on the position where the change is detected. Further, the control unit 23 may instruct the sensor to detect a change over the acquisition period (P2) including the reproduction period (P1) of the recollection written data.
 この実施形態における家の記憶装置は、家族の住居である家の中でなされた手書きによる筆跡データ(「イベントデータS」に相当)を、手書きのコンテキストを分類するためのイベント種別と対応付けて回想筆跡データとして蓄積する蓄積部21と、家の中の光、音、空気、若しくは筆跡に関する物理量の変化、又は、家族の構成員の感情に関する推定量の変化を検出するセンサと、変化(「第1イベント」に相当)が検出されたことを契機に、蓄積部21により蓄積されている複数のイベント種別の中から、変化との関連性が相対的に小さい弱相関イベント種別(「第2イベント種別」に相当)を無作為に選択する分析部22と、分析部22により選択された弱相関イベント種別に対応付けられた回想筆跡データ(第2イベントデータ「Srep」に相当)を1つ蓄積部21から読み出し、回想筆跡データの投影を家の中に設けられた再生装置3に指示する制御部23を備える。ここで、家の記憶装置は、家の中に設けられて回想筆記データを投影する1つ又は複数の再生装置3をさらに備えてもよい。 The home storage device in this embodiment associates handwritten handwriting data (corresponding to "event data S") made in the house, which is the residence of the family, with the event type for classifying the handwritten context. A storage unit 21 that accumulates as recollection handwriting data, a sensor that detects changes in physical quantities related to light, sound, air, or handwriting in the house, or changes in estimated quantities related to the emotions of family members, and changes ("" When (corresponding to the "first event") is detected, a weakly correlated event type ("second event") that has a relatively small relevance to the change from among the plurality of event types accumulated by the storage unit 21 One analysis unit 22 that randomly selects (corresponding to "event type") and one recollection handwriting data (corresponding to the second event data "Srep") associated with the weakly correlated event type selected by the analysis unit 22. It is provided with a control unit 23 that reads from the storage unit 21 and instructs a reproduction device 3 provided in the house to project the recollection handwriting data. Here, the storage device of the house may further include one or more reproduction devices 3 provided in the house and projecting the recollection writing data.
 また、分析部22は、変化の検出時点から遡って所定の期間よりも前に蓄積された弱相関文脈データを選択してもよい。また、分析部22は、蓄積されている複数のイベント種別の関連性を分析し、複数のイベント種別を2つ以上のグループに分類し、変化のイベント種別が属するグループとは別のグループの中から弱相関文脈データを選択してもよい。また、分析部22は、機械学習を通じてイベント種別毎の特徴ベクトルを生成し、特徴ベクトル同士の関連性に基づいて複数のイベント種別を2つ以上のグループに分類してもよい。また、制御部23は、家の中に複数の再生装置3が設けられている場合、変化が検出された位置に基づいて回想筆跡データを投影させる再生装置3を特定してもよい。また、制御部23は、回想筆記データの再生期間(P1)を含む取得期間(P2)にわたる変化の検出をセンサに指示してもよい。 Further, the analysis unit 22 may select weak correlation context data accumulated before a predetermined period from the time when the change is detected. In addition, the analysis unit 22 analyzes the relationship between the accumulated event types, classifies the plurality of event types into two or more groups, and is in a group different from the group to which the event type of change belongs. Weakly correlated contextual data may be selected from. Further, the analysis unit 22 may generate a feature vector for each event type through machine learning, and classify the plurality of event types into two or more groups based on the relationship between the feature vectors. Further, when a plurality of reproduction devices 3 are provided in the house, the control unit 23 may specify the reproduction device 3 for projecting the recollection handwriting data based on the position where the change is detected. Further, the control unit 23 may instruct the sensor to detect a change over the acquisition period (P2) including the reproduction period (P1) of the recollection written data.
<符号の説明>
1‥センシングシステム、11‥IoTセンサ群、12‥筆跡センサ群、2‥制御装置、21‥蓄積部、22‥分析部、23‥制御部、3‥再生装置、31‥表示装置、32‥スピーカ装置、S‥イベントデータ、Scur‥第1イベントデータ、Srep‥第2イベントデータ、SC‥文脈データ、SCcur‥第1文脈データ、SCrep‥第2文脈データ
<Explanation of symbols>
1) Sensing system, 11 ... IoT sensor group, 12 ... Handwriting sensor group, 2 ... Control device, 21 ... Storage unit, 22 ... Analysis unit, 23 ... Control unit, 3 ... Reproduction device, 31 ... Display device, 32 ... Speaker Device, S ... event data, Scur ... first event data, Srep ... second event data, SC ... context data, SCcur ... first context data, SCrep ... second context data

Claims (14)

  1.  家族の住居である家の中でなされた手書きによる筆跡データを、前記手書きのコンテキストを示す文脈データと対応付けて回想筆跡データとして蓄積する蓄積部と、
     前記家の中の光、音、空気、若しくは筆跡に関する物理量の変化、又は、前記家族の構成員の感情に関する推定量の変化を検出するセンサと、
     前記センサにより前記変化が検出されたことを契機に、前記蓄積部により蓄積されている複数組の文脈データの中から、前記変化との関連性が相対的に小さい弱相関文脈データを無作為に選択する分析部と、
     前記分析部により無作為に選択された弱相関文脈データに対応付けられた回想筆跡データを1つ前記蓄積部から読み出し、前記回想筆跡データの投影を前記家の中に設けられた再生装置に指示する制御部と、
     を備える家の記憶装置。
    A storage unit that stores handwritten handwriting data made in the house, which is the residence of the family, as recollection handwriting data in association with the context data indicating the context of the handwriting.
    A sensor that detects changes in physical quantities related to light, sound, air, or handwriting in the house, or changes in estimated quantities related to the emotions of members of the family.
    When the change is detected by the sensor, weakly correlated context data having a relatively small relevance to the change is randomly selected from a plurality of sets of context data accumulated by the storage unit. The analysis department to select and
    One recollection handwriting data associated with the weakly correlated context data randomly selected by the analysis unit is read from the storage unit, and the projection of the recollection handwriting data is instructed to a reproduction device provided in the house. Control unit and
    Home storage with.
  2.  前記分析部は、前記変化の検出時点から遡って所定の期間よりも前に蓄積された前記弱相関文脈データを選択する、
     請求項1に記載の家の記憶装置。
    The analysis unit selects the weakly correlated contextual data accumulated prior to a predetermined period retroactively from the time of detection of the change.
    The home storage device according to claim 1.
  3.  前記分析部は、
      前記蓄積部により蓄積されている複数組の文脈データの関連性を分析し、前記複数組の文脈データを2つ以上のグループに分類し、
      前記変化のコンテキストを示す変化文脈データが属するグループとは別のグループの中から前記弱相関文脈データを選択する、
     請求項1に記載の家の記憶装置。
    The analysis unit
    The relationship between the plurality of sets of contextual data accumulated by the storage unit is analyzed, and the plurality of sets of contextual data are classified into two or more groups.
    The weakly correlated context data is selected from a group different from the group to which the change context data indicating the context of the change belongs.
    The home storage device according to claim 1.
  4.  前記分析部は、機械学習を通じて文脈データ毎の特徴ベクトルを生成し、前記特徴ベクトル同士の関連性に基づいて前記複数組の文脈データを2つ以上のグループに分類する、
     請求項3に記載の家の記憶装置。
    The analysis unit generates feature vectors for each context data through machine learning, and classifies the plurality of sets of context data into two or more groups based on the relationships between the feature vectors.
    The home storage device according to claim 3.
  5.  前記制御部は、前記家の中に複数の再生装置が設けられている場合、前記変化が検出された位置に基づいて前記回想筆跡データを投影させる再生装置を特定する、
     請求項1に記載の家の記憶装置。
    When a plurality of reproduction devices are provided in the house, the control unit identifies a reproduction device that projects the recollection handwriting data based on the position where the change is detected.
    The home storage device according to claim 1.
  6.  前記制御部は、前記回想筆記データの再生期間を含む取得期間にわたる前記変化の検出を前記センサに指示する、
     請求項1に記載の家の記憶装置。
    The control unit instructs the sensor to detect the change over the acquisition period including the reproduction period of the recollection written data.
    The home storage device according to claim 1.
  7.  前記家の中に設けられて前記回想筆記データを投影する1つ又は複数の再生装置をさらに備える、
     請求項1に記載の家の記憶装置。
    Further equipped with one or more playback devices provided in the house to project the recollection written data.
    The home storage device according to claim 1.
  8.  家族の住居である家の中でなされた手書きによる筆跡データを、前記手書きのコンテキストを分類するためのイベント種別と対応付けて回想筆跡データとして蓄積する蓄積部と、
     前記家の中の光、音、空気、若しくは筆跡に関する物理量の変化、又は、前記家族の構成員の感情に関する推定量の変化を検出するセンサと、
