WO2020196473A1 - Electroconductive polymer composition - Google Patents

Electroconductive polymer composition Download PDF

Info

Publication number
WO2020196473A1
WO2020196473A1 PCT/JP2020/012879 JP2020012879W WO2020196473A1 WO 2020196473 A1 WO2020196473 A1 WO 2020196473A1 JP 2020012879 W JP2020012879 W JP 2020012879W WO 2020196473 A1 WO2020196473 A1 WO 2020196473A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
polymer composition
group
carbon atoms
ring
Prior art date
Application number
PCT/JP2020/012879
Other languages
French (fr)
Japanese (ja)
Inventor
豪 宮本
岡本 秀二
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Publication of WO2020196473A1 publication Critical patent/WO2020196473A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a conductive polymer composition.
  • conductive polymers One of the uses of conductive polymers is the solid electrolyte of capacitors. It is required to be used in a harsher environment, and reliability in a high heat and high humidity environment is required.
  • Patent Document 1 discloses a capacitor using a PEDOT / PSS film as a solid electrolyte.
  • the conductive polymer typified by PEDOT / PSS undergoes a structural change under moist heat conditions, resulting in a decrease in conductivity, peeling of the coating film from the substrate, cracking of the coating film, and the like. There was a problem such as a change of state.
  • the present invention has been made in view of such circumstances, and provides a conductive polymer composition capable of forming a coating film having excellent conductivity, moisture heat resistance, and heat resistance.
  • the conductive polymer composition contains a solvent, a ⁇ -conjugated conductive polymer, and an additive, and the conductive polymer is represented by the general formula (1) or (2).
  • the additive is provided by a conductive polymer composition containing at least one of the constituent units to be formed, an aromatic stacking accelerator that promotes stacking of the conductive polymer, and an organic sulfonic acid. Will be done.
  • the coating film formed by using the composition having the above composition is excellent in conductivity, moisture heat resistance, and heat resistance, and the present invention has been completed. ..
  • the conductive polymer composition of one embodiment of the present invention contains a solvent, a ⁇ -conjugated conductive polymer (hereinafter, “conductive polymer”), and an additive.
  • conductive polymer ⁇ -conjugated conductive polymer
  • the solvent is not particularly limited as long as it can dissolve or disperse the conductive polymer, and preferably contains an organic solvent.
  • the organic solvent include alcohol solvents such as methanol, ethanol, isopropyl alcohol and butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, methyl cellosolve, ethyl cellosolve, propylene glycol methyl ether and propylene glycol ethyl ether.
  • Glycol-based solvents such as methyl lactate and ethyl lactate, toluene, ethyl acetate, propylene carbonate, ⁇ -butyrolactone, methyl ethyl ketone, toluene, isopropyl alcohol, ethylene glycol, dimethyl sulfoxide, methanol, benzyl alcohol and the like.
  • Propylene carbonate, ⁇ -butyrolactone, methyl ethyl ketone, toluene, isopropyl alcohol, ethylene glycol, dimethyl sulfoxide, methanol, benzyl alcohol and the like are particularly preferable.
  • the organic solvent may be used in combination of a plurality of solvents, and may be the same as or different from the solvent used for synthesizing the conductive polymer.
  • the non-volatile content of the conductive polymer composition excluding the organic solvent is not particularly limited, but is, for example, 0.1% by mass or more and 20.0% by mass or less. Specifically, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 10.0, 15.0, 20.0 mass% It may be within the range between any two of the numerical values exemplified here.
  • the solvent of the conductive polymer composition may contain water in addition to the above organic solvent, but from the viewpoint of substrate adhesion, the water content is preferably 50% or less with respect to the solvent, and more preferably 10% or less. preferable.
  • the ⁇ -conjugated conductive polymer of the present invention is composed of a ⁇ -conjugated polymer doped with a dopant.
  • Examples of the ⁇ -conjugated polymer include any polymer having a ⁇ -conjugated system, for example, a polymer containing aniline, pyrrole, thiophene or a derivative thereof in the skeleton, and a polymer containing thiophene or a derivative thereof in the skeleton. Polymers are preferred. In this case, this is because the environmental stability against temperature other than humidity and oxygen in the doped state and the undoped state is excellent.
  • the dopant examples include any compound capable of imparting conductivity to the ⁇ -conjugated polymer, and may be either a polymer dopant or a low molecular weight dopant.
  • the polymer dopant examples include polyvalent acids such as polystyrene sulfonic acid (PSS).
  • PSS polystyrene sulfonic acid
  • the polymer dopant those that receive electrons from a ⁇ -conjugated polymer to become a polyanion are preferable.
  • Low molecular weight dopants include vinyl sulfonic acid, p-toluene sulfonic acid, 2-naphthalene sulfonic acid, 1-naphthalene sulfonic acid, dodecyl sulfonic acid, dodecylbenzene sulfonic acid, di (2-ethylhexyl) sulfosuccinic acid, tetrafluoroboric acid. , Trifluoroacetic acid, hexafluorophosphate, monovalent acids such as trifluoromethanesulfonimide, or alkali metal salts thereof.
  • the low molecular weight dopant one that receives electrons from a ⁇ -conjugated polymer to become a monoanion is preferable, a monoanion having a sulfo group is preferable, and a monoanion having a structure in which an alkyl chain and a sulfo group are bonded is more preferable. Since it is easy to improve the conductivity of the conductive polymer by using a dopant that becomes a monoanion, it is preferable to use a dopant that becomes a monoanion.
  • the conductive polymer preferably has at least one of the structural units represented by the general formula (1) or (2).
  • ⁇ conjugated polymer contained in the conductive polymer, dispersibility in solvent is enhanced by having R 1.
  • R 1 may have a substituent, respectively, an alkyl group having 1 or more and 12 or less carbon atoms, an alkyl ether group having 1 or more and 12 or less carbon atoms, and 1 carbon number.
  • R 2 is an oxygen atom or a sulfur atom, respectively
  • R 3 is an alkyl group having 1 to 12 carbon atoms and an alkyl having 1 to 12 carbon atoms, which may have a hydrogen atom and a substituent, respectively.
  • n 2 or more and 300 or less.
  • the alkyl group having 1 or more and 12 or less carbon atoms may be linear, branched, cyclic or the like, and may be, for example, 1 or more and 8 or less carbon atoms, 1 or more and 6 or less carbon atoms, 1 or more and 4 or less carbon atoms, or the like. May be present, specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, cyclopentyl group, cyclohexyl group, bornyl group, isobornyl group, dicyclopentanyl. Examples include a group and an adamantyl group.
  • the alkyl ether group having 1 or more and 12 or less carbon atoms may be linear, branched, cyclic or the like, and may be, for example, 1 or more and 8 or less carbon atoms, 1 or more and 6 or less carbon atoms, 1 or more and 4 or less carbon atoms, or the like. Is.
  • the alkoxy group having 1 or more and 12 or less carbon atoms may be linear, branched, cyclic or the like, and may be, for example, 1 or more and 8 or less carbon atoms, 1 or more and 6 or less carbon atoms, 1 or more and 4 or less carbon atoms, or the like. Is.
  • Examples of the alkylene oxide group having 1 or more and 12 or less carbon atoms include 1 or more and 8 or less carbon atoms, 1 or more and 6 or less carbon atoms, and 1 or more and 4 or less carbon atoms.
  • Examples of the aromatic group include various condensed ring groups in addition to the phenyl group and the benzyl group.
  • the fused ring groups include naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthalene ring, triphenylene ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, pentacene ring, perylene ring, and the like. Examples include a pentaphene ring, a picene ring, and a pyrenethan ring.
  • heterocyclic group examples include a silol ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an oxaziazole ring, a triazole ring, an imidazole ring, and a pyrazole.
  • R 1 or R 3 may have include an alkyl group having 1 to 12 carbon atoms, the alkyl ether group having 1 to 12 carbon atoms, and an alkoxy group having 1 to 12 carbon atoms.
  • the hydroxy group and the carboxyl group are preferable.
  • the number of structural units (1) and (2) contained in the conductive polymer is not particularly limited, but is preferably 2 or more and 300 or less. Specifically, for example, it is 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200 or 300, and is within the range between any two of the numerical values exemplified here. It may be.
  • the content ratios of the structural units (1) and (2) contained in the conductive polymer can be adjusted by the ratio of the addition amount of the thiophene derivative represented by the general formula (3) and the aldehyde.
  • the molar ratio of the amount of the thiophene derivative to the aldehyde added (thiophene derivative / aldehyde) is, for example, 1/1, 2/1, 3/1, 4/1, 5/1, etc., and any two of these values Although it may be within the range between them, the ratio of 1/1 to 4/1 is preferable, and the ratio of 1/1 to 2/1 is more preferable from the viewpoint of the balance between solubility and conductivity.
  • R 2 and R 3 are defined in the same manner as R 2 and R 3 in the general formulas (1) and (2), respectively.
  • the method for synthesizing the conductive polymer is not particularly limited, but for example, it can be obtained by adding a dopant and an oxidizing agent to a thiophene derivative and an aldehyde and polymerizing by heating and stirring in a solvent under an inert gas atmosphere. Can be done. Further, a decomposition accelerator of an oxidizing agent may be added.
  • the molar ratio of the dopant to the thiophene derivative is, for example, 0.01 to 0.5, preferably 0.1 to 0.5. Specifically, the molar ratio is, for example, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and any two of the numerical values exemplified here. It may be within the range between. If this molar ratio is too small, the conductivity of the conductive polymer may become too low.
  • the oxidizing agent is not particularly limited as long as it is an oxidizing agent in which the polymerization reaction proceeds, and it may be ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate, iron (III) chloride, iron (III) sulfate, or hydroxide.
  • the solvent is not particularly limited as long as it is a solvent in which the reaction between the heterocyclic compound and the aldehyde derivative proceeds, and it may be ⁇ -butyrolactone, propylene carbonate, ethylene carbonate, acetonitrile, tert-butylmethyl ether, ethyl acetate, benzene, heptane.
  • Additives Additives contain an aromatic stacking accelerator (hereinafter, “stacking accelerator”) that promotes stacking of the above-mentioned conductive polymer, and an organic sulfonic acid.
  • stacking accelerator aromatic stacking accelerator
  • the conductivity, moisture heat resistance, and heat resistance of the coating film to be formed are improved.
  • the above conductive polymer has a relatively low flatness, so stacking is unlikely to occur. Therefore, it is difficult for electrons to be transmitted across the conductive polymers, and it is difficult for the conductivity to increase. Further, since stacking is unlikely to occur, the bonding force between the conductive polymers is relatively small, and the moisture resistance and heat resistance are difficult to be sufficiently increased.
  • Organic sulfonic acid in the additive has a function of increasing the cationic property of the conductive polymer and promoting the stacking of the conductive polymer. Therefore, the addition of the organic sulfonic acid improves the conductivity of the coating film. On the other hand, since the organic sulfonic acid has a high affinity with water, the addition of the organic sulfonic acid makes it easier for water to penetrate into the coating film, and the moisture and heat resistance of the coating film is lowered.
  • the stacking accelerator is added to promote the stacking of the conductive polymer, thereby reducing the gap. Therefore, according to the present invention, moist heat resistance is improved. Further, by adding the stacking accelerator, the bonding force between the conductive polymers is increased, so that the heat resistance is improved, and the conductive paths of electrons between the conductive polymers are increased, so that the conductivity is improved.
  • organic sulfonic acid examples include p-toluenesulfonic acid, naphthalenesulfonic acid (eg 2-naphthalenesulfonic acid, 1-naphthalenesulfonic acid), dodecylsulfonic acid, dodecylbenzenesulfonic acid and the like.
  • the organic sulfonic acid may be present in the conductive polymer composition in a free state, or may be present in a state of being bound to a stacking accelerator (eg, ionic bond).
  • a stacking accelerator eg, ionic bond
  • the conductive polymer composition preferably contains 0.5 to 30 parts by mass of organic sulfonic acid with respect to 100 parts by mass of the conductive polymer, and preferably contains 1 to 15 parts by mass. This is because if the amount of organic sulfonic acid is too small, the stacking promoting effect may not be sufficient, and if it is too large, the moisture and heat resistance may be lowered.
  • the content of the organic sulfonic acid is, for example, 0.5, 1, 2, 5, 10, 15, 20, 25, 30 parts by mass, and is between any two of the numerical values exemplified here. It may be within the range.
  • the stacking accelerator is preferably a multi-ring compound having a plurality of aromatic rings constituting the ⁇ -conjugated system, or a precursor thereof.
  • the plurality of aromatic rings may form a ⁇ -conjugated system by being connected to each other by a single or double bond, or may form a fused ring.
  • the number of aromatic rings constituting the ⁇ -conjugated system is preferably 2 to 5, and more preferably 2 to 3.
  • Such a compound has high flatness and easily penetrates into the gaps between the conductive polymers to promote stacking of the conductive polymers.
  • the precursor of the polycyclic compound is a compound that causes the polycyclic compound by the reaction, for example, a reactive monomer. Stacking of conductive polymers is promoted by the reaction of precursors of the multi-ring compound to produce the multi-ring compound.
  • the reactive monomer those in which the polymerization reaction proceeds in the heat treatment step when the coating film is formed using the conductive polymer composition are preferable.
  • An oxidizing agent for accelerating this polymerization reaction may be added to the conductive polymer composition. The addition of the oxidizing agent suppresses the residue of the precursor of the polycyclic compound. Therefore, the bleed-out of the precursor of the plurality of ring compounds is suppressed in a moist heat environment, and the moist heat resistance is improved.
  • the addition of the oxidizing agent increases the amount of the plural ring compound produced, so that the conductivity is improved.
  • the oxidizing agent is preferably added in an amount of 1 to 20 parts by mass with respect to 100 parts by mass of the conductive polymer.
  • the amount of the oxidizing agent added is, for example, 1, 5, 10, 15, and 20 parts by mass, and may be within the range between any two of the numerical values exemplified here.
  • the oxidizing agent those described above can be used in the description of oxidative polymerization of the conductive polymer.
  • the molecular weight of the compound constituting the stacking accelerator is, for example, 100 to 2000, preferably 100 to 1500, and preferably 100 to 1000. If the molecular weight is too large, it may be difficult to enter the gap between the conductive polymers. Specifically, the molecular weight is, for example, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000. Yes, it may be within the range between any two of the numerical values exemplified here.
  • the number of atoms of the compound constituting the stacking accelerator is, for example, 10 to 200, and specifically, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130. , 140, 150, 160, 170, 180, 190, 200, and may be within the range between any two of the numerical values exemplified here.
  • the conductive polymer composition preferably contains 1 to 40 parts by mass of the stacking accelerator with respect to 100 parts by mass of the conductive polymer, and preferably contains 2 to 25 parts by mass. This is because if the amount of the stacking accelerator is too small, the stacking promoting effect may not be sufficient, and if it is too large, the conductivity of the coating film may decrease due to surface bleeding.
  • the content of the stacking accelerator is, for example, 1, 2, 5, 10, 15, 20, 25, 30, 35, 40 parts by mass, and is between any two of the numerical values exemplified here. It may be within the range.
  • the stacking accelerator preferably contains an oxygen atom or a nitrogen atom. In this case, the affinity between the stacking accelerator and the conductive polymer is increased, and the stacking promoting effect is enhanced.
  • the stacking accelerator preferably does not contain a nitrogen atom having an unshared electron pair. This is because the compound having a nitrogen atom having an unshared electron pair becomes a base and reduces the stacking promoting effect of the organic sulfonic acid.
  • Examples of such compounds include amine compounds, and examples of amine compounds include primary amines, secondary amines, tertiary amines, aromatic amines, and heterocyclic amines.
  • the stacking accelerator preferably contains at least one selected from the group consisting of polythiophene, thiophene derivative, dithiol derivative, naphthalene derivative, and anthracene derivative. This is because such compounds are particularly effective in promoting stacking.
  • Polythiophene is, for example, a polymer of a thiophene derivative represented by the above general formula (3).
  • the degree of polymerization is, for example, 2 to 50, preferably 2 to 30. If the degree of polymerization is too large, it may be difficult to enter the gaps between the conductive polymers.
  • the polythiophene is preferably doped with a dopant (preferably an organic sulfonic acid).
  • a thiophene derivative is a compound having a thiophene skeleton.
  • the thiophene derivative may be a polycyclic compound or a precursor thereof.
  • Examples of the thiophene derivative which is a multicyclic compound include dibenzothiophene, benzothiophene, benzo [b] thiophene, 2,2'-bithiophene, 4H-cyclopenta [2,1-b3,4-b] thiophene, benzodithiophene and the like. Can be mentioned.
  • thiophene derivatives examples include a thiophene derivative represented by the above general formula (3) (eg, EDOT), 4-ethylenedioxythiophene, 3,4-ethylenedithiothiophene, and 3,4- (2,2). -Dimethylpropylenedioxy) Thiophene, 2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-ylmethanol and the like can be mentioned.
  • Benzothiophene is a compound having a condensed ring, but thiophenes can be linked to each other by polymerization.
  • the additive preferably contains an oxidizing agent.
  • the dithiol derivative is a compound having a dithiol group, preferably a compound having an aromatic ring having a dithiol group, and more preferably two aromatic rings having a dithiol group in a single or double bond with each other. It is a compound in which a ⁇ -conjugated system is formed by being linked.
  • dithiol derivatives include tetrathiafulvalene, bis (ethylenedithio) tetrathiafulvalene, 4,5-ethylenedithio-1,3-dithiol-2-thione, and 4,5-bis (methylthio) -1,3-dithiol-2-.
  • 4,4-dimethyl-5,5-diphenyltetrathiafulvalene and the like can be mentioned.
  • a naphthalene derivative is a compound having a naphthalene skeleton.
  • the naphthalene derivative is preferably a compound having a polar functional group.
  • the affinity between the naphthalene derivative and the conductive polymer is improved, and the stacking promoting effect is particularly enhanced.
  • the polar functional group include a carboxyl group and a hydroxyl group.
  • naphthalene derivative examples include 2-naphthol, 1-naphthol, 1-naphthalenecarboxylic acid, 2-naphthalenecarboxylic acid, 1,3-naphthalenediol, 2,3-naphthalenediol, and 1,5-naphthalenediol.
  • Anthracene derivative is a compound having an anthracene skeleton.
  • the anthracene derivative is preferably a compound having a polar functional group.
  • the affinity between the anthracene derivative and the conductive polymer is improved, and the stacking promoting effect is particularly enhanced.
  • the polar functional group include a carboxyl group and a hydroxyl group.
  • Examples of the anthracene derivative include 2,6-anthracenediol, 1,2,3-anthracene triol, 9-anthracene carboxylic acid, 2-anthracene carboxylic acid and the like.
  • the method for producing a conductive polymer thin film according to the embodiment of the present invention includes a thin film forming step.
  • a thin film is formed by applying the above conductive polymer composition on a substrate and then performing a heat treatment.
  • the solvent is removed during the heat treatment.
  • the additive contains a reactive monomer
  • the polymerization reaction proceeds during the heat treatment to form an oligomer.
  • the base material is not particularly limited, but the base material used for the capacitor is preferable. This is because reliability is required in high temperature and high humidity environments for capacitor applications.
  • the base material for example, a material containing aluminum, tantalum, niobium or an alloy thereof can be used.
  • a dielectric layer may be formed on the surface of the base material.
  • the dielectric layer can be formed, for example, by oxidizing the surface.
  • the method for oxidizing the surface of the base material is not particularly limited, and for example, the anodic oxidation treatment is carried out by applying a voltage for about 5 to 90 minutes in an aqueous solution containing a weak acid such as phosphoric acid or adipic acid. The method can be given.
  • anode body of a solid electrolytic capacitor By forming a conductive polymer thin film through a dielectric layer formed on the surface of a base material, an anode body of a solid electrolytic capacitor can be formed. Further, a solid electrolytic capacitor can be manufactured by using this anode body.
  • the coating method is not limited, and can be performed by dropping the conductive polymer composition onto the base material or impregnating the base material with the conductive polymer composition.
  • a conductive polymer propylene carbonate dispersion A (nonvolatile content 1.0% by mass) mainly containing the structural unit represented by 1) was obtained.
  • a conductive polymer propylene carbonate dispersion B (nonvolatile content 1.0% by mass) mainly containing the structural unit represented by 2) was obtained.
  • Production Example 3 (slurry liquid C: PEDOT / naphthalene sulfonic acid) 300 g of propylene carbonate, 3.4 g of 3,4-ethylenedioxythiophene (EDOT) and 1.8 g of 2-naphthalene sulfonic acid were added to a 1 L flask, and the mixture was stirred for 0.25 hours. Then, under a nitrogen purge, 0.04 g of iron (III) trisparatoluenesulfonate (Fe (PTS) 3 ), 6.75 g of benzoyl peroxide, and 100 g of propylene carbonate were added, and the mixture was stirred at 40 ° C. for 4 hours.
  • iron (III) trisparatoluenesulfonate Fe (PTS) 3
  • Example 1 5 g of dispersion liquid A, 0.5 g of slurry liquid C, and 0.25 g of 1% by mass propylene carbonate solution of 2-naphthalene sulfonic acid were added to a 9 ml bottle and treated with an ultrasonic homogenizer to disperse the conductive polymer composition. The liquid was prepared.
  • the conductive polymer composition was prepared in the same manner as in Example 1 except that the types and blending amounts of the conductive polymer and the additive were changed as shown in Tables 1 to 3.
  • the dispersion was prepared. Additives were added in a 1% by mass solution of propylene carbonate.
  • the conductivity improvement rate was calculated based on the following formulas 1 and 2.
  • the reference value is the conductivity of the conductive polymer film produced by using the dispersion liquid A or B without the addition of additives.
  • Conductivity improvement rate (%) (increase from standard value / standard value) x 100
  • Amount of increase from the reference value Conductivity of the conductive polymer film of Examples and Comparative Examples-Reference value
  • the conductivity of the coating film was measured before leaving the coating film in an environment of 85 ° C./85% (before the test) and after leaving it for 7 days (after the test), and based on the following formula 3.
  • the conductivity maintenance rate was calculated.
  • the conductivity maintenance rate was calculated by the same method as the moisture heat resistance test except that the environmental conditions were changed to 125 ° C.

Abstract

Provided is an electroconductive polymer composition capable of forming a film of excellent electroconductivity, moist-heat resistance and heat resistance. This electroconductive polymer composition contains a solvent, an π-conjugated electroconductive polymer and an additive; the electroconductive polymer has at least one structural unit represented by general formula (1) or (2); and the additive includes an organic sulfonic acid and an aromatic staking promoter that promotes stacking of the electroconductive polymer.

Description

導電性高分子組成物Conductive polymer composition
 本発明は、導電性高分子組成物に関する。 The present invention relates to a conductive polymer composition.
 導電性高分子の用途の一つとしてコンデンサの固体電解質が挙げられる。より過酷な環境下での使用が求められており、高熱・高湿環境下における信頼性が必要となっている。 One of the uses of conductive polymers is the solid electrolyte of capacitors. It is required to be used in a harsher environment, and reliability in a high heat and high humidity environment is required.
 特許文献1には、PEDOT/PSS膜を固体電解質として用いたコンデンサが開示されている。 Patent Document 1 discloses a capacitor using a PEDOT / PSS film as a solid electrolyte.
特開2018-22727号公報Japanese Unexamined Patent Publication No. 2018-22727
 しかし、PEDOT/PSSを代表とする導電性高分子は湿熱条件下においては、構造の変化が起こるため導電率の低下が発生し、また塗膜の基材からの剥がれ、塗膜の割れなどの状態変化が起きるなどの問題があった。 However, the conductive polymer typified by PEDOT / PSS undergoes a structural change under moist heat conditions, resulting in a decrease in conductivity, peeling of the coating film from the substrate, cracking of the coating film, and the like. There was a problem such as a change of state.
 本発明はこのような事情に鑑みてなされたものであり、導電性、耐湿熱性、及び耐熱性に優れた塗膜を形成可能な導電性高分子組成物を提供するものである。 The present invention has been made in view of such circumstances, and provides a conductive polymer composition capable of forming a coating film having excellent conductivity, moisture heat resistance, and heat resistance.
 本発明によれば、溶媒と、π共役系導電性高分子と、添加剤を含む導電性高分子組成物であって、前記導電性高分子は、一般式(1)又は(2)で表される構成単位の少なくとも1つを有し、前記添加剤は、前記導電性高分子のスタッキングを促進する芳香族系スタッキング促進剤と、有機スルホン酸を含有する、導電性高分子組成物が提供される。 According to the present invention, the conductive polymer composition contains a solvent, a π-conjugated conductive polymer, and an additive, and the conductive polymer is represented by the general formula (1) or (2). The additive is provided by a conductive polymer composition containing at least one of the constituent units to be formed, an aromatic stacking accelerator that promotes stacking of the conductive polymer, and an organic sulfonic acid. Will be done.
 本発明者が鋭意検討を行ったところ、上記組成の組成物を用いて形成した塗膜が、導電性、耐湿熱性、及び耐熱性に優れていることを見出し、本発明の完成に到った。 As a result of diligent studies by the present inventor, it was found that the coating film formed by using the composition having the above composition is excellent in conductivity, moisture heat resistance, and heat resistance, and the present invention has been completed. ..
 以下、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
1.導電性高分子組成物
 本発明の一実施形態の導電性高分子組成物は、溶媒と、π共役系導電性高分子(以下、「導電性高分子」)と、添加剤を含む。以下、各構成要素について詳述する。
1. 1. Conductive Polymer Composition The conductive polymer composition of one embodiment of the present invention contains a solvent, a π-conjugated conductive polymer (hereinafter, “conductive polymer”), and an additive. Hereinafter, each component will be described in detail.
1-2.溶媒
 溶媒は、導電性高分子を溶解又は分散可能なものであれば特に限定されず、有機溶媒を含むことが好ましい。有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、メチルセロソルブ、エチルセロソルブ、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル等のグリコール系溶媒、乳酸メチル、乳酸エチル等の乳酸系溶媒、トルエン、酢酸エチル、プロピレンカーボネート、γ-ブチロラクトン、メチルエチルケトン、トルエン、イソプロピルアルコール、エチレングリコール、ジメチルスルホキシド、メタノール、ベンジルアルコール等があげられるが、プロピレンカーボネート、γ-ブチロラクトン、メチルエチルケトン、トルエン、イソプロピルアルコール、エチレングリコール、ジメチルスルホキシド、メタノール、ベンジルアルコール等が特に好ましい。有機溶媒は、複数の溶媒を組み合わせて用いてもよく、導電性高分子の合成に用いる溶媒と同じであっても異なっていてもよい。
1-2. Solvent The solvent is not particularly limited as long as it can dissolve or disperse the conductive polymer, and preferably contains an organic solvent. Examples of the organic solvent include alcohol solvents such as methanol, ethanol, isopropyl alcohol and butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, methyl cellosolve, ethyl cellosolve, propylene glycol methyl ether and propylene glycol ethyl ether. Glycol-based solvents, lactic acid-based solvents such as methyl lactate and ethyl lactate, toluene, ethyl acetate, propylene carbonate, γ-butyrolactone, methyl ethyl ketone, toluene, isopropyl alcohol, ethylene glycol, dimethyl sulfoxide, methanol, benzyl alcohol and the like. , Propylene carbonate, γ-butyrolactone, methyl ethyl ketone, toluene, isopropyl alcohol, ethylene glycol, dimethyl sulfoxide, methanol, benzyl alcohol and the like are particularly preferable. The organic solvent may be used in combination of a plurality of solvents, and may be the same as or different from the solvent used for synthesizing the conductive polymer.
 導電性高分子を水に分散安定させるには、ドープに寄与しない余剰スルホン酸が必要であるが、導電性高分子組成物が有機溶媒を含む場合、余剰スルホン酸が少ない量でも、導電性高分子を有機溶媒中に安定的に溶解又は分散させることが可能である。 In order to disperse and stabilize the conductive polymer in water, excess sulfonic acid that does not contribute to doping is required, but when the conductive polymer composition contains an organic solvent, the conductivity is high even if the amount of excess sulfonic acid is small. It is possible to stably dissolve or disperse the molecule in an organic solvent.
 導電性高分子組成物のうち、有機溶媒を除いた不揮発分は、特に制限されないが、例えば0.1質量%以上20.0質量%以下である。具体的には、0.1、0.5、1.0、1.5、2.0、2.5、3.0、5.0、10.0、15.0、20.0質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The non-volatile content of the conductive polymer composition excluding the organic solvent is not particularly limited, but is, for example, 0.1% by mass or more and 20.0% by mass or less. Specifically, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, 10.0, 15.0, 20.0 mass% It may be within the range between any two of the numerical values exemplified here.
導電性高分子組成物の溶媒は、上記有機溶媒以外に水を含んでも良いが、基材密着性の観点から含水率は溶媒に対して50%以下であることが好ましく、10%以下がより好ましい。 The solvent of the conductive polymer composition may contain water in addition to the above organic solvent, but from the viewpoint of substrate adhesion, the water content is preferably 50% or less with respect to the solvent, and more preferably 10% or less. preferable.
1-2.π共役系導電性高分子
 本発明のπ共役系導電性高分子は、π共役系高分子がドーパントによってドーピングされて構成される。
1-2. π-Conjugated Conductive Polymer The π-conjugated conductive polymer of the present invention is composed of a π-conjugated polymer doped with a dopant.
 π共役系高分子としては、π共役系を有する任意の高分子が挙げられ、例えば、アニリン、ピロール、チオフェン又はその誘導体を骨格に含む高分子が挙げられ、チオフェン又はその誘導体を骨格に含む高分子が好ましい。この場合、ドープ状態、未ドープ状態における湿度以外の温度や酸素などに対する環境安定性が優れているからである。 Examples of the π-conjugated polymer include any polymer having a π-conjugated system, for example, a polymer containing aniline, pyrrole, thiophene or a derivative thereof in the skeleton, and a polymer containing thiophene or a derivative thereof in the skeleton. Polymers are preferred. In this case, this is because the environmental stability against temperature other than humidity and oxygen in the doped state and the undoped state is excellent.
 ドーパントとしては、π共役系高分子に導電性を付与可能な任意の化合物が挙げられ、高分子ドーパントと低分子ドーパントの何れであってもよい。高分子ドーパントとしては、ポリスチレンスルホン酸(PSS)等の多価酸が例示される。高分子ドーパントとしては、π共役系高分子から電子を受け取ってポリアニオンとなるものが好ましい。低分子ドーパントとしては、ビニルスルホン酸、p-トルエンスルホン酸、2-ナフタレンスルホン酸、1-ナフタレンスルホン酸、ドデシルスルホン酸、ドデシルベンゼンスルホン酸、ジ(2-エチルヘキシル)スルホコハク酸、テトラフルオロホウ酸、トリフルオロ酢酸、ヘキサフルオロリン酸、トリフルオロメタンスルホンイミド等の一価酸、又はそのアルカリ金属塩等が挙げられる。 Examples of the dopant include any compound capable of imparting conductivity to the π-conjugated polymer, and may be either a polymer dopant or a low molecular weight dopant. Examples of the polymer dopant include polyvalent acids such as polystyrene sulfonic acid (PSS). As the polymer dopant, those that receive electrons from a π-conjugated polymer to become a polyanion are preferable. Low molecular weight dopants include vinyl sulfonic acid, p-toluene sulfonic acid, 2-naphthalene sulfonic acid, 1-naphthalene sulfonic acid, dodecyl sulfonic acid, dodecylbenzene sulfonic acid, di (2-ethylhexyl) sulfosuccinic acid, tetrafluoroboric acid. , Trifluoroacetic acid, hexafluorophosphate, monovalent acids such as trifluoromethanesulfonimide, or alkali metal salts thereof.
 低分子ドーパントとしては、π共役系高分子から電子を受け取ってモノアニオンとなるものが好ましく、スルホ基を有するモノアニオンが好ましく、アルキル鎖とスルホ基が結合した構造を有するモノアニオンが更に好ましい。モノアニオンとなるドーパントを用いると導電性高分子の導電率が向上しやすいので、モノアニオンとなるドーパントを用いることが好ましい。 As the low molecular weight dopant, one that receives electrons from a π-conjugated polymer to become a monoanion is preferable, a monoanion having a sulfo group is preferable, and a monoanion having a structure in which an alkyl chain and a sulfo group are bonded is more preferable. Since it is easy to improve the conductivity of the conductive polymer by using a dopant that becomes a monoanion, it is preferable to use a dopant that becomes a monoanion.
