WO2020196208A1 - Auxiliary chamber-type internal combustion engine - Google Patents

Auxiliary chamber-type internal combustion engine Download PDF

Info

Publication number
WO2020196208A1
WO2020196208A1 PCT/JP2020/012158 JP2020012158W WO2020196208A1 WO 2020196208 A1 WO2020196208 A1 WO 2020196208A1 JP 2020012158 W JP2020012158 W JP 2020012158W WO 2020196208 A1 WO2020196208 A1 WO 2020196208A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
sub
main chamber
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2020/012158
Other languages
French (fr)
Japanese (ja)
Inventor
晃弘 津田
田中 大
貴之 城田
欣也 井上
佳博 菅田
一成 野中
遼太 朝倉
捷 飯塚
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2020196208A1 publication Critical patent/WO2020196208A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/08Engines characterised by precombustion chambers the chamber being of air-swirl type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a sub-chamber type internal combustion engine having a main chamber and a sub-chamber provided adjacent to the main chamber.
  • a sub-chamber type internal combustion engine having a main chamber (main combustion chamber) and a sub-chamber (sub-combustion chamber) provided adjacent to the main chamber has been proposed (for example, Japanese Patent Application Laid-Open No. 2006-144648). See Gazette).
  • an air-fuel mixture is formed from the fuel injected into the main chamber.
  • the formed air-fuel mixture is supplied to the sub-chamber via the communication passage, and is ignited by the spark plug in the sub-chamber.
  • a flame is formed.
  • the flame formed in the sub-chamber is jetted into the main chamber through the continuous passage and ignites the air-fuel mixture in the main chamber.
  • the combustion speed of the main chamber is increased. This enables operation with a leaner air-fuel ratio and improves fuel efficiency.
  • a plate-shaped barrier is provided on the inner wall surrounding the spark plug in the sub-chamber, whereby the swirling flow of the air-fuel mixture is attenuated. Attenuation of the swirling flow guides the air-fuel mixture near the spark plug, resulting in an increase in the lean limit.
  • the embodiment of the present invention relates to a sub-chamber internal combustion engine having a sufficiently expanded lean limit.
  • the sub-chamber internal combustion engine includes a main chamber, a sub-chamber, a communication passage, and an ignition unit.
  • the main chamber is defined by a cylinder head, a cylinder, and a piston.
  • the sub-chamber projects from the cylinder head toward the main chamber and is separated from the main chamber by a partition wall.
  • the communication passage penetrates the partition wall inside and outside to communicate the main room and the sub room.
  • the ignition unit is provided in the sub-chamber and ignites the air-fuel mixture introduced from the main room to the sub-chamber via the communication passage.
  • the partition wall has a convex portion that protrudes toward the ignition portion, and the convex portion includes a frustum-shaped inclined surface whose diameter decreases toward the ignition portion.
  • This sub-chamber type internal combustion engine has a convex portion protruding from the partition wall toward the ignition portion, and the convex portion includes a frustum-shaped inclined surface whose diameter decreases toward the ignition portion.
  • the degree of inclination of the inclined surface of the convex portion may increase as it approaches the ignition portion.
  • the extension region when the continuous passage is extended to the sub-chamber along the penetrating direction of the side wall may reach the region of the inclined surface in the convex portion.
  • the degree of inclination of the inclined surface in the convex portion increases as it approaches the ignition portion.
  • the angle difference between the introduction direction of the air-fuel mixture introduced from the main chamber to the sub chamber via the continuous passage and the inclined surface in the convex portion becomes small, and unnecessary turbulence is suppressed.
  • this air-fuel mixture is surely guided to the ignition portion.
  • the extension line of the continuous passage extending along the penetrating direction of the continuous passage reaches the region having the smallest degree of inclination in the convex portion, in the continuous passage of the jet flame ejected from the sub chamber to the main chamber. The contraction loss is suppressed. This enhances the penetration of the jet flame and promotes combustion in the main chamber.
  • the outer surface of the convex portion located on the main chamber side may be flat or convex toward the main chamber.
  • the outer surface of the convex portion located on the main chamber side is provided in a flat shape or is provided in a convex shape toward the main chamber. Due to the structure of the sub-chamber internal combustion engine, the outer surface of the convex portion located on the main chamber side is less likely to be struck by the flame that is ignited by the ignition portion and injected from the communication passage. However, since the convex portion is provided as described above, there is no region where the flame is difficult to wrap around, and there is no loss due to unburned air-fuel mixture.
  • the ignition unit may be composed of a pair of electrodes. Then, one of the pair of electrodes of the electrode pair protrudes from the inner wall of the sub chamber, and the other electrode of the pair of electrodes is arranged at a position separated from the one electrode, and is a frustum of the convex portion. It may be attached to the apex region protruding in a shape.
  • FIG. 1 Schematic diagram showing a schematic configuration of a sub-chamber internal combustion engine according to an embodiment of the present disclosure.
  • Enlarged view (1/4) showing the vicinity of the sub chamber of the sub chamber type internal combustion engine of FIG.
  • Enlarged view (2/4) showing the vicinity of the sub-chamber of the sub-chamber type internal combustion engine of FIG.
  • Enlarged view (3/4) showing the vicinity of the sub-chamber of the sub-chamber type internal combustion engine of FIG.
  • Enlarged view (4/4) showing the vicinity of the sub-chamber of the sub-chamber type internal combustion engine of FIG.
  • the sub-chamber internal combustion engine 1 has a main chamber 10 including a structure surrounding a combustion space 100 extending in a tubular shape, and a sub-chamber extending in a tubular shape toward the combustion space 100. 20 and an ignition plug 30 protruding from the inner wall of the sub chamber 20 are provided.
  • the sub-chamber internal combustion engine 1 repeats intake, compression, expansion, and exhaust strokes.
  • the main chamber 10 has a cylinder 11 extending in a predetermined direction (vertical direction in FIG. 1), a cylinder head 13 that closes one end (upper end of the cylinder 11 in FIG. 1) side of the cylinder 11, and a direction extending inside the cylinder 11. Includes a piston 15 that reciprocates along.
  • the combustion space 100 is defined by the cylinder 11, the cylinder head 13, and the piston 15.
  • the intake port 120 opened and closed by the intake valve 110 and the exhaust port 140 opened and closed by the exhaust valve 130 are connected to the combustion space 100, respectively.
  • the intake valve 110 and the exhaust valve 130 are driven by an intake cam and an exhaust cam (not shown).
  • an injection valve 150 for injecting fuel into the combustion space 100 is arranged in the vicinity of the intake port 120 in the cylinder 11.
  • the injection valve 150 sprays and supplies fuel. As a result, an air-fuel mixture is formed in the combustion space 100.
  • the main chamber 10 in the present embodiment has a pent roof shape, and the cylinder head 13 has two slopes inclined toward the intake port 120 and the exhaust port 140, respectively.
  • the sub chamber 20 is separated from the main chamber 10 by a partition wall, and the partition wall includes the side wall 21 and the end wall 23.
  • the side wall 21 projects from the cylinder head 13 toward the combustion space 100 and extends in a tubular shape.
  • the end wall 23 closes the tip of the side wall 21 (the lower end of the side wall 21 in FIG. 1). That is, the sub chamber 20 is defined by the side wall 21 and the end wall 23.
  • the sub chamber 20 is provided at a position straddling the intersection (ridge line) of two pent roof-shaped slopes in the main chamber 10.
  • the sub chamber 20 includes one or more connected passages 40 that penetrate the side wall 21 in and out and communicate the sub chamber 20 and the main chamber 10, and a convex portion of the end wall 23 that protrudes from the sub chamber 20 side.
  • the convex portion 50 includes a truncated cone-shaped (conical truncated cone shape in the present embodiment) inclined surface whose diameter becomes smaller toward the electrode pair (electrodes 31 and 33 described later) of the spark plug 30.
  • the inclination angle of the frustum-shaped inclined surface with respect to the plane orthogonal to the protruding direction of the sub chamber 20 increases as it approaches the electrode pair, in other words, the inclination degree of the inclined surface increases as it approaches the electrode pair.