     前記センサにより前記変化が検出されたことを契機に、前記蓄積部により蓄積されている複数のイベント種別の中から、前記変化との関連性が相対的に小さい弱相関イベント種別を無作為に選択する分析部と、
     前記分析部により無作為に選択された弱相関イベント種別に対応付けられた回想筆跡データを1つ前記蓄積部から読み出し、前記回想筆跡データの投影を前記家の中に設けられた再生装置に指示する制御部と、
     を備える家の記憶装置。
    A storage unit that stores handwritten handwriting data made in the house, which is the residence of the family, as recollection handwriting data in association with the event type for classifying the handwriting context.
    A sensor that detects changes in physical quantities related to light, sound, air, or handwriting in the house, or changes in estimated quantities related to the emotions of members of the family.
    When the change is detected by the sensor, a weakly correlated event type having a relatively small relevance to the change is randomly selected from a plurality of event types accumulated by the storage unit. Analysis department and
    One recollection handwriting data associated with a weakly correlated event type randomly selected by the analysis unit is read from the storage unit, and the projection of the recollection handwriting data is instructed to a reproduction device provided in the house. Control unit and
    Home storage with.
  9.  前記分析部は、前記変化の検出時点から遡って所定の期間よりも前に蓄積された前記弱相関文脈データを選択する、
     請求項8に記載の家の記憶装置。
    The analysis unit selects the weakly correlated contextual data accumulated prior to a predetermined period retroactively from the time of detection of the change.
    The home storage device according to claim 8.
  10.  前記分析部は、
      前記蓄積部により蓄積されている複数のイベント種別の関連性を分析し、前記複数のイベント種別を2つ以上のグループに分類し、
      前記変化のイベント種別が属するグループとは別のグループの中から前記弱相関イベント種別を選択する、
     請求項8に記載の家の記憶装置。
    The analysis unit
    The relationship between the plurality of event types accumulated by the storage unit is analyzed, and the plurality of event types are classified into two or more groups.
    Select the weakly correlated event type from a group different from the group to which the event type of the change belongs.
    The home storage device according to claim 8.
  11.  前記分析部は、機械学習を通じてイベント種別毎の特徴ベクトルを生成し、前記特徴ベクトル同士の関連性に基づいて前記複数のイベント種別を2つ以上のグループに分類する、
     請求項10に記載の家の記憶装置。
    The analysis unit generates a feature vector for each event type through machine learning, and classifies the plurality of event types into two or more groups based on the relationship between the feature vectors.
    The home storage device according to claim 10.
  12.  前記制御部は、前記家の中に複数の再生装置が設けられている場合、前記変化が検出された位置に基づいて前記回想筆跡データを投影させる再生装置を特定する、
     請求項8に記載の家の記憶装置。
    When a plurality of reproduction devices are provided in the house, the control unit identifies a reproduction device that projects the recollection handwriting data based on the position where the change is detected.
    The home storage device according to claim 8.
  13.  前記制御部は、前記回想筆記データの再生期間を含む取得期間にわたる前記変化の検出を前記センサに指示する、
     請求項8に記載の家の記憶装置。
    The control unit instructs the sensor to detect the change over the acquisition period including the reproduction period of the recollection written data.
    The home storage device according to claim 8.
  14.  前記家の中に設けられて前記回想筆記データを投影する1つ又は複数の再生装置をさらに備える、
     請求項8に記載の家の記憶装置。
    Further equipped with one or more playback devices provided in the house and projecting the recollection written data.
    The home storage device according to claim 8.
PCT/JP2020/013369 2019-03-26 2020-03-25 Storage device for house WO2020196636A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530543A JP6746267B1 (en) 2019-03-26 2020-03-25 Home storage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962824053P 2019-03-26 2019-03-26
US62/824,053 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020196636A1 true WO2020196636A1 (en) 2020-10-01

Family

ID=72608553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013369 WO2020196636A1 (en) 2019-03-26 2020-03-25 Storage device for house

Country Status (1)

Country Link
WO (1) WO2020196636A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09319764A (en) * 1996-05-31 1997-12-12 Matsushita Electric Ind Co Ltd Key word generator and document retrieving device
WO2018043061A1 (en) * 2016-09-01 2018-03-08 株式会社ワコム Coordinate input processing device, emotion estimation device, emotion estimation system, and device for constructing database for emotion estimation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09319764A (en) * 1996-05-31 1997-12-12 Matsushita Electric Ind Co Ltd Key word generator and document retrieving device
WO2018043061A1 (en) * 2016-09-01 2018-03-08 株式会社ワコム Coordinate input processing device, emotion estimation device, emotion estimation system, and device for constructing database for emotion estimation

Similar Documents

Publication Publication Date Title
Van Kasteren et al. An activity monitoring system for elderly care using generative and discriminative models
US8898091B2 (en) Computing situation-dependent affective response baseline levels utilizing a database storing affective responses
Pantic et al. Affective multimodal human-computer interaction
Eldib et al. Behavior analysis for elderly care using a network of low-resolution visual sensors
Choudhury et al. Towards Activity Databases: Using Sensors and Statistical Models to Summarize People's Lives.
Zhang et al. ISEE Smart Home (ISH): Smart video analysis for home security
Dudzik et al. Context in human emotion perception for automatic affect detection: A survey of audiovisual databases
Mahmoud et al. Abnormal behaviours identification for an elder's life activities using dissimilarity measurements
Genemo Suspicious activity recognition for monitoring cheating in exams
de Silva et al. An interactive multimedia diary for the home
Chen et al. Multimodal detection of human interaction events in a nursing home environment
WO2020196636A1 (en) Storage device for house
JP6746267B1 (en) Home storage
CN117331460A (en) Digital exhibition hall content optimization method and device based on multidimensional interaction data analysis
Cabrera-Quiros et al. Multimodal self-assessed personality estimation during crowded mingle scenarios using wearables devices and cameras
Xu et al. Comparative studies on activity recognition of elderly people living alone
Chen et al. A study of detecting social interaction with sensors in a nursing home environment
Carincotte et al. Toward generic intelligent knowledge extraction from video and audio: the EU-funded CARETAKER project
Aljuaid et al. Postures anomaly tracking and prediction learning model over crowd data analytics
KR102656184B1 (en) Server and method for providing infomration for companion animal care
Guan et al. Activity recognition with the aid of unlabeled samples
Chen Long term activity analysis in surveillance video archives
Verma Multimodal Affective Computing: Affective Information Representation, Modelling, and Analysis
De Silva et al. Sketch-based spatial queries for the retrieval of human locomotion patterns in smart environments
Shejy et al. Activity Monitoring and Unusual Activity Detection for Elderly Homes

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020530543

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779481

Country of ref document: EP

Kind code of ref document: A1