WO2020196553A1 - Method for producing n-substituted trihaloacetamide - Google Patents

Method for producing n-substituted trihaloacetamide Download PDF

Info

Publication number
WO2020196553A1
WO2020196553A1 PCT/JP2020/013124 JP2020013124W WO2020196553A1 WO 2020196553 A1 WO2020196553 A1 WO 2020196553A1 JP 2020013124 W JP2020013124 W JP 2020013124W WO 2020196553 A1 WO2020196553 A1 WO 2020196553A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
trihaloacetamide
compound
mmol
Prior art date
Application number
PCT/JP2020/013124
Other languages
French (fr)
Japanese (ja)
Inventor
明彦 津田
岡添 隆
浩志 和田
佳孝 砂山
俊文 柿内
Original Assignee
国立大学法人神戸大学
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, Agc株式会社 filed Critical 国立大学法人神戸大学
Publication of WO2020196553A1 publication Critical patent/WO2020196553A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/08Preparation of carboxylic acid amides from amides by reaction at nitrogen atoms of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/05Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/06Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/07Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/34Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
    • C07C233/35Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/36Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/34Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
    • C07C233/42Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • C07C233/43Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/90Carboxylic acid amides having nitrogen atoms of carboxamide groups further acylated
    • C07C233/92Carboxylic acid amides having nitrogen atoms of carboxamide groups further acylated with at least one carbon atom of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/04Preparation of derivatives of isocyanic acid from or via carbamates or carbamoyl halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/16Derivatives of isocyanic acid having isocyanate groups acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/12Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton

Definitions

  • the present invention relates to a method capable of safely and efficiently producing N-substituted trihaloacetamide, which is also a synthetic intermediate for isocyanate compounds, carbamate compounds, urea compounds and the like.
  • a specific isocyanate compound is an important synthetic intermediate for active ingredients of pharmaceuticals and pesticides (Patent Document 1).
  • the isocyanate compound is generally synthesized by reacting a primary amine compound with phosgene (Patent Document 2, etc.).
  • Patent Document 2 there is also a method of reacting a halogenated alkyl ester of halogenogic acid with a primary amine compound to obtain carbamate and thermally decomposing the carbamate.
  • the halogenated alkyl ester of halogenogic acid is generally produced by reacting a halogenated alcohol with a carbonyl halide such as phosgene.
  • phosgene is a toxic compound that easily reacts with water to generate hydrogen chloride and has a history of being used as a poisonous gas.
  • Phosgene is mainly produced by a highly exothermic gas phase reaction of anhydrous chlorine gas and high-purity carbon monoxide in the presence of an activated carbon catalyst. Chlorine gas and carbon monoxide used here are also toxic.
  • the basic industrial manufacturing process of phosgene has not changed significantly since the 1920s. The production of phosgene by such a process requires expensive and huge equipment.
  • Non-Patent Document 1 Non-Patent Document 1
  • Patent Document 3 describes a method of introducing the generated compound into another reaction vessel and a method of using the generated halogen or carbonyl halide in a chemical reaction in the same system.
  • the present inventor has developed a method for producing a halogenated carboxylic acid ester, which comprises irradiating a mixture containing a halogenated hydrocarbon and an alcohol with light in the presence of oxygen (Patent Document 4).
  • the isocyanate compound can also be obtained by subjecting N-substituted trihaloacetamide to a detrihalomethane reaction (Patent Document 5). Therefore, it can be said that the N-substituted trihaloacetamide is an important precursor compound such as an isocyanate compound.
  • N-substituted trichloroacetamide is synthesized by reacting hexachloroacetone with a primary amine compound (Patent Document 5 and Non-Patent Document 2).
  • hexachloroacetone has lacrimatory properties, has a track record of being used as a herbicide, and is not an inexpensive compound.
  • An object of the present invention is to provide a method capable of safely and efficiently producing N-substituted trihaloacetamide, which is also a synthetic intermediate for isocyanate compounds, carbamate compounds, urea compounds and the like.
  • the present inventors have conducted extensive research to solve the above problems. As a result, it was found that N-substituted trihaloacetamide can be safely and efficiently produced by irradiating a mixture containing tetrahaloethylene and a primary amine compound among halogenated hydrocarbons with high-energy light in the presence of oxygen.
  • the present invention was completed. Hereinafter, the present invention will be shown.
  • a method for producing N-substituted trihaloacetamide comprises a step of irradiating a mixture containing tetrahaloethylene having one or more halogeno groups selected from chloro, bromo and iodine with a primary amine compound with high energy light in the presence of oxygen.
  • [6] A method for producing an isocyanate compound.
  • a method for producing a carbamate compound which is a method for producing a carbamate compound.
  • a method for producing a urea compound which is a method for producing a urea compound.
  • N-substituted trihaloacetamide which is represented by the following formula (I).
  • X 1 represents a halogeno group selected from the group consisting of fluoro, chloro, bromo and iodine, which may be the same or different from each other.
  • represents one or more substituents selected from the group consisting of C 1-6 alkyl groups, halogeno groups, nitro groups, and cyano groups.
  • n represents an integer of 1 or more and 5 or less, When n is an integer of 2 or more, the plurality of substituents ⁇ may be the same or different from each other.
  • the method of the present invention it is not necessary to use extremely toxic compounds such as phosgene and carbon monoxide, or expensive catalysts.
  • a useful N-substituted trihaloacetamide that also serves as a synthetic intermediate for isocyanate compounds, carbamate compounds, urea compounds, etc. can be obtained in high yield. Therefore, the method of the present invention is extremely useful industrially as a technique capable of safely and efficiently producing a useful N-substituted trihaloacetamide.
  • FIG. 1 is a schematic view showing an example of the configuration of the reactor used in the method of the present invention.
  • the method for producing an N-substituted trihaloacetamide according to the present invention is a mixture containing tetrahaloethylene having one or more halogeno groups selected from chloro, bromo and iodo, and a primary amine compound in the presence of oxygen. It is characterized by including a step of irradiating high-energy light. The reaction formula for this step is shown below.
  • X 1 to X 4 independently represent a halogeno group selected from the group consisting of chloro, bromo, and iodine.
  • X indicates a halogeno group selected from X 1 to X 4
  • R 1 represents an m-valent organic group m represents an integer of 1 or more and 6 or less.
  • Tetrahaloethylene is a compound also called tetrahaloethane and is represented by the following structural formula (III).
  • the compound represented by the structural formula (Y) is abbreviated as "Compound (Y)”.
  • X 1 to X 4 independently represent halogeno groups selected from the group consisting of chloro, bromo, and iodine.
  • X 1 to X 4 may be the same or different from each other, but are preferably the same. Further, as X 1 to X 4 , since tetrahaloethylene itself can be preferably used as a solvent, one or more halogeno groups selected from the group consisting of chloro, bromo, and iodine are preferable, and chloro and / /. Alternatively, bromo is more preferable, and chloro is even more preferable from the viewpoint of cost. Specific examples of tetrachlorethylene include tetrachlorethylene and tetrabromoethylene, and tetrachlorethylene is preferable.
  • Tetrahaloethylene may be appropriately selected according to the desired chemical reaction and product, and one type may be used alone or two or more types may be used in combination. Preferably, only one type of tetrahaloethylene is used depending on the compound to be produced.
  • the tetrahaloethylene used in the method of the present invention may be, for example, recovered tetrahaloethylene once used as a solvent.
  • the reaction may be hindered, so purification is preferable to some extent.
  • it is preferable to remove water and water-soluble impurities by washing with water and then dehydrate with anhydrous sodium sulfate, anhydrous magnesium sulfate, or the like.
  • water is contained, at least the decomposition reaction of tetrahaloethylene proceeds, so that excessive purification that reduces productivity is not necessary.
  • the water content is more preferably 0.5% by mass or less, further preferably 0.2% by mass or less, and even more preferably 0.1% by mass or less.
  • the recycled tetrahaloethylene may contain a decomposition product of tetrahaloethylene or the like.
  • the primary amine compound is not particularly limited as long as it is a compound having one or more primary amino groups (-NH 2 groups).
  • the primary amine compound R 1 - (NH 2) R 1 of m indicates the m-valent organic group.
  • Examples of such an organic group include a C 1-15 chain aliphatic hydrocarbon group, a C 3-15 cyclic aliphatic hydrocarbon group, a C 6-15 aromatic hydrocarbon group, and these 2 or more and 5 or less groups. Bound groups can be mentioned.
  • m represents an integer of 1 or more and 6 or less, preferably 5 or less, 4 or less or 3 or less, more preferably 1 or 2, and even more preferably 2.
  • C 1-15 chain aliphatic hydrocarbon group refers to a linear or branched saturated or unsaturated aliphatic hydrocarbon group having 1 or more carbon atoms and 15 or less carbon atoms.
  • the C 1-15 divalent chain aliphatic hydrocarbon group include a C 1-15 alkanediyl group, C 2-15 alkenediyl group, and C 2-15 alkynediyl group.
  • Examples of the C 1-15 alkanediyl group include methylene, ethylene, n-propylene, isopropylene, n-butylene, 1-methylpropylene, 2-methylpropylene, 1,1-dimethylethylene and 2,2-dimethylethylene. , N-Pentylene, n-Hexylene, n-Heptylene, n-octylene, n-decylene, n-pentadecanilen and the like.
  • Examples of the C 2-15 alkenyl group include ethenylene (vinylene), 1-propenylene, 2-propenylene (arylene), butenylene, hexenylene, octenylene, desenylene, and pentadecenylene. It is preferably a C 2-10 alkendiyl group, more preferably a C 2-6 alkendiyl group or a C 2-4 alkendiyl group, and even more preferably an ethenylene (vinylene) or 2-propenylene (arylene).
  • Examples of the C 2-15 alkyndiyl group include ethynylene, propynylene, butynylene, hexynylene, octinilen, pentadecynylene and the like. It is preferably a C 2-10 alkyndiyl group, more preferably a C 2-6 alkyndiyl group or a C 2-4 alkyndiyl group.
  • C 3-15 cyclic aliphatic hydrocarbon group refers to a cyclic saturated or unsaturated aliphatic hydrocarbon group having 1 or more carbon atoms and 15 or less carbon atoms.
  • examples of the C 3-15 divalent cyclic aliphatic hydrocarbon group include a C 3-15 cycloalkanediyl group, a C 4-15 cycloalkendyl group, and a C 4-15 cycloalkindyl group, and C Preferably, 3-10 cycloalkanediyl group, C 4-10 cycloalkendyl group, and C 4-10 cycloalkindyl group.
  • C 6-15 aromatic hydrocarbon group means an aromatic hydrocarbon group having 6 or more carbon atoms and 15 or less carbon atoms.
  • the C 6-15 divalent aromatic hydrocarbon group is phenylene, indenylene, naphthylene, biphenylene, phenalenylene, phenanthrenylene, anthracenylene and the like, preferably a C 6-12 divalent aromatic hydrocarbon group. Yes, more preferably phenylene.
  • the alkanediyl group refers to a divalent saturated aliphatic hydrocarbon group, but when m of the amine compound R 1 ⁇ (NH 2 ) m is 1, it is a monovalent alkyl group. In addition, when m is 3, it shall be read as a trivalent alkanetriyl group.
  • the alkyl group corresponding to methylene, which is an alkanediyl group, is methyl
  • the monovalent aromatic hydrocarbon group which corresponds to phenylene, which is an alkanediyl group, is phenyl.
  • the organic group may have a substituent other than the nucleophilic group that reacts with the product N-substituted trihaloacetamide (V).
  • a substituent include one or more substituents selected from a C 1-6 alkyl group, a C 1-6 alkoxyl group, a halogeno group, and a nitro group.
  • halogeno group here include fluoro, chloro, bromo, and iodine.
  • R 2 and R 3 are independently-(CR 5 R 6 ) m3 -or-(-O- (CR 5 R 6 ) m4- ) m5- (In the equation, R 5 and R 6 are independent. , H or C 1-6 alkyl group, m3 represents an integer of 0 or more and 10 or less, m4 represents an integer of 1 or more and 10 or less, m5 represents an integer of 1 or more and 10 or less, m3 or When m4 is an integer of 2 or more, a plurality of R 5 and R 6 may be the same or different from each other).
  • R 4 represents one of the following divalent organic groups,
  • R 7 and R 8 independently have H, a halogeno group, a C 1-20 aliphatic hydrocarbon group which may have a substituent ⁇ , and a C 1-20 alkoxyl group which may have a substituent ⁇ .
  • Representing a C 6-20 aromatic hydrocarbon group which may have a substituent ⁇ , or R 7 and R 8 combine to form a C 3-20 carbocycle or 5-12 membered heterocycle.
  • May R 9 and R 10 independently represent an H or C 1-6 alkyl group, and if m6 is an integer greater than or equal to 2, multiple R 9 and R 10 may be the same or different from each other.
  • R 11 to R 18 independently have a halogeno group, a C 1-20 aliphatic hydrocarbon group which may have a substituent ⁇ , a C 1-20 alkoxyl group which may have a substituent ⁇ , or Represents a C 6-12 aromatic hydrocarbon group which may have a substituent ⁇
  • R 19 represents a C 1-9 alkanediyl group which may have a substituent ⁇
  • m6 represents an integer of 1 or more and 20 or less.
  • m7 represents an integer of 1 or more and 500 or less.
  • Substituent ⁇ 1 and substituent ⁇ 2 are independently a halogeno group, a C 1-20 aliphatic hydrocarbon group, a C 1-20 alkoxyl group, a C 3-20 cycloalkyl group, and a C 6-20 aromatic hydrocarbon group. , C 7-20 aralkyl group, C 6-20 aromatic hydrocarbon oxy group, and C 3-20 cycloalkoxyl group, representing one or more substituents selected from the group.
  • m1 and m2 independently represent integers of 0 or more and 4 or less.
  • Substituent ⁇ is one or more substituents selected from C 1-6 alkoxyl group, C 1-7 acyl group, halogeno group, nitro group, cyano group, and carbamoyl group.
  • the substituent ⁇ is one or more substituents selected from a C 1-6 alkyl group, a C 1-6 alkoxyl group, a C 1-7 acyl group, a halogeno group, a nitro group, a cyano group, and a carbamoyl group.
  • halogeno group in the primary amine compound (IV) examples include one or more halogeno groups selected from fluoro, chloro, bromo, and iodine.
  • the primary amine compound examples include cyclohexylamine, n-hexylamine, 1,4-diaminobenzene, 2,4-diaminotoluene, 4,4'-diaminodiphenylmethane, and 1,6-diaminohexane.
  • 4,4'-diaminodicyclohexylmethane or isophoronediamine is preferably used.
  • the amount of the primary amine compound added may be adjusted as appropriate, but for example, it can be 0.05 mmol / mL or more and 50 mmol / mL or less with respect to the initial amount of tetrahaloethylene. If the ratio is 0.05 mmol / mL or more, the reaction is considered to proceed more efficiently, and if the ratio is 50 mmol / mL or less, the primary amine compound reacts with the produced N-substituted trihaloacetamide. Therefore, it is considered that the possibility of by-production of urea compounds is further reduced.
  • the basic compound refers to a hydroxide such as an alkali metal or an alkaline earth metal, or an aqueous solution thereof such as ammonia or pyridine having a pH of more than 7. If a basic compound is used in addition to the primary amine compound, the residue of the basic compound deteriorates the quality of the final product, causes side reactions, colors, and requires a purification process to increase the purity. Manufacturing costs may increase.
  • a solvent that does not inhibit the reaction may be further used.
  • a solvent include aliphatic hydrocarbon solvents such as n-hexane, petroleum ether, ligroine and benzine; aromatic hydrocarbon solvents such as benzene, toluene, xylene and chlorobenzene; diethyl ether, tetrahydrofuran, dioxane and the like.
  • Ether-based solvent; nitrile-based solvent such as acetonitrile can be mentioned.
  • the above mixture before the start of the reaction contains tetrahaloethylene and a primary amine compound, or tetrahaloethylene, a primary amine compound and a solvent, as well as unavoidable impurities and unavoidable impurities. It is preferable not to add compounds other than the contaminants.
  • "in the presence of oxygen” may be either a state in which tetrahaloethylene is in contact with oxygen or a state in which oxygen is present in tetrahaloethylene. Therefore, the reaction in this step may be carried out under an air flow of a gas containing oxygen, but from the viewpoint of increasing the decomposition efficiency of tetrahaloethylene, the gas containing oxygen can be supplied into tetrahaloethylene by bubbling. preferable.
  • the oxygen source may be any gas containing oxygen, and for example, air or purified oxygen can be used.
  • the purified oxygen may be mixed with an inert gas such as nitrogen or argon for use. It is preferable to use air from the viewpoint of cost and ease.
  • the oxygen content in the gas used as an oxygen source is preferably about 15% by volume or more and 100% by volume or less. Even when oxygen (oxygen content 100% by volume) is used, the oxygen content can be controlled within the above range by adjusting the oxygen flow rate into the reaction system.
  • the method of supplying the gas containing oxygen is not particularly limited, and the gas may be supplied into the reaction system from an oxygen cylinder equipped with a flow rate regulator, or may be supplied into the reaction system from an oxygen generator.
  • the amount of gas containing oxygen may be appropriately determined according to the amount of tetrahaloethylene, the shape of the reaction vessel, and the like.
  • the amount of gas supplied to the reaction vessel per minute with respect to tetrahaloethylene present in the reaction vessel is 5 volumes or more.
  • the ratio is more preferably 10 volumes or more, and even more preferably 25 volumes or more.
  • the upper limit of the ratio is not particularly limited, but is preferably 500 volume times or less, more preferably 250 volume times or less, and even more preferably 150 volume times or less.
  • the amount of oxygen supplied to the reaction vessel per minute with respect to the tetrahaloethylene present in the reaction vessel can be 1 volume or more and 25 volume or less.
  • the oxygen supply rate can be, for example, 0.01 L / min or more and 10 L / min or less with respect to 20 mL of tetrahaloethylene.
  • the high-energy light irradiating the mixture is light having sufficient energy to decompose tetrahaloethylene.
  • light containing UV-B having a wavelength of 280 nm or more and 315 nm or less and / or UV-C having a wavelength of 180 nm or more and 280 nm or less can be used, and it is preferable to use light containing UV-C having a wavelength of 180 nm or more and 280 nm or less.
  • sunlight also contains a few percent of ultraviolet rays
  • the light of fluorescent lamps also contains a very small amount of ultraviolet rays, but the light of fluorescent lamps and the sunlight that reaches the ground surface do not contain UV-C, and tetra.
  • high-energy light whose peak wavelength is within the above range is used.
  • the means of light irradiation is not particularly limited as long as it can irradiate light of the above wavelength range, but examples of the light source containing a sufficient amount of light in the above wavelength range in the wavelength range include a low pressure mercury lamp and a medium pressure mercury lamp. Examples thereof include high-pressure mercury lamps, ultra-high-pressure mercury lamps, chemical lamps, black light lamps, metal halide lamps, and LED lamps. A low-pressure mercury lamp is preferably used from the viewpoint of reaction efficiency and cost.
  • Conditions such as the intensity of the irradiation light may be appropriately set depending on the type and amount of the starting material used.
  • the desired light intensity at the shortest distance position of the composition from the light source is 1 mW / cm 2 or more. It is preferably 50 mW / cm 2 or less.
  • the shortest distance between the light source and tetrahaloethylene is preferably 1 m or less, more preferably 50 cm or less, and even more preferably 10 cm or less or 5 cm or less.
  • the lower limit of the shortest distance is not particularly limited, but 0 cm, that is, the light source may be immersed in tetrahaloethylene.
  • reaction conditions in this step are not particularly limited and may be adjusted as appropriate.
  • the mixture may be stirred at 30 ° C. or higher and 100 ° C. or lower, or may be heated under reflux.
  • Examples of the reaction apparatus that can be used in the method of the present invention include a reaction vessel provided with high-energy light irradiation means.
  • the reaction device may be provided with a stirrer and a temperature control means.
  • FIG. 1 shows an aspect of a reactor that can be used in the method of the present invention.
  • the reactor shown in FIG. 1 has a high-energy light irradiation means 1 in a tubular reaction vessel 6. High energy while adding tetrahaloethylene into the tubular reaction vessel 6 and supplying an oxygen-containing gas into the reaction vessel 6 or bubbling the oxygen-containing gas into tetrahaloethylene (not shown).
  • the reaction is carried out by irradiating high-energy light from the light irradiation means 1.
  • the jacket is preferably a material that transmits high-energy light.
  • high-energy light irradiation may be performed from the outside of the reaction vessel.
  • the reaction vessel is preferably made of a material that transmits high-energy light.
  • the material that transmits high-energy light is not particularly limited as long as it does not interfere with the effects of the present invention, and preferably examples thereof include quartz glass and a fluororesin such as a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA). ..
  • the irradiation time of high-energy light may be appropriately adjusted within a range in which tetrahaloethylene is sufficiently decomposed, but for example, it is preferably 0.5 hours or more and 10 hours or less, more preferably 1 hour or more and 6 hours or less, and 2 hours. More than 4 hours or less is more preferable.
  • the method of the present invention further includes a step of irradiating the mixture with high-energy light and then heating the mixture without irradiating with high-energy light. This step makes it possible to sufficiently react the decomposition product of tetrahaloethylene with the primary amine compound after the high-energy light irradiation step.
  • the reaction temperature in this step can be, for example, 50 ° C. or higher and 120 ° C. or lower. Further, the reaction may be carried out in a heated reflux state.
  • the reaction time of this step is not particularly limited, and may be, for example, until the primary amine compound is consumed, but is preferably 0.5 hours or more and 10 hours or less, more preferably 1 hour or more and 6 hours or less, 2 More preferably, it is at least 4 hours or less.
  • the produced N-substituted trihaloacetamide may be purified by a conventional method. For example, since N-substituted trihaloacetamide is highly reactive, the above mixture after the reaction is allowed to cool to room temperature, and then a poor solvent such as n-hexane is added to precipitate the mixture, and the precipitated N-substituted trihaloacetamide is filtered. It can be purified by taking, washing and / or drying.
  • the N-substituted trihaloacetamide represented by the formula (I) is an important synthetic intermediate for the active ingredients of pharmaceuticals and pesticides.
  • the ⁇ as the substituent on the benzene ring is preferably an electron-withdrawing group. If the substituent ⁇ is an electron-withdrawing group, the electron donating property from the nitrogen atom in the amide group to the carbonyl group is weakened, the desorption ability of the trihalomethyl group is enhanced, and an isocyanate compound or the like can be easily obtained.
  • N-substituted trihaloacetamide represented by the formula (II) is useful as a raw material for isocyanate, and by further reacting with a diol compound or a diamino compound, polyurethane or polyurea having high utility value as a water-repellent polymer. It becomes the raw material of.
  • the N-substituted trihaloacetamide can be converted into an isocyanate compound by treating it with a basic compound as shown in the reaction formula below.
  • N-substituted trihaloacetamide (V) can be converted to an isocyanate compound (VII) by adding a base to a solution of N-substituted trihaloacetamide (V).
  • the solvent of the solution of N-substituted trihaloacetamide (V) is not particularly limited as long as it does not inhibit the reaction and exhibits appropriate solubility in N-substituted trihaloacetamide (V).
  • dichloromethane. Chloroform, carbon tetrachloride and other halogenated hydrocarbons; amide solvents such as dimethylformamide and dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide; nitrile solvents such as acetonitrile.
  • the concentration of the solution of N-substituted trihaloacetamide (V) may be adjusted as appropriate, and can be, for example, 0.001 g / mL or more and 1 g / mL or less.
  • the base is not particularly limited, but one or more bases selected from heterocyclic aromatic amines and non-nucleophilic strong bases because a base having -NH 2 may react with the produced isocyanate compound. Is preferable.
  • Heterocyclic aromatic amine refers to a compound containing at least one heterocycle and having at least one amine functional group other than -NH 2 .
  • the heterocyclic aromatic amine include pyridine, ⁇ -picoline, ⁇ -picoline, ⁇ -picoline, 2,3-lutidine, 2,4-lutidine, 2,6-lutidine, 3,5-lutidine, and 2, Examples thereof include pyridines such as -chloropyridine, 3-chloropyridine, 4-chloropyridine, N, N-dimethyl-4-aminopyridine and derivatives thereof.
  • Non-nucleophilic strong base refers to a base with weak nucleophilicity of lone electron pairs on a nitrogen atom due to steric damage, but with strong basicity.
  • the amount of the base used may be adjusted as appropriate, and for example, it can be used in an amount of 1 time or more and 50 times or less with respect to 1 mol of N-substituted trihaloacetamide (V).
  • reaction conditions of this reaction may be adjusted as appropriate.
  • the reaction can be carried out at room temperature, more specifically at 5 ° C. or higher and 40 ° C. or lower.
  • reaction time since this reaction proceeds very quickly due to the excellent desorption ability of 3 -CX groups, for example, a base is added to a solution of N-substituted trihaloacetamide (V) and then the mixture is stirred for 1 second. It can be 1 hour or less.
  • N-substituted trihaloacetamides (V) are converted to isocyanate compounds (VII) only by heating.
  • the temperature in this case depends on the N-substituted trihaloacetamide (V), but can be, for example, 150 ° C. or higher and 350 ° C. or lower.
  • carbamate is carried out by reacting the N-substituted trihaloacetamide (V) with the hydroxyl group-containing compound in the presence of a basic compound.
  • Compounds can be produced.
  • the reaction between an N-substituted trihaloacetamide having one trihaloacedoamide group and a hydroxyl group-containing compound is as follows.
  • R 20 and R 21 independently represent the monovalent organic group of R 1 .
  • a urea compound can be produced by reacting an N-substituted trihaloacetamide (V) with an amino group-containing compound in the presence of a basic compound.
  • V N-substituted trihaloacetamide
  • an amino group-containing compound is as follows.
  • polycarbamate (polyurethane) or polyurea is produced by reacting an N-substituted trihaloacetamide having two trihaloacedamide groups with a compound having two hydroxyl groups or amino groups. You can also do it.
  • N-substituted trihaloacetamide having two trihaloacedoamide groups include N-substituted trihaloacetamide represented by the formula (II).
  • X is synonymous with the above Z indicates O or NH
  • R 22 and R 23 independently represent the divalent organic group of R 1 .
  • a solvent may not be used, but a solvent may be used.
  • the solvent is not particularly limited as long as it does not inhibit the reaction and exhibits appropriate solubility in the raw material compound.
  • an aliphatic hydrocarbon solvent such as hexane
  • an aromatic hydrocarbon solvent such as toluene is used.
  • Solvents such as dichloromethane, chloroform, carbon tetrachloride; nitrile solvents such as acetonitrile; amide solvents such as dimethylformamide and dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide; ether solvents such as tetrahydrofuran be able to.
  • halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride
  • nitrile solvents such as acetonitrile
  • amide solvents such as dimethylformamide and dimethylacetamide
  • sulfoxide solvents such as dimethyl sulfoxide
  • ether solvents such as tetrahydrofuran be able to.
  • the base the same base as one or more bases selected from the heterocyclic aromatic amine and the non-nucleophilic strong base used in the method for producing an isocyanate compound can be used.
  • the amount of the base used may be appropriately adjusted, and for example, it can be used in an amount of 1-fold molar or more and 50-fold molar or less with respect to N-substituted trihaloacetamide (V).
  • reaction conditions may be adjusted as appropriate, but for example, the reaction temperature can be 10 ° C. or higher and 120 ° C. or lower, and the reaction time can be 1 hour or longer and 50 hours or lower.
  • the carbamate compound and the urea compound are relatively stable, so normal post-treatment may be performed.
  • an organic solvent immiscible with water such as chloroform or ethyl acetate and an aqueous solvent such as water, hydrochloric acid, or saturated saline are added to the reaction solution after the reaction to separate the solutions, and the organic layer is separated by anhydrous sodium sulfate or anhydrous magnesium sulfate.
  • a poor solvent such as n-hexane, or purified by chromatography or recrystallization. Since the polyurethane compound and the polyurea compound may have low solubility, a poor solvent may be directly added to the reaction solution to precipitate them.
  • Example 1 Synthesis of 2,2,2-trichloro-N-phenylacetamide Tetrachlorethylene (20 mL, 195 mmol) and aniline hydrochloride (5.23 g, 40 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS, 20 W) are placed. , ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 3 hours under stirring conditions.
  • UVL20PH-6 low-pressure mercury lamp
  • Example 2 2,2,2-trichloro-N-cyclohexylacetamide Tetrachlorethylene (20 mL, 195 mmol) and cyclohexylamine (2.3 mL, 20 mmol) were placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS, 20W, ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 70 ° C. for 2 hours under stirring conditions.
  • UVL20PH-6 low-pressure mercury lamp
  • the light irradiation was stopped, and the reaction solution was continuously stirred at 70 ° C. for 2.5 hours.
  • the unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 .
  • the mixture was allowed to stand until it reached room temperature, dichloromethane was added as an internal standard, and the NMR yield was measured, it was confirmed that the desired product was obtained in 88% yield.
  • Example 3 2,2,2-trichloro-N-hexylacetamide Tetrachlorethylene (20 mL, 195 mmol) and n-hexylamine (2.6 mL, 20 mmol) were placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS, Inc., 20 W, ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 100 ° C. for 2 hours under stirring conditions.
  • UVL20PH-6 low-pressure mercury lamp
  • Example 4 N-Butyl-2,2,2-trichloroacetamide Tetrachlorethylene (20 mL, 195 mmol) and n-butylamine (1.0 mL, 10 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS, 20 W) are placed. , ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 70 ° C. for 2 hours under stirring conditions.
  • UVL20PH-6 low-pressure mercury lamp
  • Example 5 N, N'-(hexane-1,6-diyl) bis (2,2,2-trichloroacetamide) Tetrachlorethylene (20 mL, 195 mmol) and 1,6-diaminohexane (1.17 g, 10 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” SEN LIGHTS) , 20 W, ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C.
  • UVL20PH-6 SEN LIGHTS
  • Example 6 N, N'-(4-methyl-1,3-phenylene) bis (2,2,2-trichloroacetamide) Tetrachlorethylene (20 mL, 195 mmol) and 2,4-diaminotoluene (1.23 g, 10 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” SEN LIGHTS) , 20 W, ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C.
  • UVL20PH-6 SEN LIGHTS
  • Example 7 4,4'-methylene diphenyl diisocyanate (1) N, N'-[methylene di (4,5-phenylene)] bis (2,2,2-trichloroacetamide) Tetrachlorethylene (20 mL, 195 mmol) and 4,4'-diaminodiphenylmethane (3.95 g, 20 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp ("UVL20PH-6" SEN LIGHTS). A 20 W, ⁇ 24 ⁇ 120 mm) manufactured by the company was attached to assemble the reaction apparatus schematically shown in FIG.
  • N, N'-[methylene di (4,5-phenylene)] bis (2,2,2-trichloroacetamide) Tetrachlorethylene (20 mL, 195 mmol) and 4,4'-diaminodiphenylmethane (3.95 g, 20 mmol) are placed
  • the reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2 hours under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 150 ° C., and the mixture was refluxed for 2 hours.
  • the unreacted component of the photodegradable gas was treated by passing it through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. The precipitate was collected by suction filtration and dried to isolate the desired ocher solid (yield: 85%, yield: 8.3 g, 16.9 mmol).
  • Example 8 N- (2,2,2-trichloroacetyl) benzamide Tetrachlorethylene (20 mL, 195 mmol) and benzamide (1.22 g, 10 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS, 20 W, ⁇ 24) are placed. ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 50 ° C. for 1.5 hours under stirring conditions.
  • UVL20PH-6 low-pressure mercury lamp
  • Example 9 N-pentafluorophenyl-2,2,2-trichloroacetamide Tetrachlorethylene (20 mL, 195 mmol) and pentafluoroaniline (2.26 mL, 20 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS), 20 W, ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2 hours under stirring conditions.
  • UVL20PH-6 manufactured by SEN LIGHTS
  • the light irradiation was stopped, the bath temperature was raised to 150 ° C., and the mixture was refluxed for 2 hours.
  • the unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation.
  • the precipitate was collected by suction filtration and dried to isolate the desired ocher solid (yield: 65%, yield: 4.2 g, 12.9 mmol).
  • Example 10 2,2,2-trichloro-N- (4-fluorophenyl) acetamide Tetrachlorethylene (20 mL, 195 mmol) and 4-fluoroaniline (1.92 mL, 20 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS), 20 W, ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2 hours under stirring conditions.
  • UVL20PH-6 low-pressure mercury lamp
  • the light irradiation was stopped, the bath temperature was raised to 150 ° C., and the mixture was refluxed for 1 hour.
  • the unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation.
  • the precipitate was collected by suction filtration and dried to isolate the desired gray solid (yield: 51%, yield: 2.6 g, 10.2 mmol).
  • Example 11 2,2,2-trichloro-N- (2-fluorophenyl) acetamide Tetrachlorethylene (20 mL, 195 mmol) and 2-fluoroaniline (3.87 mL, 40 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS), 20 W, ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2.5 hours under stirring conditions.
  • UVL20PH-6 low-pressure mercury lamp
  • Example 12 2,2,2-trichloro-N- (3-fluorophenyl) acetamide Tetrachlorethylene (20 mL, 195 mmol) and 3-fluoroaniline (3.84 mL, 40 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS), 20 W, ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2.5 hours under stirring conditions.
  • UVL20PH-6 low-pressure mercury lamp
  • Example 13 2,2,2-trichloro-N- (2,2,2-trifluoroethyl) acetamide Tetrachlorethylene (20 mL, 195 mmol) and 2,2,2-trifluoroethylamine hydrochloride (2.72 g, 20 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-” 6 ”SEN LIGHTS, 20 W, ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C.
  • UVL20PH- 6 low-pressure mercury lamp
  • Example 14 2,6-difluoro-N- (2,2,2-trichloroacetyl) benzamide Tetrachlorethylene (20 mL, 195 mmol) and 2,6-difluorobenzamide (3.14 g, 20 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” SEN LIGHTS) , 20 W, ⁇ 24 ⁇ 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 50 ° C. for 1 hour under stirring conditions.
  • UVL20PH-6 SEN LIGHTS
  • Example 15 Synthesis of 2,6-difluorobenzoyl isocyanate 2,6-Difluoro-N- (2,2,2-trichloroacetyl) benzamide (10 mg, 33 ⁇ mol) was dissolved in chloroform (0.1 mL). A drop of triethylamine was added to the obtained solution at room temperature and mixed. The reaction solution was analyzed by 1 H NMR and electric field desorption mass spectrometry. As a result, the conversion reaction to isocyanate proceeded quantitatively, and m / z 183, which is the molecular ion peak of 2,6-difluorobenzoyl isocyanate, was detected. It was also confirmed from the isotope pattern that 2,6-difluorobenzoyl isocyanate did not contain chlorine atoms.
  • Example 16 Synthesis of benzyl isocyanate N- (2,2,2-trichloroacetyl) benzamide (10 mg, 38 ⁇ mol) was dissolved in chloroform (0.1 mL). A drop of triethylamine was added to the obtained solution at room temperature and mixed. When the reaction solution was analyzed under the same conditions as in Example 15, it was confirmed by 1 1 H NMR that benzyl isocyanate was quantitatively produced.
  • Example 17 Synthesis of benzyl benzyl carbamate
  • N-benzyl-2,2,2-trichloroacetamide 500 mg, 2 mmol
  • benzyl alcohol (0.23 mL, 2.2 mmol
  • DBU 1.0 mL, 0.15 mmol
  • Chloroform and hydrochloric acid were added to the reaction solution to separate them, and the organic layer was dried over anhydrous sodium sulfate.
  • Example 18 Synthesis of ethylene bis (N-benzyl carbamate) N-benzyl-2,2,2-trichloroacetamide (760 mg, 3 mmol), ethylene glycol (89 L, 1.6 mmol), and DBU (1.12 mL, 7.5 mmol) in 30 mL acetonitrile in a 100 mL eggplant-shaped flask. Was dissolved and stirred at 80 ° C. for 21 hours. The solvent and the unreacted raw material were distilled off under reduced pressure. Chlorogen and hydrochloric acid were added to the obtained oily residue to separate the liquids, and the organic layer was dried with anhydrous sodium sulfate.
  • Example 19 Synthesis of Hexyl Phenyl Carbamate
  • 2,2,2-trichloro-N-phenylacetamide 720 mg, 3 mmol
  • 1-hexanol 450 ⁇ L, 3.6 mmol
  • DBU 1.12 mL, 7. 5 mmol
  • Example 20 Synthesis of 1-hexyl-3-phenylurea
  • 2,2,2-trichloro-N-phenylacetamide 490 mg, 2 mmol
  • hexylamine 260 ⁇ L, 2 mmol
  • DBU 300 ⁇ L, 2 mmol
  • Chloroform and hydrochloric acid were added to the reaction solution to separate them, and the organic layer was dried over anhydrous sodium sulfate.
  • a brown solid was obtained by distilling off the solvent under reduced pressure. As a result of analysis by NMR, it was found that the target product was obtained with an NMR yield of 26%.
  • Example 21 Synthesis of N, N'-(2,2,3,3,4,5,5-octafluorohexane-1,6-diyl) bis (2,2,2-trichloroacetamide) Tetrachlorethylene (20 mL, 195 mmol) and 2,2,3,3,4,5,5-octafluorohexane-1,6-diaminium chloride (1.00 g, 3.0 mmol) in a cylindrical flask ( ⁇ 42 mm) A quartz glass jacket ( ⁇ 30 mm) and a low-pressure mercury lamp (“UVL20PH-6” manufactured by Sen Special Light Source Co., Ltd., 20 W, ⁇ 24 ⁇ 120 mm) were attached to assemble the reactor.
  • UVL20PH-6 low-pressure mercury lamp
  • the reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 50 ° C. for 2.5 hours under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 115 ° C., and the mixture was refluxed for 2 hours.
  • the unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. The precipitate was collected by suction filtration and dried to obtain the desired product as a white solid (yield: 84%, yield: 1.4 g, 2.5 mmol).
  • Example 22 Polyurethane synthesis N, N'-(2,2,3,3,4,5,5-octafluorohexane-1,6-diyl) bis (2,2,2-trichloroacetoamide) in a 50 mL bite eggplant flask (0.27 g, 0.5 mmol), 2,2-bis [4- (2-hydroxyethoxy) phenyl] propane (0.16 g, 0.5 mmol), diazabicycloundecene (0.19 mL, 1.3 mmol) ), And acetonitrile (5 mL) as a solvent, and the mixture was stirred at 90 ° C. for 60 hours.
  • N, N'-(2,2,3,3,4,5,5-octafluorohexane-1,6-diyl) bis (2,2,2-trichloroacetamide) (0.27 g) , 0.5 mmol) was added twice. Then, chloroform, water, and hydrochloric acid were added to the reaction solution to separate the solutions. The organic layer was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and then vacuum dried at 70 ° C. for 2 hours to obtain a light brown solid. As a result of analysis by NMR, it was found that the target product was obtained with an NMR yield of 81%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The purpose of the present invention is to provide a method that enables efficient and safe production of an N-substituted trihaloacetamide which also serves as a synthetic intermediate for isocyanate compounds, carbamate compounds, urea compounds, etc. The method for producing an N-substituted trihaloacetamide according to the present invention is characterized by comprising a step for irradiating, with high energy light in the presence of oxygen, a mixture containing a primary amine compound and a tetrahaloethylene having at least one halogeno group selected from chloro-, bromo-, and iodo-.

Description

N-置換トリハロアセトアミドの製造方法Method for Producing N-Substituted Trihaloacetamide
 本発明は、イソシアネート化合物、カルバメート化合物、ウレア化合物などの合成中間体にもなるN-置換トリハロアセトアミドを安全かつ効率的に製造できる方法に関するものである。 The present invention relates to a method capable of safely and efficiently producing N-substituted trihaloacetamide, which is also a synthetic intermediate for isocyanate compounds, carbamate compounds, urea compounds and the like.
 イソシアネート基(-N=C=O)を有するイソシアネート化合物は反応性が極めて高く、ポリウレタンなどの原料として用いられる。また、特定のイソシアネート化合物は、医薬や農薬の有効成分のための重要な合成中間体である(特許文献1)。
 イソシアネート化合物は、一般的に、第一級アミン化合物とホスゲンを反応させて合成される(特許文献2等)。一方、ハロゲノギ酸ハロゲン化アルキルエステルと第一級アミン化合物とを反応させてカルバメートを得、カルバメートを熱分解することにより製造する方法もある。ハロゲノギ酸ハロゲン化アルキルエステルは、一般的にはハロゲン化アルコールとホスゲン等のハロゲン化カルボニルを反応させて製造される。
 しかしホスゲンは水と容易に反応して塩化水素を発生させたり、毒ガスとして利用された歴史があるなど、有毒な化合物である。ホスゲンは主として、活性炭触媒の存在下、無水塩素ガスと高純度一酸化炭素との高発熱気相反応によって製造される。ここで用いる塩素ガスや一酸化炭素も有毒である。ホスゲンの基本的な工業的製造プロセスは、1920年代から大きく変わっていない。そのようなプロセスによるホスゲンの製造には、高価で巨大な設備が必要である。一方、小中規模の製造においては、ホスゲンはトリホスゲンをトリエチルアミン等の塩基により分解して製造されることがある。しかし、トリホスゲンは高価な試薬であるし、何らかの物理刺激もしくは化学刺激でホスゲンに分解するおそれがあり、また自身も高い毒性を有することが知られている(非特許文献1)。
 本発明者は、ハロゲン化炭化水素に酸素存在下で光照射してホスゲン等の化合物を得る方法を開発している(特許文献3)。特許文献3には、発生した化合物を別の反応容器に導入する方法と共に、発生したハロゲンやハロゲン化カルボニルを同一系内で化学反応に用いる方法も記載されている。
 また、本発明者は、ハロゲン化炭化水素とアルコールとを含む混合物に、酸素存在下で光照射することを特徴とするハロゲン化カルボン酸エステルの製造方法を開発している(特許文献4)。
 イソシアネート化合物は、N-置換トリハロアセトアミドを脱トリハロメタン反応に付すことによっても得られる(特許文献5)。よって、N-置換トリハロアセトアミドは、イソシアネート化合物などの重要な前駆体化合物であるといえる。
 例えばN-置換トリクロロアセトアミドは、ヘキサクロロアセトンと第一級アミン化合物とを反応させることにより合成されている(特許文献5,非特許文献2)。しかしヘキサクロロアセトンは、催涙性を有し、除草剤として用いられた実績もあり、また、安価な化合物ではない。
Isocyanate compounds having an isocyanate group (-N = C = O) have extremely high reactivity and are used as raw materials for polyurethane and the like. In addition, a specific isocyanate compound is an important synthetic intermediate for active ingredients of pharmaceuticals and pesticides (Patent Document 1).
The isocyanate compound is generally synthesized by reacting a primary amine compound with phosgene (Patent Document 2, etc.). On the other hand, there is also a method of reacting a halogenated alkyl ester of halogenogic acid with a primary amine compound to obtain carbamate and thermally decomposing the carbamate. The halogenated alkyl ester of halogenogic acid is generally produced by reacting a halogenated alcohol with a carbonyl halide such as phosgene.
However, phosgene is a toxic compound that easily reacts with water to generate hydrogen chloride and has a history of being used as a poisonous gas. Phosgene is mainly produced by a highly exothermic gas phase reaction of anhydrous chlorine gas and high-purity carbon monoxide in the presence of an activated carbon catalyst. Chlorine gas and carbon monoxide used here are also toxic. The basic industrial manufacturing process of phosgene has not changed significantly since the 1920s. The production of phosgene by such a process requires expensive and huge equipment. On the other hand, in small to medium scale production, phosgene may be produced by decomposing triphosgene with a base such as triethylamine. However, triphosgene is an expensive reagent, may be decomposed into phosgene by some physical stimulus or chemical stimulus, and is known to have high toxicity itself (Non-Patent Document 1).
The present inventor has developed a method for obtaining a compound such as phosgene by irradiating a halogenated hydrocarbon with light in the presence of oxygen (Patent Document 3). Patent Document 3 describes a method of introducing the generated compound into another reaction vessel and a method of using the generated halogen or carbonyl halide in a chemical reaction in the same system.
In addition, the present inventor has developed a method for producing a halogenated carboxylic acid ester, which comprises irradiating a mixture containing a halogenated hydrocarbon and an alcohol with light in the presence of oxygen (Patent Document 4).
The isocyanate compound can also be obtained by subjecting N-substituted trihaloacetamide to a detrihalomethane reaction (Patent Document 5). Therefore, it can be said that the N-substituted trihaloacetamide is an important precursor compound such as an isocyanate compound.
For example, N-substituted trichloroacetamide is synthesized by reacting hexachloroacetone with a primary amine compound (Patent Document 5 and Non-Patent Document 2). However, hexachloroacetone has lacrimatory properties, has a track record of being used as a herbicide, and is not an inexpensive compound.
特開平3-47159号公報Japanese Unexamined Patent Publication No. 3-47159 国際公開第2017/104709号パンフレットInternational Publication No. 2017/104709 Pamphlet 特開2013-181028号公報Japanese Unexamined Patent Publication No. 2013-181028 国際公開第2015/156245号パンフレットInternational Publication No. 2015/156245 Pamphlet 国際公開第2011/049023号パンフレットInternational Publication No. 2011/049023 Pamphlet
 本発明は、イソシアネート化合物、カルバメート化合物、ウレア化合物などの合成中間体にもなるN-置換トリハロアセトアミドを安全かつ効率的に製造できる方法を提供することを目的とする。 An object of the present invention is to provide a method capable of safely and efficiently producing N-substituted trihaloacetamide, which is also a synthetic intermediate for isocyanate compounds, carbamate compounds, urea compounds and the like.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、ハロゲン化炭化水素の中でもテトラハロエチレンと第一級アミン化合物を含む混合物に酸素存在下で高エネルギー光を照射することにより、N-置換トリハロアセトアミドを安全かつ効率的に製造できることを見出して、本発明を完成した。
 以下、本発明を示す。
The present inventors have conducted extensive research to solve the above problems. As a result, it was found that N-substituted trihaloacetamide can be safely and efficiently produced by irradiating a mixture containing tetrahaloethylene and a primary amine compound among halogenated hydrocarbons with high-energy light in the presence of oxygen. The present invention was completed.
Hereinafter, the present invention will be shown.
 [1] N-置換トリハロアセトアミドを製造するための方法であって、
 クロロ、ブロモおよびヨードから選択される1種以上のハロゲノ基を有するテトラハロエチレン、および第一級アミン化合物を含む混合物に、酸素存在下、高エネルギー光を照射する工程を含むことを特徴とする方法。
[1] A method for producing N-substituted trihaloacetamide.
It comprises a step of irradiating a mixture containing tetrahaloethylene having one or more halogeno groups selected from chloro, bromo and iodine with a primary amine compound with high energy light in the presence of oxygen. Method.
 [2] 上記高エネルギー光照射工程後、高エネルギー光を照射せずに上記混合物を加熱する工程を含む上記[1]に記載の方法。 [2] The method according to the above [1], which comprises a step of heating the mixture without irradiating the high energy light after the high energy light irradiation step.
 [3] 上記第一級アミン化合物以外に上記混合物へ塩基性化合物を添加しない上記[1]または[2]に記載の方法。 [3] The method according to [1] or [2] above, wherein a basic compound is not added to the mixture other than the primary amine compound.
 [4] 上記高エネルギー光が180nm以上、280nm以下の波長の光を含むものである上記[1]~[3]のいずれかに記載の方法。 [4] The method according to any one of [1] to [3] above, wherein the high-energy light contains light having a wavelength of 180 nm or more and 280 nm or less.
 [5] 上記テトラハロエチレンがテトラクロロエチレンである上記[1]~[4]のいずれかに記載の方法。 [5] The method according to any one of the above [1] to [4], wherein the tetrachlorethylene is tetrachlorethylene.
 [6] イソシアネート化合物を製造するための方法であって、
 上記[1]~[5]のいずれかに記載の方法によりN-置換トリハロアセトアミドを製造する工程、および、
 上記N-置換トリハロアセトアミドを塩基性化合物で処理するか、または加熱する工程を含むことを特徴とする方法。
[6] A method for producing an isocyanate compound.
The step of producing N-substituted trihaloacetamide by the method according to any one of the above [1] to [5], and
A method comprising a step of treating the N-substituted trihaloacetamide with a basic compound or heating.
 [7] カルバメート化合物を製造するための方法であって、
 上記[1]~[5]のいずれかに記載の方法によりN-置換トリハロアセトアミドを製造する工程、および、
 塩基性化合物の存在下、上記N-置換トリハロアセトアミドと水酸基含有化合物を反応させる工程を含むことを特徴とする方法。
[7] A method for producing a carbamate compound, which is a method for producing a carbamate compound.
The step of producing N-substituted trihaloacetamide by the method according to any one of the above [1] to [5], and
A method comprising a step of reacting the above N-substituted trihaloacetamide with a hydroxyl group-containing compound in the presence of a basic compound.
 [8] ウレア化合物を製造するための方法であって、
 上記[1]~[5]のいずれかに記載の方法によりN-置換トリハロアセトアミドを製造する工程、および、
 塩基性化合物の存在下、上記N-置換トリハロアセトアミドとアミノ基含有化合物を反応させる工程を含むことを特徴とする方法。
[8] A method for producing a urea compound, which is a method for producing a urea compound.
The step of producing N-substituted trihaloacetamide by the method according to any one of the above [1] to [5], and
A method comprising a step of reacting the above N-substituted trihaloacetamide with an amino group-containing compound in the presence of a basic compound.
 [9] 下記式(I)で表されることを特徴とするN-置換トリハロアセトアミド。
Figure JPOXMLDOC01-appb-C000003

[式中、
 X1は、互いに同一であっても異なっていてもよい、フルオロ、クロロ、ブロモおよびヨードからなる群より選択されるハロゲノ基を示し、
 αは、C1-6アルキル基、ハロゲノ基、ニトロ基、およびシアノ基からなる群より選択される1以上の置換基を示し、
 nは、1以上、5以下の整数を示し、
 nが2以上の整数である場合、複数の置換基αは互いに同一であっても異なっていてもよい。]
[9] An N-substituted trihaloacetamide, which is represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000003

[During the ceremony,
X 1 represents a halogeno group selected from the group consisting of fluoro, chloro, bromo and iodine, which may be the same or different from each other.
α represents one or more substituents selected from the group consisting of C 1-6 alkyl groups, halogeno groups, nitro groups, and cyano groups.
n represents an integer of 1 or more and 5 or less,
When n is an integer of 2 or more, the plurality of substituents α may be the same or different from each other. ]
 [10] 下記式(II)で表されることを特徴とするN-置換トリハロアセトアミド。
Figure JPOXMLDOC01-appb-C000004

[式中、
 X2は、互いに同一であっても異なっていてもよい、フルオロ、クロロ、ブロモおよびヨードからなる群より選択されるハロゲノ基を示し、
 Cpqrは二価フルオロ化炭化水素基を示し、
 pは、1以上、10以下の整数を示し、
 qは、1以上、(2×p)以下の整数を示し、
 rは、0以上、(2×p-1)以下の整数を示し、
 q+r=2×pである。]
[10] An N-substituted trihaloacetamide, which is represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000004

[During the ceremony,
X 2 represents a halogeno group selected from the group consisting of fluoro, chloro, bromo and iodine, which may be the same or different from each other.
C p F q H r indicates a divalent fluorocarbonated hydrocarbon group,
p indicates an integer of 1 or more and 10 or less,
q indicates an integer of 1 or more and (2 × p) or less.
r indicates an integer of 0 or more and (2 × p-1) or less.
q + r = 2 × p. ]
 本発明方法では、ホスゲンや一酸化炭素といった毒性が極めて高い化合物や、高価な触媒を使う必要が無い。また、イソシアネート化合物、カルバメート化合物、ウレア化合物などの合成中間体にもなる有用なN-置換トリハロアセトアミドが高収率で得られる。よって本発明方法は、有用なN-置換トリハロアセトアミドを安全且つ効率的に製造できる技術として、産業上極めて有用である。 In the method of the present invention, it is not necessary to use extremely toxic compounds such as phosgene and carbon monoxide, or expensive catalysts. In addition, a useful N-substituted trihaloacetamide that also serves as a synthetic intermediate for isocyanate compounds, carbamate compounds, urea compounds, etc. can be obtained in high yield. Therefore, the method of the present invention is extremely useful industrially as a technique capable of safely and efficiently producing a useful N-substituted trihaloacetamide.
図1は、本発明方法で用いられる反応装置の構成の一例を示す模式図である。FIG. 1 is a schematic view showing an example of the configuration of the reactor used in the method of the present invention.
 本発明に係るN-置換トリハロアセトアミドの製造方法は、クロロ、ブロモおよびヨードから選択される1種以上のハロゲノ基を有するテトラハロエチレン、および第一級アミン化合物を含む混合物に、酸素存在下、高エネルギー光を照射する工程を含むことを特徴とする。本工程に係る反応式を以下に示す。 The method for producing an N-substituted trihaloacetamide according to the present invention is a mixture containing tetrahaloethylene having one or more halogeno groups selected from chloro, bromo and iodo, and a primary amine compound in the presence of oxygen. It is characterized by including a step of irradiating high-energy light. The reaction formula for this step is shown below.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[式中、
 X1~X4は、独立して、クロロ、ブロモ、およびヨードからなる群より選択されるハロゲノ基を示し、
 XはX1~X4から選択されるハロゲノ基を示し、
 R1はm価の有機基を示し、
 mは1以上、6以下の整数を示す。]
[During the ceremony,
X 1 to X 4 independently represent a halogeno group selected from the group consisting of chloro, bromo, and iodine.
X indicates a halogeno group selected from X 1 to X 4 ,
R 1 represents an m-valent organic group
m represents an integer of 1 or more and 6 or less. ]
 テトラハロエチレンは、テトラハロエテンともいわれる化合物であり、下記構造式(III)で表される。以下、本開示において、構造式(Y)で表される化合物は、「化合物(Y)」と略記する。 Tetrahaloethylene is a compound also called tetrahaloethane and is represented by the following structural formula (III). Hereinafter, in the present disclosure, the compound represented by the structural formula (Y) is abbreviated as "Compound (Y)".
Figure JPOXMLDOC01-appb-C000006

[式中、X1~X4は、独立して、クロロ、ブロモ、およびヨードからなる群より選択されるハロゲノ基を示す。]
Figure JPOXMLDOC01-appb-C000006

[In the formula, X 1 to X 4 independently represent halogeno groups selected from the group consisting of chloro, bromo, and iodine. ]
 テトラハロエチレンにおいて、X1~X4は互いに同一であっても異なっていてもよいが、同一であることが好ましい。また、X1~X4としては、テトラハロエチレン自体を溶媒としても用い得ることが好ましいため、クロロ、ブロモ、およびヨードからなる群より選択される1種以上のハロゲノ基が好ましく、クロロおよび/またはブロモがより好ましく、更にコストの面からクロロがより更に好ましい。具体的なテトラハロエチレンとしては、例えば、テトラクロロエチレンとテトラブロモエチレンを挙げることができ、テトラクロロエチレンが好ましい。 In tetrahaloethylene, X 1 to X 4 may be the same or different from each other, but are preferably the same. Further, as X 1 to X 4 , since tetrahaloethylene itself can be preferably used as a solvent, one or more halogeno groups selected from the group consisting of chloro, bromo, and iodine are preferable, and chloro and / /. Alternatively, bromo is more preferable, and chloro is even more preferable from the viewpoint of cost. Specific examples of tetrachlorethylene include tetrachlorethylene and tetrabromoethylene, and tetrachlorethylene is preferable.
 テトラハロエチレンは目的とする化学反応や生成物に応じて適宜選択すればよく、また、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。好適には、製造目的化合物に応じて、テトラハロエチレンは1種のみ用いる。 Tetrahaloethylene may be appropriately selected according to the desired chemical reaction and product, and one type may be used alone or two or more types may be used in combination. Preferably, only one type of tetrahaloethylene is used depending on the compound to be produced.
 本発明方法で用いるテトラハロエチレンは、例えば溶媒として一旦使用したテトラハロエチレンを回収したものであってもよい。その際、多量の不純物や水が含まれていると反応が阻害されるおそれがあり得るので、ある程度は精製することが好ましい。例えば、水洗により水や水溶性不純物を除去した後、無水硫酸ナトリウムや無水硫酸マグネシウムなどで脱水することが好ましい。但し、水が含まれていても、少なくともテトラハロエチレンの分解反応は進行するため、生産性を低下させるような過剰な精製は必要ない。かかる水含量としては、0.5質量%以下がより好ましく、0.2質量%以下がさらに好ましく、0.1質量%以下がより更に好ましい。また、上記再利用テトラハロエチレンには、テトラハロエチレンの分解物などが含まれていてもよい。上記水含量は低いほど好ましいが、精製負荷の観点から、上記水分含量は0.0001質量%以上が好ましい。 The tetrahaloethylene used in the method of the present invention may be, for example, recovered tetrahaloethylene once used as a solvent. At that time, if a large amount of impurities or water is contained, the reaction may be hindered, so purification is preferable to some extent. For example, it is preferable to remove water and water-soluble impurities by washing with water and then dehydrate with anhydrous sodium sulfate, anhydrous magnesium sulfate, or the like. However, even if water is contained, at least the decomposition reaction of tetrahaloethylene proceeds, so that excessive purification that reduces productivity is not necessary. The water content is more preferably 0.5% by mass or less, further preferably 0.2% by mass or less, and even more preferably 0.1% by mass or less. Further, the recycled tetrahaloethylene may contain a decomposition product of tetrahaloethylene or the like. The lower the water content, the more preferable, but from the viewpoint of purification load, the water content is preferably 0.0001% by mass or more.
 第一級アミン化合物は、1以上の第一級アミノ基(-NH2基)を有する化合物であれば特に制限されない。例えば、上記反応式において、第一級アミン化合物R1-(NH2mのR1は、m価の有機基を示す。かかる有機基としては、例えば、C1-15鎖状脂肪族炭化水素基、C3-15環状脂肪族炭化水素基、C6-15芳香族炭化水素基、およびこれら2以上5以下の基が結合した基を挙げることができる。また、mは1以上、6以下の整数を示し、5以下、4以下または3以下が好ましく、1または2がより好ましく、2がより更に好ましい。 The primary amine compound is not particularly limited as long as it is a compound having one or more primary amino groups (-NH 2 groups). For example, in the above reaction scheme, the primary amine compound R 1 - (NH 2) R 1 of m indicates the m-valent organic group. Examples of such an organic group include a C 1-15 chain aliphatic hydrocarbon group, a C 3-15 cyclic aliphatic hydrocarbon group, a C 6-15 aromatic hydrocarbon group, and these 2 or more and 5 or less groups. Bound groups can be mentioned. Further, m represents an integer of 1 or more and 6 or less, preferably 5 or less, 4 or less or 3 or less, more preferably 1 or 2, and even more preferably 2.
 「C1-15鎖状脂肪族炭化水素基」は、炭素数1以上、15以下の直鎖状または分枝鎖状の飽和または不飽和脂肪族炭化水素基をいう。例えばC1-15二価鎖状脂肪族炭化水素基としては、C1-15アルカンジイル基、C2-15アルケンジイル基、およびC2-15アルキンジイル基を挙げることができる。 "C 1-15 chain aliphatic hydrocarbon group" refers to a linear or branched saturated or unsaturated aliphatic hydrocarbon group having 1 or more carbon atoms and 15 or less carbon atoms. For example, as the C 1-15 divalent chain aliphatic hydrocarbon group include a C 1-15 alkanediyl group, C 2-15 alkenediyl group, and C 2-15 alkynediyl group.
 C1-15アルカンジイル基としては、例えば、メチレン、エチレン、n-プロピレン、イソプロピレン、n-ブチレン、1-メチルプロピレン、2-メチルプロピレン、1,1-ジメチルエチレン、2,2-ジメチルエチレン、n-ペンチレン、n-ヘキシレン、n-ヘプチレン、n-オクチレン、n-デシレン、n-ペンタデカニレン等である。好ましくはC1-10アルカンジイル基であり、より好ましくはC1-6アルカンジイル基またはC1-4アルカンジイル基であり、より更に好ましくはC1-2アルカンジイル基である。 Examples of the C 1-15 alkanediyl group include methylene, ethylene, n-propylene, isopropylene, n-butylene, 1-methylpropylene, 2-methylpropylene, 1,1-dimethylethylene and 2,2-dimethylethylene. , N-Pentylene, n-Hexylene, n-Heptylene, n-octylene, n-decylene, n-pentadecanilen and the like. It is preferably a C 1-10 alkanediyl group, more preferably a C 1-6 alkanediyl group or a C 1-4 alkanediyl group, and even more preferably a C 1-2 alkanediyl group.
 C2-15アルケンジイル基としては、例えば、エテニレン(ビニレン)、1-プロペニレン、2-プロペニレン(アリレン)、ブテニレン、ヘキセニレン、オクテニレン、デセニレン、ペンタデセニレン等である。好ましくはC2-10アルケンジイル基であり、より好ましくはC2-6アルケンジイル基またはC2-4アルケンジイル基であり、より更に好ましくはエテニレン(ビニレン)または2-プロペニレン(アリレン)である。 Examples of the C 2-15 alkenyl group include ethenylene (vinylene), 1-propenylene, 2-propenylene (arylene), butenylene, hexenylene, octenylene, desenylene, and pentadecenylene. It is preferably a C 2-10 alkendiyl group, more preferably a C 2-6 alkendiyl group or a C 2-4 alkendiyl group, and even more preferably an ethenylene (vinylene) or 2-propenylene (arylene).
 C2-15アルキンジイル基としては、例えば、エチニレン、プロピニレン、ブチニレン、ヘキシニレン、オクチニレン、ペンタデシニレン基等である。好ましくはC2-10アルキンジイル基であり、より好ましくはC2-6アルキンジイル基またはC2-4アルキンジイル基である。 Examples of the C 2-15 alkyndiyl group include ethynylene, propynylene, butynylene, hexynylene, octinilen, pentadecynylene and the like. It is preferably a C 2-10 alkyndiyl group, more preferably a C 2-6 alkyndiyl group or a C 2-4 alkyndiyl group.
 「C3-15環状脂肪族炭化水素基」は、炭素数1以上、15以下の環状の飽和または不飽和脂肪族炭化水素基をいう。例えばC3-15二価環状脂肪族炭化水素基としては、C3-15シクロアルカンジイル基、C4-15シクロアルケンジイル基、およびC4-15シクロアルキンジイル基を挙げることができ、C3-10シクロアルカンジイル基、C4-10シクロアルケンジイル基、およびC4-10シクロアルキンジイル基が好ましい。 "C 3-15 cyclic aliphatic hydrocarbon group" refers to a cyclic saturated or unsaturated aliphatic hydrocarbon group having 1 or more carbon atoms and 15 or less carbon atoms. For example, examples of the C 3-15 divalent cyclic aliphatic hydrocarbon group include a C 3-15 cycloalkanediyl group, a C 4-15 cycloalkendyl group, and a C 4-15 cycloalkindyl group, and C Preferably, 3-10 cycloalkanediyl group, C 4-10 cycloalkendyl group, and C 4-10 cycloalkindyl group.
 「C6-15芳香族炭化水素基」とは、炭素数が6以上、15以下の芳香族炭化水素基をいう。例えば、C6-15二価芳香族炭化水素基としては、フェニレン、インデニレン、ナフチレン、ビフェニレン、フェナレニレン、フェナントレニレン、アントラセニレン等であり、好ましくはC6-12二価芳香族炭化水素基であり、より好ましくはフェニレンである。 "C 6-15 aromatic hydrocarbon group" means an aromatic hydrocarbon group having 6 or more carbon atoms and 15 or less carbon atoms. For example, the C 6-15 divalent aromatic hydrocarbon group is phenylene, indenylene, naphthylene, biphenylene, phenalenylene, phenanthrenylene, anthracenylene and the like, preferably a C 6-12 divalent aromatic hydrocarbon group. Yes, more preferably phenylene.
 なお、上記基の定義において、例えばアルカンジイル基は二価の飽和脂肪族炭化水素基をいうが、アミン化合物R1-(NH2mのmが1である場合には一価のアルキル基に、mが3である場合には三価のアルカントリイル基に読み替えるものとする。例えば、アルカンジイル基であるメチレンに対応するアルキル基はメチルであり、アルカンジイル基であるフェニレンに対応する一価芳香族炭化水素基はフェニルである。 In the above definition of the group, for example, the alkanediyl group refers to a divalent saturated aliphatic hydrocarbon group, but when m of the amine compound R 1 − (NH 2 ) m is 1, it is a monovalent alkyl group. In addition, when m is 3, it shall be read as a trivalent alkanetriyl group. For example, the alkyl group corresponding to methylene, which is an alkanediyl group, is methyl, and the monovalent aromatic hydrocarbon group, which corresponds to phenylene, which is an alkanediyl group, is phenyl.
 上記有機基は、生成物であるN-置換トリハロアセトアミド(V)と反応する求核性基以外の置換基を有していてもよい。かかる置換基としては、例えば、C1-6アルキル基、C1-6アルコキシル基、ハロゲノ基、ニトロ基から選択される1以上の置換基を挙げることができる。ここでの「ハロゲノ基」としては、フルオロ、クロロ、ブロモ、およびヨードを例示することができる。 The organic group may have a substituent other than the nucleophilic group that reacts with the product N-substituted trihaloacetamide (V). Examples of such a substituent include one or more substituents selected from a C 1-6 alkyl group, a C 1-6 alkoxyl group, a halogeno group, and a nitro group. Examples of the "halogeno group" here include fluoro, chloro, bromo, and iodine.
 m=2である場合、第一級アミン化合物(IV)のR1として以下の基(VI)を挙げることができる。 When m = 2, the following group (VI) can be mentioned as R 1 of the primary amine compound (IV).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式中、
 R2とR3は、独立して-(CR56m3-または-(-O-(CR56m4-)m5-(式中、R5とR6は、独立して、HまたはC1-6アルキル基を表し、m3は0以上、10以下の整数を表し、m4は1以上、10以下の整数を表し、m5は1以上、10以下の整数を表し、m3またはm4が2以上の整数である場合、複数のR5とR6は互いに同一であっても異なっていてもよい)を表し、
 R4は、以下のいずれかの二価有機基を示し、
[During the ceremony,
R 2 and R 3 are independently-(CR 5 R 6 ) m3 -or-(-O- (CR 5 R 6 ) m4- ) m5- (In the equation, R 5 and R 6 are independent. , H or C 1-6 alkyl group, m3 represents an integer of 0 or more and 10 or less, m4 represents an integer of 1 or more and 10 or less, m5 represents an integer of 1 or more and 10 or less, m3 or When m4 is an integer of 2 or more, a plurality of R 5 and R 6 may be the same or different from each other).
R 4 represents one of the following divalent organic groups,
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、
 R7とR8は、独立して、H、ハロゲノ基、置換基βを有してもよいC1-20脂肪族炭化水素基、置換基βを有してもよいC1-20アルコキシル基、置換基γを有してもよいC6-20芳香族炭化水素基を表すか、或いはR7とR8が結合して、C3-20炭素環または5-12員複素環を形成してもよく、
 R9とR10は、独立して、HまたはC1-6アルキル基を表し、m6が2以上の整数である場合、複数のR9とR10は互いに同一であっても異なっていてもよく、
 R11~R18は、独立して、ハロゲノ基、置換基βを有してもよいC1-20脂肪族炭化水素基、置換基βを有してもよいC1-20アルコキシル基、または置換基γを有してもよいC6-12芳香族炭化水素基を表し、
 R19は置換基βを有してもよいC1-9アルカンジイル基を表し、
 m6は1以上、20以下の整数を表し、
 m7は1以上、500以下の整数を表す。)
 置換基α1と置換基α2は、独立して、ハロゲノ基、C1-20脂肪族炭化水素基、C1-20アルコキシル基、C3-20シクロアルキル基、C6-20芳香族炭化水素基、C7-20アラルキル基、C6-20芳香族炭化水素オキシ基、およびC3-20シクロアルコキシル基からなる群より選択される1以上の置換基を表し、
 m1とm2は、独立して、0以上、4以下の整数を表し、
 置換基βは、C1-6アルコキシル基、C1-7アシル基、ハロゲノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基であり、
 置換基γは、C1-6アルキル基、C1-6アルコキシル基、C1-7アシル基、ハロゲノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基である。]
(During the ceremony
R 7 and R 8 independently have H, a halogeno group, a C 1-20 aliphatic hydrocarbon group which may have a substituent β, and a C 1-20 alkoxyl group which may have a substituent β. , Representing a C 6-20 aromatic hydrocarbon group which may have a substituent γ, or R 7 and R 8 combine to form a C 3-20 carbocycle or 5-12 membered heterocycle. May
R 9 and R 10 independently represent an H or C 1-6 alkyl group, and if m6 is an integer greater than or equal to 2, multiple R 9 and R 10 may be the same or different from each other. Often,
R 11 to R 18 independently have a halogeno group, a C 1-20 aliphatic hydrocarbon group which may have a substituent β, a C 1-20 alkoxyl group which may have a substituent β, or Represents a C 6-12 aromatic hydrocarbon group which may have a substituent γ,
R 19 represents a C 1-9 alkanediyl group which may have a substituent β,
m6 represents an integer of 1 or more and 20 or less.
m7 represents an integer of 1 or more and 500 or less. )
Substituent α1 and substituent α2 are independently a halogeno group, a C 1-20 aliphatic hydrocarbon group, a C 1-20 alkoxyl group, a C 3-20 cycloalkyl group, and a C 6-20 aromatic hydrocarbon group. , C 7-20 aralkyl group, C 6-20 aromatic hydrocarbon oxy group, and C 3-20 cycloalkoxyl group, representing one or more substituents selected from the group.
m1 and m2 independently represent integers of 0 or more and 4 or less.
Substituent β is one or more substituents selected from C 1-6 alkoxyl group, C 1-7 acyl group, halogeno group, nitro group, cyano group, and carbamoyl group.
The substituent γ is one or more substituents selected from a C 1-6 alkyl group, a C 1-6 alkoxyl group, a C 1-7 acyl group, a halogeno group, a nitro group, a cyano group, and a carbamoyl group. ]
 第一級アミン化合物(IV)中のハロゲノ基としては、フルオロ、クロロ、ブロモ、およびヨードから選択される1種以上のハロゲノ基が挙げられる。 Examples of the halogeno group in the primary amine compound (IV) include one or more halogeno groups selected from fluoro, chloro, bromo, and iodine.
 第一級アミン化合物としては、具体的には、シクロヘキシルアミン、n-ヘキシルアミン、1,4-ジアミノベンゼン、2,4-ジアミノトルエン、4,4’-ジアミノジフェニルメタン、1,6-ジアミノヘキサン、4,4’-ジアミノジシクロヘキシルメタン、またはイソホロンジアミンが好ましく用いられる。 Specific examples of the primary amine compound include cyclohexylamine, n-hexylamine, 1,4-diaminobenzene, 2,4-diaminotoluene, 4,4'-diaminodiphenylmethane, and 1,6-diaminohexane. 4,4'-diaminodicyclohexylmethane or isophoronediamine is preferably used.
 第一級アミン化合物の添加量は適宜調整すればよいが、例えば、テトラハロエチレンの当初量に対して0.05mmol/mL以上、50mmol/mL以下とすることができる。当該割合が0.05mmol/mL以上であれば、反応がより効率的に進行すると考えられ、当該割合が50mmol/mL以下であれば、生成したN-置換トリハロアセトアミドに第一級アミン化合物が反応して尿素化合物が副生する可能性がより低減されると考えられる。 The amount of the primary amine compound added may be adjusted as appropriate, but for example, it can be 0.05 mmol / mL or more and 50 mmol / mL or less with respect to the initial amount of tetrahaloethylene. If the ratio is 0.05 mmol / mL or more, the reaction is considered to proceed more efficiently, and if the ratio is 50 mmol / mL or less, the primary amine compound reacts with the produced N-substituted trihaloacetamide. Therefore, it is considered that the possibility of by-production of urea compounds is further reduced.
 少なくともテトラハロエチレンおよび第一級アミン化合物を含む混合物には、第一級アミン化合物以外に塩基性化合物を添加しないことが好ましい。塩基性化合物とは、アルカリ金属やアルカリ土類金属などの水酸化物や、アンモニア、ピリジンなど、その水溶液のpHが7超であるものをいう。第一級アミン化合物以外に塩基性化合物を用いると、その残留により最終製品の品質が低下したり、副反応が生じたり、着色したり、また、純度を高めるための精製プロセスが必要となって製造コストが増大する場合がある。 It is preferable not to add a basic compound other than the primary amine compound to the mixture containing at least tetrahaloethylene and the primary amine compound. The basic compound refers to a hydroxide such as an alkali metal or an alkaline earth metal, or an aqueous solution thereof such as ammonia or pyridine having a pH of more than 7. If a basic compound is used in addition to the primary amine compound, the residue of the basic compound deteriorates the quality of the final product, causes side reactions, colors, and requires a purification process to increase the purity. Manufacturing costs may increase.
 例えば、テトラハロエチレンが常温や反応温度において固体であったり粘性が高い場合などには、反応を阻害しない溶媒を更に用いてもよい。かかる溶媒の具体例としては、n-ヘキサン、石油エーテル、リグロイン、ベンジン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;アセトニトリル等のニトリル系溶媒が挙げられる。 For example, when tetrahaloethylene is solid or highly viscous at room temperature or reaction temperature, a solvent that does not inhibit the reaction may be further used. Specific examples of such a solvent include aliphatic hydrocarbon solvents such as n-hexane, petroleum ether, ligroine and benzine; aromatic hydrocarbon solvents such as benzene, toluene, xylene and chlorobenzene; diethyl ether, tetrahydrofuran, dioxane and the like. Ether-based solvent; nitrile-based solvent such as acetonitrile can be mentioned.
 反応開始前の上記混合物には、反応の効率化などの観点から、テトラハロエチレンおよび第一級アミン化合物、または、テトラハロエチレン、第一級アミン化合物および溶媒の他、不可避的不純物や不可避的混入物以外の化合物を添加しないことが好ましい。 From the viewpoint of improving the efficiency of the reaction, the above mixture before the start of the reaction contains tetrahaloethylene and a primary amine compound, or tetrahaloethylene, a primary amine compound and a solvent, as well as unavoidable impurities and unavoidable impurities. It is preferable not to add compounds other than the contaminants.
 本発明において「酸素存在下」とは、テトラハロエチレンが酸素と接している状態か、テトラハロエチレン中に酸素が存在する状態のいずれであってもよい。従って、本工程の反応は、酸素を含む気体の気流下で行ってもよいが、テトラハロエチレンの分解効率を高める観点からは、酸素を含む気体はバブリングによりテトラハロエチレン中へ供給することが好ましい。 In the present invention, "in the presence of oxygen" may be either a state in which tetrahaloethylene is in contact with oxygen or a state in which oxygen is present in tetrahaloethylene. Therefore, the reaction in this step may be carried out under an air flow of a gas containing oxygen, but from the viewpoint of increasing the decomposition efficiency of tetrahaloethylene, the gas containing oxygen can be supplied into tetrahaloethylene by bubbling. preferable.
 酸素源としては、酸素を含む気体であればよく、例えば、空気や、精製された酸素を用いることができる。精製された酸素は、窒素やアルゴン等の不活性ガスと混合して使用してもよい。コストや容易さの点からは空気を用いることが好ましい。高エネルギー光の照射によるテトラハロエチレンの分解効率を高める観点からは、酸素源として用いられる気体中の酸素含有率は約15体積%以上100体積%以下であることが好ましい。なお、酸素(酸素含有率100体積%)を用いる場合であっても、反応系内への酸素流量の調節により酸素含有率を上記範囲内に制御することができる。酸素を含む気体の供給方法は特に限定されず、流量調整器を取り付けた酸素ボンベから反応系内に供給してもよく、また、酸素発生装置から反応系内に供給してもよい。 The oxygen source may be any gas containing oxygen, and for example, air or purified oxygen can be used. The purified oxygen may be mixed with an inert gas such as nitrogen or argon for use. It is preferable to use air from the viewpoint of cost and ease. From the viewpoint of increasing the decomposition efficiency of tetrahaloethylene by irradiation with high-energy light, the oxygen content in the gas used as an oxygen source is preferably about 15% by volume or more and 100% by volume or less. Even when oxygen (oxygen content 100% by volume) is used, the oxygen content can be controlled within the above range by adjusting the oxygen flow rate into the reaction system. The method of supplying the gas containing oxygen is not particularly limited, and the gas may be supplied into the reaction system from an oxygen cylinder equipped with a flow rate regulator, or may be supplied into the reaction system from an oxygen generator.
 酸素を含む気体の量は、テトラハロエチレンの量や、反応容器の形状などに応じて適宜決定すればよい。例えば、反応容器中に存在するテトラハロエチレンに対する、反応容器へ供給する1分あたりの気体の量を、5容量倍以上とすることが好ましい。当該割合としては、10容量倍以上がより好ましく、25容量倍以上がよりさらに好ましい。当該割合の上限は特に制限されないが、500容量倍以下が好ましく、250容量倍以下がより好ましく、150容量倍以下がよりさらに好ましい。また、反応容器中に存在するテトラハロエチレンに対する、反応容器へ供給する1分あたりの酸素の量としては、1容量倍以上25容量倍以下とすることができる。気体の流量が多過ぎる場合には、テトラハロエチレンが揮発してしまう虞があり得る一方で、少な過ぎると反応が進行し難くなる虞があり得る。酸素の供給速度としては、例えば、テトラハロエチレン20mLに対して0.01L/分以上、10L/分以下とすることができる。 The amount of gas containing oxygen may be appropriately determined according to the amount of tetrahaloethylene, the shape of the reaction vessel, and the like. For example, it is preferable that the amount of gas supplied to the reaction vessel per minute with respect to tetrahaloethylene present in the reaction vessel is 5 volumes or more. The ratio is more preferably 10 volumes or more, and even more preferably 25 volumes or more. The upper limit of the ratio is not particularly limited, but is preferably 500 volume times or less, more preferably 250 volume times or less, and even more preferably 150 volume times or less. Further, the amount of oxygen supplied to the reaction vessel per minute with respect to the tetrahaloethylene present in the reaction vessel can be 1 volume or more and 25 volume or less. If the gas flow rate is too high, tetrahaloethylene may volatilize, while if it is too low, the reaction may be difficult to proceed. The oxygen supply rate can be, for example, 0.01 L / min or more and 10 L / min or less with respect to 20 mL of tetrahaloethylene.
 上記混合物に照射する高エネルギー光は、テトラハロエチレンを分解するに十分なエネルギーを有する光をいう。例えば、波長280nm以上315nm以下のUV-Bおよび/または波長180nm以上280nm以下のUV-Cを含む光を用いることができ、波長180nm以上280nm以下のUV-Cを含む光を用いることが好ましい。なお、太陽光にも数%の紫外線が含まれ、蛍光灯の光にも極僅かの紫外線が含まれるが、蛍光灯の光や地表に到達する太陽光にはUV-Cは含まれず、テトラハロエチレンを十分に分解する程度のエネルギーを有さないため、これらは本発明でいう高エネルギー光には含まれない。好適には、ピーク波長が上記範囲に含まれる高エネルギー光を用いる。 The high-energy light irradiating the mixture is light having sufficient energy to decompose tetrahaloethylene. For example, light containing UV-B having a wavelength of 280 nm or more and 315 nm or less and / or UV-C having a wavelength of 180 nm or more and 280 nm or less can be used, and it is preferable to use light containing UV-C having a wavelength of 180 nm or more and 280 nm or less. In addition, sunlight also contains a few percent of ultraviolet rays, and the light of fluorescent lamps also contains a very small amount of ultraviolet rays, but the light of fluorescent lamps and the sunlight that reaches the ground surface do not contain UV-C, and tetra. These are not included in the high-energy light of the present invention because they do not have enough energy to decompose haloethylene. Preferably, high-energy light whose peak wavelength is within the above range is used.
 光照射の手段は、上記波長の光を照射できるものである限り特に限定されないが、上記の波長範囲の光を波長域に十分量含む光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、ケミカルランプ、ブラックライトランプ、メタルハライドランプ、LEDランプ等が挙げられる。反応効率やコストの点から、低圧水銀ランプが好ましく用いられる。 The means of light irradiation is not particularly limited as long as it can irradiate light of the above wavelength range, but examples of the light source containing a sufficient amount of light in the above wavelength range in the wavelength range include a low pressure mercury lamp and a medium pressure mercury lamp. Examples thereof include high-pressure mercury lamps, ultra-high-pressure mercury lamps, chemical lamps, black light lamps, metal halide lamps, and LED lamps. A low-pressure mercury lamp is preferably used from the viewpoint of reaction efficiency and cost.
 照射光の強度などの条件は、出発原料の種類や使用量によって適宜設定すればよいが、例えば、光源から上記組成物の最短距離位置における所望の光の強度としては、1mW/cm2以上、50mW/cm2以下が好ましい。また、光源とテトラハロエチレンとの最短距離としては、1m以下が好ましく、50cm以下がより好ましく、10cm以下または5cm以下がより更に好ましい。当該最短距離の下限は特に制限されないが、0cm、即ち、光源をテトラハロエチレン中に浸漬してもよい。 Conditions such as the intensity of the irradiation light may be appropriately set depending on the type and amount of the starting material used. For example, the desired light intensity at the shortest distance position of the composition from the light source is 1 mW / cm 2 or more. It is preferably 50 mW / cm 2 or less. The shortest distance between the light source and tetrahaloethylene is preferably 1 m or less, more preferably 50 cm or less, and even more preferably 10 cm or less or 5 cm or less. The lower limit of the shortest distance is not particularly limited, but 0 cm, that is, the light source may be immersed in tetrahaloethylene.
 本工程の反応条件は特に制限されず、適宜調整すればよい。例えば、30℃以上、100℃以下で上記混合物を攪拌すればよく、加熱還流してもよい。 The reaction conditions in this step are not particularly limited and may be adjusted as appropriate. For example, the mixture may be stirred at 30 ° C. or higher and 100 ° C. or lower, or may be heated under reflux.
 本発明方法に使用できる反応装置としては、反応容器に高エネルギー光照射手段を備えたものが挙げられる。反応装置には、攪拌装置や温度制御手段が備えられていてもよい。図1に、本発明方法に使用できる反応装置の一態様を示す。図1に示す反応装置は、筒状反応容器6内に高エネルギー光照射手段1を有するものである。筒状反応容器6内に、テトラハロエチレンを添加し、当該反応容器6内に酸素を含有する気体を供給またはテトラハロエチレンに酸素を含有する気体をバブリングしながら(図示せず)、高エネルギー光照射手段1より高エネルギー光を照射して反応を行う。高エネルギー光照射手段1をジャケット2等で覆う場合、該ジャケットは、高エネルギー光を透過する素材であることが好ましい。また、反応容器の外側から高エネルギー光照射を行ってもよく、この場合、反応容器は、高エネルギー光を透過する素材であることが好ましい。高エネルギー光を透過する素材としては、本発明の効果を妨げない限り特に限定されないが、石英ガラスや、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂などが好ましく挙げられる。 Examples of the reaction apparatus that can be used in the method of the present invention include a reaction vessel provided with high-energy light irradiation means. The reaction device may be provided with a stirrer and a temperature control means. FIG. 1 shows an aspect of a reactor that can be used in the method of the present invention. The reactor shown in FIG. 1 has a high-energy light irradiation means 1 in a tubular reaction vessel 6. High energy while adding tetrahaloethylene into the tubular reaction vessel 6 and supplying an oxygen-containing gas into the reaction vessel 6 or bubbling the oxygen-containing gas into tetrahaloethylene (not shown). The reaction is carried out by irradiating high-energy light from the light irradiation means 1. When the high-energy light irradiation means 1 is covered with a jacket 2 or the like, the jacket is preferably a material that transmits high-energy light. Further, high-energy light irradiation may be performed from the outside of the reaction vessel. In this case, the reaction vessel is preferably made of a material that transmits high-energy light. The material that transmits high-energy light is not particularly limited as long as it does not interfere with the effects of the present invention, and preferably examples thereof include quartz glass and a fluororesin such as a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA). ..
 高エネルギー光の照射時間は、テトラハロエチレンが十分に分解される範囲で適宜調整すればよいが、例えば0.5時間以上10時間以下が好ましく、1時間以上6時間以下がより好ましく、2時間以上4時間以下がより更に好ましい。 The irradiation time of high-energy light may be appropriately adjusted within a range in which tetrahaloethylene is sufficiently decomposed, but for example, it is preferably 0.5 hours or more and 10 hours or less, more preferably 1 hour or more and 6 hours or less, and 2 hours. More than 4 hours or less is more preferable.
 本発明方法においては、更に、高エネルギー光を照射した後、高エネルギー光を照射せずに上記混合物を加熱する工程を含むことが好ましい。本工程により、高エネルギー光照射工程後、テトラハロエチレンの分解物と第一級アミン化合物とを十分に反応させることが可能になる。 It is preferable that the method of the present invention further includes a step of irradiating the mixture with high-energy light and then heating the mixture without irradiating with high-energy light. This step makes it possible to sufficiently react the decomposition product of tetrahaloethylene with the primary amine compound after the high-energy light irradiation step.
 本工程の反応温度としては、例えば、50℃以上、120℃以下とすることができる。また、加熱還流状態で反応を行ってもよい。本工程の反応時間は特に制限されず、例えば第一級アミン化合物が消費されるまでとすればよいが、0.5時間以上10時間以下が好ましく、1時間以上6時間以下がより好ましく、2時間以上4時間以下がより更に好ましい。 The reaction temperature in this step can be, for example, 50 ° C. or higher and 120 ° C. or lower. Further, the reaction may be carried out in a heated reflux state. The reaction time of this step is not particularly limited, and may be, for example, until the primary amine compound is consumed, but is preferably 0.5 hours or more and 10 hours or less, more preferably 1 hour or more and 6 hours or less, 2 More preferably, it is at least 4 hours or less.
 生成したN-置換トリハロアセトアミドは、常法により精製してもよい。例えば、N-置換トリハロアセトアミドは反応性が高いため、反応後の上記混合物を常温まで放冷した後、n-ヘキサン等の貧溶媒を添加して析出させ、析出したN-置換トリハロアセトアミドを濾取して洗浄および/または乾燥することにより精製できる。 The produced N-substituted trihaloacetamide may be purified by a conventional method. For example, since N-substituted trihaloacetamide is highly reactive, the above mixture after the reaction is allowed to cool to room temperature, and then a poor solvent such as n-hexane is added to precipitate the mixture, and the precipitated N-substituted trihaloacetamide is filtered. It can be purified by taking, washing and / or drying.
 特に、式(I)で表されるN-置換トリハロアセトアミドは、医薬や農薬の有効成分のための重要な合成中間体である。N-置換トリハロアセトアミド(I)中、ベンゼン環上の置換基であるαとしては、電子吸引性基が好ましい。置換基αが電子吸引性基であれば、アミド基中の窒素原子からカルボニル基への電子供与性が弱まり、トリハロメチル基の脱離能が高まり、イソシアネート化合物などが得られ易くなる。 In particular, the N-substituted trihaloacetamide represented by the formula (I) is an important synthetic intermediate for the active ingredients of pharmaceuticals and pesticides. In the N-substituted trihaloacetamide (I), the α as the substituent on the benzene ring is preferably an electron-withdrawing group. If the substituent α is an electron-withdrawing group, the electron donating property from the nitrogen atom in the amide group to the carbonyl group is weakened, the desorption ability of the trihalomethyl group is enhanced, and an isocyanate compound or the like can be easily obtained.
 また、式(II)で表されるN-置換トリハロアセトアミドは、イソシアネートの原料として有用であり、更にジオール化合物やジアミノ化合物と反応させることにより、撥水性の高分子として利用価値の高いポリウレタンやポリウレアの原料となる。 Further, the N-substituted trihaloacetamide represented by the formula (II) is useful as a raw material for isocyanate, and by further reacting with a diol compound or a diamino compound, polyurethane or polyurea having high utility value as a water-repellent polymer. It becomes the raw material of.
 N-置換トリハロアセトアミドは、下記反応式の通り塩基性化合物で処理することによりイソシアネート化合物とすることができる。 The N-substituted trihaloacetamide can be converted into an isocyanate compound by treating it with a basic compound as shown in the reaction formula below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 例えば、N-置換トリハロアセトアミド(V)の溶液に塩基を添加することにより、N-置換トリハロアセトアミド(V)をイソシアネート化合物(VII)に変換することができる。 For example, N-substituted trihaloacetamide (V) can be converted to an isocyanate compound (VII) by adding a base to a solution of N-substituted trihaloacetamide (V).
 N-置換トリハロアセトアミド(V)の溶液の溶媒としては、反応を阻害せず且つN-置換トリハロアセトアミド(V)に対して適度な溶解性を示すものであれば特に制限されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;アセトニトリル等のニトリル系溶媒を挙げることができる。 The solvent of the solution of N-substituted trihaloacetamide (V) is not particularly limited as long as it does not inhibit the reaction and exhibits appropriate solubility in N-substituted trihaloacetamide (V). For example, dichloromethane. , Chloroform, carbon tetrachloride and other halogenated hydrocarbons; amide solvents such as dimethylformamide and dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide; nitrile solvents such as acetonitrile.
 N-置換トリハロアセトアミド(V)の溶液の濃度は適宜調整すればよいが、例えば、0.001g/mL以上、1g/mL以下とすることができる。 The concentration of the solution of N-substituted trihaloacetamide (V) may be adjusted as appropriate, and can be, for example, 0.001 g / mL or more and 1 g / mL or less.
 塩基としては、特に制限されないが、-NH2を有する塩基は生成したイソシアネート化合物と反応するおそれがあるため、複素環式芳香族アミンおよび非求核性強塩基から選択される1種以上の塩基が好ましい。 The base is not particularly limited, but one or more bases selected from heterocyclic aromatic amines and non-nucleophilic strong bases because a base having -NH 2 may react with the produced isocyanate compound. Is preferable.
 複素環式芳香族アミンは、少なくとも一つの複素環を含み且つ-NH2以外のアミン官能基を少なくとも一つ有している化合物をいう。複素環式芳香族アミンとしては、例えば、ピリジン、α-ピコリン、β-ピコリン、γ-ピコリン、2,3-ルチジン、2,4-ルチジン、2,6-ルチジン、3,5-ルチジン、2-クロロピリジン、3-クロロピリジン、4-クロロピリジン、N,N-ジメチル-4-アミノピリジン等の、ピリジンおよびその誘導体などを挙げることができる。 Heterocyclic aromatic amine refers to a compound containing at least one heterocycle and having at least one amine functional group other than -NH 2 . Examples of the heterocyclic aromatic amine include pyridine, α-picoline, β-picoline, γ-picoline, 2,3-lutidine, 2,4-lutidine, 2,6-lutidine, 3,5-lutidine, and 2, Examples thereof include pyridines such as -chloropyridine, 3-chloropyridine, 4-chloropyridine, N, N-dimethyl-4-aminopyridine and derivatives thereof.
 「非求核性強塩基」とは、立体的な障害により窒素原子上の孤立電子対の求核性が弱いが塩基性の強い塩基をいう。例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン、トリプロピルアミン、トリイソプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリデシルアミン、トリドデシルアミン、トリフェニルアミン、トリベンジルアミン、N,N-ジイソプロピルエチルアミン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、および1,1,3,3-テトラメチルグアニジン(TMG)を挙げることができる。また、その他、トリメチルアミン、ジメチルエチルアミン、ジエチルメチルアミン、N-エチル-N-メチルブチルアミン、1-メチルピロリジン等の汎用有機アミンも用い得る。 "Non-nucleophilic strong base" refers to a base with weak nucleophilicity of lone electron pairs on a nitrogen atom due to steric damage, but with strong basicity. For example, triethylamine, N, N-diisopropylethylamine, tripropylamine, triisopropylamine, tributylamine, trypentylamine, trihexylamine, triheptylamine, trioctylamine, tridecylamine, tridodecylamine, triphenylamine, Tribenzylamine, N, N-diisopropylethylamine, 1,5,7-triazabicyclo [4.4.0] deca-5-ene (TBD), 7-methyl-1,5,7-triazabicyclo [ 4.4.0] Deca-5-ene (MTBD), 1,8-diazabicyclo [5.4.0] Undec-7-ene (DBU), 1,5-diazabicyclo [4.3.0] nona- 5-ene (DBN) and 1,1,3,3-tetramethylguanidine (TMG) can be mentioned. In addition, general-purpose organic amines such as trimethylamine, dimethylethylamine, diethylmethylamine, N-ethyl-N-methylbutylamine, and 1-methylpyrrolidine can also be used.
 塩基の使用量は適宜調整すればよいが、例えば、N-置換トリハロアセトアミド(V)1モルに対して1倍モル以上、50倍モル以下用いることができる。 The amount of the base used may be adjusted as appropriate, and for example, it can be used in an amount of 1 time or more and 50 times or less with respect to 1 mol of N-substituted trihaloacetamide (V).
 本反応の反応条件は、適宜調整すればよい。例えば反応は常温、より具体的には5℃以上、40℃以下で行うことができる。また、反応時間は、-CX3基の優れた脱離能により本反応は非常に速やかに進行するため、例えばN-置換トリハロアセトアミド(V)の溶液に塩基を添加した後に攪拌し、1秒間以上、1時間以下とすることができる。 The reaction conditions of this reaction may be adjusted as appropriate. For example, the reaction can be carried out at room temperature, more specifically at 5 ° C. or higher and 40 ° C. or lower. As for the reaction time, since this reaction proceeds very quickly due to the excellent desorption ability of 3 -CX groups, for example, a base is added to a solution of N-substituted trihaloacetamide (V) and then the mixture is stirred for 1 second. It can be 1 hour or less.
 また、N-置換トリハロアセトアミド(V)によっては、加熱のみでイソシアネート化合物(VII)に変換されるものもある。この場合の温度はN-置換トリハロアセトアミド(V)によるが、例えば、150℃以上、350℃以下とすることができる。 In addition, some N-substituted trihaloacetamides (V) are converted to isocyanate compounds (VII) only by heating. The temperature in this case depends on the N-substituted trihaloacetamide (V), but can be, for example, 150 ° C. or higher and 350 ° C. or lower.
 N-置換トリハロアセトアミド(V)およびイソシアネート化合物(VII)の反応性は共に非常に高いため、塩基性化合物の存在下、N-置換トリハロアセトアミド(V)と水酸基含有化合物を反応させることにより、カルバメート化合物を製造することができる。例えば、トリハロアセドアミド基を1個有するN-置換トリハロアセトアミドと、水酸基含有化合物との反応は、以下の通りである。 Since the reactivity of both the N-substituted trihaloacetamide (V) and the isocyanate compound (VII) is very high, carbamate is carried out by reacting the N-substituted trihaloacetamide (V) with the hydroxyl group-containing compound in the presence of a basic compound. Compounds can be produced. For example, the reaction between an N-substituted trihaloacetamide having one trihaloacedoamide group and a hydroxyl group-containing compound is as follows.
Figure JPOXMLDOC01-appb-C000010

[式中、
 Xは上記と同義を示し、
 R20とR21は、独立して、R1のうち一価有機基を示す。]
Figure JPOXMLDOC01-appb-C000010

[During the ceremony,
X is synonymous with the above
R 20 and R 21 independently represent the monovalent organic group of R 1 . ]
 また、塩基性化合物の存在下、N-置換トリハロアセトアミド(V)とアミノ基含有化合物を反応させることにより、ウレア化合物を製造することができる。例えば、トリハロアセドアミド基を1個有するN-置換トリハロアセトアミドと、アミノ基含有化合物との反応は、以下の通りである。 Further, a urea compound can be produced by reacting an N-substituted trihaloacetamide (V) with an amino group-containing compound in the presence of a basic compound. For example, the reaction between an N-substituted trihaloacetamide having one trihaloacedoamide group and an amino group-containing compound is as follows.
Figure JPOXMLDOC01-appb-C000011

[式中、X、R20およびR21は上記と同義を示す。]
Figure JPOXMLDOC01-appb-C000011

[In the formula, X, R 20 and R 21 have the same meaning as above. ]
 また、下記反応式の通り、トリハロアセドアミド基を2個有するN-置換トリハロアセトアミドと、水酸基またはアミノ基を2個有する化合物とを反応させることにより、ポリカルバメート(ポリウレタン)またはポリウレアを製造することもできる。トリハロアセドアミド基を2個有するN-置換トリハロアセトアミドとしては、式(II)で表されるN-置換トリハロアセトアミドが挙げられる。 Further, as shown in the reaction formula below, polycarbamate (polyurethane) or polyurea is produced by reacting an N-substituted trihaloacetamide having two trihaloacedamide groups with a compound having two hydroxyl groups or amino groups. You can also do it. Examples of the N-substituted trihaloacetamide having two trihaloacedoamide groups include N-substituted trihaloacetamide represented by the formula (II).
Figure JPOXMLDOC01-appb-C000012

[式中、
 Xは上記と同義を示し、
 ZはOまたはNHを示し、
 R22とR23は、独立して、R1のうち二価有機基を示す。]
Figure JPOXMLDOC01-appb-C000012