  • the convex portion 50 may be formed. Specifically, as shown in FIG. 3, the closer to the electrode pair, the greater the inclination angle of the frustum-shaped inclined surface with respect to the plane orthogonal to the protruding direction of the sub chamber 20 stepwise (two steps in FIG. 3). As such, the convex portion 50 may be formed. Further, the convex portion 50 may be formed so that the inclination angle is continuously increased.
  • the connecting passages 40 are provided at one or more places on the side wall 21, and perform intake air from the main room 10 to the sub room 20 or scavenging from the sub room 20 to the main room 10. Further, the extension region when the communication passage 40 is extended into the sub chamber 20 along the penetrating direction of the side wall 21 reaches the inclined surface of the convex portion 50.
  • the extension region has the smallest degree of inclination in the convex portion 50. Reach the area. That is, the extension region of the communication passage 40 reaches the outermost circumference on the frustum-shaped inclined surface.
  • the communication passage 40 penetrates the side wall 21 portion located in the main chamber 10 inside and outside, but is embedded in the structure (specifically, the cylinder head 13) side of the main chamber 10.
  • the side wall 21 portion may be penetrated inside and outside together with the structure of the main chamber 10 to communicate the sub chamber 20 and the main chamber 10.
  • the main chamber 10 side of the end wall 23 may be provided in a plane shape that intersects the protruding direction of the sub chamber 20, and a plane that intersects the protruding direction of the sub chamber 20. It may be provided in a convex shape toward the main room 10.
  • the main chamber 10 side of the end wall 23 and the sub chamber 20 side of the convex portion 50 are formed of the same member, and there does not have to be a space between them.
  • the main chamber 10 side of the end wall 23 and the sub chamber 20 side of the convex portion 50 are formed of different plate-shaped members, and a space may exist between them.
  • the spark plug 30 is provided with a pair of electrodes, and the pair of electrodes is arranged at a position protruding from the inner wall on the end (upper end in FIG. 1) side in the sub chamber 20.
  • the electrode pair includes a pair of electrodes 31 and 33, and the spark plug 30 ignites the air-fuel mixture in the sub chamber 20 by energizing between the pair of electrodes 31 and 33.
  • the pair of electrodes 31 and 33 are arranged at intervals on a straight line extending from the inner wall of the sub chamber 20 toward the convex portion 50.
  • one electrode 31 is connected to a conduction path (not shown) provided at a position overlapping the axis of the spark plug 30, and the other electrode 33 is connected to the conduction path 35.
  • the conduction path 35 has a first path extending along the axis of the spark plug 30 from a position separated from one of the electrodes 31, and a second path extending in the direction from the tip end side of the first path toward the axis of the spark plug 30. Including the route of.
  • a part or the whole of the convex portion 50 is a conduction path 37, and the other electrode 33 is connected to the apex region protruding like a frustum in the convex portion 50. May be done.
  • the volume of the sub-chamber 20 is smaller than that of the main chamber 10, and the flame of the air-fuel mixture ignited by the spark plug 30 quickly propagates into the sub-chamber 20.
  • the sub chamber 20 injects the flame generated in the sub chamber 20 into the main chamber 10 via the communication passage 40.
  • the flame injected into the main chamber 10 ignites and burns the air-fuel mixture in the main chamber 10. In this way, the main chamber 10 and the sub chamber 20 form an integrated combustion chamber.
  • the convex portion 50 projects from the end wall 23 toward the electrode pair of the spark plug 30, and the convex portion 50 has a diameter toward the electrode pair. It has a small frustum-shaped inclined surface.
  • the air-fuel mixture introduced from the main chamber 10 to the sub chamber 20 via the communication passage 40 is guided to the electrode pair along the inclined surface (see the broken line arrows in FIGS. 2 to 5). Therefore, the air-fuel mixture stably reaches the vicinity of the electrodes 31 and 33, and the lean limit is sufficiently expanded.
  • the sub-chamber type internal combustion engine 1 when the degree of inclination of the inclined surface in the convex portion 50 increases as it approaches the electrode pair, it is introduced from the main chamber 10 to the sub-chamber 20 via the communication passage 40.
  • the angle difference between the introduction direction of the air-fuel mixture and the inclined surface of the convex portion 50 is reduced, and unnecessary turbulence is suppressed.
  • this air-fuel mixture is surely guided to the electrode pair.
  • the extension line of the communication passage 40 extending along the penetrating direction of the communication passage 40 comes into line contact with the region having the smallest inclination degree in the convex portion 50 (FIGS. 4 and 5)
  • the sub chamber 20 to the main chamber Since the contraction loss in the communication passage 40 of the jet flame ejected to 10 is suppressed, the penetration force of the jet flame is strengthened and the combustion in the main chamber 10 is promoted.
  • the main chamber 10 side of the end wall 23 when the main chamber 10 side of the end wall 23 is provided in a plane shape intersecting the protruding direction of the sub chamber 20, or is provided in a convex shape toward the main chamber 10, as follows.
  • the effect is produced. That is, due to the structure of the sub-chamber internal combustion engine 1 at the end of the sub-chamber 20 on the main chamber 10 side, it is difficult for the flame injected from the communication passage 40 to ignite the electrode pair to wrap around.
  • the end wall 23 since the end wall 23 is provided as described above, there is no region where the flame is difficult to wrap around, and there is no loss due to unburned air-fuel mixture.
  • the sub-chamber 20 when the other electrode 33 in the electrode pair is attached to the convex portion 50, the sub-chamber 20 is not arranged around the conduction paths 35 around the electrodes 31 and 33.
  • the electrodes 31 and 33 are arranged in a straight line from the inner wall of the surface toward the convex portion 50. Therefore, the flame spreads appropriately.
  • the convex portion 50 has an inclined surface extending in a truncated cone shape, and the convex portion 50 projects so as to have a smaller diameter from the sub-chamber side of the end wall toward the electrode pair. It may be in the shape of a truncated cone, and may be in the shape of a truncated cone.
  • the convex portion 50 has an inclined surface extending in a truncated cone shape, but even if a spiral groove or protrusion from the bottom of the truncated cone to the apex region is formed along the inclined surface. Good.
  • the sub-chamber internal combustion engine (1) is A main chamber (10) defined by a cylinder head (13), a cylinder (11), and a piston (15), A sub-chamber (20) protruding from the cylinder head (13) toward the main chamber (10) and separated from the main chamber (10) by a partition wall (21, 23).
  • a communication passage (40) that penetrates the partition wall (21) in and out and communicates the main chamber (10) and the sub chamber (20).
  • An ignition unit (30) provided in the sub chamber (20) and igniting an air-fuel mixture introduced from the main chamber (10) to the sub chamber (20) via the communication passage (40).
  • the partition wall (23) has a convex portion (50) protruding toward the ignition portion (30).
  • the convex portion (50) includes a frustum-shaped inclined surface whose diameter decreases toward the ignition portion (30).
  • the degree of inclination of the inclined surface may increase as it approaches the ignition portion (30).
  • the extension region when the communication passage (40) is extended into the sub chamber (20) along the penetrating direction of the partition wall (21) may reach the region of the inclined surface.
  • the degree of inclination of the inclined surface may gradually increase as it approaches the ignition portion (30). Then, the extension region may reach the region having the smallest degree of inclination on the inclined surface.
  • the outer surface of the convex portion (50) located on the main chamber (10) side may be flat or convex toward the main chamber (10).
  • the ignition unit (30) may be composed of a pair of electrodes. Then, one of the pair of electrodes (31, 33) of the pair of electrodes protrudes from the inner wall of the sub chamber (20), and the other electrode of the pair of electrodes (31, 33) is the one. It is arranged at a position separated from the electrode of the above, and may be attached to the apex region of the convex portion (50) protruding like a frustum.

Abstract

This auxiliary chamber-type internal combustion engine is provided with a main chamber, an auxiliary chamber, a communication channel, and an ignition part. The main chamber is defined by a cylinder head, a cylinder, and a piston. The auxiliary chamber protrudes from the cylinder head toward the main chamber, and is separated from the main chamber by a partition wall. The communication channel penetrates the partition wall inside out so as to connect the main chamber and the auxiliary chamber. The ignition part is disposed inside the auxiliary chamber, and ignites an air-fuel mixture that is introduced into the auxiliary chamber from the main chamber via the communication channel. The partition wall has a protruding section that protrudes toward the ignition part. The protruding section includes a sloping surface formed in a truncated conical shape, the diameter of which becomes increasingly smaller toward the ignition part.

Description

副室式内燃機関Sub-chamber internal combustion engine
 本開示は、主室およびその主室に隣接して設けられる副室を備えた副室式内燃機関に関する。 The present disclosure relates to a sub-chamber type internal combustion engine having a main chamber and a sub-chamber provided adjacent to the main chamber.
 従来から、主室(主燃焼室)およびその主室に隣接して設けられる副室(副燃焼室)を備えた副室式内燃機関が提案されている(例えば、日本国特開2006-144648号公報参照)。このような副室式内燃機関では、主室に噴射された燃料から混合気が形成される。形成された混合気は、連通路を介して副室内に供給され、副室内で点火プラグによって点火される。これにより、火炎が形成される。副室内で形成された火炎は、連通路を介して主室に噴射され、主室の混合気を着火する。このように、副室で形成された火炎が主室に噴射されることで、主室の燃焼速度が高まる。これによって、より希薄な空燃比での運転が可能となり、燃費が向上する。 Conventionally, a sub-chamber type internal combustion engine having a main chamber (main combustion chamber) and a sub-chamber (sub-combustion chamber) provided adjacent to the main chamber has been proposed (for example, Japanese Patent Application Laid-Open No. 2006-144648). See Gazette). In such a sub-chamber internal combustion engine, an air-fuel mixture is formed from the fuel injected into the main chamber. The formed air-fuel mixture is supplied to the sub-chamber via the communication passage, and is ignited by the spark plug in the sub-chamber. As a result, a flame is formed. The flame formed in the sub-chamber is jetted into the main chamber through the continuous passage and ignites the air-fuel mixture in the main chamber. By injecting the flame formed in the sub chamber into the main chamber in this way, the combustion speed of the main chamber is increased. This enables operation with a leaner air-fuel ratio and improves fuel efficiency.
 また、日本国特開2006-144648号公報に記載された副室式内燃機関では、副室において点火プラグを取り囲む内壁に板状障壁が設けられ、これにより混合気の旋回流が減衰される。旋回流が減衰されることで点火プラグ近傍に混合気が導かれ、その結果としてリーン限界が拡大される。 Further, in the sub-chamber internal combustion engine described in Japanese Patent Application Laid-Open No. 2006-144648, a plate-shaped barrier is provided on the inner wall surrounding the spark plug in the sub-chamber, whereby the swirling flow of the air-fuel mixture is attenuated. Attenuation of the swirling flow guides the air-fuel mixture near the spark plug, resulting in an increase in the lean limit.
 しかし、日本国特開2006-144648号公報に記載された副室式内燃機関では、副室内での混合気の旋回流が乱されやすい。このため、必ずしも点火プラグにまで安定的に混合気が到達するとはいえず、リーン限界が充分には拡大されない。 However, in the sub-chamber internal combustion engine described in Japanese Patent Application Laid-Open No. 2006-144648, the swirling flow of the air-fuel mixture in the sub-chamber is easily disturbed. Therefore, it cannot be said that the air-fuel mixture reaches the spark plug in a stable manner, and the lean limit is not sufficiently expanded.
 本願発明の実施形態は、リーン限界が充分に拡大された副室式内燃機関に関する。 The embodiment of the present invention relates to a sub-chamber internal combustion engine having a sufficiently expanded lean limit.
 本願発明の第1の実施形態によれば、副室式内燃機関は、主室と、副室と、連通路と、点火部と、を備える。主室は、シリンダヘッドと、シリンダと、ピストンとで画定される。副室は、シリンダヘッドから主室に向かって突出し、主室と隔壁により隔てられる。連通路は、隔壁を内外に貫通して、主室と副室とを連通する。点火部は、副室内に設けられ、連通路を介して主室から副室に導入された混合気に点火する。隔壁は、点火部に向けて突出する凸状部を有し、凸状部は、点火部に向けて直径が小さくなる錐台状の傾斜面を含む。 According to the first embodiment of the present invention, the sub-chamber internal combustion engine includes a main chamber, a sub-chamber, a communication passage, and an ignition unit. The main chamber is defined by a cylinder head, a cylinder, and a piston. The sub-chamber projects from the cylinder head toward the main chamber and is separated from the main chamber by a partition wall. The communication passage penetrates the partition wall inside and outside to communicate the main room and the sub room. The ignition unit is provided in the sub-chamber and ignites the air-fuel mixture introduced from the main room to the sub-chamber via the communication passage. The partition wall has a convex portion that protrudes toward the ignition portion, and the convex portion includes a frustum-shaped inclined surface whose diameter decreases toward the ignition portion.
 この副室式内燃機関は、隔壁から点火部に向けて突出する凸状部を備え、凸状部は、点火部に向けて直径が小さくなる錐台状の傾斜面を含む。これにより、連通路を介して主室から副室に導入される混合気が、傾斜面に沿って点火部に導かれる。そのため、点火部付近にまで安定的に混合気が到達し、リーン限界が充分に拡大される。 This sub-chamber type internal combustion engine has a convex portion protruding from the partition wall toward the ignition portion, and the convex portion includes a frustum-shaped inclined surface whose diameter decreases toward the ignition portion. As a result, the air-fuel mixture introduced from the main chamber to the sub-chamber via the communication passage is guided to the ignition portion along the inclined surface. Therefore, the air-fuel mixture reaches the vicinity of the ignition portion in a stable manner, and the lean limit is sufficiently expanded.
 凸状部の傾斜面の傾斜度合いが、点火部に近づくほど大きくなってもよい。 The degree of inclination of the inclined surface of the convex portion may increase as it approaches the ignition portion.
 連通路を側壁の貫通方向に沿って副室内へと延長した場合の延長領域が、凸状部における傾斜面の領域に到達してもよい。 The extension region when the continuous passage is extended to the sub-chamber along the penetrating direction of the side wall may reach the region of the inclined surface in the convex portion.
 これら副室式内燃機関では、凸状部における傾斜面の傾斜度合いが、点火部に近づくほど大きくなっている。これにより、連通路を介して主室から副室に導入される混合気の導入方向と、凸状部における傾斜面との角度差が小さくなり、無用な乱流が抑制される。そして、それ以降の傾斜度合いが大きくなることで、この混合気が確実に点火部にまで導かれる。また、連通路の貫通方向に沿って延長した連通路の延長線が、凸状部において最も傾斜度合いの小さい領域に到達する場合、副室から主室へと噴出されるジェット火炎の連通路における縮流損失が抑制される。これにより、ジェット火炎の貫徹力が強まり、主室での燃焼が促進される。 In these sub-chamber internal combustion engines, the degree of inclination of the inclined surface in the convex portion increases as it approaches the ignition portion. As a result, the angle difference between the introduction direction of the air-fuel mixture introduced from the main chamber to the sub chamber via the continuous passage and the inclined surface in the convex portion becomes small, and unnecessary turbulence is suppressed. Then, as the degree of inclination after that becomes large, this air-fuel mixture is surely guided to the ignition portion. Further, when the extension line of the continuous passage extending along the penetrating direction of the continuous passage reaches the region having the smallest degree of inclination in the convex portion, in the continuous passage of the jet flame ejected from the sub chamber to the main chamber. The contraction loss is suppressed. This enhances the penetration of the jet flame and promotes combustion in the main chamber.
 主室側に位置する凸状部の外面は、平面状、または主室に向けて凸状でもよい。 The outer surface of the convex portion located on the main chamber side may be flat or convex toward the main chamber.
 この副室式内燃機関では、主室側に位置する凸状部の外面が、平面状に設けられ、または主室に向けて凸状に設けられている。主室側に位置する凸状部の外面は、副室式内燃機関としての構造上、点火部に点火されて連通路から噴射される火炎が回り込みにくい。しかし、上記のように凸状部が設けられていることで、火炎の回り込みにくい領域がなくなり、混合気の未燃による損失がなくなる。 In this sub-chamber type internal combustion engine, the outer surface of the convex portion located on the main chamber side is provided in a flat shape or is provided in a convex shape toward the main chamber. Due to the structure of the sub-chamber internal combustion engine, the outer surface of the convex portion located on the main chamber side is less likely to be struck by the flame that is ignited by the ignition portion and injected from the communication passage. However, since the convex portion is provided as described above, there is no region where the flame is difficult to wrap around, and there is no loss due to unburned air-fuel mixture.
 点火部は、電極対により構成されてもよい。そして、電極対の一対の電極のうち一方の電極が副室の内壁から突出し、一対の電極のうち他方の電極は、一方の電極から離間した位置に配置されており、凸状部の錐台状に突出する頂点領域に取り付けられてもよい。 The ignition unit may be composed of a pair of electrodes. Then, one of the pair of electrodes of the electrode pair protrudes from the inner wall of the sub chamber, and the other electrode of the pair of electrodes is arranged at a position separated from the one electrode, and is a frustum of the convex portion. It may be attached to the apex region protruding in a shape.
 この副室式内燃機関では、電極対における他方の電極が凸状部に取り付けられているため、各電極の周囲に導通経路を配置することなく、副室の内壁から凸状部に向けて一直線上に各電極が配置された状態となる。その結果、火炎が適切に拡がる。 In this sub-chamber internal combustion engine, since the other electrode in the electrode pair is attached to the convex portion, it is straight from the inner wall of the sub-chamber toward the convex portion without arranging a conduction path around each electrode. Each electrode is arranged on the line. As a result, the flame spreads properly.
本開示の実施形態による副室式内燃機関の概略構成を示す模式図Schematic diagram showing a schematic configuration of a sub-chamber internal combustion engine according to an embodiment of the present disclosure. 図1の副室式内燃機関の副室近傍を示す拡大図(1/4)Enlarged view (1/4) showing the vicinity of the sub chamber of the sub chamber type internal combustion engine of FIG. 図1の副室式内燃機関の副室近傍を示す拡大図(2/4)Enlarged view (2/4) showing the vicinity of the sub-chamber of the sub-chamber type internal combustion engine of FIG. 図1の副室式内燃機関の副室近傍を示す拡大図(3/4)Enlarged view (3/4) showing the vicinity of the sub-chamber of the sub-chamber type internal combustion engine of FIG. 図1の副室式内燃機関の副室近傍を示す拡大図(4/4)Enlarged view (4/4) showing the vicinity of the sub-chamber of the sub-chamber type internal combustion engine of FIG.
 以下、本開示の実施形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 (1)全体構成
 副室式内燃機関1は、図1に示すように、筒状に延びる燃焼空間100を取り囲む構造体を含む主室10と、燃焼空間100に向けて筒状に延びる副室20と、副室20の内壁から突出する点火プラグ30と、を備えている。副室式内燃機関1は、吸気、圧縮、膨張および排気の各行程を繰り返す。
(1) Overall Configuration As shown in FIG. 1, the sub-chamber internal combustion engine 1 has a main chamber 10 including a structure surrounding a combustion space 100 extending in a tubular shape, and a sub-chamber extending in a tubular shape toward the combustion space 100. 20 and an ignition plug 30 protruding from the inner wall of the sub chamber 20 are provided. The sub-chamber internal combustion engine 1 repeats intake, compression, expansion, and exhaust strokes.
 主室10は、所定方向(図1の上下方向)に延びるシリンダ11、シリンダ11における一端(図1におけるシリンダ11の上端)側を閉塞するシリンダヘッド13、および、シリンダ11内側をその延びる方向に沿って往復移動するピストン15を含む。シリンダ11、シリンダヘッド13、及びピストン15により燃焼空間100が画定される。この燃焼空間100には、吸気バルブ110により開閉される吸気ポート120、排気バルブ130により開閉される排気ポート140それぞれが接続されている。これら吸気バルブ110および排気バルブ130は、図示されない吸気カムおよび排気カムにより駆動される。 The main chamber 10 has a cylinder 11 extending in a predetermined direction (vertical direction in FIG. 1), a cylinder head 13 that closes one end (upper end of the cylinder 11 in FIG. 1) side of the cylinder 11, and a direction extending inside the cylinder 11. Includes a piston 15 that reciprocates along. The combustion space 100 is defined by the cylinder 11, the cylinder head 13, and the piston 15. The intake port 120 opened and closed by the intake valve 110 and the exhaust port 140 opened and closed by the exhaust valve 130 are connected to the combustion space 100, respectively. The intake valve 110 and the exhaust valve 130 are driven by an intake cam and an exhaust cam (not shown).
 また、この主室10には、シリンダ11における吸気ポート120近傍において、燃焼空間100内に燃料を噴射する噴射弁150が配置されている。この噴射弁150は、燃料を噴霧して供給する。これにより、燃焼空間100内に混合気が形成される。 Further, in the main chamber 10, an injection valve 150 for injecting fuel into the combustion space 100 is arranged in the vicinity of the intake port 120 in the cylinder 11. The injection valve 150 sprays and supplies fuel. As a result, an air-fuel mixture is formed in the combustion space 100.
 なお、本実施形態における主室10はペントルーフ形状であり、シリンダヘッド13が、吸気ポート120および排気ポート140それぞれに向けて傾斜した2つの斜面を有する。 The main chamber 10 in the present embodiment has a pent roof shape, and the cylinder head 13 has two slopes inclined toward the intake port 120 and the exhaust port 140, respectively.
 副室20は、隔壁によって主室10と隔てられ、隔壁は、側壁21と、端部壁23とを含む。図2に示すように、側壁21は、シリンダヘッド13から燃焼空間100に向けて突出し、筒状に延びる。端部壁23は、側壁21の先端(図1における側壁21の下端)を閉鎖する。すなわち、副室20は、側壁21と、端部壁23により画定されている。本実施形態において、副室20は、主室10におけるペントルーフ形状の2つの斜面の交線(稜線)を跨ぐ位置に設けられる。 The sub chamber 20 is separated from the main chamber 10 by a partition wall, and the partition wall includes the side wall 21 and the end wall 23. As shown in FIG. 2, the side wall 21 projects from the cylinder head 13 toward the combustion space 100 and extends in a tubular shape. The end wall 23 closes the tip of the side wall 21 (the lower end of the side wall 21 in FIG. 1). That is, the sub chamber 20 is defined by the side wall 21 and the end wall 23. In the present embodiment, the sub chamber 20 is provided at a position straddling the intersection (ridge line) of two pent roof-shaped slopes in the main chamber 10.
 また、この副室20は、側壁21を内外に貫通して副室20と主室10とを連通する1以上の連通路40と、端部壁23における副室20側から突出する凸状部50とを備える。凸状部50は、点火プラグ30の電極対(後述する電極31、33)に向けて直径が小さくなる錐台状(本実施形態では円錐台状)の傾斜面を含む。 Further, the sub chamber 20 includes one or more connected passages 40 that penetrate the side wall 21 in and out and communicate the sub chamber 20 and the main chamber 10, and a convex portion of the end wall 23 that protrudes from the sub chamber 20 side. With 50. The convex portion 50 includes a truncated cone-shaped (conical truncated cone shape in the present embodiment) inclined surface whose diameter becomes smaller toward the electrode pair ( electrodes 31 and 33 described later) of the spark plug 30.
 副室20の突出方向と直交する平面に対する錐台状の傾斜面における傾斜角が、電極対に近づくほど大きくなるように、換言すれば、傾斜面の傾斜度合いが電極対に近づくほど大きくなるように、凸状部50は形成されてもよい。具体的には、図3に示すように、電極対に近づくほど、副室20の突出方向と直交する平面に対する錐台状の傾斜面における傾斜角が段階的(図3は2段階)に大きくなるように、凸状部50は形成されてもよい。また、傾斜角が連続的に大きくなるように、凸状部50は形成されてもよい。 The inclination angle of the frustum-shaped inclined surface with respect to the plane orthogonal to the protruding direction of the sub chamber 20 increases as it approaches the electrode pair, in other words, the inclination degree of the inclined surface increases as it approaches the electrode pair. In addition, the convex portion 50 may be formed. Specifically, as shown in FIG. 3, the closer to the electrode pair, the greater the inclination angle of the frustum-shaped inclined surface with respect to the plane orthogonal to the protruding direction of the sub chamber 20 stepwise (two steps in FIG. 3). As such, the convex portion 50 may be formed. Further, the convex portion 50 may be formed so that the inclination angle is continuously increased.
 また、連通路40は、側壁21における1以上の個所に設けられており、主室10から副室20への吸気または副室20から主室10への掃気を行う。また、連通路40を側壁21の貫通方向に沿って副室20内へと延長した場合の延長領域が、凸状部50の傾斜面に到達する。 Further, the connecting passages 40 are provided at one or more places on the side wall 21, and perform intake air from the main room 10 to the sub room 20 or scavenging from the sub room 20 to the main room 10. Further, the extension region when the communication passage 40 is extended into the sub chamber 20 along the penetrating direction of the side wall 21 reaches the inclined surface of the convex portion 50.
 ここで、凸状部50の錐台状の傾斜面における傾斜角が段階的に大きく形成されている場合に、図3に示すように、上記延長領域が凸状部50において最も傾斜度合いの小さい領域に到達する。つまり、連通路40の延長領域は、錐台状の傾斜面における最外周に到達する。 Here, when the inclination angle of the frustum-shaped inclined surface of the convex portion 50 is formed to be large stepwise, as shown in FIG. 3, the extension region has the smallest degree of inclination in the convex portion 50. Reach the area. That is, the extension region of the communication passage 40 reaches the outermost circumference on the frustum-shaped inclined surface.
 なお、本実施形態において、連通路40は主室10内に位置する側壁21部分を内外に貫通しているが、主室10の構造体(具体的にはシリンダヘッド13)側に埋設されている側壁21部分を主室10の構造体とともに内外に貫通して副室20と主室10とを連通してもよい。 In the present embodiment, the communication passage 40 penetrates the side wall 21 portion located in the main chamber 10 inside and outside, but is embedded in the structure (specifically, the cylinder head 13) side of the main chamber 10. The side wall 21 portion may be penetrated inside and outside together with the structure of the main chamber 10 to communicate the sub chamber 20 and the main chamber 10.
 また、端部壁23の主室10側は、図4に示すように、副室20の突出方向と交差する平面状に設けられてもよく、また、副室20の突出方向と交差する平面から主室10に向けて凸状に設けられてもよい。このとき、端部壁23の主室10側と、凸状部50の副室20側とは、同一の部材により形成され、両者の間に空間が存在しなくてもよい。また、端部壁23の主室10側と、凸状部50の副室20側とは、それぞれ別の板状部材により形成され、両者の間に空間が存在してもよい。 Further, as shown in FIG. 4, the main chamber 10 side of the end wall 23 may be provided in a plane shape that intersects the protruding direction of the sub chamber 20, and a plane that intersects the protruding direction of the sub chamber 20. It may be provided in a convex shape toward the main room 10. At this time, the main chamber 10 side of the end wall 23 and the sub chamber 20 side of the convex portion 50 are formed of the same member, and there does not have to be a space between them. Further, the main chamber 10 side of the end wall 23 and the sub chamber 20 side of the convex portion 50 are formed of different plate-shaped members, and a space may exist between them.
 点火プラグ30は電極対を備え、電極対は、副室20における末端(図1における上端)側の内壁から突出した位置に配置されている。電極対は、一対の電極31,33を含み、点火プラグ30は、一対の電極31、33間への通電により副室20内の混合気を着火する。 The spark plug 30 is provided with a pair of electrodes, and the pair of electrodes is arranged at a position protruding from the inner wall on the end (upper end in FIG. 1) side in the sub chamber 20. The electrode pair includes a pair of electrodes 31 and 33, and the spark plug 30 ignites the air-fuel mixture in the sub chamber 20 by energizing between the pair of electrodes 31 and 33.
 一対の電極31、33は、副室20の内壁から凸状部50に向けて延びる一直線上に間隔を空けて配置されている。一対の電極31、33のうち、一方の電極31は、点火プラグ30の軸線と重なる位置に設けられた図示されない導通経路に接続されており、他方の電極33は、導通経路35に接続されている。導通経路35は、一方の電極31と離間した位置から点火プラグ30の軸線に沿って延びる第1の経路と、この第1の経路における先端側から点火プラグ30の軸線に向かう方向へ延びる第2の経路とを含む。 The pair of electrodes 31 and 33 are arranged at intervals on a straight line extending from the inner wall of the sub chamber 20 toward the convex portion 50. Of the pair of electrodes 31 and 33, one electrode 31 is connected to a conduction path (not shown) provided at a position overlapping the axis of the spark plug 30, and the other electrode 33 is connected to the conduction path 35. There is. The conduction path 35 has a first path extending along the axis of the spark plug 30 from a position separated from one of the electrodes 31, and a second path extending in the direction from the tip end side of the first path toward the axis of the spark plug 30. Including the route of.
 なお、ここでは、図5に示すように、凸状部50の一部または全体が導通経路37とされ、この凸状部50において錐台状に突出する頂点領域に、他方の電極33が接続されてもよい。 Here, as shown in FIG. 5, a part or the whole of the convex portion 50 is a conduction path 37, and the other electrode 33 is connected to the apex region protruding like a frustum in the convex portion 50. May be done.
 このように構成された副室式内燃機関1において、副室20の容積は、主室10よりも小さく、点火プラグ30で点火した混合気の火炎が、副室20内に素早く伝播する。副室20は、副室20で発生した火炎を、連通路40を介して主室10に噴射する。主室10内に噴射された火炎は、主室10の混合気を着火して燃焼させる。こうして、主室10および副室20が一体的な燃焼室を形成する。 In the sub-chamber internal combustion engine 1 configured in this way, the volume of the sub-chamber 20 is smaller than that of the main chamber 10, and the flame of the air-fuel mixture ignited by the spark plug 30 quickly propagates into the sub-chamber 20. The sub chamber 20 injects the flame generated in the sub chamber 20 into the main chamber 10 via the communication passage 40. The flame injected into the main chamber 10 ignites and burns the air-fuel mixture in the main chamber 10. In this way, the main chamber 10 and the sub chamber 20 form an integrated combustion chamber.
 (2)作用効果
 上記の副室式内燃機関1は、凸状部50が、端部壁23から点火プラグ30の電極対に向けて突出し、凸状部50は、電極対に向けて直径が小さくなる錐台状の傾斜面を有する。これにより、連通路40を介して主室10から副室20に導入される混合気が、傾斜面に沿って電極対に導かれる(図2~5における破線矢印参照)。そのため、電極31、33付近にまで安定的に混合気が到達し、リーン限界が充分に拡大される。
(2) Action and effect In the above-mentioned sub-chamber internal combustion engine 1, the convex portion 50 projects from the end wall 23 toward the electrode pair of the spark plug 30, and the convex portion 50 has a diameter toward the electrode pair. It has a small frustum-shaped inclined surface. As a result, the air-fuel mixture introduced from the main chamber 10 to the sub chamber 20 via the communication passage 40 is guided to the electrode pair along the inclined surface (see the broken line arrows in FIGS. 2 to 5). Therefore, the air-fuel mixture stably reaches the vicinity of the electrodes 31 and 33, and the lean limit is sufficiently expanded.
 また、上記副室式内燃機関1においては、凸状部50における傾斜面の傾斜度合いが、電極対に近づくほど大きくなる場合に、連通路40を介して主室10から副室20に導入される混合気の導入方向と、凸状部50における傾斜面との角度差が小さくなり、無用な乱流が抑制される。そして、それ以降の傾斜度合いが大きくなることで、この混合気が確実に電極対にまで導かれる。また、連通路40の貫通方向に沿って延長した連通路40の延長線が、凸状部50において最も傾斜度合いの小さい領域と線接触する場合(図4、5)、副室20から主室10へと噴出されるジェット火炎の連通路40における縮流損失が抑制されるため、ジェット火炎の貫徹力が強まり、主室10での燃焼が促進される。 Further, in the sub-chamber type internal combustion engine 1, when the degree of inclination of the inclined surface in the convex portion 50 increases as it approaches the electrode pair, it is introduced from the main chamber 10 to the sub-chamber 20 via the communication passage 40. The angle difference between the introduction direction of the air-fuel mixture and the inclined surface of the convex portion 50 is reduced, and unnecessary turbulence is suppressed. Then, as the degree of inclination after that becomes large, this air-fuel mixture is surely guided to the electrode pair. Further, when the extension line of the communication passage 40 extending along the penetrating direction of the communication passage 40 comes into line contact with the region having the smallest inclination degree in the convex portion 50 (FIGS. 4 and 5), the sub chamber 20 to the main chamber Since the contraction loss in the communication passage 40 of the jet flame ejected to 10 is suppressed, the penetration force of the jet flame is strengthened and the combustion in the main chamber 10 is promoted.
 また、上記実施形態において、端部壁23における主室10側が、副室20の突出方向と交差する平面状に設けられ、または主室10に向けて凸状に設けられる場合に、以下のような作用効果が奏される。すなわち、副室20における主室10側の端部は、副室式内燃機関1としての構造上、電極対に点火されて連通路40から噴射される火炎が回り込みにくい。しかし、上記のように端部壁23が設けられていることで、火炎の回り込みにくい領域がなくなり、混合気の未燃による損失がなくなる。 Further, in the above embodiment, when the main chamber 10 side of the end wall 23 is provided in a plane shape intersecting the protruding direction of the sub chamber 20, or is provided in a convex shape toward the main chamber 10, as follows. The effect is produced. That is, due to the structure of the sub-chamber internal combustion engine 1 at the end of the sub-chamber 20 on the main chamber 10 side, it is difficult for the flame injected from the communication passage 40 to ignite the electrode pair to wrap around. However, since the end wall 23 is provided as described above, there is no region where the flame is difficult to wrap around, and there is no loss due to unburned air-fuel mixture.
 また、上記副室式内燃機関1において、電極対における他方の電極33が凸状部50に取り付けられる場合に、各電極31、33の周囲に導通経路35が配置されることなく、副室20の内壁から凸状部50に向けて一直線上に各電極31、33が配置される。このため、火炎が適切に拡がる。 Further, in the sub-chamber type internal combustion engine 1, when the other electrode 33 in the electrode pair is attached to the convex portion 50, the sub-chamber 20 is not arranged around the conduction paths 35 around the electrodes 31 and 33. The electrodes 31 and 33 are arranged in a straight line from the inner wall of the surface toward the convex portion 50. Therefore, the flame spreads appropriately.
 (3)他の実施形態
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた各構成は必要に応じて任意に組合せ可能である。
(3) Other Embodiments Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various modifications can be made without departing from the gist of the invention. In particular, the configurations described herein can be arbitrarily combined as needed.
 例えば、上記実施形態では、凸状部50が円錐台状に拡がる傾斜面を有するが、この凸状部50は、端部壁における副室側から電極対に向けて直径が小さくなるように突出する錐台状であればよく、角錐台状でもよい。 For example, in the above embodiment, the convex portion 50 has an inclined surface extending in a truncated cone shape, and the convex portion 50 projects so as to have a smaller diameter from the sub-chamber side of the end wall toward the electrode pair. It may be in the shape of a truncated cone, and may be in the shape of a truncated cone.
 また、上記実施形態では、凸状部50が円錐台状に拡がる傾斜面を有するが、この傾斜面に沿って、円錐台の底辺から頂点領域に向かう螺旋状の溝または突起が形成されてもよい。 Further, in the above embodiment, the convex portion 50 has an inclined surface extending in a truncated cone shape, but even if a spiral groove or protrusion from the bottom of the truncated cone to the apex region is formed along the inclined surface. Good.
 本開示の実施形態によれば、副室式内燃機関(1)は、
 シリンダヘッド(13)と、シリンダ(11)と、ピストン(15)と、で画定される主室(10)と、
 前記シリンダヘッド(13)から前記主室(10)に向かって突出し、前記主室(10)と隔壁(21,23)により隔てられた副室(20)と、
 前記隔壁(21)を内外に貫通して前記主室(10)と前記副室(20)とを連通する連通路(40)と、
 前記副室(20)内に設けられ、前記連通路(40)を介して前記主室(10)から前記副室(20)に導入された混合気に点火する点火部(30)と、
 を備え、
 前記隔壁(23)は、前記点火部(30)に向けて突出する凸状部(50)を有し、
 前記凸状部(50)は、前記点火部(30)に向けて直径が小さくなる錐台状の傾斜面を含む。
According to the embodiment of the present disclosure, the sub-chamber internal combustion engine (1) is
A main chamber (10) defined by a cylinder head (13), a cylinder (11), and a piston (15),
A sub-chamber (20) protruding from the cylinder head (13) toward the main chamber (10) and separated from the main chamber (10) by a partition wall (21, 23).
A communication passage (40) that penetrates the partition wall (21) in and out and communicates the main chamber (10) and the sub chamber (20).
An ignition unit (30) provided in the sub chamber (20) and igniting an air-fuel mixture introduced from the main chamber (10) to the sub chamber (20) via the communication passage (40).
With
The partition wall (23) has a convex portion (50) protruding toward the ignition portion (30).
The convex portion (50) includes a frustum-shaped inclined surface whose diameter decreases toward the ignition portion (30).
 前記傾斜面の傾斜度合いが、前記点火部(30)に近づくほど大きくなってもよい。 The degree of inclination of the inclined surface may increase as it approaches the ignition portion (30).
 前記連通路(40)を前記隔壁(21)の貫通方向に沿って前記副室(20)内へと延長した場合の延長領域が、前記傾斜面の領域に到達してもよい。 The extension region when the communication passage (40) is extended into the sub chamber (20) along the penetrating direction of the partition wall (21) may reach the region of the inclined surface.
 前記傾斜面の傾斜度合いが、前記点火部(30)に近づくほど段階的に大きくなってもよい。そして、前記延長領域が、前記傾斜面において最も傾斜度合いの小さい領域に到達してもよい。 The degree of inclination of the inclined surface may gradually increase as it approaches the ignition portion (30). Then, the extension region may reach the region having the smallest degree of inclination on the inclined surface.
 前記主室(10)側に位置する前記凸状部(50)の外面は、平面状、または前記主室(10)に向けて凸状であってもよい。 The outer surface of the convex portion (50) located on the main chamber (10) side may be flat or convex toward the main chamber (10).
 前記点火部(30)は、電極対により構成されてもよい。そして、前記電極対の一対の電極(31,33)のうち一方の電極が、前記副室(20)の内壁から突出し、前記一対の電極(31,33)のうち他方の電極は、前記一方の電極から離間した位置に配置されており、前記凸状部(50)の錐台状に突出する頂点領域に取り付けられてもよい。 The ignition unit (30) may be composed of a pair of electrodes. Then, one of the pair of electrodes (31, 33) of the pair of electrodes protrudes from the inner wall of the sub chamber (20), and the other electrode of the pair of electrodes (31, 33) is the one. It is arranged at a position separated from the electrode of the above, and may be attached to the apex region of the convex portion (50) protruding like a frustum.
 本出願は、2019年3月27日出願の日本特許出願特願2019-061128に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2019-061128 filed on March 27, 2019, the contents of which are incorporated herein by reference.
1 副室式内燃機関
10 主室
11 シリンダ
13 シリンダヘッド
15 ピストン
20 副室
21 側壁
23 端部壁
30 点火プラグ
31 電極
33 電極
35 導通経路
37 導通経路
40 連通路
50 凸状部
100 燃焼空間
110 吸気バルブ
120 吸気ポート
130 排気バルブ
140 排気ポート
150 噴射弁
1 Sub-chamber internal combustion engine 10 Main chamber 11 Cylinder 13 Cylinder head 15 Piston 20 Sub-chamber 21 Side wall 23 End wall 30 Spark plug 31 Electrode 33 Electrode 35 Conduction path 37 Conduction path 40 Continuity path 50 Convex part 100 Combustion space 110 Intake Valve 120 Intake port 130 Exhaust valve 140 Exhaust port 150 Injection valve

Claims (6)

  1.  シリンダヘッドと、シリンダと、ピストンと、で画定される主室と、
     前記シリンダヘッドから前記主室に向かって突出し、前記主室と隔壁により隔てられた副室と、
     前記隔壁を内外に貫通して前記主室と前記副室とを連通する連通路と、
     前記副室内に設けられ、前記連通路を介して前記主室から前記副室に導入された混合気に点火する点火部と、
     を備え、
     前記隔壁は、前記点火部に向けて突出する凸状部を有し、
     前記凸状部は、前記点火部に向けて直径が小さくなる錐台状の傾斜面を含む副室式内燃機関。
    A main chamber defined by a cylinder head, a cylinder, and a piston,
    A sub chamber that protrudes from the cylinder head toward the main chamber and is separated from the main chamber by a partition wall.
    A communication passage that penetrates the partition wall in and out and connects the main chamber and the sub chamber,
    An ignition unit provided in the sub-chamber and igniting an air-fuel mixture introduced into the sub-chamber from the main chamber via the communication passage.
    With
    The partition wall has a convex portion projecting toward the ignition portion and has a convex portion.
    The convex portion is a sub-chamber type internal combustion engine including a frustum-shaped inclined surface whose diameter becomes smaller toward the ignition portion.
  2.  前記傾斜面の傾斜度合いが、前記点火部に近づくほど大きくなる、
     請求項1に記載の副室式内燃機関。
    The degree of inclination of the inclined surface increases as it approaches the ignition portion.
    The sub-chamber internal combustion engine according to claim 1.
  3.  前記連通路を前記隔壁の貫通方向に沿って前記副室内へと延長した場合の延長領域が、前記傾斜面の領域に到達する、
     請求項1または請求項2に記載の副室式内燃機関。
    The extension region when the communication passage is extended to the sub chamber along the penetrating direction of the partition wall reaches the region of the inclined surface.
    The sub-chamber internal combustion engine according to claim 1 or 2.
  4.  前記傾斜面の傾斜度合いが、前記点火部に近づくほど段階的に大きくなり、
     前記延長領域が、前記傾斜面において最も傾斜度合いの小さい領域に到達する、
     請求項3に記載の副室式内燃機関。
    The degree of inclination of the inclined surface gradually increases as it approaches the ignition portion.
    The extension region reaches the region having the smallest degree of inclination on the inclined surface.
    The sub-chamber internal combustion engine according to claim 3.
  5.  前記主室側に位置する前記凸状部の外面は、平面状、または前記主室に向けて凸状である、
     請求項1から4のいずれか1項に記載の副室式内燃機関。
    The outer surface of the convex portion located on the main chamber side is flat or convex toward the main chamber.
    The sub-chamber internal combustion engine according to any one of claims 1 to 4.
  6.  前記点火部は、電極対により構成され、
     前記電極対の一対の電極のうち一方の電極が、前記副室の内壁から突出し、
     前記一対の電極のうち他方の電極は、前記一方の電極から離間した位置に配置されており、前記凸状部の錐台状に突出する頂点領域に取り付けられている、
     請求項1から5のいずれか1項に記載の副室式内燃機関。
    The ignition unit is composed of a pair of electrodes.
    One of the pair of electrodes of the pair of electrodes projects from the inner wall of the sub-chamber.
    The other electrode of the pair of electrodes is arranged at a position separated from the one electrode, and is attached to the apex region of the convex portion protruding like a frustum.
    The sub-chamber internal combustion engine according to any one of claims 1 to 5.
PCT/JP2020/012158 2019-03-27 2020-03-18 Auxiliary chamber-type internal combustion engine WO2020196208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061128 2019-03-27
JP2019061128A JP2022081705A (en) 2019-03-27 2019-03-27 Auxiliary chamber type internal combustion engine

Publications (1)

Publication Number Publication Date
WO2020196208A1 true WO2020196208A1 (en) 2020-10-01

Family

ID=72611908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012158 WO2020196208A1 (en) 2019-03-27 2020-03-18 Auxiliary chamber-type internal combustion engine

Country Status (2)

Country Link
JP (1) JP2022081705A (en)
WO (1) WO2020196208A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115234359A (en) * 2022-06-27 2022-10-25 中国第一汽车股份有限公司 Combustion equipment and gasoline engine with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124508A (en) * 1976-04-12 1977-10-19 Toyota Motor Corp By-combustion chamber-loaded internal
JP2006329092A (en) * 2005-05-27 2006-12-07 Nissan Motor Co Ltd Auxiliary chamber type internal combustion engine
JP2016035854A (en) * 2014-08-04 2016-03-17 株式会社日本自動車部品総合研究所 Ignition device with auxiliary chamber and control method thereof
WO2018104681A1 (en) * 2016-12-09 2018-06-14 Vianney Rabhi Spark plug with electrode-shuttle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124508A (en) * 1976-04-12 1977-10-19 Toyota Motor Corp By-combustion chamber-loaded internal
JP2006329092A (en) * 2005-05-27 2006-12-07 Nissan Motor Co Ltd Auxiliary chamber type internal combustion engine
JP2016035854A (en) * 2014-08-04 2016-03-17 株式会社日本自動車部品総合研究所 Ignition device with auxiliary chamber and control method thereof
WO2018104681A1 (en) * 2016-12-09 2018-06-14 Vianney Rabhi Spark plug with electrode-shuttle

Also Published As

Publication number Publication date
JP2022081705A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US7926463B2 (en) Cylinder injection type spark ignition internal combustion engine
US20080135016A1 (en) Direct Fuel Injection-Type Spark Ignition Internal Combustion Engine
CN108291476B (en) Passive precombustor direct injection combustion
JP2003534495A (en) Fuel injection system
WO2020196208A1 (en) Auxiliary chamber-type internal combustion engine
JP2022017967A (en) Internal combustion chamber with auxiliary combustion chamber
US6935302B2 (en) In-cylinder injection type internal combustion engine
JP7226639B2 (en) Pre-chamber spark ignition engine
JP4215517B2 (en) Fuel injection system
JP2000297646A (en) Inside-cylinder injection type spark ignition for internal combustion engine
US20070051333A1 (en) In-cylinder injection type spark ignition internal combustion engine
EP2998538A1 (en) Pre-chamber of internal combustion engine
JP7226638B2 (en) pre-chamber engine
WO2020196685A1 (en) Sub-chamber internal combustion engine
EP2192287B1 (en) Direct injection internal combustion engine
WO2020196207A1 (en) Pre-chamber type internal combustion engine
WO2020196209A1 (en) Auxiliary chamber type internal combustion engine
WO2020196682A1 (en) Auxiliary chamber-type internal combustion engine
JP5146248B2 (en) In-cylinder direct injection internal combustion engine
JP2007285205A (en) Cylinder injection type spark ignition internal combustion engine
WO2020196683A1 (en) Auxiliary chamber-type internal combustion engine
KR20200069920A (en) Piston combustion chamber structure of engine
JP7327466B2 (en) pre-chamber internal combustion engine
WO2023181398A1 (en) Engine
JP5338429B2 (en) In-cylinder injection spark ignition internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP