WO2020196047A1 - Method for manufacturing plunger pump and plunger pump - Google Patents

Method for manufacturing plunger pump and plunger pump Download PDF

Info

Publication number
WO2020196047A1
WO2020196047A1 PCT/JP2020/011513 JP2020011513W WO2020196047A1 WO 2020196047 A1 WO2020196047 A1 WO 2020196047A1 JP 2020011513 W JP2020011513 W JP 2020011513W WO 2020196047 A1 WO2020196047 A1 WO 2020196047A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
inner cylinder
outer cylinder
sample
plunger pump
Prior art date
Application number
PCT/JP2020/011513
Other languages
French (fr)
Japanese (ja)
Inventor
恵一 佐野
Original Assignee
株式会社常光
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社常光 filed Critical 株式会社常光
Priority to EP20777597.4A priority Critical patent/EP3943748A4/en
Priority to US17/440,348 priority patent/US20220193751A1/en
Priority to CN202080022874.0A priority patent/CN113614370B/en
Publication of WO2020196047A1 publication Critical patent/WO2020196047A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • B21D39/046Connecting tubes to tube-like fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/22Other positive-displacement pumps of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • F04B53/166Cylinder liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • F04B53/166Cylinder liners
    • F04B53/168Mounting of cylinder liners in cylinders

Definitions

  • This disclosure relates to a method for manufacturing a plunger pump and a plunger pump.
  • an atomizing device unit is known as a homogenizer unit that atomizes and homogenizes a sample.
  • Japanese Patent No. 3149371 includes an atomizing device in which a atomizing flow path is formed inside, and a sample supplied from a container is atomized by a high-pressure pump.
  • a configuration is disclosed in which a sample is made uniform by supplying it into a chemical flow path and passing it through the flow path.
  • the present disclosure has been made in view of the above problems, and provides a method for manufacturing a plunger pump for improving the durability of a sample against internal pressure by a pump, and a plunger pump manufactured by the manufacturing method. With the goal.
  • the method for manufacturing a plunger pump is connected to a atomizing device having an atomizing flow path for atomizing a sample by passing the sample through the inside, and fine particles are used.
  • a method for manufacturing a plunger pump which supplies a sample to the inside of a chemical apparatus at a high pressure and consists of an outer cylinder and an inner cylinder in which a cylindrical pressurizing chamber is formed, whichever is the outer cylinder or the inner cylinder.
  • the inner cylinder in which the outer diameter is shorter than the inner diameter of the outer cylinder due to the temperature difference generated by the temperature difference generation step in which the temperature difference is generated from the normal temperature state and the inner cylinder in which the temperature difference is generated are inside the outer cylinder. It includes a cylinder insertion step of inserting the cylinder into the cylinder, a removal step of removing the generated temperature difference, and a plunger placement step of arranging a cylindrical plunger reciprocally in the pressurizing chamber of the inner cylinder.
  • the temperature difference generation step includes a heating step of heating the outer cylinder
  • the cylinder insertion step is to attach the inner cylinder to the outer cylinder in a state where the inner diameter is longer than the outer diameter of the inner cylinder.
  • the insertion and removal steps may include a cooling step of cooling the outer cylinder.
  • the temperature difference generation step includes a cooling step of cooling the inner cylinder
  • the cylinder insertion step changes the inner cylinder into the outer cylinder in a state where the outer diameter is shorter than the inner diameter of the outer cylinder.
  • the inserting and removing steps may include a heating step of heating the inner cylinder.
  • the temperature difference generation step includes a heating step of heating the outer cylinder and a cooling step of cooling the inner cylinder
  • the cylinder insertion step has an inner diameter longer than the outer diameter of the inner cylinder.
  • the inner cylinder may be inserted into the outer cylinder in the present state, and the removal step may include a cooling step of cooling the outer cylinder and a heating step of heating the inner cylinder.
  • the inner cylinder may be press-fitted into the inside of the outer cylinder.
  • the plunger pump is connected to an atomizing device having an atomizing flow path for atomizing the sample by passing the sample inside, and atomizing the sample.
  • a plunger pump that supplies a sample to the inside of the device at high pressure.
  • the inner cylinder which is inserted inside the outer cylinder and a cylindrical pressurizing chamber is formed inside, and the pressurizing chamber of the inner cylinder.
  • the inner cylinder is configured to be compressed by the outer cylinder, comprising a plunger in which a cylindrical plunger is reciprocally arranged.
  • the method for manufacturing a plunger pump of the present disclosure is to manufacture a plunger pump having a cylinder composed of an outer cylinder and an inner cylinder, and the size of the outer cylinder or the inner cylinder is changed from the normal temperature state to a different temperature. Change and in the meantime insert the inner cylinder into the outer cylinder. Therefore, when the temperature returns to the normal temperature state, it is possible to form a cylinder in which the outer cylinder constantly applies external pressure to the inner cylinder, so that the internal pressure from the high-pressure sample passing through the inside of the cylinder can be countered. It is possible to suppress metal fatigue of the cylinders constituting the plunger.
  • FIG. 5 is a cross-sectional view showing the structure of an orifice homogenizer.
  • the flowchart which shows the manufacturing method of a plunger pump. (A) to (d) are image diagrams showing a manufacturing process of a plunger pump.
  • (A) to (c) are image diagrams showing the manufacturing process of the plunger pump following FIG.
  • A) to (d) are image diagrams showing other manufacturing processes of the plunger pump.
  • (A) to (c) are image diagrams showing other manufacturing processes of the plunger pump following FIG.
  • FIG. 1 is a conceptual diagram schematically showing a configuration example of a atomizing device unit 1 in which a plunger pump is used.
  • the atomizing device unit 1 is a homogenizer unit that atomizes and homogenizes a sample.
  • the atomizing device unit 1 includes an atomizing device 10, a supply container 30, a take-out container 31, and pipes 40, 41, 42, 43 connecting these.
  • the atomizing device 10 has an atomizing flow path for atomizing the sample by passing the sample through the inside.
  • the atomizing device 10 is sometimes referred to as an orifice homogenizer or simply an orifice.
  • the structure of the atomizing device 10 will be described in detail with reference to FIGS. 2 and 3.
  • FIG. 2 is a vertical sectional view of the atomizing device 10
  • FIG. 2A is a sectional view taken along the line AA
  • FIG. 2 is a sectional view taken along the line BB of FIG. 2 is FIG. 3B.
  • Yes the cross-sectional view taken along the line CC of FIG. 2 is FIG. 3 (c).
  • the atomizing device 10 is formed by a first block 21, a second block 22, and a third block 23 interposed between the first block 21 and the second block 22.
  • first block 21 a plurality of flow path portions 11 and 12 are formed (see FIGS. 2 and 3 (a)). Further, also in the second block 22, a plurality of flow path portions 18 and 19 are formed.
  • the first gap portion 14 is intentionally formed on the joint surface between the first block 21 and the third block 23.
  • the first gap portion 14 serves as an gathering portion 13 for singing a plurality of flow path portions 11 and 12 (see FIGS. 2 and 3 (b)).
  • the collecting portion 13 first gap portion 14
  • the side opposite to the flow path portions 11 and 12 in the flow path direction becomes the third block 23, and the orifice flow path portion 15 is formed in the third block 23 (FIG. 2 and FIG. 3 (c)).
  • a second gap 16 is intentionally formed on the joint surface between the third block 23 and the second block 22 also on the downstream side of the orifice flow path portion 15.
  • the second gap 16 serves as a branch 17 that branches the orifice flow path 15 and connects to the plurality of flow paths 18 and 19. That is, the atomized flow path is composed of the flow path portions 11 and 12, the orifice flow path portion 15, and the flow path portions 18 and 19.
  • the inner diameters (D1) of the flow paths 11 and 12 and the flow paths 18 and 19 are the same as each other, and are formed larger than the inner diameter (D2) of the orifice flow path 15. Specifically, the inner diameter (D1) is 5 to 7 times the inner diameter (D2). Further, the distance (D3) of the first gap portion 14 is defined in the same manner as the inner diameter (D1). Therefore, the orifice flow path portion 15 is a small diameter flow path portion.
  • the sample in which the object to be treated is dispersed in the organic solvent penetrates into the collecting portion 13 (first void portion 14) via the flow path portions 11 and 12.
  • the orifice flow path portion 15 is narrower than the flow path portions 11 and 12, the flow rate of the sample decreases.
  • a pressure change of the sample pressure feeding fluid
  • the objects to be processed in the sample at this time are crushed by the energy at the time of collision. In this way, each time the sample flows from the flow path portions 11 and 12 to the orifice flow path portion 15, collisions between the objects to be processed in the sample proceed, and as a result, the sample is crushed.
  • the supply container 30 supplies the sample to the atomization flow path.
  • the supply container 30 is provided on the most upstream side of the atomization path, and is connected to the valve 71 via a pipe 40 as shown in the figure.
  • the supply container 30 is filled with a sample before atomization and, as shown by the arrow in FIG. 1, a sample that has passed through the atomization path and has not yet been sufficiently atomized.
  • the detailed configuration from the take-out container 31 to the supply container 30 is omitted.
  • the take-out container 31 is a container for taking out the sample after the sample is completely homogenized.
  • the atomizing device unit 1 may not be provided with the take-out container 31 (may be provided), and may be configured to take out a uniform sample from the pipe 40 via the drain 86 or the like.
  • FIG. 1 shows a configuration including both a take-out container 31 and a drain 86.
  • the plunger pump 51 is connected to the valve 71 and the atomizing device 10 via the pipe 40.
  • the valve 71 By opening the valve 71, the sample from the supply container 30 can flow into the pipe 41, and by closing the valve 71, the sample from the supply container 30 is prevented from flowing out to the pipe 41, and the plunger pump is pumped. It is possible to prevent the sample extruded by 51 from flowing back to the supply container 30 side.
  • the plunger pump 51 is composed of a cylinder 51A and a plunger 51B. By reciprocating the plunger inside the cylinder, the sample can be filled inside the cylinder and the sample inside the cylinder can be sent out.
  • FIG. 4 is an enlarged image of the plunger pump 51.
  • FIG. 4 is a partial cross-sectional view of the plunger pump and is a conceptual image diagram.
  • FIG. 4 shows a schematic enlarged view of the plunger pump 51, but the plunger pumps 52 and 53 also have the same structure.
  • the cylinder 51A includes an inner cylinder 51a and an outer cylinder 51b. That is, the cylinder 51A has a double structure.
  • the inner cylinder 51a is configured so that an external pressure is constantly applied by the outer cylinder 51b. That is, the inner cylinder 51a uses a member whose outer diameter is larger than the inner diameter of the outer cylinder 51b when it is not inserted into the outer cylinder 51b.
  • the cylinder 51A is configured in a state where the inner cylinder 51a is pressed by the outer cylinder 51b.
  • the inner cylinder 51a is preferably made of a material having a higher hardness (harder) than the outer cylinder 51b, and SUS630 may be used as an example, but this is not the case.
  • the outer cylinder 51b is made of a material that is slightly softer than the inner cylinder 51a, has elasticity, and has a function of tightening the inner cylinder 51a, and SUS316 or the like may be used as an example. That is not the case.
  • a plunger 51B that reciprocates inside the cylinder 51A is inserted and arranged in the cylinder 51A.
  • the plunger 51B reciprocates in the direction of the arrow shown in FIG. 4 due to the rotation of the crank mechanism.
  • the plunger pump 51 can suck the sample from the pipe 41 and push the sample into the pipe 41.
  • a valve 73 and a valve 75 are further connected to the atomizing device 10 via a pipe 43.
  • the valve 73 By opening the valve 73, the sample from the atomizing device 10 can flow into the pipe 43, and by closing the valve 73, the sample from the atomizing device 10 can be prevented from flowing out to the pipe 43. it can.
  • the valve 75 By opening the valve 75, the sample from the atomizing device 10 can flow to the drain 86, and by closing the valve 75, the sample from the atomizing device 10 is prevented from flowing out to the drain 86 side. be able to.
  • a pipe 43 is connected to the valve 73, and the pipe 43 is connected to the take-out container 31.
  • the pipe 43 may be provided with a heat exchanger 80, which functions to remove the heat when the sample has heat by the atomizing step by the atomizing device 10.
  • the atomizing device unit 1 may also include a control unit (not shown) that controls the opening and closing of the plunger pump 51 and the valves 71, 73, 75 and the like.
  • the control unit opens and closes the plunger pump 51 and the valves 71, 73, and 75 in the atomizing device unit 1 so that the sample loops through the atomizing path and flows through the atomizing path to the target particle size. Control.
  • the object to be treated is dispersed in an organic solvent to become a sample. Dispersion is performed in the supply container 30.
  • the objects to be treated to be miniaturized are a wide variety of substances such as cellulose, graphite, graphene, carbon nanotubes, and composite metal oxides (crystalline materials such as spinel and perovskite).
  • cellulose graphite, graphene, carbon nanotubes, and composite metal oxides (crystalline materials such as spinel and perovskite).
  • the sample is filled in the cylinder 51A of the plunger pump 51. Then, with the valve 71 closed, the plunger 51B is pushed into the cylinder 51A to supply the sample to the atomizing device 10 (extruded at high pressure) via the pipe 41.
  • the valve 73 is opened and the valve 75 is closed at the timing of pushing the plunger 51B.
  • the sample atomized (uniformized) by passing through the atomizing device 10 having the above-mentioned structure is supplied to the take-out container 31 through the pipe 42, the valve 73, and the pipe 43. At this time, the sample may be exhausted by the heat exchanger 80 as necessary when passing through the pipe 43. Then, the sample supplied to the take-out container 31 is again provided to the supply container 30 and subjected to atomization treatment.
  • the sample passes through the atomization flow path multiple times. That is, the sample is atomized a plurality of times, and the sample is made uniform.
  • the process may be executed by the control unit provided in the atomizing device unit 1, or may be executed by the control unit that has received an instruction from the operator.
  • the sample supplied to the take-out container 31 may be taken out, or the valve 73 is closed and the valve 75 is opened at the timing of pushing the plunger 51B. Therefore, the sample may be taken out from the drain 86.
  • FIG. 5 is a flowchart showing a manufacturing method of the plunger pump shown in FIG. 6 and 7 are image diagrams when the plunger pump is manufactured by the procedure shown in FIG. A method of manufacturing the plunger pump 51 will be described with reference to FIGS. 5 to 7.
  • the outer cylinder is made larger (or smaller) than usual by generating a temperature difference from the normal temperature state with respect to either the outer cylinder 51b or the inner cylinder 51a. It is realized that the inner cylinder 51a is inserted into the 51b.
  • the outer cylinder 51b is heated to expand its size and the inner cylinder 51a can be inserted.
  • a specific description will be given.
  • an inner cylinder 51a and an outer cylinder 51b are prepared so that the outer diameter of the inner cylinder 51a ⁇ the inner diameter of the outer cylinder 51b.
  • a material that expands thermally is used for the outer cylinder 51b.
  • the prepared outer cylinder 51b is heat-treated (step S501 in FIG. 5).
  • the heat treatment is performed only on the outer cylinder 51b.
  • the outer cylinder 51b is heated to the extent that it expands and the outer cylinder 51b is not damaged by heat.
  • the outer cylinder 51b is thermally expanded as shown by the arrow in FIG. 6 (c).
  • the inner diameter of the outer cylinder 51b expands (extends). Therefore, the inner cylinder 51a can be easily press-fitted into the outer cylinder 51b.
  • FIG. 6D shows a cylinder 51A in a state where the inner cylinder 51a has been inserted into the outer cylinder 51b.
  • the outer cylinder 51b is cooled (cooled) in order to return the expanded outer cylinder 51b to the original state, that is, the non-expanded state. See step S503 of FIG. 5 and FIG. 7B).
  • the cooling treatment natural cooling is desirable in consideration of heating and metal fatigue due to cooling of the outer cylinder 51b, but this is not the case. That is, the cooling process may artificially cool the outer cylinder 51b, or may be natural cooling.
  • the cylinder 51A may be attached to a water tank filled with water, but any method may be used as long as the outer cylinder 51b can be cooled without being damaged.
  • the outer cylinder 51b returns to its original dimensions when cooled. Therefore, the cylinder 51A has a structure in which the outer cylinder 51b always tightens the inner cylinder 51a from the outside.
  • the pressure is applied to the inner cylinder 51a.
  • External pressure is applied from the outer cylinder 51b. The external pressure from the outer cylinder 51b opposes the internal pressure of the sample flowing inside the inner cylinder 51a, so that the pressure related to the inner cylinder 51a is dispersed.
  • the cylinder 51A has a double structure, and the outer cylinder 51b applies an external pressure to the inner cylinder 51a, so that the internal pressure from the sample flowing inside is higher than before. It is possible to improve the resistance to the strain and reduce the degree of fatigue as compared with the conventional case.
  • the plunger 51B is then inserted into the cylinder 51A (see step S504 and FIG. 7C in FIG. 5). As a result, the plunger pump 51 can be manufactured.
  • the inner cylinder 51a is inserted by heating and expanding the outer cylinder 51b, and then the outer cylinder 51b is cooled and returned to the original size with respect to the inner cylinder 51a.
  • a configuration that applies external pressure has been realized.
  • the second embodiment another example of the method for manufacturing the cylinder 51A will be described.
  • the inner cylinder 51a can be inserted by heating the outer cylinder 51b to make the size larger than usual, but in the second embodiment, the inner cylinder 51a can be inserted.
  • a manufacturing method will be described in which the cylinder can be inserted into the outer cylinder 51b by reducing the size.
  • FIG. 8 is a flowchart showing a manufacturing method of the plunger pump 51 according to the second embodiment.
  • 9 and 10 are image diagrams of the manufacturing method according to the flowchart shown in FIG.
  • an inner cylinder 51a and an outer cylinder 51b are prepared so that the outer diameter of the inner cylinder 51a ⁇ the inner diameter of the outer cylinder 51b.
  • a material whose size shrinks due to cooling is used for the inner cylinder 51a.
  • the prepared inner cylinder 51a is cooled (step S801 in FIG. 8).
  • the cooling process is performed only on the inner cylinder 51a.
  • the inner cylinder 51a is cooled to such an extent that the inner cylinder 51a contracts and the inner cylinder 51a is not damaged (deteriorated) by cooling.
  • the inner cylinder 51a contracts as shown by the arrow in FIG. 9C.
  • the outer diameter of the inner cylinder 51a is contracted (shortened). Therefore, the inner cylinder 51a can be easily press-fitted into the outer cylinder 51b.
  • FIG. 9D shows the contracting inner cylinder 51a in a state where the inner cylinder 51a is completely inserted into the outer cylinder 51b.
  • the inner cylinder 51a is heat-treated in order to return the contracted inner cylinder 51a to the original state, that is, the non-shrinked state ( See step S803 and FIG. 10B in FIG. 8).
  • the heat treatment is preferably natural heating (waiting for the temperature to reach room temperature naturally) in consideration of cooling of the inner cylinder 51a and metal fatigue due to heating, but this is not the case. That is, as an artificial cooling method in which the heat treatment may artificially heat the inner cylinder 51a, for example, it is conceivable to attach the cylinder 51A to a bathtub filled with hot water. Any method may be used as long as the cylinder 51a can be heated without being damaged. At this time, it is desirable that the outer cylinder 51b does not expand due to the heat treatment.
  • the inner cylinder 51a returns to its original dimensions by being heated.
  • the outer cylinder 51b itself remains in its original size. Therefore, the cylinder 51A has a structure in which the outer cylinder 51b always tightens the inner cylinder 51a from the outside.
  • the sample flows in the cylinder 51A at a high pressure. Therefore, pressure is applied to the cylinder from the sample toward the outside, which causes metal fatigue of the cylinder.
  • the pressure is applied to the inner cylinder 51a. External pressure is applied from the outer cylinder 51b.
  • the cylinder 51A has a double structure, and the outer cylinder 51b applies an external pressure to the inner cylinder 51a, so that the internal pressure from the sample flowing inside is higher than before. It is possible to improve the resistance to resistance to the cylinder 51A and reduce the degree of metal fatigue of the cylinder 51A as compared with the conventional case.
  • the plunger 51B is then inserted into the cylinder 51A (see step S804 and FIG. 10C in FIG. 8). As a result, the plunger pump 51 can be manufactured.
  • the inner cylinder 51a is inserted into the outer cylinder 51b by expanding the outer cylinder 51b by heat treatment, and in the second embodiment, the inner cylinder 51a is contracted by cooling treatment.
  • the inner cylinder 51a was inserted into the outer cylinder 51b.
  • a method other than heat treatment or cooling treatment may be used as long as the inner cylinder 51a can be inserted into the outer cylinder 51b whose inner diameter is smaller than the outer diameter of the inner cylinder 51a. ..
  • the outer cylinder 51b may be mechanically gripped, and the inner cylinder 51a may be press-fitted into the outer cylinder 51b by a robot machine or the like.
  • the outer cylinder 51b applies pressure to the inner cylinder 51a in a steady state.
  • this is a configuration for competing with the internal pressure in the inner cylinder 51a when the atomizing device is operated, but if it is configured so that an external pressure is applied to the inner cylinder 51a, another configuration is used.
  • a device that applies an external pressure to the cylinder 51A may be added during the operation of the atomizing device.
  • an external pressure may be applied to the cylinder 51A by applying hydraulic pressure to the cylinder 51A when the atomizing device is operated, or an external pressure may be applied to the cylinder 51A by a device such as a vise. May be good.
  • a plunger pump having a cylinder 51A configured such that the outer cylinder 51b constantly applies external pressure to the inner cylinder 51a is used.
  • the sample flows in only one direction, but the atomizing device 10 may be reciprocated. That is, in FIG. 1, another plunger pump may be provided at the place where the drain 86 is provided so that the sample reciprocates in the atomizing device 10.
  • the structure of the flow path of the atomizing device 10 can be arbitrarily changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A method for manufacturing a plunger pump comprises: a temperature difference generation step for generating, with respect to one of an outer cylinder and an inner cylinder, a temperature difference from an ordinary temperature state; a cylinder insertion step for inserting the inner cylinder into the outer cylinder, the outer diameter of the inner cylinder being shorter than the inner diameter of the outer cylinder due to the temperature difference generated in the temperature difference generation step; a removal step for removing the generated temperature difference; and a plunger placing step for placing a cylindrical plunger in a compression chamber of the inner cylinder in a reciprocable manner.

Description

プランジャポンプの製造方法、プランジャポンプPlunger pump manufacturing method, plunger pump
 本開示は、プランジャポンプの製造方法ならびにプランジャポンプに関する。 This disclosure relates to a method for manufacturing a plunger pump and a plunger pump.
 従来、試料を微粒化して均一化させるホモジナイザーユニットとして、微粒化装置ユニットが知られている。 Conventionally, an atomizing device unit is known as a homogenizer unit that atomizes and homogenizes a sample.
 このような微粒化装置ユニットとして、例えば特許第3149371号公報には、内部に微粒化流路が形成された微粒化装置を備え、容器から供給された試料を、高圧ポンプにより微粒化装置の微粒化流路内に供給して通過させることで、試料を均一化させる構成が開示されている。 As such an atomizing device unit, for example, Japanese Patent No. 3149371 includes an atomizing device in which a atomizing flow path is formed inside, and a sample supplied from a container is atomized by a high-pressure pump. A configuration is disclosed in which a sample is made uniform by supplying it into a chemical flow path and passing it through the flow path.
 しかしながら、上記文献に記載の発明では、ポンプが試料に対して圧力を印可する関係上、ポンプを形成するシリンダが劣化疲労するという問題があった。 However, in the invention described in the above document, there is a problem that the cylinder forming the pump deteriorates and fatigues because the pump applies pressure to the sample.
 そこで本開示は、上記問題に鑑みてなされたものであり、ポンプにより試料の内圧に対する耐久性を向上させるためのプランジャポンプの製造方法、ならびに、当該製造方法により製造されたプランジャポンプを提供することを目的とする。 Therefore, the present disclosure has been made in view of the above problems, and provides a method for manufacturing a plunger pump for improving the durability of a sample against internal pressure by a pump, and a plunger pump manufactured by the manufacturing method. With the goal.
 上記課題を解決するために、本開示の一態様に係るプランジャポンプの製造方法は、試料が内部を通過することで、試料を微粒化する微粒化流路を有する微粒化装置に接続され、微粒化装置の内部に試料を高圧で供給するものであって外側シリンダと円筒状の加圧室が形成される内側シリンダとから成るプランジャポンプの製造方法であって、外側シリンダと内側シリンダとのいずれか一方に対して、常温状態から温度差を発生させる温度差発生工程と、温度差発生工程により発生した温度差により外径が外側シリンダの内径よりも短い状態の内側シリンダを、外側シリンダの内側に挿入するシリンダ挿入工程と、発生させた温度差を除去する除去工程と、内側シリンダの加圧室に円筒状のプランジャを往復動可能に配置するプランジャ配置工程と、を含む。 In order to solve the above problems, the method for manufacturing a plunger pump according to one aspect of the present disclosure is connected to a atomizing device having an atomizing flow path for atomizing a sample by passing the sample through the inside, and fine particles are used. A method for manufacturing a plunger pump, which supplies a sample to the inside of a chemical apparatus at a high pressure and consists of an outer cylinder and an inner cylinder in which a cylindrical pressurizing chamber is formed, whichever is the outer cylinder or the inner cylinder. On the other hand, the inner cylinder in which the outer diameter is shorter than the inner diameter of the outer cylinder due to the temperature difference generated by the temperature difference generation step in which the temperature difference is generated from the normal temperature state and the inner cylinder in which the temperature difference is generated are inside the outer cylinder. It includes a cylinder insertion step of inserting the cylinder into the cylinder, a removal step of removing the generated temperature difference, and a plunger placement step of arranging a cylindrical plunger reciprocally in the pressurizing chamber of the inner cylinder.
 また、上記製造方法において、温度差発生工程は、外側シリンダを加熱する加熱工程を含み、シリンダ挿入工程は、内側シリンダの外径よりも内径が長くなっている状態の外側シリンダに、内側シリンダを挿入し、除去工程は、外側シリンダを冷却する冷却工程を含むこととしてもよい。 Further, in the above manufacturing method, the temperature difference generation step includes a heating step of heating the outer cylinder, and the cylinder insertion step is to attach the inner cylinder to the outer cylinder in a state where the inner diameter is longer than the outer diameter of the inner cylinder. The insertion and removal steps may include a cooling step of cooling the outer cylinder.
 また、上記製造方法において、温度差発生工程は、内側シリンダを冷却する冷却工程を含み、シリンダ挿入工程は、外側シリンダの内径よりも外径が短くなっている状態の内側シリンダを、外側シリンダに挿入し、除去工程は、内側シリンダを加熱する加熱工程を含むこととしてもよい。 Further, in the above manufacturing method, the temperature difference generation step includes a cooling step of cooling the inner cylinder, and the cylinder insertion step changes the inner cylinder into the outer cylinder in a state where the outer diameter is shorter than the inner diameter of the outer cylinder. The inserting and removing steps may include a heating step of heating the inner cylinder.
 また、上記製造方法において、温度差発生工程は、外側シリンダを加熱する加熱工程と、内側シリンダを冷却する冷却工程とを含み、シリンダ挿入工程は、内側シリンダの外径よりも内径が長くなっている状態の外側シリンダに、内側シリンダを挿入し、除去工程は、外側シリンダを冷却する冷却工程と、内側シリンダを加熱する加熱工程とを含むこととしてもよい。 Further, in the above manufacturing method, the temperature difference generation step includes a heating step of heating the outer cylinder and a cooling step of cooling the inner cylinder, and the cylinder insertion step has an inner diameter longer than the outer diameter of the inner cylinder. The inner cylinder may be inserted into the outer cylinder in the present state, and the removal step may include a cooling step of cooling the outer cylinder and a heating step of heating the inner cylinder.
 また、上記製造方法のシリンダ挿入工程において、内側シリンダは、外側シリンダの内側に圧入されることとしてもよい。 Further, in the cylinder insertion step of the above manufacturing method, the inner cylinder may be press-fitted into the inside of the outer cylinder.
 また、上記課題を解決するために、本開示の一態様に係るプランジャポンプは、試料が内部を通過することで、試料を微粒化する微粒化流路を有する微粒化装置に接続され、微粒化装置の内部に試料を高圧で供給するプランジャポンプであって、外側シリンダと、外側シリンダの内側に挿入され、内部に円筒状の加圧室が形成される内側シリンダと、内側シリンダの加圧室に円筒状のプランジャを往復動可能に配置されるプランジャと、を備え、内側シリンダは、外側シリンダにより圧迫されるように構成されている。 Further, in order to solve the above problems, the plunger pump according to one aspect of the present disclosure is connected to an atomizing device having an atomizing flow path for atomizing the sample by passing the sample inside, and atomizing the sample. A plunger pump that supplies a sample to the inside of the device at high pressure. The inner cylinder, which is inserted inside the outer cylinder and a cylindrical pressurizing chamber is formed inside, and the pressurizing chamber of the inner cylinder. The inner cylinder is configured to be compressed by the outer cylinder, comprising a plunger in which a cylindrical plunger is reciprocally arranged.
 本開示のプランジャポンプの製造方法は、外側シリンダと内側シリンダとからなるシリンダを有するプランジャポンプを製造するものであり、外側シリンダまたは内側シリンダに対して常温状態から異なる温度とすることで、サイズを変更し、その間に、外側シリンダに内側シリンダを挿入する。したがって、常温状態に戻ると、外側シリンダが内側シリンダに対して常時外圧を加えている状態のシリンダを構成することができるので、そのシリンダ内部を通過する高圧の試料からの内圧と対抗させることができ、プランジャを構成するシリンダの金属疲労を抑制することができる。 The method for manufacturing a plunger pump of the present disclosure is to manufacture a plunger pump having a cylinder composed of an outer cylinder and an inner cylinder, and the size of the outer cylinder or the inner cylinder is changed from the normal temperature state to a different temperature. Change and in the meantime insert the inner cylinder into the outer cylinder. Therefore, when the temperature returns to the normal temperature state, it is possible to form a cylinder in which the outer cylinder constantly applies external pressure to the inner cylinder, so that the internal pressure from the high-pressure sample passing through the inside of the cylinder can be countered. It is possible to suppress metal fatigue of the cylinders constituting the plunger.
微粒化装置の構成例を示す概念図。The conceptual diagram which shows the structural example of the atomizing apparatus. オリフィスホモジナイザの構造を示す断面図。FIG. 5 is a cross-sectional view showing the structure of an orifice homogenizer. オリフィスホモジナイザの径方向の断面図。A radial cross-sectional view of the orifice homogenizer. プランジャポンプの拡大イメージ図。Enlarged image of the plunger pump. プランジャポンプの製造方法を示すフローチャート。The flowchart which shows the manufacturing method of a plunger pump. (a)~(d)は、プランジャポンプの製造過程を示すイメージ図。(A) to (d) are image diagrams showing a manufacturing process of a plunger pump. (a)~(c)は、図6に続くプランジャポンプの製造過程を示すイメージ図。(A) to (c) are image diagrams showing the manufacturing process of the plunger pump following FIG. プランジャポンプの他の製造方法を示すフローチャート。The flowchart which shows the other manufacturing method of a plunger pump. (a)~(d)は、プランジャポンプの他の製造過程を示すイメージ図。(A) to (d) are image diagrams showing other manufacturing processes of the plunger pump. (a)~(c)は、図9に続くプランジャポンプの他の製造過程を示すイメージ図。(A) to (c) are image diagrams showing other manufacturing processes of the plunger pump following FIG.
 本開示の一態様に係るプランジャポンプの製造方法およびプランジャポンプについて、図面を参照しながら詳細に説明する。 The manufacturing method of the plunger pump and the plunger pump according to one aspect of the present disclosure will be described in detail with reference to the drawings.
 図1は、プランジャポンプが利用される微粒化装置ユニット1の構成例を模式的に示す概念図である。図1に示すように、微粒化装置ユニット1は、試料を微粒化して均一化させるホモジナイザーユニットである。微粒化装置ユニット1は、微粒化装置10、供給容器30、取出容器31、およびこれらを接続する配管40、41、42、43を備えている。 FIG. 1 is a conceptual diagram schematically showing a configuration example of a atomizing device unit 1 in which a plunger pump is used. As shown in FIG. 1, the atomizing device unit 1 is a homogenizer unit that atomizes and homogenizes a sample. The atomizing device unit 1 includes an atomizing device 10, a supply container 30, a take-out container 31, and pipes 40, 41, 42, 43 connecting these.
 微粒化装置10は、試料が内部を通過することで、該試料を微粒化する微粒化流路を有している。微粒化装置10は、オリフィスホモジナイザあるいは単にオリフィスと呼称されることもある。ここで、微粒化装置10の構造について、図2および図3を用いて詳述する。 The atomizing device 10 has an atomizing flow path for atomizing the sample by passing the sample through the inside. The atomizing device 10 is sometimes referred to as an orifice homogenizer or simply an orifice. Here, the structure of the atomizing device 10 will be described in detail with reference to FIGS. 2 and 3.
 図2は微粒化装置10の縦断面図であり、図2のA-A線における断面図が図3(a)であり、図2のB-B線における断面図が図3(b)であり、図2のC-C線における断面図が図3(c)である。 FIG. 2 is a vertical sectional view of the atomizing device 10, FIG. 2A is a sectional view taken along the line AA, and FIG. 2 is a sectional view taken along the line BB of FIG. 2 is FIG. 3B. Yes, the cross-sectional view taken along the line CC of FIG. 2 is FIG. 3 (c).
 微粒化装置10は、第1ブロック21と第2ブロック22、そして第1ブロック21と第2ブロック22の間に介装される第3ブロック23により形成される。第1ブロック21において、複数の流路部11、12が形成される(図2および図3(a)参照)。また、第2ブロック22においても、複数の流路部18、19が形成される。 The atomizing device 10 is formed by a first block 21, a second block 22, and a third block 23 interposed between the first block 21 and the second block 22. In the first block 21, a plurality of flow path portions 11 and 12 are formed (see FIGS. 2 and 3 (a)). Further, also in the second block 22, a plurality of flow path portions 18 and 19 are formed.
 第1ブロック21と第3ブロック23との接合面に意図的に第1空隙部14が形成される。この第1空隙部14が複数の流路部11、12を単一に集合させる集合部13となる(図2および図3(b)参照)。集合部13(第1空隙部14)のうち、流路方向における流路部11、12と反対側は第3ブロック23となり、第3ブロック23内にオリフィス流路部15が形成される(図2および図3(c)参照)。 The first gap portion 14 is intentionally formed on the joint surface between the first block 21 and the third block 23. The first gap portion 14 serves as an gathering portion 13 for singing a plurality of flow path portions 11 and 12 (see FIGS. 2 and 3 (b)). Of the collecting portion 13 (first gap portion 14), the side opposite to the flow path portions 11 and 12 in the flow path direction becomes the third block 23, and the orifice flow path portion 15 is formed in the third block 23 (FIG. 2 and FIG. 3 (c)).
 オリフィス流路部15の下流側においても、第3ブロック23と第2ブロック22との接合面にも意図的に第2空隙部16が形成される。この第2空隙部16がオリフィス流路部15を分岐させて複数の流路部18、19と接続する分岐部17となる。すなわち、微粒化流路は、流路部11、12、オリフィス流路部15、および流路部18、19により構成されている。 A second gap 16 is intentionally formed on the joint surface between the third block 23 and the second block 22 also on the downstream side of the orifice flow path portion 15. The second gap 16 serves as a branch 17 that branches the orifice flow path 15 and connects to the plurality of flow paths 18 and 19. That is, the atomized flow path is composed of the flow path portions 11 and 12, the orifice flow path portion 15, and the flow path portions 18 and 19.
 流路部11、12および流路部18、19の内直径(D1)は相互に同一であり、オリフィス流路部15の内直径(D2)よりも大きく形成される。具体的には、内直径(D1)は、内直径(D2)の5ないし7倍である。また、第1空隙部14の距離(D3)は内直径(D1)と同等に規定される。従って、オリフィス流路部15は小径流路部である。    The inner diameters (D1) of the flow paths 11 and 12 and the flow paths 18 and 19 are the same as each other, and are formed larger than the inner diameter (D2) of the orifice flow path 15. Specifically, the inner diameter (D1) is 5 to 7 times the inner diameter (D2). Further, the distance (D3) of the first gap portion 14 is defined in the same manner as the inner diameter (D1). Therefore, the orifice flow path portion 15 is a small diameter flow path portion.
 次に、微粒化装置10を用いた際の作用を説明する。被処理物を有機溶媒中に分散させた試料は、流路部11、12を経由して集合部13(第1空隙部14)に侵入する。ここで、オリフィス流路部15は流路部11、12よりも狭小であるため、試料の流量は低下する。そして、試料(圧送流体)の圧力変化が生じ、それぞれの流路部11、12から流入した試料は集合部13において衝突する。このときの試料中の被処理物同士は衝突時のエネルギーにより破砕される。このように、試料が流路部11、12からオリフィス流路部15へ流動するごとに、試料中の被処理物同士の衝突が進み、結果として試料は粉砕される。 Next, the action when the atomizing device 10 is used will be described. The sample in which the object to be treated is dispersed in the organic solvent penetrates into the collecting portion 13 (first void portion 14) via the flow path portions 11 and 12. Here, since the orifice flow path portion 15 is narrower than the flow path portions 11 and 12, the flow rate of the sample decreases. Then, a pressure change of the sample (pressure feeding fluid) occurs, and the samples flowing in from the respective flow path portions 11 and 12 collide with each other in the collecting portion 13. The objects to be processed in the sample at this time are crushed by the energy at the time of collision. In this way, each time the sample flows from the flow path portions 11 and 12 to the orifice flow path portion 15, collisions between the objects to be processed in the sample proceed, and as a result, the sample is crushed.
 図示の流路部11、12および流路部18、19それぞれは、ともに2つずつ形成されているが、流路部11、12および流路部18、19の形成数は、試料が流れればよいので、1以上あればよい。ただし、試料中の被処理物の衝突を促すため、流路部11、12および流路部18、19それぞれの形成数は、ともに2以上であることがさらに望ましい。 Two of each of the flow paths 11 and 12 and the flow paths 18 and 19 shown in the figure are formed, but the number of the flow paths 11 and 12 and the flow paths 18 and 19 formed is such that the sample flows. Since it is sufficient, one or more is sufficient. However, in order to promote collision of the object to be processed in the sample, it is more desirable that the number of each of the flow paths 11 and 12 and the flow paths 18 and 19 formed is 2 or more.
 図1に戻って、供給容器30は、微粒化流路に試料を供給する。供給容器30は、微粒化経路の最も上流側に設けられており、図示の通り、弁71に配管40を介して接続されている。供給容器30には、微粒化前の試料および図1の矢印に示されるように、微粒化経路を通過した後であって、まだ十分に微粒化されていない試料が充填される。なお、図1においては、取出容器31から供給容器30までの詳細な構成については、省略している。 Returning to FIG. 1, the supply container 30 supplies the sample to the atomization flow path. The supply container 30 is provided on the most upstream side of the atomization path, and is connected to the valve 71 via a pipe 40 as shown in the figure. The supply container 30 is filled with a sample before atomization and, as shown by the arrow in FIG. 1, a sample that has passed through the atomization path and has not yet been sufficiently atomized. In FIG. 1, the detailed configuration from the take-out container 31 to the supply container 30 is omitted.
 取出容器31は、試料が完全に均一化されたのちに、試料を取り出すための容器である。 The take-out container 31 is a container for taking out the sample after the sample is completely homogenized.
 なお、微粒化装置ユニット1は、取出容器31を備えずに(備えていてもよい)、配管40からドレン86等を介して、均一化された試料を取出すような構成であってもよい。図1では、取出容器31およびドレン86の両方を備えた構成を示している。 The atomizing device unit 1 may not be provided with the take-out container 31 (may be provided), and may be configured to take out a uniform sample from the pipe 40 via the drain 86 or the like. FIG. 1 shows a configuration including both a take-out container 31 and a drain 86.
 プランジャポンプ51は、配管40を介して弁71並びに微粒化装置10に接続されている。弁71を開くことで、供給容器30からの試料を、配管41に流すことができ、弁71を閉じることで、供給容器30からの試料が配管41に流出するのを防止するとともに、プランジャポンプ51により押し出された試料が供給容器30側に逆流するのを防止することができる。 The plunger pump 51 is connected to the valve 71 and the atomizing device 10 via the pipe 40. By opening the valve 71, the sample from the supply container 30 can flow into the pipe 41, and by closing the valve 71, the sample from the supply container 30 is prevented from flowing out to the pipe 41, and the plunger pump is pumped. It is possible to prevent the sample extruded by 51 from flowing back to the supply container 30 side.
 プランジャポンプ51は、シリンダ51Aとプランジャ51Bとにより構成されている。シリンダの内部をプランジャが往復動することで、シリンダの内部に試料を充填し、シリンダ内の試料を外部に送り出すことができる。図4は、プランジャポンプ51の拡大イメージ図である。 The plunger pump 51 is composed of a cylinder 51A and a plunger 51B. By reciprocating the plunger inside the cylinder, the sample can be filled inside the cylinder and the sample inside the cylinder can be sent out. FIG. 4 is an enlarged image of the plunger pump 51.
 図4は、プランジャポンプの一部断面図であり、概念的なイメージ図である。図4には、プランジャポンプ51の模式的な拡大図を示しているが、プランジャポンプ52、53についても同様の構造を有する。本実施の形態に係るプランジャポンプは、図4に示すように、シリンダ51Aが、内側シリンダ51aと外側シリンダ51bとから成る。即ち、シリンダ51Aは二重構造を有する。シリンダ51Aにおいて、内側シリンダ51aは、外側シリンダ51bにより、常時外圧が加えられる状態になるように構成されている。即ち、内側シリンダ51aには、外側シリンダ51b内に挿入されていない状態では、その外径が、外側シリンダ51bの内径よりも大きい部材が用いられる。即ち、シリンダ51Aは、内側シリンダ51aが、外側シリンダ51bにより圧迫されている状態で構成されている。なお、内側シリンダ51aは、外側シリンダ51bよりも硬度の高い(硬い)材質であることが望ましく、一例として、SUS630を用いることが考えられるが、この限りではない。また、外側シリンダ51bは、内側シリンダ51aよりも若干柔らかい、弾性があって、内側シリンダ51aを締め付ける機能を持たせられる材質であることが望ましく、一例として、SUS316等を用いることが考えられるが、その限りではない。 FIG. 4 is a partial cross-sectional view of the plunger pump and is a conceptual image diagram. FIG. 4 shows a schematic enlarged view of the plunger pump 51, but the plunger pumps 52 and 53 also have the same structure. In the plunger pump according to the present embodiment, as shown in FIG. 4, the cylinder 51A includes an inner cylinder 51a and an outer cylinder 51b. That is, the cylinder 51A has a double structure. In the cylinder 51A, the inner cylinder 51a is configured so that an external pressure is constantly applied by the outer cylinder 51b. That is, the inner cylinder 51a uses a member whose outer diameter is larger than the inner diameter of the outer cylinder 51b when it is not inserted into the outer cylinder 51b. That is, the cylinder 51A is configured in a state where the inner cylinder 51a is pressed by the outer cylinder 51b. The inner cylinder 51a is preferably made of a material having a higher hardness (harder) than the outer cylinder 51b, and SUS630 may be used as an example, but this is not the case. Further, it is desirable that the outer cylinder 51b is made of a material that is slightly softer than the inner cylinder 51a, has elasticity, and has a function of tightening the inner cylinder 51a, and SUS316 or the like may be used as an example. That is not the case.
 シリンダ51Aには、シリンダ51A内部を往復道するプランジャ51Bが挿入、配置されている。プランジャ51Bは、クランク機構の回転により、図4に示す矢印の方向に往復道する。これにより、プランジャポンプ51は、試料を配管41から吸引することができるとともに、試料を配管41に押し出すことができる。 A plunger 51B that reciprocates inside the cylinder 51A is inserted and arranged in the cylinder 51A. The plunger 51B reciprocates in the direction of the arrow shown in FIG. 4 due to the rotation of the crank mechanism. As a result, the plunger pump 51 can suck the sample from the pipe 41 and push the sample into the pipe 41.
 微粒化装置10には、更に、配管43を介して、弁73並びに弁75が接続されている。弁73を開くことで、微粒化装置10からの試料を、配管43に流すことができ、弁73を閉じることで、微粒化装置10からの試料が配管43に流出するのを防止することができる。また、弁75を開くことで、微粒化装置10からの試料を、ドレン86に流すことができ、弁75を閉じることで微粒化装置10からの試料がドレン86側に流出するのを防止することができる。 A valve 73 and a valve 75 are further connected to the atomizing device 10 via a pipe 43. By opening the valve 73, the sample from the atomizing device 10 can flow into the pipe 43, and by closing the valve 73, the sample from the atomizing device 10 can be prevented from flowing out to the pipe 43. it can. Further, by opening the valve 75, the sample from the atomizing device 10 can flow to the drain 86, and by closing the valve 75, the sample from the atomizing device 10 is prevented from flowing out to the drain 86 side. be able to.
 弁73には、配管43が接続され、配管43は、取出容器31に接続されている。配管43には、熱交換器80が設けられていてもよく、微粒化装置10による微粒化工程によって、試料が熱をもった場合に、その熱を除去する機能を果たす。 A pipe 43 is connected to the valve 73, and the pipe 43 is connected to the take-out container 31. The pipe 43 may be provided with a heat exchanger 80, which functions to remove the heat when the sample has heat by the atomizing step by the atomizing device 10.
 微粒化装置ユニット1はまた、プランジャポンプ51や各弁71、73、75等の開閉を制御する制御部(図示せず)を備えてもよい。制御部は、微粒化装置ユニット1におい、試料が、微粒化経路をループして、目標とする粒度まで微粒化経路を流動するように、プランジャポンプ51および各弁71、73、75の開閉を制御する。 The atomizing device unit 1 may also include a control unit (not shown) that controls the opening and closing of the plunger pump 51 and the valves 71, 73, 75 and the like. The control unit opens and closes the plunger pump 51 and the valves 71, 73, and 75 in the atomizing device unit 1 so that the sample loops through the atomizing path and flows through the atomizing path to the target particle size. Control.
 以上のような構成を有する微粒化装置ユニット1において、試料を微粒化する処理手順について説明する。 The processing procedure for atomizing the sample in the atomizing device unit 1 having the above configuration will be described.
 はじめに、被処理物は有機溶媒中に分散されて試料となる。分散は供給容器30で行わる。 First, the object to be treated is dispersed in an organic solvent to become a sample. Dispersion is performed in the supply container 30.
 微小化の対象である被処理物は、例えば、セルロース、グラファイト、グラフェン、カーボンナノチューブ、複合金属酸化物(スピネル、ペロブスカイト等の結晶質)等の多岐にわたる物質である。分散を通じて微小化することにより、樹脂等に混合する際の均一な分散性が高まる。そのため、素材の性能向上が見込まれる。 The objects to be treated to be miniaturized are a wide variety of substances such as cellulose, graphite, graphene, carbon nanotubes, and composite metal oxides (crystalline materials such as spinel and perovskite). By miniaturizing through dispersion, uniform dispersibility when mixed with a resin or the like is enhanced. Therefore, the performance of the material is expected to improve.
 次に、弁71を開くともにプランジャ51Bをシリンダ51A内から引き出すことで、プランジャポンプ51のシリンダ51A内に試料を充填する。そして、弁71を閉じた状態で、プランジャ51Bをシリンダ51A内に押し込むことで、試料を、配管41を介して、微粒化装置10に供給する(高圧で押し出す)。 Next, by opening the valve 71 and pulling out the plunger 51B from the cylinder 51A, the sample is filled in the cylinder 51A of the plunger pump 51. Then, with the valve 71 closed, the plunger 51B is pushed into the cylinder 51A to supply the sample to the atomizing device 10 (extruded at high pressure) via the pipe 41.
 試料の微粒化が十分でない場合には、プランジャ51Bを押し込むタイミングでは、弁73を開き、弁75を閉じた状態にする。前述の構造を有する微粒化装置10を通過することで微粒化(均一化)された試料は、配管42、弁73、配管43を通って、取出容器31に供給される。このとき、試料は、配管43を通る際に、必要に応じて、熱交換器80によって排熱されてもよい。そして、取出容器31に供給された試料は再び、供給容器30に供され、微粒化処理が施される。 If the sample is not sufficiently atomized, the valve 73 is opened and the valve 75 is closed at the timing of pushing the plunger 51B. The sample atomized (uniformized) by passing through the atomizing device 10 having the above-mentioned structure is supplied to the take-out container 31 through the pipe 42, the valve 73, and the pipe 43. At this time, the sample may be exhausted by the heat exchanger 80 as necessary when passing through the pipe 43. Then, the sample supplied to the take-out container 31 is again provided to the supply container 30 and subjected to atomization treatment.
 この動作を複数回繰り返すことにより、試料が微粒化流路を複数回通過する。即ち、複数回にわたって試料が微粒化されるとともに、試料の均一化が実現される。なお、当該処理は、微粒化装置ユニット1に設けられた制御部により実行されてもよいし、オペレータからの指示を受け付けた制御部が実行することとしてもよい。 By repeating this operation multiple times, the sample passes through the atomization flow path multiple times. That is, the sample is atomized a plurality of times, and the sample is made uniform. The process may be executed by the control unit provided in the atomizing device unit 1, or may be executed by the control unit that has received an instruction from the operator.
 一方、試料の微粒化が十分な場合には、取出容器31に供給された試料を、取り出すこととしてもよいし、プランジャ51Bを押し込むタイミングで、弁73を閉じ、弁75を開いた状態にすることで、ドレン86から試料を取り出すこととしてもよい。 On the other hand, when the sample is sufficiently atomized, the sample supplied to the take-out container 31 may be taken out, or the valve 73 is closed and the valve 75 is opened at the timing of pushing the plunger 51B. Therefore, the sample may be taken out from the drain 86.
 <プランジャポンプの製造方法>
 図5は、図4に示したプランジャポンプの製造方法を示すフローチャートである。また、図6及び図7は、図5に示す手順でプランジャポンプを製造する際のイメージ図である。図5~図7を参照しながら、プランジャポンプ51の製造方法を説明する。プランジャポンプ51の製造は、外側シリンダ51b又は内側シリンダ51aとのいずれか一方に対して、常温状態から温度差を発生させることで、通常よりもサイズを大きく(又は小さく)することで、外側シリンダ51b内に内側シリンダ51aを挿入することを実現する。本実施の形態1においては、外側シリンダ51bを加熱することによって、そのサイズを膨張させ、内側シリンダ51aの挿入を実現する。以下、具体的に説明する。
<Manufacturing method of plunger pump>
FIG. 5 is a flowchart showing a manufacturing method of the plunger pump shown in FIG. 6 and 7 are image diagrams when the plunger pump is manufactured by the procedure shown in FIG. A method of manufacturing the plunger pump 51 will be described with reference to FIGS. 5 to 7. In the manufacture of the plunger pump 51, the outer cylinder is made larger (or smaller) than usual by generating a temperature difference from the normal temperature state with respect to either the outer cylinder 51b or the inner cylinder 51a. It is realized that the inner cylinder 51a is inserted into the 51b. In the first embodiment, the outer cylinder 51b is heated to expand its size and the inner cylinder 51a can be inserted. Hereinafter, a specific description will be given.
 まず、図6(a)に示すように、内側シリンダ51a及び外側シリンダ51bとして、内側シリンダ51aの外径≧外側シリンダ51bの内径となる、内側シリンダ51aと外側シリンダ51bを用意する。外側シリンダ51bには、熱膨張する素材を用いる。 First, as shown in FIG. 6A, as the inner cylinder 51a and the outer cylinder 51b, an inner cylinder 51a and an outer cylinder 51b are prepared so that the outer diameter of the inner cylinder 51a ≥ the inner diameter of the outer cylinder 51b. A material that expands thermally is used for the outer cylinder 51b.
 そして、用意した外側シリンダ51bに対して加熱処理を行う(図5のステップS501)。図6(b)に示すように加熱処理は、外側シリンダ51bに対してのみ行う。加熱処理では、外側シリンダ51bが膨張し、かつ、外側シリンダ51bが熱により損壊しない程度に加熱する。この加熱処理を行うことにより、図6(c)の矢印に示すように、外側シリンダ51bは、熱膨張する。その結果、外側シリンダ51bの内径が広がる(伸長する)ことになる。よって、外側シリンダ51b内に、内側シリンダ51aを圧入しやすくすることができる。 Then, the prepared outer cylinder 51b is heat-treated (step S501 in FIG. 5). As shown in FIG. 6B, the heat treatment is performed only on the outer cylinder 51b. In the heat treatment, the outer cylinder 51b is heated to the extent that it expands and the outer cylinder 51b is not damaged by heat. By performing this heat treatment, the outer cylinder 51b is thermally expanded as shown by the arrow in FIG. 6 (c). As a result, the inner diameter of the outer cylinder 51b expands (extends). Therefore, the inner cylinder 51a can be easily press-fitted into the outer cylinder 51b.
 そこで、図6(d)に示すように、熱膨張している外側シリンダ51bの内部に、内側シリンダ51aを挿入(圧入)する(図5のステップS502も参照)。図7(a)は、内側シリンダ51aを、外側シリンダ51bの内部に挿入が完了した状態のシリンダ51Aを示している。 Therefore, as shown in FIG. 6D, the inner cylinder 51a is inserted (press-fitted) into the thermally expanded outer cylinder 51b (see also step S502 in FIG. 5). FIG. 7A shows a cylinder 51A in a state where the inner cylinder 51a has been inserted into the outer cylinder 51b.
 内側シリンダ51aの外側シリンダ51bへの挿入が完了した後に、膨張している外側シリンダ51bを元の状態、即ち、膨張していない状態に戻すために、外側シリンダ51bに対して冷却処理を行う(図5のステップS503、図7(b)を参照)。冷却処理としては、外側シリンダ51bの加熱、冷却による金属疲労を考慮すると、自然冷却であることが望ましいが、その限りではない。即ち、冷却処理は、人為的に外側シリンダ51bを冷却するものであってもよいし、自然冷却であってもよい。人為的な冷却手法としては、例えば、シリンダ51Aを、水を張った水槽につけたりすることが考えられるが、外側シリンダ51bを損壊することなく冷却できれば、どのような手法であってもよい。 After the insertion of the inner cylinder 51a into the outer cylinder 51b is completed, the outer cylinder 51b is cooled (cooled) in order to return the expanded outer cylinder 51b to the original state, that is, the non-expanded state. See step S503 of FIG. 5 and FIG. 7B). As the cooling treatment, natural cooling is desirable in consideration of heating and metal fatigue due to cooling of the outer cylinder 51b, but this is not the case. That is, the cooling process may artificially cool the outer cylinder 51b, or may be natural cooling. As an artificial cooling method, for example, the cylinder 51A may be attached to a water tank filled with water, but any method may be used as long as the outer cylinder 51b can be cooled without being damaged.
 外側シリンダ51bは、冷却されることによって、元の寸法に戻る。したがって、シリンダ51Aは、外側シリンダ51bが、常時、内側シリンダ51aをその外側から締め付ける構造を有するようになる。一方で、シリンダ51A内には、微粒化装置の作動時には、内部を高圧で試料が流動する。したがって、その試料から、シリンダに対して、外側に向けた圧力がかかることになり、シリンダの金属疲労を招くことになるが、本実施例に係るシリンダ51Aの場合、内側シリンダ51aに対して、外側シリンダ51bから外圧がかかる。外側シリンダ51bからの外圧が、内側シリンダ51aの内部を流動する試料による内圧と対抗することにより、内側シリンダ51aに係る圧力が分散する。したがって、シリンダ51Aは、本実施形態に示すように、二重構造とし、外側シリンダ51bが内側シリンダ51aに対して外圧を加える構造とすることで、従来よりも、内部を流動する試料からの内圧に対する耐性を向上させることができ、従来よりも疲労度合いを軽減することができる。 The outer cylinder 51b returns to its original dimensions when cooled. Therefore, the cylinder 51A has a structure in which the outer cylinder 51b always tightens the inner cylinder 51a from the outside. On the other hand, when the atomizing device is operated, the sample flows in the cylinder 51A at a high pressure. Therefore, pressure is applied to the cylinder from the sample toward the outside, which causes metal fatigue of the cylinder. However, in the case of the cylinder 51A according to the present embodiment, the pressure is applied to the inner cylinder 51a. External pressure is applied from the outer cylinder 51b. The external pressure from the outer cylinder 51b opposes the internal pressure of the sample flowing inside the inner cylinder 51a, so that the pressure related to the inner cylinder 51a is dispersed. Therefore, as shown in the present embodiment, the cylinder 51A has a double structure, and the outer cylinder 51b applies an external pressure to the inner cylinder 51a, so that the internal pressure from the sample flowing inside is higher than before. It is possible to improve the resistance to the strain and reduce the degree of fatigue as compared with the conventional case.
 外側シリンダ51bの冷却が終了すると、次に、シリンダ51Aに、プランジャ51Bを挿入する(図5のステップS504、図7(c)参照)。これにより、プランジャポンプ51を製造することができる。 When the cooling of the outer cylinder 51b is completed, the plunger 51B is then inserted into the cylinder 51A (see step S504 and FIG. 7C in FIG. 5). As a result, the plunger pump 51 can be manufactured.
<実施の形態2>
 上記実施の形態1においては外側シリンダ51bを加熱して膨張させることによって、内側シリンダ51aを挿入し、その後に、外側シリンダ51bを冷却して元のサイズに戻すことで、内側シリンダ51aに対して外圧を印加する構成を実現した。本実施の形態2においては、シリンダ51Aの製造方法の他の例を説明する。
<Embodiment 2>
In the first embodiment, the inner cylinder 51a is inserted by heating and expanding the outer cylinder 51b, and then the outer cylinder 51b is cooled and returned to the original size with respect to the inner cylinder 51a. A configuration that applies external pressure has been realized. In the second embodiment, another example of the method for manufacturing the cylinder 51A will be described.
 上記実施の形態1においては、外側シリンダ51bを加熱することで、通常時よりもサイズを大きくすることで、内側シリンダ51aを挿入できるようにしたが、本実施の形態2においては、内側シリンダ51aを小さくすることで、外側シリンダ51bに挿入できるようにする製造方法を説明する。 In the first embodiment, the inner cylinder 51a can be inserted by heating the outer cylinder 51b to make the size larger than usual, but in the second embodiment, the inner cylinder 51a can be inserted. A manufacturing method will be described in which the cylinder can be inserted into the outer cylinder 51b by reducing the size.
 図8は、本実施の形態2に係るプランジャポンプ51の製造方法を示すフローチャートである。また、図9、図10は、図8に示すフローチャートによる製造方法のイメージ図である。 FIG. 8 is a flowchart showing a manufacturing method of the plunger pump 51 according to the second embodiment. 9 and 10 are image diagrams of the manufacturing method according to the flowchart shown in FIG.
 まず、図9(a)に示すように、内側シリンダ51a及び外側シリンダ51bとして、内側シリンダ51aの外径≧外側シリンダ51bの内径となる、内側シリンダ51aと外側シリンダ51bを用意する。内側シリンダ51aには、冷却により寸法が収縮する素材を用いる。 First, as shown in FIG. 9A, as the inner cylinder 51a and the outer cylinder 51b, an inner cylinder 51a and an outer cylinder 51b are prepared so that the outer diameter of the inner cylinder 51a ≥ the inner diameter of the outer cylinder 51b. For the inner cylinder 51a, a material whose size shrinks due to cooling is used.
 そして、用意した内側シリンダ51aに対して冷却処理を行う(図8のステップS801)。図8(b)に示すように冷却処理は、内側シリンダ51aに対してのみ行う。冷却処理では、内側シリンダ51aが収縮し、かつ、内側シリンダ51aが冷却により損壊しない(劣化しない)程度に冷却する。この冷却処理を行うことにより、図9(c)の矢印に示すように、内側シリンダ51aは、収縮する。その結果、内側シリンダ51aの外径が収縮(短くなる)ことになる。よって、外側シリンダ51b内に、内側シリンダ51aを圧入しやすくすることができる。 Then, the prepared inner cylinder 51a is cooled (step S801 in FIG. 8). As shown in FIG. 8B, the cooling process is performed only on the inner cylinder 51a. In the cooling process, the inner cylinder 51a is cooled to such an extent that the inner cylinder 51a contracts and the inner cylinder 51a is not damaged (deteriorated) by cooling. By performing this cooling process, the inner cylinder 51a contracts as shown by the arrow in FIG. 9C. As a result, the outer diameter of the inner cylinder 51a is contracted (shortened). Therefore, the inner cylinder 51a can be easily press-fitted into the outer cylinder 51b.
 そこで、図9(d)に示すように、外側シリンダ51bの内部に、収縮している内側シリンダ51aを挿入(圧入)する(図8のステップS802も参照)。図10(a)は、内側シリンダ51aを、外側シリンダ51bの内部に挿入が完了した状態のシリンダ51Aを示している。 Therefore, as shown in FIG. 9D, the contracting inner cylinder 51a is inserted (press-fitted) inside the outer cylinder 51b (see also step S802 in FIG. 8). FIG. 10A shows the cylinder 51A in a state where the inner cylinder 51a is completely inserted into the outer cylinder 51b.
 内側シリンダ51aの外側シリンダ51bへの挿入が完了した後に、収縮している内側シリンダ51aを元の状態、即ち、収縮していない状態に戻すために、内側シリンダ51aに対して加熱処理を行う(図8のステップS803、図10(b)を参照)。加熱処理としては、内側シリンダ51aの冷却、加熱による金属疲労を考慮すると、自然加熱(自然に常温になるのを待つ)であることが望ましいが、その限りではない。即ち、加熱処理は、人為的に内側シリンダ51aを加熱するものであってもよい人為的な冷却手法としては、例えば、シリンダ51Aを、お湯を張った浴槽につけたりすることが考えられるが、内側シリンダ51aを損壊することなく加熱できれば、どのような手法であってもよい。なお、このときに、加熱処理によって、外側シリンダ51bが膨張しないことが望ましい。 After the insertion of the inner cylinder 51a into the outer cylinder 51b is completed, the inner cylinder 51a is heat-treated in order to return the contracted inner cylinder 51a to the original state, that is, the non-shrinked state ( See step S803 and FIG. 10B in FIG. 8). The heat treatment is preferably natural heating (waiting for the temperature to reach room temperature naturally) in consideration of cooling of the inner cylinder 51a and metal fatigue due to heating, but this is not the case. That is, as an artificial cooling method in which the heat treatment may artificially heat the inner cylinder 51a, for example, it is conceivable to attach the cylinder 51A to a bathtub filled with hot water. Any method may be used as long as the cylinder 51a can be heated without being damaged. At this time, it is desirable that the outer cylinder 51b does not expand due to the heat treatment.
 内側シリンダ51aは、加熱されることによって、元の寸法に戻る。一方で、外側シリンダ51b自体は元のサイズのままである。したがって、シリンダ51Aは、外側シリンダ51bが、常時、内側シリンダ51aをその外側から締め付ける構造を有するようになる。一方で、シリンダ51A内には、微粒化装置の作動時には、内部を高圧で試料が流動する。したがって、その試料から、シリンダに対して、外側に向けた圧力がかかることになり、シリンダの金属疲労を招くことになるが、本実施例に係るシリンダ51Aの場合、内側シリンダ51aに対して、外側シリンダ51bから外圧がかかる。外側シリンダ51bからの外圧が、内側シリンダ51aの内部を流動する試料による内圧と対抗することにより、内側シリンダ51aに係る圧力が分散する。したがって、シリンダ51Aは、本実施形態に示すように、二重構造とし、外側シリンダ51bが内側シリンダ51aに対して外圧を加える構造とすることで、従来よりも、内部を流動する試料からの内圧に対する耐性を向上させることができ、従来よりもシリンダ51Aの金属疲労度合いを軽減することができる。 The inner cylinder 51a returns to its original dimensions by being heated. On the other hand, the outer cylinder 51b itself remains in its original size. Therefore, the cylinder 51A has a structure in which the outer cylinder 51b always tightens the inner cylinder 51a from the outside. On the other hand, when the atomizing device is operated, the sample flows in the cylinder 51A at a high pressure. Therefore, pressure is applied to the cylinder from the sample toward the outside, which causes metal fatigue of the cylinder. However, in the case of the cylinder 51A according to the present embodiment, the pressure is applied to the inner cylinder 51a. External pressure is applied from the outer cylinder 51b. The external pressure from the outer cylinder 51b opposes the internal pressure of the sample flowing inside the inner cylinder 51a, so that the pressure related to the inner cylinder 51a is dispersed. Therefore, as shown in the present embodiment, the cylinder 51A has a double structure, and the outer cylinder 51b applies an external pressure to the inner cylinder 51a, so that the internal pressure from the sample flowing inside is higher than before. It is possible to improve the resistance to resistance to the cylinder 51A and reduce the degree of metal fatigue of the cylinder 51A as compared with the conventional case.
 内側シリンダ51aの加熱が終了すると、次に、シリンダ51Aに、プランジャ51Bを挿入する(図8のステップS804、図10(c)参照)。これにより、プランジャポンプ51を製造することができる。 When the heating of the inner cylinder 51a is completed, the plunger 51B is then inserted into the cylinder 51A (see step S804 and FIG. 10C in FIG. 8). As a result, the plunger pump 51 can be manufactured.
<変形例>
 上記実施の形態1においては、加熱処理により外側シリンダ51bを膨張させることで、外側シリンダ51b内に内側シリンダ51aを挿入し、実施の形態2においては、冷却処理により内側シリンダ51aを収縮させることで、内側シリンダ51aを外側シリンダ51b内に挿入した。しかし、これは、内径が内側シリンダ51aの外径よりも小さい外側シリンダ51b内に、内側シリンダ51aを挿入さえできればよく、加熱処理や冷却処理以外の手法を用いてもよいことはいうまでもない。例えば、外側シリンダ51bを機械的に把持し、そこにロボットマシーン等により内側シリンダ51aを圧入させることとしてもよい。内側シリンダ51aを外側シリンダ51bに圧入することにより、上記実施の形態1、2に示したシリンダ51Aと同等の構成を実現することができる。
<Modification example>
In the first embodiment, the inner cylinder 51a is inserted into the outer cylinder 51b by expanding the outer cylinder 51b by heat treatment, and in the second embodiment, the inner cylinder 51a is contracted by cooling treatment. , The inner cylinder 51a was inserted into the outer cylinder 51b. However, it goes without saying that a method other than heat treatment or cooling treatment may be used as long as the inner cylinder 51a can be inserted into the outer cylinder 51b whose inner diameter is smaller than the outer diameter of the inner cylinder 51a. .. For example, the outer cylinder 51b may be mechanically gripped, and the inner cylinder 51a may be press-fitted into the outer cylinder 51b by a robot machine or the like. By press-fitting the inner cylinder 51a into the outer cylinder 51b, a configuration equivalent to that of the cylinder 51A shown in the first and second embodiments can be realized.
 また、上記手法によりシリンダ51Aを製造することにより、定常状態において、外側シリンダ51bが内側シリンダ51aに対して圧力を加える構成を実現している。これは、前述の通り、微粒化装置の作動時における内側シリンダ51a内の内圧と拮抗させるための構成であるが、内側シリンダ51aに対して外圧がかかるように構成されていれば、他の構成によって実現されてもよい。例えば、微粒化装置の動作時において、シリンダ51Aに対して外圧を印加する装置を付加してもよい。例えば、シリンダ51Aに対して微粒化装置の作動時に、油圧をかける装置にかけて、シリンダ51Aに外圧を加える構成としてもよいし、万力等の装置により、シリンダ51Aに外圧を加えるように構成してもよい。 Further, by manufacturing the cylinder 51A by the above method, the outer cylinder 51b applies pressure to the inner cylinder 51a in a steady state. As described above, this is a configuration for competing with the internal pressure in the inner cylinder 51a when the atomizing device is operated, but if it is configured so that an external pressure is applied to the inner cylinder 51a, another configuration is used. May be realized by. For example, a device that applies an external pressure to the cylinder 51A may be added during the operation of the atomizing device. For example, an external pressure may be applied to the cylinder 51A by applying hydraulic pressure to the cylinder 51A when the atomizing device is operated, or an external pressure may be applied to the cylinder 51A by a device such as a vise. May be good.
 <まとめ>
 以上説明したように、上記実施形態に係るプランジャポンプの製造方法およびプランジャポンプによれば、外側シリンダ51bが内側シリンダ51aに対して、常時外圧を加えるように構成されたシリンダ51Aを有するプランジャポンプを提供することができる。したがって、プランジャポンプ51のシリンダ51A内を高圧で流動する試料からの内圧に対して、外側シリンダ51bから内側シリンダ51aに対する圧力が対向することで、シリンダ51Aの疲労度合いを従来よりも軽減することができる。
<Summary>
As described above, according to the method for manufacturing a plunger pump and the plunger pump according to the above embodiment, a plunger pump having a cylinder 51A configured such that the outer cylinder 51b constantly applies external pressure to the inner cylinder 51a is used. Can be provided. Therefore, the degree of fatigue of the cylinder 51A can be reduced more than before by facing the pressure from the outer cylinder 51b to the inner cylinder 51a with respect to the internal pressure from the sample flowing in the cylinder 51A of the plunger pump 51 at a high pressure. it can.
 なお、上記実施形態においては、微粒化装置ユニット1においては、試料を一方向にのみ流動することとなっているが、微粒化装置10を往復道する構成をとってもよい。即ち、図1において、ドレン86が設けられている箇所に、別のプランジャポンプを設けて、微粒化装置10内を試料が往復するような構成をとってもよい。 In the above embodiment, in the atomizing device unit 1, the sample flows in only one direction, but the atomizing device 10 may be reciprocated. That is, in FIG. 1, another plunger pump may be provided at the place where the drain 86 is provided so that the sample reciprocates in the atomizing device 10.
 また、微粒化装置10の流路の構造については、任意に変更可能である。 Further, the structure of the flow path of the atomizing device 10 can be arbitrarily changed.
 また、前述した変形例に限られず、これらの変形例を選択して適宜組み合わせてもよいし、その他の変形を施してもよい。 Further, the present invention is not limited to the above-mentioned modified examples, and these modified examples may be selected and appropriately combined, or other modifications may be applied.
 2019年3月22日に出願された日本国特許出願2019-55719号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2019-55719 filed on March 22, 2019 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (6)

  1.  試料が内部を通過することで、前記試料を微粒化する微粒化流路を有する微粒化装置に接続され、前記微粒化装置の内部に前記試料を高圧で供給するものであって外側シリンダと円筒状の加圧室が形成される内側シリンダとから成るプランジャポンプの製造方法であって、
     前記外側シリンダと前記内側シリンダとのいずれか一方に対して、常温状態から温度差を発生させる温度差発生工程と、
     前記温度差発生工程により発生した温度差により外径が前記外側シリンダの内径よりも短い状態の内側シリンダを、前記外側シリンダの内側に挿入するシリンダ挿入工程と、
     発生させた前記温度差を除去する除去工程と、
     前記内側シリンダの加圧室に円筒状のプランジャを往復動可能に配置するプランジャ配置工程と、を含むプランジャポンプの製造方法。
    When the sample passes through the inside, it is connected to a atomizing device having a atomizing flow path for atomizing the sample, and the sample is supplied to the inside of the atomizing device at high pressure, and an outer cylinder and a cylinder. A method for manufacturing a plunger pump, which comprises an inner cylinder in which a pressurized chamber is formed.
    A temperature difference generation step of generating a temperature difference from a normal temperature state with respect to either the outer cylinder or the inner cylinder.
    A cylinder insertion step of inserting an inner cylinder whose outer diameter is shorter than the inner diameter of the outer cylinder due to the temperature difference generated by the temperature difference generation step inside the outer cylinder.
    A removal step for removing the generated temperature difference and
    A method for manufacturing a plunger pump, comprising a plunger arranging step of arranging a cylindrical plunger reciprocally in the pressurizing chamber of the inner cylinder.
  2.  前記温度差発生工程は、前記外側シリンダを加熱する加熱工程を含み、
     前記シリンダ挿入工程は、前記内側シリンダの外径よりも内径が長くなっている状態の外側シリンダに、前記内側シリンダを挿入し、
     前記除去工程は、前記外側シリンダを冷却する冷却工程を含む
     ことを特徴とする請求項1に記載のプランジャポンプの製造方法。
    The temperature difference generation step includes a heating step of heating the outer cylinder.
    In the cylinder insertion step, the inner cylinder is inserted into the outer cylinder in a state where the inner diameter is longer than the outer diameter of the inner cylinder.
    The method for manufacturing a plunger pump according to claim 1, wherein the removing step includes a cooling step for cooling the outer cylinder.
  3.  前記温度差発生工程は、前記内側シリンダを冷却する冷却工程を含み、
     前記シリンダ挿入工程は、前記外側シリンダの内径よりも外径が短くなっている状態の内側シリンダを、前記外側シリンダに挿入し、
     前記除去工程は、前記内側シリンダを加熱する加熱工程を含む
     ことを特徴とする請求項1に記載のプランジャポンプの製造方法。
    The temperature difference generation step includes a cooling step of cooling the inner cylinder.
    In the cylinder insertion step, an inner cylinder having an outer diameter shorter than the inner diameter of the outer cylinder is inserted into the outer cylinder.
    The method for manufacturing a plunger pump according to claim 1, wherein the removing step includes a heating step of heating the inner cylinder.
  4.  前記温度差発生工程は、
      前記外側シリンダを加熱する加熱工程と、
      前記内側シリンダを冷却する冷却工程とを含み、
     前記シリンダ挿入工程は、前記内側シリンダの外径よりも内径が長くなっている状態の外側シリンダに、前記内側シリンダを挿入し、
     前記除去工程は、
      前記外側シリンダを冷却する冷却工程と、
      前記内側シリンダを加熱する加熱工程とを含む
     ことを特徴とする請求項1に記載のプランジャポンプの製造方法。
    The temperature difference generation step is
    The heating step of heating the outer cylinder and
    Including a cooling step of cooling the inner cylinder.
    In the cylinder insertion step, the inner cylinder is inserted into the outer cylinder in a state where the inner diameter is longer than the outer diameter of the inner cylinder.
    The removal step is
    A cooling step for cooling the outer cylinder and
    The method for manufacturing a plunger pump according to claim 1, further comprising a heating step of heating the inner cylinder.
  5.  前記シリンダ挿入工程において、
     前記内側シリンダは、前記外側シリンダの内側に圧入されることを特徴とする請求項2~4のいずれか一項に記載のプランジャポンプの製造方法。
    In the cylinder insertion step
    The method for manufacturing a plunger pump according to any one of claims 2 to 4, wherein the inner cylinder is press-fitted into the inside of the outer cylinder.
  6.  試料が内部を通過することで、前記試料を微粒化する微粒化流路を有する微粒化装置に接続され、前記微粒化装置の内部に前記試料を高圧で供給するプランジャポンプであって、
     外側シリンダと、
     前記外側シリンダの内側に挿入され、内部に円筒状の加圧室が形成される内側シリンダと、
     前記内側シリンダの加圧室に円筒状のプランジャを往復動可能に配置されるプランジャと、を備え、
     前記内側シリンダは、前記外側シリンダにより圧迫されるように構成されているプランジャポンプ。
    A plunger pump that is connected to a atomizing device having a atomizing flow path for atomizing the sample by passing the sample inside, and supplies the sample to the inside of the atomizing device at a high pressure.
    With the outer cylinder,
    An inner cylinder that is inserted inside the outer cylinder and has a cylindrical pressurizing chamber formed inside.
    A plunger in which a cylindrical plunger is reciprocally arranged in the pressurizing chamber of the inner cylinder is provided.
    The inner cylinder is a plunger pump configured to be compressed by the outer cylinder.
PCT/JP2020/011513 2019-03-22 2020-03-16 Method for manufacturing plunger pump and plunger pump WO2020196047A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20777597.4A EP3943748A4 (en) 2019-03-22 2020-03-16 Method for manufacturing plunger pump and plunger pump
US17/440,348 US20220193751A1 (en) 2019-03-22 2020-03-16 Method of manufacturing plunger pump and plunger pump
CN202080022874.0A CN113614370B (en) 2019-03-22 2020-03-16 Method for manufacturing plunger pump and plunger pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-055719 2019-03-22
JP2019055719A JP7386499B2 (en) 2019-03-22 2019-03-22 Plunger pump manufacturing method, plunger pump

Publications (1)

Publication Number Publication Date
WO2020196047A1 true WO2020196047A1 (en) 2020-10-01

Family

ID=72558234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011513 WO2020196047A1 (en) 2019-03-22 2020-03-16 Method for manufacturing plunger pump and plunger pump

Country Status (5)

Country Link
US (1) US20220193751A1 (en)
EP (1) EP3943748A4 (en)
JP (1) JP7386499B2 (en)
CN (1) CN113614370B (en)
WO (1) WO2020196047A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149371B2 (en) 1996-12-26 2001-03-26 株式会社ジーナス Atomization method and apparatus
JP2002283030A (en) * 2001-03-26 2002-10-02 Hitachi Metals Ltd Member for light alloy injection molding machine
JP2009293405A (en) * 2008-06-02 2009-12-17 Toyota Industries Corp Exhaust gas treating device in internal combustion engine
JP2016211404A (en) * 2015-05-01 2016-12-15 株式会社スギノマシン Piston pump and raw material processing device provided with piston pump
JP2019055719A (en) 2017-09-21 2019-04-11 トヨタ自動車株式会社 Control device of power transmission device for vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4301126C2 (en) * 1993-01-18 1995-05-24 Danfoss As Method for mounting a liner in a base body of a hydraulic machine and hydraulic machine
CN2846806Y (en) * 2005-12-13 2006-12-13 赵克中 Mud pump cylinder jacket
JP2009293406A (en) 2008-06-02 2009-12-17 Toyota Motor Corp Piston engine and stirling engine
DE102010054060A1 (en) 2010-12-10 2012-06-14 Bertwin R. Geist Cylinder of a reciprocating engine and reciprocating engine
CN202182024U (en) * 2011-07-11 2012-04-04 天津市精诚高压泵制造有限责任公司 Pressurized cylinder of high pressure pump
JP5872205B2 (en) * 2011-08-22 2016-03-01 株式会社スギノマシン Wet atomizer with steam sterilization means
CN102900663B (en) * 2012-09-27 2015-08-19 四川中物泰沃新材料有限公司 Cylinder sleeve and manufacture method thereof
CN204267275U (en) * 2014-12-05 2015-04-15 北京金麟石油技术有限公司 Retaining damping strengthens silicon carbide ceramics cylinder sleeve
CN104696211A (en) * 2015-01-21 2015-06-10 中冶天工上海十三冶建设有限公司 Sialon ceramic mud pump cylinder liner and producing method thereof
US10273955B2 (en) 2016-11-15 2019-04-30 Caterpillar Inc. Piston cartridge for piston pump
CN108118119A (en) * 2017-12-20 2018-06-05 王衍春 A kind of concrete conveying cylinder and its manufacturing process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149371B2 (en) 1996-12-26 2001-03-26 株式会社ジーナス Atomization method and apparatus
JP2002283030A (en) * 2001-03-26 2002-10-02 Hitachi Metals Ltd Member for light alloy injection molding machine
JP2009293405A (en) * 2008-06-02 2009-12-17 Toyota Industries Corp Exhaust gas treating device in internal combustion engine
JP2016211404A (en) * 2015-05-01 2016-12-15 株式会社スギノマシン Piston pump and raw material processing device provided with piston pump
JP2019055719A (en) 2017-09-21 2019-04-11 トヨタ自動車株式会社 Control device of power transmission device for vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943748A4

Also Published As

Publication number Publication date
EP3943748A4 (en) 2022-11-02
JP2020153360A (en) 2020-09-24
CN113614370A (en) 2021-11-05
EP3943748A1 (en) 2022-01-26
US20220193751A1 (en) 2022-06-23
CN113614370B (en) 2023-11-28
JP7386499B2 (en) 2023-11-27

Similar Documents

Publication Publication Date Title
EP1806501B1 (en) Method to convert thermal energy into mechanical energy
WO2020196047A1 (en) Method for manufacturing plunger pump and plunger pump
US11969774B2 (en) Check valve, air-conditioning apparatus, and method of manufacturing check valve
WO2012069230A1 (en) Method for operating a fuel system of an internal combustion engine
EP3262301B1 (en) Membrane pump, in particular for use in an exhaust tract of a combustion engine, and combustion engine with membrane pump
DE102017212927A1 (en) Fuel supply system, electric engine and method of operating an electric engine
US2069820A (en) Sterilizing process
US20170018788A1 (en) Fuel supply unit
JP7386498B2 (en) Atomizer unit
JP2021173453A (en) Atomizer unit
WO2015104907A1 (en) Exhaust-valve drive device and internal combustion engine provided with same
JP6270761B2 (en) Method of expanding heat transfer tube, heat exchanger, and method of manufacturing heat exchanger
DE102013101573A1 (en) Method for heating a conveyor
DE102020213400B4 (en) COMPRESSOR
DE102019002318A1 (en) Energy self-sufficient pump system and method for operating the pump system
JP2018053755A (en) Shell
CN109175033B (en) Special-shaped hollow pipe bending forming method
US11162478B2 (en) Hydraulic transmission for a SMA engine used in an energy recovery device
JP2021071084A (en) Plunger pump
US10309393B2 (en) High-pressure pump and production method thereof
DE102014015421B3 (en) Method for operating a reciprocating internal combustion engine with cylinder deactivation and waste heat recovery
JP2005283347A (en) Piping pulsating pressure test system
Netwall et al. Pneumatic Artificial Muscle Development and Manufacturing Process and Verification Testing for Space Flight Application
DE102016014731A1 (en) Waste heat recovery device
JP2005324220A (en) Device and method for generating multistage pressure of liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020777597

Country of ref document: EP