[During the ceremony,
X is synonymous with the above
Z indicates O or NH,
R 22 and R 23 independently represent the divalent organic group of R 1 . ]
 上記反応中、N-置換トリハロアセトアミドおよび水酸基含有化合物またはアミノ基含有化合物の少なくとも一方が常温または反応温度で液状である場合には溶媒を用いなくてもよいが、溶媒を用いてもよい。溶媒としては、反応を阻害せず且つ原料化合物に対して適度な溶解性を示すものであれば特に制限されないが、例えば、ヘキサン等の脂肪族炭化水素系溶媒;トルエン等の芳香族炭化水素系溶媒;ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素;アセトニトリル等のニトリル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;テトラヒドロフラン等のエーテル系溶媒を挙げることができる。 During the above reaction, when at least one of the N-substituted trihaloacetamide and the hydroxyl group-containing compound or the amino group-containing compound is liquid at room temperature or the reaction temperature, a solvent may not be used, but a solvent may be used. The solvent is not particularly limited as long as it does not inhibit the reaction and exhibits appropriate solubility in the raw material compound. For example, an aliphatic hydrocarbon solvent such as hexane; an aromatic hydrocarbon solvent such as toluene is used. Solvents; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride; nitrile solvents such as acetonitrile; amide solvents such as dimethylformamide and dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide; ether solvents such as tetrahydrofuran be able to.
 塩基としては、イソシアネート化合物の製造方法で用いる複素環式芳香族アミンおよび非求核性強塩基から選択される1種以上の塩基と同様の塩基を用いることができる。塩基の使用量は適宜調整すればよいが、例えば、N-置換トリハロアセトアミド(V)に対して1倍モル以上、50倍モル以下用いることができる。 As the base, the same base as one or more bases selected from the heterocyclic aromatic amine and the non-nucleophilic strong base used in the method for producing an isocyanate compound can be used. The amount of the base used may be appropriately adjusted, and for example, it can be used in an amount of 1-fold molar or more and 50-fold molar or less with respect to N-substituted trihaloacetamide (V).
 反応条件は適宜調整すればよいが、例えば反応温度は10℃以上、120℃以下とすることができ、反応時間は、1時間以上、50時間以下とすることができる。 The reaction conditions may be adjusted as appropriate, but for example, the reaction temperature can be 10 ° C. or higher and 120 ° C. or lower, and the reaction time can be 1 hour or longer and 50 hours or lower.
 反応後は、カルバメート化合物とウレア化合物は比較的安定であるため、通常の後処理をすればよい。例えば、反応後の反応液に、クロロホルムや酢酸エチルなど水に混和しない有機溶媒と、水、塩酸、飽和食塩水などの水系溶媒を加えて分液し、有機層を無水硫酸ナトリウムや無水硫酸マグネシウム等で乾燥し、濃縮した後、n-ヘキサン等の貧溶媒で洗浄したり、クロマトグラフィや再結晶などで精製すればよい。ポリウレタン化合物とポリウレア化合物は、溶解性が低い場合があるため、反応液に直接貧溶媒を加えて析出させてもよい。 After the reaction, the carbamate compound and the urea compound are relatively stable, so normal post-treatment may be performed. For example, an organic solvent immiscible with water such as chloroform or ethyl acetate and an aqueous solvent such as water, hydrochloric acid, or saturated saline are added to the reaction solution after the reaction to separate the solutions, and the organic layer is separated by anhydrous sodium sulfate or anhydrous magnesium sulfate. After drying with or the like and concentrating, it may be washed with a poor solvent such as n-hexane, or purified by chromatography or recrystallization. Since the polyurethane compound and the polyurea compound may have low solubility, a poor solvent may be directly added to the reaction solution to precipitate them.
 本願は、2019年3月27日に出願された日本国特許出願第2019-60647号に基づく優先権の利益を主張するものである。2019年3月27日に出願された日本国特許出願第2019-60647号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2019-60647 filed on March 27, 2019. The entire contents of the specification of Japanese Patent Application No. 2019-60647 filed on March 27, 2019 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples as well as the present invention, and appropriate modifications are made to the extent that it can be adapted to the gist of the above and the following. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.
 実施例1: 2,2,2-トリクロロ-N-フェニルアセトアミドの合成
Figure JPOXMLDOC01-appb-C000013

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)とアニリン塩酸塩(5.23g,40mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、80℃で3時間光照射した。光照射をストップし、バス温度を150℃に昇温し、2時間還流した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、内部標準としてジクロロメタンを添加してNMR収率を測定したところ、>99%収率で目的物が得られていることを確認した。サンプル溶液にn-ヘキサンを加えると沈殿が生成した。吸引濾過で沈殿を濾取し、乾燥させると肌色固体の目的物を単離することができた(収率:59%,収量:5.6g,23.5mmol)。
1H NMR(500MHz,CDCl3,20℃):δ8.33(br,1H,NH),7.58(d,J=7.5Hz,2H,Phenyl),7.41(t,J=7.5Hz,2H,Phenyl),7.24(t,J=7.5Hz,1H,Phenyl)
13C NMR(125MHz,CDCl3,20℃):δ159.19,135.91,129.33,126.05,120.33,92.81
FT-IR(ATR):3306,1693,1600,1528,1498,1444,1245,877,823,813,742,686,639cm-1
FAB-MS:m/z calculated for [M+H]+(C86Cl3NO)237.9515, found 237.8063
Example 1: Synthesis of 2,2,2-trichloro-N-phenylacetamide
Figure JPOXMLDOC01-appb-C000013

Tetrachlorethylene (20 mL, 195 mmol) and aniline hydrochloride (5.23 g, 40 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS, 20 W) are placed. , Φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 3 hours under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 150 ° C., and the mixture was refluxed for 2 hours. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . When heating and oxygen bubbling were stopped, the mixture was allowed to stand until room temperature, dichloromethane was added as an internal standard, and the NMR yield was measured, it was confirmed that the desired product was obtained in a yield of> 99%. Precipitation was formed when n-hexane was added to the sample solution. When the precipitate was collected by suction filtration and dried, the target substance of a flesh-colored solid could be isolated (yield: 59%, yield: 5.6 g, 23.5 mmol).
1 1 H NMR (500 MHz, CDCl 3 , 20 ° C.): δ8.33 (br, 1H, NH), 7.58 (d, J = 7.5 Hz, 2H, Phenyl), 7.41 (t, J = 7) .5Hz, 2H, Phenyl), 7.24 (t, J = 7.5Hz, 1H, Phenyl)
13 C NMR (125 MHz, CDCl 3 , 20 ° C.): δ159.19, 135.91, 129.33, 126.05, 120.33, 92.81
FT-IR (ATR): 3306, 1693, 1600, 1528, 1498, 1444, 1245, 877, 823, 833, 742,686,639 cm -1
FAB-MS: m / z calculated for [M + H] + (C 8 H 6 Cl 3 NO) 237.9515, found 237.8063
 実施例2: 2,2,2-トリクロロ-N-シクロヘキシルアセトアミド
Figure JPOXMLDOC01-appb-C000014

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)とシクロヘキシルアミン(2.3mL,20mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、70℃で2時間光照射した。光照射をストップし、引き続き70℃で2.5時間、反応液を撹拌した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、内部標準としてジクロロメタンを添加してNMR収率を測定したところ、88%収率で目的物が得られていることを確認した。
Example 2: 2,2,2-trichloro-N-cyclohexylacetamide
Figure JPOXMLDOC01-appb-C000014

Tetrachlorethylene (20 mL, 195 mmol) and cyclohexylamine (2.3 mL, 20 mmol) were placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS, 20W, φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 70 ° C. for 2 hours under stirring conditions. The light irradiation was stopped, and the reaction solution was continuously stirred at 70 ° C. for 2.5 hours. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . When heating and oxygen bubbling were stopped, the mixture was allowed to stand until it reached room temperature, dichloromethane was added as an internal standard, and the NMR yield was measured, it was confirmed that the desired product was obtained in 88% yield.
 実施例3: 2,2,2-トリクロロ-N-ヘキシルアセトアミド
Figure JPOXMLDOC01-appb-C000015

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)とn-ヘキシルアミン(2.6mL,20mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、100℃で2時間光照射した。光照射をストップし、引き続き100℃で1時間、反応液を撹拌した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、内部標準としてジクロロメタンを添加してNMR収率を測定したところ、65%収率で目的物が得られていることを確認した。
Example 3: 2,2,2-trichloro-N-hexylacetamide
Figure JPOXMLDOC01-appb-C000015

Tetrachlorethylene (20 mL, 195 mmol) and n-hexylamine (2.6 mL, 20 mmol) were placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS, Inc., 20 W, φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 100 ° C. for 2 hours under stirring conditions. Light irradiation was stopped, and the reaction solution was continuously stirred at 100 ° C. for 1 hour. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . When heating and oxygen bubbling were stopped, the mixture was allowed to stand until room temperature, dichloromethane was added as an internal standard, and the NMR yield was measured, it was confirmed that the desired product was obtained in a yield of 65%.
 実施例4: N-ブチル-2,2,2-トリクロロアセトアミド
Figure JPOXMLDOC01-appb-C000016

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)とn-ブチルアミン(1.0mL,10mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、70℃で2時間光照射した。光照射をストップし、引き続き70℃で1時間、反応液を撹拌した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、内部標準としてジクロロメタンを添加してNMR収率を測定したところ、97%収率で目的物が得られていることを確認した。
Example 4: N-Butyl-2,2,2-trichloroacetamide
Figure JPOXMLDOC01-appb-C000016

Tetrachlorethylene (20 mL, 195 mmol) and n-butylamine (1.0 mL, 10 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS, 20 W) are placed. , Φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 70 ° C. for 2 hours under stirring conditions. Light irradiation was stopped, and the reaction solution was continuously stirred at 70 ° C. for 1 hour. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, the mixture was allowed to stand until it reached room temperature, dichloromethane was added as an internal standard, and the NMR yield was measured. As a result, it was confirmed that the desired product was obtained in a yield of 97%.
 実施例5: N,N’-(ヘキサン-1,6-ジイル)ビス(2,2,2-トリクロロアセトアミド)
Figure JPOXMLDOC01-appb-C000017

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)と1,6-ジアミノヘキサン(1.17g,10mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、80℃で2.5時間光照射した。光照射をストップし、バス温度を150℃に昇温し、2時間還流した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理を行った。加熱および酸素バブリングをストップし、室温になるまで静置し、n-ヘキサンを加えると沈殿が生じた。吸引濾過で沈殿を濾取し、乾燥させると肌色固体の目的物を単離することができた(収率:68%,収量:2.8g,6.8mmol)。なお、得られたN,N’-(ヘキサン-1,6-ジイル)ビス(2,2,2-トリクロロアセトアミド)は、約279℃で熱分解して対応するジイソシアネート化合物に変換された。
1H NMR(500MHz,DMSO-d6,20℃):δ9.00(br,2H,NH),1.58(q,J=6.7Hz,4H),1.49(quin,J=6.7Hz,4H),1.28(quin,J=6.7Hz,4H)
13C NMR(125MHz,DMSO-d6,20℃):δ161.26,92.90,40.49,28.09,25.62
FT-IR(ATR):3318,2953,2926,2858,1696,1528,1439,1293,1263,1219,818,739,642cm-1
FAB-MS: m/z calculated for [M+H]+ (C1014Cl622) 406.9157, found 406.7796
Example 5: N, N'-(hexane-1,6-diyl) bis (2,2,2-trichloroacetamide)
Figure JPOXMLDOC01-appb-C000017

Tetrachlorethylene (20 mL, 195 mmol) and 1,6-diaminohexane (1.17 g, 10 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” SEN LIGHTS) , 20 W, φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2.5 hours under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 150 ° C., and the mixture was refluxed for 2 hours. The unreacted component of the photodegradable gas was treated by passing it through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. When the precipitate was collected by suction filtration and dried, the desired substance of the flesh-colored solid could be isolated (yield: 68%, yield: 2.8 g, 6.8 mmol). The obtained N, N'-(hexane-1,6-diyl) bis (2,2,2-trichloroacetamide) was thermally decomposed at about 279 ° C. and converted into the corresponding diisocyanate compound.
1 1 H NMR (500 MHz, DMSO-d 6 , 20 ° C.): δ9.00 (br, 2H, NH), 1.58 (q, J = 6.7 Hz, 4H), 1.49 (quin, J = 6) .7Hz, 4H), 1.28 (quin, J = 6.7Hz, 4H)
13 C NMR (125 MHz, DMSO-d 6 , 20 ° C.): δ161.26.92.90,40.49,28.09,25.62
FT-IR (ATR): 3318, 2953, 2926, 2858, 1696, 1528, 1439, 1293, 1263, 1219, 818, 739, 642 cm -1
FAB-MS: m / z calculated for [M + H] + (C 10 H 14 Cl 6 N 2 O 2 ) 406.9157, found 406.7796
 実施例6: N,N’-(4-メチル-1,3-フェニレン)ビス(2,2,2-トリクロロアセトアミド)
Figure JPOXMLDOC01-appb-C000018

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)と2,4-ジアミノトルエン(1.23g,10mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、80℃で2.5時間光照射した。光照射をストップし、バス温度を150℃に昇温し、2時間還流した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、n-ヘキサンを加えると沈殿が生じた。吸引濾過で沈殿を濾取し、乾燥させると肌色固体の目的物を単離することができた(収率:70%,収量:2.9g,7.0mmol)。
1H NMR(500MHz,DMSO-d6,20℃):δ10.89(s,1H,NH),10.65(s,1H,NH),7.58(s,1H,Phenyl),7.57(d,J=7.5Hz,1H,Phenyl),7.34(d,J=7.5Hz,1H,Phenyl),2.19(s,3H,Methyl)
13C NMR(125MHz,DMSO-d6,20℃):δ160.45,159.59,135.32,134.69,131.45,130.65,120.20,119.71,92.81,79.05,16.69
FT-IR(ATR):3273,1697,1613,1497,1274,1230,838,812,793,753,653,597cm-1
FAB-MS: m/z calculated for [M+H]+ (C118Cl622) 412.8688, found 412.5064
Example 6: N, N'-(4-methyl-1,3-phenylene) bis (2,2,2-trichloroacetamide)
Figure JPOXMLDOC01-appb-C000018

Tetrachlorethylene (20 mL, 195 mmol) and 2,4-diaminotoluene (1.23 g, 10 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” SEN LIGHTS) , 20 W, φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2.5 hours under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 150 ° C., and the mixture was refluxed for 2 hours. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. When the precipitate was collected by suction filtration and dried, the target substance of a flesh-colored solid could be isolated (yield: 70%, yield: 2.9 g, 7.0 mmol).
1 1 H NMR (500 MHz, DMSO-d 6 , 20 ° C.): δ10.89 (s, 1H, NH), 10.65 (s, 1H, NH), 7.58 (s, 1H, Phenyl), 7. 57 (d, J = 7.5Hz, 1H, Phenyl), 7.34 (d, J = 7.5Hz, 1H, Phenyl), 2.19 (s, 3H, Methyl)
13 C NMR (125 MHz, DMSO-d 6 , 20 ° C.): δ160.45, 159.59, 135.32, 134.69, 131.45, 130.65, 120.20, 119.71, 92.81 , 79.05, 16.69
FT-IR (ATR): 3273, 1697, 1613, 1497, 1274, 1230, 838, 812,793, 753, 653, 597 cm -1
FAB-MS: m / z calculated for [M + H] + (C 11 H 8 Cl 6 N 2 O 2 ) 412.8688, found 421.5064
 実施例7: 4,4’-メチレンジフェニルジイソシアネート
 (1)N,N’-[メチレンジ(4,1-フェニレン)]ビス(2,2,2-トリクロロアセトアミド)
Figure JPOXMLDOC01-appb-C000019

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)と4,4’-ジアミノジフェニルメタン(3.95g,20mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、80℃で2時間光照射した。光照射をストップし、バス温度を150℃に昇温し、2時間還流した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理を行った。加熱および酸素バブリングをストップし、室温になるまで静置し、n-ヘキサンを加えると沈殿が生じた。吸引濾過で沈殿を濾取し、乾燥させると黄土色固体の目的物を単離することができた(収率:85%,収量:8.3g,16.9mmol)。
1H NMR(500MHz,DMSO-d6,20℃):δ7.57(d,J=8.5Hz,4H,Phenyl),7.23(d,J=8.5Hz,4H,Phenyl),7.03(d,J=7.5Hz,1H,NH),6.81(d,J=8.0Hz,1H,NH),3.93(s,2H,Benzyl)
13C NMR(125MHz,DMSO-d6,20℃):δ159.54,138.21,135.07,129.21,128.90,121.53,93.00
FT-IR(ATR):3378,3329,1712,1699,1597,1527,1509,1408,1311,1242,883,813,730,674,591cm-1
FAB-MS: m/z calculated for [M+H]+ (C1712Cl622) 488.9001,found 488.6837
Example 7: 4,4'-methylene diphenyl diisocyanate (1) N, N'-[methylene di (4,5-phenylene)] bis (2,2,2-trichloroacetamide)
Figure JPOXMLDOC01-appb-C000019

Tetrachlorethylene (20 mL, 195 mmol) and 4,4'-diaminodiphenylmethane (3.95 g, 20 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp ("UVL20PH-6" SEN LIGHTS). A 20 W, φ24 × 120 mm) manufactured by the company was attached to assemble the reaction apparatus schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2 hours under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 150 ° C., and the mixture was refluxed for 2 hours. The unreacted component of the photodegradable gas was treated by passing it through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. The precipitate was collected by suction filtration and dried to isolate the desired ocher solid (yield: 85%, yield: 8.3 g, 16.9 mmol).
1 1 H NMR (500 MHz, DMSO-d 6 , 20 ° C.): δ7.57 (d, J = 8.5 Hz, 4H, Phenyl), 7.23 (d, J = 8.5 Hz, 4H, Phenyl), 7 .03 (d, J = 7.5Hz, 1H, NH), 6.81 (d, J = 8.0Hz, 1H, NH), 3.93 (s, 2H, Benzyl)
13 C NMR (125 MHz, DMSO-d 6 , 20 ° C.): δ159.54, 138.21, 135.07, 129.21, 128.90, 121.53, 93.00
FT-IR (ATR): 3378, 3329, 1712, 1699, 1597, 1527, 1509, 1408, 1311, 1242, 883,833,730,674,591 cm -1
FAB-MS: m / z calculated for [M + H] + (C 17 H 12 Cl 6 N 2 O 2 ) 488.9001, found 488.6837
 (2)4,4’-メチレンジフェニルジイソシアネート
Figure JPOXMLDOC01-appb-C000020

 10mLのナス型フラスコに、N,N’-[メチレンジ(4,1-フェニレン)]ビス(2,2,2-トリクロロアセトアミド)(120mg,0.25mmol)を加え、270℃で10分間加熱したところ、黒色固体が得られた。示唆熱天秤-質量分析法および1H NMRで分析した結果、59%のNMR収率で目的物が得られていることが分かった。また、副生成物であるクロロホルムの脱離を確認することができた。
(2) 4,4'-Methylene diphenyl diisocyanate
Figure JPOXMLDOC01-appb-C000020

N, N'-[methylenedi (4,5-phenylene)] bis (2,2,2-trichloroacetamide) (120 mg, 0.25 mmol) was added to a 10 mL eggplant-shaped flask, and the mixture was heated at 270 ° C. for 10 minutes. However, a black solid was obtained. Suggested thermal balance-As a result of analysis by mass spectrometry and 1 H NMR, it was found that the desired product was obtained with an NMR yield of 59%. In addition, the elimination of chloroform, which is a by-product, could be confirmed.
 実施例8: N-(2,2,2-トリクロロアセチル)ベンズアミド
Figure JPOXMLDOC01-appb-C000021

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)とベンズアミド(1.22g,10mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、50℃で1.5時間光照射した。光照射をストップし、バス温度を80℃に昇温し、1時間撹拌した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、n-ヘキサンを加えると沈殿が生じた。吸引濾過で沈殿を濾取し、乾燥させると白色固体の目的物を単離することができた(収率:30%,収量:0.8g,3.0mmol)。
1H NMR(500MHz,CDCl3,20℃):δ9.39(br,1H,NH),7.85(d,J=8.2Hz,2H,Phenyl),7.68(t,J=8.2Hz,1H,Phenyl),7.56(t,J=8.2Hz,2H,Phenyl)
13C NMR(125MHz,CDCl3,20℃):δ164.25,157.63,133.98,132.07,129.28,127.86,92.25
FT-IR(ATR):3280,1765,1699,1505,1488,1252,1177,1157,1068,824,723,710,661,605cm-1
FAB-MS: m/z calculated for [M+H]+ (C96Cl3NO2) 265.9464, found 265.7391
Example 8: N- (2,2,2-trichloroacetyl) benzamide
Figure JPOXMLDOC01-appb-C000021

Tetrachlorethylene (20 mL, 195 mmol) and benzamide (1.22 g, 10 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS, 20 W, φ24) are placed. × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 50 ° C. for 1.5 hours under stirring conditions. Light irradiation was stopped, the bath temperature was raised to 80 ° C., and the mixture was stirred for 1 hour. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. The precipitate was collected by suction filtration and dried to isolate the desired substance as a white solid (yield: 30%, yield: 0.8 g, 3.0 mmol).
1 1 H NMR (500 MHz, CDCl 3 , 20 ° C.): δ9.39 (br, 1H, NH), 7.85 (d, J = 8.2 Hz, 2H, Phenyl), 7.68 (t, J = 8) .2Hz, 1H, Phenyl), 7.56 (t, J = 8.2Hz, 2H, Phenyl)
13 C NMR (125 MHz, CDCl 3 , 20 ° C.): δ164.25, 157.63, 133.98, 132.07, 129.28, 127.86, 92.25
FT-IR (ATR): 3280, 1765, 1699, 1505, 1488, 1252, 1177, 1157, 1068, 824, 723, 710, 661,605 cm -1
FAB-MS: m / z calculated for [M + H] + (C 9 H 6 Cl 3 NO 2 ) 265.9464, found 265.7391
 実施例9: N-ペンタフルオロフェニル-2,2,2-トリクロロアセトアミド
Figure JPOXMLDOC01-appb-C000022

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)とペンタフロオロアニリン(2.26mL,20mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、80℃で2時間光照射した。光照射をストップし、バス温度を150℃に昇温し、2時間還流した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、n-ヘキサンを加えると沈殿が生じた。吸引濾過で沈殿を濾取し、乾燥させると黄土色固体の目的物を単離することができた(収率:65%,収量:4.2g,12.9mmol)。
1H NMR(500MHz,CDCl3,20℃):δ7.92(br,1H,NH)
13C NMR(125MHz,CDCl3,20℃):δ160.26,144.32,142.30,140.16,138.96,136.96,110.22,91.29
19F NMR(376MHz,CDCl3,20℃):δ-144.22,-153.37,-160.90
FT-IR(ATR):3264,1718,1523,1496,1458,1235,1151,1001,965,837,818,679,617cm-1
FAB-MS: m/z calculated for [M+H]+ (C8HCl35NO) 327.9044, found 327.8010
Example 9: N-pentafluorophenyl-2,2,2-trichloroacetamide
Figure JPOXMLDOC01-appb-C000022

Tetrachlorethylene (20 mL, 195 mmol) and pentafluoroaniline (2.26 mL, 20 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS), 20 W, φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2 hours under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 150 ° C., and the mixture was refluxed for 2 hours. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. The precipitate was collected by suction filtration and dried to isolate the desired ocher solid (yield: 65%, yield: 4.2 g, 12.9 mmol).
1 1 H NMR (500 MHz, CDCl 3 , 20 ° C.): δ7.92 (br, 1H, NH)
13 C NMR (125 MHz, CDCl 3 , 20 ° C.): δ160.26, 144.32, 142.30, 140.16, 138.96, 136.96, 110.22, 91.29
19 F NMR (376 MHz, CDCl 3 , 20 ° C.): δ-144.22, 153.37, -160.90
FT-IR (ATR): 3264, 1718, 1523, 1496, 1458, 1235, 1151, 1001, 965, 837, 818, 679, 617 cm -1
FAB-MS: m / z calculated for [M + H] + (C 8 HCl 3 F 5 NO) 327.9044, found 327.8010
 実施例10: 2,2,2-トリクロロ-N-(4-フルオロフェニル)アセトアミド
Figure JPOXMLDOC01-appb-C000023

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)と4-フルオロアニリン(1.92mL,20mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、80℃で2時間光照射した。光照射をストップし、バス温度を150℃に昇温し、1時間還流した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、n-ヘキサンを加えると沈殿が生じた。吸引濾過で沈殿を濾取し、乾燥させると灰色固体の目的物を単離することができた(収率:51%,収量:2.6g,10.2mmol)。
1H NMR(500MHz,CDCl3,20℃):δ8.36(br,1H,NH),7.53-7.56(m,2H,Phenyl),7.08-7.11(m,2H,Phenyl)
13C NMR(125MHz,CDCl3,20℃):δ161.35,159.41,131.86,122.44,116.12,92.65
19F NMR(376MHz,CDCl3,20℃):δ-115.24
FT-IR(ATR):3303,1692,1524,1507,1410,1223,828,816,799cm-1
FAB-MS: m/z calculated for [M+H]+ (C85Cl3FNO) 255.9421, found 255.7726
Example 10: 2,2,2-trichloro-N- (4-fluorophenyl) acetamide
Figure JPOXMLDOC01-appb-C000023

Tetrachlorethylene (20 mL, 195 mmol) and 4-fluoroaniline (1.92 mL, 20 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS), 20 W, φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2 hours under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 150 ° C., and the mixture was refluxed for 1 hour. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. The precipitate was collected by suction filtration and dried to isolate the desired gray solid (yield: 51%, yield: 2.6 g, 10.2 mmol).
1 1 H NMR (500 MHz, CDCl 3 , 20 ° C.): δ8.36 (br, 1H, NH), 7.53-7.56 (m, 2H, Phenyl), 7.08-7.11 (m, 2H) , Phenyl)
13 C NMR (125 MHz, CDCl 3 , 20 ° C.): δ161.35, 159.41, 131.86, 122.44, 116.12, 92.65
19 F NMR (376 MHz, CDCl 3 , 20 ° C.): δ-115.24
FT-IR (ATR): 3303,1692,1524,1507,1410,1223,828,816,799cm -1
FAB-MS: m / z calculated for [M + H] + (C 8 H 5 Cl 3 FNO) 255.9421, found 255.7726
 実施例11: 2,2,2-トリクロロ-N-(2-フルオロフェニル)アセトアミド
Figure JPOXMLDOC01-appb-C000024

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)と2-フルオロアニリン(3.87mL,40mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、80℃で2.5時間光照射した。光照射をストップし、バス温度を120℃に昇温し、2時間還流した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、n-ヘキサンを加えると沈殿が生じた。吸引濾過で沈殿を濾取し、乾燥させると黒褐色固体の目的物を単離することができた(収率:85%,収量:8.7g,34.0mmol)。
1H NMR(500MHz,CDCl3,20℃):δ8.68(br,1H,NH),8.23-8.26(m,1H,Phenyl),7.17-7.21(m,3H,Phenyl)
13C NMR(125MHz,CDCl3,20℃):δ163.81,159.35,154.06,152.11,126.46,124.93,121.60,115.23,92.37
19F NMR(376MHz,CDCl3,20℃):δ-130.23
FT-IR(ATR):3411,1766,1721,1621,1599,1536,1486,1458,1319,1260,1216,1191,1103,882,815,750,670,579cm-1
FAB-MS: m/z calculated for [M+H]+ (C85Cl3FNO) 255.9421, found 255.6852
Example 11: 2,2,2-trichloro-N- (2-fluorophenyl) acetamide
Figure JPOXMLDOC01-appb-C000024

Tetrachlorethylene (20 mL, 195 mmol) and 2-fluoroaniline (3.87 mL, 40 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS), 20 W, φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2.5 hours under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 120 ° C., and the mixture was refluxed for 2 hours. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. The precipitate was collected by suction filtration and dried to isolate the desired product as a dark brown solid (yield: 85%, yield: 8.7 g, 34.0 mmol).
1 1 H NMR (500 MHz, CDCl 3 , 20 ° C.): δ8.68 (br, 1H, NH), 8.23-8.26 (m, 1H, Phenyl), 7.17-7.21 (m, 3H) , Phenyl)
13 C NMR (125 MHz, CDCl 3 , 20 ° C.): δ163.81,159.35,154.06,152.11,126.46,124.93,121.60,115.23,92.37
19 F NMR (376 MHz, CDCl 3 , 20 ° C.): δ-130.23
FT-IR (ATR): 3411, 1766, 1721, 1621, 1599, 1536, 1486, 1458, 1319, 1260, 1216, 1191, 1103, 882,815,750, 670, 579 cm -1
FAB-MS: m / z calculated for [M + H] + (C 8 H 5 Cl 3 FNO) 255.9421, found 255.6852
 実施例12: 2,2,2-トリクロロ-N-(3-フルオロフェニル)アセトアミド
Figure JPOXMLDOC01-appb-C000025

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)と3-フルオロアニリン(3.84mL,40mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、80℃で2.5時間光照射した。光照射をストップし、バス温度を120℃に昇温し、2時間還流した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、n-ヘキサンを加えると沈殿が生じた。吸引濾過で沈殿を濾取し、乾燥させると肌色固体の目的物を単離することができた(収率:51%,収量:5.2g,20.3mmol)。
1H NMR(500MHz,CDCl3,20℃):δ8.35(br,1H,NH),7.51-7.53(m,1H,Phenyl),7.34-7.37(m,1H,Phenyl),7.24-7.26(m,1H,Phenyl),6.94-6.95(m,1H,Phenyl)
13C NMR(125MHz,CDCl3,20℃):δ163.97,162.01,159.22,137.36,130.51,115.69,112.91,107.95,92.56
19F NMR(376MHz,CDCl3,20℃):δ-110.31
FT-IR(ATR):3312,1697,1607,1531,1489,1444,1433,1221,841,813,773,672,640cm-1
FAB-MS: m/z calculated for [M+H]+ (C85Cl3FNO) 255.9421, found 255.9473
Example 12: 2,2,2-trichloro-N- (3-fluorophenyl) acetamide
Figure JPOXMLDOC01-appb-C000025

Tetrachlorethylene (20 mL, 195 mmol) and 3-fluoroaniline (3.84 mL, 40 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN LIGHTS), 20 W, φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 2.5 hours under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 120 ° C., and the mixture was refluxed for 2 hours. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. When the precipitate was collected by suction filtration and dried, the target substance of a flesh-colored solid could be isolated (yield: 51%, yield: 5.2 g, 20.3 mmol).
1 1 H NMR (500 MHz, CDCl 3 , 20 ° C): δ8.35 (br, 1H, NH), 7.51-7.53 (m, 1H, Phenyl), 7.34-7.37 (m, 1H) , Phenyl), 7.24-7.26 (m, 1H, Phenyl), 6.94-6.95 (m, 1H, Phenyl)
13 C NMR (125 MHz, CDCl 3 , 20 ° C.): δ163.97, 162.01,159.22,137.36,130.51,115.69,112.91,107.95,92.56
19 F NMR (376 MHz, CDCl 3 , 20 ° C.): δ-110.31
FT-IR (ATR): 3312, 1697, 1607, 1531, 1489, 1444, 1433, 1221, 841, 833, 773, 672, 640 cm -1
FAB-MS: m / z calculated for [M + H] + (C 8 H 5 Cl 3 FNO) 255.9421, found 255.9473
 実施例13: 2,2,2-トリクロロ-N-(2,2,2-トリフルオロエチル)アセトアミド
Figure JPOXMLDOC01-appb-C000026

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)と2,2,2-トリフルオロエチルアミン塩酸塩(2.72g,20mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、80℃で1時間光照射した。光照射をストップし、バス温度を150℃に昇温し、2時間還流した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、n-ヘキサンを加えると沈殿が生じた。吸引濾過で沈殿を濾取し、乾燥させると淡黄色固体の目的物を単離することができた(収率:71%,収量:3.5g,14.2mmol)。
1H NMR(500MHz,CDCl3,20℃):δ6.99(br,1H,NH),4.01-4.07(m,2H,-CH2-)
13C NMR(125MHz,CDCl3,20℃):δ162.44,123.48,91.66,42.52
19F NMR(376MHz,CDCl3,20℃):δ-72.22
FT-IR(ATR):3331,1703,1672,1532,1424,1397,1274,1236,1158,842,823,665,601cm-1
FAB-MS: m/z calculated for [M+H]+ (C43Cl33NO) 243.9232, found 243.8126
Example 13: 2,2,2-trichloro-N- (2,2,2-trifluoroethyl) acetamide
Figure JPOXMLDOC01-appb-C000026

Tetrachlorethylene (20 mL, 195 mmol) and 2,2,2-trifluoroethylamine hydrochloride (2.72 g, 20 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-” 6 ”SEN LIGHTS, 20 W, φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 80 ° C. for 1 hour under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 150 ° C., and the mixture was refluxed for 2 hours. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. The precipitate was collected by suction filtration and dried to isolate the desired substance as a pale yellow solid (yield: 71%, yield: 3.5 g, 14.2 mmol).
1 1 H NMR (500 MHz, CDCl 3 , 20 ° C.): δ6.99 (br, 1H, NH), 4.01-4.07 (m, 2H, -CH 2- )
13 C NMR (125 MHz, CDCl 3 , 20 ° C): δ162.44, 123.48,91.66,42.52
19 F NMR (376 MHz, CDCl 3 , 20 ° C.): δ-72.22
FT-IR (ATR): 3331, 1703, 1672, 1532, 1244, 1397, 1274, 1236, 1158, 842, 823, 665,601 cm -1
FAB-MS: m / z calculated for [M + H] + (C 4 H 3 Cl 3 F 3 NO) 243.9232, found 243.8126
 実施例14: 2,6-ジフルオロ-N-(2,2,2-トリクロロアセチル)ベンズアミド
Figure JPOXMLDOC01-appb-C000027

 直径42mmの円筒形フラスコにテトラクロロエチレン(20mL,195mmol)と2,6-ジフルオロベンズアミド(3.14g,20mmol)を入れ、直径30mmの石英ガラス製ジャケットおよび低圧水銀ランプ(「UVL20PH-6」SEN LIGHTS社製,20W,φ24×120mm)を取り付けて、図1に模式的に示す反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、50℃で1時間光照射した。光照射をストップし、バス温度を120℃に昇温し、1時間還流した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、n-ヘキサンを加えると沈殿が生じた。吸引濾過で沈殿を濾取し、乾燥させると白色固体の目的物を単離することができた(収率:77%,収量:4.6g,15.3mmol)。
1H NMR(500MHz,CDCl3,20℃):δ9.26(br,1H,NH),7.49-7.53(m,1H,Phenyl),7.01-7.05(m,2H,Phenyl)
13C NMR(125MHz,CDCl3,20℃):δ161.03,159.73,159.00,158.06,133.76,112.25,91.63
19F NMR(376MHz,CDCl3,20℃):δ-111.58
FT-IR(ATR):3287,3207,1771,1708,1624,1591,1506,1468,1281,1252,1233,1173,1150,1087,1011,839,822,794,655,582cm-1
FAB-MS: m/z calculated for [M+H]+ (C94Cl3FNO2) 301.9276, found 301.7060
Example 14: 2,6-difluoro-N- (2,2,2-trichloroacetyl) benzamide
Figure JPOXMLDOC01-appb-C000027

Tetrachlorethylene (20 mL, 195 mmol) and 2,6-difluorobenzamide (3.14 g, 20 mmol) are placed in a cylindrical flask with a diameter of 42 mm, and a quartz glass jacket with a diameter of 30 mm and a low-pressure mercury lamp (“UVL20PH-6” SEN LIGHTS) , 20 W, φ24 × 120 mm) was attached to assemble the reactor schematically shown in FIG. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 50 ° C. for 1 hour under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 120 ° C., and the mixture was refluxed for 1 hour. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. The precipitate was collected by suction filtration and dried to isolate the desired white solid (yield: 77%, yield: 4.6 g, 15.3 mmol).
1 1 H NMR (500 MHz, CDCl 3 , 20 ° C.): δ9.26 (br, 1H, NH), 7.49-7.53 (m, 1H, Phenyl), 7.01-7.05 (m, 2H) , Phenyl)
13 C NMR (125 MHz, CDCl 3 , 20 ° C.): δ161.03, 159.73, 159.00, 158.06, 133.76, 112.25, 91.63
19 F NMR (376 MHz, CDCl 3 , 20 ° C.): δ-111.58
FT-IR (ATR): 3287, 3207, 1771, 1708, 1624, 1591, 1506, 1468, 1281, 1252, 1233, 1173, 1150, 1087, 1011, 839, 822, 794,655,582 cm -1
FAB-MS: m / z calculated for [M + H] + (C 9 H 4 Cl 3 FNO 2 ) 301.9276, found 301.7060
 実施例15: 2,6-ジフルオロベンゾイルイソシアネートの合成
Figure JPOXMLDOC01-appb-C000028

 2,6-ジフルオロ-N-(2,2,2-トリクロロアセチル)ベンズアミド(10mg,33μmol)をクロロホルム(0.1mL)に溶解した。得られた溶液に室温でトリエチルアミンを一滴添加し、混合した。当該反応液を、1H NMRと電界脱離質量分析法により分析した。その結果、イソシアネートへの変換反応は定量的に進行しており、2,6-ジフルオロベンゾイルイソシアネートの分子イオンピークであるm/z 183が検出された。また、同位体パターンより、2,6-ジフルオロベンゾイルイソシアネートには塩素原子が含まれていないことも確認された。
Example 15: Synthesis of 2,6-difluorobenzoyl isocyanate
Figure JPOXMLDOC01-appb-C000028

2,6-Difluoro-N- (2,2,2-trichloroacetyl) benzamide (10 mg, 33 μmol) was dissolved in chloroform (0.1 mL). A drop of triethylamine was added to the obtained solution at room temperature and mixed. The reaction solution was analyzed by 1 H NMR and electric field desorption mass spectrometry. As a result, the conversion reaction to isocyanate proceeded quantitatively, and m / z 183, which is the molecular ion peak of 2,6-difluorobenzoyl isocyanate, was detected. It was also confirmed from the isotope pattern that 2,6-difluorobenzoyl isocyanate did not contain chlorine atoms.
 実施例16: ベンジルイソシアネートの合成
Figure JPOXMLDOC01-appb-C000029

 N-(2,2,2-トリクロロアセチル)ベンズアミド(10mg,38μmol)をクロロホルム(0.1mL)に溶解した。得られた溶液に室温でトリエチルアミンを一滴添加し、混合した。当該反応液を実施例15と同様の条件で分析したところ、ベンジルイソシアネートが定量的に生成していることが1H NMRにより確認された。
Example 16: Synthesis of benzyl isocyanate
Figure JPOXMLDOC01-appb-C000029

N- (2,2,2-trichloroacetyl) benzamide (10 mg, 38 μmol) was dissolved in chloroform (0.1 mL). A drop of triethylamine was added to the obtained solution at room temperature and mixed. When the reaction solution was analyzed under the same conditions as in Example 15, it was confirmed by 1 1 H NMR that benzyl isocyanate was quantitatively produced.
 実施例17: ベンジル ベンジルカルバメートの合成
Figure JPOXMLDOC01-appb-C000030

 50mLのナス型フラスコに、N-ベンジル-2,2,2-トリクロロアセトアミド(500mg,2mmol)、ベンジルアルコール(0.23mL,2.2mmol)、およびDBU(1.0mL,0.15mmol)を入れて混合し、80℃で25時間撹拌した。反応液にクロロホルムと塩酸を加えて分液し、有機層を無水硫酸ナトリウムで乾燥させた。溶媒と未反応原料を減圧留去し、得られた固体をn-ヘキサンで洗浄し、吸引濾過で沈殿を濾取し、乾燥させることにより、肌色固体の目的物を単離することができた(収率:77%,収量:0.37g,1.55mmol)。
Example 17: Synthesis of benzyl benzyl carbamate
Figure JPOXMLDOC01-appb-C000030

In a 50 mL eggplant-shaped flask, put N-benzyl-2,2,2-trichloroacetamide (500 mg, 2 mmol), benzyl alcohol (0.23 mL, 2.2 mmol), and DBU (1.0 mL, 0.15 mmol). And mixed, and stirred at 80 ° C. for 25 hours. Chloroform and hydrochloric acid were added to the reaction solution to separate them, and the organic layer was dried over anhydrous sodium sulfate. The solvent and the unreacted raw material were distilled off under reduced pressure, the obtained solid was washed with n-hexane, the precipitate was collected by suction filtration, and dried, whereby the desired substance of the skin-colored solid could be isolated. (Yield: 77%, Yield: 0.37 g, 1.55 mmol).
 実施例18: エチレン ビス(N-ベンジルカルバメート)の合成
Figure JPOXMLDOC01-appb-C000031

 100mLのナス型フラスコ中、30mLのアセトニトリルにN-ベンジル-2,2,2-トリクロロアセトアミド(760mg,3mmol)、エチレングリコール(89L,1.6mmol)、およびDBU(1.12mL,7.5mmol)を溶解させ、80℃で21時間撹拌した。溶媒と未反応原料を減圧留去した。得られたオイル状残渣にクロロホルムと塩酸を加えて分液し、有機層を無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、得られた固体をn-ヘキサンで洗浄し、吸引濾過で沈殿を濾取し、乾燥させることにより、肌色固体の目的物を単離することができた(収率:73%,収量:0.38g,1.16mmol)。
Example 18: Synthesis of ethylene bis (N-benzyl carbamate)
Figure JPOXMLDOC01-appb-C000031

N-benzyl-2,2,2-trichloroacetamide (760 mg, 3 mmol), ethylene glycol (89 L, 1.6 mmol), and DBU (1.12 mL, 7.5 mmol) in 30 mL acetonitrile in a 100 mL eggplant-shaped flask. Was dissolved and stirred at 80 ° C. for 21 hours. The solvent and the unreacted raw material were distilled off under reduced pressure. Chlorogen and hydrochloric acid were added to the obtained oily residue to separate the liquids, and the organic layer was dried with anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, the obtained solid was washed with n-hexane, the precipitate was collected by suction filtration, and dried, whereby the desired substance of the flesh-colored solid could be isolated (yield:). 73%, yield: 0.38 g, 1.16 mmol).
 実施例19: ヘキシル フェニルカルバメートの合成
Figure JPOXMLDOC01-appb-C000032

 100mLのナス型フラスコ中、30mLのアセトニトリルに、2,2,2-トリクロロ-N-フェニルアセトアミド(720mg,3mmol)、1-ヘキサノール(450μL,3.6mmol)、およびDBU(1.12mL,7.5mmol)を溶解させ、80℃で16時間撹拌した。反応液にクロロホルムと塩酸を加えて分液し、有機層を無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去することにより、茶色で油状の化合物を得ることができた。NMRで分析した結果、70%のNMR収率で目的物が得られていることが分かった。
Example 19: Synthesis of Hexyl Phenyl Carbamate
Figure JPOXMLDOC01-appb-C000032

In a 100 mL eggplant-shaped flask, in 30 mL of acetonitrile, 2,2,2-trichloro-N-phenylacetamide (720 mg, 3 mmol), 1-hexanol (450 μL, 3.6 mmol), and DBU (1.12 mL, 7. 5 mmol) was dissolved and stirred at 80 ° C. for 16 hours. Chloroform and hydrochloric acid were added to the reaction solution to separate them, and the organic layer was dried over anhydrous sodium sulfate. By distilling off the solvent under reduced pressure, a brown and oily compound could be obtained. As a result of analysis by NMR, it was found that the target product was obtained with an NMR yield of 70%.
 実施例20: 1-ヘキシル-3-フェニルウレアの合成
Figure JPOXMLDOC01-appb-C000033

 50mLのナス型フラスコ中、20mLのアセトニトリルに2,2,2-トリクロロ-N-フェニルアセトアミド(490mg,2mmol)、ヘキシルアミン(260μL,2mmol)、およびDBU(300μL,2mmol)を溶解させ、80℃で20時間撹拌した。反応液にクロロホルムと塩酸を加えて分液し、有機層を無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去することにより、茶色固体が得られた。NMRで分析した結果、26%のNMR収率で目的物が得られていることが分かった。
Example 20: Synthesis of 1-hexyl-3-phenylurea
Figure JPOXMLDOC01-appb-C000033

In a 50 mL eggplant-shaped flask, 2,2,2-trichloro-N-phenylacetamide (490 mg, 2 mmol), hexylamine (260 μL, 2 mmol), and DBU (300 μL, 2 mmol) were dissolved in 20 mL of acetonitrile, and 80 ° C. Was stirred for 20 hours. Chloroform and hydrochloric acid were added to the reaction solution to separate them, and the organic layer was dried over anhydrous sodium sulfate. A brown solid was obtained by distilling off the solvent under reduced pressure. As a result of analysis by NMR, it was found that the target product was obtained with an NMR yield of 26%.
 実施例21: N,N’-(2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジイル)ビス(2,2,2-トリクロロアセトアミド)の合成
Figure JPOXMLDOC01-appb-C000034

 円筒形フラスコ(φ42mm)にテトラクロロエチレン(20mL,195mmol)と2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジアミニウムクロライド(1.00g,3.0mmol)を入れ、石英ガラス製ジャケット(φ30mm)および低圧水銀ランプ(「UVL20PH-6」セン特殊光源社製,20W,φ24×120mm)を取り付けて反応装置を組み立てた。反応溶液に酸素を0.5L/minの速度でバブリングし、撹拌条件下、50℃で2.5時間光照射した。光照射をストップし、バス温度を115℃に昇温し、2時間還流した。光分解ガスの未反応成分は、飽和NaHCO3水溶液に通して処理した。加熱および酸素バブリングをストップし、室温になるまで静置し、n-ヘキサンを加えると沈殿が生じた。吸引濾過で沈殿を濾取し、乾燥させることにより白色固体の目的物を得た(収率:84%,収量:1.4g,2.5mmol)。
1H NMR(500MHz,DMSO-d6,20℃):δ9.65(s,2H,NH),4.05(s,4H,NHCH2
13C NMR(125MHz,DMSO-d6,20℃):δ162.53,115.60,110.78,91.94
19F NMR(376MHz,DMSO-d6,20℃):δ-117.10,-123.30
FT-IR(ATR):3315,1706,1530,1155,1122,832,821,632cm-1
FAB-MS: m/z calculated for [M+H]+ (C106Cl6822) 550.84, found 550.88
Example 21: Synthesis of N, N'-(2,2,3,3,4,5,5-octafluorohexane-1,6-diyl) bis (2,2,2-trichloroacetamide)
Figure JPOXMLDOC01-appb-C000034

Tetrachlorethylene (20 mL, 195 mmol) and 2,2,3,3,4,5,5-octafluorohexane-1,6-diaminium chloride (1.00 g, 3.0 mmol) in a cylindrical flask (φ42 mm) A quartz glass jacket (φ30 mm) and a low-pressure mercury lamp (“UVL20PH-6” manufactured by Sen Special Light Source Co., Ltd., 20 W, φ24 × 120 mm) were attached to assemble the reactor. The reaction solution was bubbled with oxygen at a rate of 0.5 L / min and irradiated with light at 50 ° C. for 2.5 hours under stirring conditions. The light irradiation was stopped, the bath temperature was raised to 115 ° C., and the mixture was refluxed for 2 hours. The unreacted components of the photolysis gas were treated by passing through a saturated aqueous solution of NaHCO 3 . Heating and oxygen bubbling were stopped, allowed to stand to room temperature, and n-hexane was added to cause precipitation. The precipitate was collected by suction filtration and dried to obtain the desired product as a white solid (yield: 84%, yield: 1.4 g, 2.5 mmol).
1 1 H NMR (500 MHz, DMSO-d 6 , 20 ° C.): δ9.65 (s, 2H, NH), 4.05 (s, 4H, NHCH 2 )
13 C NMR (125 MHz, DMSO-d 6 , 20 ° C): δ162.53,115.60,110.78,91.94
19 F NMR (376 MHz, DMSO-d 6 , 20 ° C.): δ-117.10, -123.30
FT-IR (ATR): 3315, 1706, 1530, 1155, 112, 823, 821, 632 cm -1
FAB-MS: m / z calculated for [M + H] + (C 10 H 6 Cl 6 F 8 N 2 O 2 ) 550.84, found 550.88
 実施例22: ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000035

 50mLの一口ナスフラスコに、N,N’-(2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジイル)ビス(2,2,2-トリクロロアセトアミド)(0.27g,0.5mmol)、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン(0.16g,0.5mmol)、ジアザビシクロウンデセン(0.19mL,1.3mmol)、および溶媒としてアセトニトリル(5mL)を加え、90℃で60時間撹拌した。反応中、N,N’-(2,2,3,3,4,4,5,5-オクタフルオロヘキサン-1,6-ジイル)ビス(2,2,2-トリクロロアセトアミド)(0.27g,0.5mmol)を2回追加添加した。その後、反応液に、クロロホルム、水、および塩酸を加え、分液した。有機層を無水硫酸ナトリウムで乾燥させ、減圧濃縮した後に、70℃で2時間真空乾燥させることにより、薄茶色固体が得られた。NMRで分析した結果、81%のNMR収率で目的物が得られていることが分かった。
1H NMR(400MHz,CDCl3,20℃):δ/ppm=7.16-7.08(br.,4H,phenyl),6.94-6.86(br.,2H,NH),6.84-6.74(br.,4H,phenyl),4.45(br.,4H,methylene),4.22-4.04(m,4H,methylene),3.94(br.,4H,ethylene),1.63(s,6H,methyl)
HPLCによる平均分子量(ポリスチレン標準): Mw=2400,Mn=1900,Mw/Mn=1.26
Example 22: Polyurethane synthesis
Figure JPOXMLDOC01-appb-C000035

N, N'-(2,2,3,3,4,5,5-octafluorohexane-1,6-diyl) bis (2,2,2-trichloroacetoamide) in a 50 mL bite eggplant flask (0.27 g, 0.5 mmol), 2,2-bis [4- (2-hydroxyethoxy) phenyl] propane (0.16 g, 0.5 mmol), diazabicycloundecene (0.19 mL, 1.3 mmol) ), And acetonitrile (5 mL) as a solvent, and the mixture was stirred at 90 ° C. for 60 hours. During the reaction, N, N'-(2,2,3,3,4,5,5-octafluorohexane-1,6-diyl) bis (2,2,2-trichloroacetamide) (0.27 g) , 0.5 mmol) was added twice. Then, chloroform, water, and hydrochloric acid were added to the reaction solution to separate the solutions. The organic layer was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and then vacuum dried at 70 ° C. for 2 hours to obtain a light brown solid. As a result of analysis by NMR, it was found that the target product was obtained with an NMR yield of 81%.
1 1 H NMR (400 MHz, CDCl 3 , 20 ° C.): δ / ppm = 7.16-7.08 (br., 4H, phenyl), 6.94-6.86 (br., 2H, NH), 6 .84-6.74 (br., 4H, phenyl), 4.45 (br., 4H, methylene), 4.22-4.04 (m, 4H, methylene), 3.94 (br., 4H) , Ethylene), 1.63 (s, 6H, methyl)
Average molecular weight by HPLC (polystyrene standard): M w = 2400, M n = 1900, M w / M n = 1.26
 1: 光照射手段,  2: ジャケット,  3: ウォーターバス
 4: 撹拌子,  5: 熱媒または冷媒,  6: 筒状反応容器
1: Light irradiation means, 2: Jacket, 3: Water bath 4: Stirrer, 5: Heat medium or refrigerant, 6: Cylindrical reaction vessel

Claims (10)

  1.  N-置換トリハロアセトアミドを製造するための方法であって、
     クロロ、ブロモおよびヨードから選択される1種以上のハロゲノ基を有するテトラハロエチレン、および第一級アミン化合物を含む混合物に、酸素存在下、高エネルギー光を照射する工程を含むことを特徴とする方法。
    A method for producing N-substituted trihaloacetamides.
    It comprises a step of irradiating a mixture containing tetrahaloethylene having one or more halogeno groups selected from chloro, bromo and iodine with a primary amine compound with high energy light in the presence of oxygen. Method.
  2.  上記高エネルギー光照射工程後、高エネルギー光を照射せずに上記混合物を加熱する工程を含む請求項1に記載の方法。 The method according to claim 1, further comprising a step of heating the mixture without irradiating the high-energy light after the high-energy light irradiation step.
  3.  上記第一級アミン化合物以外に上記混合物へ塩基性化合物を添加しない請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein a basic compound is not added to the mixture other than the primary amine compound.
  4.  上記高エネルギー光が180nm以上、280nm以下の波長の光を含むものである請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the high-energy light includes light having a wavelength of 180 nm or more and 280 nm or less.
  5.  上記テトラハロエチレンがテトラクロロエチレンである請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the tetrachlorethylene is tetrachlorethylene.
  6.  イソシアネート化合物を製造するための方法であって、
     請求項1~5のいずれかに記載の方法によりN-置換トリハロアセトアミドを製造する工程、および、
     上記N-置換トリハロアセトアミドを塩基性化合物で処理するか、または加熱する工程を含むことを特徴とする方法。
    A method for producing isocyanate compounds,
    A step of producing an N-substituted trihaloacetamide by the method according to any one of claims 1 to 5, and
    A method comprising a step of treating the N-substituted trihaloacetamide with a basic compound or heating.
  7.  カルバメート化合物を製造するための方法であって、
     請求項1~5のいずれかに記載の方法によりN-置換トリハロアセトアミドを製造する工程、および、
     塩基性化合物の存在下、上記N-置換トリハロアセトアミドと水酸基含有化合物を反応させる工程を含むことを特徴とする方法。
    A method for producing carbamate compounds,
    A step of producing an N-substituted trihaloacetamide by the method according to any one of claims 1 to 5, and
    A method comprising a step of reacting the above N-substituted trihaloacetamide with a hydroxyl group-containing compound in the presence of a basic compound.
  8.  ウレア化合物を製造するための方法であって、
     請求項1~5のいずれかに記載の方法によりN-置換トリハロアセトアミドを製造する工程、および、
     塩基性化合物の存在下、上記N-置換トリハロアセトアミドとアミノ基含有化合物を反応させる工程を含むことを特徴とする方法。
    A method for producing urea compounds
    A step of producing an N-substituted trihaloacetamide by the method according to any one of claims 1 to 5, and
    A method comprising a step of reacting the above N-substituted trihaloacetamide with an amino group-containing compound in the presence of a basic compound.
  9.  下記式(I)で表されることを特徴とするN-置換トリハロアセトアミド。
    Figure JPOXMLDOC01-appb-C000001

    [式中、
     X1は、互いに同一であっても異なっていてもよい、フルオロ、クロロ、ブロモおよびヨードからなる群より選択されるハロゲノ基を示し、
     αは、C1-6アルキル基、ハロゲノ基、ニトロ基、およびシアノ基からなる群より選択される1以上の置換基を示し、
     nは、1以上、5以下の整数を示し、
     nが2以上の整数である場合、複数の置換基αは互いに同一であっても異なっていてもよい。]
    An N-substituted trihaloacetamide, which is represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001

    [During the ceremony,
    X 1 represents a halogeno group selected from the group consisting of fluoro, chloro, bromo and iodine, which may be the same or different from each other.
    α represents one or more substituents selected from the group consisting of C 1-6 alkyl groups, halogeno groups, nitro groups, and cyano groups.
    n represents an integer of 1 or more and 5 or less,
    When n is an integer of 2 or more, the plurality of substituents α may be the same or different from each other. ]
  10.  下記式(II)で表されることを特徴とするN-置換トリハロアセトアミド。
    Figure JPOXMLDOC01-appb-C000002

    [式中、
     X2は、互いに同一であっても異なっていてもよい、フルオロ、クロロ、ブロモおよびヨードからなる群より選択されるハロゲノ基を示し、
     Cpqrは二価フルオロ化炭化水素基を示し、
     pは、1以上、10以下の整数を示し、
     qは、1以上、(2×p)以下の整数を示し、
     rは、0以上、(2×p-1)以下の整数を示し、
     q+r=2×pである。]
    An N-substituted trihaloacetamide, which is represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000002

    [During the ceremony,
    X 2 represents a halogeno group selected from the group consisting of fluoro, chloro, bromo and iodine, which may be the same or different from each other.
    C p F q H r indicates a divalent fluorocarbonated hydrocarbon group,
    p indicates an integer of 1 or more and 10 or less,
    q indicates an integer of 1 or more and (2 × p) or less.
    r indicates an integer of 0 or more and (2 × p-1) or less.
    q + r = 2 × p. ]
PCT/JP2020/013124 2019-03-27 2020-03-24 Method for producing n-substituted trihaloacetamide WO2020196553A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019060647 2019-03-27
JP2019-060647 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196553A1 true WO2020196553A1 (en) 2020-10-01

Family

ID=72612036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013124 WO2020196553A1 (en) 2019-03-27 2020-03-24 Method for producing n-substituted trihaloacetamide

Country Status (1)

Country Link
WO (1) WO2020196553A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049023A1 (en) * 2009-10-20 2011-04-28 旭硝子株式会社 Processes for production of isocyanate compound, urethane compound and blocked isocyanate compound
WO2015156245A1 (en) * 2014-04-09 2015-10-15 国立大学法人神戸大学 Method for producing halogenated carboxylic acid ester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049023A1 (en) * 2009-10-20 2011-04-28 旭硝子株式会社 Processes for production of isocyanate compound, urethane compound and blocked isocyanate compound
WO2015156245A1 (en) * 2014-04-09 2015-10-15 国立大学法人神戸大学 Method for producing halogenated carboxylic acid ester

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANGELL, RICHRD M. ET AL.: "Biphenyl amide p38 kinase inhibitors 2: Optimisation and SAR", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 18, 2008, pages 324 - 328, XP022410909 *
BAYATYAN, R. B. ET AL.: "Liquid-phase oxidation of bromovinyl compounds with molecular oxygen", RUSSIAN JORNAL OF APPLIED CHEMISTRY, vol. 79, no. 11, 2006, pages 1849 - 1852, XP019467987 *
WOROBEY, B. L. ET AL., INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, vol. 14, 1983, pages 99 - 103 *
ZHANG, AILING ET AL., ASIAN JOURNAL OF ORGANIC CHEMISTRY, vol. 2, 2013, pages 5 72 - 578 *

Similar Documents

Publication Publication Date Title
Cotarca et al. Bis (trichloromethyl) carbonate in organic synthesis
JPS6033436B2 (en) Halosilyl carbamate and its manufacturing method
EP3882235A1 (en) Production method for isocyanate compound
WO2018211952A1 (en) Carbonate derivative production method
CN110719904A (en) Process for producing fluorinated carbonate derivative
JPS61287930A (en) Production of polysilazane
JPH0261937B2 (en)
WO2020196553A1 (en) Method for producing n-substituted trihaloacetamide
US20220289579A1 (en) Method for producing halogenated carbonyl
US4258201A (en) Process for the manufacture of carbamates
JP6150347B2 (en) Method for producing compound having amino group and / or hydroxyl group
Siddaiah et al. PEG-mediated facile protocol for N-Boc protection of amines
GB2216519A (en) Process for preparing n-sulphonyl-ureas
EP1065198B1 (en) Process for the production of Malononitrile
JP3406625B2 (en) Silica support grafted with polyalkylguanidinium group, method for its production and use as catalyst
JPH0753721B2 (en) Method for producing cyclic urethane compound
US20230373898A1 (en) Method for producing carbonyl halide
JP4041881B2 (en) Novel N-thio-substituted heterocyclic compound and method for producing the same
AU723133B2 (en) Process for producing 1-chlorocarbonyl-4-piperidinopiperidine or hydrochloride thereof
RU2771748C2 (en) Method for producing carbonate derivative
CN116964028A (en) Process for producing carbonyl halide
JPS5936609B2 (en) Method for producing unsaturated amide
JP2880803B2 (en) Aromatic diisocyanate indane derivative and method for producing the same
JP3040265B2 (en) Method for producing dialkyl dicarbonate
EP0090063B1 (en) Process for making n-(2-aminoethyl)amides from oxazolines and amines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP