WO2020196482A1 - Retardation film and polarizing plate with retardation layer - Google Patents
Retardation film and polarizing plate with retardation layer Download PDFInfo
- Publication number
- WO2020196482A1 WO2020196482A1 PCT/JP2020/012911 JP2020012911W WO2020196482A1 WO 2020196482 A1 WO2020196482 A1 WO 2020196482A1 JP 2020012911 W JP2020012911 W JP 2020012911W WO 2020196482 A1 WO2020196482 A1 WO 2020196482A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- retardation
- film
- retardation film
- dihydroxy compound
- polarizing plate
- Prior art date
Links
- PHXGAJLBHUUAKB-PHDIDXHHSA-N C1[C@H]2OCC[C@H]2OC1 Chemical compound C1[C@H]2OCC[C@H]2OC1 PHXGAJLBHUUAKB-PHDIDXHHSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/02—Aliphatic polycarbonates
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2369/00—Characterised by the use of polycarbonates; Derivatives of polycarbonates
Definitions
- the present invention relates to a retardation film and a polarizing plate with a retardation layer.
- an image display device (organic EL display device) equipped with an organic EL panel
- the organic EL panel has a highly reflective metal layer, and tends to cause problems such as reflection of external light and reflection of the background. Therefore, it is known to prevent these problems by providing a retardation film.
- a conventional retardation film is used in an image display device, whitening and / or cracks may occur with use, and the folding resistance may be insufficient.
- the present invention has been made to solve the above-mentioned conventional problems, and an object thereof is a retardation film in which whitening and cracks are suppressed and has excellent folding resistance, and such a retardation film. It is an object of the present invention to provide a polarizing plate with a retardation layer including a film.
- the retardation film in the embodiment of the present invention contains a polycarbonate resin, and Re (450) / Re (550) is 0.98 to 1.03, and Re (550) is 80 nm to 190 nm.
- the polycarbonate resin contains a structural unit derived from a dihydroxy compound represented by the following formula (4).
- the retardation film suppresses cracks in the deformability test.
- the retardation film suppresses whitening and cracking in the sebum resistance test.
- the retardation film has a MIT count of 500 or more.
- the moisture permeability of the retardation film is less than 130g / m 2 ⁇ 24h.
- the retardation change of the retardation film after storage for 500 hours under the conditions of a temperature of 65 ° C. and a humidity of 90% is 2.0% or less.
- a polarizing plate with a retardation layer is provided.
- the polarizing plate with a retardation layer includes a retardation layer and a polarizer, and the retardation layer is composed of the retardation film.
- the polarizing plate with a retardation layer is used on the visual side of an image display device.
- a resin film containing a predetermined polycarbonate-based resin having a Re (450) / Re (550) of 0.98 to 1.03 and an in-plane retardation of 80 nm to 190 nm.
- Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and “ny” is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advance axis direction). Is the refractive index of, and "nz” is the refractive index in the thickness direction.
- In-plane phase difference (Re) “Re ( ⁇ )” is an in-plane phase difference measured with light having a wavelength of ⁇ nm at 23 ° C.
- Re (550) is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C.
- Phase difference in the thickness direction (Rth) is a phase difference in the thickness direction measured with light having a wavelength of ⁇ nm at 23 ° C.
- Rth (550) is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C.
- the retardation film according to the embodiment of the present invention contains a polycarbonate resin.
- the retardation film according to the embodiment of the present invention is typically a stretched film of a polycarbonate resin film.
- the retardation film exhibits a flat wavelength dispersion characteristic in which the retardation value hardly changes depending on the wavelength of the measurement light.
- the Re (450) / Re (550) of the retardation film is 0.98 to 1.03, preferably 0.99 to 1.03, and more preferably 1.00 to 1.03.
- a polycarbonate resin capable of obtaining such Re (450) / Re (550) a retardation film in which whitening and cracks are suppressed in a sebum resistance test and is excellent in shape processability and folding resistance can be obtained. Can be obtained. Further, with such a wavelength dispersion characteristic, excellent antireflection characteristics can be realized in a wide band.
- the retardation characteristic of the retardation film is preferably nx> ny ⁇ nz.
- the in-plane retardation Re (550) of the retardation layer film is 80 nm to 190 nm, preferably 100 nm to 170 nm, and more preferably 120 nm to 150 nm. That is, the retardation film can function as a ⁇ / 4 plate.
- the retardation film has an Nz coefficient of preferably 0.9 to 1.5, and more preferably 0.9 to 1.3.
- Nz coefficient is in such a range, an image display device having excellent dependence on the viewing angle of the reflectance and the reflected hue can be obtained.
- the moisture permeability of the retardation film is preferably not more than 130g / m 2 ⁇ 24h, more preferably not more than 120g / m 2 ⁇ 24h.
- the lower limit may be, for example, 1g / m 2 ⁇ 24h. If the moisture permeability of the retardation film is in such a range, it is possible to obtain an advantage that the change in retardation can be suppressed in a humid environment.
- the retardation change of the retardation film after storage (humidification test) for 500 hours under the conditions of a temperature of 65 ° C. and a humidity of 90% is preferably 2.0% or less, more preferably 1.8% or less. Is.
- the lower limit can be, for example, 0.01%.
- the phase difference change (%) is represented by
- Re 0 is the in-plane retardation (nm) of the retardation film before the start of the test
- Re 500 is the in-plane retardation (nm) of the retardation film after the test. If the phase difference change of the retardation film is within such a range, it is possible to obtain an advantage that the hue change due to the phase difference at each location on the image display device is small and the occurrence of color unevenness on the display is suppressed. ..
- the thickness of the retardation film can be appropriately set so as to function as a ⁇ / 4 plate.
- the thickness is preferably 20 ⁇ m to 60 ⁇ m, more preferably 20 ⁇ m to 50 ⁇ m, and even more preferably 25 ⁇ m to 40 ⁇ m.
- the absolute value of the photoelastic coefficient is preferably 2 ⁇ 10 -11 m 2 / N or less, more preferably 2.0 ⁇ 10 -13 m 2 / N to 1.5 ⁇ 10 -11 m 2. / N, more preferably from 1.0 ⁇ 10 -12 m 2 /N ⁇ 1.2 ⁇ 10 -11 m 2 / N.
- the absolute value of the photoelastic coefficient is in such a range, the phase difference change is unlikely to occur when a shrinkage stress during heating occurs. As a result, thermal unevenness of the obtained image display device can be satisfactorily prevented.
- the above retardation film has cracks suppressed in the deformability test. That is, the retardation film can be satisfactorily used even in applications requiring irregular shapes. Such an advantage can be obtained by including the specific polycarbonate resin described later in the retardation film.
- the above retardation film has suppressed whitening and cracks in the sebum resistance test. That is, even when the retardation film is used, for example, on the visual side of an image display device and is continuously in contact with the user, it can retain good characteristics. This solves the problem recognized only when the retardation film is used for a long period of time on the visual side of an image display device, for example, and is an unexpectedly excellent effect. Such an advantage can be obtained by including the specific polycarbonate resin described later in the retardation film.
- the retardation film has a MIT count of 500 or more. That is, the retardation film can exhibit excellent fold resistance even when used in a bendable (preferably foldable) image display device. Such an advantage can be obtained by stretching a resin film containing a specific polycarbonate resin described later under a specific stretching method and stretching conditions described later to form a retardation film.
- the resin film retardation film is typically a stretched film of a polycarbonate resin film.
- Polycarbonate resin contains at least a structural unit derived from a dihydroxy compound having a bond structure represented by the following structural formula (1), at least one bond in the molecular structure -CH 2 -O- It is produced by reacting a dihydroxy compound containing at least the dihydroxy compound having the above with a carbonic acid diester in the presence of a polymerization catalyst.
- the dihydroxy compound having a bonding structure represented by the structural formula (1) includes a structure having two alcoholic hydroxyl groups and having a linking group ⁇ CH2-O— in the molecule, and is a polymerization catalyst. Any compound having any structure can be used as long as it is a compound capable of reacting with a carbonic acid diester to form polycarbonate in the presence of the compound, and a plurality of types may be used in combination. Further, as the dihydroxy compound used for the polycarbonate resin according to the present invention, a dihydroxy compound having no binding structure represented by the structural formula (1) may be used in combination.
- the dihydroxy compound having a binding structure represented by the structural formula (1) is abbreviated as the dihydroxy compound (A), and the dihydroxy compound having no binding structure represented by the structural formula (1) is abbreviated as the dihydroxy compound (B).
- the "linking group -CH 2 -O-" in the dihydroxy compounds (A), is meant the structure that constitutes the molecule bonded to each other with atoms other than hydrogen atoms.
- this linking group at least an atom to which an oxygen atom can be bonded or an atom to which a carbon atom and an oxygen atom can be bonded at the same time is most preferably a carbon atom.
- the number of "linking groups-CH 2- O-" in the dihydroxy compound (A) is preferably 1 or more, more preferably 2 to 4.
- examples of the dihydroxy compound (A) include 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and 9,9-bis (4- (2-hydroxyethoxy) -3).
- -Methylphenyl) fluorene 9,9-bis (4- (2-hydroxyethoxy) -3-isopropylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-isobutylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-tert-butylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-cyclohexylphenyl) fluorene, 9,9- Bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3,5-dimethylphenyl) fluorene, 9,9-bis (4-) As
- Methylphenyl] sulfides as exemplified by bishydroxyalkoxyarylsulfones, 1,4-bishydroxyethoxybenzene, 1,3-bishydroxyethoxybenzene, 1,2-bishydroxyethoxybenzene, 1,3-bis [2- [4- (2-Hydroxyethoxy) phenyl] propyl] benzene, 1,4-bis [2- [4- (2-hydroxyethoxy) phenyl] propyl] benzene, 4,4'-bis (2-) Hydroxyethoxy) biphenyl, 1,3-bis [4- (2-hydroxyethoxy) phenyl] Examples thereof include compounds having a cyclic ether structure such as -5,7-dimethyladamantane, anhydrous sugar alcohol represented by the dihydroxy compound represented by the following formula (4), and spiroglycol represented by the following general formula (6). These may be used alone or in combination of two or more.
- dihydroxy compounds (A) may be used alone or in combination of two or more.
- examples of the dihydroxy compound represented by the above formula (4) include isosorbide, isomannide, and isoidet having a stereoisomeric relationship, and one of these may be used alone or two or more. May be used in combination.
- isosorbide obtained by dehydration condensation of sorbitol, which is abundant as a resource and is produced from various readily available starches, is easy to obtain and produce, and has optical properties. Most preferable from the viewpoint of moldability.
- isosorbide is preferably used as the dihydroxy compound (A).
- the dihydroxy compound (B) which is a dihydroxy compound other than the dihydroxy compound (A)
- the dihydroxy compound (B) for example, an alicyclic dihydroxy compound, an aliphatic dihydroxy compound, an oxyalkylene glycol, an aromatic dihydroxy compound, and diols having a cyclic ether structure are used as the dihydroxy compound as a constituent unit of the polycarbonate. It can be used together with the dihydroxy compound (A), for example, the dihydroxy compound represented by the formula (4).
- the alicyclic dihydroxy compound that can be used in the present invention is not particularly limited, but a compound having a 5-membered ring structure or a 6-membered ring structure is usually used. Further, the 6-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond. Since the alicyclic dihydroxy compound has a 5-membered ring or 6-membered ring structure, the heat resistance of the obtained polycarbonate can be increased.
- the number of carbon atoms contained in the alicyclic dihydroxy compound is usually 70 or less, preferably 50 or less, and more preferably 30 or less. The larger this value, the higher the heat resistance, but the synthesis becomes difficult, the purification becomes difficult, and the cost becomes high. The smaller the number of carbon atoms, the easier it is to purify and obtain.
- alicyclic dihydroxy compound containing a 5-membered ring structure or a 6-membered ring structure that can be used in the present invention include alicyclic dihydroxy compounds represented by the following general formulas (II) or (III). Be done.
- R 1 and R 2 each represent a cycloalkylene group having 4 to 20 carbon atoms.
- R 1 is the following general formula (IIa) (in the formula, R 3 has 1 to 1 carbon atoms. Includes various isomers represented by 12 alkyl groups or hydrogen atoms). Specific examples thereof include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, and 1,4-cyclohexanedimethanol.
- R 1 is the following general formula (IIb) (in the formula). , N represents 0 or 1) and includes various isomers represented by).
- R 1 is the following general formula (IIc) (in the formula, in the formula).
- m includes various isomers represented by 0 or 1). Specific examples thereof include 2,6-decalin dimethanol, 1,5-decalin dimethanol, and 2,3-decalin dimethanol.
- norbornane dimethanol which is an alicyclic dihydroxy compound represented by the above general formula (II)
- various isomers in which R 1 is represented by the following general formula (IId) in the general formula (II) are used. Include. Specific examples of such a substance include 2,3-norbornane dimethanol, 2,5-norbornane dimethanol and the like.
- the adamantane dimethanol which is an alicyclic dihydroxy compound represented by the general formula (II), includes various isomers in which R 1 is represented by the following general formula (IIe) in the general formula (II). Specific examples of such a substance include 1,3-adamantane dimethanol and the like.
- R 2 is the following general formula (IIIa) (in the formula, R 3 has 1 to 1 carbon atoms. Includes various isomers represented by 12 alkyl groups or hydrogen atoms. Specific examples of such a product include 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 2-methyl-1,4-cyclohexanediol and the like.
- R 2 is the following general formula (IIIb) (in the formula, n). Indicates 0 or 1) and includes various isomers represented by).
- R 2 is the following general formula (IIIc) (in the formula, m is 0). , Or various isomers represented by 1). Specifically, 2,6-decalin diol, 1,5-decalin diol, 2,3-decalin diol and the like are used as such.
- the norbornane diol which is an alicyclic dihydroxy compound represented by the general formula (III), in the general formula (III), includes various isomers where R 2 is represented by the following general formula (IIId). Specifically, 2,3-norbornanediol, 2,5-norbornanediol and the like are used as such.
- the adamantane diol which is an alicyclic dihydroxy compound represented by the general formula (III), in the general formula (III), includes various isomers where R 2 is represented by the following general formula (IIIe). Specifically, 1,3-adamantane diol and the like are used as such substances.
- cyclohexanedimethanol, tricyclodecanedimethanol, adamantandiol, and pentacyclopentadecanedimethanol are particularly preferable, and are easily available and easy to handle. From this point of view, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, and tricyclodecanedimethanol are preferable.
- tricyclodecanedimethanol is preferably used as the dihydroxy compound (B).
- Examples of the aliphatic dihydroxy compound that can be used in the present invention include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,3-butanediol, and 1,2-butanediol. Examples include diol, 1,5-heptanediol, and 1,6-hexanediol.
- Examples of oxyalkylene glycols that can be used in the present invention include diethylene glycol, triethylene glycol, tetraethylene glycol, and polyethylene glycol.
- diols having a cyclic ether structure examples include spiroglycols and dioxane glycols.
- the above-exemplified compound is an example of an alicyclic dihydroxy compound, an aliphatic dihydroxy compound, an oxyalkylene glycol, an aromatic dihydroxy compound, and a diol having a cyclic ether structure that can be used in the present invention. It is not limited. One or more of these compounds can be used together with the dihydroxy compound represented by the formula (4).
- the ratio of the dihydroxy compound (A), for example, the dihydroxy compound represented by the formula (4) to all the dihydroxy compounds constituting the polycarbonate resin according to the present invention is not particularly limited, but is preferably 10 mol% or more, more preferably 40 mol. % Or more, more preferably 60 mol% or more, preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less. If the content ratio of the structural unit derived from other dihydroxy compounds is too large, the performance such as optical characteristics may be deteriorated.
- the dihydroxy compound (A) with respect to all the dihydroxy compounds constituting the polycarbonate for example, the dihydroxy compound represented by the formula (4) and the alicyclic dihydroxy compound
- the total ratio is not particularly limited, but is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more.
- the content ratio of the dihydroxy compound (A) for example, the structural unit derived from the dihydroxy compound represented by the formula (4) and the structural unit derived from the alicyclic dihydroxy compound in the polycarbonate resin according to the present invention.
- the number of structural units derived from the dihydroxy compound represented by the formula (4) is larger than the above range and the number of structural units derived from the alicyclic dihydroxy compound is smaller, coloring becomes easier, and conversely, the dihydroxy represented by the formula (4). If the number of structural units derived from the compound is small and the number of structural units derived from the alicyclic dihydroxy compound is large, the molecular weight tends to be difficult to increase.
- the dihydroxy compound (A) with respect to all the dihydroxy compounds constituting the polycarbonate, for example, is represented by the formula (4).
- the total ratio of the dihydroxy compound and each of these dihydroxy compounds is not particularly limited and can be selected at any ratio.
- the content ratio of the dihydroxy compound (A), for example, the structural unit derived from the dihydroxy compound represented by the formula (4) and the structural unit derived from each of these dihydroxy compounds is not particularly limited, and can be selected at an arbitrary ratio. it can.
- Method for producing a retardation film includes stretching a resin film.
- the resin film is a film formed from the polycarbonate resin described in Section B above.
- the retardation film can be made by biaxial stretching.
- the biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching.
- the stretching ratio in the longitudinal direction is preferably more than 1.0 times and 2.0 times or less, and more preferably 1.1 times to 1.5 times.
- the draw ratio in the width direction is preferably 1.6 times to 2.2 times, more preferably 1.8 times to 2.0 times.
- the stretching temperature of the resin film is preferably Tg-30 ° C to Tg + 30 ° C, more preferably Tg-15 ° C to Tg + 15 ° C, and even more preferably Tg-10 ° C to Tg + 10 ° C.
- Tg is the glass transition temperature of the constituent material of the film.
- the present invention includes a polarizing plate with a retardation layer having the retardation film.
- the polarizing plate with a retardation layer according to the embodiment of the present invention includes a polarizing plate and a retardation layer composed of the retardation film.
- the polarizing plate includes a polarizer, a first protective layer arranged on one side of the polarizer, and a second protective layer arranged on the other side of the polarizer.
- the angle formed by the absorption axis of the polarizing element of the polarizing plate and the slow axis of the retardation film can be appropriately set according to the application and purpose. In one embodiment, the angle is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about 45 °.
- an isotropic base material with a conductive layer or a conductive layer may be provided.
- the conductive layer or the isotropic base material with the conductive layer is typically provided on the outside of the polarizing plate (on the side opposite to the retardation layer).
- the polarizing plate with a retardation layer can be applied to a so-called inner touch panel type input display device in which a touch sensor is incorporated between an image display cell and the polarizing plate. ..
- the polarizing plate with a retardation layer of the present invention may be single-wafered or elongated.
- the term "long” means an elongated shape having a length sufficiently long with respect to the width, and for example, an elongated shape having a length of 10 times or more, preferably 20 times or more with respect to the width. Including.
- the long-shaped polarizing plate with a retardation layer can be wound in a roll shape.
- the polarizing plate and the retardation layer are also elongated.
- the polarizer preferably has an absorption axis in the longitudinal direction.
- the retardation layer is preferably a diagonally stretched film having a slow axis in a direction forming an angle of, for example, 40 ° to 50 ° with respect to the elongated direction. If the polarizer and the retardation layer have such a configuration, a polarizing plate with a retardation layer can be produced by roll-to-roll.
- the polarizing plate with a retardation layer has an adhesive layer as the outermost layer on the image display cell side, and can be attached to the image display cell. Further, it is preferable that a release film is temporarily attached to the image display cell side of the pressure-sensitive adhesive layer until a polarizing plate with a retardation layer is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be protected and rolls can be formed.
- the polarizing plate typically has a polarizing element and a protective layer arranged on at least one side of the polarizing element.
- the resin film forming the polarizer may be a single-layer resin film or a laminated body having two or more layers.
- the polarizer composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film.
- a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film.
- PVA polyvinyl alcohol
- a partially formalized PVA-based film ethylene / vinyl acetate copolymer system partially saponified film
- examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine or a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride.
- the dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution.
- the draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Moreover, you may dye after stretching.
- the PVA-based film is subjected to a swelling treatment, a cross-linking treatment, a washing treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt on the surface of the PVA-based film and the blocking inhibitor, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
- the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin.
- PVA-based resin film PVA-based resin film
- examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The description of the patent document is incorporated herein by reference. The entire description of the publication is incorporated herein by reference.
- the thickness of the polarizer is preferably 1 ⁇ m to 25 ⁇ m, more preferably 3 ⁇ m to 10 ⁇ m, and even more preferably 3 ⁇ m to 8 ⁇ m.
- the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
- the protective layer is formed of any suitable protective film that can be used as a film to protect the polarizer.
- the material that is the main component of the protective film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone.
- TAC triacetyl cellulose
- polyester-based polyvinyl alcohol-based
- polycarbonate-based polyamide-based
- polyimide-based polyimide-based
- polyethersulfone-based polysulfone
- examples thereof include transparent resins such as polyester-based, polystyrene-based, polycarbonate-based, polyolefin-based, (meth) acrylic-based, and acetate-based.
- thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned.
- glassy polymers such as siloxane-based polymers can also be mentioned.
- the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
- a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain.
- the polymer film can be, for example, an extruded product of the above resin composition.
- the inner protective layer is optically isotropic.
- optically isotropic means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm.
- the protective layer may be made of any suitable material as long as it is isotropic to the optical body. The material can be appropriately selected from the materials mentioned above with respect to the protective layer.
- the thickness of the protective layer is preferably 10 ⁇ m to 100 ⁇ m.
- the protective layer may be laminated on the polarizer via an adhesive layer (specifically, an adhesive layer or an adhesive layer), or may be laminated in close contact with the polarizer (without an adhesive layer). Good. If necessary, a surface treatment layer such as a hard coat layer, an antiglare layer, and an antireflection layer can be formed on the protective layer arranged on the outermost surface of the polarizing plate with a retardation layer.
- the polarizing plate with a retardation layer can be used on the visual side of an image display device. Further, the retardation layer in the polarizing plate with a retardation layer may be arranged on the viewing side or on the display cell side. When the retardation layer in the polarizing plate with the retardation layer is arranged on the visual side, whitening and cracks can be suppressed in the sebum resistance test. When the retardation layer in the polarizing plate with a retardation layer is arranged on the display cell side, excellent reflectance can be obtained.
- the measurement method and evaluation method for each characteristic are as follows.
- (1) In-plane retardation and wavelength dispersion characteristics The retardation films obtained in Examples and Comparative Examples were cut into lengths of 4 cm and widths of 4 cm and used as measurement samples.
- the in-plane phase difference Re (550) was measured using the product name "Axoscan” manufactured by Axometrics.
- Re (450) was also measured, and Re (450) / Re (550) was calculated.
- Humidity Permeability The retardation films obtained in Examples and Comparative Examples have an area of 1 m 2 in an atmosphere of a temperature of 40 ° C.
- the retardation film or polarizing plate with a retardation layer obtained in Examples and Comparative Examples is irradiated with a CO 2 laser at an energy of 3 Kw in the flow direction of the film and in the direction perpendicular to the flow direction. It was cut to obtain a measurement sample of 200 mm ⁇ 200 mm. The cut part was observed using a laser microscope, and was marked with ⁇ if there were no cracks, and x if there were cracks and / or could not be cut.
- Skin oil resistance test The retardation film or polarizing plate with a retardation layer obtained in Examples and Comparative Examples is cut out to a size of 5 cm ⁇ 5 cm, and an adhesive is attached to one surface with a hand roller to obtain an adhesive surface.
- the MIT test was conducted in accordance with JIS P 8115. Specifically, the retardation films obtained in Examples and Comparative Examples were cut out to a length of 15 cm and a width of 1.5 cm and used as measurement samples.
- the laminate was mounted on an organic EL panel, and the reflectance was measured by a spectrophotometric system. Those having a reflectance of 2.0% or less were evaluated as ⁇ , and those having a reflectance of more than 2.0% were evaluated as x.
- (8) Dimensional shrinkage rate The polarizing plate with a retardation layer obtained in Examples and Comparative Examples was cut into a width of 100 mm and a length of 100 mm (test piece), and the four corners were scratched with a cloth and the central portion of the cross scratch 4 The length (mm) before heating in the longitudinal direction (MD direction) and the width direction (TD direction) of the points was measured by a CNC coordinate measuring machine (LEGEX774 manufactured by Mitutoyo Co., Ltd.).
- Heat shrinkage rate (%) [[Length before heating (mm) -Length after heating (mm)] / Length before heating (mm)] x 100 Those having a heat shrinkage rate of 0% to 0.5% were evaluated as ⁇ , and those having a heat shrinkage rate of 0.5% or more were evaluated as x.
- Example 1 Preparation of resin film Isosorbide (hereinafter sometimes abbreviated as "ISB") 81.98 parts by mass, tricyclodecanedimethanol (hereinafter sometimes abbreviated as “TCDDM”) 47.19 parts by mass, diphenyl 175.1 parts by mass of carbonate (hereinafter sometimes abbreviated as "DPC”) and 0.979 parts by mass of a 0.2% by mass aqueous solution of cesium carbonate as a catalyst were put into a reaction vessel, and the reaction was carried out in a nitrogen atmosphere.
- the heating tank temperature was heated to 150 ° C., and the raw materials were dissolved while stirring as necessary (about 15 minutes).
- the pressure was changed from normal pressure to 13.3 kPa, and the generated phenol was extracted from the reaction vessel while raising the heating tank temperature to 190 ° C. in 1 hour.
- the pressure inside the reaction vessel is set to 6.67 kPa, the heating tank temperature is raised to 230 ° C. in 15 minutes, and the generated phenol is generated. It was taken out of the reaction vessel. Since the stirring torque of the stirrer increased, the temperature was raised to 250 ° C. in 8 minutes, and the pressure in the reaction vessel was brought to 0.200 kPa or less in order to remove the generated phenol.
- the unstretched polycarbonate resin film was subjected to preheat treatment and simultaneous biaxial stretching using a simultaneous biaxial stretching machine to obtain a retardation film.
- the preheating temperature was 138.5 ° C.
- the stretching temperature was 138.5 ° C.
- the stretching ratio in the longitudinal direction was 1.2 times
- the stretching ratio in the width direction was 1.9 times.
- Wavelength dispersion value of the obtained retardation film was 1.025
- the in-plane retardation Re (550) is 135 nm
- the moisture permeability is 110g / m 2 ⁇ 24h
- the phase difference change 1.5% Met The obtained retardation film was subjected to the evaluations (4) to (6) above. The results are shown in Table 1.
- Example 2 A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 137.5 ° C. Wavelength dispersion value of the obtained retardation film was 1.022, the in-plane retardation Re (550) is 140 nm, the moisture permeability is 88g / m 2 ⁇ 24h, the phase difference change is 0.9% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
- Example 3 A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 137 ° C. Wavelength dispersion value of the obtained retardation film was 1.022, the in-plane retardation Re (550) is 144 nm, the moisture permeability is 82g / m 2 ⁇ 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
- Example 4 A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 136.5 ° C. Wavelength dispersion value of the obtained retardation film was 1.021, the in-plane retardation Re (550) is 100 nm, the moisture permeability is 85g / m 2 ⁇ 24h, the phase difference change is 1.2% Met. The obtained retardation film was subjected to the evaluations (4) to (6) above. The results are shown in Table 1.
- Example 5 A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 139 ° C. Wavelength dispersion value of the obtained retardation film was 1.026, the in-plane retardation Re (550) is 155 nm, the moisture permeability is 81g / m 2 ⁇ 24h, the phase difference change is 0.9% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
- Example 6 1. Preparation of Resin Film and Preparation of Phase Difference Film A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was set to 137 ° C. Wavelength dispersion value of the obtained retardation film was 1.020, the in-plane retardation Re (550) is 144 nm, the moisture permeability is 87g / m 2 ⁇ 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluation of (7) above. The results are shown in Table 1.
- polarizing plate As the resin base material, an amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a Tg of about 75 ° C. was used, and one side of the resin base material was corona-treated. did. 100 parts by weight of PVA-based resin in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimmer”) are mixed at a ratio of 9: 1.
- a PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
- a PVA-based resin layer having a thickness of 13 ⁇ m was formed by applying the above PVA aqueous solution to the corona-treated surface of the resin base material and drying at 60 ° C. to prepare a laminate.
- the obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment). Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C.
- a cycloolefin-based film (manufactured by Nippon Zeon Co., Ltd., trade name "Zeonoa”) is bonded to the surface of the obtained polarizing element opposite to the resin base material via an ultraviolet curable adhesive as a protective layer. It was. Specifically, the curable adhesive was coated so as to have a total thickness of about 1.0 ⁇ m, and bonded using a roll machine. Then, a UV ray was irradiated from the cycloolefin film side to cure the adhesive. Next, the resin base material was peeled off to obtain a polarizing plate having a cycloolefin-based film (protective layer) / polarizer. The in-plane phase difference of the protective layer was 135 nm. The angle between the slow axis of the protective layer and the absorption axis of the polarizer was made substantially parallel.
- Example 7 A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 142 ° C. Wavelength dispersion value of the obtained retardation film was 1.020, the in-plane retardation Re (550) is 140 nm, the moisture permeability is 84g / m 2 ⁇ 24h, the phase difference change is 0.7% Met. Further, the obtained retardation film was subjected to the evaluation of (7) above. Next, using the obtained retardation film, a polarizing plate with a retardation layer was obtained in the same manner as in Example 6. The obtained polarizing plate with a retardation layer was subjected to the evaluations of (4), (5) and (8) above. The results are shown in Table 1.
- Example 8 A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 147 ° C. Wavelength dispersion value of the obtained retardation film was 1.020, the in-plane retardation Re (550) is 140 nm, the moisture permeability is 89g / m 2 ⁇ 24h, the phase difference change is 0.8% Met. Further, the obtained retardation film was subjected to the evaluation of (7) above. Next, using the obtained retardation film, a polarizing plate with a retardation layer was obtained in the same manner as in Example 6. The obtained polarizing plate with a retardation layer was subjected to the evaluations of (4), (5) and (8) above. The results are shown in Table 1.
- Example 1 A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 135 ° C. Wavelength dispersion value of the obtained retardation film was 1.021, the in-plane retardation Re (550) is 210 nm, the moisture permeability is 89g / m 2 ⁇ 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
- Example 2 The same as in Example 1 except that a commercially available cycloolefin-based resin film (manufactured by Nippon Zeon Co., Ltd., trade name "Zeonoa”) was used as the resin film and stretched at a preheating temperature of 180 ° C. and a stretching temperature of 175 ° C. A retardation film was obtained. Wavelength dispersion value of the obtained retardation film was 1.01, in-plane retardation Re (550) is 135 nm, the moisture permeability is 29g / m 2 ⁇ 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
- Example 3 The rubbing treatment was performed by adjusting the rotation axis of the rubbing roller to be 45 ° counterclockwise with respect to the longitudinal direction of the triacetyl cellulose (TAC) film (manufactured by Fuji Film Co., Ltd.).
- TAC triacetyl cellulose
- the rubbing-treated TAC film was coated with a liquid crystal to obtain a liquid crystal-coated triacetyl cellulose (TAC) film.
- a retardation film was obtained in the same manner as in Example 1 except that this liquid crystal coated TAC film was used as the resin film and no stretching was performed.
- Wavelength dispersion value of the obtained retardation film was 1.09, in-plane retardation Re (550) is 132 nm, the moisture permeability is 330g / m 2 ⁇ 24h, the phase difference change is 4.0% Met.
- the obtained retardation film was subjected to the evaluations (4) to (6) above. The results are shown in Table 1.
- the obtained retardation film was subjected to the evaluation of (7) above.
- the results are shown in Table 1.
- a polarizing plate with a retardation layer was obtained in the same manner as in Example 6.
- the obtained polarizing plate with a retardation layer was subjected to the evaluations of (4), (5) and (8) above. The results are shown in Table 1.
- the retardation film of the embodiment of the present invention is excellent in all of the moisture permeability, the retardation change, the deformability test, the sebum resistance test and the MIT test. Further, it can be seen that when the retardation film of the embodiment of the present invention is provided on the panel side of the image display device, it exhibits excellent reflectance. Further, it can be seen that the polarizing plate with a retardation layer according to the embodiment of the present invention is excellent in all of the deformability test, the sebum resistance test and the dimensional change rate. It is presumed that this is realized by stretching a resin film containing a specific polycarbonate resin under a specific stretching method and stretching conditions.
- the retardation film according to the embodiment of the present invention is suitably used for an image display device.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Polarising Elements (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
A retardation film is provided in which whitening and cracking are suppressed and which has excellent folding endurance. This retardation film contains a prescribed polycarbonate resin, Re(450)/Re(550) is 0.98-1.03, and Re(550) is 80-190nm.
Description
本発明は、位相差フィルムおよび位相差層付偏光板に関する。
The present invention relates to a retardation film and a polarizing plate with a retardation layer.
近年、薄型ディスプレイの普及と共に、有機ELパネルを搭載した画像表示装置(有機EL表示装置)が提案されている。有機ELパネルは反射性の高い金属層を有しており、外光反射や背景の映り込み等の問題を生じやすい。そこで、位相差フィルムを設けることにより、これらの問題を防ぐことが知られている。しかし、従来の位相差フィルムを画像表示装置に用いる場合、使用とともに白化および/またはクラックが発生する場合があり、さらに耐折性が不十分である場合がある。
In recent years, with the spread of thin displays, an image display device (organic EL display device) equipped with an organic EL panel has been proposed. The organic EL panel has a highly reflective metal layer, and tends to cause problems such as reflection of external light and reflection of the background. Therefore, it is known to prevent these problems by providing a retardation film. However, when a conventional retardation film is used in an image display device, whitening and / or cracks may occur with use, and the folding resistance may be insufficient.
本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、白化およびクラックが抑制され、かつ、優れた耐折性を有する位相差フィルムおよびそのような位相差フィルムを備える位相差層付偏光板を提供することにある。
The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is a retardation film in which whitening and cracks are suppressed and has excellent folding resistance, and such a retardation film. It is an object of the present invention to provide a polarizing plate with a retardation layer including a film.
本発明の実施形態における位相差フィルムは、ポリカーボネート系樹脂を含み、Re(450)/Re(550)は0.98~1.03であり、Re(550)は80nm~190nmである。
1つの実施形態においては、上記ポリカーボネート系樹脂は、下記式(4)で表されるジヒドロキシ化合物に由来する構造単位を含む。
1つの実施形態においては、上記ポリカーボネート系樹脂は、脂環式ジヒドロキシ化合物に由来する構造単位をさらに含み、該脂環式ジヒドロキシ化合物は、下記一般式(II)で表され、R1が下記(IIb)で表される構造であり、n=0である。
HOCH2-R1-CH2OH (II)
1つの実施形態においては、上記位相差フィルムは異形加工性試験においてクラックが抑制される。
1つの実施形態においては、上記位相差フィルムは耐皮脂性試験において白化およびクラックが抑制される。
1つの実施形態においては、上記位相差フィルムのMIT回数は500回以上である。
1つの実施形態においては、上記位相差フィルムの透湿度は130g/m2・24h以下である。
1つの実施形態においては、上記位相差フィルムの、温度65℃かつ湿度90%の条件下において500時間保存した後の位相差変化は2.0%以下である。
本発明の別の局面によれば、位相差層付偏光板が提供される。この位相差層付偏光板は、位相差層と偏光子とを備え、該位相差層は上記位相差フィルムで構成される。
1つの実施形態によれば、上記位相差層付偏光板は、画像表示装置の視認側に用いられる。 The retardation film in the embodiment of the present invention contains a polycarbonate resin, and Re (450) / Re (550) is 0.98 to 1.03, and Re (550) is 80 nm to 190 nm.
In one embodiment, the polycarbonate resin contains a structural unit derived from a dihydroxy compound represented by the following formula (4).
In one embodiment, the polycarbonate resin further comprises a structural unit derived from the alicyclic dihydroxy compound, the alicyclic dihydroxy compound is represented by the following general formula (II), and R 1 is the following ( It is a structure represented by IIb), and n = 0.
HOCH 2- R 1- CH 2 OH (II)
In one embodiment, the retardation film suppresses cracks in the deformability test.
In one embodiment, the retardation film suppresses whitening and cracking in the sebum resistance test.
In one embodiment, the retardation film has a MIT count of 500 or more.
In one embodiment, the moisture permeability of the retardation film is less than 130g / m 2 · 24h.
In one embodiment, the retardation change of the retardation film after storage for 500 hours under the conditions of a temperature of 65 ° C. and a humidity of 90% is 2.0% or less.
According to another aspect of the present invention, a polarizing plate with a retardation layer is provided. The polarizing plate with a retardation layer includes a retardation layer and a polarizer, and the retardation layer is composed of the retardation film.
According to one embodiment, the polarizing plate with a retardation layer is used on the visual side of an image display device.
1つの実施形態においては、上記ポリカーボネート系樹脂は、下記式(4)で表されるジヒドロキシ化合物に由来する構造単位を含む。
HOCH2-R1-CH2OH (II)
1つの実施形態においては、上記位相差フィルムは耐皮脂性試験において白化およびクラックが抑制される。
1つの実施形態においては、上記位相差フィルムのMIT回数は500回以上である。
1つの実施形態においては、上記位相差フィルムの透湿度は130g/m2・24h以下である。
1つの実施形態においては、上記位相差フィルムの、温度65℃かつ湿度90%の条件下において500時間保存した後の位相差変化は2.0%以下である。
本発明の別の局面によれば、位相差層付偏光板が提供される。この位相差層付偏光板は、位相差層と偏光子とを備え、該位相差層は上記位相差フィルムで構成される。
1つの実施形態によれば、上記位相差層付偏光板は、画像表示装置の視認側に用いられる。 The retardation film in the embodiment of the present invention contains a polycarbonate resin, and Re (450) / Re (550) is 0.98 to 1.03, and Re (550) is 80 nm to 190 nm.
In one embodiment, the polycarbonate resin contains a structural unit derived from a dihydroxy compound represented by the following formula (4).
HOCH 2- R 1- CH 2 OH (II)
In one embodiment, the retardation film suppresses whitening and cracking in the sebum resistance test.
In one embodiment, the retardation film has a MIT count of 500 or more.
In one embodiment, the moisture permeability of the retardation film is less than 130g / m 2 · 24h.
In one embodiment, the retardation change of the retardation film after storage for 500 hours under the conditions of a temperature of 65 ° C. and a humidity of 90% is 2.0% or less.
According to another aspect of the present invention, a polarizing plate with a retardation layer is provided. The polarizing plate with a retardation layer includes a retardation layer and a polarizer, and the retardation layer is composed of the retardation film.
According to one embodiment, the polarizing plate with a retardation layer is used on the visual side of an image display device.
本発明の実施形態によれば、所定のポリカーボネート系樹脂を含み、Re(450)/Re(550)が0.98~1.03であり、面内位相差が80nm~190nmである樹脂フィルムを用いることにより、白化およびクラックが抑制され、かつ、耐折性に優れた位相差フィルムを実現することができる。
According to an embodiment of the present invention, a resin film containing a predetermined polycarbonate-based resin, having a Re (450) / Re (550) of 0.98 to 1.03 and an in-plane retardation of 80 nm to 190 nm. By using it, it is possible to realize a retardation film in which whitening and cracks are suppressed and excellent in folding resistance.
以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。 (Definition of terms and symbols)
Definitions of terms and symbols in the present specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and “ny” is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advance axis direction). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) can be obtained by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth (λ) = (nx−nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) Angle When referring to an angle herein, the angle includes both clockwise and counterclockwise with respect to the reference direction. Therefore, for example, "45 °" means ± 45 °.
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。 (Definition of terms and symbols)
Definitions of terms and symbols in the present specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and “ny” is the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advance axis direction). Is the refractive index of, and "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
“Re (λ)” is an in-plane phase difference measured with light having a wavelength of λ nm at 23 ° C. For example, "Re (550)" is an in-plane phase difference measured with light having a wavelength of 550 nm at 23 ° C. Re (λ) can be obtained by the formula: Re (λ) = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in the thickness direction (Rth)
“Rth (λ)” is a phase difference in the thickness direction measured with light having a wavelength of λ nm at 23 ° C. For example, "Rth (550)" is a phase difference in the thickness direction measured with light having a wavelength of 550 nm at 23 ° C. Rth (λ) is obtained by the formula: Rth (λ) = (nx−nz) × d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is obtained by Nz = Rth / Re.
(5) Angle When referring to an angle herein, the angle includes both clockwise and counterclockwise with respect to the reference direction. Therefore, for example, "45 °" means ± 45 °.
A.位相差フィルム
本発明の実施形態による位相差フィルムは、ポリカーボネート樹脂を含む。本発明の実施形態による位相差フィルムは、代表的には、ポリカーボネート樹脂フィルムの延伸フィルムである。 A. Phase difference film The retardation film according to the embodiment of the present invention contains a polycarbonate resin. The retardation film according to the embodiment of the present invention is typically a stretched film of a polycarbonate resin film.
本発明の実施形態による位相差フィルムは、ポリカーボネート樹脂を含む。本発明の実施形態による位相差フィルムは、代表的には、ポリカーボネート樹脂フィルムの延伸フィルムである。 A. Phase difference film The retardation film according to the embodiment of the present invention contains a polycarbonate resin. The retardation film according to the embodiment of the present invention is typically a stretched film of a polycarbonate resin film.
上記位相差フィルムは、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示す。位相差フィルムのRe(450)/Re(550)は、0.98~1.03であり、好ましくは0.99~1.03であり、より好ましくは1.00~1.03である。このようなRe(450)/Re(550)が得られるポリカーボネート樹脂を用いることにより、耐皮脂性試験において白化およびクラックが抑制され、かつ、異形加工性および耐折性に優れた位相差フィルムが得られ得る。さらに、このような波長分散特性であれば、広帯域において優れた反射防止特性を実現することができる。
The retardation film exhibits a flat wavelength dispersion characteristic in which the retardation value hardly changes depending on the wavelength of the measurement light. The Re (450) / Re (550) of the retardation film is 0.98 to 1.03, preferably 0.99 to 1.03, and more preferably 1.00 to 1.03. By using a polycarbonate resin capable of obtaining such Re (450) / Re (550), a retardation film in which whitening and cracks are suppressed in a sebum resistance test and is excellent in shape processability and folding resistance can be obtained. Can be obtained. Further, with such a wavelength dispersion characteristic, excellent antireflection characteristics can be realized in a wide band.
上記位相差フィルムは、屈折率特性が好ましくはnx>ny≧nzの関係を示す。上記位相差層フィルムの面内位相差Re(550)は、80nm~190nmであり、好ましくは100nm~170nmであり、より好ましくは120nm~150nmである。すなわち、位相差フィルムはλ/4板として機能し得る。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。
The retardation characteristic of the retardation film is preferably nx> ny ≧ nz. The in-plane retardation Re (550) of the retardation layer film is 80 nm to 190 nm, preferably 100 nm to 170 nm, and more preferably 120 nm to 150 nm. That is, the retardation film can function as a λ / 4 plate. Here, "ny = nz" includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny <nz may be satisfied as long as the effect of the present invention is not impaired.
上記位相差フィルムは、Nz係数が好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。Nz係数がこのような範囲であれば、反射率および反射色相の視野角依存性に優れた画像表示装置を得ることができる。
The retardation film has an Nz coefficient of preferably 0.9 to 1.5, and more preferably 0.9 to 1.3. When the Nz coefficient is in such a range, an image display device having excellent dependence on the viewing angle of the reflectance and the reflected hue can be obtained.
上記位相差フィルムの透湿度は、好ましくは130g/m2・24h以下であり、より好ましくは120g/m2・24h以下である。下限は、例えば、1g/m2・24hであり得る。位相差フィルムの透湿度がこのような範囲であれば、加湿環境下における位相差の変化を抑制できるという利点が得られ得る。
The moisture permeability of the retardation film is preferably not more than 130g / m 2 · 24h, more preferably not more than 120g / m 2 · 24h. The lower limit may be, for example, 1g / m 2 · 24h. If the moisture permeability of the retardation film is in such a range, it is possible to obtain an advantage that the change in retardation can be suppressed in a humid environment.
上記位相差フィルムの、温度65℃かつ湿度90%の条件下において500時間保存(加湿試験)した後の位相差変化は、好ましくは2.0%以下であり、より好ましくは1.8%以下である。下限は、例えば0.01%であり得る。上記位相差変化(%)は、|(Re500-Re0)/Re0|×100(%)で表される。Re0は、試験開始前の位相差フィルムの面内位相差(nm)であり、Re500は、試験後の位相差フィルムの面内位相差(nm)である。位相差フィルムの位相差変化がこのような範囲であれば、画像表示装置上の場所ごとの位相差による色相変化が小さくなり、表示上の色ムラの発生が抑制されるという利点が得られ得る。
The retardation change of the retardation film after storage (humidification test) for 500 hours under the conditions of a temperature of 65 ° C. and a humidity of 90% is preferably 2.0% or less, more preferably 1.8% or less. Is. The lower limit can be, for example, 0.01%. The phase difference change (%) is represented by | (Re 500- Re 0 ) / Re 0 | × 100 (%). Re 0 is the in-plane retardation (nm) of the retardation film before the start of the test, and Re 500 is the in-plane retardation (nm) of the retardation film after the test. If the phase difference change of the retardation film is within such a range, it is possible to obtain an advantage that the hue change due to the phase difference at each location on the image display device is small and the occurrence of color unevenness on the display is suppressed. ..
上記位相差フィルムの厚みは、λ/4板として機能し得るよう適切に設定され得る。厚みは、好ましくは20μm~60μmであり、より好ましくは20μm~50μmであり、さらに好ましくは25μm~40μmである。
The thickness of the retardation film can be appropriately set so as to function as a λ / 4 plate. The thickness is preferably 20 μm to 60 μm, more preferably 20 μm to 50 μm, and even more preferably 25 μm to 40 μm.
上記位相差フィルムは、光弾性係数の絶対値が好ましくは2×10-11m2/N以下、より好ましくは2.0×10-13m2/N~1.5×10-11m2/N、さらに好ましくは1.0×10-12m2/N~1.2×10-11m2/Nである。光弾性係数の絶対値がこのような範囲であれば、加熱時の収縮応力が発生した場合に位相差変化が生じにくい。その結果、得られる画像表示装置の熱ムラが良好に防止され得る。
In the above retardation film, the absolute value of the photoelastic coefficient is preferably 2 × 10 -11 m 2 / N or less, more preferably 2.0 × 10 -13 m 2 / N to 1.5 × 10 -11 m 2. / N, more preferably from 1.0 × 10 -12 m 2 /N~1.2×10 -11 m 2 / N. When the absolute value of the photoelastic coefficient is in such a range, the phase difference change is unlikely to occur when a shrinkage stress during heating occurs. As a result, thermal unevenness of the obtained image display device can be satisfactorily prevented.
上記位相差フィルムは、異形加工性試験においてクラックが抑制されている。すなわち、位相差フィルムは、異形形状が要求される用途においても良好に用いられ得る。位相差フィルムが後述する特定のポリカーボネート樹脂を含むことにより、このような利点が得られ得る。
The above retardation film has cracks suppressed in the deformability test. That is, the retardation film can be satisfactorily used even in applications requiring irregular shapes. Such an advantage can be obtained by including the specific polycarbonate resin described later in the retardation film.
上記位相差フィルムは、耐皮脂性試験において白化およびクラックが抑制されている。すなわち、位相差フィルムが、例えば画像表示装置の視認側に用いられて使用者に継続的に接触された場合であっても、良好な特性を保持し得る。これは、位相差フィルムを、例えば画像表示装置の視認側に長期間使用してはじめて認識された課題を解決するものであり、予期せぬ優れた効果である。位相差フィルムが後述する特定のポリカーボネート樹脂を含むことにより、このような利点が得られ得る。
The above retardation film has suppressed whitening and cracks in the sebum resistance test. That is, even when the retardation film is used, for example, on the visual side of an image display device and is continuously in contact with the user, it can retain good characteristics. This solves the problem recognized only when the retardation film is used for a long period of time on the visual side of an image display device, for example, and is an unexpectedly excellent effect. Such an advantage can be obtained by including the specific polycarbonate resin described later in the retardation film.
上記位相差フィルムは、MIT回数が500回以上である。すなわち、位相差フィルムは、屈曲可能(好ましくは、折りたたみ可能)な画像表示装置に用いられた場合であっても、優れた耐折性を発揮し得る。後述する特定のポリカーボネート樹脂を含む樹脂フィルムを後述する特定の延伸方法および延伸条件で延伸して位相差フィルムを形成することにより、このような利点が得られ得る。
The retardation film has a MIT count of 500 or more. That is, the retardation film can exhibit excellent fold resistance even when used in a bendable (preferably foldable) image display device. Such an advantage can be obtained by stretching a resin film containing a specific polycarbonate resin described later under a specific stretching method and stretching conditions described later to form a retardation film.
B.樹脂フィルム
位相差フィルムは、上記のとおり、代表的には、ポリカーボネート樹脂フィルムの延伸フィルムである。 B. As described above, the resin film retardation film is typically a stretched film of a polycarbonate resin film.
位相差フィルムは、上記のとおり、代表的には、ポリカーボネート樹脂フィルムの延伸フィルムである。 B. As described above, the resin film retardation film is typically a stretched film of a polycarbonate resin film.
(ポリカーボネート樹脂)
本発明に係るポリカーボネート樹脂は、下記構造式(1)で表される結合構造を有するジヒドロキシ化合物に由来する構成単位を少なくとも含むものであり、分子内に少なくとも一つの結合構造 -CH2-O- を有するジヒドロキシ化合物を少なくとも含むジヒドロキシ化合物と、炭酸ジエステルとを、重合触媒の存在下反応させることにより製造される。
(Polycarbonate resin)
Polycarbonate resin according to the present invention contains at least a structural unit derived from a dihydroxy compound having a bond structure represented by the following structural formula (1), at least one bond in the molecular structure -CH 2 -O- It is produced by reacting a dihydroxy compound containing at least the dihydroxy compound having the above with a carbonic acid diester in the presence of a polymerization catalyst.
本発明に係るポリカーボネート樹脂は、下記構造式(1)で表される結合構造を有するジヒドロキシ化合物に由来する構成単位を少なくとも含むものであり、分子内に少なくとも一つの結合構造 -CH2-O- を有するジヒドロキシ化合物を少なくとも含むジヒドロキシ化合物と、炭酸ジエステルとを、重合触媒の存在下反応させることにより製造される。
Polycarbonate resin according to the present invention contains at least a structural unit derived from a dihydroxy compound having a bond structure represented by the following structural formula (1), at least one bond in the molecular structure -CH 2 -O- It is produced by reacting a dihydroxy compound containing at least the dihydroxy compound having the above with a carbonic acid diester in the presence of a polymerization catalyst.
ここで、構造式(1)で表される結合構造を有するジヒドロキシ化合物としては、2個のアルコール性水酸基をもち、分子内に連結基-CH2-O-を有する構造を含み、重合触媒の存在下、炭酸ジエステルと反応してポリカーボネートを生成し得る化合物であれば如何なる構造の化合物であっても使用することが可能であり、複数種併用しても構わない。また、本発明に係るポリカーボネート樹脂に用いるジヒドロキシ化合物として、構造式(1)で表される結合構造を有さないジヒドロキシ化合物を併用しても構わない。以下、構造式(1)で表される結合構造を有するジヒドロキシ化合物をジヒドロキシ化合物(A)、構造式(1)で表される結合構造を有さないジヒドロキシ化合物をジヒドロキシ化合物(B)と略記することがある。
Here, the dihydroxy compound having a bonding structure represented by the structural formula (1) includes a structure having two alcoholic hydroxyl groups and having a linking group −CH2-O— in the molecule, and is a polymerization catalyst. Any compound having any structure can be used as long as it is a compound capable of reacting with a carbonic acid diester to form polycarbonate in the presence of the compound, and a plurality of types may be used in combination. Further, as the dihydroxy compound used for the polycarbonate resin according to the present invention, a dihydroxy compound having no binding structure represented by the structural formula (1) may be used in combination. Hereinafter, the dihydroxy compound having a binding structure represented by the structural formula (1) is abbreviated as the dihydroxy compound (A), and the dihydroxy compound having no binding structure represented by the structural formula (1) is abbreviated as the dihydroxy compound (B). Sometimes.
(ジヒドロキシ化合物(A))
ジヒドロキシ化合物(A)における「連結基-CH2-O-」とは、水素原子以外の原子と互いに結合して分子を構成する構造を意味する。この連結基において、少なくとも酸素原子が結合し得る原子又は炭素原子と酸素原子が同時に結合し得る原子としては、炭素原子が最も好ましい。ジヒドロキシ化合物(A)中の「連結基-CH2-O-」の数は、好ましくは1以上、より好ましくは2~4である。 (Dihydroxy compound (A))
The "linking group -CH 2 -O-" in the dihydroxy compounds (A), is meant the structure that constitutes the molecule bonded to each other with atoms other than hydrogen atoms. In this linking group, at least an atom to which an oxygen atom can be bonded or an atom to which a carbon atom and an oxygen atom can be bonded at the same time is most preferably a carbon atom. The number of "linking groups-CH 2- O-" in the dihydroxy compound (A) is preferably 1 or more, more preferably 2 to 4.
ジヒドロキシ化合物(A)における「連結基-CH2-O-」とは、水素原子以外の原子と互いに結合して分子を構成する構造を意味する。この連結基において、少なくとも酸素原子が結合し得る原子又は炭素原子と酸素原子が同時に結合し得る原子としては、炭素原子が最も好ましい。ジヒドロキシ化合物(A)中の「連結基-CH2-O-」の数は、好ましくは1以上、より好ましくは2~4である。 (Dihydroxy compound (A))
The "linking group -CH 2 -O-" in the dihydroxy compounds (A), is meant the structure that constitutes the molecule bonded to each other with atoms other than hydrogen atoms. In this linking group, at least an atom to which an oxygen atom can be bonded or an atom to which a carbon atom and an oxygen atom can be bonded at the same time is most preferably a carbon atom. The number of "linking groups-CH 2- O-" in the dihydroxy compound (A) is preferably 1 or more, more preferably 2 to 4.
さらに具体的には、ジヒドロキシ化合物(A)としては、例えば、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチル-6-メチルフェニル)フルオレン、9,9-ビス(4-(3-ヒドロキシ-2,2-ジメチルプロポキシ)フェニ
ル)フルオレンで例示されるような、側鎖に芳香族基を有し、主鎖に芳香族基に結合したエーテル基を有する化合物、ビス[4-(2-ヒドロキシエトキシ)フェニル]メタン、ビス[4-(2-ヒドロキシエトキシ)フェニル]ジフェニルメタン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]エタン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]-1-フェニルエタン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]プロパン、2,2-ビス[3,5-ジメチル-4-(2-ヒドロキシエトキシ)フェニル]プロパン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]-3,3,5-トリメチルシクロヘキサン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、1,4-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、1,3-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、2,2-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]プロパン、2,2-ビス[(2-ヒドロキシエトキシ)-3-イソプロピルフェニル]プロパン、2,2-ビス[3-tert-ブチル-4-(2-ヒドロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]ブタン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]-4-メチルペンタン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]オクタン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]デカン、2,2-ビス[3-ブロモ-4-(2-ヒドロキシエトキシ)フェニル]プロパン、2,2-ビス[3-シクロヘキシル-4-(2-ヒドロキシエトキシ)フェニル]プロパンで例示されるような、ビス(ヒドロキシアルコキシアリール)アルカン類、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、1,1-ビス[3-シクロヘキシル-4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロペンタンで例示されるような、ビス(ヒドロキシアルコキシアリール)シクロアルカン類、4,4’-ビス(2-ヒドロキシエトキシ)ジフェニルエ-テル、4,4’-ビス(2-ヒドロキシエトキシ)-3,3’-ジメチルジフェニルエ-テルで例示されるような、ジヒドロキシアルコキシジアリールエーテル類、4,4’-ビス(2-ヒドロキエトキシフェニル)スルフィド、4,4’-ビス[4-(2-ジヒドロキシエトキシ)-3-メチルフェニル]スルフィドで例示されるような、ビスヒドロキシアルコキシアリールスルフィド類、4,4’-ビス(2-ヒドロキエトキシフェニル)スルホキシド、4,4’-ビス[4-(2-ジヒドロキシエトキシ)-3-メチルフェニル]スルホキシドで例示されるような、ビスヒドロキシアルコキシアリールスルホキシド類、4,4’-ビス(2-ヒドロキエトキシフェニル)スルホン、4,4’-ビス[4-(2-ジヒドロキシエトキシ)-3-メチルフェニル]スルホンで例示されるような、ビスヒドロキシアルコキシアリールスルホン類、1,4-ビスヒドロキシエトキシベンゼン、1,3-ビスヒドロキシエトキシベンゼン、1,2-ビスヒドロキシエトキシベンゼン、1,3-ビス[2-[4-(2-ヒドロキシエトキシ)フェニル]プロピル]ベンゼン、1,4-ビス[2-[4-(2-ヒドロキシエトキシ)フェニル]プロピル]ベンゼン、4,4’-ビス(2-ヒドロキシエトキシ)ビフェニル、1,3-ビス[4-(2-ヒドロキシエトキシ)フェニル]-5,7-ジメチルアダマンタン、下記式(4)で表されるジヒドロキシ化合物に代表される無水糖アルコール、および下記一般式(6)で表されるスピログリコール等の環状エーテル構造を有する化合物が挙げられ、これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 More specifically, examples of the dihydroxy compound (A) include 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and 9,9-bis (4- (2-hydroxyethoxy) -3). -Methylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-isopropylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-isobutylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-tert-butylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-cyclohexylphenyl) fluorene, 9,9- Bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3,5-dimethylphenyl) fluorene, 9,9-bis (4-) As exemplified by (2-hydroxyethoxy) -3-tert-butyl-6-methylphenyl) fluorene, 9,9-bis (4- (3-hydroxy-2,2-dimethylpropoxy) phenyl) fluorene, Compounds having an aromatic group on the side chain and an ether group bonded to the aromatic group on the main chain, bis [4- (2-hydroxyethoxy) phenyl] methane, bis [4- (2-hydroxyethoxy) phenyl ] Diphenylmethane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] ethane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] -1-phenylethane, 2,2-bis [4 -(2-Hydroxyethoxy) phenyl] propane, 2,2-bis [4- (2-hydroxyethoxy) -3-methylphenyl] propane, 2,2-bis [3,5-dimethyl-4- (2-) Hydroxyethoxy) phenyl] propane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] -3,3,5-trimethylcyclohexane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane , 1,4-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 1,3-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 2,2-bis [4- (2-hydroxyethoxy) ethoxy ) -3-Phenylphenyl] propane, 2,2-bis [(2-hydroxyethoxy) -3-isopropylphenyl] propane, 2,2-bis [3-tert-butyl-4- (2-hydroxyethoxy) phenyl ] Lopan, 2,2-bis [4- (2-hydroxyethoxy) phenyl] butane, 2,2-bis [4- (2-hydroxyethoxy) phenyl] -4-methylpentane, 2,2-bis [4- (2-Hydroxyethoxy) phenyl] octane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] decane, 2,2-bis [3-bromo-4- (2-hydroxyethoxy) phenyl] propane, Bis (hydroxyalkoxyaryl) alkanes, as exemplified by 2,2-bis [3-cyclohexyl-4- (2-hydroxyethoxy) phenyl] propane, 1,1-bis [4- (2-hydroxyethoxy) ethoxy] ) Phenyl] cyclohexane, 1,1-bis [3-cyclohexyl-4- (2-hydroxyethoxy) phenyl] cyclohexane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclopentane as exemplified , Bis (hydroxyalkoxyaryl) cycloalkans, 4,4'-bis (2-hydroxyethoxy) diphenyl ether, 4,4'-bis (2-hydroxyethoxy) -3,3'-dimethyldiphenyle Dihydroxyalkoxydiaryl ethers, 4,4'-bis (2-hydrochiethoxyphenyl) sulfide, 4,4'-bis [4- (2-dihydroxyethoxy) -3-methylphenyl, as exemplified by tel. ] Bishydroxyalkoxyaryl sulfides, 4,4'-bis (2-hydrochiethoxyphenyl) sulfoxides, 4,4'-bis [4- (2-dihydroxyethoxy) -3-methyl, as exemplified by sulfides. Bishydroxyalkoxyaryl sulfoxides, 4,4'-bis (2-hydrochiethoxyphenyl) sulfides, 4,4'-bis [4- (2-dihydroxyethoxy) -3-, as exemplified by phenyl] sulfoxides. Methylphenyl] sulfides, as exemplified by bishydroxyalkoxyarylsulfones, 1,4-bishydroxyethoxybenzene, 1,3-bishydroxyethoxybenzene, 1,2-bishydroxyethoxybenzene, 1,3-bis [2- [4- (2-Hydroxyethoxy) phenyl] propyl] benzene, 1,4-bis [2- [4- (2-hydroxyethoxy) phenyl] propyl] benzene, 4,4'-bis (2-) Hydroxyethoxy) biphenyl, 1,3-bis [4- (2-hydroxyethoxy) phenyl] Examples thereof include compounds having a cyclic ether structure such as -5,7-dimethyladamantane, anhydrous sugar alcohol represented by the dihydroxy compound represented by the following formula (4), and spiroglycol represented by the following general formula (6). These may be used alone or in combination of two or more.
ル)フルオレンで例示されるような、側鎖に芳香族基を有し、主鎖に芳香族基に結合したエーテル基を有する化合物、ビス[4-(2-ヒドロキシエトキシ)フェニル]メタン、ビス[4-(2-ヒドロキシエトキシ)フェニル]ジフェニルメタン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]エタン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]-1-フェニルエタン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]プロパン、2,2-ビス[3,5-ジメチル-4-(2-ヒドロキシエトキシ)フェニル]プロパン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]-3,3,5-トリメチルシクロヘキサン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、1,4-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、1,3-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、2,2-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]プロパン、2,2-ビス[(2-ヒドロキシエトキシ)-3-イソプロピルフェニル]プロパン、2,2-ビス[3-tert-ブチル-4-(2-ヒドロキシエトキシ)フェニル]プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]ブタン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]-4-メチルペンタン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]オクタン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]デカン、2,2-ビス[3-ブロモ-4-(2-ヒドロキシエトキシ)フェニル]プロパン、2,2-ビス[3-シクロヘキシル-4-(2-ヒドロキシエトキシ)フェニル]プロパンで例示されるような、ビス(ヒドロキシアルコキシアリール)アルカン類、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、1,1-ビス[3-シクロヘキシル-4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロペンタンで例示されるような、ビス(ヒドロキシアルコキシアリール)シクロアルカン類、4,4’-ビス(2-ヒドロキシエトキシ)ジフェニルエ-テル、4,4’-ビス(2-ヒドロキシエトキシ)-3,3’-ジメチルジフェニルエ-テルで例示されるような、ジヒドロキシアルコキシジアリールエーテル類、4,4’-ビス(2-ヒドロキエトキシフェニル)スルフィド、4,4’-ビス[4-(2-ジヒドロキシエトキシ)-3-メチルフェニル]スルフィドで例示されるような、ビスヒドロキシアルコキシアリールスルフィド類、4,4’-ビス(2-ヒドロキエトキシフェニル)スルホキシド、4,4’-ビス[4-(2-ジヒドロキシエトキシ)-3-メチルフェニル]スルホキシドで例示されるような、ビスヒドロキシアルコキシアリールスルホキシド類、4,4’-ビス(2-ヒドロキエトキシフェニル)スルホン、4,4’-ビス[4-(2-ジヒドロキシエトキシ)-3-メチルフェニル]スルホンで例示されるような、ビスヒドロキシアルコキシアリールスルホン類、1,4-ビスヒドロキシエトキシベンゼン、1,3-ビスヒドロキシエトキシベンゼン、1,2-ビスヒドロキシエトキシベンゼン、1,3-ビス[2-[4-(2-ヒドロキシエトキシ)フェニル]プロピル]ベンゼン、1,4-ビス[2-[4-(2-ヒドロキシエトキシ)フェニル]プロピル]ベンゼン、4,4’-ビス(2-ヒドロキシエトキシ)ビフェニル、1,3-ビス[4-(2-ヒドロキシエトキシ)フェニル]-5,7-ジメチルアダマンタン、下記式(4)で表されるジヒドロキシ化合物に代表される無水糖アルコール、および下記一般式(6)で表されるスピログリコール等の環状エーテル構造を有する化合物が挙げられ、これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 More specifically, examples of the dihydroxy compound (A) include 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and 9,9-bis (4- (2-hydroxyethoxy) -3). -Methylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-isopropylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-isobutylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-tert-butylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-cyclohexylphenyl) fluorene, 9,9- Bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3,5-dimethylphenyl) fluorene, 9,9-bis (4-) As exemplified by (2-hydroxyethoxy) -3-tert-butyl-6-methylphenyl) fluorene, 9,9-bis (4- (3-hydroxy-2,2-dimethylpropoxy) phenyl) fluorene, Compounds having an aromatic group on the side chain and an ether group bonded to the aromatic group on the main chain, bis [4- (2-hydroxyethoxy) phenyl] methane, bis [4- (2-hydroxyethoxy) phenyl ] Diphenylmethane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] ethane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] -1-phenylethane, 2,2-bis [4 -(2-Hydroxyethoxy) phenyl] propane, 2,2-bis [4- (2-hydroxyethoxy) -3-methylphenyl] propane, 2,2-bis [3,5-dimethyl-4- (2-) Hydroxyethoxy) phenyl] propane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] -3,3,5-trimethylcyclohexane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane , 1,4-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 1,3-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 2,2-bis [4- (2-hydroxyethoxy) ethoxy ) -3-Phenylphenyl] propane, 2,2-bis [(2-hydroxyethoxy) -3-isopropylphenyl] propane, 2,2-bis [3-tert-butyl-4- (2-hydroxyethoxy) phenyl ] Lopan, 2,2-bis [4- (2-hydroxyethoxy) phenyl] butane, 2,2-bis [4- (2-hydroxyethoxy) phenyl] -4-methylpentane, 2,2-bis [4- (2-Hydroxyethoxy) phenyl] octane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] decane, 2,2-bis [3-bromo-4- (2-hydroxyethoxy) phenyl] propane, Bis (hydroxyalkoxyaryl) alkanes, as exemplified by 2,2-bis [3-cyclohexyl-4- (2-hydroxyethoxy) phenyl] propane, 1,1-bis [4- (2-hydroxyethoxy) ethoxy] ) Phenyl] cyclohexane, 1,1-bis [3-cyclohexyl-4- (2-hydroxyethoxy) phenyl] cyclohexane, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclopentane as exemplified , Bis (hydroxyalkoxyaryl) cycloalkans, 4,4'-bis (2-hydroxyethoxy) diphenyl ether, 4,4'-bis (2-hydroxyethoxy) -3,3'-dimethyldiphenyle Dihydroxyalkoxydiaryl ethers, 4,4'-bis (2-hydrochiethoxyphenyl) sulfide, 4,4'-bis [4- (2-dihydroxyethoxy) -3-methylphenyl, as exemplified by tel. ] Bishydroxyalkoxyaryl sulfides, 4,4'-bis (2-hydrochiethoxyphenyl) sulfoxides, 4,4'-bis [4- (2-dihydroxyethoxy) -3-methyl, as exemplified by sulfides. Bishydroxyalkoxyaryl sulfoxides, 4,4'-bis (2-hydrochiethoxyphenyl) sulfides, 4,4'-bis [4- (2-dihydroxyethoxy) -3-, as exemplified by phenyl] sulfoxides. Methylphenyl] sulfides, as exemplified by bishydroxyalkoxyarylsulfones, 1,4-bishydroxyethoxybenzene, 1,3-bishydroxyethoxybenzene, 1,2-bishydroxyethoxybenzene, 1,3-bis [2- [4- (2-Hydroxyethoxy) phenyl] propyl] benzene, 1,4-bis [2- [4- (2-hydroxyethoxy) phenyl] propyl] benzene, 4,4'-bis (2-) Hydroxyethoxy) biphenyl, 1,3-bis [4- (2-hydroxyethoxy) phenyl] Examples thereof include compounds having a cyclic ether structure such as -5,7-dimethyladamantane, anhydrous sugar alcohol represented by the dihydroxy compound represented by the following formula (4), and spiroglycol represented by the following general formula (6). These may be used alone or in combination of two or more.
これらジヒドロキシ化合物(A)は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。本発明において、前記式(4)で表されるジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド、イソマンニド、イソイデットが挙げられ、これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
These dihydroxy compounds (A) may be used alone or in combination of two or more. In the present invention, examples of the dihydroxy compound represented by the above formula (4) include isosorbide, isomannide, and isoidet having a stereoisomeric relationship, and one of these may be used alone or two or more. May be used in combination.
なお、ジヒドロキシ化合物(A)のうち、資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビドが、入手及び製造のし易さ、光学特性、成形性の面から最も好ましい。本願発明においては、ジヒドロキシ化合物(A)として、イソソルビドが好適に用いられる。
Among the dihydroxy compounds (A), isosorbide obtained by dehydration condensation of sorbitol, which is abundant as a resource and is produced from various readily available starches, is easy to obtain and produce, and has optical properties. Most preferable from the viewpoint of moldability. In the present invention, isosorbide is preferably used as the dihydroxy compound (A).
(ジヒドロキシ化合物(B))
本発明においては、ジヒドロキシ化合物としてジヒドロキシ化合物(A)以外のジヒドロキシ化合物である、ジヒドロキシ化合物(B)を用いてもよい。ジヒドロキシ化合物(B)としては、例えば、脂環式ジヒドロキシ化合物、脂肪族ジヒドロキシ化合物、オキシアルキレングリコール類、芳香族ジヒドロキシ化合物、環状エーテル構造を有するジオール類を、ポリカーボネートの構成単位となるジヒドロキシ化合物として、ジヒドロキシ化合物(A)、例えば式(4)で表されるジヒドロキシ化合物とともに用いることができる。 (Dihydroxy compound (B))
In the present invention, the dihydroxy compound (B), which is a dihydroxy compound other than the dihydroxy compound (A), may be used as the dihydroxy compound. As the dihydroxy compound (B), for example, an alicyclic dihydroxy compound, an aliphatic dihydroxy compound, an oxyalkylene glycol, an aromatic dihydroxy compound, and diols having a cyclic ether structure are used as the dihydroxy compound as a constituent unit of the polycarbonate. It can be used together with the dihydroxy compound (A), for example, the dihydroxy compound represented by the formula (4).
本発明においては、ジヒドロキシ化合物としてジヒドロキシ化合物(A)以外のジヒドロキシ化合物である、ジヒドロキシ化合物(B)を用いてもよい。ジヒドロキシ化合物(B)としては、例えば、脂環式ジヒドロキシ化合物、脂肪族ジヒドロキシ化合物、オキシアルキレングリコール類、芳香族ジヒドロキシ化合物、環状エーテル構造を有するジオール類を、ポリカーボネートの構成単位となるジヒドロキシ化合物として、ジヒドロキシ化合物(A)、例えば式(4)で表されるジヒドロキシ化合物とともに用いることができる。 (Dihydroxy compound (B))
In the present invention, the dihydroxy compound (B), which is a dihydroxy compound other than the dihydroxy compound (A), may be used as the dihydroxy compound. As the dihydroxy compound (B), for example, an alicyclic dihydroxy compound, an aliphatic dihydroxy compound, an oxyalkylene glycol, an aromatic dihydroxy compound, and diols having a cyclic ether structure are used as the dihydroxy compound as a constituent unit of the polycarbonate. It can be used together with the dihydroxy compound (A), for example, the dihydroxy compound represented by the formula (4).
本発明に使用できる、脂環式ジヒドロキシ化合物としては、特に限定されないが、好ましくは、通常5員環構造又は6員環構造を含む化合物を用いる。また、6員環構造は共有結合によって椅子形もしくは舟形に固定されていてもよい。脂環式ジヒドロキシ化合物が5員環又は6員環構造であることにより、得られるポリカーボネートの耐熱性を高くすることができる。脂環式ジヒドロキシ化合物に含まれる炭素原子数は通常70以下であり、好ましくは50以下、より好ましくは30以下である。この値が大きくなるほど、耐熱性が高くなるが、合成が困難になったり、精製が困難になったり、コストが高価だったりする。炭素原子数が小さくなるほど、精製しやすく、入手しやすくなる。
The alicyclic dihydroxy compound that can be used in the present invention is not particularly limited, but a compound having a 5-membered ring structure or a 6-membered ring structure is usually used. Further, the 6-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond. Since the alicyclic dihydroxy compound has a 5-membered ring or 6-membered ring structure, the heat resistance of the obtained polycarbonate can be increased. The number of carbon atoms contained in the alicyclic dihydroxy compound is usually 70 or less, preferably 50 or less, and more preferably 30 or less. The larger this value, the higher the heat resistance, but the synthesis becomes difficult, the purification becomes difficult, and the cost becomes high. The smaller the number of carbon atoms, the easier it is to purify and obtain.
本発明で使用できる5員環構造又は6員環構造を含む脂環式ジヒドロキシ化合物としては、具体的には、下記一般式(II)又は(III)で表される脂環式ジヒドロキシ化合物が挙げられる。
HOCH2-R1-CH2OH (II)
HO-R2-OH (III)
(式(II)、(III)中、R1、R2はそれぞれ、炭素数4~20のシクロアルキレン基を示す。)
上記一般式(II)で表される脂環式ジヒドロキシ化合物であるシクロヘキサンジメタノールとしては、一般式(II)において、R1が下記一般式(IIa)(式中、R3は炭素数1~12のアルキル基又は水素原子を示す。)で表される種々の異性体を包含する。このようなものとしては、具体的には、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノールなどが挙げられる。 Specific examples of the alicyclic dihydroxy compound containing a 5-membered ring structure or a 6-membered ring structure that can be used in the present invention include alicyclic dihydroxy compounds represented by the following general formulas (II) or (III). Be done.
HOCH 2- R 1- CH 2 OH (II)
HO-R 2- OH (III)
(In formulas (II) and (III), R 1 and R 2 each represent a cycloalkylene group having 4 to 20 carbon atoms.)
As the cyclohexanedimethanol which is an alicyclic dihydroxy compound represented by the general formula (II), in the general formula (II), R 1 is the following general formula (IIa) (in the formula, R 3 has 1 to 1 carbon atoms. Includes various isomers represented by 12 alkyl groups or hydrogen atoms). Specific examples thereof include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, and 1,4-cyclohexanedimethanol.
HOCH2-R1-CH2OH (II)
HO-R2-OH (III)
(式(II)、(III)中、R1、R2はそれぞれ、炭素数4~20のシクロアルキレン基を示す。)
上記一般式(II)で表される脂環式ジヒドロキシ化合物であるシクロヘキサンジメタノールとしては、一般式(II)において、R1が下記一般式(IIa)(式中、R3は炭素数1~12のアルキル基又は水素原子を示す。)で表される種々の異性体を包含する。このようなものとしては、具体的には、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノールなどが挙げられる。 Specific examples of the alicyclic dihydroxy compound containing a 5-membered ring structure or a 6-membered ring structure that can be used in the present invention include alicyclic dihydroxy compounds represented by the following general formulas (II) or (III). Be done.
HOCH 2- R 1- CH 2 OH (II)
HO-R 2- OH (III)
(In formulas (II) and (III), R 1 and R 2 each represent a cycloalkylene group having 4 to 20 carbon atoms.)
As the cyclohexanedimethanol which is an alicyclic dihydroxy compound represented by the general formula (II), in the general formula (II), R 1 is the following general formula (IIa) (in the formula, R 3 has 1 to 1 carbon atoms. Includes various isomers represented by 12 alkyl groups or hydrogen atoms). Specific examples thereof include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, and 1,4-cyclohexanedimethanol.
上記一般式(II)で表される脂環式ジヒドロキシ化合物であるトリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノールとしては、一般式(II)において、R1が下記一般式(IIb)(式中、nは0又は1を示す。)で表される種々の異性体を包含する。
As tricyclodecanedimethanol and pentacyclopentadecanedimethanol, which are alicyclic dihydroxy compounds represented by the above general formula (II), in the general formula (II), R 1 is the following general formula (IIb) (in the formula). , N represents 0 or 1) and includes various isomers represented by).
上記一般式(II)で表される脂環式ジヒドロキシ化合物であるデカリンジメタノール又は、トリシクロテトラデカンジメタノールとしては、一般式(II)において、R1が下記一般式(IIc)(式中、mは0、又は1を示す。)で表される種々の異性体を包含する。このようなものとしては、具体的には、2,6-デカリンジメタノール、1,5-デカリンジメタノール、2,3-デカリンジメタノールなどが挙げられる。
As the decalin dimethanol or tricyclotetradecane dimethanol which is an alicyclic dihydroxy compound represented by the general formula (II), in the general formula (II), R 1 is the following general formula (IIc) (in the formula, in the formula). m includes various isomers represented by 0 or 1). Specific examples thereof include 2,6-decalin dimethanol, 1,5-decalin dimethanol, and 2,3-decalin dimethanol.
また、上記一般式(II)で表される脂環式ジヒドロキシ化合物であるノルボルナンジメタノールとしては、一般式(II)において、R1が下記一般式(IId)で表される種々の異性体を包含する。このようなものとしては、具体的には、2,3-ノルボルナンジメタノール、2,5-ノルボルナンジメタノールなどが挙げられる。
Further, as norbornane dimethanol which is an alicyclic dihydroxy compound represented by the above general formula (II), various isomers in which R 1 is represented by the following general formula (IId) in the general formula (II) are used. Include. Specific examples of such a substance include 2,3-norbornane dimethanol, 2,5-norbornane dimethanol and the like.
一般式(II)で表される脂環式ジヒドロキシ化合物であるアダマンタンジメタノールとしては、一般式(II)において、R1が下記一般式(IIe)で表される種々の異性体を包含する。このようなものとしては、具体的には、1,3-アダマンタンジメタノールなどが挙げられる。
The adamantane dimethanol, which is an alicyclic dihydroxy compound represented by the general formula (II), includes various isomers in which R 1 is represented by the following general formula (IIe) in the general formula (II). Specific examples of such a substance include 1,3-adamantane dimethanol and the like.
また、上記一般式(III)で表される脂環式ジヒドロキシ化合物であるシクロヘキサンジオールは、一般式(III)において、R2が下記一般式(IIIa)(式中、R3は炭素数1~12のアルキル基又は水素原子を示す。)で表される種々の異性体を包含する。このようなものとしては、具体的には、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、2-メチル-1,4-シクロヘキサンジオールなどが挙げられる。
Further, in the cyclohexanediol which is an alicyclic dihydroxy compound represented by the above general formula (III), in the general formula (III), R 2 is the following general formula (IIIa) (in the formula, R 3 has 1 to 1 carbon atoms. Includes various isomers represented by 12 alkyl groups or hydrogen atoms. Specific examples of such a product include 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 2-methyl-1,4-cyclohexanediol and the like.
上記一般式(III)で表される脂環式ジヒドロキシ化合物であるトリシクロデカンジオール、ペンタシクロペンタデカンジオールとしては、一般式(III)において、R2が下記一般式(IIIb)(式中、nは0又は1を示す。)で表される種々の異性体を包含する。
As the tricyclodecanediol and pentacyclopentadecanediol, which are alicyclic dihydroxy compounds represented by the general formula (III), in the general formula (III), R 2 is the following general formula (IIIb) (in the formula, n). Indicates 0 or 1) and includes various isomers represented by).
上記一般式(III)で表される脂環式ジヒドロキシ化合物であるデカリンジオール又はトリシクロテトラデカンジオールとしては、一般式(III)において、R2が下記一般式(IIIc)(式中、mは0、又は1を示す。)で表される種々の異性体を包含する。このようなものとしては、具体的には、2,6-デカリンジオール、1,5-デカリンジオール、2,3-デカリンジオールなどが用いられる。
As the decalin diol or tricyclotetradecane diol which is an alicyclic dihydroxy compound represented by the general formula (III), in the general formula (III), R 2 is the following general formula (IIIc) (in the formula, m is 0). , Or various isomers represented by 1). Specifically, 2,6-decalin diol, 1,5-decalin diol, 2,3-decalin diol and the like are used as such.
上記一般式(III)で表される脂環式ジヒドロキシ化合物であるノルボルナンジオールとしては、一般式(III)において、R2が下記一般式(IIId)で表される種々の異性体を包含する。このようなものとしては、具体的には、2,3-ノルボルナンジオール、2,5-ノルボルナンジオールなどが用いられる。
The norbornane diol which is an alicyclic dihydroxy compound represented by the general formula (III), in the general formula (III), includes various isomers where R 2 is represented by the following general formula (IIId). Specifically, 2,3-norbornanediol, 2,5-norbornanediol and the like are used as such.
上記一般式(III)で表される脂環式ジヒドロキシ化合物であるアダマンタンジオールとしては、一般式(III)において、R2が下記一般式(IIIe)で表される種々の異性体を包含する。このようなものとしては具体的には、1,3-アダマンタンジオールなどが用いられる。
The adamantane diol which is an alicyclic dihydroxy compound represented by the general formula (III), in the general formula (III), includes various isomers where R 2 is represented by the following general formula (IIIe). Specifically, 1,3-adamantane diol and the like are used as such substances.
上述した脂環式ジヒドロキシ化合物の具体例のうち、特に、シクロヘキサンジメタノール類、トリシクロデカンジメタノール類、アダマンタンジオール類、ペンタシクロペンタデカンジメタノール類が好ましく、入手のしやすさ、取り扱いのしやすさという観点から、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、トリシクロデカンジメタノールが好ましい。本願発明においては、ジヒドロキシ化合物(B)として、トリシクロデカンジメタノールが好適に用いられる。
Among the specific examples of the alicyclic dihydroxy compounds described above, cyclohexanedimethanol, tricyclodecanedimethanol, adamantandiol, and pentacyclopentadecanedimethanol are particularly preferable, and are easily available and easy to handle. From this point of view, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, and tricyclodecanedimethanol are preferable. In the present invention, tricyclodecanedimethanol is preferably used as the dihydroxy compound (B).
本発明に使用できる脂肪族ジヒドロキシ化合物としては、例えば、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、1,5-ヘプタンジオール、1,6-ヘキサンジオールが挙げられる。本発明に使用できるオキシアルキレングリコール類としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコールが挙げられる。
Examples of the aliphatic dihydroxy compound that can be used in the present invention include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,3-butanediol, and 1,2-butanediol. Examples include diol, 1,5-heptanediol, and 1,6-hexanediol. Examples of oxyalkylene glycols that can be used in the present invention include diethylene glycol, triethylene glycol, tetraethylene glycol, and polyethylene glycol.
本発明に使用できる芳香族ジヒドロキシ化合物としては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン[=ビスフェノールA]、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-(3,5-ジフェニル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,4’-ジヒドロキシ-ジフェニルメタン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-5-ニトロフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)スルフィド、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジクロロジフェニルエーテル、4,4’-ジヒドロキシ-2,5-ジエトキシジフェニルエーテル、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ-2-メチル)フェニル]フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-2-メチルフェニル)フルオレンが挙げられる。
Examples of the aromatic dihydroxy compound that can be used in the present invention include 2,2-bis (4-hydroxyphenyl) propane [= bisphenol A] and 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane. , 2,2-bis (4-hydroxy-3,5-diethylphenyl) propane, 2,2-bis (4-hydroxy- (3,5-diphenyl) phenyl) propane, 2,2-bis (4-hydroxy) -3,5-dibromophenyl) propane, 2,2-bis (4-hydroxyphenyl) pentane, 2,4'-dihydroxy-diphenylmethane, bis (4-hydroxyphenyl) methane, bis (4-hydroxy-5-nitro) Phenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 3,3-bis (4-hydroxyphenyl) pentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) Sulfur, 2,4'-dihydroxydiphenylsulfone, bis (4-hydroxyphenyl) sulfide, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dichlorodiphenyl ether, 4,4'-dihydroxy- 2,5-Diethoxydiphenyl ether, 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy-2-methyl) phenyl] fluorene, 9, Examples thereof include 9-bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-2-methylphenyl) fluorene.
本発明に使用できる環状エーテル構造を有するジオール類としては、例えば、スピログリコール類、ジオキサングリコール類が挙げられる。なお、上記例示化合物は、本発明に使用し得る脂環式ジヒドロキシ化合物、脂肪族ジヒドロキシ化合物、オキシアルキレングリコール類、芳香族ジヒドロキシ化合物、環状エーテル構造を有するジオール類の一例であって、何らこれらに限定されるものではない。これらの化合物は、1種又は2種以上を式(4)で表されるジヒドロキシ化合物とともに用いることができる。
Examples of diols having a cyclic ether structure that can be used in the present invention include spiroglycols and dioxane glycols. The above-exemplified compound is an example of an alicyclic dihydroxy compound, an aliphatic dihydroxy compound, an oxyalkylene glycol, an aromatic dihydroxy compound, and a diol having a cyclic ether structure that can be used in the present invention. It is not limited. One or more of these compounds can be used together with the dihydroxy compound represented by the formula (4).
これらのジヒドロキシ化合物(B)を用いることにより、用途に応じた柔軟性の改善、耐熱性の向上、成形性の改善などの効果を得ることができる。本発明に係るポリカーボネート樹脂を構成する全ジヒドロキシ化合物に対するジヒドロキシ化合物(A)、例えば式(4)で表されるジヒドロキシ化合物の割合は特に限定されないが、好ましくは10モル%以上、より好ましくは40モル%以上、さらに好ましくは60モル%以上、好ましくは90モル%以下、より好ましくは80モル%以下、さらに好ましくは70モル%以下である。他のジヒドロキシ化合物に由来する構成単位の含有割合が多過ぎると、光学特性等の性能を低下させたりすることがある。
By using these dihydroxy compounds (B), effects such as improvement of flexibility, improvement of heat resistance, and improvement of moldability can be obtained according to the application. The ratio of the dihydroxy compound (A), for example, the dihydroxy compound represented by the formula (4) to all the dihydroxy compounds constituting the polycarbonate resin according to the present invention is not particularly limited, but is preferably 10 mol% or more, more preferably 40 mol. % Or more, more preferably 60 mol% or more, preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less. If the content ratio of the structural unit derived from other dihydroxy compounds is too large, the performance such as optical characteristics may be deteriorated.
上記他のジヒドロキシ化合物の中で、脂環式ジヒドロキシ化合物を用いる場合、ポリカーボネートを構成する全ジヒドロキシ化合物に対するジヒドロキシ化合物(A)、例えば式(4)で表されるジヒドロキシ化合物と脂環式ジヒドロキシ化合物の合計の割合は特に限定されないが、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上である。
When an alicyclic dihydroxy compound is used among the above other dihydroxy compounds, the dihydroxy compound (A) with respect to all the dihydroxy compounds constituting the polycarbonate, for example, the dihydroxy compound represented by the formula (4) and the alicyclic dihydroxy compound The total ratio is not particularly limited, but is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more.
また、本発明に係るポリカーボネート樹脂における、ジヒドロキシ化合物(A)、例えば式(4)で表されるジヒドロキシ化合物に由来する構成単位と脂環式ジヒドロキシ化合物に由来する構成単位との含有割合については、任意の割合で選択できるが、式(4)で表されるジヒドロキシ化合物に由来する構成単位:脂環式ジヒドロキシ化合物に由来する構成単位=1:99~99:1(モル%)が好ましく、特に式(4)で表されるジヒドロキシ化合物に由来する構成単位:脂環式ジヒドロキシ化合物に由来する構成単位=10:90~90:10(モル%)であることが好ましい。上記範囲よりも式(4)で表されるジヒドロキシ化合物に由来する構成単位が多く脂環式ジヒドロキシ化合物に由来する構成単位が少ないと着色しやすくなり、逆に式(4)で表されるジヒドロキシ化合物に由来する構成単位が少なく脂環式ジヒドロキシ化合物に由来する構成単位が多いと分子量が上がりにくくなる傾向がある。
Further, regarding the content ratio of the dihydroxy compound (A), for example, the structural unit derived from the dihydroxy compound represented by the formula (4) and the structural unit derived from the alicyclic dihydroxy compound in the polycarbonate resin according to the present invention. Although it can be selected in any ratio, the structural unit derived from the dihydroxy compound represented by the formula (4): the structural unit derived from the alicyclic dihydroxy compound = 1: 99 to 99: 1 (mol%) is preferable, and in particular. The structural unit derived from the dihydroxy compound represented by the formula (4): the structural unit derived from the alicyclic dihydroxy compound = 10: 90 to 90:10 (mol%) is preferable. If the number of structural units derived from the dihydroxy compound represented by the formula (4) is larger than the above range and the number of structural units derived from the alicyclic dihydroxy compound is smaller, coloring becomes easier, and conversely, the dihydroxy represented by the formula (4). If the number of structural units derived from the compound is small and the number of structural units derived from the alicyclic dihydroxy compound is large, the molecular weight tends to be difficult to increase.
さらに、脂肪族ジヒドロキシ化合物、オキシアルキレングリコール類、芳香族ジヒドロキシ化合物、環状エーテル構造を有するジオール類を用いる場合、ポリカーボネートを構成する全ジヒドロキシ化合物に対するジヒドロキシ化合物(A)、例えば式(4)で表されるジヒドロキシ化合物とこれらの各ジヒドロキシ化合物の合計の割合は特に限定されず、任意の割合で選択できる。また、ジヒドロキシ化合物(A)、例えば式(4)で表されるジヒドロキシ化合物に由来する構成単位とこれらの各ジヒドロキシ化合物に由来する構成単位との含有割合も特に限定されず、任意の割合で選択できる。
Further, when an aliphatic dihydroxy compound, an oxyalkylene glycol, an aromatic dihydroxy compound, or a diol having a cyclic ether structure is used, the dihydroxy compound (A) with respect to all the dihydroxy compounds constituting the polycarbonate, for example, is represented by the formula (4). The total ratio of the dihydroxy compound and each of these dihydroxy compounds is not particularly limited and can be selected at any ratio. Further, the content ratio of the dihydroxy compound (A), for example, the structural unit derived from the dihydroxy compound represented by the formula (4) and the structural unit derived from each of these dihydroxy compounds is not particularly limited, and can be selected at an arbitrary ratio. it can.
ポリカーボネート系樹脂の詳細は、例えば、特開2012-31370号公報に記載されている。当該特許文献の記載は、本明細書に参考として援用される。
Details of the polycarbonate resin are described in, for example, Japanese Patent Application Laid-Open No. 2012-31370. The description of the patent document is incorporated herein by reference.
C.位相差フィルムの製造方法
本発明の実施形態による位相差フィルムの製造方法は、樹脂フィルムを延伸処理することを含む。樹脂フィルムは、上記B項で説明したポリカーボネート樹脂から形成されたフィルムである。 C. Method for producing a retardation film The method for producing a retardation film according to the embodiment of the present invention includes stretching a resin film. The resin film is a film formed from the polycarbonate resin described in Section B above.
本発明の実施形態による位相差フィルムの製造方法は、樹脂フィルムを延伸処理することを含む。樹脂フィルムは、上記B項で説明したポリカーボネート樹脂から形成されたフィルムである。 C. Method for producing a retardation film The method for producing a retardation film according to the embodiment of the present invention includes stretching a resin film. The resin film is a film formed from the polycarbonate resin described in Section B above.
1つの実施形態においては、位相差フィルムは、二軸延伸により作製され得る。二軸延伸は、同時二軸延伸であってもよく、逐次二軸延伸であってもよい。長手方向の延伸倍率は、好ましくは1.0倍をこえて2.0倍以下であり、より好ましくは1.1倍~1.5倍である。幅方向の延伸倍率は、好ましくは1.6倍~2.2倍であり、より好ましくは1.8倍~2.0倍である。上記のポリカーボネート樹脂から形成されたフィルムをこのような延伸倍率で延伸することにより、所望の光学特性のみならず、非常に優れた機械的特性(例えば、異形加工性、耐折性)を実現することができる。
In one embodiment, the retardation film can be made by biaxial stretching. The biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching. The stretching ratio in the longitudinal direction is preferably more than 1.0 times and 2.0 times or less, and more preferably 1.1 times to 1.5 times. The draw ratio in the width direction is preferably 1.6 times to 2.2 times, more preferably 1.8 times to 2.0 times. By stretching the film formed from the above-mentioned polycarbonate resin at such a stretching ratio, not only desired optical properties but also extremely excellent mechanical properties (for example, deformability and folding resistance) are realized. be able to.
上記樹脂フィルムの延伸温度は、好ましくはTg-30℃~Tg+30℃であり、より好ましくはTg-15℃~Tg+15℃であり、さらに好ましくはTg-10℃~Tg+10℃である。このような温度で延伸することにより、本発明において適切な特性を有する位相差フィルムが得られ得る。なお、Tgは、フィルムの構成材料のガラス転移温度である。
The stretching temperature of the resin film is preferably Tg-30 ° C to Tg + 30 ° C, more preferably Tg-15 ° C to Tg + 15 ° C, and even more preferably Tg-10 ° C to Tg + 10 ° C. By stretching at such a temperature, a retardation film having appropriate characteristics in the present invention can be obtained. Tg is the glass transition temperature of the constituent material of the film.
上記のような延伸方法および延伸条件を選択し、上記のようなポリカーボネート樹脂を含む樹脂フィルムを延伸することにより、耐皮脂性試験において白化およびクラックが抑制され、かつ、異形加工性および耐折性に優れた位相差フィルムが得られ得る。
By selecting the above-mentioned stretching method and stretching conditions and stretching the resin film containing the above-mentioned polycarbonate resin, whitening and cracking are suppressed in the sebum resistance test, and deformability and folding resistance are suppressed. An excellent retardation film can be obtained.
D.位相差層付偏光板
上記A項~C項に記載の位相差フィルムは、他の光学フィルムおよび/または光学部材との積層体として提供され得る。1つの実施形態においては、位相差フィルムは、偏光板との積層体(位相差層付偏光板)として提供され得る。したがって、本発明は、上記位相差フィルムを有する位相差層付偏光板を包含する。本発明の実施形態による位相差層付偏光板は、偏光板と上記位相差フィルムにより構成される位相差層とを備える。偏光板は、偏光子と、偏光子の一方の側に配置された第1の保護層と、偏光子のもう一方の側に配置された第2の保護層とを含む。目的に応じて、第1の保護層および第2の保護層の一方は省略されてもよい。位相差フィルムにおいて、偏光板の偏光子の吸収軸と位相差フィルムの遅相軸とのなす角度は、用途および目的に応じて適切に設定され得る。1つの実施形態においては、上記角度は、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。 D. Polarizing plate with retardation layer The retardation film according to the above items A to C can be provided as a laminate with another optical film and / or an optical member. In one embodiment, the retardation film can be provided as a laminate with a polarizing plate (polarizing filter with a retardation layer). Therefore, the present invention includes a polarizing plate with a retardation layer having the retardation film. The polarizing plate with a retardation layer according to the embodiment of the present invention includes a polarizing plate and a retardation layer composed of the retardation film. The polarizing plate includes a polarizer, a first protective layer arranged on one side of the polarizer, and a second protective layer arranged on the other side of the polarizer. Depending on the purpose, one of the first protective layer and the second protective layer may be omitted. In the retardation film, the angle formed by the absorption axis of the polarizing element of the polarizing plate and the slow axis of the retardation film can be appropriately set according to the application and purpose. In one embodiment, the angle is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about 45 °.
上記A項~C項に記載の位相差フィルムは、他の光学フィルムおよび/または光学部材との積層体として提供され得る。1つの実施形態においては、位相差フィルムは、偏光板との積層体(位相差層付偏光板)として提供され得る。したがって、本発明は、上記位相差フィルムを有する位相差層付偏光板を包含する。本発明の実施形態による位相差層付偏光板は、偏光板と上記位相差フィルムにより構成される位相差層とを備える。偏光板は、偏光子と、偏光子の一方の側に配置された第1の保護層と、偏光子のもう一方の側に配置された第2の保護層とを含む。目的に応じて、第1の保護層および第2の保護層の一方は省略されてもよい。位相差フィルムにおいて、偏光板の偏光子の吸収軸と位相差フィルムの遅相軸とのなす角度は、用途および目的に応じて適切に設定され得る。1つの実施形態においては、上記角度は、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。 D. Polarizing plate with retardation layer The retardation film according to the above items A to C can be provided as a laminate with another optical film and / or an optical member. In one embodiment, the retardation film can be provided as a laminate with a polarizing plate (polarizing filter with a retardation layer). Therefore, the present invention includes a polarizing plate with a retardation layer having the retardation film. The polarizing plate with a retardation layer according to the embodiment of the present invention includes a polarizing plate and a retardation layer composed of the retardation film. The polarizing plate includes a polarizer, a first protective layer arranged on one side of the polarizer, and a second protective layer arranged on the other side of the polarizer. Depending on the purpose, one of the first protective layer and the second protective layer may be omitted. In the retardation film, the angle formed by the absorption axis of the polarizing element of the polarizing plate and the slow axis of the retardation film can be appropriately set according to the application and purpose. In one embodiment, the angle is preferably 40 ° to 50 °, more preferably 42 ° to 48 °, and even more preferably about 45 °.
上記位相差層付偏光板においては、導電層または導電層付等方性基材が設けられてもよい。導電層または導電層付等方性基材は、代表的には、偏光板の外側(位相差層と反対側)に設けられる。導電層または導電層付等方性基材が設けられる場合、位相差層付偏光板は、画像表示セルと偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。
In the above-mentioned polarizing plate with a retardation layer, an isotropic base material with a conductive layer or a conductive layer may be provided. The conductive layer or the isotropic base material with the conductive layer is typically provided on the outside of the polarizing plate (on the side opposite to the retardation layer). When a conductive layer or an isotropic substrate with a conductive layer is provided, the polarizing plate with a retardation layer can be applied to a so-called inner touch panel type input display device in which a touch sensor is incorporated between an image display cell and the polarizing plate. ..
本発明の位相差層付偏光板は、枚葉状であってもよく長尺状であってもよい。本明細書において「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。長尺状の位相差層付偏光板は、ロール状に巻回可能である。位相差層付偏光板が長尺状である場合、偏光板および位相差層も長尺状である。この場合、偏光子は、好ましくは長尺方向に吸収軸を有する。位相差層は、好ましくは、長尺方向に対して例えば40°~50°の角度をなす方向に遅相軸を有する斜め延伸フィルムである。偏光子および位相差層がこのような構成であれば、位相差層付偏光板をロールトゥロールにより作製することができる。
The polarizing plate with a retardation layer of the present invention may be single-wafered or elongated. As used herein, the term "long" means an elongated shape having a length sufficiently long with respect to the width, and for example, an elongated shape having a length of 10 times or more, preferably 20 times or more with respect to the width. Including. The long-shaped polarizing plate with a retardation layer can be wound in a roll shape. When the polarizing plate with a retardation layer is elongated, the polarizing plate and the retardation layer are also elongated. In this case, the polarizer preferably has an absorption axis in the longitudinal direction. The retardation layer is preferably a diagonally stretched film having a slow axis in a direction forming an angle of, for example, 40 ° to 50 ° with respect to the elongated direction. If the polarizer and the retardation layer have such a configuration, a polarizing plate with a retardation layer can be produced by roll-to-roll.
実用的には、位相差層付偏光板は、画像表示セル側の最外層として粘着剤層を有し、画像表示セルに貼り付け可能とされている。さらに、粘着剤層の画像表示セル側には、位相差層付偏光板が使用に供されるまで、剥離フィルムが仮着されていることが好ましい。剥離フィルムを仮着することにより、粘着剤層を保護するとともに、ロール形成が可能となる。
Practically, the polarizing plate with a retardation layer has an adhesive layer as the outermost layer on the image display cell side, and can be attached to the image display cell. Further, it is preferable that a release film is temporarily attached to the image display cell side of the pressure-sensitive adhesive layer until a polarizing plate with a retardation layer is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be protected and rolls can be formed.
偏光板は、代表的には、偏光子と、偏光子の少なくとも片側に配置された保護層と、を有する。
The polarizing plate typically has a polarizing element and a protective layer arranged on at least one side of the polarizing element.
偏光子としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
As the polarizer, any suitable polarizer can be adopted. For example, the resin film forming the polarizer may be a single-layer resin film or a laminated body having two or more layers.
単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。
Specific examples of the polarizer composed of a single-layer resin film include a hydrophilic polymer film such as a polyvinyl alcohol (PVA) -based film, a partially formalized PVA-based film, and an ethylene / vinyl acetate copolymer system partially saponified film. Examples thereof include those which have been dyed and stretched with a bicolor substance such as iodine or a bicolor dye, and polyene-based oriented films such as a dehydrated product of PVA and a dehydrogenated product of polyvinyl chloride. Preferably, since the PVA-based film is excellent in optical characteristics, a polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching it is used.
上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。
The dyeing with iodine is performed, for example, by immersing a PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Moreover, you may dye after stretching. If necessary, the PVA-based film is subjected to a swelling treatment, a cross-linking treatment, a washing treatment, a drying treatment and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, it is possible not only to clean the dirt on the surface of the PVA-based film and the blocking inhibitor, but also to swell the PVA-based film to prevent uneven dyeing. Can be prevented.
積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。このような偏光子の製造方法の詳細は、例えば、特開2012-73580号公報等に記載されている。当該特許文献の記載は、本明細書に参考として援用される。当該公報は、その全体の記載が本明細書に参考として援用される。
Specific examples of the polarizer obtained by using the laminate include a laminate of a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material and the resin. Examples thereof include a polarizer obtained by using a laminate with a PVA-based resin layer coated and formed on a base material. Details of the method for producing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The description of the patent document is incorporated herein by reference. The entire description of the publication is incorporated herein by reference.
1つの実施形態においては、偏光子の厚みは、好ましくは1μm~25μmであり、より好ましくは3μm~10μmであり、さらに好ましくは3μm~8μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。
In one embodiment, the thickness of the polarizer is preferably 1 μm to 25 μm, more preferably 3 μm to 10 μm, and even more preferably 3 μm to 8 μm. When the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
保護層は、偏光子を保護するフィルムとして使用できる任意の適切な保護フィルムで形成される。当該保護フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
The protective layer is formed of any suitable protective film that can be used as a film to protect the polarizer. Specific examples of the material that is the main component of the protective film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone. Examples thereof include transparent resins such as polyester-based, polystyrene-based, polycarbonate-based, polyolefin-based, (meth) acrylic-based, and acetate-based. Further, thermosetting resins such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, and silicone, or ultraviolet curable resins can also be mentioned. In addition to this, for example, glassy polymers such as siloxane-based polymers can also be mentioned. Further, the polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As the material of this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. Can be used, and examples thereof include a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film can be, for example, an extruded product of the above resin composition.
第2の保護層が設けられる場合、当該内側保護層は、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。該保護層は、光学体に等方性である限り、任意の適切な材料で構成され得る。当該材料は、保護層に関して上記した材料から適切に選択され得る。
When a second protective layer is provided, it is preferable that the inner protective layer is optically isotropic. In the present specification, "optically isotropic" means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is -10 nm to +10 nm. Say. The protective layer may be made of any suitable material as long as it is isotropic to the optical body. The material can be appropriately selected from the materials mentioned above with respect to the protective layer.
保護層の厚みは、好ましくは10μm~100μmである。保護層は、接着層(具体的には、接着剤層、粘着剤層)を介して偏光子に積層されていてもよく、偏光子に密着(接着層を介さずに)積層されていてもよい。必要に応じて、位相差層付偏光板の最表面に配置される保護層には、ハードコート層、防眩層および反射防止層などの表面処理層が形成され得る。
The thickness of the protective layer is preferably 10 μm to 100 μm. The protective layer may be laminated on the polarizer via an adhesive layer (specifically, an adhesive layer or an adhesive layer), or may be laminated in close contact with the polarizer (without an adhesive layer). Good. If necessary, a surface treatment layer such as a hard coat layer, an antiglare layer, and an antireflection layer can be formed on the protective layer arranged on the outermost surface of the polarizing plate with a retardation layer.
上記位相差層付偏光板は、画像表示装置の視認側に用いられ得る。さらに、位相差層付偏光板における位相差層は、視認側に配置されてもよく、表示セル側に配置されてもよい。当該位相差層付偏光板における位相差層が、視認側に配置された場合には、耐皮脂性試験において白化およびクラックが抑制され得る。当該位相差層付偏光板における位相差層が、表示セル側に配置された場合には、優れた反射率が得られ得る。
The polarizing plate with a retardation layer can be used on the visual side of an image display device. Further, the retardation layer in the polarizing plate with a retardation layer may be arranged on the viewing side or on the display cell side. When the retardation layer in the polarizing plate with the retardation layer is arranged on the visual side, whitening and cracks can be suppressed in the sebum resistance test. When the retardation layer in the polarizing plate with a retardation layer is arranged on the display cell side, excellent reflectance can be obtained.
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法および評価方法は以下の通りである。
(1)面内位相差および波長分散特性
実施例および比較例で得られた位相差フィルムを長さ4cmおよび幅4cmに切り出し、測定試料とした。当該測定試料について、Axometrics社製、製品名「Axoscan」を用いて面内位相差Re(550)を測定した。さらに、Re(450)も測定し、Re(450)/Re(550)を算出した。
(2)透湿度
実施例および比較例で得られた位相差フィルムについて、JIS Z0208の透湿度試験(カップ法)に準拠して、温度40℃、湿度92%RHの雰囲気中、面積1m2の試料を24時間に通過する水蒸気量(g)を測定した。
(3)位相差変化
実施例および比較例で得られた位相差フィルムを、5cm×5cmに切りだし、片方の面に粘着剤をハンドローラーで貼り付け、粘着剤面をアルカリガラスの片面に貼り付けて試験片を得た。試験片を温度65℃かつ湿度90%のオーブンに500時間保存(加湿試験)し、試験開始前および試験後の位相差変化(%)を算出した。
(4)異形加工性試験
実施例および比較例で得られた位相差フィルムまたは位相差層付偏光板にCO2レーザーを3Kwのエネルギーで照射し、フィルムの流れ方向および流れ方向と垂直の方向にカットし、200mm×200mmの測定試料を得た。レーザー顕微鏡を用いてカットされた部分を観察し、クラックが入っていなければ〇、クラックが入るおよび/またはカットができない場合は×とした。
(5)耐皮脂性試験
実施例および比較例で得られた位相差フィルムまたは位相差層付偏光板を5cm×5cmに切りだし、片方の面に粘着剤をハンドローラーで貼り付け、粘着剤面をアルカリガラスの片面に貼り付けて試験片を得た。得られた試験片を、オレイン酸溶液に、65℃、90%RHの条件下72時間浸漬させ、取り出した後に透明なものを〇、白化またはクラックが入っているものを×とした。
(6)MIT回数
MIT試験は、JIS P 8115に準拠して行った。具体的には、実施例および比較例で得られた位相差フィルムを長さ15cmおよび幅1.5cmに切り出し、測定試料とした。測定試料をMIT耐折疲労試験機BE-202型(テスター産業(株)製)に取り付け(荷重1.0kgf、クランプのR:0.38mm)、試験速度90cpmおよび折り曲げ角度90°で繰り返し折り曲げを行い、測定試料が破断した時の折り曲げ回数を試験値とした。経験値が500回以上のものを〇、500回未満のものを×とした。
(7)反射率
実施例および比較例で得られた位相差フィルムを用いて、表面処理層/偏光子/位相差フィルム/糊をこの順に有する積層体を作製した。当該積層体を、有機ELパネルに実装し、分光測色系にて反射率を測定した。反射率が2.0%以下のものを〇、2.0%を超えるものを×とした。
(8)寸法収縮率
実施例および比較例で得られた位相差層付偏光板を、幅100mm、長さ100mmに切り取り(試験片)、4隅部にクロスでキズを付けクロスキズの中央部4点の長手方向(MD方向)と幅方向(TD方向)の加熱前の長さ(mm)をCNC三次元測定機(株式会社ミツトヨ社製 LEGEX774)により測定した。その後、オーブンに投入し、加熱処理(温度65℃、湿度90%)を行った。室温で1時間放冷後に再度、4隅部4点のMD方向とTD方向の加熱後の長さ(mm)をCNC三次元測定機により測定し、その測定値を下記式に代入することにより、MD方向とTD方向のそれぞれの熱収縮率を求めた。
熱収縮率(%)=[[加熱前の長さ(mm)-加熱後の長さ(mm)]/加熱前の長さ(mm)]×100
熱収縮率が0%~0.5%のものを〇、0.5%以上のものを×とした。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method and evaluation method for each characteristic are as follows.
(1) In-plane retardation and wavelength dispersion characteristics The retardation films obtained in Examples and Comparative Examples were cut into lengths of 4 cm and widths of 4 cm and used as measurement samples. For the measurement sample, the in-plane phase difference Re (550) was measured using the product name "Axoscan" manufactured by Axometrics. Furthermore, Re (450) was also measured, and Re (450) / Re (550) was calculated.
(2) Humidity Permeability The retardation films obtained in Examples and Comparative Examples have an area of 1 m 2 in an atmosphere of a temperature of 40 ° C. and a humidity of 92% RH in accordance with the JIS Z0208 moisture permeability test (cup method). The amount of water vapor (g) passing through the sample in 24 hours was measured.
(3) Phase difference change The retardation films obtained in Examples and Comparative Examples are cut into 5 cm × 5 cm pieces, an adhesive is attached to one side with a hand roller, and the adhesive side is attached to one side of alkaline glass. A test piece was obtained by attaching. The test piece was stored in an oven at a temperature of 65 ° C. and a humidity of 90% for 500 hours (humidification test), and the phase difference change (%) before the start of the test and after the test was calculated.
(4) Deformation Workability Test The retardation film or polarizing plate with a retardation layer obtained in Examples and Comparative Examples is irradiated with a CO 2 laser at an energy of 3 Kw in the flow direction of the film and in the direction perpendicular to the flow direction. It was cut to obtain a measurement sample of 200 mm × 200 mm. The cut part was observed using a laser microscope, and was marked with 〇 if there were no cracks, and x if there were cracks and / or could not be cut.
(5) Skin oil resistance test The retardation film or polarizing plate with a retardation layer obtained in Examples and Comparative Examples is cut out to a size of 5 cm × 5 cm, and an adhesive is attached to one surface with a hand roller to obtain an adhesive surface. Was attached to one side of alkaline glass to obtain a test piece. The obtained test piece was immersed in an oleic acid solution under the conditions of 65 ° C. and 90% RH for 72 hours, and after being taken out, a transparent one was marked with ◯, and a whitened or cracked one was marked with x.
(6) Number of MITs The MIT test was conducted in accordance with JIS P 8115. Specifically, the retardation films obtained in Examples and Comparative Examples were cut out to a length of 15 cm and a width of 1.5 cm and used as measurement samples. Attach the measurement sample to the MIT folding fatigue tester BE-202 (manufactured by Tester Sangyo Co., Ltd.) (load 1.0 kgf, clamp R: 0.38 mm), and repeatedly bend at a test speed of 90 cpm and a bending angle of 90 °. The test value was the number of times the measurement sample was bent when it broke. Those with experience points of 500 times or more were evaluated as 〇, and those with less than 500 times were evaluated as x.
(7) Reflectance Using the retardation films obtained in Examples and Comparative Examples, a laminate having a surface treatment layer / a polarizer / a retardation film / glue in this order was produced. The laminate was mounted on an organic EL panel, and the reflectance was measured by a spectrophotometric system. Those having a reflectance of 2.0% or less were evaluated as 〇, and those having a reflectance of more than 2.0% were evaluated as x.
(8) Dimensional shrinkage rate The polarizing plate with a retardation layer obtained in Examples and Comparative Examples was cut into a width of 100 mm and a length of 100 mm (test piece), and the four corners were scratched with a cloth and the central portion of the cross scratch 4 The length (mm) before heating in the longitudinal direction (MD direction) and the width direction (TD direction) of the points was measured by a CNC coordinate measuring machine (LEGEX774 manufactured by Mitutoyo Co., Ltd.). Then, it was put into an oven and heat-treated (temperature 65 degreeC, humidity 90%). After allowing to cool for 1 hour at room temperature, measure the length (mm) of the four corners after heating in the MD and TD directions again with a CNC coordinate measuring machine, and substitute the measured values into the following formula. , The heat shrinkage rate in each of the MD direction and the TD direction was determined.
Heat shrinkage rate (%) = [[Length before heating (mm) -Length after heating (mm)] / Length before heating (mm)] x 100
Those having a heat shrinkage rate of 0% to 0.5% were evaluated as 〇, and those having a heat shrinkage rate of 0.5% or more were evaluated as x.
(1)面内位相差および波長分散特性
実施例および比較例で得られた位相差フィルムを長さ4cmおよび幅4cmに切り出し、測定試料とした。当該測定試料について、Axometrics社製、製品名「Axoscan」を用いて面内位相差Re(550)を測定した。さらに、Re(450)も測定し、Re(450)/Re(550)を算出した。
(2)透湿度
実施例および比較例で得られた位相差フィルムについて、JIS Z0208の透湿度試験(カップ法)に準拠して、温度40℃、湿度92%RHの雰囲気中、面積1m2の試料を24時間に通過する水蒸気量(g)を測定した。
(3)位相差変化
実施例および比較例で得られた位相差フィルムを、5cm×5cmに切りだし、片方の面に粘着剤をハンドローラーで貼り付け、粘着剤面をアルカリガラスの片面に貼り付けて試験片を得た。試験片を温度65℃かつ湿度90%のオーブンに500時間保存(加湿試験)し、試験開始前および試験後の位相差変化(%)を算出した。
(4)異形加工性試験
実施例および比較例で得られた位相差フィルムまたは位相差層付偏光板にCO2レーザーを3Kwのエネルギーで照射し、フィルムの流れ方向および流れ方向と垂直の方向にカットし、200mm×200mmの測定試料を得た。レーザー顕微鏡を用いてカットされた部分を観察し、クラックが入っていなければ〇、クラックが入るおよび/またはカットができない場合は×とした。
(5)耐皮脂性試験
実施例および比較例で得られた位相差フィルムまたは位相差層付偏光板を5cm×5cmに切りだし、片方の面に粘着剤をハンドローラーで貼り付け、粘着剤面をアルカリガラスの片面に貼り付けて試験片を得た。得られた試験片を、オレイン酸溶液に、65℃、90%RHの条件下72時間浸漬させ、取り出した後に透明なものを〇、白化またはクラックが入っているものを×とした。
(6)MIT回数
MIT試験は、JIS P 8115に準拠して行った。具体的には、実施例および比較例で得られた位相差フィルムを長さ15cmおよび幅1.5cmに切り出し、測定試料とした。測定試料をMIT耐折疲労試験機BE-202型(テスター産業(株)製)に取り付け(荷重1.0kgf、クランプのR:0.38mm)、試験速度90cpmおよび折り曲げ角度90°で繰り返し折り曲げを行い、測定試料が破断した時の折り曲げ回数を試験値とした。経験値が500回以上のものを〇、500回未満のものを×とした。
(7)反射率
実施例および比較例で得られた位相差フィルムを用いて、表面処理層/偏光子/位相差フィルム/糊をこの順に有する積層体を作製した。当該積層体を、有機ELパネルに実装し、分光測色系にて反射率を測定した。反射率が2.0%以下のものを〇、2.0%を超えるものを×とした。
(8)寸法収縮率
実施例および比較例で得られた位相差層付偏光板を、幅100mm、長さ100mmに切り取り(試験片)、4隅部にクロスでキズを付けクロスキズの中央部4点の長手方向(MD方向)と幅方向(TD方向)の加熱前の長さ(mm)をCNC三次元測定機(株式会社ミツトヨ社製 LEGEX774)により測定した。その後、オーブンに投入し、加熱処理(温度65℃、湿度90%)を行った。室温で1時間放冷後に再度、4隅部4点のMD方向とTD方向の加熱後の長さ(mm)をCNC三次元測定機により測定し、その測定値を下記式に代入することにより、MD方向とTD方向のそれぞれの熱収縮率を求めた。
熱収縮率(%)=[[加熱前の長さ(mm)-加熱後の長さ(mm)]/加熱前の長さ(mm)]×100
熱収縮率が0%~0.5%のものを〇、0.5%以上のものを×とした。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measurement method and evaluation method for each characteristic are as follows.
(1) In-plane retardation and wavelength dispersion characteristics The retardation films obtained in Examples and Comparative Examples were cut into lengths of 4 cm and widths of 4 cm and used as measurement samples. For the measurement sample, the in-plane phase difference Re (550) was measured using the product name "Axoscan" manufactured by Axometrics. Furthermore, Re (450) was also measured, and Re (450) / Re (550) was calculated.
(2) Humidity Permeability The retardation films obtained in Examples and Comparative Examples have an area of 1 m 2 in an atmosphere of a temperature of 40 ° C. and a humidity of 92% RH in accordance with the JIS Z0208 moisture permeability test (cup method). The amount of water vapor (g) passing through the sample in 24 hours was measured.
(3) Phase difference change The retardation films obtained in Examples and Comparative Examples are cut into 5 cm × 5 cm pieces, an adhesive is attached to one side with a hand roller, and the adhesive side is attached to one side of alkaline glass. A test piece was obtained by attaching. The test piece was stored in an oven at a temperature of 65 ° C. and a humidity of 90% for 500 hours (humidification test), and the phase difference change (%) before the start of the test and after the test was calculated.
(4) Deformation Workability Test The retardation film or polarizing plate with a retardation layer obtained in Examples and Comparative Examples is irradiated with a CO 2 laser at an energy of 3 Kw in the flow direction of the film and in the direction perpendicular to the flow direction. It was cut to obtain a measurement sample of 200 mm × 200 mm. The cut part was observed using a laser microscope, and was marked with 〇 if there were no cracks, and x if there were cracks and / or could not be cut.
(5) Skin oil resistance test The retardation film or polarizing plate with a retardation layer obtained in Examples and Comparative Examples is cut out to a size of 5 cm × 5 cm, and an adhesive is attached to one surface with a hand roller to obtain an adhesive surface. Was attached to one side of alkaline glass to obtain a test piece. The obtained test piece was immersed in an oleic acid solution under the conditions of 65 ° C. and 90% RH for 72 hours, and after being taken out, a transparent one was marked with ◯, and a whitened or cracked one was marked with x.
(6) Number of MITs The MIT test was conducted in accordance with JIS P 8115. Specifically, the retardation films obtained in Examples and Comparative Examples were cut out to a length of 15 cm and a width of 1.5 cm and used as measurement samples. Attach the measurement sample to the MIT folding fatigue tester BE-202 (manufactured by Tester Sangyo Co., Ltd.) (load 1.0 kgf, clamp R: 0.38 mm), and repeatedly bend at a test speed of 90 cpm and a bending angle of 90 °. The test value was the number of times the measurement sample was bent when it broke. Those with experience points of 500 times or more were evaluated as 〇, and those with less than 500 times were evaluated as x.
(7) Reflectance Using the retardation films obtained in Examples and Comparative Examples, a laminate having a surface treatment layer / a polarizer / a retardation film / glue in this order was produced. The laminate was mounted on an organic EL panel, and the reflectance was measured by a spectrophotometric system. Those having a reflectance of 2.0% or less were evaluated as 〇, and those having a reflectance of more than 2.0% were evaluated as x.
(8) Dimensional shrinkage rate The polarizing plate with a retardation layer obtained in Examples and Comparative Examples was cut into a width of 100 mm and a length of 100 mm (test piece), and the four corners were scratched with a cloth and the central portion of the cross scratch 4 The length (mm) before heating in the longitudinal direction (MD direction) and the width direction (TD direction) of the points was measured by a CNC coordinate measuring machine (LEGEX774 manufactured by Mitutoyo Co., Ltd.). Then, it was put into an oven and heat-treated (temperature 65 degreeC, humidity 90%). After allowing to cool for 1 hour at room temperature, measure the length (mm) of the four corners after heating in the MD and TD directions again with a CNC coordinate measuring machine, and substitute the measured values into the following formula. , The heat shrinkage rate in each of the MD direction and the TD direction was determined.
Heat shrinkage rate (%) = [[Length before heating (mm) -Length after heating (mm)] / Length before heating (mm)] x 100
Those having a heat shrinkage rate of 0% to 0.5% were evaluated as 〇, and those having a heat shrinkage rate of 0.5% or more were evaluated as x.
[実施例1]
1.樹脂フィルムの作製
イソソルビド(以下「ISB」と略記することがある)81.98質量部に対して、トリシクロデカンジメタノール(以下「TCDDM」と略記することがある)47.19質量部、ジフェニルカーボネート(以下「DPC」と略記することがある)175.1質量部、及び触媒として、炭酸セシウム0.2質量%水溶液0.979質量部を反応容器に投入し、窒素雰囲気下にて、反応の第1段目の工程として、加熱槽温度を150℃に加熱し、必要に応じて攪拌しながら、原料を溶解させた(約15分)。次いで、圧力を常圧から13.3kPaにし、加熱槽温度を190℃まで1時間で上昇させながら、発生するフェノールを反応容器外へ抜き出した。反応容器全体を190℃で15分保持した後、第2段目の工程として、反応容器内の圧力を6.67kPaとし、加熱槽温度を230℃まで、15分で上昇させ、発生するフェノールを反応容器外へ抜き出した。攪拌機の攪拌トルクが上昇してくるので、8分で250℃まで昇温し、さらに発生するフェノールを取り除くため、反応容器内の圧力を0.200kPa以下に到達させた。所定の攪拌トルクに到達後、反応を終了し、生成した反応物を水中に押し出して、ポリカーボネート樹脂のペレットを得た。得られたポリカーボネート樹脂を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅300mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み135μmのポリカーボネート樹脂フィルムを作製した。 [Example 1]
1. 1. Preparation of resin film Isosorbide (hereinafter sometimes abbreviated as "ISB") 81.98 parts by mass, tricyclodecanedimethanol (hereinafter sometimes abbreviated as "TCDDM") 47.19 parts by mass, diphenyl 175.1 parts by mass of carbonate (hereinafter sometimes abbreviated as "DPC") and 0.979 parts by mass of a 0.2% by mass aqueous solution of cesium carbonate as a catalyst were put into a reaction vessel, and the reaction was carried out in a nitrogen atmosphere. As the first step of the above, the heating tank temperature was heated to 150 ° C., and the raw materials were dissolved while stirring as necessary (about 15 minutes). Next, the pressure was changed from normal pressure to 13.3 kPa, and the generated phenol was extracted from the reaction vessel while raising the heating tank temperature to 190 ° C. in 1 hour. After holding the entire reaction vessel at 190 ° C. for 15 minutes, as the second step, the pressure inside the reaction vessel is set to 6.67 kPa, the heating tank temperature is raised to 230 ° C. in 15 minutes, and the generated phenol is generated. It was taken out of the reaction vessel. Since the stirring torque of the stirrer increased, the temperature was raised to 250 ° C. in 8 minutes, and the pressure in the reaction vessel was brought to 0.200 kPa or less in order to remove the generated phenol. After reaching a predetermined stirring torque, the reaction was terminated, and the produced reaction product was extruded into water to obtain pellets of a polycarbonate resin. After vacuum-drying the obtained polycarbonate resin at 80 ° C. for 5 hours, a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder set temperature: 250 ° C.), T-die (width 300 mm, set temperature: 250 ° C.), chill roll ( A polycarbonate resin film having a thickness of 135 μm was produced using a film-forming device equipped with a set temperature (120 to 130 ° C.) and a winder.
1.樹脂フィルムの作製
イソソルビド(以下「ISB」と略記することがある)81.98質量部に対して、トリシクロデカンジメタノール(以下「TCDDM」と略記することがある)47.19質量部、ジフェニルカーボネート(以下「DPC」と略記することがある)175.1質量部、及び触媒として、炭酸セシウム0.2質量%水溶液0.979質量部を反応容器に投入し、窒素雰囲気下にて、反応の第1段目の工程として、加熱槽温度を150℃に加熱し、必要に応じて攪拌しながら、原料を溶解させた(約15分)。次いで、圧力を常圧から13.3kPaにし、加熱槽温度を190℃まで1時間で上昇させながら、発生するフェノールを反応容器外へ抜き出した。反応容器全体を190℃で15分保持した後、第2段目の工程として、反応容器内の圧力を6.67kPaとし、加熱槽温度を230℃まで、15分で上昇させ、発生するフェノールを反応容器外へ抜き出した。攪拌機の攪拌トルクが上昇してくるので、8分で250℃まで昇温し、さらに発生するフェノールを取り除くため、反応容器内の圧力を0.200kPa以下に到達させた。所定の攪拌トルクに到達後、反応を終了し、生成した反応物を水中に押し出して、ポリカーボネート樹脂のペレットを得た。得られたポリカーボネート樹脂を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅300mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み135μmのポリカーボネート樹脂フィルムを作製した。 [Example 1]
1. 1. Preparation of resin film Isosorbide (hereinafter sometimes abbreviated as "ISB") 81.98 parts by mass, tricyclodecanedimethanol (hereinafter sometimes abbreviated as "TCDDM") 47.19 parts by mass, diphenyl 175.1 parts by mass of carbonate (hereinafter sometimes abbreviated as "DPC") and 0.979 parts by mass of a 0.2% by mass aqueous solution of cesium carbonate as a catalyst were put into a reaction vessel, and the reaction was carried out in a nitrogen atmosphere. As the first step of the above, the heating tank temperature was heated to 150 ° C., and the raw materials were dissolved while stirring as necessary (about 15 minutes). Next, the pressure was changed from normal pressure to 13.3 kPa, and the generated phenol was extracted from the reaction vessel while raising the heating tank temperature to 190 ° C. in 1 hour. After holding the entire reaction vessel at 190 ° C. for 15 minutes, as the second step, the pressure inside the reaction vessel is set to 6.67 kPa, the heating tank temperature is raised to 230 ° C. in 15 minutes, and the generated phenol is generated. It was taken out of the reaction vessel. Since the stirring torque of the stirrer increased, the temperature was raised to 250 ° C. in 8 minutes, and the pressure in the reaction vessel was brought to 0.200 kPa or less in order to remove the generated phenol. After reaching a predetermined stirring torque, the reaction was terminated, and the produced reaction product was extruded into water to obtain pellets of a polycarbonate resin. After vacuum-drying the obtained polycarbonate resin at 80 ° C. for 5 hours, a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder set temperature: 250 ° C.), T-die (width 300 mm, set temperature: 250 ° C.), chill roll ( A polycarbonate resin film having a thickness of 135 μm was produced using a film-forming device equipped with a set temperature (120 to 130 ° C.) and a winder.
2.位相差フィルムの作製
未延伸の上記ポリカーボネート樹脂フィルムを、同時二軸延伸機を用い、予熱処理および同時二軸延伸に供し、位相差フィルムを得た。予熱温度は138.5℃とした。延伸温度は138.5℃とし、長手方向の延伸倍率を1.2倍、幅方向の延伸倍率を1.9倍とした。得られた位相差フィルムの波長分散値は1.025であり、面内位相差Re(550)は135nmであり、透湿度は110g/m2・24hであり、位相差変化は1.5%であった。得られた位相差フィルムを、上記(4)~(6)の評価に供した。結果を表1に示す。 2. 2. Preparation of Phase Difference Film The unstretched polycarbonate resin film was subjected to preheat treatment and simultaneous biaxial stretching using a simultaneous biaxial stretching machine to obtain a retardation film. The preheating temperature was 138.5 ° C. The stretching temperature was 138.5 ° C., the stretching ratio in the longitudinal direction was 1.2 times, and the stretching ratio in the width direction was 1.9 times. Wavelength dispersion value of the obtained retardation film was 1.025, the in-plane retardation Re (550) is 135 nm, the moisture permeability is 110g / m 2 · 24h, the phase difference change 1.5% Met. The obtained retardation film was subjected to the evaluations (4) to (6) above. The results are shown in Table 1.
未延伸の上記ポリカーボネート樹脂フィルムを、同時二軸延伸機を用い、予熱処理および同時二軸延伸に供し、位相差フィルムを得た。予熱温度は138.5℃とした。延伸温度は138.5℃とし、長手方向の延伸倍率を1.2倍、幅方向の延伸倍率を1.9倍とした。得られた位相差フィルムの波長分散値は1.025であり、面内位相差Re(550)は135nmであり、透湿度は110g/m2・24hであり、位相差変化は1.5%であった。得られた位相差フィルムを、上記(4)~(6)の評価に供した。結果を表1に示す。 2. 2. Preparation of Phase Difference Film The unstretched polycarbonate resin film was subjected to preheat treatment and simultaneous biaxial stretching using a simultaneous biaxial stretching machine to obtain a retardation film. The preheating temperature was 138.5 ° C. The stretching temperature was 138.5 ° C., the stretching ratio in the longitudinal direction was 1.2 times, and the stretching ratio in the width direction was 1.9 times. Wavelength dispersion value of the obtained retardation film was 1.025, the in-plane retardation Re (550) is 135 nm, the moisture permeability is 110g / m 2 · 24h, the phase difference change 1.5% Met. The obtained retardation film was subjected to the evaluations (4) to (6) above. The results are shown in Table 1.
[実施例2]
延伸温度を137.5℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.022であり、面内位相差Re(550)は140nmであり、透湿度は88g/m2・24hであり、位相差変化は0.9%であった。得られた位相差フィルムを、上記(4)~(7)の評価に供した。結果を表1に示す。 [Example 2]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 137.5 ° C. Wavelength dispersion value of the obtained retardation film was 1.022, the in-plane retardation Re (550) is 140 nm, the moisture permeability is 88g / m 2 · 24h, the phase difference change is 0.9% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
延伸温度を137.5℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.022であり、面内位相差Re(550)は140nmであり、透湿度は88g/m2・24hであり、位相差変化は0.9%であった。得られた位相差フィルムを、上記(4)~(7)の評価に供した。結果を表1に示す。 [Example 2]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 137.5 ° C. Wavelength dispersion value of the obtained retardation film was 1.022, the in-plane retardation Re (550) is 140 nm, the moisture permeability is 88g / m 2 · 24h, the phase difference change is 0.9% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
[実施例3]
延伸温度を137℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.022であり、面内位相差Re(550)は144nmであり、透湿度は82g/m2・24hであり、位相差変化は0.8%であった。得られた位相差フィルムを、上記(4)~(7)の評価に供した。結果を表1に示す。 [Example 3]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 137 ° C. Wavelength dispersion value of the obtained retardation film was 1.022, the in-plane retardation Re (550) is 144 nm, the moisture permeability is 82g / m 2 · 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
延伸温度を137℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.022であり、面内位相差Re(550)は144nmであり、透湿度は82g/m2・24hであり、位相差変化は0.8%であった。得られた位相差フィルムを、上記(4)~(7)の評価に供した。結果を表1に示す。 [Example 3]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 137 ° C. Wavelength dispersion value of the obtained retardation film was 1.022, the in-plane retardation Re (550) is 144 nm, the moisture permeability is 82g / m 2 · 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
[実施例4]
延伸温度を136.5℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.021であり、面内位相差Re(550)は100nmであり、透湿度は85g/m2・24hであり、位相差変化は1.2%であった。得られた位相差フィルムを、上記(4)~(6)の評価に供した。結果を表1に示す。 [Example 4]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 136.5 ° C. Wavelength dispersion value of the obtained retardation film was 1.021, the in-plane retardation Re (550) is 100 nm, the moisture permeability is 85g / m 2 · 24h, the phase difference change is 1.2% Met. The obtained retardation film was subjected to the evaluations (4) to (6) above. The results are shown in Table 1.
延伸温度を136.5℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.021であり、面内位相差Re(550)は100nmであり、透湿度は85g/m2・24hであり、位相差変化は1.2%であった。得られた位相差フィルムを、上記(4)~(6)の評価に供した。結果を表1に示す。 [Example 4]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 136.5 ° C. Wavelength dispersion value of the obtained retardation film was 1.021, the in-plane retardation Re (550) is 100 nm, the moisture permeability is 85g / m 2 · 24h, the phase difference change is 1.2% Met. The obtained retardation film was subjected to the evaluations (4) to (6) above. The results are shown in Table 1.
[実施例5]
延伸温度を139℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.026であり、面内位相差Re(550)は155nmであり、透湿度は81g/m2・24hであり、位相差変化は0.9%であった。得られた位相差フィルムを、上記(4)~(7)の評価に供した。結果を表1に示す。 [Example 5]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 139 ° C. Wavelength dispersion value of the obtained retardation film was 1.026, the in-plane retardation Re (550) is 155 nm, the moisture permeability is 81g / m 2 · 24h, the phase difference change is 0.9% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
延伸温度を139℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.026であり、面内位相差Re(550)は155nmであり、透湿度は81g/m2・24hであり、位相差変化は0.9%であった。得られた位相差フィルムを、上記(4)~(7)の評価に供した。結果を表1に示す。 [Example 5]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 139 ° C. Wavelength dispersion value of the obtained retardation film was 1.026, the in-plane retardation Re (550) is 155 nm, the moisture permeability is 81g / m 2 · 24h, the phase difference change is 0.9% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
[実施例6]
1.樹脂フィルムの作製および位相差フィルムの作製
延伸温度を137℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.020であり、面内位相差Re(550)は144nmであり、透湿度は87g/m2・24hであり、位相差変化は0.8%であった。得られた位相差フィルムを、上記(7)の評価に供した。結果を表1に示す。 [Example 6]
1. 1. Preparation of Resin Film and Preparation of Phase Difference Film A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was set to 137 ° C. Wavelength dispersion value of the obtained retardation film was 1.020, the in-plane retardation Re (550) is 144 nm, the moisture permeability is 87g / m 2 · 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluation of (7) above. The results are shown in Table 1.
1.樹脂フィルムの作製および位相差フィルムの作製
延伸温度を137℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.020であり、面内位相差Re(550)は144nmであり、透湿度は87g/m2・24hであり、位相差変化は0.8%であった。得られた位相差フィルムを、上記(7)の評価に供した。結果を表1に示す。 [Example 6]
1. 1. Preparation of Resin Film and Preparation of Phase Difference Film A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was set to 137 ° C. Wavelength dispersion value of the obtained retardation film was 1.020, the in-plane retardation Re (550) is 144 nm, the moisture permeability is 87g / m 2 · 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluation of (7) above. The results are shown in Table 1.
2.偏光板の作製
樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。
このようにして、樹脂基材上に厚み約5μmの偏光子を形成し、樹脂基材/偏光子の構成を有する偏光板を得た。
さらに、得られた偏光子の樹脂基材と反対側の面に、保護層として、シクロオレフィン系フィルム(日本ゼオン社製、商品名「ゼオノア」)を、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが約1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をシクロオレフィン系フィルム側から照射して接着剤を硬化させた。次いで、樹脂基材を剥離してシクロオレフィン系フィルム(保護層)/偏光子の構成を有する偏光板を得た。該保護層の面内位相差は135nmであった。保護層の遅相軸と偏光子の吸収軸とのなす角度は、実質的に平行とした。 2. 2. Preparation of polarizing plate As the resin base material, an amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a Tg of about 75 ° C. was used, and one side of the resin base material was corona-treated. did.
100 parts by weight of PVA-based resin in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimmer") are mixed at a ratio of 9: 1. A PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
A PVA-based resin layer having a thickness of 13 μm was formed by applying the above PVA aqueous solution to the corona-treated surface of the resin base material and drying at 60 ° C. to prepare a laminate.
The obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water), the polarizer finally obtained Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) became a desired value (staining treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4% by weight, potassium iodide concentration 5% by weight) at a liquid temperature of 70 ° C., the total in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at about 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at about 75 ° C. (dry shrinkage treatment).
In this way, a polarizing element having a thickness of about 5 μm was formed on the resin substrate, and a polarizing plate having a resin substrate / polarizer configuration was obtained.
Further, a cycloolefin-based film (manufactured by Nippon Zeon Co., Ltd., trade name "Zeonoa") is bonded to the surface of the obtained polarizing element opposite to the resin base material via an ultraviolet curable adhesive as a protective layer. It was. Specifically, the curable adhesive was coated so as to have a total thickness of about 1.0 μm, and bonded using a roll machine. Then, a UV ray was irradiated from the cycloolefin film side to cure the adhesive. Next, the resin base material was peeled off to obtain a polarizing plate having a cycloolefin-based film (protective layer) / polarizer. The in-plane phase difference of the protective layer was 135 nm. The angle between the slow axis of the protective layer and the absorption axis of the polarizer was made substantially parallel.
樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。
このようにして、樹脂基材上に厚み約5μmの偏光子を形成し、樹脂基材/偏光子の構成を有する偏光板を得た。
さらに、得られた偏光子の樹脂基材と反対側の面に、保護層として、シクロオレフィン系フィルム(日本ゼオン社製、商品名「ゼオノア」)を、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが約1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をシクロオレフィン系フィルム側から照射して接着剤を硬化させた。次いで、樹脂基材を剥離してシクロオレフィン系フィルム(保護層)/偏光子の構成を有する偏光板を得た。該保護層の面内位相差は135nmであった。保護層の遅相軸と偏光子の吸収軸とのなす角度は、実質的に平行とした。 2. 2. Preparation of polarizing plate As the resin base material, an amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a Tg of about 75 ° C. was used, and one side of the resin base material was corona-treated. did.
100 parts by weight of PVA-based resin in which polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimmer") are mixed at a ratio of 9: 1. A PVA aqueous solution (coating solution) was prepared by dissolving 13 parts by weight of potassium iodide in water.
A PVA-based resin layer having a thickness of 13 μm was formed by applying the above PVA aqueous solution to the corona-treated surface of the resin base material and drying at 60 ° C. to prepare a laminate.
The obtained laminate was uniaxially stretched 2.4 times in the longitudinal direction (longitudinal direction) in an oven at 130 ° C. (aerial auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, in a dyeing bath having a liquid temperature of 30 ° C. (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water), the polarizer finally obtained Immersion was carried out for 60 seconds while adjusting the concentration so that the simple substance transmittance (Ts) became a desired value (staining treatment).
Next, it was immersed in a cross-linked bath at a liquid temperature of 40 ° C. (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crossing treatment).
Then, while immersing the laminate in a boric acid aqueous solution (boric acid concentration 4% by weight, potassium iodide concentration 5% by weight) at a liquid temperature of 70 ° C., the total in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Then, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
Then, while drying in an oven kept at about 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at about 75 ° C. (dry shrinkage treatment).
In this way, a polarizing element having a thickness of about 5 μm was formed on the resin substrate, and a polarizing plate having a resin substrate / polarizer configuration was obtained.
Further, a cycloolefin-based film (manufactured by Nippon Zeon Co., Ltd., trade name "Zeonoa") is bonded to the surface of the obtained polarizing element opposite to the resin base material via an ultraviolet curable adhesive as a protective layer. It was. Specifically, the curable adhesive was coated so as to have a total thickness of about 1.0 μm, and bonded using a roll machine. Then, a UV ray was irradiated from the cycloolefin film side to cure the adhesive. Next, the resin base material was peeled off to obtain a polarizing plate having a cycloolefin-based film (protective layer) / polarizer. The in-plane phase difference of the protective layer was 135 nm. The angle between the slow axis of the protective layer and the absorption axis of the polarizer was made substantially parallel.
3.位相差層付偏光板の作製
上記偏光板の偏光子側に、上記位相差層フィルムを貼り合わせた。偏光子の吸収軸と位相差フィルムの遅相軸とのなす角度は45°とした。さらに、位相差フィルムの偏光子と反対側に、ハードコート層を形成して、位相差層付偏光板を得た。得られた位相差層付偏光板を、上記(4)、(5)および(8)の評価に供した。結果を表1に示す。 3. 3. Fabrication of a polarizing plate with a retardation layer The retardation layer film was attached to the polarizer side of the polarizing plate. The angle formed by the absorption axis of the polarizer and the slow axis of the retardation film was 45 °. Further, a hard coat layer was formed on the side opposite to the polarizer of the retardation film to obtain a polarizing plate with a retardation layer. The obtained polarizing plate with a retardation layer was subjected to the evaluations of (4), (5) and (8) above. The results are shown in Table 1.
上記偏光板の偏光子側に、上記位相差層フィルムを貼り合わせた。偏光子の吸収軸と位相差フィルムの遅相軸とのなす角度は45°とした。さらに、位相差フィルムの偏光子と反対側に、ハードコート層を形成して、位相差層付偏光板を得た。得られた位相差層付偏光板を、上記(4)、(5)および(8)の評価に供した。結果を表1に示す。 3. 3. Fabrication of a polarizing plate with a retardation layer The retardation layer film was attached to the polarizer side of the polarizing plate. The angle formed by the absorption axis of the polarizer and the slow axis of the retardation film was 45 °. Further, a hard coat layer was formed on the side opposite to the polarizer of the retardation film to obtain a polarizing plate with a retardation layer. The obtained polarizing plate with a retardation layer was subjected to the evaluations of (4), (5) and (8) above. The results are shown in Table 1.
[実施例7]
延伸温度を142℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.020であり、面内位相差Re(550)は140nmであり、透湿度は84g/m2・24hであり、位相差変化は0.7%であった。さらに、得られた位相差フィルムを、上記(7)の評価に供した。次に、得られた位相差フィルムを用いて、実施例6と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を、上記(4)、(5)および(8)の評価に供した。結果を表1に示す。 [Example 7]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 142 ° C. Wavelength dispersion value of the obtained retardation film was 1.020, the in-plane retardation Re (550) is 140 nm, the moisture permeability is 84g / m 2 · 24h, the phase difference change is 0.7% Met. Further, the obtained retardation film was subjected to the evaluation of (7) above. Next, using the obtained retardation film, a polarizing plate with a retardation layer was obtained in the same manner as in Example 6. The obtained polarizing plate with a retardation layer was subjected to the evaluations of (4), (5) and (8) above. The results are shown in Table 1.
延伸温度を142℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.020であり、面内位相差Re(550)は140nmであり、透湿度は84g/m2・24hであり、位相差変化は0.7%であった。さらに、得られた位相差フィルムを、上記(7)の評価に供した。次に、得られた位相差フィルムを用いて、実施例6と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を、上記(4)、(5)および(8)の評価に供した。結果を表1に示す。 [Example 7]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 142 ° C. Wavelength dispersion value of the obtained retardation film was 1.020, the in-plane retardation Re (550) is 140 nm, the moisture permeability is 84g / m 2 · 24h, the phase difference change is 0.7% Met. Further, the obtained retardation film was subjected to the evaluation of (7) above. Next, using the obtained retardation film, a polarizing plate with a retardation layer was obtained in the same manner as in Example 6. The obtained polarizing plate with a retardation layer was subjected to the evaluations of (4), (5) and (8) above. The results are shown in Table 1.
[実施例8]
延伸温度を147℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.020であり、面内位相差Re(550)は140nmであり、透湿度は89g/m2・24hであり、位相差変化は0.8%であった。さらに、得られた位相差フィルムを、上記(7)の評価に供した。次に、得られた位相差フィルムを用いて、実施例6と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を、上記(4)、(5)および(8)の評価に供した。結果を表1に示す。 [Example 8]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 147 ° C. Wavelength dispersion value of the obtained retardation film was 1.020, the in-plane retardation Re (550) is 140 nm, the moisture permeability is 89g / m 2 · 24h, the phase difference change is 0.8% Met. Further, the obtained retardation film was subjected to the evaluation of (7) above. Next, using the obtained retardation film, a polarizing plate with a retardation layer was obtained in the same manner as in Example 6. The obtained polarizing plate with a retardation layer was subjected to the evaluations of (4), (5) and (8) above. The results are shown in Table 1.
延伸温度を147℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.020であり、面内位相差Re(550)は140nmであり、透湿度は89g/m2・24hであり、位相差変化は0.8%であった。さらに、得られた位相差フィルムを、上記(7)の評価に供した。次に、得られた位相差フィルムを用いて、実施例6と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を、上記(4)、(5)および(8)の評価に供した。結果を表1に示す。 [Example 8]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 147 ° C. Wavelength dispersion value of the obtained retardation film was 1.020, the in-plane retardation Re (550) is 140 nm, the moisture permeability is 89g / m 2 · 24h, the phase difference change is 0.8% Met. Further, the obtained retardation film was subjected to the evaluation of (7) above. Next, using the obtained retardation film, a polarizing plate with a retardation layer was obtained in the same manner as in Example 6. The obtained polarizing plate with a retardation layer was subjected to the evaluations of (4), (5) and (8) above. The results are shown in Table 1.
[比較例1]
延伸温度を135℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.021であり、面内位相差Re(550)は210nmであり、透湿度は89g/m2・24hであり、位相差変化は0.8%であった。得られた位相差フィルムを、上記(4)~(7)の評価に供した。結果を表1に示す。 [Comparative Example 1]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 135 ° C. Wavelength dispersion value of the obtained retardation film was 1.021, the in-plane retardation Re (550) is 210 nm, the moisture permeability is 89g / m 2 · 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
延伸温度を135℃としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.021であり、面内位相差Re(550)は210nmであり、透湿度は89g/m2・24hであり、位相差変化は0.8%であった。得られた位相差フィルムを、上記(4)~(7)の評価に供した。結果を表1に示す。 [Comparative Example 1]
A retardation film was obtained in the same manner as in Example 1 except that the stretching temperature was 135 ° C. Wavelength dispersion value of the obtained retardation film was 1.021, the in-plane retardation Re (550) is 210 nm, the moisture permeability is 89g / m 2 · 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
[比較例2]
樹脂フィルムとして市販のシクロオレフィン系樹脂フィルム(日本ゼオン社製、商品名「ゼオノア」)を用いて、予熱温度180℃、延伸温度175℃で延伸を行ったこと以外は実施例1と同様にして位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.01であり、面内位相差Re(550)は135nmであり、透湿度は29g/m2・24hであり、位相差変化は0.8%であった。得られた位相差フィルムを、上記(4)~(7)の評価に供した。結果を表1に示す。 [Comparative Example 2]
The same as in Example 1 except that a commercially available cycloolefin-based resin film (manufactured by Nippon Zeon Co., Ltd., trade name "Zeonoa") was used as the resin film and stretched at a preheating temperature of 180 ° C. and a stretching temperature of 175 ° C. A retardation film was obtained. Wavelength dispersion value of the obtained retardation film was 1.01, in-plane retardation Re (550) is 135 nm, the moisture permeability is 29g / m 2 · 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
樹脂フィルムとして市販のシクロオレフィン系樹脂フィルム(日本ゼオン社製、商品名「ゼオノア」)を用いて、予熱温度180℃、延伸温度175℃で延伸を行ったこと以外は実施例1と同様にして位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.01であり、面内位相差Re(550)は135nmであり、透湿度は29g/m2・24hであり、位相差変化は0.8%であった。得られた位相差フィルムを、上記(4)~(7)の評価に供した。結果を表1に示す。 [Comparative Example 2]
The same as in Example 1 except that a commercially available cycloolefin-based resin film (manufactured by Nippon Zeon Co., Ltd., trade name "Zeonoa") was used as the resin film and stretched at a preheating temperature of 180 ° C. and a stretching temperature of 175 ° C. A retardation film was obtained. Wavelength dispersion value of the obtained retardation film was 1.01, in-plane retardation Re (550) is 135 nm, the moisture permeability is 29g / m 2 · 24h, the phase difference change is 0.8% Met. The obtained retardation film was subjected to the evaluations (4) to (7) above. The results are shown in Table 1.
[比較例3]
トリアセチルセルロース(TAC)フィルム(富士フィルム社製)の長手方向に対してラビングローラーの回転軸が反時計回りに45°となるように調節し、ラビング処理を行った。ラビング処理した上記TACフィルムに液晶塗工をして、液晶塗工トリアセチルセルロース(TAC)フィルムを得た。樹脂フィルムとして、この液晶塗工TACフィルムを用いたこと、および延伸を行わなかったこと以外は実施例1と同様にして位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.09であり、面内位相差Re(550)は132nmであり、透湿度は330g/m2・24hであり、位相差変化は4.0%であった。得られた位相差フィルムを、上記(4)~(6)の評価に供した。結果を表1に示す。 [Comparative Example 3]
The rubbing treatment was performed by adjusting the rotation axis of the rubbing roller to be 45 ° counterclockwise with respect to the longitudinal direction of the triacetyl cellulose (TAC) film (manufactured by Fuji Film Co., Ltd.). The rubbing-treated TAC film was coated with a liquid crystal to obtain a liquid crystal-coated triacetyl cellulose (TAC) film. A retardation film was obtained in the same manner as in Example 1 except that this liquid crystal coated TAC film was used as the resin film and no stretching was performed. Wavelength dispersion value of the obtained retardation film was 1.09, in-plane retardation Re (550) is 132 nm, the moisture permeability is 330g / m 2 · 24h, the phase difference change is 4.0% Met. The obtained retardation film was subjected to the evaluations (4) to (6) above. The results are shown in Table 1.
トリアセチルセルロース(TAC)フィルム(富士フィルム社製)の長手方向に対してラビングローラーの回転軸が反時計回りに45°となるように調節し、ラビング処理を行った。ラビング処理した上記TACフィルムに液晶塗工をして、液晶塗工トリアセチルセルロース(TAC)フィルムを得た。樹脂フィルムとして、この液晶塗工TACフィルムを用いたこと、および延伸を行わなかったこと以外は実施例1と同様にして位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.09であり、面内位相差Re(550)は132nmであり、透湿度は330g/m2・24hであり、位相差変化は4.0%であった。得られた位相差フィルムを、上記(4)~(6)の評価に供した。結果を表1に示す。 [Comparative Example 3]
The rubbing treatment was performed by adjusting the rotation axis of the rubbing roller to be 45 ° counterclockwise with respect to the longitudinal direction of the triacetyl cellulose (TAC) film (manufactured by Fuji Film Co., Ltd.). The rubbing-treated TAC film was coated with a liquid crystal to obtain a liquid crystal-coated triacetyl cellulose (TAC) film. A retardation film was obtained in the same manner as in Example 1 except that this liquid crystal coated TAC film was used as the resin film and no stretching was performed. Wavelength dispersion value of the obtained retardation film was 1.09, in-plane retardation Re (550) is 132 nm, the moisture permeability is 330g / m 2 · 24h, the phase difference change is 4.0% Met. The obtained retardation film was subjected to the evaluations (4) to (6) above. The results are shown in Table 1.
[比較例4]
樹脂フィルムとして市販のシクロオレフィン系樹脂フィルム(日本ゼオン社製、商品名「ゼオノア」)を用いて、予熱温度を147℃とし、延伸温度を144℃とし、長手方向の延伸倍率を1.2倍、幅方向の延伸倍率を1.9倍としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.010であり、面内位相差Re(550)は136nmであり、透湿度は15g/m2・24hであり、位相差変化は0.2%であった。得られた位相差フィルムを、上記(7)の評価に供した。結果を表1に示す。次に、得られた位相差フィルムを用いて、実施例6と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を、上記(4)、(5)および(8)の評価に供した。結果を表1に示す。 [Comparative Example 4]
Using a commercially available cycloolefin-based resin film (manufactured by Nippon Zeon Co., Ltd., trade name "Zeonoa") as the resin film, the preheating temperature is 147 ° C, the stretching temperature is 144 ° C, and the stretching ratio in the longitudinal direction is 1.2 times. A retardation film was obtained in the same manner as in Example 1 except that the stretching ratio in the width direction was 1.9 times. Wavelength dispersion value of the obtained retardation film was 1.010, the in-plane retardation Re (550) is 136 nm, the moisture permeability is 15g / m 2 · 24h, the phase difference change is 0.2% Met. The obtained retardation film was subjected to the evaluation of (7) above. The results are shown in Table 1. Next, using the obtained retardation film, a polarizing plate with a retardation layer was obtained in the same manner as in Example 6. The obtained polarizing plate with a retardation layer was subjected to the evaluations of (4), (5) and (8) above. The results are shown in Table 1.
樹脂フィルムとして市販のシクロオレフィン系樹脂フィルム(日本ゼオン社製、商品名「ゼオノア」)を用いて、予熱温度を147℃とし、延伸温度を144℃とし、長手方向の延伸倍率を1.2倍、幅方向の延伸倍率を1.9倍としたこと以外は実施例1と同様にして、位相差フィルムを得た。得られた位相差フィルムの波長分散値は1.010であり、面内位相差Re(550)は136nmであり、透湿度は15g/m2・24hであり、位相差変化は0.2%であった。得られた位相差フィルムを、上記(7)の評価に供した。結果を表1に示す。次に、得られた位相差フィルムを用いて、実施例6と同様にして、位相差層付偏光板を得た。得られた位相差層付偏光板を、上記(4)、(5)および(8)の評価に供した。結果を表1に示す。 [Comparative Example 4]
Using a commercially available cycloolefin-based resin film (manufactured by Nippon Zeon Co., Ltd., trade name "Zeonoa") as the resin film, the preheating temperature is 147 ° C, the stretching temperature is 144 ° C, and the stretching ratio in the longitudinal direction is 1.2 times. A retardation film was obtained in the same manner as in Example 1 except that the stretching ratio in the width direction was 1.9 times. Wavelength dispersion value of the obtained retardation film was 1.010, the in-plane retardation Re (550) is 136 nm, the moisture permeability is 15g / m 2 · 24h, the phase difference change is 0.2% Met. The obtained retardation film was subjected to the evaluation of (7) above. The results are shown in Table 1. Next, using the obtained retardation film, a polarizing plate with a retardation layer was obtained in the same manner as in Example 6. The obtained polarizing plate with a retardation layer was subjected to the evaluations of (4), (5) and (8) above. The results are shown in Table 1.
表1から明らかなように、本発明の実施例の位相差フィルムは、透湿度、位相差変化、異形加工性試験、耐皮脂性試験およびMIT試験のすべてにおいて優れていることがわかる。さらに、本発明の実施例の位相差フィルムを、画像表示装置のパネル側に設けた場合、優れた反射率を示すことが分かる。また、本発明の実施例の位相差層付偏光板は、異形加工性試験、耐皮脂性試験および寸法変化率のすべてにおいて優れていることがわかる。これは、特定のポリカーボネート樹脂を含む樹脂フィルムを、特定の延伸方法および延伸条件で延伸することにより実現されると推察される。
As is clear from Table 1, it can be seen that the retardation film of the embodiment of the present invention is excellent in all of the moisture permeability, the retardation change, the deformability test, the sebum resistance test and the MIT test. Further, it can be seen that when the retardation film of the embodiment of the present invention is provided on the panel side of the image display device, it exhibits excellent reflectance. Further, it can be seen that the polarizing plate with a retardation layer according to the embodiment of the present invention is excellent in all of the deformability test, the sebum resistance test and the dimensional change rate. It is presumed that this is realized by stretching a resin film containing a specific polycarbonate resin under a specific stretching method and stretching conditions.
本発明の実施形態による位相差フィルムは、画像表示装置に好適に用いられる。
The retardation film according to the embodiment of the present invention is suitably used for an image display device.
Claims (10)
- ポリカーボネート系樹脂を含み、
Re(450)/Re(550)が0.98~1.03であり、
Re(550)が80nm~190nmである、
位相差フィルム。 Contains polycarbonate resin,
Re (450) / Re (550) is 0.98 to 1.03,
Re (550) is 80 nm to 190 nm,
Phase difference film. - 前記ポリカーボネート系樹脂が、脂環式ジヒドロキシ化合物に由来する構造単位をさらに含み、
該脂環式ジヒドロキシ化合物が、下記一般式(II)で表され、R1が下記(IIb)で表される構造であり、n=0である、
請求項2に記載の位相差フィルム。
HOCH2-R1-CH2OH (II)
The alicyclic dihydroxy compound has a structure represented by the following general formula (II), R 1 is represented by the following (II b), and n = 0.
The retardation film according to claim 2.
HOCH 2- R 1- CH 2 OH (II)
- 異形加工性試験においてクラックが抑制されている、請求項1から3のいずれかに記載の位相差フィルム。 The retardation film according to any one of claims 1 to 3, wherein cracks are suppressed in the deformability test.
- 耐皮脂性試験において白化およびクラックが抑制されている、請求項1から4のいずれかに記載の位相差フィルム。 The retardation film according to any one of claims 1 to 4, wherein whitening and cracks are suppressed in a sebum resistance test.
- MIT回数が500回以上である、請求項1から5に記載の位相差フィルム。 The retardation film according to claims 1 to 5, wherein the number of MITs is 500 or more.
- 透湿度が130g/m2・24h以下である、請求項1から6のいずれかに記載の位相差フィルム。 Moisture permeability is not more than 130g / m 2 · 24h, the phase difference film according to any one of claims 1 to 6.
- 温度65℃かつ湿度90%の条件下において500時間保存した後の位相差変化が2.0%以下である、請求項1から7のいずれかに記載の位相差フィルム。 The retardation film according to any one of claims 1 to 7, wherein the retardation change after storage for 500 hours under the conditions of a temperature of 65 ° C. and a humidity of 90% is 2.0% or less.
- 請求項1から8のいずれかに記載の位相差フィルムで構成される位相差層と偏光子とを有する、位相差層付偏光板。 A polarizing plate with a retardation layer having a retardation layer composed of the retardation film according to any one of claims 1 to 8 and a polarizer.
- 画像表示装置の視認側に用いられる、請求項9に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 9, which is used on the visual side of an image display device.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021509434A JP7323602B2 (en) | 2019-03-27 | 2020-03-24 | Retardation film and polarizing plate with retardation layer |
CN202080024435.3A CN113661194A (en) | 2019-03-27 | 2020-03-24 | Retardation film and polarizing plate with retardation layer |
KR1020217025599A KR20210148083A (en) | 2019-03-27 | 2020-03-24 | Polarizing plate with retardation film and retardation layer |
JP2023122144A JP2023145609A (en) | 2019-03-27 | 2023-07-27 | Retardation film and polarizing plate with retardation layer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019060693 | 2019-03-27 | ||
JP2019-060693 | 2019-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020196482A1 true WO2020196482A1 (en) | 2020-10-01 |
Family
ID=72611978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/012911 WO2020196482A1 (en) | 2019-03-27 | 2020-03-24 | Retardation film and polarizing plate with retardation layer |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP7323602B2 (en) |
KR (1) | KR20210148083A (en) |
CN (1) | CN113661194A (en) |
TW (1) | TWI833936B (en) |
WO (1) | WO2020196482A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050143554A1 (en) * | 2003-12-31 | 2005-06-30 | General Electric Company | Aliphatic diol polycarbonates and their preparation |
WO2008020636A1 (en) * | 2006-08-18 | 2008-02-21 | Mitsubishi Gas Chemical Company, Inc. | Polycarbonate resin and optical film using the same |
JP2014026266A (en) * | 2012-06-21 | 2014-02-06 | Nitto Denko Corp | Polarizing plate and organic el panel |
JP2014205829A (en) * | 2013-03-21 | 2014-10-30 | 三菱化学株式会社 | Resin composition and film using the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5448264B2 (en) * | 2009-11-19 | 2014-03-19 | 三菱化学株式会社 | Polycarbonate resin film and transparent film |
KR101713277B1 (en) * | 2010-08-13 | 2017-03-08 | 삼성전자주식회사 | Anti-reflection film and foldable display apparatus employing the same |
JP6784481B2 (en) * | 2015-07-13 | 2020-11-11 | 日東電工株式会社 | Circular polarizing plate for organic EL display device and organic EL display device |
JP6565577B2 (en) * | 2015-10-15 | 2019-08-28 | 三菱ケミカル株式会社 | Polycarbonate resin and optical film comprising the same |
-
2020
- 2020-03-24 CN CN202080024435.3A patent/CN113661194A/en active Pending
- 2020-03-24 WO PCT/JP2020/012911 patent/WO2020196482A1/en active Application Filing
- 2020-03-24 KR KR1020217025599A patent/KR20210148083A/en unknown
- 2020-03-24 JP JP2021509434A patent/JP7323602B2/en active Active
- 2020-03-26 TW TW109110306A patent/TWI833936B/en active
-
2023
- 2023-07-27 JP JP2023122144A patent/JP2023145609A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050143554A1 (en) * | 2003-12-31 | 2005-06-30 | General Electric Company | Aliphatic diol polycarbonates and their preparation |
WO2008020636A1 (en) * | 2006-08-18 | 2008-02-21 | Mitsubishi Gas Chemical Company, Inc. | Polycarbonate resin and optical film using the same |
JP2014026266A (en) * | 2012-06-21 | 2014-02-06 | Nitto Denko Corp | Polarizing plate and organic el panel |
JP2014205829A (en) * | 2013-03-21 | 2014-10-30 | 三菱化学株式会社 | Resin composition and film using the same |
Also Published As
Publication number | Publication date |
---|---|
TWI833936B (en) | 2024-03-01 |
JP2023145609A (en) | 2023-10-11 |
JPWO2020196482A1 (en) | 2021-12-02 |
KR20210148083A (en) | 2021-12-07 |
JP7323602B2 (en) | 2023-08-08 |
CN113661194A (en) | 2021-11-16 |
TW202101041A (en) | 2021-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105824069B (en) | Polarization plates with phase separation layer and image display device | |
WO2016136509A1 (en) | Polarizing plate with phase-difference layer and image display device | |
CN108603970A (en) | Optical laminate and the image display device for having used the optical laminate | |
WO2020196146A1 (en) | Polarizing plate with retardation layer | |
JP7323602B2 (en) | Retardation film and polarizing plate with retardation layer | |
JP7534158B2 (en) | Optical films and polarizing plates | |
JP7322135B2 (en) | Retardation film and polarizing plate with retardation layer | |
TW202146224A (en) | Antireflection layer-equipped circular polarizing plate and image display device using antireflection layer-equipped circular polarizing plate | |
KR20220076468A (en) | Polarizing plate with retardation layer and organic electroluminescent display device using same | |
JP2022041638A (en) | Retardation film and polarizing plate | |
JP2022045448A (en) | Retardation film, polarizing plate with retardation layer, and method of manufacturing retardation film | |
JP2024149635A (en) | Optical films and polarizing plates | |
JP2022041639A (en) | Retardation film and polarizing plate | |
JP2020034673A (en) | Retardation film, polarizing plate with retardation layer, and method for manufacturing retardation film | |
CN110858011A (en) | Retardation film, polarizing plate with retardation layer, and method for producing retardation film | |
TW202210881A (en) | Optical film, polarizing plate and method for manufacturing optical film in which a phase difference variation in a humidification reliability test is suppressed and a hue variation in the weathering test in the ultraviolet region is suppressed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20779590 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021509434 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20779590 Country of ref document: EP Kind code of ref document: A1 |