 導電性高分子は、一般式(1)又は(2)で表される構成単位の少なくとも1つを有するものが好ましい。この導電性高分子に含まれるπ共役系高分子は、Rを有することによって溶媒への分散性が高められている。 The conductive polymer preferably has at least one of the structural units represented by the general formula (1) or (2). Π conjugated polymer contained in the conductive polymer, dispersibility in solvent is enhanced by having R 1.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(1)及び(2)中、Rは、それぞれ置換基を有していてもよい、炭素数1以上12以下のアルキル基、炭素数1以上12以下のアルキルエーテル基、炭素数1以上12以下のアルコキシ基、炭素数1以上12以下のアルキレンオキサイド基、芳香族基、又は複素環基を表す。Rは、それぞれ酸素原子又は硫黄原子であり、Rは、それぞれ、水素原子、置換基を有していてもよい、炭素数1以上12以下のアルキル基、炭素数1以上12以下のアルキルエーテル基、炭素数1以上12以下のアルコキシ基、炭素数1以上12以下のアルキレンオキサイド基、芳香族基、又は複素環基を表す。Aは、ドーパント由来のモノアニオンである。nは、2以上300以下である。 In the general formulas (1) and (2), R 1 may have a substituent, respectively, an alkyl group having 1 or more and 12 or less carbon atoms, an alkyl ether group having 1 or more and 12 or less carbon atoms, and 1 carbon number. Represents an alkoxy group having 12 or more carbon atoms, an alkylene oxide group having 1 to 12 carbon atoms, an aromatic group, or a heterocyclic group. R 2 is an oxygen atom or a sulfur atom, respectively, and R 3 is an alkyl group having 1 to 12 carbon atoms and an alkyl having 1 to 12 carbon atoms, which may have a hydrogen atom and a substituent, respectively. It represents an ether group, an alkoxy group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 12 carbon atoms, an aromatic group, or a heterocyclic group. A is a monoanion derived from a dopant. n is 2 or more and 300 or less.
 前記炭素数1以上12以下のアルキル基は、直鎖状、分岐状、環状等のいずれでもよく、例えば、炭素数1以上8以下、炭素数1以上6以下、炭素数1以上4以下等であってもよく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基、ボルニル基、イソボルニル基、ジシクロペンタニル基、アダマンチル基等があげられる。 The alkyl group having 1 or more and 12 or less carbon atoms may be linear, branched, cyclic or the like, and may be, for example, 1 or more and 8 or less carbon atoms, 1 or more and 6 or less carbon atoms, 1 or more and 4 or less carbon atoms, or the like. May be present, specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, cyclopentyl group, cyclohexyl group, bornyl group, isobornyl group, dicyclopentanyl. Examples include a group and an adamantyl group.
 前記炭素数1以上12以下のアルキルエーテル基は、直鎖状、分岐状、環状等のいずれでもよく、例えば、炭素数1以上8以下、炭素数1以上6以下、炭素数1以上4以下等である。 The alkyl ether group having 1 or more and 12 or less carbon atoms may be linear, branched, cyclic or the like, and may be, for example, 1 or more and 8 or less carbon atoms, 1 or more and 6 or less carbon atoms, 1 or more and 4 or less carbon atoms, or the like. Is.
 前記炭素数1以上12以下のアルコキシ基としては、直鎖状、分岐状、環状等のいずれでもよく、例えば、炭素数1以上8以下、炭素数1以上6以下、炭素数1以上4以下等である。 The alkoxy group having 1 or more and 12 or less carbon atoms may be linear, branched, cyclic or the like, and may be, for example, 1 or more and 8 or less carbon atoms, 1 or more and 6 or less carbon atoms, 1 or more and 4 or less carbon atoms, or the like. Is.
 前記炭素数1以上12以下のアルキレンオキサイド基としては、炭素数1以上8以下、炭素数1以上6以下、炭素数1以上4以下等があげられる。 Examples of the alkylene oxide group having 1 or more and 12 or less carbon atoms include 1 or more and 8 or less carbon atoms, 1 or more and 6 or less carbon atoms, and 1 or more and 4 or less carbon atoms.
 前記芳香族基としては、フェニル基、ベンジル基等の他にも各種の縮合環基をあげることができる。縮合環基としては、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピラントレン環等があげられる。 Examples of the aromatic group include various condensed ring groups in addition to the phenyl group and the benzyl group. The fused ring groups include naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthalene ring, triphenylene ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, pentacene ring, perylene ring, and the like. Examples include a pentaphene ring, a picene ring, and a pyrenethan ring.
 前記複素環基としては例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε-カプロラクトン環、ε-カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン-1,1-ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]-オクタン環、フェノキサジン環、フェノチアジン環、オキサントレン環、チオキサンテン環、フェノキサチイン環から導出される1価の基等があげられる。 Examples of the heterocyclic group include a silol ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an oxaziazole ring, a triazole ring, an imidazole ring, and a pyrazole. Ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, azacarbazole ring (any of the carbon atoms constituting the carbazole ring) One or more of which are replaced by nitrogen atoms), dibenzosilol ring, dibenzofuran ring, dibenzothiophene ring, benzothiophene ring or ring in which any one or more of the carbon atoms constituting the dibenzofuran ring are replaced by nitrogen atom, Bendifuran ring, benzodithiophene ring, aclysine ring, benzoquinoline ring, phenazine ring, phenanthridin ring, phenanthroline ring, cyclazine ring, kindrin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, fe. Nantrazine ring, anthrazine ring, perimidine ring, naphthofuran ring, naphthothiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafran ring, anthradifuran ring, anthrathiophene ring, anthradithiophene ring, thianthene ring, phenoxatiin ring , Dibenzocarbazole ring, indolocarbazole ring, dithienobenzene ring, epoxy ring, aziridine ring, thiirane ring, oxetane ring, azetidine ring, thietan ring, tetrahydrofuran ring, dioxolane ring, pyrrolidine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring Ring, tetrahydrothiophene ring, sulforane ring, thiazolidine ring, ε-caprolactone ring, ε-caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholin ring, tetrahydropyran ring, 1,3-dioxane Ring, 1,4-dioxane ring, trioxane ring, tetrahydrothiopyran ring, thiomorpholin ring, thiomorpholin-1,1-dioxide ring, pyranose ring, diazabicyclo [2,2,2] -octane ring, phenoxazine ring, Examples thereof include a monovalent group derived from a phenothiazine ring, an oxanthene ring, a thioxanthene ring, and a phenoxatiin ring.
 R又はRが有していてもよい置換基としては例えば、炭素数1以上12以下のアルキル基、前記炭素数1以上12以下のアルキルエーテル基、炭素数1以上12以下のアルコキシ基、炭素数1以上12以下のアルキレンオキサイド基、芳香族基、ヒドロキシ基、カルボキシル基、フッ素、塩素、臭素、ヨウ素等のハロゲン、アルデヒド基、アミノ基、炭素数3以上8以下のシクロアルキル基等があげられ、ヒドロキシ基、カルボキシル基が好ましい。 Examples of the substituent that R 1 or R 3 may have include an alkyl group having 1 to 12 carbon atoms, the alkyl ether group having 1 to 12 carbon atoms, and an alkoxy group having 1 to 12 carbon atoms. An alkylene oxide group having 1 to 12 carbon atoms, an aromatic group, a hydroxy group, a carboxyl group, a halogen such as fluorine, chlorine, bromine, iodine, an aldehyde group, an amino group, a cycloalkyl group having 3 to 8 carbon atoms, etc. The hydroxy group and the carboxyl group are preferable.
 導電性高分子が有する構成単位(1)及び(2)の数としては特に制限されないが、好ましくは2以上300以下である。具体的には例えば、2、5、10、20、30、40、50、60、70、80、90、100、200又は300であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The number of structural units (1) and (2) contained in the conductive polymer is not particularly limited, but is preferably 2 or more and 300 or less. Specifically, for example, it is 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200 or 300, and is within the range between any two of the numerical values exemplified here. It may be.
 導電性高分子中に含まれる構成単位(1)及び(2)の含有割合は、一般式(3)で表されるチオフェン誘導体とアルデヒドの添加量の比によって調整することができる。チオフェン誘導体とアルデヒドの添加量のモル比(チオフェン誘導体/アルデヒド)は、例えば1/1、2/1、3/1、4/1、5/1等であり、これらの数値のいずれか2つの間の範囲内であってもよいが、可溶性と導電性のバランスの観点から1/1~4/1の比が好ましく、1/1~2/1の比がより好ましい。 The content ratios of the structural units (1) and (2) contained in the conductive polymer can be adjusted by the ratio of the addition amount of the thiophene derivative represented by the general formula (3) and the aldehyde. The molar ratio of the amount of the thiophene derivative to the aldehyde added (thiophene derivative / aldehyde) is, for example, 1/1, 2/1, 3/1, 4/1, 5/1, etc., and any two of these values Although it may be within the range between them, the ratio of 1/1 to 4/1 is preferable, and the ratio of 1/1 to 2/1 is more preferable from the viewpoint of the balance between solubility and conductivity.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(3)中、R及びRは、それぞれ、一般式(1)及び(2)のR及びRと同様に定義される。 In the general formula (3), R 2 and R 3 are defined in the same manner as R 2 and R 3 in the general formulas (1) and (2), respectively.
 導電性高分子を合成する方法としては、特に限定されないが、例えば、チオフェン誘導体とアルデヒドに、ドーパントと酸化剤を加え不活性ガス雰囲気下の溶媒中で、加熱撹拌して重合することで得ることができる。また、酸化剤の分解促進剤を加えても良い。 The method for synthesizing the conductive polymer is not particularly limited, but for example, it can be obtained by adding a dopant and an oxidizing agent to a thiophene derivative and an aldehyde and polymerizing by heating and stirring in a solvent under an inert gas atmosphere. Can be done. Further, a decomposition accelerator of an oxidizing agent may be added.
 チオフェン誘導体に対するドーパントのモル比(ドーパント/チオフェン誘導体)は、例えば0.01~0.5であり、好ましくは0.1~0.5である。このモル比は、具体的に例えば、0.01、0.05、0.1、0.2、0.3、0.4、0.5であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。このモル比が小さすぎると導電性高分子の導電性が低くなりすぎる場合がある。 The molar ratio of the dopant to the thiophene derivative (dopant / thiophene derivative) is, for example, 0.01 to 0.5, preferably 0.1 to 0.5. Specifically, the molar ratio is, for example, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and any two of the numerical values exemplified here. It may be within the range between. If this molar ratio is too small, the conductivity of the conductive polymer may become too low.
 酸化剤としては、特に限定されないが、重合反応が進行する酸化剤であればよく、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム、塩化鉄(III)、硫酸鉄(III)、水酸化鉄(III)、テトラフルオロホウ酸鉄(III)、ヘキサフルオロリン酸鉄(III)、硫酸銅(II)、塩化銅(II)、テトラフルオロホウ酸銅(II)、ヘキサフルオロリン酸銅(II)およびオキソ二硫酸アンモニウム、過酸化ベンゾイル、過酸化ラウロイルなどの有機過酸化物等があげられる。 The oxidizing agent is not particularly limited as long as it is an oxidizing agent in which the polymerization reaction proceeds, and it may be ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate, iron (III) chloride, iron (III) sulfate, or hydroxide. Iron (III), Iron Fluoroboric Acid (III), Iron Hexafluorophosphate (III), Copper Sulfate (II), Copper Chloride (II), Copper Fluoroboric Acid (II), Copper Hexafluorophosphate ( II) and organic peroxides such as ammonium oxodisulfate, benzoyl peroxide and lauroyl peroxide can be mentioned.
 溶媒としては、特に限定されないが、ヘテロ環化合物とアルデヒド誘導体の反応が進行する溶媒であればよく、γ-ブチロラクトン、プロピレンカーボネート、エチレンカーボネート、アセトニトリル、tert-ブチルメチルエーテル、酢酸エチル、ベンゼン、ヘプタン、水、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、メチルセロソルブ、エチルセロソルブ、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル等のグリコール系溶媒、乳酸メチル、乳酸エチル等の乳酸系溶媒等があげられる。酸化剤の効率から、非プロトン性溶媒であることが好ましい。 The solvent is not particularly limited as long as it is a solvent in which the reaction between the heterocyclic compound and the aldehyde derivative proceeds, and it may be γ-butyrolactone, propylene carbonate, ethylene carbonate, acetonitrile, tert-butylmethyl ether, ethyl acetate, benzene, heptane. , Water, methanol, ethanol, isopropyl alcohol, butanol and other alcohol solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone and other ketone solvents, methyl cellosolve, ethyl cellosolve, propylene glycol methyl ether, propylene glycol ethyl ether and other glycol solvents. , Lactic acid-based solvents such as methyl lactate and ethyl lactate. From the viewpoint of the efficiency of the oxidizing agent, an aprotic solvent is preferable.
1-3.添加剤
 添加剤は、上記の導電性高分子のスタッキングを促進する芳香族系スタッキング促進剤(以下、「スタッキング促進剤」)と、有機スルホン酸を含有する。
1-3. Additives Additives contain an aromatic stacking accelerator (hereinafter, “stacking accelerator”) that promotes stacking of the above-mentioned conductive polymer, and an organic sulfonic acid.
 導電性高分子組成物がこのような添加剤を含有することによって、形成される塗膜の導電性、耐湿熱性、及び耐熱性が向上する。 When the conductive polymer composition contains such an additive, the conductivity, moisture heat resistance, and heat resistance of the coating film to be formed are improved.
 上記の導電性高分子は、平面性が比較的低いためにスタッキングが起こりにくい。このため、電子が導電性高分子間をまたいで伝達されにくく、導電率が高くなりにくい。また、スタッキングが起こりにくいために、導電性高分子間の結合力が比較的小さく、耐湿熱性及び耐熱性が十分に高くなりにくい。 The above conductive polymer has a relatively low flatness, so stacking is unlikely to occur. Therefore, it is difficult for electrons to be transmitted across the conductive polymers, and it is difficult for the conductivity to increase. Further, since stacking is unlikely to occur, the bonding force between the conductive polymers is relatively small, and the moisture resistance and heat resistance are difficult to be sufficiently increased.
<有機スルホン酸>
 添加剤中の有機スルホン酸は、導電性高分子のカチオン性を高めて導電性高分子のスタッキングを促進する機能を有する。このため、有機スルホン酸の添加によって、塗膜の導電性が向上する。一方、有機スルホン酸は水との親和性が高いので、有機スルホン酸の添加によって、塗膜中に水が侵入しやすくなり、塗膜の耐湿熱性が低下する。
<Organic sulfonic acid>
The organic sulfonic acid in the additive has a function of increasing the cationic property of the conductive polymer and promoting the stacking of the conductive polymer. Therefore, the addition of the organic sulfonic acid improves the conductivity of the coating film. On the other hand, since the organic sulfonic acid has a high affinity with water, the addition of the organic sulfonic acid makes it easier for water to penetrate into the coating film, and the moisture and heat resistance of the coating film is lowered.
 塗膜中に水が侵入しやすいのは、導電性高分子のスタッキングが不十分で、導電性高分子間に隙間が存在しているからである。そこで、本発明では、スタッキング促進剤を添加することによって、導電性高分子のスタッキングを促進し、これによって隙間を減少させている。このため、本発明によれば、耐湿熱性が向上する。また、スタッキング促進剤の添加によって、導電性高分子間の結合力が大きくなるので、耐熱性が向上し、且つ導電性高分子間の電子の導電経路が増えるので導電性が向上する。 Water easily penetrates into the coating film because the stacking of the conductive polymers is insufficient and there are gaps between the conductive polymers. Therefore, in the present invention, the stacking accelerator is added to promote the stacking of the conductive polymer, thereby reducing the gap. Therefore, according to the present invention, moist heat resistance is improved. Further, by adding the stacking accelerator, the bonding force between the conductive polymers is increased, so that the heat resistance is improved, and the conductive paths of electrons between the conductive polymers are increased, so that the conductivity is improved.
 有機スルホン酸としては、p-トルエンスルホン酸、ナフタレンスルホン酸(例:2-ナフタレンスルホン酸、1-ナフタレンスルホン酸)、ドデシルスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。 Examples of the organic sulfonic acid include p-toluenesulfonic acid, naphthalenesulfonic acid (eg 2-naphthalenesulfonic acid, 1-naphthalenesulfonic acid), dodecylsulfonic acid, dodecylbenzenesulfonic acid and the like.
 有機スルホン酸は、導電性高分子組成物中においてフリーの状態で存在していてもよく、スタッキング促進剤と結合(例:イオン結合)した状態で存在していてもよい。 The organic sulfonic acid may be present in the conductive polymer composition in a free state, or may be present in a state of being bound to a stacking accelerator (eg, ionic bond).
 導電性高分子組成物は、導電性高分子100質量部に対して、有機スルホン酸を0.5~30質量部含有することが好ましく、1~15質量部含有することが好ましい。有機スルホン酸が少なすぎるとスタッキング促進効果が十分でない場合があり、多すぎると耐湿熱性が低下する場合があるからである。有機スルホン酸の含有量は、具体的には例えば、0.5、1、2、5、10、15、20、25、30質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The conductive polymer composition preferably contains 0.5 to 30 parts by mass of organic sulfonic acid with respect to 100 parts by mass of the conductive polymer, and preferably contains 1 to 15 parts by mass. This is because if the amount of organic sulfonic acid is too small, the stacking promoting effect may not be sufficient, and if it is too large, the moisture and heat resistance may be lowered. Specifically, the content of the organic sulfonic acid is, for example, 0.5, 1, 2, 5, 10, 15, 20, 25, 30 parts by mass, and is between any two of the numerical values exemplified here. It may be within the range.
<スタッキング促進剤>
 スタッキング促進剤は、π共役系を構成する複数の芳香環を有する複数環化合物であるか、その前駆体であることが好ましい。複数の芳香環は、一重又は二重結合で互いに連結されることによってπ共役系を構成していてもよく、縮合環を構成していてもよい。π共役系を構成する芳香環の数は、2~5が好ましく、2~3がさらに好ましい。
<Stacking accelerator>
The stacking accelerator is preferably a multi-ring compound having a plurality of aromatic rings constituting the π-conjugated system, or a precursor thereof. The plurality of aromatic rings may form a π-conjugated system by being connected to each other by a single or double bond, or may form a fused ring. The number of aromatic rings constituting the π-conjugated system is preferably 2 to 5, and more preferably 2 to 3.
 このような化合物は、平面性が高く、導電性高分子の隙間に容易に入りこんで導電性高分子のスタッキングを促進する。 Such a compound has high flatness and easily penetrates into the gaps between the conductive polymers to promote stacking of the conductive polymers.
 複数環化合物の前駆体は、反応によって複数環化合物を生じさせる化合物であり、例えば、反応性モノマーである。複数環化合物の前駆体が反応して複数環化合物が生成されることによって導電性高分子のスタッキングが促進される。反応性モノマーとしては、導電性高分子組成物を用いて塗膜を生成する際の熱処理工程で重合反応が進行するものが好ましい。導電性高分子組成物には、この重合反応を促進するための酸化剤を添加してもよい。酸化剤の添加によって、複数環化合物の前駆体の残留が抑制される。このため、湿熱環境下において複数環化合物の前駆体がブリードアウトすることが抑制され、耐湿熱性が向上する。また、酸化剤の添加によって、複数環化合物の生成量が増加するので、導電性が向上する。酸化剤は、導電性高分子100質量部に対して、1~20質量部添加することが好ましい。酸化剤の添加量は、具体的には例えば、1、5、10、15、20質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。酸化剤としては、導電性高分子の酸化重合の説明において上述したものが利用可能である。 The precursor of the polycyclic compound is a compound that causes the polycyclic compound by the reaction, for example, a reactive monomer. Stacking of conductive polymers is promoted by the reaction of precursors of the multi-ring compound to produce the multi-ring compound. As the reactive monomer, those in which the polymerization reaction proceeds in the heat treatment step when the coating film is formed using the conductive polymer composition are preferable. An oxidizing agent for accelerating this polymerization reaction may be added to the conductive polymer composition. The addition of the oxidizing agent suppresses the residue of the precursor of the polycyclic compound. Therefore, the bleed-out of the precursor of the plurality of ring compounds is suppressed in a moist heat environment, and the moist heat resistance is improved. Further, the addition of the oxidizing agent increases the amount of the plural ring compound produced, so that the conductivity is improved. The oxidizing agent is preferably added in an amount of 1 to 20 parts by mass with respect to 100 parts by mass of the conductive polymer. Specifically, the amount of the oxidizing agent added is, for example, 1, 5, 10, 15, and 20 parts by mass, and may be within the range between any two of the numerical values exemplified here. As the oxidizing agent, those described above can be used in the description of oxidative polymerization of the conductive polymer.
 スタッキング促進剤を構成する化合物の分子量は、例えば100~2000であり、100~1500が好ましく、100~1000が好ましい。分子量が大きすぎると、導電性高分子間の隙間に入り込みにくくなる場合がある。この分子量は、具体的には例えば、100、200、300、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The molecular weight of the compound constituting the stacking accelerator is, for example, 100 to 2000, preferably 100 to 1500, and preferably 100 to 1000. If the molecular weight is too large, it may be difficult to enter the gap between the conductive polymers. Specifically, the molecular weight is, for example, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000. Yes, it may be within the range between any two of the numerical values exemplified here.
 スタッキング促進剤を構成する化合物の原子数は、例えば10~200であり、具体的には例えば、10、20、30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The number of atoms of the compound constituting the stacking accelerator is, for example, 10 to 200, and specifically, for example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130. , 140, 150, 160, 170, 180, 190, 200, and may be within the range between any two of the numerical values exemplified here.
 導電性高分子組成物は、導電性高分子100質量部に対して、スタッキング促進剤を1~40質量部含有することが好ましく、2~25質量部含有することが好ましい。スタッキング促進剤が少なすぎるとスタッキング促進効果が十分でない場合があり、多すぎると表面ブリードによって塗膜の導電率が低下する場合があるからである。スタッキング促進剤の含有量は、具体的には例えば、1、2、5、10、15、20、25、30、35、40質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The conductive polymer composition preferably contains 1 to 40 parts by mass of the stacking accelerator with respect to 100 parts by mass of the conductive polymer, and preferably contains 2 to 25 parts by mass. This is because if the amount of the stacking accelerator is too small, the stacking promoting effect may not be sufficient, and if it is too large, the conductivity of the coating film may decrease due to surface bleeding. Specifically, the content of the stacking accelerator is, for example, 1, 2, 5, 10, 15, 20, 25, 30, 35, 40 parts by mass, and is between any two of the numerical values exemplified here. It may be within the range.
 スタッキング促進剤は、酸素原子又は窒素原子を含むことが好ましい。この場合、スタッキング促進剤と導電性高分子の親和性が高くなって、スタッキング促成効果が高くなる。 The stacking accelerator preferably contains an oxygen atom or a nitrogen atom. In this case, the affinity between the stacking accelerator and the conductive polymer is increased, and the stacking promoting effect is enhanced.
 スタッキング促進剤は、非共有電子対を有する窒素原子を含まないことが好ましい。非共有電子対を有する窒素原子を有する化合物は、塩基となり、有機スルホン酸によるスタッキング促進効果を低減させるからである。このような化合物としては、アミン化合物が挙げられ、アミン化合物としては、1級アミン、2級アミン、3級アミン、芳香族アミン、複素環式アミンが挙げられる。 The stacking accelerator preferably does not contain a nitrogen atom having an unshared electron pair. This is because the compound having a nitrogen atom having an unshared electron pair becomes a base and reduces the stacking promoting effect of the organic sulfonic acid. Examples of such compounds include amine compounds, and examples of amine compounds include primary amines, secondary amines, tertiary amines, aromatic amines, and heterocyclic amines.
 スタッキング促進剤は、ポリチオフェン、チオフェン誘導体、ジチオール誘導体、ナフタレン誘導体、及びアントラセン誘導体からなる群から選択される少なくとも一種を含むことが好ましい。このような化合物がスタッキング促進に特に有効であるからである。 The stacking accelerator preferably contains at least one selected from the group consisting of polythiophene, thiophene derivative, dithiol derivative, naphthalene derivative, and anthracene derivative. This is because such compounds are particularly effective in promoting stacking.
・ポリチオフェン
 ポリチオフェンは、例えば、上記一般式(3)で表されるチオフェン誘導体の重合体である。重合度は、例えば2~50であり、2~30であることが好ましい。重合度が大きすぎると、導電性高分子間の隙間に入り込みにくくなる場合がある。ポリチオフェンは、ドーパント(好ましくは有機スルホン酸)によってドーピングされていることが好ましい。
-Polythiophene Polythiophene is, for example, a polymer of a thiophene derivative represented by the above general formula (3). The degree of polymerization is, for example, 2 to 50, preferably 2 to 30. If the degree of polymerization is too large, it may be difficult to enter the gaps between the conductive polymers. The polythiophene is preferably doped with a dopant (preferably an organic sulfonic acid).
・チオフェン誘導体
 チオフェン誘導体は、チオフェン骨格を有する化合物である。チオフェン誘導体は、複数環化合物であってもよく、その前駆体であってもよい。複数環化合物であるチオフェン誘導体としては、ジベンゾチオフェン、ベンゾチオフェン、ベンゾ[b]チオフェン、2,2'-ビチオフェン、4H-シクロペンタ[2,1-b3,4-b]時チオフェン、ベンゾジチオフェン等が挙げられる。前駆体であるチオフェン誘導体としては、上記一般式(3)で表されるチオフェン誘導体(例:EDOT)、4-エチレンジオキシチオフェン、3,4-エチレンジチオチオフェン、3,4-(2,2-ジメチルプロピレンジオキシ)チオフェン、2,3-ジヒドロチエノ[3,4-b][1,4]ジオキシン-2-イルメタノール等が挙げられる。ベンゾチオフェンは、縮合環を有する化合物であるが、チオフェン同士が重合によって互いに連結可能である。チオフェン誘導体が複数環化合物の前駆体である場合、添加剤は、酸化剤を含有することが好ましい。
-Thiophene derivative A thiophene derivative is a compound having a thiophene skeleton. The thiophene derivative may be a polycyclic compound or a precursor thereof. Examples of the thiophene derivative which is a multicyclic compound include dibenzothiophene, benzothiophene, benzo [b] thiophene, 2,2'-bithiophene, 4H-cyclopenta [2,1-b3,4-b] thiophene, benzodithiophene and the like. Can be mentioned. Examples of the thiophene derivative as a precursor include a thiophene derivative represented by the above general formula (3) (eg, EDOT), 4-ethylenedioxythiophene, 3,4-ethylenedithiothiophene, and 3,4- (2,2). -Dimethylpropylenedioxy) Thiophene, 2,3-dihydrothieno [3,4-b] [1,4] dioxin-2-ylmethanol and the like can be mentioned. Benzothiophene is a compound having a condensed ring, but thiophenes can be linked to each other by polymerization. When the thiophene derivative is a precursor of a polycyclic compound, the additive preferably contains an oxidizing agent.
・ジチオール誘導体
 ジチオール誘導体は、ジチオール基を有する化合物であり、好ましくは、ジチオール基を有する芳香環を有する化合物であり、より好ましくは、ジチオール基を有する2つの芳香環が一重又は二重結合で互いに連結されることによってπ共役系が構成された化合物である。ジチオール誘導体としては、テトラチアフルバレン、ビス(エチレンヂチオ)テトラチアフルバレン、4,5-エチレンヂチオ-1,3-ジチオール-2-チオン、4,5-ビス(メチルチオ)-1,3-ジチオール-2-オン、4,4-ジメチル-5,5-ジフェニルテトラチアフルバレン等が挙げられる。
-Dithiol derivative The dithiol derivative is a compound having a dithiol group, preferably a compound having an aromatic ring having a dithiol group, and more preferably two aromatic rings having a dithiol group in a single or double bond with each other. It is a compound in which a π-conjugated system is formed by being linked. Examples of dithiol derivatives include tetrathiafulvalene, bis (ethylenedithio) tetrathiafulvalene, 4,5-ethylenedithio-1,3-dithiol-2-thione, and 4,5-bis (methylthio) -1,3-dithiol-2-. On, 4,4-dimethyl-5,5-diphenyltetrathiafulvalene and the like can be mentioned.
・ナフタレン誘導体
 ナフタレン誘導体は、ナフタレン骨格を有する化合物である。ナフタレン誘導体は、極性官能基を有する化合物であることが好ましい。この場合に、ナフタレン誘導体と導電性高分子の親和性が向上してスタッキング促進効果が特に高くなる。極性官能基としては、カルボキシル基、水酸基等が挙げられる。ナフタレン誘導体としては、2-ナフトール、1-ナフトール、1-ナフタレンカルボン酸、2-ナフタレンカルボン酸、1,3-ナフタレンジオール、2,3-ナフタレンジオール、1,5-ナフタレンジオール等が挙げられる。
-Naphthalene derivative A naphthalene derivative is a compound having a naphthalene skeleton. The naphthalene derivative is preferably a compound having a polar functional group. In this case, the affinity between the naphthalene derivative and the conductive polymer is improved, and the stacking promoting effect is particularly enhanced. Examples of the polar functional group include a carboxyl group and a hydroxyl group. Examples of the naphthalene derivative include 2-naphthol, 1-naphthol, 1-naphthalenecarboxylic acid, 2-naphthalenecarboxylic acid, 1,3-naphthalenediol, 2,3-naphthalenediol, and 1,5-naphthalenediol.
・アントラセン誘導体
 アントラセン誘導体は、アントラセン骨格を有する化合物である。アントラセン誘導体は、極性官能基を有する化合物であることが好ましい。この場合に、アントラセン誘導体と導電性高分子の親和性が向上してスタッキング促進効果が特に高くなる。極性官能基としては、カルボキシル基、水酸基等が挙げられる。アントラセン誘導体としては、2,6-アントラセンジオール、1,2,3-アントラセントリオール、9-アントラセンカルボン酸、2-アントラセンカルボン酸等が挙げられる。
-Anthracene derivative Anthracene derivative is a compound having an anthracene skeleton. The anthracene derivative is preferably a compound having a polar functional group. In this case, the affinity between the anthracene derivative and the conductive polymer is improved, and the stacking promoting effect is particularly enhanced. Examples of the polar functional group include a carboxyl group and a hydroxyl group. Examples of the anthracene derivative include 2,6-anthracenediol, 1,2,3-anthracene triol, 9-anthracene carboxylic acid, 2-anthracene carboxylic acid and the like.
2.導電性高分子薄膜の製造方法
 本発明の一実施形態の導電性高分子薄膜の製造方法は、薄膜形成工程を備える。
2. 2. Method for Producing Conductive Polymer Thin Film The method for producing a conductive polymer thin film according to the embodiment of the present invention includes a thin film forming step.
 薄膜形成工程では、上記の導電性高分子組成物を基材上に塗布した後に熱処理を行うことによって、薄膜を形成する。 In the thin film forming step, a thin film is formed by applying the above conductive polymer composition on a substrate and then performing a heat treatment.
 熱処理の際に溶媒が除去される。また、添加剤が反応性モノマーを含む場合には、熱処理の際に重合反応が進行してオリゴマーが形成される。 The solvent is removed during the heat treatment. When the additive contains a reactive monomer, the polymerization reaction proceeds during the heat treatment to form an oligomer.
 基材は、特に限定されないが、コンデンサに用いられる基材が好ましい。コンデンサ用途では、高温・高湿環境下での信頼性が求められるからである。 The base material is not particularly limited, but the base material used for the capacitor is preferable. This is because reliability is required in high temperature and high humidity environments for capacitor applications.
 基材として、例えば、アルミニウム、タンタル、ニオブ又はこれらの合金を含むものを用いることができる。 As the base material, for example, a material containing aluminum, tantalum, niobium or an alloy thereof can be used.
 基材の表面には、誘電体層を形成してもよい。誘電体層は、例えば、表面を酸化処理することによって形成することができる。基材の表面を酸化処理する方法としては、特に制限されないが、例えば、リン酸、アジピン酸等の弱酸が含まれる水溶液中で、5~90分程度の間、電圧をかけて陽極酸化処理する方法があげられる。 A dielectric layer may be formed on the surface of the base material. The dielectric layer can be formed, for example, by oxidizing the surface. The method for oxidizing the surface of the base material is not particularly limited, and for example, the anodic oxidation treatment is carried out by applying a voltage for about 5 to 90 minutes in an aqueous solution containing a weak acid such as phosphoric acid or adipic acid. The method can be given.
 基材の表面に形成された誘電体層を介して導電性高分子薄膜を形成することによって、固体電解コンデンサの陽極体を形成することができる。また、この陽極体を用いて、固体電解コンデンサを製造可能である。 By forming a conductive polymer thin film through a dielectric layer formed on the surface of a base material, an anode body of a solid electrolytic capacitor can be formed. Further, a solid electrolytic capacitor can be manufactured by using this anode body.
 塗布の方法は、限定されず、基材上に導電性高分子組成物を滴下したり、基材に導電性高分子組成物を含浸させたりすることによって行うことができる。 The coating method is not limited, and can be performed by dropping the conductive polymer composition onto the base material or impregnating the base material with the conductive polymer composition.
1.分散液の製造
・製造例1(分散液A)
 1Lフラスコにプロピレンカーボネート400g、3,4-エチレンジオキシチオフェン(EDOT)3.4g、2-ナフタレンスルホン酸1.8gを加えて0.25時間撹拌した。次いで、窒素パージ下、トリスパラトルエンスルホン酸鉄(III)(Fe(PTS))0.04g、OFBA(フタルアルデヒド酸)1.8g、過酸化ベンゾイル6.75g、プロピレンカーボネート100gを加え40℃にて4時間攪拌した。さらに2-ナフタレンスルホン酸0.9gを添加して、60℃にて2時間撹拌した。プロピレンカーボネートで置換したアニオン交換樹脂(レバチットMP62WS ランクセス社製)を30g添加して24時間攪拌後、アニオン交換樹脂を除去し、超音波ホモジナイザーにて処理し、プロピレンカーボネートで調液し、一般式(1)で表される構成単位を主に含む導電性高分子のプロピレンカーボネート分散液A(不揮発分1.0質量%)を得た。
1. 1. Production / Production Example 1 of dispersion (dispersion A)
400 g of propylene carbonate, 3.4 g of 3,4-ethylenedioxythiophene (EDOT) and 1.8 g of 2-naphthalene sulfonic acid were added to a 1 L flask, and the mixture was stirred for 0.25 hours. Next, under a nitrogen purge, 0.04 g of iron (III) trisparatoluenesulfonate (Fe (PTS) 3 ), 1.8 g of OFBA (phthalaldehyde acid), 6.75 g of benzoyl peroxide, and 100 g of propylene carbonate were added, and the temperature was 40 ° C. Was stirred for 4 hours. Further, 0.9 g of 2-naphthalene sulfonic acid was added, and the mixture was stirred at 60 ° C. for 2 hours. After adding 30 g of an anion exchange resin substituted with propylene carbonate (manufactured by LANXESS MP62WS) and stirring for 24 hours, the anion exchange resin is removed, treated with an ultrasonic homogenizer, and prepared with propylene carbonate. A conductive polymer propylene carbonate dispersion A (nonvolatile content 1.0% by mass) mainly containing the structural unit represented by 1) was obtained.
・製造例2(分散液B)
 1Lフラスコにプロピレンカーボネート400g、3,4-エチレンジオキシチオフェン(EDOT)3.4g、2-ナフタレンスルホン酸1.8gを加えて0.25時間撹拌した。次いで、窒素パージ下、トリスパラトルエンスルホン酸鉄(III)(Fe(PTS))0.04g、OFBA(フタルアルデヒド酸)3.6g、過酸化ベンゾイル6.75g、プロピレンカーボネート100gを加え40℃にて4時間攪拌した。さらに2-ナフタレンスルホン酸0.9gを添加して、60℃にて2時間撹拌した。プロピレンカーボネートで置換したアニオン交換樹脂(レバチットMP62WS ランクセス社製)を30g添加して24時間攪拌後、アニオン交換樹脂を除去し、超音波ホモジナイザーにて処理し、プロピレンカーボネートで調液し、一般式(2)で表される構成単位を主に含む導電性高分子のプロピレンカーボネート分散液B(不揮発分1.0質量%)を得た。
-Production example 2 (dispersion liquid B)
400 g of propylene carbonate, 3.4 g of 3,4-ethylenedioxythiophene (EDOT) and 1.8 g of 2-naphthalene sulfonic acid were added to a 1 L flask, and the mixture was stirred for 0.25 hours. Next, under a nitrogen purge, 0.04 g of iron (III) trisparatoluenesulfonate (Fe (PTS) 3 ), 3.6 g of OFBA (phthalaldehyde acid), 6.75 g of benzoyl peroxide, and 100 g of propylene carbonate were added, and the temperature was 40 ° C. Was stirred for 4 hours. Further, 0.9 g of 2-naphthalene sulfonic acid was added, and the mixture was stirred at 60 ° C. for 2 hours. After adding 30 g of an anion exchange resin substituted with propylene carbonate (manufactured by LANXESS MP62WS) and stirring for 24 hours, the anion exchange resin is removed, treated with an ultrasonic homogenizer, and prepared with propylene carbonate. A conductive polymer propylene carbonate dispersion B (nonvolatile content 1.0% by mass) mainly containing the structural unit represented by 2) was obtained.
・製造例3(スラリー液C:PEDOT/ナフタレンスルホン酸)
 1Lフラスコにプロピレンカーボネート300g、3,4-エチレンジオキシチオフェン(EDOT)3.4g、2-ナフタレンスルホン酸1.8gを加えて0.25時間撹拌した。次いで、窒素パージ下、トリスパラトルエンスルホン酸鉄(III)(Fe(PTS))0.04g、過酸化ベンゾイル6.75g、プロピレンカーボネート100gを加え40℃にて4時間攪拌した。さらに2-ナフタレンスルホン酸0.9gを添加して、60℃にて2時間撹拌した。プロピレンカーボネートで置換したアニオン交換樹脂(レバチットMP62WS ランクセス社製)を30g添加して24時間攪拌後、アニオン交換樹脂を除去し、プロピレンカーボネートで調液し、PEDOT/ナフタレンスルホン酸のプロピレンカーボネートスラリー液C(不揮発分1.0質量%)を得た。
Production Example 3 (slurry liquid C: PEDOT / naphthalene sulfonic acid)
300 g of propylene carbonate, 3.4 g of 3,4-ethylenedioxythiophene (EDOT) and 1.8 g of 2-naphthalene sulfonic acid were added to a 1 L flask, and the mixture was stirred for 0.25 hours. Then, under a nitrogen purge, 0.04 g of iron (III) trisparatoluenesulfonate (Fe (PTS) 3 ), 6.75 g of benzoyl peroxide, and 100 g of propylene carbonate were added, and the mixture was stirred at 40 ° C. for 4 hours. Further, 0.9 g of 2-naphthalene sulfonic acid was added, and the mixture was stirred at 60 ° C. for 2 hours. After adding 30 g of an anion exchange resin substituted with propylene carbonate (manufactured by LANXESS MP62WS) and stirring for 24 hours, the anion exchange resin was removed, the solution was prepared with propylene carbonate, and the propylene carbonate slurry solution C of PEDOT / naphthalene sulfonic acid was prepared. (Non-volatile content 1.0% by mass) was obtained.
2.実施例・比較例の導電性高分子組成物の製造
 以下の方法で実施例・比較例の導電性高分子組成物を製造した。導電性高分子組成物の概要を表1~表3に示す。
2. 2. Production of Conductive Polymer Compositions of Examples and Comparative Examples The conductive polymer compositions of Examples and Comparative Examples were produced by the following methods. The outline of the conductive polymer composition is shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
・実施例1
 9ml瓶に分散液Aを5g、スラリー液Cを0.5g、2-ナフタレンスルホン酸の1質量%プロピレンカーボネート溶液を0.25g加えて超音波ホモジナイザーで処理し、導電性高分子組成物の分散液を調液した。
・ Example 1
5 g of dispersion liquid A, 0.5 g of slurry liquid C, and 0.25 g of 1% by mass propylene carbonate solution of 2-naphthalene sulfonic acid were added to a 9 ml bottle and treated with an ultrasonic homogenizer to disperse the conductive polymer composition. The liquid was prepared.
・その他の実施例・比較例
 導電性高分子及び添加剤の種類及び配合量を表1~表3に示すように変更した以外は、実施例1と同様の方法で導電性高分子組成物の分散液を調液した。添加剤は、プロピレンカーボネート1質量%溶液にして添加した。
-Other Examples / Comparative Examples The conductive polymer composition was prepared in the same manner as in Example 1 except that the types and blending amounts of the conductive polymer and the additive were changed as shown in Tables 1 to 3. The dispersion was prepared. Additives were added in a 1% by mass solution of propylene carbonate.
3.各種評価
 上記の実施例・比較例の導電性高分子組成物を用いて、以下に示す評価を行った。その結果を表1~表3に示す。
3. 3. Various Evaluations The following evaluations were carried out using the conductive polymer compositions of the above Examples and Comparative Examples. The results are shown in Tables 1 to 3.
 各種評価の詳細は、以下の通りである。 Details of various evaluations are as follows.
・導電率測定
 実施例・比較例の導電性高分子組成物の分散液をガラス板上にポッティングした後150℃で30分乾燥し、2cm平方、厚さ1.5μmの導電性高分子膜を作製した。この導電性高分子膜の導電率を測定した。導電率は、抵抗率計(ロレスタGP,三菱ケミカルアナリテック社製)を用いて測定した。
-Measurement of conductivity After potting the dispersion of the conductive polymer composition of Examples and Comparative Examples on a glass plate, it is dried at 150 ° C. for 30 minutes to form a conductive polymer film of 2 cm square and 1.5 μm in thickness. Made. The conductivity of this conductive polymer film was measured. The conductivity was measured using a resistivity meter (Loresta GP, manufactured by Mitsubishi Chemical Analytech).
 導電率向上率は、以下の式1~式2に基づいて算出した。基準値は、添加剤の添加なしの分散液A又はBを用いて作製した導電性高分子膜の導電率である。
(式1)導電率向上率(%)=(基準値からの増加量÷基準値)×100
(式2)基準値からの増加量=実施例・比較例の導電性高分子膜の導電率-基準値
The conductivity improvement rate was calculated based on the following formulas 1 and 2. The reference value is the conductivity of the conductive polymer film produced by using the dispersion liquid A or B without the addition of additives.
(Equation 1) Conductivity improvement rate (%) = (increase from standard value / standard value) x 100
(Equation 2) Amount of increase from the reference value = Conductivity of the conductive polymer film of Examples and Comparative Examples-Reference value
・耐湿熱性試験
 実施例・比較例の導電性高分子組成物の分散液をガラス板上にポッティングした後150℃で30分乾燥し、2cm平方、厚さ1.5μmの導電性高分子膜を作製した。
Moisture and heat resistance test After potting the dispersion of the conductive polymer composition of Examples and Comparative Examples on a glass plate, it was dried at 150 ° C. for 30 minutes to form a conductive polymer film of 2 cm square and 1.5 μm thickness. Made.
 その後、塗膜を85℃/85%の環境下に放置し、7日経過後における塗膜状態を目視で確認し、以下の基準で評価した。
〇:変化なし
△:表層に若干の割れ発生
×:全体的に割れが発生
Then, the coating film was left in an environment of 85 ° C./85%, and the state of the coating film after 7 days was visually confirmed and evaluated according to the following criteria.
〇: No change △: Slight cracks occur on the surface layer ×: Cracks occur overall
 また、塗膜を85℃/85%の環境下に放置する前(試験前)と、7日間放置した後(試験後)に、塗膜の導電率を測定し、以下の式3に基づいて導電率維持率を算出した。導電率は、抵抗率計(ロレスタGP,三菱ケミカルアナリテック社製)を用いて測定した。
(式3)導電率維持率(%)=(試験後の導電率/試験前の導電率)×100
Further, the conductivity of the coating film was measured before leaving the coating film in an environment of 85 ° C./85% (before the test) and after leaving it for 7 days (after the test), and based on the following formula 3. The conductivity maintenance rate was calculated. The conductivity was measured using a resistivity meter (Loresta GP, manufactured by Mitsubishi Chemical Analytech).
(Equation 3) Conductivity maintenance rate (%) = (conductivity after test / conductivity before test) x 100
・耐熱性試験
試験環境条件を125℃に変更した以外は、耐湿熱性試験と同様の方法で導電率維持率を算出した。
-Heat resistance test The conductivity maintenance rate was calculated by the same method as the moisture heat resistance test except that the environmental conditions were changed to 125 ° C.
4.考察
 全ての実施例では、全ての評価項目において良好な結果が得られた。
 比較例1では、導電性高分子組成物が添加剤を含有しておらず、全ての評価項目での結果が良好でなかった。
 比較例2では、スラリー液Cのみを用いて塗膜の作製を試みたが、均一塗膜が作製できなかったので、各種評価を行うことができなかった。
 比較例3では、導電性高分子組成物が、ジベンゾチオフェンと類似した構造を有するカルバゾールと、有機スルホン酸を含有しているが、全ての評価項目での結果が良好でなかった。その理由としては、カルバゾールが非共有電子対を有する窒素原子を含む化合物であるために、有機スルホン酸によるスタッキング促進効果が打ち消されたためであると考えられる。
4. Discussion In all the examples, good results were obtained in all the evaluation items.
In Comparative Example 1, the conductive polymer composition did not contain an additive, and the results in all the evaluation items were not good.
In Comparative Example 2, an attempt was made to prepare a coating film using only the slurry liquid C, but various evaluations could not be performed because a uniform coating film could not be prepared.
In Comparative Example 3, the conductive polymer composition contained carbazole having a structure similar to that of dibenzothiophene and organic sulfonic acid, but the results in all the evaluation items were not good. It is considered that the reason is that carbazole is a compound containing a nitrogen atom having an unshared electron pair, so that the stacking promoting effect of the organic sulfonic acid is canceled out.

Claims (13)

  1.  溶媒と、π共役系導電性高分子と、添加剤を含む導電性高分子組成物であって、
     前記導電性高分子は、一般式(1)又は(2)で表される構成単位の少なくとも1つを有し、
     前記添加剤は、前記導電性高分子のスタッキングを促進する芳香族系スタッキング促進剤と、有機スルホン酸を含有する、導電性高分子組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)及び(2)中、Rは、それぞれ置換基を有していてもよい、炭素数1以上12以下のアルキル基、炭素数1以上12以下のアルキルエーテル基、炭素数1以上12以下のアルコキシ基、炭素数1以上12以下のアルキレンオキサイド基、芳香族基、又は複素環基を表す。Rは、それぞれ酸素原子又は硫黄原子であり、Rは、それぞれ、水素原子、置換基を有していてもよい、炭素数1以上12以下のアルキル基、炭素数1以上12以下のアルキルエーテル基、炭素数1以上12以下のアルコキシ基、炭素数1以上12以下のアルキレンオキサイド基、芳香族基、又は複素環基を表す。Aは、ドーパント由来のモノアニオンである。nは、2以上300以下である。)
    A conductive polymer composition containing a solvent, a π-conjugated conductive polymer, and an additive.
    The conductive polymer has at least one of the structural units represented by the general formula (1) or (2).
    The additive is a conductive polymer composition containing an aromatic stacking accelerator that promotes stacking of the conductive polymer and an organic sulfonic acid.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the general formulas (1) and (2), R 1 may have a substituent, respectively, an alkyl group having 1 or more and 12 or less carbon atoms, an alkyl ether group having 1 or more and 12 or less carbon atoms, and a carbon number of carbon atoms. Represents an alkoxy group of 1 or more and 12 or less, an alkylene oxide group of 1 or more and 12 or less carbon atoms, an aromatic group, or a heterocyclic group. R 2 is an oxygen atom or a sulfur atom, respectively, and R 3 is hydrogen, respectively. It may have an atom or a substituent, an alkyl group having 1 to 12 carbon atoms, an alkyl ether group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and 1 to 12 carbon atoms. Represents an alkylene oxide group, an aromatic group, or a heterocyclic group. A is a monoanion derived from a dopant. N is 2 or more and 300 or less.)
  2.  請求項1に記載の導電性高分子組成物であって、
     前記スタッキング促進剤は、π共役系を構成する複数の芳香環を有する複数環化合物であるか、前記複数環化合物の前駆体である、導電性高分子組成物。
    The conductive polymer composition according to claim 1.
    The stacking accelerator is a conductive polymer composition which is a multi-ring compound having a plurality of aromatic rings constituting a π-conjugated system or a precursor of the multi-ring compound.
  3.  請求項1又は請求項2に記載の導電性高分子組成物であって、
     前記スタッキング促進剤は、ポリチオフェン、チオフェン誘導体、ジチオール誘導体、ナフタレン誘導体、及びアントラセン誘導体からなる群から選択される少なくとも一種を含む、導電性高分子組成物。
    The conductive polymer composition according to claim 1 or 2.
    The stacking accelerator is a conductive polymer composition containing at least one selected from the group consisting of polythiophene, thiophene derivative, dithiol derivative, naphthalene derivative, and anthracene derivative.
  4.  請求項3に記載の導電性高分子組成物であって、
     前記添加剤は、前記ポリチオフェンを含有する、導電性高分子組成物。
    The conductive polymer composition according to claim 3.
    The additive is a conductive polymer composition containing the polythiophene.
  5.  請求項4に記載の導電性高分子組成物であって、
     前記ポリチオフェンは、一般式(3)で表される構造を有するモノマーの重合体である、導電性高分子組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、Rは、それぞれ酸素原子又は硫黄原子であり、Rは、それぞれ、水素原子、置換基を有していてもよい、炭素数1以上12以下のアルキル基、炭素数1以上12以下のアルキルエーテル基、炭素数1以上12以下のアルコキシ基、炭素数1以上12以下のアルキレンオキサイド基、芳香族基、又は複素環基を表す。)
    The conductive polymer composition according to claim 4.
    The polythiophene is a conductive polymer composition which is a polymer of a monomer having a structure represented by the general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (3), R 2 is an oxygen atom or a sulfur atom, respectively, and R 3 is an alkyl group having 1 or more and 12 or less carbon atoms, which may have a hydrogen atom and a substituent, respectively. Represents an alkyl ether group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 12 carbon atoms, an aromatic group, or a heterocyclic group.
  6.  請求項3に記載の導電性高分子組成物であって、
     前記添加剤は、チオフェン誘導体を含有する、導電性高分子組成物。
    The conductive polymer composition according to claim 3.
    The additive is a conductive polymer composition containing a thiophene derivative.
  7.  請求項6に記載の導電性高分子組成物であって、
     前記チオフェン誘導体は、一般式(3)で表される構造を有する、導電性高分子組成物。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(3)中、Rは、それぞれ酸素原子又は硫黄原子であり、Rは、それぞれ、水素原子、置換基を有していてもよい、炭素数1以上12以下のアルキル基、炭素数1以上12以下のアルキルエーテル基、炭素数1以上12以下のアルコキシ基、炭素数1以上12以下のアルキレンオキサイド基、芳香族基、又は複素環基を表す。)
    The conductive polymer composition according to claim 6.
    The thiophene derivative is a conductive polymer composition having a structure represented by the general formula (3).
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula (3), R 2 is an oxygen atom or a sulfur atom, respectively, and R 3 is an alkyl group having 1 or more and 12 or less carbon atoms, which may have a hydrogen atom and a substituent, respectively. Represents an alkyl ether group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 12 carbon atoms, an aromatic group, or a heterocyclic group.
  8.  請求項1~請求項7の何れか1つに記載の導電性高分子組成物であって、
     前記導電性高分子100質量部に対して、前記スタッキング促進剤を1~40質量部を含有する、導電性高分子組成物。
    The conductive polymer composition according to any one of claims 1 to 7.
    A conductive polymer composition containing 1 to 40 parts by mass of the stacking accelerator with respect to 100 parts by mass of the conductive polymer.
  9.  請求項8に記載の導電性高分子組成物であって、
     前記導電性高分子100質量部に対して、前記スタッキング促進剤を2~25質量部を含有する、導電性高分子組成物。
    The conductive polymer composition according to claim 8.
    A conductive polymer composition containing 2 to 25 parts by mass of the stacking accelerator with respect to 100 parts by mass of the conductive polymer.
  10.  請求項1~請求項9の何れか1つに記載の導電性高分子組成物であって、
     前記スタッキング促進剤は、非共有電子対を有する窒素原子を含まない、導電性高分子組成物。
    The conductive polymer composition according to any one of claims 1 to 9.
    The stacking accelerator is a conductive polymer composition containing no nitrogen atom having an unshared electron pair.
  11.  請求項1~請求項10の何れか1つに記載の導電性高分子組成物であって、
     前記有機スルホン酸は、ナフタレンスルホン酸である、導電性高分子組成物。
    The conductive polymer composition according to any one of claims 1 to 10.
    The organic sulfonic acid is a conductive polymer composition which is naphthalene sulfonic acid.
  12.  請求項1~請求項11の何れか1つに記載の導電性高分子組成物であって、
     前記導電性高分子100質量部に対して、前記有機スルホン酸を0.5~30質量部を含有する、導電性高分子組成物。
    The conductive polymer composition according to any one of claims 1 to 11.
    A conductive polymer composition containing 0.5 to 30 parts by mass of the organic sulfonic acid with respect to 100 parts by mass of the conductive polymer.
  13.  請求項12に記載の導電性高分子組成物であって、
     前記導電性高分子100質量部に対して、前記有機スルホン酸を1~15質量部を含有する、導電性高分子組成物。
    The conductive polymer composition according to claim 12.
    A conductive polymer composition containing 1 to 15 parts by mass of the organic sulfonic acid with respect to 100 parts by mass of the conductive polymer.
PCT/JP2020/012879 2019-03-26 2020-03-24 Electroconductive polymer composition WO2020196473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019058183A JP2022078370A (en) 2019-03-26 2019-03-26 Conductive polymer composition
JP2019-058183 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020196473A1 true WO2020196473A1 (en) 2020-10-01

Family

ID=72609829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012879 WO2020196473A1 (en) 2019-03-26 2020-03-24 Electroconductive polymer composition

Country Status (3)

Country Link
JP (1) JP2022078370A (en)
TW (1) TW202100654A (en)
WO (1) WO2020196473A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116666115A (en) * 2023-07-31 2023-08-29 南通江海电容器股份有限公司 Electrolytic capacitor based on n-type conductive polymer and preparation process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189789A (en) * 2002-12-09 2004-07-08 Matsushita Electric Ind Co Ltd Conductive polymer and solid electrolytic capacitor using the same
JP2010001435A (en) * 2008-06-23 2010-01-07 Osaka Univ Electrically conductive composition
WO2016111277A1 (en) * 2015-01-05 2016-07-14 綜研化学株式会社 Heterocycle-containing compound, polymer using said compound, and use thereof
JP2017057267A (en) * 2015-09-16 2017-03-23 テイカ株式会社 Conductive polymer composition and application thereof
WO2018221438A1 (en) * 2017-05-31 2018-12-06 綜研化学株式会社 Method for manufacturing conductive polymer solid electrolytic capacitor, and conductive polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189789A (en) * 2002-12-09 2004-07-08 Matsushita Electric Ind Co Ltd Conductive polymer and solid electrolytic capacitor using the same
JP2010001435A (en) * 2008-06-23 2010-01-07 Osaka Univ Electrically conductive composition
WO2016111277A1 (en) * 2015-01-05 2016-07-14 綜研化学株式会社 Heterocycle-containing compound, polymer using said compound, and use thereof
JP2017057267A (en) * 2015-09-16 2017-03-23 テイカ株式会社 Conductive polymer composition and application thereof
WO2018221438A1 (en) * 2017-05-31 2018-12-06 綜研化学株式会社 Method for manufacturing conductive polymer solid electrolytic capacitor, and conductive polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116666115A (en) * 2023-07-31 2023-08-29 南通江海电容器股份有限公司 Electrolytic capacitor based on n-type conductive polymer and preparation process thereof
CN116666115B (en) * 2023-07-31 2023-09-22 南通江海电容器股份有限公司 Electrolytic capacitor based on n-type conductive polymer and preparation process thereof

Also Published As

Publication number Publication date
TW202100654A (en) 2021-01-01
JP2022078370A (en) 2022-05-25

Similar Documents

Publication Publication Date Title
JP6704389B2 (en) Polymer, oxidative polymer, polymer composition, gel polymer composition and use thereof
JP6783832B2 (en) Heterocycle-containing compounds, polymers using the compounds, and their uses
JP7100029B2 (en) Conductive Polymer Manufacturing Method of Solid Electrolytic Capacitor and Conductive Polymer
EP2617757B1 (en) A method for preparing an electroconductive polymer solution
US11062853B2 (en) Solid electrolytic capacitor, and method for producing solid electrolytic capacitor
US9754697B2 (en) Conductive polymer composition
EP2309524B1 (en) Solid electrolytic capacitor, method for producing same, and solution for solid electrolytic capacitor
EP2606530A2 (en) Polymer compositions, polymer films, polymer gels, polymer foams, and electronic devices containing such films, gels, and foams
EP2099041B1 (en) Conductive polymer and solid electrolytic capacitor using the same
WO2012053474A1 (en) Conductive composition and method for producing conductive coating film
WO2020196473A1 (en) Electroconductive polymer composition
US11183340B2 (en) Method for manufacturing solid electrolytic capacitor
JP7065210B2 (en) Conductive polymer composition
JP2010248487A (en) Electroconductive coating composition, and method for producing electroconductive coating film
JP2019172770A (en) Conductive polymer composition, manufacturing method of conductive polymer thin film
WO2015192596A1 (en) Composition and method for forming electroactive polymer solution or coating comprising conjugated heteroaromatic polymer, electroactive polymer solution, capacitor and antistatic object comprising the electroactive coating, and solid electrolytic capacitor and method for fabricating the same
JP2014037508A (en) Conductive composition and conductive film
JP2014037504A (en) Conductive composition and conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP