WO2020195702A1 - Suspension device - Google Patents

Suspension device Download PDF

Info

Publication number
WO2020195702A1
WO2020195702A1 PCT/JP2020/009649 JP2020009649W WO2020195702A1 WO 2020195702 A1 WO2020195702 A1 WO 2020195702A1 JP 2020009649 W JP2020009649 W JP 2020009649W WO 2020195702 A1 WO2020195702 A1 WO 2020195702A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
suspension device
chamber
pressurizing chamber
housing
Prior art date
Application number
PCT/JP2020/009649
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 達也
近藤 卓宏
隆久 望月
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2020195702A1 publication Critical patent/WO2020195702A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/027Mechanical springs regulated by fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall

Definitions

  • the present invention relates to a suspension device.
  • the suspension device is, for example, provided between a shock absorber body that generates a damping force when expanding and contracting, and a suspension spring that urges the shock absorber body in the extension direction, and is interposed between the vehicle body and the axle. Then, the suspension device elastically supports the vehicle body with the suspension spring to alleviate the vibration input from the axle side to the vehicle body side, and damps the vibration of the vehicle body with the shock absorber body.
  • suspension devices are equipped with a jack that drives a spring seat that supports the lower end of the suspension spring provided on the outer periphery of the shock absorber body in the vertical direction in order to adjust the vehicle height.
  • the spring seat can be moved up and down to adjust the vehicle height to the optimum value and the passenger's height.
  • the vehicle height can be lowered to facilitate the getting on and off of passengers (see, for example, Patent Document 1).
  • the suspension device described above has a structure in which a suspension spring and a jack are arranged on the outer periphery of the shock absorber body, and the thrust of the jack is a value obtained by multiplying the internal pressure by the pressure receiving area of the jack, but the weight of the vehicle body. Depending on the case, it may be difficult to adjust the vehicle height unless a large jack pressure receiving area is secured. If an attempt is made to increase the pressure receiving area of the jack, the outer diameter of the jack becomes large, so that the suspension device becomes large and the weight of the suspension device becomes heavy.
  • an object of the present invention is to provide a small and lightweight suspension device even if the vehicle height can be adjusted.
  • the suspension device in the problem-solving means of the present invention includes a cylinder, a piston that is movably inserted into the cylinder, an extension side chamber and a compression side chamber that are partitioned by the piston in the cylinder, and a piston that is movably inserted into the cylinder.
  • a shock absorber body that has a piston rod connected to the cylinder and exerts a damping force by allowing liquid to flow in and out of the cylinder during expansion and contraction, and a suspension spring that urges the shock absorber body in the extension direction are communicated with the compression side chamber.
  • the vehicle height can be adjusted by supplying and discharging the liquid to and from the pressurizing chamber by the liquid supply and discharge source, and the effective pressure receiving area is determined by the pressure receiving area in the pressurizing chamber and the cross-sectional area of the piston rod. A large effective pressure receiving area can be secured as a sum.
  • the liquid supply / exhaust source in the suspension device may have a constant-capacity pump, and according to the suspension device configured in this way, a vehicle aiming at the vehicle height only by controlling the rotation amount of the pump. Since it can be adjusted to the height, it is easy to adjust the vehicle height.
  • the pressurizing chamber may be partitioned by a hollow housing and a movable spring seat movably fitted to the housing and urged by a suspension spring, according to the suspension device configured in this way. It is easy to install the pressurizing chamber in the shock absorber body.
  • the housing may be mounted on the outer circumference of the cylinder, and the movable spring seat may be slidably mounted on both the outer circumference of the cylinder and the inner circumference of the housing.
  • the cylinder can be used as a forming component of the pressurizing chamber
  • the pressurizing chamber can be formed on the outer circumference of the cylinder with the minimum number of parts
  • the outer diameter is also a double cylinder type buffer having a reservoir on the outer circumference of the cylinder. It only needs to be a cylinder and can be mounted on a vehicle without difficulty.
  • the housing is attached to the piston rod
  • the movable spring seat is slidably attached to both the outer circumference of the piston rod and the inner circumference of the housing
  • the pressurizing chamber and the compression side chamber are communicated by a passage provided in the piston rod. It may have been.
  • the piston rod can be used as a forming component of the pressurizing chamber, and the pressurizing chamber can be formed at the upper end of the piston rod with a minimum number of parts.
  • the pressurizing chamber is provided on the vehicle body side, the suspension device can be mounted even on a vehicle in which it is difficult to provide the pressurizing chamber on the axle side due to the mounting space.
  • the shock absorber main body has an outer cylinder covering the outer circumference of the cylinder, the housing is mounted on the outer circumference of the outer cylinder, and the movable spring sheet is slidably mounted on both the outer circumference of the outer cylinder and the inner circumference of the housing. May be done.
  • the suspension device configured in this way, the provision of the outer cylinder improves the strength and the rigidity against bending and axial load.
  • the suspension device of the present invention it is small and lightweight even if the vehicle height can be adjusted.
  • FIG. 1 is a cross-sectional view of the suspension device according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the suspension device according to the first modification of the first embodiment.
  • FIG. 3 is a cross-sectional view of the suspension device according to the second embodiment.
  • FIG. 4 is a cross-sectional view of the suspension device according to the third embodiment.
  • the suspension device S1 of the first embodiment includes a cylinder 1, a piston 2 movably inserted into the cylinder 1, and an extension chamber R1 partitioned by the piston 2 into the cylinder 1.
  • a single-rod type shock absorber having a compression side chamber R2 and a piston rod 3 connected to a piston 2 movably inserted into the cylinder 1 and allowing liquid to flow in and out of the cylinder 1 during expansion and contraction to exert a damping force.
  • the main body D1 the suspension spring 8 that urges the shock absorber main body D1 in the extension direction
  • the pressure chamber R3 that is communicated with the compression side chamber R2 and receives the urging force from the suspension spring 8 to pressurize the inside of the cylinder 1, and pressurization.
  • the chamber R3 is provided with a liquid supply / discharge source F capable of supplying / discharging liquid.
  • the shock absorber main body D1 includes a piston rod 3 that is movably inserted into the cylinder 1 and connected to the piston 2.
  • the other end of the piston rod 3 protrudes outside the cylinder 1, the piston rod 3 is inserted only into the extension side chamber R1, and the shock absorber body D1 is a so-called single rod type shock absorber body.
  • an annular fixed spring seat 7 is attached to the piston rod 3 in an axially immovable manner, and a mounting shaft 9 is provided so as to be mounted on the vehicle body of a vehicle (not shown).
  • the shape of the fixed spring sheet 7 is not limited to the annular shape, and may be another shape.
  • a piston 2 is slidably inserted into the cylinder 1, and the inside of the cylinder 1 is divided into an extension side chamber R1 and a compression side chamber R2 by the piston 2.
  • the piston 2 is provided with a damping passage 4 that communicates the extension side chamber R1 and the compression side chamber R2, and the liquid filled in the extension side chamber R1 and the compression side chamber R2 passes through the attenuation passage 4 to the extension side chamber R1 and the compression side chamber R1. It is possible to go back and forth with R2.
  • the damping passage 4 allows bidirectional liquid flow and gives resistance to the liquid flow passing through the damping valve 4a provided in the middle, and pressure loss occurs when the liquid passes. Is caused to cause a difference in pressure between the extension side chamber R1 and the compression side chamber R2.
  • the damping valve 4a may be a valve that allows bidirectional flow such as a throttle or a choke, and when a one-way damping valve is adopted, only the flow from the extension side chamber R1 to the compression side chamber R2 is allowed.
  • a damping valve that allows only the flow opposite to the damping valve may be provided in parallel with the damping passage 4.
  • a liquid such as water or an aqueous solution can be used in addition to the hydraulic oil.
  • a tubular housing 5 is provided on the outer periphery of the lower end of FIG. 1 of the cylinder 1, and an annular gap is formed between the cylinder 1 and the housing 5. Further, the housing 5 is attached to the cylinder 1 in a state of being in contact with the flange 1a provided on the outer periphery of the lower end of the cylinder 1, and the lower end opening of the housing 5 is closed.
  • a cylindrical movable spring seat 6 is slidably mounted on the outer periphery of the cylinder 1.
  • the movable spring seat 6 includes a tubular portion 6a that is in sliding contact with the outer periphery of the cylinder 1 and an annular seat portion 6b provided on the outer periphery of the upper end of the tubular portion 6a.
  • the tubular portion 6a is the outer circumference of the cylinder 1 and a housing. It is in sliding contact with the inner circumference of 5. Therefore, the cylinder portion 6a of the movable spring seat 6 is movably fitted in the annular gap between the housing 5 and the cylinder 1, and the pressurizing chamber R3 is formed in the housing 5.
  • the pressurizing chamber R3 is communicated with the compression side chamber R2 by a through hole 1b provided on the lower side of the cylinder 1, and the pressurizing chamber R3 is filled with a liquid similar to the liquid filled in the cylinder 1.
  • the shape of the sheet portion 6b is not limited to the annular shape, and may be another shape.
  • a seal ring 6c that is in sliding contact with the outer circumference of the cylinder 1 is provided on the inner circumference of the cylinder portion 6a of the movable spring seat 6, and is slid on the outer circumference of the cylinder portion 6a of the movable spring seat 6 on the inner circumference of the housing 5.
  • a contacting seal ring 5a is provided.
  • a seal ring 5b that is in close contact with the flange 1a of the cylinder 1 is provided at the lower end of the housing 5.
  • the pressurizing chamber R3 is kept liquid-tight by these seal rings 5a, 5b, and 6c.
  • annular bottom may be provided on the inner circumference of the lower end of the housing 5 and the bottom may be fixed to the cylinder 1 by welding or the like.
  • the housing 5 with respect to the cylinder 1 may be provided.
  • the fixed structure of is not limited to the one shown in the figure.
  • a seal ring that is in sliding contact with the inner circumference of the housing 5 may be provided on the outer periphery of the tubular portion 6a of the movable spring seat 6.
  • the movable spring seat 6 may be movably fitted to the outer periphery of the housing 5 to partition the pressurizing chamber R3 between the movable spring seat 6 and the housing 5.
  • the cylinder portion 6a of the movable spring seat 6 is slidably contacted with the outer circumference of the housing 5 to be movably fitted, and the inner circumference of the seat portion 6b of the movable spring seat 6 is slidably contacted with the outer circumference of the cylinder 1.
  • the pressure chamber R3 may be formed between the movable spring seat 6 and the housing 5 by being movably fitted.
  • a coiled suspension spring 8 is interposed between the movable spring seat 6 and the fixed spring seat 7 and on the outer periphery of the shock absorber main body D1, and the shock absorber main body D1 is extended by the suspension spring 8. Being urged in the direction. Further, at the lower end of the cylinder 1, a bracket 10 that can be mounted on the axle of the vehicle described above is provided. Therefore, the suspension device S1 can be mounted between the vehicle body and the axle by using the mounting shaft 9 provided at the upper end of the piston rod 3 and the bracket 10 provided at the lower end of the cylinder 1. When the suspension device S1 is interposed between the vehicle body and the axle in this way, the suspension spring 8 is compressed by the weight of the vehicle body to support and elastically support the vehicle body.
  • the suspension spring 8 receives a load from the vehicle body and urges the movable spring seat 6 downward in the drawing, and the urging force of the suspension spring 8 is transmitted to the pressurizing chamber R3 via the movable spring seat 6.
  • the pressurizing chamber R3 is pressurized. Since the pressurizing chamber R3 is communicated with the compression side chamber R2 by the through hole 1b provided in the cylinder 1, the extension side chamber R1 and the compression side chamber R2 in the cylinder 1 are similarly pressurized by the urging force of the suspension spring 8. There is.
  • the liquid supply / discharge source F is a tank T for storing liquid, a pipeline H for communicating the tank T with the pressurizing chamber R3, and a constant-capacity pump P provided in the middle of the conduit H.
  • the pump P When the pump P is rotated forward by the motor M, the pump 3 sucks the liquid from the tank T and supplies the liquid to the pressurizing chamber R3, and when the pump P is rotated in the reverse direction by the motor M, the pump P is added. The liquid is sucked from the pressure chamber R3 and discharged to the tank T.
  • the liquid supply / discharge source F cuts off the alternating current of the liquid between the pressurizing chamber R3 and the tank T, and reduces the amount of liquid in the cylinder 1 communicated with the pressurizing chamber R3 and the pressurizing chamber R3. Do not fluctuate. Since the pressurizing chamber R3 and the compression side chamber R2 are communicated with each other, the liquid supply / discharge source F may supply / discharge liquid to the pressurizing chamber R3 via the compression side chamber R2.
  • the movable spring seat 6 and the piston rod 3 move up and down in FIG. 1 in synchronization with the supply and discharge of the liquid to the pressurizing chamber R3 of the liquid supply / discharge source F, and the vehicle height in the vehicle moves up and down to move the vehicle height. Adjustments are made.
  • the pump P is a constant-capacity pump
  • the discharge amount per rotation of the pump P is determined, and the lifting amount of the movable spring seat 6 and the piston rod 3 is in the shock absorber main body D1. It is proportional to the amount of liquid supplied to or discharged from the shock absorber body D1. Therefore, since the rotation amount of the pump P is proportional to the lifting amount of the movable spring seat 6 and the piston rod 3, that is, the vehicle height adjustment amount, the vehicle height should be monitored by monitoring the rotation amount of the pump P. Can be done.
  • the rotation amount of the pump P may be monitored, and if the motor M does not have the rotation position sensor, the rotation speed of the motor M or the pump P is detected. You may use a sensor that does.
  • the vehicle height can be grasped from the rotation amount of the pump P, and the vehicle height adjustment becomes very easy.
  • the pump P is not a constant capacity type
  • the vehicle height may be grasped by detecting the expansion / contraction displacement of the shock absorber main body D1 and the distance from the road surface of the vehicle body with a sensor.
  • the pump P may be a piston pump or a gear pump, and the drive source of the pump P may be one that uses the engine power of the vehicle in addition to the motor M.
  • the liquid supply / discharge source F may have a configuration other than the above-described configuration as long as it can supply the liquid into the pressurizing chamber R3 and discharge the liquid from the pressurizing chamber R3. Therefore, for example, it may be configured to include a container provided with a liquid chamber for storing the liquid, a piston movably inserted into the container to change the volume of the liquid chamber, and a drive source for driving the piston. Further, the liquid supply / discharge source F uses the pump P when supplying the liquid to the pressurizing chamber R3, and supplies the liquid to the tank T without going through the pump P when discharging the liquid from the pressurizing chamber R3.
  • a return pipeline may be provided.
  • the suspension device S1 is configured, and the operation of the suspension device S1 will be described below.
  • the pressure chamber R3 is pressurized.
  • the pressure CC of the pressurizing chamber R3 is transmitted into the cylinder 1 through the through hole 1b, the pressures of the extension side chamber R1 and the compression side chamber R2 are also equal to the pressure CC of the pressurization chamber R3.
  • the suspension device S1 When the suspension device S1 is in the extension stroke, the liquid in the extension side chamber R1 compressed by the upward movement of the piston 2 in FIG. 1 passes through the damping passage 4 and the damping valve 4a and is expanded on the compression side. It flows to room R2. Due to the pressure loss when the liquid passes through the damping valve 4a, the pressure in the extension side chamber R1 becomes higher than the pressure in the compression side chamber R2, causing a pressure difference, and the suspension device S1 suppresses the extension in response to this pressure difference. Demonstrates lateral damping force. Further, the volume of the piston rod 3 ejected from the cylinder 1 due to the extension of the suspension device S1 is insufficient in the compression side chamber R2.
  • the hydraulic oil in the compression side chamber R2 to be compressed is expanded by passing through the damping passage 4 and the damping valve 4a due to the downward movement of the piston 2 in FIG. It flows to the extension chamber R1. Due to the pressure loss when the liquid passes through the damping valve 4a, the pressure in the extension side chamber R1 becomes lower than the pressure in the compression side chamber R2, causing a pressure difference, and the suspension device S1 suppresses contraction in response to this pressure difference. Demonstrates damping force. Further, the volume of the piston rod 3 that invades into the cylinder 1 due to the contraction of the suspension device S1 is pushed out from the cylinder 1 into the pressurizing chamber R3.
  • the shock absorber main body D1 exerts a damping force by allowing liquid to flow in and out of the cylinder 1 when expanding and contracting.
  • the suspension device S1 can pressurize the inside of the cylinder 1 by the suspension spring 8 and the pressurizing chamber R3 without providing the air chamber in the cylinder 1, the air chamber must be provided in series with the extension side chamber and the compression side chamber. Compared to a suspension device that does not have to be used, the mounting length can be shortened and the mountability on a vehicle is improved.
  • the pump P in the liquid supply / discharge source F is driven in the forward rotation direction to supply the liquid into the pressurizing chamber R3 and the cylinder 1.
  • the liquid is sent into the pressurizing chamber R3 and the cylinder 1, and the movable spring seat 6 is pushed up against the housing 5 by the pressure increase in the pressurizing chamber R3.
  • the suspension device S1 of the present embodiment since the pressurizing chamber R3 and the inside of the cylinder 1 are communicated with each other, it is effective when supplying liquid from the liquid supply / exhaust source F to raise the vehicle height.
  • the pressure receiving area (effective pressure receiving area) is the sum of the pressure receiving area of the movable spring seat 6 and the cross-sectional area of the piston rod 3. Therefore, the suspension device S1 of the present embodiment can secure a large effective pressure receiving area as compared with the conventional suspension device.
  • the suspension device S1 of the present embodiment includes the cylinder 1, the piston 2 movably inserted into the cylinder 1, the extension side chamber R1 and the compression side chamber R2 partitioned by the piston 2 into the cylinder 1.
  • a single rod type shock absorber body D1 having a piston rod 3 connected to a piston 2 movably inserted into the cylinder 1 and exerting a damping force by allowing liquid to flow in and out during expansion and contraction, and a shock absorber body.
  • the suspension spring 8 that urges D1 in the extension direction, the pressure chamber R3 that is communicated with the compression side chamber R2 and receives the urging force from the suspension spring 8 to pressurize the inside of the cylinder 1, and the pressure chamber R3 is supplied with liquid.
  • the vehicle height can be adjusted by supplying and discharging the liquid to the pressurizing chamber R3 by the liquid supply / exhaust source F, and the effective pressure receiving area is the pressure receiving area in the pressurizing chamber R3 and the piston rod 3.
  • a large effective pressure receiving area can be secured as the sum of the cross-sectional areas of. Therefore, according to the suspension device S1 configured in this way, it is possible to secure an effective pressure receiving area for adjusting the vehicle height without increasing the pressure receiving area of the pressurizing chamber R3, while avoiding an increase in the size of the pressurizing chamber R3.
  • the vehicle height can be adjusted, so even if the vehicle height can be adjusted, the vehicle is compact and lightweight. Further, according to the suspension device S1, since the apparent spring constant can be increased, the spring constant of the suspension spring 8 can be designed to be small, and the suspension spring 8 can be made lighter.
  • the vehicle height can be adjusted to a target vehicle height only by managing the rotation amount of the pump P. Since it can be done, the vehicle height can be easily adjusted.
  • the air chamber is connected in series with the extension side chamber and the compression side chamber. Compared to the suspension device that must be installed in the vehicle, the mounting length can be shortened, the mountability on the vehicle is improved, and the number of parts is reduced.
  • the inside of the cylinder 1 is pressurized by the suspension spring 8 and the pressurizing chamber R3.
  • the suspension device that pressurizes the inside of the cylinder 1 with gas there is a problem that the pressure fluctuates due to the temperature change of the gas and the vehicle height fluctuates.
  • such pressure fluctuation does not occur. , There is no problem that the vehicle height changes.
  • the pressure in the air chamber may decrease after being used for a long period of time. High reliability can be ensured without the problem that the vehicle height fluctuates and the damping force characteristics do not change even after long-term use.
  • the suspension device S1 can pressurize the inside of the cylinder 1 by the suspension spring 8 and the pressurizing chamber R3 without providing an air chamber in the cylinder 1, the volume elastic modulus of the liquid can be secured and the damping force can be responsively applied. Can be demonstrated. Further, in the case of a suspension device in which an air chamber is provided in the shock absorber body to form a gas spring, the gas spring reaction force increases remarkably as the amount of compression of the shock absorber body increases, so that the spring constant of the entire suspension device is displaced. It becomes non-linear with respect to.
  • the gas spring is not formed in the shock absorber main body D1 of this example, the spring constant does not become non-linear with respect to the displacement when the entire suspension device S1 is viewed as a spring, and the riding comfort in the vehicle is also improved. To do.
  • the pressurizing chamber R3 is movably fitted to the hollow housing 5 and the housing 5, and is partitioned by the movable spring seat 6 urged by the suspension spring 8. It is easy to install the pressurizing chamber R3 in the shock absorber body D1.
  • the housing 5 is mounted on the outer circumference of the cylinder 1, and the movable spring seat 6 is slidably mounted on both the outer circumference of the cylinder 1 and the inner circumference of the housing 5.
  • the cylinder 1 can be used as a forming component of the pressurizing chamber R3, the pressurizing chamber R3 can be formed on the outer periphery of the cylinder 1 with the minimum number of parts, and the outer diameter of the reservoir is on the outer periphery of the cylinder. It only needs to have a double-cylinder shock absorber, and can be easily installed in a vehicle.
  • a valve case 11 is provided at the lower end of the cylinder 1, and the valve case 11 is damped on the pressure side to give resistance to the flow of liquid from the pressure side chamber R2 to the pressure chamber R3.
  • the pressurizing chamber R3 may be used as a reservoir by providing a passage 11a and a suction valve 11b that allows only the flow of liquid from the pressurizing chamber R3 to the compression side chamber R2.
  • the pressure in the extension side chamber R1 becomes higher than the pressure in the compression side chamber R2 to cause a pressure difference, and the suspension device S1a suppresses the extension in response to this pressure difference. Demonstrates lateral damping force. Further, the volume of the piston rod 3 ejected from the cylinder 1 due to the extension of the suspension device S1 is insufficient in the compression side chamber R2, but the suspension spring 8 pushes the movable spring seat 6 downward in FIG. R3 is compressed, and the insufficient liquid is replenished from the pressurizing chamber R3 to the compression side chamber R2 via the suction valve 11b.
  • the hydraulic oil in the compression side chamber R2 to be compressed is expanded by passing through the damping passage 4 and the damping valve 4a due to the downward movement of the piston 2 in FIG. It flows to the extension side chamber R1. Further, the liquid corresponding to the volume of the piston rod 3 that enters the cylinder 1 due to the contraction of the suspension device S1a is discharged from the cylinder 1 to the pressurizing chamber R3 via the compression side damping passage 11a. Due to the pressure loss when the liquid passes through the damping valve 4a and the compression side damping passage 11a, the pressure in the extension side chamber R1 becomes lower than the pressure in the compression side chamber R2, causing a pressure difference, and the suspension device S1a responds to this pressure difference.
  • the suspension device S1a configured in this way, if the liquid is supplied from the liquid supply / discharge source F to the pressurizing chamber R3, the liquid is supplied to the pressurizing chamber R3 and the cylinder 1 to raise the vehicle height. If the liquid is discharged from the pressurizing chamber R3 at the liquid supply / discharge source F, the vehicle height can be lowered.
  • the suspension device S1a configured in this way can secure a large effective pressure receiving area (effective pressure receiving area) as the sum of the pressure receiving area in the pressure chamber R3 and the cross-sectional area of the piston rod 3 when adjusting the vehicle height. Therefore, even if the vehicle height can be adjusted, it is compact and lightweight.
  • the pressurizing chamber R3 is provided on the outer periphery of the cylinder 1 of the shock absorber main body D1 in the suspension device S1 of the first embodiment. Therefore, it differs from the suspension device S1 in that a pressurizing chamber R3 is provided on the outer periphery of the piston rod 3 of the shock absorber main body D2.
  • the housing 5 is provided on the outer periphery of the cylinder 1, but in the suspension device S2 of the second embodiment, the tubular housing is provided on the upper outer periphery of the piston rod 3. 12 is provided.
  • the movable spring seat 6 is mounted on the outer periphery of the cylinder 1, but in the suspension device S2 of the second embodiment, the movable spring seat 6 is movable on the upper outer periphery of the piston rod 3.
  • the spring seat 13 is attached.
  • the housing 12 has a tubular shape, and in this example, it is attached to the outer periphery of the upper end of the piston rod 3. Specifically, the housing 12 is provided with an annular mounting portion 12a on the inner circumference of the upper end, and the mounting portion 12a is mounted on the outer periphery of the piston rod 3. When the housing 12 is attached to the piston rod 3 in this way, an annular gap is formed between the housing 12 and the piston rod 3.
  • the movable spring seat 13 is slidably mounted on the outer circumference of the piston rod 3.
  • the movable spring seat 13 includes an inner cylinder 13a that is in sliding contact with the outer circumference of the piston rod 3, an outer cylinder 13b provided on the outer circumference of the inner cylinder 13a, and a flange portion 13c that connects the lower end of the inner cylinder 13a and the lower end of the outer cylinder 13b.
  • the outer cylinder 13b is provided with an annular seat portion 13d provided on the outer periphery of the upper end.
  • the shape of the sheet portion 13d is not limited to the annular shape, and may be another shape.
  • the inner cylinder 13a is slidably contacted with the outer circumference of the piston rod 3 and the inner circumference of the housing 12 to be movably fitted into the annular gap, the annular gap is closed, and the space between the piston rod 3 and the housing 12 is closed.
  • a pressurizing chamber R3 is formed. Further, a seal ring 13e that slides into the outer circumference of the piston rod 3 is provided on the inner circumference of the inner cylinder 13a, and a seal ring 13f that slides into the inner circumference of the housing 12 is provided on the outer circumference of the inner cylinder 13a. ..
  • a seal ring 12b that is in close contact with the outer circumference of the piston rod 3 is provided on the inner circumference of the mounting portion 12a of the housing 12.
  • the pressure chamber R3 is maintained in a liquid-tight state by the seal rings 12b, 13e, and 13f. Further, the pressurizing chamber R3 is communicated with the compression side chamber R2 via a passage 3a provided in the piston rod 3.
  • the movable spring seat 13 may be movably fitted to the outer periphery of the housing 12 to partition the pressurizing chamber R3 between the movable spring seat 13 and the housing 12.
  • the inner cylinder 13a of the movable spring seat 13 is eliminated, the outer cylinder 13b is slidably contacted with the outer circumference of the housing 12 to be movably fitted, and the inner circumference of the flange portion 13c of the movable spring seat 13 is pistoned.
  • the pressure chamber R3 may be formed between the movable spring seat 13 and the housing 12 by sliding contact with the outer periphery of the rod 3 and fitting the rod 3 so as to be movable.
  • the liquid supply / discharge source F is configured to include a conduit H for communicating the pressurizing chamber R3 in the housing 12 and the tank T, and a pump P provided in the middle of the conduit H, and the pressurizing chamber R3. Supply and discharge liquid to the housing.
  • the liquid supply / discharge source F may supply / discharge liquid to the pressurizing chamber R3 via the compression side chamber R2 by connecting the pipeline H to the compression side chamber R2.
  • the configuration of the shock absorber main body D2 in the suspension device S2 of the second embodiment is the first except that the piston rod 3 is provided with the passage 3a and the through hole 1b in the cylinder 1 is abolished. This is the same as the shock absorber main body D1 in the suspension device S1.
  • An annular fixed spring seat 14 is attached to the outer periphery of the cylinder 1 in the suspension device S2 of the second embodiment instead of the housing 5 and the movable spring seat 6.
  • the shape of the fixed spring sheet 14 is not limited to the annular shape, and may be another shape.
  • a coiled suspension spring 8 is interposed between the movable spring seat 13 and the fixed spring seat 14 and on the outer periphery of the shock absorber main body D2, and the shock absorber main body D2 is extended by the suspension spring 8. Being urged in the direction. Therefore, when the suspension device S2 is interposed between the vehicle body and the axle, the suspension spring 8 is compressed by the weight of the vehicle body to support and elastically support the vehicle body.
  • the suspension spring 8 receives a load from the vehicle body and urges the movable spring seat 13 upward in the drawing, and the urging force of the suspension spring 8 is transmitted to the pressurizing chamber R3 via the movable spring seat 13.
  • the pressurizing chamber R3 is pressurized. Since the pressurizing chamber R3 is communicated with the compression side chamber R2 by the passage 3a provided in the piston rod 3, the extension side chamber R1 and the compression side chamber R2 in the cylinder 1 are similarly pressurized by the urging force of the suspension spring 8. There is. Therefore, even in the suspension device S2 of the second embodiment, the cylinder 1 is provided by the suspension spring 8 and the pressurizing chamber R3 without providing an air chamber, as in the suspension device S1 of the first embodiment. The inside can be pressurized.
  • suspension device S2 is configured, and the pressurizing chamber R3 is communicated with the compression side chamber R2. Therefore, as in the suspension device S1 of the first embodiment, the pressure in the cylinder 1 is increased. It becomes equal to the pressure CC of the pressurizing chamber R3. Therefore, when the cross-sectional area of the piston rod 3 and A R, suspension system S2 is like the suspension system S1 of the first embodiment, the piston rod produced by the biasing force F S and the pressure P C of the suspension springs 8 3 support body by the resultant force of the repulsive force a R ⁇ P C to boost.
  • the suspension device S2 When the suspension device S2 is in the extending stroke, the liquid in the extension side chamber R1 compressed by the upward movement of the piston 2 in FIG. 3 passes through the damping passage 4 and the damping valve 4a and is expanded on the compression side. It flows to room R2. Due to the pressure loss when the liquid passes through the damping valve 4a, the pressure in the extension side chamber R1 becomes higher than the pressure in the compression side chamber R2, causing a pressure difference, and the suspension device S2 suppresses the extension in response to this pressure difference. Demonstrates lateral damping force. Further, the compression side chamber R2 lacks the amount of liquid corresponding to the volume of the piston rod 3 that exits from the cylinder 1 due to the extension of the suspension device S2.
  • the hydraulic oil in the compression side chamber R2 to be compressed is expanded by passing through the damping passage 4 and the damping valve 4a due to the downward movement of the piston 2 in FIG. It flows to the extension side chamber R1. Due to the pressure loss when the liquid passes through the damping valve 4a, the pressure in the extension side chamber R1 becomes lower than the pressure in the compression side chamber R2, causing a pressure difference, and the suspension device S2 suppresses contraction in response to this pressure difference. Demonstrates damping force. Further, the volume of the piston rod 3 that invades into the cylinder 1 due to the contraction of the suspension device S2 is pushed out from the cylinder 1 into the pressurizing chamber R3.
  • the amount of expansion and contraction of the suspension spring 8 is not only the stroke amount of the suspension device S2, but also the change in the pushing volume of the piston rod 3 in the cylinder 1 caused by the displacement of the piston rod 3 with respect to the cylinder 1.
  • the amount of movement is also added.
  • the whole of the suspension device S2 is like the suspension system S1 of the first embodiment, functions as a spring having a spring constant K E.
  • the suspension device S2 can pressurize the inside of the cylinder 1 by the suspension spring 8 and the pressurizing chamber R3 without providing the air chamber, the suspension device S2 must provide the air chamber in series with the extension side chamber and the compression side chamber. In comparison, the mounting length can be shortened and the mountability on the vehicle is improved.
  • the pump P in the liquid supply / discharge source F is driven in the forward rotation direction to supply the liquid into the pressurizing chamber R3 and the cylinder 1.
  • the liquid is sent into the pressurizing chamber R3 and the cylinder 1, and the movable spring seat 13 is pushed down against the housing 12 by the pressure increase in the pressurizing chamber R3.
  • the pressures in the extension side chamber R1 and the compression side chamber R2 increase, and the piston 2 is pushed up.
  • the force F1 that pushes down the movable spring seat 13 acts as a reaction that pushes up the housing 12 in FIG. 3, the force F3 that pushes up the vehicle body by the suspension device S2 becomes the resultant force of the forces F1 and F2 that push up the housing 12 and the piston 2.
  • the F3 P C ⁇ (a S + a R).
  • the housing 12 is attached to the piston rod 3, and the movable spring seat 13 is slidably attached to both the outer circumference of the piston rod 3 and the inner circumference of the housing 12 to be applied. Even if the compression chamber R3 and the compression side chamber R2 are communicated with each other by the passage 3a provided in the piston rod 3, the vehicle height can be adjusted by supplying and discharging the liquid from the liquid supply / discharge source F to the pressure chamber R3. Further, in the suspension device S2 configured as described above, since the effective pressure receiving area is the sum of the pressure receiving area in the pressurizing chamber R3 and the cross section of the piston rod 3, a large effective pressure receiving area can be secured.
  • the suspension device S2 configured in this way, it is possible to secure an effective pressure receiving area for adjusting the vehicle height without increasing the pressure receiving area of the pressurizing chamber R3, while avoiding an increase in the size of the pressurizing chamber R3.
  • the vehicle body weight is heavy, the vehicle height can be adjusted, so even if the vehicle height can be adjusted, the vehicle is compact and lightweight.
  • the suspension device S2 since the apparent spring constant can be increased, the spring constant of the suspension spring 8 can be designed to be small, and the suspension spring 8 can be made lighter.
  • the air chamber is connected in series with the extension side chamber and the compression side chamber. Compared to the suspension device that must be installed in the vehicle, the mounting length can be shortened, the mountability on the vehicle is improved, and the number of parts is reduced.
  • the suspension device S2 of the present invention instead of pressurizing the inside of the cylinder 1 in the air chamber, the inside of the cylinder 1 is pressurized by the suspension spring 8 and the pressurizing chamber R3. Therefore, the suspension device S2 of the second embodiment does not cause a problem that the vehicle height changes like the suspension device S1 of the first embodiment, and the damping force characteristic changes even after long-term use. High reliability can be ensured without doing so. Further, the suspension device S2 can secure the volume elastic modulus of the liquid, can exert a damping force with good responsiveness, and when the entire suspension device S2 is viewed as a spring, the spring constant does not become non-linear with respect to the displacement, and the vehicle rides on the vehicle. It also improves comfort.
  • the housing 12 is attached to the piston rod 3 in the shock absorber main body D2, and the movable spring seat 13 is slidably attached to both the outer circumference of the piston rod 3 and the inner circumference of the housing 12.
  • the piston rod 3 can be used as a forming component of the pressurizing chamber R3, and the pressurizing chamber R3 can be formed at the upper end of the piston rod 3 with a minimum number of parts.
  • the pressurizing chamber R3 is provided on the vehicle body side, if it is difficult to mount the suspension device S1 having the pressurizing chamber R3 on the axle side due to the mounting space, the structure of the suspension device S2 is adopted and mounted on the vehicle. it can. On the contrary, when it is difficult to mount the suspension device S2 having the pressurizing chamber R3 on the vehicle body side due to the mounting space, the structure of the suspension device S1 may be adopted and mounted on the vehicle.
  • a housing 5 is provided on the outer periphery of the cylinder 1 to provide a movable spring seat 6. While the pressurizing chamber R3 is provided by sliding contact, the shock absorber main body D3 is provided with an outer cylinder 15 covering the outer periphery of the cylinder 1 and a pressurizing chamber R3 is provided on the outer periphery of the outer cylinder 15. It is different from S1.
  • the housing 5 is provided on the outer periphery of the cylinder 1, but in the suspension device S3 of the third embodiment, the outer circumference of the outer cylinder 15 covering the outer periphery of the cylinder 1 is provided. Is provided with a tubular housing 16.
  • the movable spring seat 6 is mounted on the outer periphery of the cylinder 1, but in the suspension device S3 of the third embodiment, the movable spring is attached to the outer periphery of the outer cylinder 15.
  • the seat 17 is attached.
  • the shock absorber main body D3 in the suspension device S3 of the third embodiment has a structure in which an outer cylinder 15 covering the cylinder 1 is provided on the outer periphery of the cylinder 1 of the shock absorber main body D1 in the suspension device S1 of the first embodiment. It has become.
  • the annular gap G between the cylinder 1 and the outer cylinder 15 is communicated with the compression side chamber R2 through a through hole 1b provided in the cylinder 1 and is filled with a liquid.
  • the housing 16 provided on the outer periphery of the outer cylinder 15 is attached in a state of being in contact with the flange 15a provided on the outer periphery of the lower end of the outer cylinder 15, and the lower end opening of the housing 16 is closed.
  • a tubular movable spring sheet 17 is slidably mounted on the outer circumference of the outer cylinder 15.
  • the movable spring sheet 17 includes a tubular portion 17a that is in sliding contact with the outer periphery of the outer cylinder 15 and an annular seat portion 17b provided on the outer periphery of the upper end of the tubular portion 17a.
  • the tubular portion 17a is the outer circumference of the outer cylinder 15. Is in sliding contact with the inner circumference of the housing 16. Therefore, the tubular portion 17a of the movable spring seat 17 is movably fitted in the annular gap between the housing 16 and the outer cylinder 15, and the pressurizing chamber R3 is formed in the housing 16.
  • the pressurizing chamber R3 is communicated with the compression side chamber R2 via a through hole 15b, an annular gap G and a through hole 1b provided on the lower side of the outer cylinder 15, and the pressurizing chamber R3 is filled in the cylinder 1. It is filled with a liquid similar to the liquid to be used.
  • the shape of the sheet portion 17b is not limited to the annular shape, and may be another shape.
  • the space between the movable spring seat 17 and the housing 16, the space between the outer cylinder 15 and the housing 16, and the space between the movable spring seat 17 and the outer cylinder 15 are sealed by seal rings 16a, 16b, and 17c, respectively.
  • the pressurizing chamber R3 is kept liquidtight.
  • an annular bottom may be provided on the inner circumference of the lower end of the housing 16 and the bottom may be fixed to the outer cylinder 15 by welding or the like.
  • the fixed structure of the housing 16 with respect to the housing 16 is not limited to that shown in the figure.
  • a seal ring that is in sliding contact with the inner circumference of the housing 16 may be provided on the outer periphery of the tubular portion 17a of the movable spring seat 17.
  • the liquid supply / discharge source F is configured to include a conduit H for communicating the pressurizing chamber R3 in the housing 16 and the tank T, and a pump P provided in the middle of the conduit H, and the pressurizing chamber R3. Supply and discharge liquid to the housing.
  • the liquid supply / discharge source F connects the pipeline H to the annular gap G or the compression side chamber R2, and supplies / discharges the liquid to the pressurizing chamber R3 via the annular gap G or the annular gap G and the compression side chamber R2. May be good.
  • a suspension spring 8 is interposed between the movable spring seat 17 and the fixed spring seat 7 on the outer periphery of the shock absorber body D3, and the suspension spring 8 urges the shock absorber body D3 in the extension direction.
  • the pressurizing chamber R3 is pressurized via the movable spring sheet 17. Since the pressurizing chamber R3 is communicated with the compression side chamber R2 by the through hole 1b provided in the cylinder 1, the extension side chamber R1 and the compression side chamber R2 in the cylinder 1 are similarly pressurized by the urging force of the suspension spring 8. There is. Therefore, even in the suspension device S3 of the third embodiment, the cylinder 1 is provided by the suspension spring 8 and the pressurizing chamber R3 without providing an air chamber, as in the suspension device S1 of the first embodiment. The inside can be pressurized.
  • the suspension device S3 is configured, and the pressurizing chamber R3 is communicated with the compression side chamber R2. Therefore, as in the suspension device S1 of the first embodiment, the pressure in the cylinder 1 is increased. It becomes equal to the pressure CC of the pressurizing chamber R3. Therefore, when the cross-sectional area of the piston rod 3 and A R, the suspension device S3 is like the suspension system S1 of the first embodiment, the piston rod produced by the biasing force F S and the pressure P C of the suspension springs 8 3 support body by the resultant force of the repulsive force a R ⁇ P C to boost.
  • the suspension device S3 can pressurize the inside of the cylinder 1 by the suspension spring 8 and the pressurizing chamber R3 without providing the air chamber in the cylinder 1, the air chamber must be provided in series with the extension side chamber and the compression side chamber. Compared to a suspension device that does not have to be used, the mounting length can be shortened and the mountability on a vehicle is improved.
  • the pump P in the liquid supply / discharge source F is driven in the forward rotation direction to supply the liquid into the pressurizing chamber R3 and the cylinder 1.
  • the liquid is sent into the pressurizing chamber R3 and the cylinder 1, and the movable spring seat 17 is pushed up with respect to the housing 16 by the pressure increase in the pressurizing chamber R3.
  • the pressures in the extension side chamber R1 and the compression side chamber R2 increase, and the piston 2 is pushed up.
  • the effective pressure receiving area is the sum of the pressure receiving area of the movable spring seat 17 and the cross-sectional area of the piston rod 3. Therefore, according to the suspension device S3 of the present embodiment, a large effective pressure receiving area can be secured as compared with the conventional suspension device.
  • the outer cylinder 15 is provided on the outer circumference of the cylinder 1
  • the housing 16 is provided on the outer circumference of the outer cylinder 15
  • the movable spring seat 17 is provided on the outer circumference of the outer cylinder 15 and the housing 16.
  • the effective pressure receiving area (effective pressure receiving area) at the time of adjusting the vehicle height is the sum of the pressure receiving area in the pressure chamber R3 and the cross-sectional area of the piston rod 3 to increase the effective pressure receiving area. Can be secured. Therefore, according to the suspension device S3 configured in this way, it is possible to secure an effective pressure receiving area for adjusting the vehicle height without increasing the pressure receiving area of the pressurizing chamber R3, while avoiding an increase in the size of the pressurizing chamber R3. However, even if the vehicle body weight is heavy, the vehicle height can be adjusted, so even if the vehicle height can be adjusted, the vehicle is compact and lightweight. Further, according to the suspension device S3, since the apparent spring constant can be increased, the spring constant of the suspension spring 8 can be designed to be small, and the suspension spring 8 can be made lighter.
  • the air chamber is connected in series with the extension side chamber and the compression side chamber.
  • the mounting length can be shortened and the mountability on the vehicle is improved.
  • the outer cylinder 15 covers the outer periphery of the cylinder 1 and the shock absorber main body D3 has a double pipe structure, the strength can be improved and the bending and the rigidity in the axial direction can be increased.
  • the suspension device S3 of the present invention instead of pressurizing the inside of the cylinder 1 in the air chamber, the inside of the cylinder 1 is pressurized by the suspension spring 8 and the pressurizing chamber R3. Therefore, the suspension device S3 of the third embodiment does not cause a problem that the vehicle height changes like the suspension device S1 of the first embodiment, and the damping force characteristic changes even after long-term use. High reliability can be ensured without doing so. Further, the suspension device S3 can secure the volume elastic modulus of the liquid, can exert a damping force with good responsiveness, and when the entire suspension device S3 is viewed as a spring, the spring constant does not become non-linear with respect to the displacement, and the vehicle rides on the vehicle. It also improves comfort.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

A suspension device (S1) according to the present invention comprises: a single-rod-type shock absorber main unit (D1) that comprises a cylinder (1), a piston (2) movably inserted into the cylinder (1), an extension-side chamber (R1) and a compression-side chamber (R2) within the cylinder (1), the extension-side chamber (R1) and the compression-side chamber (2) being partitioned by the piston (2), and a piston rod (3) linked to the piston (2) which is movably inserted into the cylinder (1), and that exhibits damping force by fluid entering and exiting the cylinder (1) when the single-rod-type shock absorber main unit (D1) extends and compresses; a suspension spring (8) that biases the shock absorber main unit (D1) in the extending direction; a compression chamber (R3) that communicates with the compression-side chamber (R2) and compresses within inside of the cylinder (1) that is under biasing force from the suspension spring (8); and a fluid supply-and-discharge source (F) that is capable of supplying and discharging fluid to and from the compression chamber (R3).

Description

サスペンション装置Suspension device
 本発明は、サスペンション装置に関する。 The present invention relates to a suspension device.
 サスペンション装置は、たとえば、伸縮時に減衰力を発する緩衝器本体と、緩衝器本体を伸長方向に付勢する懸架ばねとを備えて車両の車体と車軸との間に介装されている。そして、サスペンション装置は、懸架ばねで車体を弾性支持して車軸側から車体側への振動入力を緩和するとともに緩衝器本体で車体の振動を減衰させる。 The suspension device is, for example, provided between a shock absorber body that generates a damping force when expanding and contracting, and a suspension spring that urges the shock absorber body in the extension direction, and is interposed between the vehicle body and the axle. Then, the suspension device elastically supports the vehicle body with the suspension spring to alleviate the vibration input from the axle side to the vehicle body side, and damps the vibration of the vehicle body with the shock absorber body.
 また、サスペンション装置は、車高を調整するために緩衝器本体の外周に設けた懸架ばねの下端を支持するばねシートを上下方向に駆動するジャッキを備えて、車高調整を行うものがある。このようなサスペンション装置によれば、車体に積載される積荷重量や搭乗者数変化によって車高が変動しても、ばねシートを上下動させて、車高を最適値に調整できるとともに搭乗者の乗降の際に車高を低下させて搭乗者の乗降を容易にすることができる(たとえば、特許文献1参照)。 In addition, some suspension devices are equipped with a jack that drives a spring seat that supports the lower end of the suspension spring provided on the outer periphery of the shock absorber body in the vertical direction in order to adjust the vehicle height. According to such a suspension device, even if the vehicle height fluctuates due to changes in the load capacity loaded on the vehicle body and the number of passengers, the spring seat can be moved up and down to adjust the vehicle height to the optimum value and the passenger's height. When getting on and off, the vehicle height can be lowered to facilitate the getting on and off of passengers (see, for example, Patent Document 1).
JP2014-084972AJP2014-084972A
 前記したサスペンション装置にあっては、緩衝器本体の外周に懸架ばねとジャッキとが配置される構造となっており、ジャッキの推力は内部圧力にジャッキの受圧面積を乗じた値となるが車体重量によってはジャッキの受圧面積を大きく確保しないと車高調整が難しくなる。ジャッキの受圧面積を大きくしようとすると、ジャッキの外径が大きくなるので、サスペンション装置が大型化するとともに、サスペンション装置の重量も重くなってしまう。 The suspension device described above has a structure in which a suspension spring and a jack are arranged on the outer periphery of the shock absorber body, and the thrust of the jack is a value obtained by multiplying the internal pressure by the pressure receiving area of the jack, but the weight of the vehicle body. Depending on the case, it may be difficult to adjust the vehicle height unless a large jack pressure receiving area is secured. If an attempt is made to increase the pressure receiving area of the jack, the outer diameter of the jack becomes large, so that the suspension device becomes large and the weight of the suspension device becomes heavy.
 そこで、本発明は、車高調整が可能であっても小型で軽量なサスペンション装置の提供を目的としている。 Therefore, an object of the present invention is to provide a small and lightweight suspension device even if the vehicle height can be adjusted.
 本発明における課題解決手段におけるサスペンション装置は、シリンダと、シリンダ内に移動自在に挿入されるピストンと、シリンダ内にピストンで仕切られる伸側室と圧側室と、シリンダ内に移動自在に挿入されるピストンに連結されるピストンロッドとを有して伸縮時にシリンダに液体が出入りして減衰力を発揮する緩衝器本体と、緩衝器本体を伸長方向へ付勢する懸架ばねと、圧側室に連通されて懸架ばねから付勢力を受けてシリンダ内を加圧する加圧室と、加圧室へ液体を給排可能な液体給排源とを備えている。このように構成されたサスペンション装置は、液体給排源によって加圧室への液体の給排によって車高を調整できるとともに、有効受圧面積を加圧室における受圧面積とピストンロッドの断面積との和として有効受圧面積を大きく確保できる。 The suspension device in the problem-solving means of the present invention includes a cylinder, a piston that is movably inserted into the cylinder, an extension side chamber and a compression side chamber that are partitioned by the piston in the cylinder, and a piston that is movably inserted into the cylinder. A shock absorber body that has a piston rod connected to the cylinder and exerts a damping force by allowing liquid to flow in and out of the cylinder during expansion and contraction, and a suspension spring that urges the shock absorber body in the extension direction are communicated with the compression side chamber. It is equipped with a pressurizing chamber that pressurizes the inside of the cylinder by receiving urging force from a suspension spring, and a liquid supply / discharge source that can supply and discharge liquid to the pressurizing chamber. In the suspension device configured in this way, the vehicle height can be adjusted by supplying and discharging the liquid to and from the pressurizing chamber by the liquid supply and discharge source, and the effective pressure receiving area is determined by the pressure receiving area in the pressurizing chamber and the cross-sectional area of the piston rod. A large effective pressure receiving area can be secured as a sum.
 また、サスペンション装置における液体給排源が定容量型のポンプを有していてもよく、このように構成されたサスペンション装置によれば、ポンプの回転量を管理するだけで車高を狙った車高へ調整できるので車高調整が容易となる。 Further, the liquid supply / exhaust source in the suspension device may have a constant-capacity pump, and according to the suspension device configured in this way, a vehicle aiming at the vehicle height only by controlling the rotation amount of the pump. Since it can be adjusted to the height, it is easy to adjust the vehicle height.
 さらに、加圧室が中空なハウジングとハウジングに移動自在に嵌合されて懸架ばねによって付勢される可動ばねシートとによって区画形成されてもよく、このように構成されたサスペンション装置によれば、緩衝器本体への加圧室の設置が容易である。 Further, the pressurizing chamber may be partitioned by a hollow housing and a movable spring seat movably fitted to the housing and urged by a suspension spring, according to the suspension device configured in this way. It is easy to install the pressurizing chamber in the shock absorber body.
 また、ハウジングがシリンダの外周に装着され、可動ばねシートがシリンダの外周とハウジングの内周の双方に摺動自在に装着されてもよい。このようにサスペンション装置を構成すると、シリンダを加圧室の形成部品として利用でき、最小限の部品でシリンダの外周に加圧室を形成でき、外径もリザーバをシリンダ外周に持つ複筒型緩衝器程度で済み、車両へも無理なく搭載できる。 Further, the housing may be mounted on the outer circumference of the cylinder, and the movable spring seat may be slidably mounted on both the outer circumference of the cylinder and the inner circumference of the housing. When the suspension device is configured in this way, the cylinder can be used as a forming component of the pressurizing chamber, the pressurizing chamber can be formed on the outer circumference of the cylinder with the minimum number of parts, and the outer diameter is also a double cylinder type buffer having a reservoir on the outer circumference of the cylinder. It only needs to be a cylinder and can be mounted on a vehicle without difficulty.
 さらに、ハウジングがピストンロッドに取り付けられ、可動ばねシートがピストンロッドの外周と前記ハウジングの内周の双方に摺動自在に装着され、加圧室と圧側室とがピストンロッドに設けた通路によって連通されていてもよい。このように構成されたサスペンション装置によれば、ピストンロッドを加圧室の形成部品として利用でき、最小限の部品でピストンロッドの上端に加圧室を形成できる。また、車体側に加圧室を設けたので、取付スペースの関係で車軸側に加圧室を設けるのが難しい車両にあってもサスペンション装置を搭載できる。 Further, the housing is attached to the piston rod, the movable spring seat is slidably attached to both the outer circumference of the piston rod and the inner circumference of the housing, and the pressurizing chamber and the compression side chamber are communicated by a passage provided in the piston rod. It may have been. According to the suspension device configured as described above, the piston rod can be used as a forming component of the pressurizing chamber, and the pressurizing chamber can be formed at the upper end of the piston rod with a minimum number of parts. Further, since the pressurizing chamber is provided on the vehicle body side, the suspension device can be mounted even on a vehicle in which it is difficult to provide the pressurizing chamber on the axle side due to the mounting space.
 そしてさらに、緩衝器本体がシリンダの外周を覆う外筒を有し、ハウジングが外筒の外周に装着され、可動ばねシートが外筒の外周と前記ハウジングの内周の双方に摺動自在に装着されてもよい。このように構成されたサスペンション装置によれば、外筒を設けたことで強度が向上して、曲げおよび軸方向の荷重に対する剛性が向上する。 Further, the shock absorber main body has an outer cylinder covering the outer circumference of the cylinder, the housing is mounted on the outer circumference of the outer cylinder, and the movable spring sheet is slidably mounted on both the outer circumference of the outer cylinder and the inner circumference of the housing. May be done. According to the suspension device configured in this way, the provision of the outer cylinder improves the strength and the rigidity against bending and axial load.
 本発明のサスペンション装置によれば、車高調整が可能であっても小型で軽量となる。 According to the suspension device of the present invention, it is small and lightweight even if the vehicle height can be adjusted.
図1は、第一の実施の形態におけるサスペンション装置の断面図である。FIG. 1 is a cross-sectional view of the suspension device according to the first embodiment. 図2は、第一の実施の形態の第一変形例におけるサスペンション装置の断面図である。FIG. 2 is a cross-sectional view of the suspension device according to the first modification of the first embodiment. 図3は、第二の実施の形態におけるサスペンション装置の断面図である。FIG. 3 is a cross-sectional view of the suspension device according to the second embodiment. 図4は、第三の実施の形態におけるサスペンション装置の断面図である。FIG. 4 is a cross-sectional view of the suspension device according to the third embodiment.
 <第一の実施の形態>
 以下、図に示した実施の形態に基づき、本発明を説明する。第一の実施の形態のサスペンション装置S1は、図1に示すように、シリンダ1と、シリンダ1内に移動自在に挿入されるピストン2と、シリンダ1内にピストン2で仕切られる伸側室R1と圧側室R2と、シリンダ1内に移動自在に挿入されるピストン2に連結されるピストンロッド3とを有して伸縮時にシリンダ1に液体が出入りして減衰力を発揮する片ロッド型の緩衝器本体D1と、緩衝器本体D1を伸長方向へ付勢する懸架ばね8と、圧側室R2に連通されて懸架ばね8から付勢力を受けてシリンダ1内を加圧する加圧室R3と、加圧室R3へ液体を給排可能な液体給排源Fとを備えて構成されている。
<First Embodiment>
Hereinafter, the present invention will be described based on the embodiments shown in the figure. As shown in FIG. 1, the suspension device S1 of the first embodiment includes a cylinder 1, a piston 2 movably inserted into the cylinder 1, and an extension chamber R1 partitioned by the piston 2 into the cylinder 1. A single-rod type shock absorber having a compression side chamber R2 and a piston rod 3 connected to a piston 2 movably inserted into the cylinder 1 and allowing liquid to flow in and out of the cylinder 1 during expansion and contraction to exert a damping force. The main body D1, the suspension spring 8 that urges the shock absorber main body D1 in the extension direction, the pressure chamber R3 that is communicated with the compression side chamber R2 and receives the urging force from the suspension spring 8 to pressurize the inside of the cylinder 1, and pressurization. The chamber R3 is provided with a liquid supply / discharge source F capable of supplying / discharging liquid.
 このサスペンション装置S1にあっては、緩衝器本体D1は、シリンダ1内に移動自在に挿入されてピストン2に連結されるピストンロッド3を備えている。ピストンロッド3の他端は、シリンダ1外に突出しており、ピストンロッド3は、伸側室R1内のみに挿通されていて、緩衝器本体D1は、所謂、片ロッド型の緩衝器本体とされている。また、ピストンロッド3の先端には、環状の固定ばねシート7がピストンロッド3に対して軸方向不動に取り付けられるほか、図示しない車両の車体への装着を可能とする取付軸9が設けられている。なお、固定ばねシート7の形状は環状に限定されず、他の形状とされてもよい。 In this suspension device S1, the shock absorber main body D1 includes a piston rod 3 that is movably inserted into the cylinder 1 and connected to the piston 2. The other end of the piston rod 3 protrudes outside the cylinder 1, the piston rod 3 is inserted only into the extension side chamber R1, and the shock absorber body D1 is a so-called single rod type shock absorber body. There is. Further, at the tip of the piston rod 3, an annular fixed spring seat 7 is attached to the piston rod 3 in an axially immovable manner, and a mounting shaft 9 is provided so as to be mounted on the vehicle body of a vehicle (not shown). There is. The shape of the fixed spring sheet 7 is not limited to the annular shape, and may be another shape.
 そして、シリンダ1には、ピストン2が摺動自在に挿入されており、シリンダ1内がピストン2によって伸側室R1と圧側室R2とに区画されている。ピストン2には、伸側室R1と圧側室R2とを連通する減衰通路4が設けられており、伸側室R1と圧側室R2に充填された液体は減衰通路4を介して伸側室R1と圧側室R2とを行き来できるようになっている。減衰通路4は、図示した例では、双方向の液体の流れを許容し、途中に設けた減衰弁4aにて通過する液体の流れに抵抗を与えるようになっており、液体の通過時に圧力損失を生じせしめて伸側室R1と圧側室R2の圧力に差を生じさせるようになっている。なお、減衰弁4aは、絞りやチョークといった双方向の流れを許容する弁とされてもよいし、一方通行の減衰弁を採用する場合、伸側室R1から圧側室R2へ向かう流れのみを許容する減衰弁と反対の流れのみを許容する減衰弁を減衰通路4に並列に設けてもよい。なお、伸側室R1および圧側室R2内に充填される液体は、作動油のほか、たとえば、水、水溶液といった液体を使用することもできる。 A piston 2 is slidably inserted into the cylinder 1, and the inside of the cylinder 1 is divided into an extension side chamber R1 and a compression side chamber R2 by the piston 2. The piston 2 is provided with a damping passage 4 that communicates the extension side chamber R1 and the compression side chamber R2, and the liquid filled in the extension side chamber R1 and the compression side chamber R2 passes through the attenuation passage 4 to the extension side chamber R1 and the compression side chamber R1. It is possible to go back and forth with R2. In the illustrated example, the damping passage 4 allows bidirectional liquid flow and gives resistance to the liquid flow passing through the damping valve 4a provided in the middle, and pressure loss occurs when the liquid passes. Is caused to cause a difference in pressure between the extension side chamber R1 and the compression side chamber R2. The damping valve 4a may be a valve that allows bidirectional flow such as a throttle or a choke, and when a one-way damping valve is adopted, only the flow from the extension side chamber R1 to the compression side chamber R2 is allowed. A damping valve that allows only the flow opposite to the damping valve may be provided in parallel with the damping passage 4. As the liquid filled in the extension side chamber R1 and the compression side chamber R2, a liquid such as water or an aqueous solution can be used in addition to the hydraulic oil.
 シリンダ1の図1中下端外周には、筒状のハウジング5が設けられており、シリンダ1とハウジング5との間には環状隙間が形成されている。また、ハウジング5は、シリンダ1に対してシリンダ1の下端外周に設けたフランジ1aに当接した状態で取り付けられていて、ハウジング5の下端開口部は閉塞されている。 A tubular housing 5 is provided on the outer periphery of the lower end of FIG. 1 of the cylinder 1, and an annular gap is formed between the cylinder 1 and the housing 5. Further, the housing 5 is attached to the cylinder 1 in a state of being in contact with the flange 1a provided on the outer periphery of the lower end of the cylinder 1, and the lower end opening of the housing 5 is closed.
 さらに、シリンダ1の外周には、筒状の可動ばねシート6が摺動自在に装着されている。この可動ばねシート6は、シリンダ1の外周に摺接する筒部6aと、筒部6aの上端外周に設けた環状のシート部6bとを備えており、筒部6aは、シリンダ1の外周とハウジング5の内周に摺接している。よって、ハウジング5とシリンダ1との間の環状隙間に可動ばねシート6の筒部6aが移動自在に嵌合されており、ハウジング5内に加圧室R3が形成されている。この加圧室R3は、シリンダ1の下方側に設けた通孔1bによって圧側室R2に連通されており、加圧室R3にはシリンダ1内に充填される液体と同様の液体が充填されている。なお、シート部6bの形状は環状に限定されず、他の形状とされてもよい。 Further, a cylindrical movable spring seat 6 is slidably mounted on the outer periphery of the cylinder 1. The movable spring seat 6 includes a tubular portion 6a that is in sliding contact with the outer periphery of the cylinder 1 and an annular seat portion 6b provided on the outer periphery of the upper end of the tubular portion 6a. The tubular portion 6a is the outer circumference of the cylinder 1 and a housing. It is in sliding contact with the inner circumference of 5. Therefore, the cylinder portion 6a of the movable spring seat 6 is movably fitted in the annular gap between the housing 5 and the cylinder 1, and the pressurizing chamber R3 is formed in the housing 5. The pressurizing chamber R3 is communicated with the compression side chamber R2 by a through hole 1b provided on the lower side of the cylinder 1, and the pressurizing chamber R3 is filled with a liquid similar to the liquid filled in the cylinder 1. There is. The shape of the sheet portion 6b is not limited to the annular shape, and may be another shape.
 また、可動ばねシート6の筒部6aの内周には、シリンダ1の外周に摺接するシールリング6cが設けられ、ハウジング5の内周には、可動ばねシート6の筒部6aの外周に摺接するシールリング5aが設けられている。さらに、ハウジング5の下端には、シリンダ1のフランジ1aに密着するシールリング5bが設けられている。これらシールリング5a,5b,6cによって、加圧室R3は液密に保たれている。なお、シリンダ1の外周にフランジ1aを設ける代りに、ハウジング5の下端の内周に環状の底部を設けて、この底部をシリンダ1に溶接等により固定する等としてもよく、シリンダ1に対するハウジング5の固定構造については図示したものに限られない。また、シールリング5aを設ける代りに、可動ばねシート6の筒部6aの外周にハウジング5の内周に摺接するシールリングを設けてもよい。 Further, a seal ring 6c that is in sliding contact with the outer circumference of the cylinder 1 is provided on the inner circumference of the cylinder portion 6a of the movable spring seat 6, and is slid on the outer circumference of the cylinder portion 6a of the movable spring seat 6 on the inner circumference of the housing 5. A contacting seal ring 5a is provided. Further, a seal ring 5b that is in close contact with the flange 1a of the cylinder 1 is provided at the lower end of the housing 5. The pressurizing chamber R3 is kept liquid-tight by these seal rings 5a, 5b, and 6c. Instead of providing the flange 1a on the outer circumference of the cylinder 1, an annular bottom may be provided on the inner circumference of the lower end of the housing 5 and the bottom may be fixed to the cylinder 1 by welding or the like. The housing 5 with respect to the cylinder 1 may be provided. The fixed structure of is not limited to the one shown in the figure. Further, instead of providing the seal ring 5a, a seal ring that is in sliding contact with the inner circumference of the housing 5 may be provided on the outer periphery of the tubular portion 6a of the movable spring seat 6.
 なお、詳しくは図示しないが、可動ばねシート6をハウジング5の外周に移動自在に嵌合して可動ばねシート6とハウジング5との間に加圧室R3を区画してもよい。具体的には、可動ばねシート6の筒部6aをハウジング5の外周に摺接させて移動自在に嵌合し、可動ばねシート6のシート部6bの内周をシリンダ1の外周に摺接させて移動自在に嵌合して、可動ばねシート6とハウジング5との間に加圧室R3を形成すればよい。 Although not shown in detail, the movable spring seat 6 may be movably fitted to the outer periphery of the housing 5 to partition the pressurizing chamber R3 between the movable spring seat 6 and the housing 5. Specifically, the cylinder portion 6a of the movable spring seat 6 is slidably contacted with the outer circumference of the housing 5 to be movably fitted, and the inner circumference of the seat portion 6b of the movable spring seat 6 is slidably contacted with the outer circumference of the cylinder 1. The pressure chamber R3 may be formed between the movable spring seat 6 and the housing 5 by being movably fitted.
 そして、可動ばねシート6と固定ばねシート7との間であって緩衝器本体D1の外周には、コイル状の懸架ばね8が介装されており、緩衝器本体D1がこの懸架ばね8によって伸長方向に付勢されている。また、シリンダ1の下端には、前述した車両の車軸へ装着を可能とするブラケット10が設けられている。よって、サスペンション装置S1は、ピストンロッド3の上端に設けた取付軸9とシリンダ1の下端に設けたブラケット10を利用して車両の車体と車軸との間に取り付けできるようになっている。そして、このようにサスペンション装置S1を車両の車体と車軸との間に介装すると、懸架ばね8は、車体の重量により圧縮されて、この車体を支えて弾性支持するようになっている。 A coiled suspension spring 8 is interposed between the movable spring seat 6 and the fixed spring seat 7 and on the outer periphery of the shock absorber main body D1, and the shock absorber main body D1 is extended by the suspension spring 8. Being urged in the direction. Further, at the lower end of the cylinder 1, a bracket 10 that can be mounted on the axle of the vehicle described above is provided. Therefore, the suspension device S1 can be mounted between the vehicle body and the axle by using the mounting shaft 9 provided at the upper end of the piston rod 3 and the bracket 10 provided at the lower end of the cylinder 1. When the suspension device S1 is interposed between the vehicle body and the axle in this way, the suspension spring 8 is compressed by the weight of the vehicle body to support and elastically support the vehicle body.
 そして、懸架ばね8は、車体からの荷重を受けて可動ばねシート6を図中下方へ付勢しており、可動ばねシート6を介して懸架ばね8の付勢力が加圧室R3に伝達されて加圧室R3が加圧される。加圧室R3は、シリンダ1に設けた通孔1bによって圧側室R2に連通されているので、懸架ばね8の付勢力によってシリンダ1内の伸側室R1および圧側室R2も同様に加圧されている。 Then, the suspension spring 8 receives a load from the vehicle body and urges the movable spring seat 6 downward in the drawing, and the urging force of the suspension spring 8 is transmitted to the pressurizing chamber R3 via the movable spring seat 6. The pressurizing chamber R3 is pressurized. Since the pressurizing chamber R3 is communicated with the compression side chamber R2 by the through hole 1b provided in the cylinder 1, the extension side chamber R1 and the compression side chamber R2 in the cylinder 1 are similarly pressurized by the urging force of the suspension spring 8. There is.
 液体給排源Fは、本実施の形態では、液体を貯留するタンクTと、タンクTを加圧室R3に連通する管路Hと、管路Hの途中に設けた定容量型のポンプPとを備えており、モータMでポンプPを正回転させるとポンプ3はタンクTから液体を吸い込んで加圧室R3へ液体を供給し、モータMでポンプPを逆回転させるとポンプPは加圧室R3から液体を吸い込んでタンクTへ液体を排出させる。液体給排源Fは、ポンプPを駆動しない場合、加圧室R3とタンクTとの液体の交流を遮断し、加圧室R3および加圧室R3に連通されるシリンダ1内の液体量を変動させない。加圧室R3と圧側室R2とは連通されているので、液体給排源Fは、圧側室R2を介して加圧室R3へ液体を給排してもよい。 In the present embodiment, the liquid supply / discharge source F is a tank T for storing liquid, a pipeline H for communicating the tank T with the pressurizing chamber R3, and a constant-capacity pump P provided in the middle of the conduit H. When the pump P is rotated forward by the motor M, the pump 3 sucks the liquid from the tank T and supplies the liquid to the pressurizing chamber R3, and when the pump P is rotated in the reverse direction by the motor M, the pump P is added. The liquid is sucked from the pressure chamber R3 and discharged to the tank T. When the pump P is not driven, the liquid supply / discharge source F cuts off the alternating current of the liquid between the pressurizing chamber R3 and the tank T, and reduces the amount of liquid in the cylinder 1 communicated with the pressurizing chamber R3 and the pressurizing chamber R3. Do not fluctuate. Since the pressurizing chamber R3 and the compression side chamber R2 are communicated with each other, the liquid supply / discharge source F may supply / discharge liquid to the pressurizing chamber R3 via the compression side chamber R2.
 液体給排源Fが液体を加圧室R3へ供給すると、加圧室R3に連通されるシリンダ1内にも液体が供給される。すると、加圧室R3が拡大されて可動ばねシート6が図1中上昇するとともに、シリンダ1内に供給される液体量に見合った体積分だけピストンロッド3を押しのけてピストン2およびピストンロッド3が図1中上昇する。 When the liquid supply / discharge source F supplies the liquid to the pressurizing chamber R3, the liquid is also supplied to the cylinder 1 communicating with the pressurizing chamber R3. Then, the pressurizing chamber R3 is expanded, the movable spring seat 6 rises in FIG. 1, and the piston rod 3 is pushed away by the volume integral corresponding to the amount of liquid supplied into the cylinder 1, and the piston 2 and the piston rod 3 move. It rises in FIG.
 他方、液体給排源Fが液体を加圧室R3から排出させると、加圧室R3に連通されるシリンダ1内からも液体が排出される。すると、加圧室R3が縮小されて可動ばねシート6が図1中下降するとともに、シリンダ1内から排出される液体量に見合った体積分だけピストンロッド3がシリンダ1内に侵入してピストン2およびピストンロッド3が図1中下降する。 On the other hand, when the liquid supply / discharge source F discharges the liquid from the pressurizing chamber R3, the liquid is also discharged from the cylinder 1 communicating with the pressurizing chamber R3. Then, the pressurizing chamber R3 is reduced, the movable spring seat 6 descends in FIG. 1, and the piston rod 3 invades the cylinder 1 by the volume integral corresponding to the amount of liquid discharged from the cylinder 1, and the piston 2 And the piston rod 3 descends in FIG.
 よって、液体給排源Fの加圧室R3への液体の給排によって可動ばねシート6とピストンロッド3とが同期して図1中上下動して車両における車高が上下動して車高調整が成される。 Therefore, the movable spring seat 6 and the piston rod 3 move up and down in FIG. 1 in synchronization with the supply and discharge of the liquid to the pressurizing chamber R3 of the liquid supply / discharge source F, and the vehicle height in the vehicle moves up and down to move the vehicle height. Adjustments are made.
 本実施の形態の場合、ポンプPが定容量型のポンプであるので、ポンプPの一回転当たりの吐出量が決まっており、可動ばねシート6およびピストンロッド3の昇降量は緩衝器本体D1内へ供給或いは緩衝器本体D1から排出される液体量に比例する。したがって、ポンプPの回転量と、可動ばねシート6およびピストンロッド3の昇降量、すなわち、車高調整量と比例関係になるので、ポンプPの回転量をモニタすることによって車高をモニタすることができる。 In the case of this embodiment, since the pump P is a constant-capacity pump, the discharge amount per rotation of the pump P is determined, and the lifting amount of the movable spring seat 6 and the piston rod 3 is in the shock absorber main body D1. It is proportional to the amount of liquid supplied to or discharged from the shock absorber body D1. Therefore, since the rotation amount of the pump P is proportional to the lifting amount of the movable spring seat 6 and the piston rod 3, that is, the vehicle height adjustment amount, the vehicle height should be monitored by monitoring the rotation amount of the pump P. Can be done.
 なお、ポンプPの回転量のモニタには、モータMが回転位置センサを備えていればこれを用いればよく、モータMに回転位置センサがない場合にはモータM或いはポンプPの回転数を検知するセンサを用いてもよい。 If the motor M is equipped with a rotation position sensor, the rotation amount of the pump P may be monitored, and if the motor M does not have the rotation position sensor, the rotation speed of the motor M or the pump P is detected. You may use a sensor that does.
 以上より、ポンプPを定容量型のポンプとすると、ポンプPの回転量から車高を把握することができるようになり、車高調整が非常に容易となる。なお、ポンプPを定容量型としない場合、緩衝器本体D1の伸縮変位や車体の路面からの距離をセンサで検知して車高を把握してもよい。 From the above, if the pump P is a fixed-capacity pump, the vehicle height can be grasped from the rotation amount of the pump P, and the vehicle height adjustment becomes very easy. When the pump P is not a constant capacity type, the vehicle height may be grasped by detecting the expansion / contraction displacement of the shock absorber main body D1 and the distance from the road surface of the vehicle body with a sensor.
 ポンプPは、ピストンポンプでもよいし、ギヤポンプでもよく、ポンプPの駆動源はモータMの他にも車両のエンジン動力を利用するものであってもよい。なお、液体給排源Fは、加圧室R3内への液体の供給と加圧室R3からの液体の排出とが可能であればよいので、前述の構成以外の構成を採り得る。よって、たとえば、液体を貯留する液室を備えた容器と、容器内に移動可能に挿入されて液室容積を変化させるピストンと、ピストンを駆動する駆動源とを備える構成とされてもよい。また、液体給排源Fは、加圧室R3へ液体を供給する際にはポンプPを用いて、加圧室R3内から液体を排出する場合にポンプPを介さずにタンクTへ液体を戻す管路を設けてもよい。 The pump P may be a piston pump or a gear pump, and the drive source of the pump P may be one that uses the engine power of the vehicle in addition to the motor M. The liquid supply / discharge source F may have a configuration other than the above-described configuration as long as it can supply the liquid into the pressurizing chamber R3 and discharge the liquid from the pressurizing chamber R3. Therefore, for example, it may be configured to include a container provided with a liquid chamber for storing the liquid, a piston movably inserted into the container to change the volume of the liquid chamber, and a drive source for driving the piston. Further, the liquid supply / discharge source F uses the pump P when supplying the liquid to the pressurizing chamber R3, and supplies the liquid to the tank T without going through the pump P when discharging the liquid from the pressurizing chamber R3. A return pipeline may be provided.
 以上のように、サスペンション装置S1は構成されており、以下、サスペンション装置S1の作動について説明する。前述したように、懸架ばね8の付勢力Fによって、加圧室R3が加圧されている。加圧室R3の受圧面積(この場合、可動ばねシート6の筒部6aの断面積に等しい)をAとすると、加圧室R3内の圧力Pは、P=F/Aとなっている。前述の通り、加圧室R3の圧力Pは、通孔1bを通じてシリンダ1内に伝達されるので、伸側室R1および圧側室R2の圧力も加圧室R3の圧力Pに等しい。よって、ピストンロッド3の断面積をAとすると、車両における車体は、懸架ばね8が発生する付勢力Fと圧力Pにより発生するピストンロッド3を押し上げる反発力A×Pの合力によって支えられる。 As described above, the suspension device S1 is configured, and the operation of the suspension device S1 will be described below. As described above, by the biasing force F S of the suspension spring 8, the pressure chamber R3 is pressurized. Pressure receiving area (in this case, equal to the cross-sectional area of the cylindrical portion 6a of the movable spring seat 6) of the pressure chamber R3 when the the A S, the pressure P C in the pressurizing chamber R3 is, P C = F S / A S It has become. As described above, since the pressure CC of the pressurizing chamber R3 is transmitted into the cylinder 1 through the through hole 1b, the pressures of the extension side chamber R1 and the compression side chamber R2 are also equal to the pressure CC of the pressurization chamber R3. Therefore, when the cross-sectional area of the piston rod 3 and A R, the vehicle body in the vehicle, the resultant force of the repulsive force A R × P C to push the piston rod 3 which is generated by the biasing force F S and the pressure P C of the suspension spring 8 is generated Supported by.
 サスペンション装置S1が伸長する行程にある場合、ピストン2の図1中上方側への移動により、圧縮される伸側室R1内の液体は、減衰通路4および減衰弁4aを通過して拡大される圧側室R2へ流れる。液体が減衰弁4aを通過する際の圧力損失により、伸側室R1の圧力は圧側室R2の圧力より高くなって圧力差が生じ、サスペンション装置S1は、この圧力差に応じて伸長を抑制する伸側減衰力を発揮する。また、サスペンション装置S1の伸長によりシリンダ1から退出するピストンロッド3の体積分の液体が圧側室R2で不足する。これに対して、懸架ばね8の付勢力Fによって可動ばねシート6が図1中下方へ押されて移動して加圧室R3が圧縮され、加圧室R3から圧側室R2へ前記不足分に見合った液体が補充される。 When the suspension device S1 is in the extension stroke, the liquid in the extension side chamber R1 compressed by the upward movement of the piston 2 in FIG. 1 passes through the damping passage 4 and the damping valve 4a and is expanded on the compression side. It flows to room R2. Due to the pressure loss when the liquid passes through the damping valve 4a, the pressure in the extension side chamber R1 becomes higher than the pressure in the compression side chamber R2, causing a pressure difference, and the suspension device S1 suppresses the extension in response to this pressure difference. Demonstrates lateral damping force. Further, the volume of the piston rod 3 ejected from the cylinder 1 due to the extension of the suspension device S1 is insufficient in the compression side chamber R2. In contrast, the pressure chamber R3 moves the movable spring seat 6 is pushed downward in FIG. 1 by the biasing force F S of the suspension spring 8 is compressed, the shortage from the pressure chamber R3 to the compression side chamber R2 The liquid is replenished according to the amount.
 サスペンション装置S1が収縮する行程にある場合、ピストン2の図1中下方側への移動により、圧縮される圧側室R2内の作動油は、減衰通路4および減衰弁4aを通過して拡大される伸側室R1へ流れる。液体が減衰弁4aを通過する際の圧力損失により、圧側室R2の圧力より伸側室R1の圧力が低くなって圧力差が生じ、サスペンション装置S1は、この圧力差に応じて収縮を抑制する圧側減衰力を発揮する。また、サスペンション装置S1の収縮によりシリンダ1内へ侵入するピストンロッド3の体積分の液体がシリンダ1内から加圧室R3へ押し出される。加圧室R3への液体の流入により、可動ばねシート6が図1中上方へ押し上げられて懸架ばね8が圧縮され、加圧室R3の容積が拡大されて前述の液体が加圧室R3によって吸収される。このように緩衝器本体D1は、伸縮時にシリンダ1から液体が出入りして減衰力を発揮する。 When the suspension device S1 is in the process of contracting, the hydraulic oil in the compression side chamber R2 to be compressed is expanded by passing through the damping passage 4 and the damping valve 4a due to the downward movement of the piston 2 in FIG. It flows to the extension chamber R1. Due to the pressure loss when the liquid passes through the damping valve 4a, the pressure in the extension side chamber R1 becomes lower than the pressure in the compression side chamber R2, causing a pressure difference, and the suspension device S1 suppresses contraction in response to this pressure difference. Demonstrates damping force. Further, the volume of the piston rod 3 that invades into the cylinder 1 due to the contraction of the suspension device S1 is pushed out from the cylinder 1 into the pressurizing chamber R3. Due to the inflow of the liquid into the pressurizing chamber R3, the movable spring sheet 6 is pushed upward in FIG. 1, the suspension spring 8 is compressed, the volume of the pressurizing chamber R3 is expanded, and the above-mentioned liquid is discharged by the pressurizing chamber R3. Be absorbed. In this way, the shock absorber main body D1 exerts a damping force by allowing liquid to flow in and out of the cylinder 1 when expanding and contracting.
 そして、懸架ばね8の伸縮量は、サスペンション装置S1のストローク量だけでなく、ピストンロッド3のシリンダ1に対する変位により生じるピストンロッド3のシリンダ1内での押しのけ体積の変化による可動ばねシート6の移動量も付加される。したがって、懸架ばね8の単体のばね定数をKとすると、サスペンション装置S1の全体を車体にばね力を作用させるばねとして見た場合、このばねのばね定数Kは、K=K(1+A/A)となる。つまり、サスペンション装置S1の全体は、ばね定数Kを持つばねとして機能する。 The amount of expansion and contraction of the suspension spring 8 is not only the stroke amount of the suspension device S1, but also the movement of the movable spring seat 6 due to the change in the push-out volume of the piston rod 3 in the cylinder 1 caused by the displacement of the piston rod 3 with respect to the cylinder 1. The amount is also added. Therefore, when a single spring constant of the suspension spring 8 and K S, when viewed as a spring exerting a spring force across the vehicle body of the suspension device S1, the spring constant K E of the spring, K E = K S ( 1 + AR / AS ). In other words, the whole of the suspension device S1 is to function as a spring having a spring constant K E.
 よって、サスペンション装置S1は、シリンダ1内に気室を設けなくとも懸架ばね8と加圧室R3によってシリンダ1内を加圧できるので、気室を伸側室と圧側室に直列に設けなくてはならないサスペンション装置に比較して、取付長を短くでき、車両への搭載性も向上する。 Therefore, since the suspension device S1 can pressurize the inside of the cylinder 1 by the suspension spring 8 and the pressurizing chamber R3 without providing the air chamber in the cylinder 1, the air chamber must be provided in series with the extension side chamber and the compression side chamber. Compared to a suspension device that does not have to be used, the mounting length can be shortened and the mountability on a vehicle is improved.
 つづいて、このサスペンション装置S1で車高調整を行う場合の作動について説明する。車高を上げる場合、液体給排源FにおけるポンプPを正転方向に駆動して液体を加圧室R3およびシリンダ1内に供給する。液体は、加圧室R3内とシリンダ1内に送り込まれ、加圧室R3内の圧力上昇によって可動ばねシート6をハウジング5に対して押し上げる。この押し上げる力F1は、加圧室R3内の圧力Pに可動ばねシート6の受圧面積Aを乗じた値に等しくなるので、F1=P×Aとなる。また、液体は、シリンダ1内にも送り込まれるので伸側室R1と圧側室R2の圧力が上昇して、ピストン2を押し上げる。シリンダ1内の圧力は加圧室R3内の圧力Pに等しくなるので、ピストン2を押し上げる力F2は、シリンダ1内の圧力にピストンロッド3の断面積を乗じた値に等しくなるので、F2=P×Aとなる。よって、サスペンション装置S1が車体を押し上げる力F3は、可動ばねシート6とピストン2を押し上げる力F1,F2の合力となるので、F3=P×(A+A)となる。このように本実施の形態のサスペンション装置S1では、加圧室R3とシリンダ1内とが連通されているので、液体給排源Fから液体を供給して車高を上昇させる際に有効となる受圧面積(有効受圧面積)は、可動ばねシート6の受圧面積とピストンロッド3の断面積との和となる。したがって、本実施の形態のサスペンション装置S1は、有効受圧面積を従来のサスペンション装置に比較して大きく確保できる。 Next, the operation when the vehicle height is adjusted by the suspension device S1 will be described. When raising the vehicle height, the pump P in the liquid supply / discharge source F is driven in the forward rotation direction to supply the liquid into the pressurizing chamber R3 and the cylinder 1. The liquid is sent into the pressurizing chamber R3 and the cylinder 1, and the movable spring seat 6 is pushed up against the housing 5 by the pressure increase in the pressurizing chamber R3. The push force F1, because equal to a value obtained by multiplying the pressure receiving area A S of the movable spring seat 6 to the pressure P C in the pressurizing chamber R3, the F1 = P C × A S. Further, since the liquid is also sent into the cylinder 1, the pressures in the extension side chamber R1 and the compression side chamber R2 increase, and the piston 2 is pushed up. Since the pressure in the cylinder 1 is equal to the pressure CC in the pressurizing chamber R3, the force F2 that pushes up the piston 2 is equal to the value obtained by multiplying the pressure in the cylinder 1 by the cross-sectional area of the piston rod 3. = a P C × a R. Therefore, the force F3 of the suspension device S1 is pushed up the vehicle body, since the resultant force of the force F1, F2 to push up the movable spring seat 6 and the piston 2, and F3 = P C × (A S + A R). As described above, in the suspension device S1 of the present embodiment, since the pressurizing chamber R3 and the inside of the cylinder 1 are communicated with each other, it is effective when supplying liquid from the liquid supply / exhaust source F to raise the vehicle height. The pressure receiving area (effective pressure receiving area) is the sum of the pressure receiving area of the movable spring seat 6 and the cross-sectional area of the piston rod 3. Therefore, the suspension device S1 of the present embodiment can secure a large effective pressure receiving area as compared with the conventional suspension device.
 以上のように、本実施の形態のサスペンション装置S1は、シリンダ1と、シリンダ1内に移動自在に挿入されるピストン2と、シリンダ1内にピストン2で仕切られる伸側室R1と圧側室R2と、シリンダ1内に移動自在に挿入されるピストン2に連結されるピストンロッド3とを有して伸縮時に液体が出入りして減衰力を発揮する片ロッド型の緩衝器本体D1と、緩衝器本体D1を伸長方向へ付勢する懸架ばね8と、圧側室R2に連通されて懸架ばね8から付勢力を受けてシリンダ1内を加圧する加圧室R3と、加圧室R3へ液体を給排可能な液体給排源Fとを備えている。このように構成されたサスペンション装置S1は、液体給排源Fによる加圧室R3への液体の給排によって車高を調整できるとともに、有効受圧面積を加圧室R3における受圧面積とピストンロッド3の断面積との和として有効受圧面積を大きく確保できる。よって、このように構成されたサスペンション装置S1によれば、加圧室R3の受圧面積を大きくしなくとも車高調整に有効な受圧面積を確保できるので、加圧室R3の大型化を避けつつも車体重量が重い車両であっても車高調整が可能となるので、車高調整が可能であっても小型かつ軽量となる。また、サスペンション装置S1によれば、見かけ上のばね定数を大きくできるので、懸架ばね8のばね定数を小さく設計することができ、懸架ばね8を軽量化できる。 As described above, the suspension device S1 of the present embodiment includes the cylinder 1, the piston 2 movably inserted into the cylinder 1, the extension side chamber R1 and the compression side chamber R2 partitioned by the piston 2 into the cylinder 1. A single rod type shock absorber body D1 having a piston rod 3 connected to a piston 2 movably inserted into the cylinder 1 and exerting a damping force by allowing liquid to flow in and out during expansion and contraction, and a shock absorber body. The suspension spring 8 that urges D1 in the extension direction, the pressure chamber R3 that is communicated with the compression side chamber R2 and receives the urging force from the suspension spring 8 to pressurize the inside of the cylinder 1, and the pressure chamber R3 is supplied with liquid. It is equipped with a possible liquid supply / discharge source F. In the suspension device S1 configured in this way, the vehicle height can be adjusted by supplying and discharging the liquid to the pressurizing chamber R3 by the liquid supply / exhaust source F, and the effective pressure receiving area is the pressure receiving area in the pressurizing chamber R3 and the piston rod 3. A large effective pressure receiving area can be secured as the sum of the cross-sectional areas of. Therefore, according to the suspension device S1 configured in this way, it is possible to secure an effective pressure receiving area for adjusting the vehicle height without increasing the pressure receiving area of the pressurizing chamber R3, while avoiding an increase in the size of the pressurizing chamber R3. However, even if the vehicle body weight is heavy, the vehicle height can be adjusted, so even if the vehicle height can be adjusted, the vehicle is compact and lightweight. Further, according to the suspension device S1, since the apparent spring constant can be increased, the spring constant of the suspension spring 8 can be designed to be small, and the suspension spring 8 can be made lighter.
 さらに、本実施の形態のサスペンション装置S1では、液体給排源Fが定容量型のポンプPを有しているので、ポンプPの回転量を管理するだけで車高を狙った車高へ調整できるので、車高調整が容易となる。 Further, in the suspension device S1 of the present embodiment, since the liquid supply / discharge source F has a constant-capacity pump P, the vehicle height can be adjusted to a target vehicle height only by managing the rotation amount of the pump P. Since it can be done, the vehicle height can be easily adjusted.
 また、本実施の形態のサスペンション装置S1は、シリンダ1内に気室を設けなくとも懸架ばね8と加圧室R3によってシリンダ1内を加圧できるので、気室を伸側室と圧側室に直列に設けなくてはならないサスペンション装置に比較して、取付長を短くでき、車両への搭載性も向上するともに部品点数も削減される。 Further, in the suspension device S1 of the present embodiment, since the inside of the cylinder 1 can be pressurized by the suspension spring 8 and the pressurizing chamber R3 without providing the air chamber in the cylinder 1, the air chamber is connected in series with the extension side chamber and the compression side chamber. Compared to the suspension device that must be installed in the vehicle, the mounting length can be shortened, the mountability on the vehicle is improved, and the number of parts is reduced.
 さらに、本発明のサスペンション装置S1では、気室でシリンダ1内を加圧するのではなく、懸架ばね8と加圧室R3によってシリンダ1内を加圧する。気体によってシリンダ1内を加圧するサスペンション装置では、気体の温度変化によって圧力変動が生じて、車高が変動する問題があるが、本発明のサスペンション装置S1では、そのような圧力変動が生じないので、車高が変わってしまう問題も生じない。 Further, in the suspension device S1 of the present invention, instead of pressurizing the inside of the cylinder 1 in the air chamber, the inside of the cylinder 1 is pressurized by the suspension spring 8 and the pressurizing chamber R3. In the suspension device that pressurizes the inside of the cylinder 1 with gas, there is a problem that the pressure fluctuates due to the temperature change of the gas and the vehicle height fluctuates. However, in the suspension device S1 of the present invention, such pressure fluctuation does not occur. , There is no problem that the vehicle height changes.
 さらに、気体によってシリンダ1内を加圧するサスペンション装置では、長期間に亘る使用で気室内の圧力低下が生じうるが、本発明では緩衝器本体D1内に気体を封入していないので、長期間に亘る使用でも車高が変動する問題は生じず減衰力特性も変化せず高い信頼性を確保できる。 Further, in the suspension device that pressurizes the inside of the cylinder 1 with gas, the pressure in the air chamber may decrease after being used for a long period of time. High reliability can be ensured without the problem that the vehicle height fluctuates and the damping force characteristics do not change even after long-term use.
 また、サスペンション装置S1は、シリンダ1内に気室を設けなくとも懸架ばね8と加圧室R3によってシリンダ1内を加圧できるので、液体の体積弾性係数を確保でき、応答性よく減衰力を発揮できる。さらに、緩衝器本体内に気室を設けて気体ばねが形成されるサスペンション装置の場合、緩衝器本体の圧縮量が増加すると気体ばね反力が著しく増加するので、サスペンション装置全体のばね定数が変位に対して非線形となる。これに対して、本例の緩衝器本体D1内には気体ばねが形成されないので、サスペンション装置S1全体をばねとして見た場合にばね定数が変位に対して非線形とならず車両における乗り心地も向上する。 Further, since the suspension device S1 can pressurize the inside of the cylinder 1 by the suspension spring 8 and the pressurizing chamber R3 without providing an air chamber in the cylinder 1, the volume elastic modulus of the liquid can be secured and the damping force can be responsively applied. Can be demonstrated. Further, in the case of a suspension device in which an air chamber is provided in the shock absorber body to form a gas spring, the gas spring reaction force increases remarkably as the amount of compression of the shock absorber body increases, so that the spring constant of the entire suspension device is displaced. It becomes non-linear with respect to. On the other hand, since the gas spring is not formed in the shock absorber main body D1 of this example, the spring constant does not become non-linear with respect to the displacement when the entire suspension device S1 is viewed as a spring, and the riding comfort in the vehicle is also improved. To do.
 また、本例のサスペンション装置S1では、加圧室R3が中空なハウジング5とハウジング5に移動自在に嵌合されて懸架ばね8によって付勢される可動ばねシート6とによって区画形成されるので、緩衝器本体D1への加圧室R3の設置が容易である。 Further, in the suspension device S1 of this example, the pressurizing chamber R3 is movably fitted to the hollow housing 5 and the housing 5, and is partitioned by the movable spring seat 6 urged by the suspension spring 8. It is easy to install the pressurizing chamber R3 in the shock absorber body D1.
 さらに、本例のサスペンション装置S1では、ハウジング5がシリンダ1の外周に装着され、可動ばねシート6がシリンダ1の外周とハウジング5の内周の双方に摺動自在に装着される。このようにサスペンション装置S1を構成すると、シリンダ1を加圧室R3の形成部品として利用でき、最小限の部品でシリンダ1の外周に加圧室R3を形成でき、外径もリザーバをシリンダ外周に持つ複筒型緩衝器程度で済み、車両へも無理なく搭載できる。 Further, in the suspension device S1 of this example, the housing 5 is mounted on the outer circumference of the cylinder 1, and the movable spring seat 6 is slidably mounted on both the outer circumference of the cylinder 1 and the inner circumference of the housing 5. When the suspension device S1 is configured in this way, the cylinder 1 can be used as a forming component of the pressurizing chamber R3, the pressurizing chamber R3 can be formed on the outer periphery of the cylinder 1 with the minimum number of parts, and the outer diameter of the reservoir is on the outer periphery of the cylinder. It only needs to have a double-cylinder shock absorber, and can be easily installed in a vehicle.
 なお、図2に示したサスペンション装置S1aのように、シリンダ1の下端にバルブケース11を設けて、このバルブケース11に圧側室R2から加圧室R3へ向かう液体の流れに抵抗を与える圧側減衰通路11aと、加圧室R3から圧側室R2へ向かう液体の流れのみを許容する吸込弁11bを設けて、加圧室R3をリザーバとして利用してもよい。このように構成されたサスペンション装置S1aが伸長する行程にある場合、圧縮される伸側室R1内の液体は、減衰通路4および減衰弁4aを通過して拡大される圧側室R2へ流れる。液体が減衰弁4aを通過する際の圧力損失により、伸側室R1の圧力は圧側室R2の圧力より高くなって圧力差が生じ、サスペンション装置S1aは、この圧力差に応じて伸長を抑制する伸側減衰力を発揮する。また、サスペンション装置S1の伸長によりシリンダ1から退出するピストンロッド3の体積分の液体が圧側室R2で不足するが、懸架ばね8により可動ばねシート6が図2中下方へ押されて加圧室R3が圧縮され、吸込弁11bを介して加圧室R3から不足分の液体が圧側室R2へ補充される。 As in the suspension device S1a shown in FIG. 2, a valve case 11 is provided at the lower end of the cylinder 1, and the valve case 11 is damped on the pressure side to give resistance to the flow of liquid from the pressure side chamber R2 to the pressure chamber R3. The pressurizing chamber R3 may be used as a reservoir by providing a passage 11a and a suction valve 11b that allows only the flow of liquid from the pressurizing chamber R3 to the compression side chamber R2. When the suspension device S1a configured in this way is in the process of extension, the liquid in the extension side chamber R1 to be compressed flows to the compression side chamber R2 which is expanded through the damping passage 4 and the damping valve 4a. Due to the pressure loss when the liquid passes through the damping valve 4a, the pressure in the extension side chamber R1 becomes higher than the pressure in the compression side chamber R2 to cause a pressure difference, and the suspension device S1a suppresses the extension in response to this pressure difference. Demonstrates lateral damping force. Further, the volume of the piston rod 3 ejected from the cylinder 1 due to the extension of the suspension device S1 is insufficient in the compression side chamber R2, but the suspension spring 8 pushes the movable spring seat 6 downward in FIG. R3 is compressed, and the insufficient liquid is replenished from the pressurizing chamber R3 to the compression side chamber R2 via the suction valve 11b.
 サスペンション装置S1aが収縮する行程にある場合、ピストン2の図2中下方側への移動により、圧縮される圧側室R2内の作動油は、減衰通路4および減衰弁4aを通過して拡大される伸側室R1へ流れる。また、サスペンション装置S1aの収縮によりシリンダ1内へ侵入するピストンロッド3の体積分の液体がシリンダ1内から圧側減衰通路11aを介して加圧室R3へ排出される。液体が減衰弁4aおよび圧側減衰通路11aを通過する際の圧力損失により、圧側室R2の圧力より伸側室R1の圧力が低くなって圧力差が生じ、サスペンション装置S1aは、この圧力差に応じて収縮を抑制する圧側減衰力を発揮する。加圧室R3への液体の流入により、可動ばねシート6が図2中上方へ押し上げられて懸架ばね8が圧縮され、加圧室R3の容積が拡大されて前述の液体が加圧室R3によって吸収される。 When the suspension device S1a is in the process of contracting, the hydraulic oil in the compression side chamber R2 to be compressed is expanded by passing through the damping passage 4 and the damping valve 4a due to the downward movement of the piston 2 in FIG. It flows to the extension side chamber R1. Further, the liquid corresponding to the volume of the piston rod 3 that enters the cylinder 1 due to the contraction of the suspension device S1a is discharged from the cylinder 1 to the pressurizing chamber R3 via the compression side damping passage 11a. Due to the pressure loss when the liquid passes through the damping valve 4a and the compression side damping passage 11a, the pressure in the extension side chamber R1 becomes lower than the pressure in the compression side chamber R2, causing a pressure difference, and the suspension device S1a responds to this pressure difference. It exerts a compression side damping force that suppresses contraction. Due to the inflow of the liquid into the pressurizing chamber R3, the movable spring sheet 6 is pushed upward in FIG. 2, the suspension spring 8 is compressed, the volume of the pressurizing chamber R3 is expanded, and the above-mentioned liquid is discharged by the pressurizing chamber R3. Be absorbed.
 また、このように構成されたサスペンション装置S1aにあっても、液体給排源Fから加圧室R3へ液体を供給すれば加圧室R3とシリンダ1内に液体が供給されて車高を上昇させられ、液体給排源Fで加圧室R3から液体を排出させれば車高を下降させられる。このように構成されたサスペンション装置S1aは、車高調整時に有効な受圧面積(有効受圧面積)を加圧室R3における受圧面積とピストンロッド3の断面積との和として有効受圧面積を大きく確保できるので、車高調整が可能であっても小型かつ軽量となる。 Further, even in the suspension device S1a configured in this way, if the liquid is supplied from the liquid supply / discharge source F to the pressurizing chamber R3, the liquid is supplied to the pressurizing chamber R3 and the cylinder 1 to raise the vehicle height. If the liquid is discharged from the pressurizing chamber R3 at the liquid supply / discharge source F, the vehicle height can be lowered. The suspension device S1a configured in this way can secure a large effective pressure receiving area (effective pressure receiving area) as the sum of the pressure receiving area in the pressure chamber R3 and the cross-sectional area of the piston rod 3 when adjusting the vehicle height. Therefore, even if the vehicle height can be adjusted, it is compact and lightweight.
 <第二の実施の形態>
 第二の実施の形態のサスペンション装置S2は、図3に示すように、第一の実施の形態のサスペンション装置S1で加圧室R3を緩衝器本体D1のシリンダ1の外周に設けたのに対して、緩衝器本体D2のピストンロッド3の外周に加圧室R3を設けた点でサスペンション装置S1と異なっている。
<Second embodiment>
In the suspension device S2 of the second embodiment, as shown in FIG. 3, the pressurizing chamber R3 is provided on the outer periphery of the cylinder 1 of the shock absorber main body D1 in the suspension device S1 of the first embodiment. Therefore, it differs from the suspension device S1 in that a pressurizing chamber R3 is provided on the outer periphery of the piston rod 3 of the shock absorber main body D2.
 よって、第一の実施の形態のサスペンション装置S1では、シリンダ1の外周にハウジング5を設けていたが、第二の実施の形態のサスペンション装置S2では、ピストンロッド3の上方外周に筒状のハウジング12を設けている。 Therefore, in the suspension device S1 of the first embodiment, the housing 5 is provided on the outer periphery of the cylinder 1, but in the suspension device S2 of the second embodiment, the tubular housing is provided on the upper outer periphery of the piston rod 3. 12 is provided.
 また、第一の実施の形態のサスペンション装置S1では、シリンダ1の外周に可動ばねシート6を装着していたが、第二の実施の形態のサスペンション装置S2では、ピストンロッド3の上方外周に可動ばねシート13を装着している。 Further, in the suspension device S1 of the first embodiment, the movable spring seat 6 is mounted on the outer periphery of the cylinder 1, but in the suspension device S2 of the second embodiment, the movable spring seat 6 is movable on the upper outer periphery of the piston rod 3. The spring seat 13 is attached.
 以下、第二の実施の形態のサスペンション装置S2が第一の実施の形態のサスペンション装置S1と異なる部分について詳細に説明し、説明の重複を避けるため、同じ部材については同様の符号を付して詳細な説明を省略する。 Hereinafter, the parts of the suspension device S2 of the second embodiment different from those of the suspension device S1 of the first embodiment will be described in detail, and in order to avoid duplication of description, the same members are designated by the same reference numerals. A detailed description will be omitted.
 ハウジング12は、筒状であって、本例では、ピストンロッド3の上端外周に取り付けられている。具体的には、ハウジング12は、上端内周に環状の取付部12aを備えており、この取付部12aがピストンロッド3の外周に取り付けられている。このように、ハウジング12をピストンロッド3に取り付けると、ハウジング12とピストンロッド3との間に環状隙間が形成される。 The housing 12 has a tubular shape, and in this example, it is attached to the outer periphery of the upper end of the piston rod 3. Specifically, the housing 12 is provided with an annular mounting portion 12a on the inner circumference of the upper end, and the mounting portion 12a is mounted on the outer periphery of the piston rod 3. When the housing 12 is attached to the piston rod 3 in this way, an annular gap is formed between the housing 12 and the piston rod 3.
 可動ばねシート13は、ピストンロッド3の外周に摺動自在に装着されている。可動ばねシート13は、ピストンロッド3の外周に摺接する内筒13aと、内筒13aの外周に設けた外筒13bと、内筒13aの下端と外筒13bの下端と接続するフランジ部13cと、外筒13bの上端外周に設けた環状のシート部13dとを備えている。なお、シート部13dの形状は環状に限定されず、他の形状とされてもよい。 The movable spring seat 13 is slidably mounted on the outer circumference of the piston rod 3. The movable spring seat 13 includes an inner cylinder 13a that is in sliding contact with the outer circumference of the piston rod 3, an outer cylinder 13b provided on the outer circumference of the inner cylinder 13a, and a flange portion 13c that connects the lower end of the inner cylinder 13a and the lower end of the outer cylinder 13b. The outer cylinder 13b is provided with an annular seat portion 13d provided on the outer periphery of the upper end. The shape of the sheet portion 13d is not limited to the annular shape, and may be another shape.
 そして、内筒13aをピストンロッド3の外周とハウジング12の内周にそれぞれ摺接させて前記環状隙間に移動自在に嵌合して、環状隙間を閉鎖し、ピストンロッド3とハウジング12の間に加圧室R3を形成している。また、内筒13aの内周には、ピストンロッド3の外周に摺接するシールリング13eが設けられ、内筒13aの外周には、ハウジング12の内周に摺接するシールリング13fが設けられている。さらに、ハウジング12の取付部12aの内周には、ピストンロッド3の外周に密着するシールリング12bが設けられている。そして、これらシールリング12b,13e,13fによって加圧室R3が液密状態に維持されている。また、加圧室R3は、ピストンロッド3内に設けた通路3aを介して圧側室R2に連通されている。 Then, the inner cylinder 13a is slidably contacted with the outer circumference of the piston rod 3 and the inner circumference of the housing 12 to be movably fitted into the annular gap, the annular gap is closed, and the space between the piston rod 3 and the housing 12 is closed. A pressurizing chamber R3 is formed. Further, a seal ring 13e that slides into the outer circumference of the piston rod 3 is provided on the inner circumference of the inner cylinder 13a, and a seal ring 13f that slides into the inner circumference of the housing 12 is provided on the outer circumference of the inner cylinder 13a. .. Further, a seal ring 12b that is in close contact with the outer circumference of the piston rod 3 is provided on the inner circumference of the mounting portion 12a of the housing 12. The pressure chamber R3 is maintained in a liquid-tight state by the seal rings 12b, 13e, and 13f. Further, the pressurizing chamber R3 is communicated with the compression side chamber R2 via a passage 3a provided in the piston rod 3.
 なお、詳しくは図示しないが、可動ばねシート13をハウジング12の外周に移動自在に嵌合して可動ばねシート13とハウジング12との間に加圧室R3を区画してもよい。具体的には、可動ばねシート13の内筒13aをなくして、外筒13bをハウジング12の外周に摺接させて移動自在に嵌合し、可動ばねシート13のフランジ部13cの内周をピストンロッド3の外周に摺接させて移動自在に嵌合して、可動ばねシート13とハウジング12との間に加圧室R3を形成すればよい。 Although not shown in detail, the movable spring seat 13 may be movably fitted to the outer periphery of the housing 12 to partition the pressurizing chamber R3 between the movable spring seat 13 and the housing 12. Specifically, the inner cylinder 13a of the movable spring seat 13 is eliminated, the outer cylinder 13b is slidably contacted with the outer circumference of the housing 12 to be movably fitted, and the inner circumference of the flange portion 13c of the movable spring seat 13 is pistoned. The pressure chamber R3 may be formed between the movable spring seat 13 and the housing 12 by sliding contact with the outer periphery of the rod 3 and fitting the rod 3 so as to be movable.
 また、液体給排源Fは、ハウジング12内の加圧室R3とタンクTとを連通する管路Hと、管路Hの途中に設けたポンプPとを備えて構成されて加圧室R3へ液体を給排する。なお、液体給排源Fは、管路Hを圧側室R2に接続して圧側室R2を介して加圧室R3へ液体を給排してもよい。 Further, the liquid supply / discharge source F is configured to include a conduit H for communicating the pressurizing chamber R3 in the housing 12 and the tank T, and a pump P provided in the middle of the conduit H, and the pressurizing chamber R3. Supply and discharge liquid to the housing. The liquid supply / discharge source F may supply / discharge liquid to the pressurizing chamber R3 via the compression side chamber R2 by connecting the pipeline H to the compression side chamber R2.
 なお、第二の実施の形態のサスペンション装置S2における緩衝器本体D2の構成は、ピストンロッド3に通路3aが設けられて、シリンダ1にあった通孔1bが廃止されている点を除き、第一のサスペンション装置S1における緩衝器本体D1と同様である。 The configuration of the shock absorber main body D2 in the suspension device S2 of the second embodiment is the first except that the piston rod 3 is provided with the passage 3a and the through hole 1b in the cylinder 1 is abolished. This is the same as the shock absorber main body D1 in the suspension device S1.
 第二の実施の形態のサスペンション装置S2におけるシリンダ1の外周には、ハウジング5および可動ばねシート6の代りに、環状の固定ばねシート14が取り付けられている。固定ばねシート14の形状は環状に限定されず、他の形状とされてもよい。 An annular fixed spring seat 14 is attached to the outer periphery of the cylinder 1 in the suspension device S2 of the second embodiment instead of the housing 5 and the movable spring seat 6. The shape of the fixed spring sheet 14 is not limited to the annular shape, and may be another shape.
 そして、可動ばねシート13と固定ばねシート14との間であって緩衝器本体D2の外周には、コイル状の懸架ばね8が介装されており、緩衝器本体D2がこの懸架ばね8によって伸長方向に付勢されている。よって、サスペンション装置S2を車両の車体と車軸との間に介装すると、懸架ばね8は、車体の重量により圧縮されて、この車体を支えて弾性支持するようになっている。 A coiled suspension spring 8 is interposed between the movable spring seat 13 and the fixed spring seat 14 and on the outer periphery of the shock absorber main body D2, and the shock absorber main body D2 is extended by the suspension spring 8. Being urged in the direction. Therefore, when the suspension device S2 is interposed between the vehicle body and the axle, the suspension spring 8 is compressed by the weight of the vehicle body to support and elastically support the vehicle body.
 そして、懸架ばね8は、車体からの荷重を受けて可動ばねシート13を図中上方へ付勢しており、可動ばねシート13を介して懸架ばね8の付勢力が加圧室R3に伝達されて加圧室R3が加圧される。加圧室R3は、ピストンロッド3に設けた通路3aによって圧側室R2に連通されているので、懸架ばね8の付勢力によってシリンダ1内の伸側室R1および圧側室R2も同様に加圧されている。よって、第二の実施の形態のサスペンション装置S2にあっても、第一の実施の形態のサスペンション装置S1と同様に、気室を設けずして、懸架ばね8と加圧室R3によってシリンダ1内を加圧できるようになっている。 Then, the suspension spring 8 receives a load from the vehicle body and urges the movable spring seat 13 upward in the drawing, and the urging force of the suspension spring 8 is transmitted to the pressurizing chamber R3 via the movable spring seat 13. The pressurizing chamber R3 is pressurized. Since the pressurizing chamber R3 is communicated with the compression side chamber R2 by the passage 3a provided in the piston rod 3, the extension side chamber R1 and the compression side chamber R2 in the cylinder 1 are similarly pressurized by the urging force of the suspension spring 8. There is. Therefore, even in the suspension device S2 of the second embodiment, the cylinder 1 is provided by the suspension spring 8 and the pressurizing chamber R3 without providing an air chamber, as in the suspension device S1 of the first embodiment. The inside can be pressurized.
 以上のように、サスペンション装置S2は構成されており、加圧室R3が圧側室R2に連通されているので、第一の実施の形態のサスペンション装置S1と同様に、シリンダ1内の圧力は、加圧室R3の圧力Pに等しくなる。よって、ピストンロッド3の断面積をAとすると、サスペンション装置S2は、第一の実施の形態のサスペンション装置S1と同様に、懸架ばね8の付勢力Fと圧力Pにより発生するピストンロッド3を押し上げる反発力A×Pとの合力によって車体を支える。 As described above, the suspension device S2 is configured, and the pressurizing chamber R3 is communicated with the compression side chamber R2. Therefore, as in the suspension device S1 of the first embodiment, the pressure in the cylinder 1 is increased. It becomes equal to the pressure CC of the pressurizing chamber R3. Therefore, when the cross-sectional area of the piston rod 3 and A R, suspension system S2 is like the suspension system S1 of the first embodiment, the piston rod produced by the biasing force F S and the pressure P C of the suspension springs 8 3 support body by the resultant force of the repulsive force a R × P C to boost.
 サスペンション装置S2が伸長する行程にある場合、ピストン2の図3中上方側への移動により、圧縮される伸側室R1内の液体は、減衰通路4および減衰弁4aを通過して拡大される圧側室R2へ流れる。液体が減衰弁4aを通過する際の圧力損失により、伸側室R1の圧力は圧側室R2の圧力より高くなって圧力差が生じ、サスペンション装置S2は、この圧力差に応じて伸長を抑制する伸側減衰力を発揮する。また、サスペンション装置S2の伸長によりシリンダ1から退出するピストンロッド3の体積分の液体が圧側室R2で不足する。これに対して、懸架ばね8の付勢力Fによって可動ばねシート13が図3中上方へ押されて移動して加圧室R3が圧縮され、加圧室R3から圧側室R2へ前記不足分に見合った液体が補充される。 When the suspension device S2 is in the extending stroke, the liquid in the extension side chamber R1 compressed by the upward movement of the piston 2 in FIG. 3 passes through the damping passage 4 and the damping valve 4a and is expanded on the compression side. It flows to room R2. Due to the pressure loss when the liquid passes through the damping valve 4a, the pressure in the extension side chamber R1 becomes higher than the pressure in the compression side chamber R2, causing a pressure difference, and the suspension device S2 suppresses the extension in response to this pressure difference. Demonstrates lateral damping force. Further, the compression side chamber R2 lacks the amount of liquid corresponding to the volume of the piston rod 3 that exits from the cylinder 1 due to the extension of the suspension device S2. In contrast, the pressure chamber R3 moves the movable spring seat 13 is pushed upward in FIG. 3 by the biasing force F S of the suspension spring 8 is compressed, the shortage from the pressure chamber R3 to the compression side chamber R2 The liquid is replenished according to the amount.
 サスペンション装置S2が収縮する行程にある場合、ピストン2の図3中下方側への移動により、圧縮される圧側室R2内の作動油は、減衰通路4および減衰弁4aを通過して拡大される伸側室R1へ流れる。液体が減衰弁4aを通過する際の圧力損失により、圧側室R2の圧力より伸側室R1の圧力が低くなって圧力差が生じ、サスペンション装置S2は、この圧力差に応じて収縮を抑制する圧側減衰力を発揮する。また、サスペンション装置S2の収縮によりシリンダ1内へ侵入するピストンロッド3の体積分の液体がシリンダ1内から加圧室R3へ押し出される。加圧室R3への液体の流入により、可動ばねシート13が図3中下方へ押し下げられて懸架ばね8が圧縮され、加圧室R3の容積が拡大されて前述の液体が加圧室R3によって吸収される。 When the suspension device S2 is in the process of contracting, the hydraulic oil in the compression side chamber R2 to be compressed is expanded by passing through the damping passage 4 and the damping valve 4a due to the downward movement of the piston 2 in FIG. It flows to the extension side chamber R1. Due to the pressure loss when the liquid passes through the damping valve 4a, the pressure in the extension side chamber R1 becomes lower than the pressure in the compression side chamber R2, causing a pressure difference, and the suspension device S2 suppresses contraction in response to this pressure difference. Demonstrates damping force. Further, the volume of the piston rod 3 that invades into the cylinder 1 due to the contraction of the suspension device S2 is pushed out from the cylinder 1 into the pressurizing chamber R3. Due to the inflow of the liquid into the pressurizing chamber R3, the movable spring seat 13 is pushed downward in FIG. 3, the suspension spring 8 is compressed, the volume of the pressurizing chamber R3 is expanded, and the above-mentioned liquid is discharged by the pressurizing chamber R3. Be absorbed.
 このように懸架ばね8の伸縮量は、サスペンション装置S2のストローク量だけでなく、ピストンロッド3のシリンダ1に対する変位により生じるピストンロッド3のシリンダ1内での押しのけ体積の変化による可動ばねシート13の移動量も付加される。したがって、加圧室R3の受圧面積をA、懸架ばね8の単体のばね定数をKとすると、サスペンション装置S2の全体を車体にばね力を作用させるばねとして見た場合、このばねのばね定数Kは、K=K(1+A/A)となる。つまり、サスペンション装置S2の全体は、第一の実施の形態のサスペンション装置S1と同様に、ばね定数Kを持つばねとして機能する。 As described above, the amount of expansion and contraction of the suspension spring 8 is not only the stroke amount of the suspension device S2, but also the change in the pushing volume of the piston rod 3 in the cylinder 1 caused by the displacement of the piston rod 3 with respect to the cylinder 1. The amount of movement is also added. Accordingly, the pressure receiving area of the pressure chamber R3 A S, when a single spring constant of the suspension spring 8 and K S, when viewed as a spring for applying a spring force to the whole of the suspension apparatus S2 to the vehicle body, the spring of the spring constant K E is a K E = K S (1 + a R / a S). In other words, the whole of the suspension device S2 is like the suspension system S1 of the first embodiment, functions as a spring having a spring constant K E.
 よって、サスペンション装置S2は、気室を設けなくとも懸架ばね8と加圧室R3によってシリンダ1内を加圧できるので、気室を伸側室と圧側室に直列に設けなくてはならないサスペンション装置に比較して、取付長を短くでき、車両への搭載性も向上する。 Therefore, since the suspension device S2 can pressurize the inside of the cylinder 1 by the suspension spring 8 and the pressurizing chamber R3 without providing the air chamber, the suspension device S2 must provide the air chamber in series with the extension side chamber and the compression side chamber. In comparison, the mounting length can be shortened and the mountability on the vehicle is improved.
 そして、このサスペンション装置S2で車高を上げる場合、液体給排源FにおけるポンプPを正転方向に駆動して液体を加圧室R3およびシリンダ1内に供給する。液体は、加圧室R3内とシリンダ1内に送り込まれ、加圧室R3内の圧力上昇によって可動ばねシート13をハウジング12に対して押し下げる。この押し下げる力F1は、加圧室R3内の圧力Pに可動ばねシート13の受圧面積Aを乗じた値に等しくなるので、F1=P×Aとなる。また、液体は、シリンダ1内にも送り込まれるので伸側室R1と圧側室R2の圧力が上昇して、ピストン2を押し上げる。シリンダ1内の圧力は加圧室R3内の圧力Pに等しくなるので、ピストン2を押し上げる力F2は、シリンダ1内の圧力にピストンロッド3の断面積を乗じた値に等しくなるので、F2=P×Aとなる。 Then, when the vehicle height is raised by the suspension device S2, the pump P in the liquid supply / discharge source F is driven in the forward rotation direction to supply the liquid into the pressurizing chamber R3 and the cylinder 1. The liquid is sent into the pressurizing chamber R3 and the cylinder 1, and the movable spring seat 13 is pushed down against the housing 12 by the pressure increase in the pressurizing chamber R3. The depressing force F1, because equal to a value obtained by multiplying the pressure receiving area A S of the movable spring seat 13 to the pressure P C in the pressurizing chamber R3, the F1 = P C × A S. Further, since the liquid is also sent into the cylinder 1, the pressures in the extension side chamber R1 and the compression side chamber R2 increase, and the piston 2 is pushed up. Since the pressure in the cylinder 1 is equal to the pressure CC in the pressurizing chamber R3, the force F2 that pushes up the piston 2 is equal to the value obtained by multiplying the pressure in the cylinder 1 by the cross-sectional area of the piston rod 3. = a P C × a R.
 可動ばねシート13を押し下げる力F1は、反作用としてハウジング12を図3中押し上げる力として作用するので、サスペンション装置S2が車体を押し上げる力F3は、ハウジング12とピストン2を押し上げる力F1,F2の合力となり、F3=P×(A+A)となる。このように本実施の形態のサスペンション装置S2にあっても、加圧室R3とシリンダ1内とが連通されているので、液体給排源Fから液体を供給して車高を上昇させる際に有効となる受圧面積(有効受圧面積)は、可動ばねシート13の受圧面積とピストンロッド3の断面積との和となる。よって、本実施の形態のサスペンション装置S2によれば、有効受圧面積を従来のサスペンション装置に比較して大きく確保できる。 Since the force F1 that pushes down the movable spring seat 13 acts as a reaction that pushes up the housing 12 in FIG. 3, the force F3 that pushes up the vehicle body by the suspension device S2 becomes the resultant force of the forces F1 and F2 that push up the housing 12 and the piston 2. , the F3 = P C × (a S + a R). As described above, even in the suspension device S2 of the present embodiment, since the pressurizing chamber R3 and the inside of the cylinder 1 are communicated with each other, when the liquid is supplied from the liquid supply / discharge source F to raise the vehicle height. The effective pressure receiving area (effective pressure receiving area) is the sum of the pressure receiving area of the movable spring seat 13 and the cross-sectional area of the piston rod 3. Therefore, according to the suspension device S2 of the present embodiment, a large effective pressure receiving area can be secured as compared with the conventional suspension device.
 本実施の形態のサスペンション装置S2のように、ハウジング12をピストンロッド3に取り付けて、可動ばねシート13をピストンロッド3の外周とハウジング12の内周の双方に摺動自在に装着して、加圧室R3と圧側室R2とをピストンロッド3に設けた通路3aによって連通するようにしても、液体給排源Fから加圧室R3へ液体を給排すると車高調整が可能である。また、このように構成されたサスペンション装置S2は、有効受圧面積を加圧室R3における受圧面積とピストンロッド3の断面積との和とするので、有効受圧面積を大きく確保できる。よって、このように構成されたサスペンション装置S2によれば、加圧室R3の受圧面積を大きくしなくとも車高調整に有効な受圧面積を確保できるので、加圧室R3の大型化を避けつつも車体重量が重い車両であっても車高調整が可能となるので、車高調整が可能であっても小型かつ軽量となる。また、サスペンション装置S2によれば、見かけ上のばね定数を大きくできるので、懸架ばね8のばね定数を小さく設計することができ、懸架ばね8を軽量化できる。 Like the suspension device S2 of the present embodiment, the housing 12 is attached to the piston rod 3, and the movable spring seat 13 is slidably attached to both the outer circumference of the piston rod 3 and the inner circumference of the housing 12 to be applied. Even if the compression chamber R3 and the compression side chamber R2 are communicated with each other by the passage 3a provided in the piston rod 3, the vehicle height can be adjusted by supplying and discharging the liquid from the liquid supply / discharge source F to the pressure chamber R3. Further, in the suspension device S2 configured as described above, since the effective pressure receiving area is the sum of the pressure receiving area in the pressurizing chamber R3 and the cross section of the piston rod 3, a large effective pressure receiving area can be secured. Therefore, according to the suspension device S2 configured in this way, it is possible to secure an effective pressure receiving area for adjusting the vehicle height without increasing the pressure receiving area of the pressurizing chamber R3, while avoiding an increase in the size of the pressurizing chamber R3. However, even if the vehicle body weight is heavy, the vehicle height can be adjusted, so even if the vehicle height can be adjusted, the vehicle is compact and lightweight. Further, according to the suspension device S2, since the apparent spring constant can be increased, the spring constant of the suspension spring 8 can be designed to be small, and the suspension spring 8 can be made lighter.
 さらに、本実施の形態のサスペンション装置S2は、シリンダ1内に気室を設けなくとも懸架ばね8と加圧室R3によってシリンダ1内を加圧できるので、気室を伸側室と圧側室に直列に設けなくてはならないサスペンション装置に比較して、取付長を短くでき、車両への搭載性も向上するともに部品点数も削減される。 Further, in the suspension device S2 of the present embodiment, since the inside of the cylinder 1 can be pressurized by the suspension spring 8 and the pressurizing chamber R3 without providing the air chamber in the cylinder 1, the air chamber is connected in series with the extension side chamber and the compression side chamber. Compared to the suspension device that must be installed in the vehicle, the mounting length can be shortened, the mountability on the vehicle is improved, and the number of parts is reduced.
 また、本発明のサスペンション装置S2では、気室でシリンダ1内を加圧するのではなく、懸架ばね8と加圧室R3によってシリンダ1内を加圧する。よって、第二の実施の形態のサスペンション装置S2は、第一の実施の形態のサスペンション装置S1と同様に、車高が変わってしまう問題も生じず、長期間に亘る使用でも減衰力特性が変化せず高い信頼性を確保できる。また、サスペンション装置S2は、液体の体積弾性係数を確保でき、応答性よく減衰力を発揮でき、サスペンション装置S2全体をばねとして見た場合にばね定数が変位に対して非線形とならず車両における乗り心地も向上させる。 Further, in the suspension device S2 of the present invention, instead of pressurizing the inside of the cylinder 1 in the air chamber, the inside of the cylinder 1 is pressurized by the suspension spring 8 and the pressurizing chamber R3. Therefore, the suspension device S2 of the second embodiment does not cause a problem that the vehicle height changes like the suspension device S1 of the first embodiment, and the damping force characteristic changes even after long-term use. High reliability can be ensured without doing so. Further, the suspension device S2 can secure the volume elastic modulus of the liquid, can exert a damping force with good responsiveness, and when the entire suspension device S2 is viewed as a spring, the spring constant does not become non-linear with respect to the displacement, and the vehicle rides on the vehicle. It also improves comfort.
 本例のサスペンション装置S2では、緩衝器本体D2におけるピストンロッド3にハウジング12が取り付けられ、可動ばねシート13がピストンロッド3の外周とハウジング12の内周の双方に摺動自在に装着される。このようにサスペンション装置S2を構成すると、ピストンロッド3を加圧室R3の形成部品として利用でき、最小限の部品でピストンロッド3の上端に加圧室R3を形成できる。また、車体側に加圧室R3を設けられるので、取付スペースの関係で車軸側に加圧室R3を設けたサスペンション装置S1の搭載が難しい場合、サスペンション装置S2の構造を採用して車両に搭載できる。反対に、取付スペースの関係で車体側に加圧室R3を設けたサスペンション装置S2の搭載が難しい場合、サスペンション装置S1の構造を採用して車両へ搭載すればよい。 In the suspension device S2 of this example, the housing 12 is attached to the piston rod 3 in the shock absorber main body D2, and the movable spring seat 13 is slidably attached to both the outer circumference of the piston rod 3 and the inner circumference of the housing 12. When the suspension device S2 is configured in this way, the piston rod 3 can be used as a forming component of the pressurizing chamber R3, and the pressurizing chamber R3 can be formed at the upper end of the piston rod 3 with a minimum number of parts. Further, since the pressurizing chamber R3 is provided on the vehicle body side, if it is difficult to mount the suspension device S1 having the pressurizing chamber R3 on the axle side due to the mounting space, the structure of the suspension device S2 is adopted and mounted on the vehicle. it can. On the contrary, when it is difficult to mount the suspension device S2 having the pressurizing chamber R3 on the vehicle body side due to the mounting space, the structure of the suspension device S1 may be adopted and mounted on the vehicle.
 <第三の実施の形態>
 第三の実施の形態のサスペンション装置S3は、図4に示すように、第一の実施の形態のサスペンション装置S1における緩衝器本体D1ではシリンダ1の外周にハウジング5を設けて可動ばねシート6を摺接させて加圧室R3を設けたのに対して、緩衝器本体D3ではシリンダ1の外周を覆う外筒15を設けて外筒15の外周に加圧室R3を設けた点でサスペンション装置S1と異なっている。
<Third embodiment>
As shown in FIG. 4, in the suspension device S3 of the third embodiment, in the shock absorber main body D1 of the suspension device S1 of the first embodiment, a housing 5 is provided on the outer periphery of the cylinder 1 to provide a movable spring seat 6. While the pressurizing chamber R3 is provided by sliding contact, the shock absorber main body D3 is provided with an outer cylinder 15 covering the outer periphery of the cylinder 1 and a pressurizing chamber R3 is provided on the outer periphery of the outer cylinder 15. It is different from S1.
 よって、第一の実施の形態のサスペンション装置S1では、シリンダ1の外周にハウジング5を設けていたが、第三の実施の形態のサスペンション装置S3では、シリンダ1の外周を覆う外筒15の外周に筒状のハウジング16を設けている。 Therefore, in the suspension device S1 of the first embodiment, the housing 5 is provided on the outer periphery of the cylinder 1, but in the suspension device S3 of the third embodiment, the outer circumference of the outer cylinder 15 covering the outer periphery of the cylinder 1 is provided. Is provided with a tubular housing 16.
 また、第一の実施の形態のサスペンション装置S1では、シリンダ1の外周に可動ばねシート6を装着していたが、第三の実施の形態のサスペンション装置S3では、外筒15の外周に可動ばねシート17を装着している。 Further, in the suspension device S1 of the first embodiment, the movable spring seat 6 is mounted on the outer periphery of the cylinder 1, but in the suspension device S3 of the third embodiment, the movable spring is attached to the outer periphery of the outer cylinder 15. The seat 17 is attached.
 以下、第三の実施の形態のサスペンション装置S3が第一の実施の形態のサスペンション装置S1と異なる部分について詳細に説明し、説明の重複を避けるため、同じ部材については同様の符号を付して詳細な説明を省略する。 Hereinafter, the parts of the suspension device S3 of the third embodiment that differ from the suspension device S1 of the first embodiment will be described in detail, and the same members will be designated by the same reference numerals in order to avoid duplication of description. A detailed description will be omitted.
 第三の実施の形態のサスペンション装置S3における緩衝器本体D3は、第一の実施の形態のサスペンション装置S1における緩衝器本体D1のシリンダ1の外周にシリンダ1を覆う外筒15を設けた構造となっている。そして、シリンダ1と外筒15との間の環状隙間Gは、シリンダ1に設けた通孔1bを通じて圧側室R2に連通されており、液体が充填されている。 The shock absorber main body D3 in the suspension device S3 of the third embodiment has a structure in which an outer cylinder 15 covering the cylinder 1 is provided on the outer periphery of the cylinder 1 of the shock absorber main body D1 in the suspension device S1 of the first embodiment. It has become. The annular gap G between the cylinder 1 and the outer cylinder 15 is communicated with the compression side chamber R2 through a through hole 1b provided in the cylinder 1 and is filled with a liquid.
 また、外筒15の外周に設けたハウジング16は、外筒15の下端外周に設けたフランジ15aに当接した状態で取り付けられていて、ハウジング16の下端開口部は閉塞されている。 Further, the housing 16 provided on the outer periphery of the outer cylinder 15 is attached in a state of being in contact with the flange 15a provided on the outer periphery of the lower end of the outer cylinder 15, and the lower end opening of the housing 16 is closed.
 さらに、外筒15の外周には、筒状の可動ばねシート17が摺動自在に装着されている。この可動ばねシート17は、外筒15の外周に摺接する筒部17aと、筒部17aの上端外周に設けた環状のシート部17bとを備えており、筒部17aは、外筒15の外周とハウジング16の内周に摺接している。よって、ハウジング16と外筒15との間の環状隙間に可動ばねシート17の筒部17aが移動自在に嵌合されており、ハウジング16内に加圧室R3が形成されている。この加圧室R3は、外筒15の下方側に設けた通孔15b、環状隙間Gおよび通孔1bを介して圧側室R2に連通されており、加圧室R3にはシリンダ1内に充填される液体と同様の液体が充填されている。なお、シート部17bの形状は環状に限定されず、他の形状とされてもよい。 Further, a tubular movable spring sheet 17 is slidably mounted on the outer circumference of the outer cylinder 15. The movable spring sheet 17 includes a tubular portion 17a that is in sliding contact with the outer periphery of the outer cylinder 15 and an annular seat portion 17b provided on the outer periphery of the upper end of the tubular portion 17a. The tubular portion 17a is the outer circumference of the outer cylinder 15. Is in sliding contact with the inner circumference of the housing 16. Therefore, the tubular portion 17a of the movable spring seat 17 is movably fitted in the annular gap between the housing 16 and the outer cylinder 15, and the pressurizing chamber R3 is formed in the housing 16. The pressurizing chamber R3 is communicated with the compression side chamber R2 via a through hole 15b, an annular gap G and a through hole 1b provided on the lower side of the outer cylinder 15, and the pressurizing chamber R3 is filled in the cylinder 1. It is filled with a liquid similar to the liquid to be used. The shape of the sheet portion 17b is not limited to the annular shape, and may be another shape.
 また、可動ばねシート17とハウジング16との間、外筒15とハウジング16との間および可動ばねシート17と外筒15との間は、それぞれシールリング16a,16b,17cによってシールされており、加圧室R3は液密に保たれている。なお、外筒15の外周にフランジ15aを設ける代りに、ハウジング16の下端の内周に環状の底部を設けて、この底部を外筒15に溶接等により固定する等としてもよく、外筒15に対するハウジング16の固定構造については図示したものに限られない。また、シールリング16aを設ける代りに、可動ばねシート17の筒部17aの外周にハウジング16の内周に摺接するシールリングを設けてもよい。 Further, the space between the movable spring seat 17 and the housing 16, the space between the outer cylinder 15 and the housing 16, and the space between the movable spring seat 17 and the outer cylinder 15 are sealed by seal rings 16a, 16b, and 17c, respectively. The pressurizing chamber R3 is kept liquidtight. Instead of providing the flange 15a on the outer circumference of the outer cylinder 15, an annular bottom may be provided on the inner circumference of the lower end of the housing 16 and the bottom may be fixed to the outer cylinder 15 by welding or the like. The fixed structure of the housing 16 with respect to the housing 16 is not limited to that shown in the figure. Further, instead of providing the seal ring 16a, a seal ring that is in sliding contact with the inner circumference of the housing 16 may be provided on the outer periphery of the tubular portion 17a of the movable spring seat 17.
 また、液体給排源Fは、ハウジング16内の加圧室R3とタンクTとを連通する管路Hと、管路Hの途中に設けたポンプPとを備えて構成されて加圧室R3へ液体を給排する。なお、液体給排源Fは、管路Hを環状隙間G或いは圧側室R2に接続して、環状隙間G或いは環状隙間Gと圧側室R2を介して加圧室R3へ液体を給排してもよい。 Further, the liquid supply / discharge source F is configured to include a conduit H for communicating the pressurizing chamber R3 in the housing 16 and the tank T, and a pump P provided in the middle of the conduit H, and the pressurizing chamber R3. Supply and discharge liquid to the housing. The liquid supply / discharge source F connects the pipeline H to the annular gap G or the compression side chamber R2, and supplies / discharges the liquid to the pressurizing chamber R3 via the annular gap G or the annular gap G and the compression side chamber R2. May be good.
 そして、可動ばねシート17と固定ばねシート7との間であって緩衝器本体D3の外周には、懸架ばね8が介装されており、懸架ばね8によって緩衝器本体D3が伸長方向に付勢されるとともに可動ばねシート17を介して加圧室R3が加圧される。加圧室R3は、シリンダ1に設けた通孔1bによって圧側室R2に連通されているので、懸架ばね8の付勢力によってシリンダ1内の伸側室R1および圧側室R2も同様に加圧されている。よって、第三の実施の形態のサスペンション装置S3にあっても、第一の実施の形態のサスペンション装置S1と同様に、気室を設けずして、懸架ばね8と加圧室R3によってシリンダ1内を加圧できるようになっている。 A suspension spring 8 is interposed between the movable spring seat 17 and the fixed spring seat 7 on the outer periphery of the shock absorber body D3, and the suspension spring 8 urges the shock absorber body D3 in the extension direction. At the same time, the pressurizing chamber R3 is pressurized via the movable spring sheet 17. Since the pressurizing chamber R3 is communicated with the compression side chamber R2 by the through hole 1b provided in the cylinder 1, the extension side chamber R1 and the compression side chamber R2 in the cylinder 1 are similarly pressurized by the urging force of the suspension spring 8. There is. Therefore, even in the suspension device S3 of the third embodiment, the cylinder 1 is provided by the suspension spring 8 and the pressurizing chamber R3 without providing an air chamber, as in the suspension device S1 of the first embodiment. The inside can be pressurized.
 以上のように、サスペンション装置S3は構成されており、加圧室R3が圧側室R2に連通されているので、第一の実施の形態のサスペンション装置S1と同様に、シリンダ1内の圧力は、加圧室R3の圧力Pに等しくなる。よって、ピストンロッド3の断面積をAとすると、サスペンション装置S3は、第一の実施の形態のサスペンション装置S1と同様に、懸架ばね8の付勢力Fと圧力Pにより発生するピストンロッド3を押し上げる反発力A×Pとの合力によって車体を支える。 As described above, the suspension device S3 is configured, and the pressurizing chamber R3 is communicated with the compression side chamber R2. Therefore, as in the suspension device S1 of the first embodiment, the pressure in the cylinder 1 is increased. It becomes equal to the pressure CC of the pressurizing chamber R3. Therefore, when the cross-sectional area of the piston rod 3 and A R, the suspension device S3 is like the suspension system S1 of the first embodiment, the piston rod produced by the biasing force F S and the pressure P C of the suspension springs 8 3 support body by the resultant force of the repulsive force a R × P C to boost.
 以上のように、サスペンション装置S3は、環状隙間Gを介して加圧室R3と圧側室R2とが連通されている他は、サスペンション装置S1と同様の構造となっている。よって、サスペンション装置S3は、サスペンション装置S1と同様に動作して伸縮時に減衰力を発揮する。また、懸架ばね8の単体のばね定数をKとすると、サスペンション装置S3の全体を車体にばね力を作用させるばねとして見た場合、このばねのばね定数Kは、K=K(1+A/A)となる。つまり、サスペンション装置S3の全体は、ばね定数Kを持つばねとして機能する。 As described above, the suspension device S3 has the same structure as the suspension device S1 except that the pressurizing chamber R3 and the compression side chamber R2 are communicated with each other through the annular gap G. Therefore, the suspension device S3 operates in the same manner as the suspension device S1 and exerts a damping force during expansion and contraction. Further, when a single spring constant of the suspension spring 8 and K S, when viewed as a spring exerting a spring force across the vehicle body of the suspension device S3, the spring constant K E of the spring, K E = K S ( 1 + AR / AS ). In other words, the whole of the suspension device S3 is functions as a spring having a spring constant K E.
 よって、サスペンション装置S3は、シリンダ1内に気室を設けなくとも懸架ばね8と加圧室R3によってシリンダ1内を加圧できるので、気室を伸側室と圧側室に直列に設けなくてはならないサスペンション装置に比較して、取付長を短くでき、車両への搭載性も向上する。 Therefore, since the suspension device S3 can pressurize the inside of the cylinder 1 by the suspension spring 8 and the pressurizing chamber R3 without providing the air chamber in the cylinder 1, the air chamber must be provided in series with the extension side chamber and the compression side chamber. Compared to a suspension device that does not have to be used, the mounting length can be shortened and the mountability on a vehicle is improved.
 そして、このサスペンション装置S3で車高を上げる場合、液体給排源FにおけるポンプPを正転方向に駆動して液体を加圧室R3およびシリンダ1内に供給する。液体は、加圧室R3内とシリンダ1内に送り込まれ、加圧室R3内の圧力上昇によって可動ばねシート17をハウジング16に対して押し上げる。この押し上げる力F1は、加圧室R3内の圧力Pに可動ばねシート17の受圧面積Aを乗じた値に等しくなるので、F1=P×Aとなる。また、液体は、シリンダ1内にも送り込まれるので伸側室R1と圧側室R2の圧力が上昇して、ピストン2を押し上げる。シリンダ1内の圧力は加圧室R3内の圧力Pに等しくなるので、ピストン2を押し上げる力F2は、シリンダ1内の圧力にピストンロッド3の断面積を乗じた値に等しくなるので、F2=P×Aとなる。よって、サスペンション装置S3が車体を押し上げる力F3は、可動ばねシート17とピストン2を押し上げる力F1,F2の合力となるので、F3=P×(A+A)となる。 Then, when the vehicle height is raised by the suspension device S3, the pump P in the liquid supply / discharge source F is driven in the forward rotation direction to supply the liquid into the pressurizing chamber R3 and the cylinder 1. The liquid is sent into the pressurizing chamber R3 and the cylinder 1, and the movable spring seat 17 is pushed up with respect to the housing 16 by the pressure increase in the pressurizing chamber R3. The push force F1, because equal to a value obtained by multiplying the pressure receiving area A S of the movable spring seat 17 to the pressure P C in the pressurizing chamber R3, the F1 = P C × A S. Further, since the liquid is also sent into the cylinder 1, the pressures in the extension side chamber R1 and the compression side chamber R2 increase, and the piston 2 is pushed up. Since the pressure in the cylinder 1 is equal to the pressure CC in the pressurizing chamber R3, the force F2 that pushes up the piston 2 is equal to the value obtained by multiplying the pressure in the cylinder 1 by the cross-sectional area of the piston rod 3. = a P C × a R. Therefore, the force F3 of the suspension device S3 is pushing up the vehicle body, since the resultant force of the force F1, F2 to push up the movable spring seat 17 and the piston 2, and F3 = P C × (A S + A R).
 このように本実施の形態のサスペンション装置S3にあっても、加圧室R3とシリンダ1内とが連通されているので、液体給排源Fから液体を供給して車高を上昇させる際に有効となる受圧面積(有効受圧面積)は、可動ばねシート17の受圧面積とピストンロッド3の断面積との和となる。よって、本実施の形態のサスペンション装置S3によれば、有効受圧面積を従来のサスペンション装置に比較して大きく確保できる。 As described above, even in the suspension device S3 of the present embodiment, since the pressurizing chamber R3 and the inside of the cylinder 1 are communicated with each other, when the liquid is supplied from the liquid supply / discharge source F to raise the vehicle height. The effective pressure receiving area (effective pressure receiving area) is the sum of the pressure receiving area of the movable spring seat 17 and the cross-sectional area of the piston rod 3. Therefore, according to the suspension device S3 of the present embodiment, a large effective pressure receiving area can be secured as compared with the conventional suspension device.
 本実施の形態のサスペンション装置S3のように、シリンダ1の外周に外筒15を設けて、ハウジング16を外筒15の外周に設けるとともに可動ばねシート17を外筒15とハウジング16の内周の双方に摺動自在に装着して、加圧室R3を設けても、液体給排源Fから加圧室R3へ液体を給排すると車高調整が可能である。また、このように構成されたサスペンション装置S3は、車高調整時に有効な受圧面積(有効受圧面積)が加圧室R3における受圧面積とピストンロッド3の断面積との和として有効受圧面積を大きく確保できる。よって、このように構成されたサスペンション装置S3によれば、加圧室R3の受圧面積を大きくしなくとも車高調整に有効な受圧面積を確保できるので、加圧室R3の大型化を避けつつも車体重量が重い車両であっても車高調整が可能となるので、車高調整が可能であっても小型かつ軽量となる。また、サスペンション装置S3によれば、見かけ上のばね定数を大きくできるので、懸架ばね8のばね定数を小さく設計することができ、懸架ばね8を軽量化できる。 Like the suspension device S3 of the present embodiment, the outer cylinder 15 is provided on the outer circumference of the cylinder 1, the housing 16 is provided on the outer circumference of the outer cylinder 15, and the movable spring seat 17 is provided on the outer circumference of the outer cylinder 15 and the housing 16. Even if the pressurizing chamber R3 is provided so as to be slidably mounted on both sides, the vehicle height can be adjusted by supplying and discharging the liquid from the liquid supply / discharge source F to the pressurizing chamber R3. Further, in the suspension device S3 configured in this way, the effective pressure receiving area (effective pressure receiving area) at the time of adjusting the vehicle height is the sum of the pressure receiving area in the pressure chamber R3 and the cross-sectional area of the piston rod 3 to increase the effective pressure receiving area. Can be secured. Therefore, according to the suspension device S3 configured in this way, it is possible to secure an effective pressure receiving area for adjusting the vehicle height without increasing the pressure receiving area of the pressurizing chamber R3, while avoiding an increase in the size of the pressurizing chamber R3. However, even if the vehicle body weight is heavy, the vehicle height can be adjusted, so even if the vehicle height can be adjusted, the vehicle is compact and lightweight. Further, according to the suspension device S3, since the apparent spring constant can be increased, the spring constant of the suspension spring 8 can be designed to be small, and the suspension spring 8 can be made lighter.
 さらに、本実施の形態のサスペンション装置S3は、シリンダ1内に気室を設けなくとも懸架ばね8と加圧室R3によってシリンダ1内を加圧できるので、気室を伸側室と圧側室に直列に設けなくてはならないサスペンション装置に比較して、取付長を短くでき、車両への搭載性も向上する。また、外筒15でシリンダ1の外周を覆っており、緩衝器本体D3が二重管構造となっているので、強度が向上し曲げや軸方向の剛性を高めることができる。 Further, in the suspension device S3 of the present embodiment, since the inside of the cylinder 1 can be pressurized by the suspension spring 8 and the pressurizing chamber R3 without providing the air chamber in the cylinder 1, the air chamber is connected in series with the extension side chamber and the compression side chamber. Compared to the suspension device that must be installed in the vehicle, the mounting length can be shortened and the mountability on the vehicle is improved. Further, since the outer cylinder 15 covers the outer periphery of the cylinder 1 and the shock absorber main body D3 has a double pipe structure, the strength can be improved and the bending and the rigidity in the axial direction can be increased.
 また、本発明のサスペンション装置S3では、気室でシリンダ1内を加圧するのではなく、懸架ばね8と加圧室R3によってシリンダ1内を加圧する。よって、第三の実施の形態のサスペンション装置S3は、第一の実施の形態のサスペンション装置S1と同様に、車高が変わってしまう問題も生じず、長期間に亘る使用でも減衰力特性が変化せず高い信頼性を確保できる。また、サスペンション装置S3は、液体の体積弾性係数を確保でき、応答性よく減衰力を発揮でき、サスペンション装置S3全体をばねとして見た場合にばね定数が変位に対して非線形とならず車両における乗り心地も向上させる。 Further, in the suspension device S3 of the present invention, instead of pressurizing the inside of the cylinder 1 in the air chamber, the inside of the cylinder 1 is pressurized by the suspension spring 8 and the pressurizing chamber R3. Therefore, the suspension device S3 of the third embodiment does not cause a problem that the vehicle height changes like the suspension device S1 of the first embodiment, and the damping force characteristic changes even after long-term use. High reliability can be ensured without doing so. Further, the suspension device S3 can secure the volume elastic modulus of the liquid, can exert a damping force with good responsiveness, and when the entire suspension device S3 is viewed as a spring, the spring constant does not become non-linear with respect to the displacement, and the vehicle rides on the vehicle. It also improves comfort.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, they can be modified, modified, and modified as long as they do not deviate from the claims.
1・・・シリンダ、2・・・ピストン、3・・・ピストンロッド、5,12,16・・・ハウジング、6,13,17・・・可動ばねシート、8・・・懸架ばね、15・・・外筒、D1,D2,D3・・・緩衝器本体、F・・・液体給排源、P・・・ポンプ、S1,S1a,S2,S3・・・サスペンション装置、R1・・・伸側室、R2・・・圧側室、R3・・・加圧室 1 ... Cylinder, 2 ... Piston, 3 ... Piston rod, 5,12,16 ... Housing, 6,13,17 ... Movable spring seat, 8 ... Suspension spring, 15. .. outer cylinder, D1, D2, D3 ... shock absorber body, F ... liquid supply / discharge source, P ... pump, S1, S1a, S2, S3 ... suspension device, R1 ... extension Side chamber, R2 ... compression side chamber, R3 ... pressurization chamber

Claims (6)

  1.  サスペンション装置であって、
     シリンダと、前記シリンダ内に移動自在に挿入されるピストンと、前記シリンダ内に前記ピストンで仕切られる伸側室と圧側室と、前記シリンダ内に移動自在に挿入される前記ピストンに連結されるピストンロッドとを有して伸縮時に前記シリンダに液体が出入りして減衰力を発揮する緩衝器本体と、
     前記緩衝器本体を伸長方向へ付勢する懸架ばねと、
     前記圧側室に連通されて前記懸架ばねから付勢力を受けて前記シリンダ内を加圧する加圧室と、
     前記加圧室へ液体を給排可能な液体給排源とを備えた
     サスペンション装置。
    Suspension device
    A cylinder, a piston movably inserted into the cylinder, an extension chamber and a compression side chamber partitioned by the piston in the cylinder, and a piston rod connected to the piston movably inserted into the cylinder. A shock absorber body that exerts a damping force by allowing liquid to enter and exit the cylinder during expansion and contraction.
    A suspension spring that urges the shock absorber body in the extension direction,
    A pressurizing chamber that communicates with the compression side chamber and receives urging force from the suspension spring to pressurize the inside of the cylinder.
    A suspension device provided with a liquid supply / discharge source capable of supplying / discharging liquid to the pressurizing chamber.
  2.  請求項1に記載のサスペンション装置であって、
     前記液体給排源は、定容量型のポンプを有する
     サスペンション装置。
    The suspension device according to claim 1.
    The liquid supply / discharge source is a suspension device having a constant-capacity pump.
  3.  請求項1に記載のサスペンション装置であって、
     前記加圧室は、中空なハウジングと、前記ハウジングに対して移動自在に嵌合されて前記懸架ばねによって付勢される可動ばねシートとによって区画形成される
     サスペンション装置。
    The suspension device according to claim 1.
    A suspension device in which the pressurizing chamber is partitioned by a hollow housing and a movable spring seat that is movably fitted to the housing and urged by the suspension spring.
  4.  請求項3に記載のサスペンション装置であって、
     前記ハウジングは、前記シリンダの外周に装着され、
     前記可動ばねシートは、前記シリンダの外周と前記ハウジングの内周の双方に摺動自在に装着される
     サスペンション装置。
    The suspension device according to claim 3.
    The housing is mounted on the outer circumference of the cylinder.
    The movable spring seat is a suspension device that is slidably mounted on both the outer circumference of the cylinder and the inner circumference of the housing.
  5.  請求項3に記載のサスペンション装置であって、
     前記ハウジングは、前記ピストンロッドに取り付けられ、
     前記可動ばねシートは、前記ピストンロッドの外周と前記ハウジングの内周の双方に摺動自在に装着され、
     前記加圧室と前記圧側室とは前記ピストンロッドに設けた通路によって連通される
     サスペンション装置。
    The suspension device according to claim 3.
    The housing is attached to the piston rod and
    The movable spring seat is slidably mounted on both the outer circumference of the piston rod and the inner circumference of the housing.
    A suspension device in which the pressurizing chamber and the compression side chamber are communicated with each other by a passage provided in the piston rod.
  6.  請求項3に記載のサスペンション装置であって、
     前記緩衝器本体は、前記シリンダの外周を覆う外筒を有し、
     前記ハウジングは、前記外筒の外周に装着され、
     前記可動ばねシートは、前記外筒の外周と前記ハウジングの内周の双方に摺動自在に装着される
     サスペンション装置。
    The suspension device according to claim 3.
    The shock absorber body has an outer cylinder that covers the outer circumference of the cylinder.
    The housing is mounted on the outer circumference of the outer cylinder.
    The movable spring seat is a suspension device that is slidably mounted on both the outer circumference of the outer cylinder and the inner circumference of the housing.
PCT/JP2020/009649 2019-03-27 2020-03-06 Suspension device WO2020195702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061092 2019-03-27
JP2019061092A JP2020159504A (en) 2019-03-27 2019-03-27 Suspension device

Publications (1)

Publication Number Publication Date
WO2020195702A1 true WO2020195702A1 (en) 2020-10-01

Family

ID=72610073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009649 WO2020195702A1 (en) 2019-03-27 2020-03-06 Suspension device

Country Status (2)

Country Link
JP (1) JP2020159504A (en)
WO (1) WO2020195702A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482331B2 (en) 2021-07-26 2024-05-13 カヤバ株式会社 Shock absorber with height adjustment function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202034U (en) * 1981-06-19 1982-12-22
US20050199457A1 (en) * 2004-03-10 2005-09-15 Zf Friedrichshafen Ag Spring strut unit for suspension systems of motor vehicles
JP2017140930A (en) * 2016-02-10 2017-08-17 Kyb株式会社 Suspension device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202034U (en) * 1981-06-19 1982-12-22
US20050199457A1 (en) * 2004-03-10 2005-09-15 Zf Friedrichshafen Ag Spring strut unit for suspension systems of motor vehicles
JP2017140930A (en) * 2016-02-10 2017-08-17 Kyb株式会社 Suspension device

Also Published As

Publication number Publication date
JP2020159504A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US6092816A (en) Vehicle height adjusting apparatus and cylinder system used therefor
US6871845B2 (en) Self-pumping, hydropneumatic suspension strut unit
JP3624169B2 (en) Suspension system for automatic vehicles
WO2014057897A1 (en) Suspension device
JPH10252803A (en) Shock absorber
JP6295120B2 (en) Hydraulic shock absorber
JPH07233833A (en) Hydropneumatic cylinder
WO2020195702A1 (en) Suspension device
JP2007030665A (en) Suspension device
KR100363449B1 (en) Hydraulic shock absorber
JP2985707B2 (en) Self-pumping shock absorber
JP4602227B2 (en) Hydraulic shock absorber
JP2007253921A (en) Damper with vehicle height adjusting function and vehicle equipped with the damper
JP2005240984A (en) Electromagnetic suspension device
US7681699B2 (en) Self-pumping hydropneumatic vibration damper
JP5806595B2 (en) Shock absorber
JP4998936B2 (en) Spring characteristic variable device in vehicle suspension system
JP6523849B2 (en) Front fork
KR102486887B1 (en) Hydraulic actuator and active suspension apparatus for vehicle having the same
JP2001182771A (en) Device for adjusting vehicle height
WO2024127709A1 (en) Damper
JPH07253135A (en) Hydro-pneumatic cylinder
JP3279127B2 (en) Self-pumping shock absorber
JP5905310B2 (en) Hydraulic shock absorber
JP2010084924A (en) Front fork

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776302

Country of ref document: EP

Kind code of ref document: A1