WO2020195674A1 - Spectrometer - Google Patents

Spectrometer Download PDF

Info

Publication number
WO2020195674A1
WO2020195674A1 PCT/JP2020/009387 JP2020009387W WO2020195674A1 WO 2020195674 A1 WO2020195674 A1 WO 2020195674A1 JP 2020009387 W JP2020009387 W JP 2020009387W WO 2020195674 A1 WO2020195674 A1 WO 2020195674A1
Authority
WO
WIPO (PCT)
Prior art keywords
double pulse
infrared
pulse
nonlinear optical
spectroscope
Prior art date
Application number
PCT/JP2020/009387
Other languages
French (fr)
Japanese (ja)
Inventor
拓郎 井手口
和樹 橋本
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2021508924A priority Critical patent/JP7456639B2/en
Publication of WO2020195674A1 publication Critical patent/WO2020195674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics

Definitions

  • the present invention relates to a spectroscope.
  • Vibration spectroscopy such as infrared spectroscopy and Raman spectroscopy is used to measure the structure and state of molecules.
  • Infrared spectroscopy is to irradiate a substance with infrared rays and measure the spectrum of infrared absorption or emission, and can measure molecular vibration accompanied by a change in dipole moment.
  • Raman spectroscopy measures the wavelength and intensity of Raman rays (Stokes lines and anti-Stokes lines) obtained by the Raman effect by irradiating a substance with strong light, and measures molecular vibrations accompanied by changes in polarizability. be able to.
  • Raman spectroscopy measures the wavelength and intensity of Raman rays (Stokes lines and anti-Stokes lines) obtained by the Raman effect by irradiating a substance with strong light, and measures molecular vibrations accompanied by changes in polarizability. be able to.
  • infrared and Raman vibration modes
  • infrared active vibration and Raman active vibration can be measured in a wide band and simultaneously, a spectrum covering all of both molecular vibrations can be obtained, and a complete set of reference vibrations can be obtained.
  • Non-Patent Document 1 reports that infrared absorption and Raman scattering were detected by the same measurement system by using a near-infrared 10 fs (femtosecond) laser and generating a difference frequency with a 4 f pulse shaper.
  • infrared absorption and Raman scattering must be measured by switching, so that they cannot be detected at the same time. That is, when the structure and chemical state of a molecule change with time, infrared absorption and Raman scattering are measured for molecules in different states or structures.
  • Non-Patent Document 1 has a low wave number (frequency) resolution.
  • the present invention has been made in such a situation, and one of the exemplary purposes of the embodiment is to provide a spectroscope capable of simultaneously measuring infrared active vibration and Raman active vibration.
  • the spectroscope is obtained by irradiating a sample with a double pulse generator that generates a first double pulse with a variable delay amount, a nonlinear optical crystal provided inside or after the double pulse generator, and a first double pulse.
  • a detection system capable of measuring Raman scattered light and infrared rays obtained by irradiating a sample with an infrared second double pulse generated by a nonlinear optical crystal is provided.
  • infrared active vibration and Raman active vibration can be measured at the same time.
  • FIG. 1 It is a figure which shows the basic structure of the spectroscope which concerns on embodiment. It is a figure explaining the Fourier transform coherent anti-Stoke Raman spectroscopy in a spectroscope. It is a figure explaining the Fourier transform infrared spectroscopy in a spectroscope. It is a figure which shows the spectroscope which concerns on Example 1. FIG. It is a figure which shows the spectroscope which concerns on Example 2.
  • FIG. It is a figure which shows the specific structural example of the spectroscope of FIG. It is a figure which shows the spectrum of the near infrared double pulse and the infrared double pulse.
  • FIG. 16A is a diagram for explaining the generation of the intra-pulse difference frequency by one nonlinear optical crystal
  • FIG. 16B is a diagram for explaining the generation of the cascade-type intra-pulse difference frequency by the two nonlinear optical crystals.
  • FIG. 19 (a) to 19 (c) are diagrams showing the spectra obtained by the spectroscope of FIG.
  • the spectroscope uses a double pulse generator that generates a first double pulse with a variable delay amount, a nonlinear optical crystal provided inside the double pulse generator or after the double pulse generator, and a first double pulse as a sample.
  • a detection system capable of measuring Raman scattered light obtained by irradiation and infrared rays obtained by irradiating a sample with a second double pulse of infrared rays generated by a nonlinear optical crystal is provided.
  • a difference frequency (intra-pulse differential frequency: IDFG: Intra-pulse Differential Frequency Generation) between different spectral components contained in the first double pulse is generated, and as a result, a second infrared ray having a wide spectrum is generated.
  • a double pulse is generated.
  • the sample is irradiated with the first double pulse and the second double pulse at the same time, and the delay amount of the two pulses contained in each double pulse is changed, and the infrared region and the near infrared region (or visible or ultraviolet) are respectively.
  • the spectroscopy according to the embodiment is referred to as CVS (Complementary Vibrational Spectroscopy).
  • the double pulse generator may include a pulsed laser light source that generates pulsed light and an interferometer that receives pulsed light and generates a first double pulse.
  • the nonlinear optical crystal may be arranged after the interferometer.
  • Each of the two pulses included in the first double pulse is converted into an infrared double pulse by generating an intra-pulse difference frequency in the nonlinear optical crystal.
  • the interferometer since the interferometer only needs to cover the wavelength band of the first double pulse, it can be configured inexpensively and with high efficiency.
  • the spectroscope may be further provided with a first dispersion compensator, which is provided after the nonlinear optical crystal and compresses the pulse width of the first double pulse.
  • a first dispersion compensator By propagating the pulsed light constituting the first double pulse in the nonlinear optical crystal, a second-order or higher-order dispersion is introduced, the phase characteristics are disturbed, the pulse width is widened, and the light intensity is lowered.
  • CARS Coherent Anti-Stokes Raman Scattering
  • the pulse width of the first double pulse can be brought close to the Fourier limit pulse width to increase the light intensity, and the intensity of Raman scattered light can be increased. be able to. This enables measurement with a high S / N ratio.
  • the spectroscope may further include a signal processing unit that processes the output of the detection system.
  • the signal processing unit may correct the interferogram of infrared transmitted light.
  • the detection system has a dichroic mirror that separates the transmitted light of the sample into the wavelength region of the first double pulse and the infrared region, the first detector that has sensitivity in the wavelength region of the first double pulse, and the sensitivity in the infrared region.
  • a second detector may be included.
  • the detection system may include a polarizer inserted in front of the second detector.
  • the double pulse generator may further include a second dispersion compensator that compresses the pulse width of the pulse included in the first double pulse incident on the nonlinear optical crystal. Since the generation of the difference frequency in the nonlinear optical crystal is a second-order nonlinear optical phenomenon, it is desirable that the light intensity of the first double pulse incident on the nonlinear optical crystal is high. Therefore, by performing dispersion compensation before irradiating the nonlinear optical crystal with the second dispersion compensator, the pulse widths of the two pulses included in the first double pulse can be brought closer to the Fourier limit pulse width to increase the light intensity. It is possible to improve the efficiency of differential frequency generation.
  • the first dispersion compensator and the second dispersion compensator may include a chirped mirror pair.
  • a prism pair or a grating pair may be used.
  • the spectroscope may further include a focused optical system that irradiates the sample with a first double pulse that has passed through a nonlinear optical crystal.
  • the focusing optical system may coaxially focus the first double pulse and the second double pulse on the sample.
  • the focusing optical system may include an off-axis parabolic mirror (OAPM).
  • OAPM off-axis parabolic mirror
  • the near-infrared double pulse and the infrared double pulse can be focused at the same position in the in-plane direction and the depth direction.
  • the focal position of the first double pulse in the sample and the focal position of the second double pulse in the sample may be intentionally shifted. Thereby, the vibration of infrared activity and the vibration of Raman activity can be measured as independent phenomena.
  • the optical path length of the first double pulse leading to the sample and the optical path length of the second double pulse leading to the sample may be different.
  • the interaction between the first double pulse and the second double pulse can be suppressed, and Raman scattering and infrared absorption can be separately measured as separate phenomena.
  • the optical path length from which the first double pulse reaches the sample may be equal to the optical path length from which the second double pulse reaches the sample. This makes it possible to measure the behavior of unknown molecules due to the interaction between the first double pulse and the second double pulse.
  • the detection system may be configured to be able to detect light obtained by irradiating a sample with a double pulse of a second harmonic or a third harmonic generated in a nonlinear optical crystal.
  • the spectroscope may further include a second nonlinear optical crystal.
  • the mid-infrared spectrum can be further widened.
  • the first nonlinear optical crystal may be LiIO 3
  • the second nonlinear optical crystal may be GaSe. In this case, it is possible to obtain a wide-band spectrum covering of H 2 O absorption region and the CO 2 absorbing region.
  • FIG. 1 is a diagram showing a basic configuration of the spectroscope 100 according to the embodiment.
  • the spectroscope 100 simultaneously disperses infrared absorption (or reflection) and Raman scattering of the sample SMP by a Fourier transform method.
  • the spectroscope 100 mainly includes a double pulse generator 110, a nonlinear optical crystal 120, and a detection system 130.
  • the double pulse generator 110 repeatedly generates a near-infrared double pulse (referred to as a near-infrared double pulse) 2 having a variable delay difference ⁇ .
  • the near-infrared double pulse 2 includes a reference first pulse 2A and a subsequent (or preceding) second pulse 2B.
  • the preceding one becomes the pump light and the succeeding one becomes the probe light.
  • the delay difference ⁇ changes with each iteration.
  • the pulse width of the near-infrared double pulse 2 generated by the double pulse generator 110 is on the order of femtoseconds (for example, 10 fs) and contains a very wide spectrum component.
  • the nonlinear optical crystal 120 is provided inside or after the double pulse generator 110.
  • the nonlinear optical crystal 120 is provided after the double pulse generator 110 and is irradiated with the near infrared double pulse 2.
  • a difference frequency between different spectral components contained in the near-infrared pulse 2A (2B) is generated, whereby an infrared double pulse 4 having a wide-band spectrum is generated.
  • a part of the near-infrared double pulse 2 is converted into the infrared double pulse 4 in the nonlinear optical crystal 120, and the remaining 2'is transmitted through the nonlinear optical crystal 120 without being converted.
  • the material of the nonlinear optical crystal 120 is not particularly limited, and may be selected in consideration of the wavelength of the near infrared double pulse 2 and the wavelength of the infrared double pulse 4 to be generated.
  • the nonlinear optical crystal 120 GaSe (gallium selenium) may be used.
  • the near-infrared double pulse 2'and the infrared double pulse 4 are applied to the sample SMP.
  • the detection system 130 irradiates the sample SMP with the Raman scattered light 6 obtained by irradiating the sample SMP with the near infrared double pulse 2 and the infrared double pulse 4 generated by the nonlinear optical crystal 120.
  • the transmitted light 8 is configured to be measurable.
  • the detection system 130 includes a first detector 132 and a second detector 134.
  • the first detector 132 has sensitivity to the wavelength of the Raman scattered light 6 and generates a detection signal S1 according to the amount of received light.
  • the second detector 134 has sensitivity to the wavelength of the infrared transmitted light 8 and generates a detection signal S2 according to the amount of received light.
  • the digitizer 136 converts the detection signals S1 and S2 into digital sampling values D1 and D2.
  • the outputs D1 and D2 of the digitizer 136 are supplied to the signal processing unit 140 in the subsequent stage.
  • the signal processing unit 140 acquires the waveform DW1 which is the data string of the sampling value D1 and the waveform DW2 which is the data string of the sampling value D2.
  • the signal processing unit 140 generates an interferogram IF_CARS of Raman scattered light 6 based on the waveform DW1 and Fourier transforms it to generate a Raman spectrum.
  • the signal processing unit 140 acquires the interferogram IF_IR of the infrared transmitted light 8 based on the waveform DW2 and Fourier transforms it to generate an infrared absorption spectrum.
  • the signal processing unit 140 may be a computer, workstation or tablet terminal. Alternatively, the signal processing unit 140 may be mounted by a microcomputer, an FPGA (Field Programmable Gate Array), or an IC (Integrated Circuit) and incorporated into the detection system 130.
  • a microcomputer an FPGA (Field Programmable Gate Array)
  • IC Integrated Circuit
  • FIG. 2 is a diagram illustrating Fourier transform coherent anti-Stoke Raman spectroscopy (FT-CARS) in the spectroscope 100.
  • the double pulse generator 110 repeatedly generates near-infrared double pulses 2 having different delay amounts (time difference) ⁇ .
  • the i-th infrared double pulse 2 is denoted by 2_I, the time difference between the first pulse 2A and the second pulse 2B in the near-infrared double pulse 2_I expressed as tau i.
  • the preceding near-infrared first pulse 2A When the preceding near-infrared first pulse 2A is applied to the sample SMP, the light of a certain frequency becomes the excitation light when it is included in the first pulse 2A, and the other frequency becomes the Stokes light in the sample SMP. , Molecular vibrations with the same vibrational frequency as their frequency difference are induced. After that, when the second pulse 2B is applied to the sample SMP in which the molecular vibration is induced, the second pulse 2B and the molecular vibration act to shift the frequency contained in the second pulse 2B, resulting in Raman scattering. Light 6 is emitted.
  • the interferogram IF_CARS of Raman scattered light 6 is generated.
  • a Raman spectrum is generated by performing a fast Fourier transform on this interferogram IF_CARS.
  • FIG. 3 is a diagram illustrating Fourier transform infrared spectroscopy (FT-IR) in the spectroscope 100.
  • the double pulse generator 110 repeatedly generates near-infrared double pulses 2 having different delay amounts (time difference) ⁇ , and the nonlinear optical crystal 120 converts them into infrared double pulses 4.
  • the time difference ⁇ i between the first pulse 4A and the second pulse 4B of the infrared double pulse 4 is equal to the time difference ⁇ i of the near infrared double pulse 2 before conversion.
  • the preceding infrared first pulse 4A is applied to the sample SMP to absorb a predetermined spectral component.
  • the second pulse 4B is applied to the sample SMP to absorb a predetermined spectral component.
  • FIG. 3 shows transmitted lights 8A and 8B of the sample SMPs of the first pulse 4A and the second pulse 4B, respectively.
  • the infrared transmitted light 8 is interference light of transmitted lights 8A and 8B.
  • Interferogram IF_IR infrared transmitted light shows the energy relationship between each pulse of the delay tau i and the infrared light transmitted through 8. An infrared absorption spectrum is generated by performing a fast Fourier transform on this interferogram IF_IR.
  • the spectroscope 100 it is possible to generate an infrared double pulse having a wide spectrum in a nonlinear optical crystal. Then, by irradiating the sample with an infrared double pulse and a near-infrared double pulse and measuring the light intensity of each of the infrared region and the near-infrared region while changing the time difference of the double pulse, the infrared interferogram IF_IR and near-infrared CARS interferogram IF_CARS can be generated at the same time. As a result, infrared active vibration and Raman active vibration can be measured at the same time.
  • the present invention extends to various devices and methods derived from the above description, and is not limited to a specific configuration.
  • more specific configuration examples and examples will be described not for narrowing the scope of the present invention but for helping to understand the essence and operation of the invention and clarifying them.
  • FIG. 4 is a diagram showing the spectroscope 100A according to the first embodiment.
  • the double pulse generator 110A includes a pulsed laser light source 112, a Michelson interferometer 114, and a long pass filter 116.
  • the pulsed laser light source 112 is a femtosecond-titanium sapphire laser that produces a near-infrared ultrashort pulse 10 having a broadband spectrum with a wavelength of 690 to 920 nm.
  • the Michelson interferometer 114 has a beam splitter BS, a fixed mirror M1 and a movable mirror M2. The interferometer 114 splits the near-infrared ultrashort pulse 10 into two arms.
  • the optical path length difference L of the two arms is variably configured, and the optical path length difference L is the delay time ⁇ of the two pulses 2A and 2B included in the near infrared double pulse 2.
  • the pulse 2A propagating in the reference arm and the pulse 2B propagating in the scan arm are recombined by the beam splitter BS and transmitted through the long path filter 116 to generate a near-infrared double pulse 2.
  • the detection system 130A includes a dichroic mirror DM1, a first detector 132, a second detector 134, a digitizer 136, and a short pass filter SPF.
  • the dichroic mirror DM1 has a high reflectance in the near infrared region and a high transmittance in the infrared region.
  • the reflected light of the dichroic mirror DM1 includes a spectrum component of the original double pulse in the near infrared and a Raman spectrum component in the near infrared.
  • the short pass filter SPF removes the spectral component of the double pulse and transmits only the Raman spectral component.
  • the first detector 132 measures the intensity of the Raman scattered light 6.
  • the infrared transmitted light 8 transmits through the dichroic mirror DM1.
  • the second detector 134 is, for example, an MCT (HgCdTe: Mercury Cadmium Telluride) infrared photodetector, which detects the intensity of the infrared transmitted light 8 transmitted through the dichroic mirror DM1.
  • the digitizer 136 converts the outputs of the first detector 132 and the second detector 134 into digital signals.
  • FIG. 5 is a diagram showing the spectroscope 100B according to the second embodiment.
  • the spectroscope 100B includes a first dispersion compensator 150 and a condensing optical system 160 in addition to the double pulse generator 110, the nonlinear optical crystal 120, and the detection system 130 shown in FIG.
  • the first dispersion compensator 150 is provided after the nonlinear optical crystal 120 and compresses the pulse width of the pulse included in the near-infrared double pulse 2'transmitted through the nonlinear optical crystal 120.
  • a second-order and higher-order dispersion is introduced, the pulse width of the two pulses of the near-infrared double pulse 2'is extended, and the light is emitted. The strength decreases.
  • coherent anti-Stoke Raman scattering is a third-order nonlinear optical phenomenon, it is desirable that the light intensity of the near-infrared double pulse irradiating the sample SMP is high.
  • the pulse width of the near-infrared double pulse 2 "can be brought closer to the Fourier limit pulse width to increase the light intensity, and Raman The intensity of the scattered light 6 can be increased, which enables measurement with a high S / N ratio.
  • the type of the first dispersion compensator 150 is not particularly limited, and various known or future available dispersion compensators can be used.
  • the first dispersion compensator 150 may be composed of a chirped mirror pair (CMP: Chirped Mirror Pair), or may use a prism pair or a grating pair.
  • CMP Chirped Mirror Pair
  • the condensing optical system 160 receives a near-infrared double pulse 2 ”that has passed through the first dispersion compensator 150 and an infrared double pulse 4, and irradiates the sample SMP coaxially.
  • Off-Axis Parabolic Mirror OAPM
  • OAPM Off-Axis Parabolic Mirror
  • FIG. 6 is a diagram showing a specific configuration example of the spectroscope 100B of FIG.
  • the double pulse generator 110B includes a pulsed laser light source 112, a Michelson interferometer 114B, a long pass filter 116, and a second dispersion compensator 118.
  • the Michelson interferometer 114B includes a polarizing beam splitter PBS, a fixed mirror M1, a movable mirror M2, 1/2 wave plates HWP1 and HWP2, and 1/4 wave plates QWP1 and QWP2.
  • the polarization directions of the optical pulses 2A and 2B propagating in the two arms are orthogonal to each other, and they are combined to generate a near-infrared double pulse 2.
  • 1/2 of the light energy of the pulsed laser light source 112 is discarded, but by adopting the Michelson interferometer 114B of FIG. 6, the light utilization efficiency is theoretically 100%. Can be enhanced to.
  • the second dispersion compensator 118 is provided to compensate for the dispersion introduced while the ultrashort pulse 10 propagates through the Michelson interferometer 114B.
  • the Michelson interferometer 114B has a larger number of optical elements through which light transmits, so that it is more susceptible to dispersion, the pulse waveform is deteriorated, and the intensity is lowered. Since the generation of the difference frequency in the nonlinear optical crystal 120 in the subsequent stage is a second-order nonlinear optical phenomenon, it is desirable that the light intensity of the near-infrared double pulse incident on the nonlinear optical crystal 120 is high.
  • the pulse width of the near-infrared double pulses 2A and 2B can be brought close to the Fourier limit pulse width to increase the light intensity. It is possible to improve the efficiency of differential frequency generation.
  • the configuration of the second dispersion compensator 118 is not limited, but FIG. 5 includes a chirped mirror pair CMP2.
  • the condensing optical system 170 condenses the near-infrared double pulse 2 on the nonlinear optical crystal 120, and collimates the near-infrared double pulse 2 and the infrared double pulse 4 that have passed through the nonlinear optical crystal 120.
  • the condensing optical system 170 can be composed of a transmission optical system, it is preferable to use a reflective optical system because the spectra of the near infrared double pulse 2 and the infrared double pulse 4 are very wide.
  • the condensing optical system 170 can be configured by an off-axis parabolic mirror (OAPM).
  • the first dispersion compensator 150 includes a dichroic mirror DM2, DM3 and a chirp mirror pair CMP1.
  • the dichroic mirrors DM2 and DM3 have a high reflectance in the near infrared and a high transmittance in the infrared.
  • the dichroic mirror DM2 reflects the near-infrared double pulse 2.
  • the chirped mirror pair CMP1 compresses the pulse width of the near-infrared double pulse 2.
  • the compressed near-infrared double pulse 2 is recombined with the infrared double pulse 4 by the dichroic mirror DM3 and guided to the focusing optical system 160.
  • the detection system 130B includes a first detector 132, a second detector 134, a dichroic mirror DM1, a short pass filter SPF, a digitizer 136, a polarizer 138, and low-pass filters LPF1 and LPF2 for noise removal.
  • a polarizer 138 is inserted in front of the second detector 134.
  • the polarizer 138 is provided to remove extra orthogonal components when they remain.
  • a titanium sapphire laser Synergy Pro-WG-KE (repetition frequency 75 MHz, center wavelength 800 nm, bandwidth 230 nm) manufactured by Spectra Physics was used.
  • FELH0700 manufactured by Thorlabs is used.
  • the energy of the first pulse 2A of the reference arm is 2.5 nJ
  • the energy of the second pulse 2B of the scan arm is 5.5 nJ.
  • They are focused on a 30-micron GaSe crystal (GaSe-30H1 by EKSMA OPTICS) by an off-axis radial mirror with a focal length of 25.4 mm on the input side of the focusing optical system 170, and have the same focal length of 25.4 mm. It is collimated by an off-axis radial mirror on the output side.
  • the optical path length of the near-infrared double pulse to the sample SMP is about 30 cm longer than the optical path length of the infrared double pulse to the sample SMP, whereby near red.
  • Raman scattering and infrared absorption can be separated and measured as separate phenomena by suppressing the interaction between external pulses and infrared pulses.
  • the total energy of the near-infrared double pulse 2 incident on the sample SMP is 3.5 nJ, and the breakdown is 1.1 nJ for the first pulse 2A and 2.4 nJ for the second pulse 2B.
  • a KBr (potassium bromide) window having a thickness of 3 mm was used as a sample holder.
  • KBr is transparent to both near infrared (10870-14490cm -1 ) and mid-infrared (790-1800cm -1 ).
  • a 50 ⁇ m Teflon® spacer is provided between the two KBr windows and a liquid sample is filled between them.
  • ZnSe zinc selenide
  • the first detector 132 is an avalanche photodetector (Thorlabs APD410A2 / M)
  • the second detector 134 is a nitrogen-cooled HgCdTe detector (Kolmar Technologies KDL-0.5-J1-3 /).
  • the original incident pulse and second harmonic signal are removed by a short pass filter SPF (Thorlabs FESH0700) and a long pass filter (Thorlabs FESH0550).
  • the digitizer 136 uses ATS9440 manufactured by AlazarTech.
  • FIG. 7 is a diagram showing spectra of a near-infrared double pulse 2 and an infrared double pulse 4.
  • a near-infrared ultrashort pulse titanium sapphire laser having a spectrum of 700 to 920 nm with a spectrum of 700 to 920 nm is used as the pulsed laser light source 112, and GaSe is used as the nonlinear optical crystal 120. It can be seen that an infrared (mid-infrared) spectrum of 790 to 1800 cm -1 can be obtained by generating a difference frequency in the pulse.
  • the spectrum on the long wavelength side of mid-infrared drops sharply near 900 nm, but this is due to the limitation of the wavelength sensitivity of the detector used to measure the spectrum, and in reality, it is mid-red.
  • the outer spectrum extends to the longer wavelength side.
  • FIG. 8 is a diagram showing the measurement results of Fringe-resolved Autocorrelation of the near-infrared pulse. From this measurement result, it can be seen that the minimum compensation is about 12 fs.
  • FIG. 9A shows the uncorrected time waveform DW2 obtained by the photodetector.
  • the time waveform obtained by CVS contains several components in addition to the linear MIR interferogram.
  • the unwanted component is due to the mid-infrared light generated when the two near-infrared pulses overlap in time in the nonlinear optical crystal. This is understood by the analogy with differential frequency generation type interferometric autocorrelation.
  • FIG. 9A shows the AC component of the waveform obtained by the CVS measurement. It contains several components such as intensity autocorrelation, high frequency fringes added to the MIR interferogram.
  • the spectrum obtained by Fourier transforming this waveform contains some parts as shown by the broken line.
  • the lowest frequency side (long wavelength side) near the zero frequency is due to the slowly changing intensity autocorrelation waveform (shown in FIG. 9A), which is around 12,500 cm -1 and 25,
  • the spectral component near 000 cm -1 is the high frequency fringe corresponding to the fundamental wave and the second harmonic of the near infrared pulse.
  • the mid-infrared spectrum of interest appears over 790-1800 cm -1 . Since the mid-infrared spectrum is sufficiently separated from other frequency components in the frequency domain, the mid-infrared spectrum can be extracted from the spectrum obtained by simply Fourier transforming the waveform of FIG. 9A.
  • Unwanted components may be removed from the mid-infrared interferrogram.
  • the high frequency spectrum is far enough away from the mid-infrared spectrum and can be removed by a low pal filter.
  • the intensity autocorrelation component can be obtained by fitting from the raw waveform of FIG. 9A, and it may be subtracted from the raw waveform.
  • FIG. 9B shows the interferogram restored by removing unwanted components.
  • FIG. 9 (c) the spectrum obtained by Fourier transforming the interferogram of FIG. 9 (b) is shown by a solid line. This waveform restoration is useful in situations where it is necessary to measure the mid-infrared spectrum at low frequencies (frequency lower than 850 cm -1 in this example).
  • FIG. 10A shows digital waveforms CVS-IR (corresponding to the above-mentioned DW2) and CVS-Raman (corresponding to the above-mentioned DW1) generated by the detection system 130.
  • CVS-IR digital waveforms
  • CVS-Raman corresponding to the above-mentioned DW1 generated by the detection system 130.
  • FIG. 10A it can be seen that the peaks of the two waveforms occur at the same timing, and therefore infrared spectroscopy and Raman spectroscopy are performed at the same time. Since the movable mirror M2 is reciprocated in the Michelson interferometer 114B, the digital waveforms CVS-IR and CVS-Raman can obtain waveforms inverted in the time axis direction on the outward path and the return path.
  • FIG. 10B shows an interferogram (corresponding to the above-mentioned IF_IR) obtained from the waveform CVS-IR of FIG. 10A.
  • an interferogram can be obtained by cutting out only the waveform of the outward path (or the return path) from the waveform CVS-IR for a plurality of cycles (15 cycles in this case) and averaging them.
  • the horizontal axis is converted to the optical path length difference L.
  • the interferogram obtained from the waveform CVS-Raman of FIG. 10A is shown.
  • the interferogram can be obtained by performing the same processing as CVS-IR for the waveform CVS-Raman.
  • FIG. 11 (a) and 11 (b) are diagrams showing complementary spectra obtained by Fourier transforming the interferogram of FIG. 10 (b).
  • FIG. 11A what is shown as Reference is the result obtained by general FT-IR.
  • FIG. 11B what is shown as a reference is a result obtained by a spontaneous Raman scattering spectroscope.
  • FIG. 13 is a diagram showing the spectroscope 100C according to the first modification.
  • the nonlinear optical crystal 120 is incorporated in the double pulse generator 110C.
  • the nonlinear optical crystal 120 is provided between the pulsed laser light source 112 and the Michelson interferometer 114, and an infrared pulse 11 is generated in front of the Michelson interferometer 114.
  • the Michelson interferometer 114 branches the near-infrared ultrashort pulse 10 and the infrared pulse 11 into two arms to generate the near-infrared double pulse 2 and the infrared double pulse 4.
  • the first modification has the advantage that the correction of the interferogram IF_IR described with reference to FIG. 9 is unnecessary. Further, the second dispersion compensator 118 shown in FIG. 6 is also unnecessary.
  • the Michelson interferometer 114 may adopt the configuration shown in FIG. 6 or the configuration shown in FIG. 4.
  • FIG. 14 is a diagram showing the spectroscope 100D according to the second modification.
  • the double pulse generator 110D is constructed based on the dual comb spectroscopic architecture. Specifically, the double pulse generator 110D includes two pulse light sources 112A and 112B, and the phase difference of the near infrared pulses 2A and 2B generated by the two pulse light sources 112A and 112B can be controlled. There is.
  • the two near-infrared pulses 2A and 2B are combined to generate a near-infrared double pulse 2.
  • the nonlinear optical crystal 120 is irradiated with the near-infrared double pulse 2 to generate the infrared double pulse 4.
  • the configuration of the interferometer 114 is not limited to those described in the embodiment, and the architecture of high-speed scan FTS (Fourier transform spectroscopy) and phase control FTS is introduced to increase the speed and improve the acquisition speed of the continuous spectrum. You may let me. Specifically, it may be combined with the description described in Patent Document 1. Alternatively, the interferometer 114 may be configured by using an optical fiber or a waveguide.
  • the second detector 134 may be implemented by introducing an EO-sampling architecture. In this case, the spectral region of the measurable infrared transmitted light 8 can be further expanded. Further, when EO sampling is introduced, the first detector 132 and the second detector 134 may be integrally configured.
  • Nonlinear optical crystal 120 is not limited to GaSe, LBO (lithium Torihou acid), KDP (potassium dihydrogen phosphate), BBO (barium borate), KD * P (potassium phosphate), LiNbO 3 (lithium niobate ), CLBO (CsLiB 6 O 10 ) and the like can be used.
  • the type of crystal may be selected in consideration of the required band and strength. Further, the spectral width of the infrared double pulse 4 may be further widened by using a combination of a plurality of different nonlinear optical crystals.
  • a laser other than titanium sapphire may be used as the pulsed laser light source 112, and the wavelength of the near-infrared double pulse 2 may be different from that of titanium sapphire.
  • the optical path length of the near-infrared double pulse 2 to the sample SMP and the optical path length of the infrared double pulse 4 to the sample SMP are different, but they are not limited to the same. May be good. In this case, it may be possible to measure the behavior of unknown molecules or non-linear effects due to the interaction between near-infrared pulses and infrared pulses.
  • the detection system 130 may be configured to be able to detect the light obtained by irradiating the sample SMP with a double pulse of the second harmonic. For example, in this modification, it is also possible to measure two-photon absorption and the like.
  • the near-infrared spectroscopy (that is, the absorption spectrum in the near-infrared region) may be measured by the spectroscope 100.
  • Modification 9 In the above-mentioned spectroscope, the band of the infrared spectrum obtained by generating the differential frequency within the pulse is limited by the phase matching condition of the nonlinear optical crystal. Therefore, the band as a complementary vibration spectrum is limited to the fingerprint region of 800 to 1800 cm -1 . Therefore, there is a possibility that the band of the infrared spectrum can be expanded by reducing the thickness of the nonlinear optical crystal 120, but there is a problem that the output of the mid-infrared light generated as a compensation is reduced. Modification 9 describes the extension of the infrared spectrum.
  • FIG. 15 is a diagram showing the spectroscope 100E according to the modified example 9.
  • the spectroscope 100E includes a plurality of different nonlinear optical crystals 120 (two in this example).
  • the plurality of nonlinear crystals 120_1 and 120_2 are provided after the double pulse generator 110, but may be provided inside the double pulse generator 110 as described above.
  • Near infrared double pulse 2 is applied to a plurality of nonlinear optical crystals 120_1 and 120_2.
  • a difference frequency between different spectral components contained in the near-infrared pulse 2A (2B) is generated, whereby an infrared double pulse 4 having a wide-band spectrum is generated.
  • the mid-infrared spectrum band of this double pulse 4 is significantly expanded as compared with the case where only one type of nonlinear optical crystal 120 is used.
  • a method using a plurality of nonlinear optical crystals as in the modified example 9 is called a cascade method.
  • FIG. 16A is a diagram illustrating the generation of the intra-pulse difference frequency by one nonlinear optical crystal 120
  • FIG. 16B is a diagram showing the generation of the cascade-type intra-pulse difference frequency by the two nonlinear optical crystals 120. It is a figure explaining.
  • GaSe is used as the nonlinear optical crystal 120
  • lithium iodate crystals (LiIO 3 ) and GaSe are used as the nonlinear optical crystals 120_1 and 120_2.
  • the cascaded pulse in difference frequency generation it is possible to obtain a wide-band spectrum covering of H 2 O absorption region and the CO 2 absorbing region.
  • FIG. 17 is a diagram showing a specific configuration example of the spectroscope 100E.
  • the configurations of the double pulse generator 110 and the detection system 130 are the same as those in FIG.
  • the near-infrared double pulse generated by the double pulse generator 110 is incident on the nonlinear optical crystal 120_1 which is LiIO 3 and is wavelength-converted.
  • the mid-infrared light (MIR) generated from the nonlinear optical crystal 120_1 is once separated from the near-infrared light, and only the near-infrared light NIR is incident on the nonlinear optical crystal 120_2 which is the subsequent GaSe. It is preferable that the near-infrared light NIR after separation is dispersed and compensated as necessary before being incident on the nonlinear optical crystal 120_2.
  • the mid-infrared light generated from the nonlinear optical crystals 120_1 and 120_2 are wavelengthally and spatially coupled by the reflection and transmission characteristics of the long-pass filter, respectively, and are applied to the sample SMP.
  • FIG. 18 is a diagram showing a specific implementation of the spectroscope 100E of FIG.
  • the configuration of the double pulse generator 110 and the detection system 130 is similar to that of FIG.
  • the focusing optical system 170 focuses the near-infrared double pulse 2 generated by the double pulse generator 110 on the nonlinear optical crystal 120_1, and also passes through the nonlinear optical crystal 120_1 to the near-infrared double pulse 2 and the infrared double pulse.
  • Collimate 4 As described above, the condensing optical system 170 can be configured by an off-axis parabolic mirror (OAPM).
  • OAPM off-axis parabolic mirror
  • the near-infrared double pulse 2 and the infrared double pulse 4 collimated by the condensing optical system 170 are separated by the dichroic mirror DM2.
  • the pulse width of the near-infrared double pulse 2 expanded by passing through the nonlinear optical crystal 120_1 is compressed by the chirped mirror pair CMP3.
  • the condensing optical system 172 condenses the near-infrared double pulse 2 whose pulse width is compensated on the nonlinear optical crystal 120_2, and passes through the nonlinear optical crystal 120_2 to the near-infrared double pulse 2 and the mid-infrared double pulse 3. Collimate.
  • the dichroic mirror DM3 separates the near-infrared double pulse 2 and the mid-infrared double pulse 3.
  • the pulse width of the near-infrared double pulse 2 is compressed by the chirped mirror pair CMP1.
  • the mid-infrared double pulses 3 and 4 are combined with the original near-infrared double pulse 2 via a 6 ⁇ m long-pass filter LPF and a dichroic mirror DM4.
  • 19 (a) to 19 (c) are diagrams showing the spectra obtained by the spectroscope 100E of FIG. 19 (a) to 19 (c) are measurement results using toluene, chloroform, and phenylacetylene as samples, respectively. Each spectrum is an average of the results of 25 measurements. The peaks appearing at 765 cm -1 and 819 cm -1 are Raman spectra derived from LiIO 3 crystals, not samples.
  • CVS-IR can obtain an ultra-wideband spectrum of a fingerprint region, a silent region, and a CH expansion / contraction vibration region in the same manner as CVS-Raman.
  • the plurality of nonlinear optical crystals may be made of the same material. In this case, by optimizing the thickness, incident angle, etc. of each nonlinear optical crystal, the band satisfying the phase matching condition can be widened as compared with the case of using one nonlinear optical crystal, thereby expanding the spectrum. Can be widened.
  • the present invention relates to a spectroscope.
  • Spectrometer SMP sample 110 Double pulse generator 112 Pulse laser light source 114 Michaelson interferometer 116 Long path filter 118 Second dispersion compensator 120 Non-linear optical crystal 130 Detection system 132 First detector 134 Second detector 136 Digitizer 138 Polarizer SPF Short Path Filter DM1 Dycroic Mirror 140 Signal Processing Unit 150 1st Dispersion Compensator 160, 170 Condensing Optical System 2 Near Infrared Double Pulse 2A 1st Pulse 2B 2nd Pulse 4 Infrared Double Pulse 4A 1st Pulse 4B 2nd Pulse 6 Raman scattered light 8 Infrared transmitted light 10 Ultra-short pulse

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A double pulse generator 110 generates a near-infrared double pulse 2 having a variable delay amount. A nonlinear optical crystal 120 is disposed inside the double pulse generator 110 or in a subsequent stage. A detection system 130 is capable of measuring Raman scattered light 6 obtained by irradiating a sample SMP with the near-infrared double pulse 2 and infrared light obtained by irradiating the sample SMP with an infrared double pulse 4 generated by the nonlinear optical crystal 120.

Description

分光器Spectrometer
 本発明は、分光器に関する。 The present invention relates to a spectroscope.
 分子の構造や状態を測定するために、赤外分光法とラマン分光法などの振動分光法が利用される。赤外分光法は、赤外線を物質に照射し、赤外線吸収あるいは発光のスペクトルを測定するものであり、双極子モーメントの変化をともなう分子振動を測定することができる。ラマン分光法は、物質に強い光を照射し、ラマン効果によって得られるラマン線(ストークス線や反ストークス線)の波長や強度を測定するものであり、分極率の変化をともなう分子振動を測定することができる。中心対称性を有する分子において、基準振動に関しては、赤外とラマンの振動モードは共有できず、したがって赤外吸収とラマン散乱は相補的な関係にあり、これは交互禁制律と称される。 Vibration spectroscopy such as infrared spectroscopy and Raman spectroscopy is used to measure the structure and state of molecules. Infrared spectroscopy is to irradiate a substance with infrared rays and measure the spectrum of infrared absorption or emission, and can measure molecular vibration accompanied by a change in dipole moment. Raman spectroscopy measures the wavelength and intensity of Raman rays (Stokes lines and anti-Stokes lines) obtained by the Raman effect by irradiating a substance with strong light, and measures molecular vibrations accompanied by changes in polarizability. be able to. In a molecule with centrosymmetry, infrared and Raman vibration modes cannot be shared with respect to reference oscillation, so infrared absorption and Raman scattering have a complementary relationship, which is called alternating forbiddenness.
 赤外活性の振動とラマン活性の振動を広帯域かつ同時に測定することができれば、双方の分子振動をすべてカバーするスペクトルを得ることができ、基準振動の完全な集合を得ることができる。 If infrared active vibration and Raman active vibration can be measured in a wide band and simultaneously, a spectrum covering all of both molecular vibrations can be obtained, and a complete set of reference vibrations can be obtained.
 非特許文献1には、近赤外の10fs(フェムト秒)のレーザを用いて、4fパルスシェーパと差周波発生により、赤外線吸収とラマン散乱を同じ測定系で検出したことが報告される。 Non-Patent Document 1 reports that infrared absorption and Raman scattering were detected by the same measurement system by using a near-infrared 10 fs (femtosecond) laser and generating a difference frequency with a 4 f pulse shaper.
 しかしながら非特許文献1の技術では、赤外線吸収とラマン散乱の測定は、切り替えて行う必要があるため、同時に検出することができない。つまり、分子の構造、化学的状態が時間的に変化する場合には、赤外線吸収とラマン散乱が、異なる状態あるいは異なる構造の分子について測定されることとなってしまう。 However, in the technique of Non-Patent Document 1, infrared absorption and Raman scattering must be measured by switching, so that they cannot be detected at the same time. That is, when the structure and chemical state of a molecule change with time, infrared absorption and Raman scattering are measured for molecules in different states or structures.
 また非特許文献1の技術は、波数(周波数)分解能が低い。また、指紋領域(800~1800cm-1)とC-H振動領域(2800~3300cm-1)をカバーできるような広帯域な赤外線スペクトルの取得が難しく、適用できる分子が制限される。 Further, the technique of Non-Patent Document 1 has a low wave number (frequency) resolution. In addition, it is difficult to obtain a wide-band infrared spectrum that can cover the fingerprint region (800 to 1800 cm -1 ) and the CH vibration region (2800 to 3300 cm -1 ), and applicable molecules are limited.
 本発明は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、赤外活性の振動とラマン活性の振動を同時に測定可能な分光器の提供にある。 The present invention has been made in such a situation, and one of the exemplary purposes of the embodiment is to provide a spectroscope capable of simultaneously measuring infrared active vibration and Raman active vibration.
 本発明のある態様は、分光器に関する。分光器は、遅延量が可変な第1ダブルパルスを生成するダブルパルス発生器と、ダブルパルス発生器の内部あるいは後段に設けられる非線形光学結晶と、第1ダブルパルスをサンプルに照射して得られるラマン散乱光と、非線形光学結晶により生成される赤外の第2ダブルパルスをサンプルに照射して得られる赤外線と、を測定可能な検出系と、を備える。 One aspect of the present invention relates to a spectroscope. The spectroscope is obtained by irradiating a sample with a double pulse generator that generates a first double pulse with a variable delay amount, a nonlinear optical crystal provided inside or after the double pulse generator, and a first double pulse. A detection system capable of measuring Raman scattered light and infrared rays obtained by irradiating a sample with an infrared second double pulse generated by a nonlinear optical crystal is provided.
 なお、以上の構成要素の任意の組合せ、本発明の表現を装置、方法、システムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above components and the conversion of the expression of the present invention between devices, methods, systems, etc. are also effective as aspects of the present invention.
 本発明によれば、赤外活性の振動とラマン活性の振動を同時に測定できる。 According to the present invention, infrared active vibration and Raman active vibration can be measured at the same time.
実施の形態に係る分光器の基本構成を示す図である。It is a figure which shows the basic structure of the spectroscope which concerns on embodiment. 分光器におけるフーリエ変換コヒーレント反ストークスラマン分光を説明する図である。It is a figure explaining the Fourier transform coherent anti-Stoke Raman spectroscopy in a spectroscope. 分光器におけるフーリエ変換赤外分光を説明する図である。It is a figure explaining the Fourier transform infrared spectroscopy in a spectroscope. 実施例1に係る分光器を示す図である。It is a figure which shows the spectroscope which concerns on Example 1. FIG. 実施例2に係る分光器を示す図である。It is a figure which shows the spectroscope which concerns on Example 2. FIG. 図5の分光器の具体的な構成例を示す図である。It is a figure which shows the specific structural example of the spectroscope of FIG. 近赤外ダブルパルスおよび赤外ダブルパルスのスペクトルを示す図である。It is a figure which shows the spectrum of the near infrared double pulse and the infrared double pulse. 近赤外パルスのフリンジ分解自己相関(Fringe-resolved Autocorrelation)の測定結果を示す図である。It is a figure which shows the measurement result of the fringe decomposition autocorrelation (Fringe-resolved Autocorrelation) of a near infrared pulse. 図9(a)~(c)は、スペクトルの歪みの補償を説明する図である。9 (a) to 9 (c) are diagrams illustrating compensation for spectral distortion. 図10(a)、(b)は、測定結果を示す図である。10 (a) and 10 (b) are diagrams showing the measurement results. 図11(a)、(b)は、図10(b)のインターフェログラムをフーリエ変換して得られる相補スペクトルを示す図である。11 (a) and 11 (b) are diagrams showing complementary spectra obtained by Fourier transforming the interferogram of FIG. 10 (b). 図12(a)~(c)は、ベンゼン、クロロホルム、ベンゼンとDMSOの混合液(混合比4:1)について測定したスペクトルを示す図である。12 (a) to 12 (c) are diagrams showing spectra measured for a mixed solution of benzene, chloroform, benzene and DMSO (mixing ratio 4: 1). 変形例1に係る分光器を示す図である。It is a figure which shows the spectroscope which concerns on the modification 1. 変形例2に係る分光器を示す図である。It is a figure which shows the spectroscope which concerns on the modification 2. 変形例9に係る分光器を示す図である。It is a figure which shows the spectroscope which concerns on the modification 9. 図16(a)は、1個の非線形光学結晶によるパルス内差周波発生を説明する図であり、図16(b)は、2個の非線形光学結晶によるカスケード式パルス内差周波発生を説明する図である。FIG. 16A is a diagram for explaining the generation of the intra-pulse difference frequency by one nonlinear optical crystal, and FIG. 16B is a diagram for explaining the generation of the cascade-type intra-pulse difference frequency by the two nonlinear optical crystals. It is a figure. 図15の分光器の具体的な構成例を示す図である。It is a figure which shows the specific structural example of the spectroscope of FIG. 図17の分光器の具体的な実装を示す図である。It is a figure which shows the specific implementation of the spectroscope of FIG. 図19(a)~(c)は、図18の分光器により得られたスペクトルを示す図である。19 (a) to 19 (c) are diagrams showing the spectra obtained by the spectroscope of FIG.
(実施の形態の概要)
 本明細書に開示されるある実施の形態は、分光器に関する。分光器は、遅延量が可変な第1ダブルパルスを生成するダブルパルス発生器と、ダブルパルス発生器の内部あるいはダブルパルス発生器の後段に設けられる非線形光学結晶と、第1ダブルパルスをサンプルに照射して得られるラマン散乱光と、非線形光学結晶により生成される赤外の第2ダブルパルスをサンプルに照射して得られる赤外線と、を測定可能な検出系と、を備える。
(Outline of Embodiment)
One embodiment disclosed herein relates to a spectroscope. The spectroscope uses a double pulse generator that generates a first double pulse with a variable delay amount, a nonlinear optical crystal provided inside the double pulse generator or after the double pulse generator, and a first double pulse as a sample. A detection system capable of measuring Raman scattered light obtained by irradiation and infrared rays obtained by irradiating a sample with a second double pulse of infrared rays generated by a nonlinear optical crystal is provided.
 非線形光学結晶において、第1ダブルパルスに含まれる異なるスペクトル成分同士の差周波(パルス内差周波:IDFG:Intra-pulse Differential Frequency Generation)が発生し、これにより、広帯域なスペクトルを有する赤外線の第2ダブルパルスが生成される。第1ダブルパルスと、第2ダブルパルスを同時にサンプルに照射し、各ダブルパルスに含まれる2個のパルスの遅延量を変化させながら、赤外域と、近赤外域(あるいは可視、あるいは紫外)それぞれの光強度を測定することで、赤外域のインターフェログラムと、ラマン散乱のインターフェログラムとを同時に生成することができる。これにより、赤外活性の振動とラマン活性の振動を同時に測定できる。このことから、実施の形態に係る分光を、CVS(Complementary Vibrational Spectroscopy)と称する。 In a nonlinear optical crystal, a difference frequency (intra-pulse differential frequency: IDFG: Intra-pulse Differential Frequency Generation) between different spectral components contained in the first double pulse is generated, and as a result, a second infrared ray having a wide spectrum is generated. A double pulse is generated. The sample is irradiated with the first double pulse and the second double pulse at the same time, and the delay amount of the two pulses contained in each double pulse is changed, and the infrared region and the near infrared region (or visible or ultraviolet) are respectively. By measuring the light intensity of the above, it is possible to simultaneously generate an infrared interferogram and a Raman-scattered interferogram. As a result, infrared active vibration and Raman active vibration can be measured at the same time. For this reason, the spectroscopy according to the embodiment is referred to as CVS (Complementary Vibrational Spectroscopy).
 ダブルパルス発生器は、パルス光を生成するパルスレーザ光源と、パルス光を受け、第1ダブルパルスを生成する干渉計と、を含んでもよい。 The double pulse generator may include a pulsed laser light source that generates pulsed light and an interferometer that receives pulsed light and generates a first double pulse.
 非線形光学結晶は、干渉計の後段に配置されてもよい。第1ダブルパルスに含まれる2個のパルスそれぞれが、非線形光学結晶におけるパルス内差周波発生により、赤外のダブルパルスに変換される。この場合において、干渉計は、第1ダブルパルスの波長帯域のみをカバーすればよいため、安価かつ高効率に構成することができる。 The nonlinear optical crystal may be arranged after the interferometer. Each of the two pulses included in the first double pulse is converted into an infrared double pulse by generating an intra-pulse difference frequency in the nonlinear optical crystal. In this case, since the interferometer only needs to cover the wavelength band of the first double pulse, it can be configured inexpensively and with high efficiency.
 分光器は、非線形光学結晶の後段に設けられ、第1ダブルパルスのパルス幅を圧縮する第1分散補償器をさらに備えてもよい。第1ダブルパルスを構成するパルス光が非線形光学結晶内を伝搬することにより、2次あるいはそれより高次の分散が導入され、位相特性が乱れてパルス幅が広がり、光強度が低下する。一方、コヒーレント反ストークスラマン散乱(CARS:Coherent Anti-Stokes Raman Scattering)は3次の非線形光学現象であるため、サンプルに照射する第1ダブルパルスの光強度は高いことが望ましい。そこで第1分散補償器によってサンプルへの照射前に分散補償を行うことにより、第1ダブルパルスのパルス幅をフーリエ限界パルス幅に近づけて光強度を高めることができ、ラマン散乱光の強度を高めることができる。これによりS/N比が高い測定が可能となる。 The spectroscope may be further provided with a first dispersion compensator, which is provided after the nonlinear optical crystal and compresses the pulse width of the first double pulse. By propagating the pulsed light constituting the first double pulse in the nonlinear optical crystal, a second-order or higher-order dispersion is introduced, the phase characteristics are disturbed, the pulse width is widened, and the light intensity is lowered. On the other hand, since Coherent Anti-Stokes Raman Scattering (CARS) is a third-order nonlinear optical phenomenon, it is desirable that the light intensity of the first double pulse applied to the sample is high. Therefore, by performing dispersion compensation before irradiating the sample with the first dispersion compensator, the pulse width of the first double pulse can be brought close to the Fourier limit pulse width to increase the light intensity, and the intensity of Raman scattered light can be increased. be able to. This enables measurement with a high S / N ratio.
 分光器は、検出系の出力を処理する信号処理部をさらに備えてもよい。信号処理部は、赤外透過光のインターフェログラムを補正してもよい。 The spectroscope may further include a signal processing unit that processes the output of the detection system. The signal processing unit may correct the interferogram of infrared transmitted light.
 検出系は、サンプルの透過光を、第1ダブルパルスの波長域と赤外域に分離するダイクロイックミラーと、第1ダブルパルスの波長域に感度を有する第1検出器と、赤外域に感度を有する第2検出器と、を含んでもよい。 The detection system has a dichroic mirror that separates the transmitted light of the sample into the wavelength region of the first double pulse and the infrared region, the first detector that has sensitivity in the wavelength region of the first double pulse, and the sensitivity in the infrared region. A second detector may be included.
 検出系は、第2検出器の前に挿入された偏光子を含んでもよい。 The detection system may include a polarizer inserted in front of the second detector.
 ダブルパルス発生器は、非線形光学結晶に入射する第1ダブルパルスに含まれるパルスのパルス幅を圧縮する第2分散補償器をさらに含んでもよい。非線形光学結晶における差周波発生は2次の非線形光学現象であるため、非線形光学結晶に入射する第1ダブルパルスの光強度は高いことが望ましい。そこで第2分散補償器によって非線形光学結晶への照射前に分散補償を行うことにより、第1ダブルパルスに含まれる2個のパルスのパルス幅をフーリエ限界パルス幅に近づけて光強度を高めることができ、差周波発生の効率を改善することができる。 The double pulse generator may further include a second dispersion compensator that compresses the pulse width of the pulse included in the first double pulse incident on the nonlinear optical crystal. Since the generation of the difference frequency in the nonlinear optical crystal is a second-order nonlinear optical phenomenon, it is desirable that the light intensity of the first double pulse incident on the nonlinear optical crystal is high. Therefore, by performing dispersion compensation before irradiating the nonlinear optical crystal with the second dispersion compensator, the pulse widths of the two pulses included in the first double pulse can be brought closer to the Fourier limit pulse width to increase the light intensity. It is possible to improve the efficiency of differential frequency generation.
 第1分散補償器や第2分散補償器は、チャープドミラーペアを含んでもよい。あるいはプリズムペアやグレーティングペアを用いてもよい。 The first dispersion compensator and the second dispersion compensator may include a chirped mirror pair. Alternatively, a prism pair or a grating pair may be used.
 分光器は、非線形光学結晶を通過した第1ダブルパルスをサンプルに照射する集光光学系をさらに備えてもよい。集光光学系は、第1ダブルパルスと第2ダブルパルスとを同軸でサンプルに集光してもよい。集光光学系は、軸外放物面ミラー(OAPM:Off-Axis Parabolic Mirror)を含んでもよい。これにより、近赤外のダブルパルスと赤外のダブルパルスを、面内方向と深さ方向について、同じ位置に集光することができる。あるいは意図的に、サンプル内における第1ダブルパルスの焦点位置と、サンプル内における第2ダブルパルスの焦点位置と、をずらしてもよい。これにより、赤外活性の振動とラマン活性の振動を独立した現象として測定できる。 The spectroscope may further include a focused optical system that irradiates the sample with a first double pulse that has passed through a nonlinear optical crystal. The focusing optical system may coaxially focus the first double pulse and the second double pulse on the sample. The focusing optical system may include an off-axis parabolic mirror (OAPM). As a result, the near-infrared double pulse and the infrared double pulse can be focused at the same position in the in-plane direction and the depth direction. Alternatively, the focal position of the first double pulse in the sample and the focal position of the second double pulse in the sample may be intentionally shifted. Thereby, the vibration of infrared activity and the vibration of Raman activity can be measured as independent phenomena.
 第1ダブルパルスがサンプルに至る光路長と、第2ダブルパルスがサンプルに至る光路長は異なってもよい。これにより、第1ダブルパルスと第2ダブルパルスの相互作用を抑制し、ラマン散乱と赤外吸収を別々の現象として切り分けて測定できる。 The optical path length of the first double pulse leading to the sample and the optical path length of the second double pulse leading to the sample may be different. As a result, the interaction between the first double pulse and the second double pulse can be suppressed, and Raman scattering and infrared absorption can be separately measured as separate phenomena.
 第1ダブルパルスがサンプルに至る光路長と、第2ダブルパルスがサンプルに至る光路長は等しくてもよい。これにより、第1ダブルパルスと第2ダブルパルスの相互作用による未知の分子の振る舞いを測定できる可能性がある。 The optical path length from which the first double pulse reaches the sample may be equal to the optical path length from which the second double pulse reaches the sample. This makes it possible to measure the behavior of unknown molecules due to the interaction between the first double pulse and the second double pulse.
 検出系は、非線形光学結晶において生成される2次高調波や3次高調波のダブルパルスをサンプルに照射して得られる光を検出可能に構成されてもよい。 The detection system may be configured to be able to detect light obtained by irradiating a sample with a double pulse of a second harmonic or a third harmonic generated in a nonlinear optical crystal.
 上述の非線形光学結晶を第1非線形光学結晶とするとき、分光器は、第2非線形光学結晶をさらに備えてもよい。複数の非線形光学結晶を用いることにより、さらに中赤外スペクトルを広帯域化することができる。 When the above-mentioned nonlinear optical crystal is used as the first nonlinear optical crystal, the spectroscope may further include a second nonlinear optical crystal. By using a plurality of nonlinear optical crystals, the mid-infrared spectrum can be further widened.
 第1非線形光学結晶はLiIOであり、第2非線形光学結晶は、GaSeであってもよい。この場合、HO吸収領域およびCO吸収領域をカバーする広帯域なスペクトルを得ることができる。 The first nonlinear optical crystal may be LiIO 3 , and the second nonlinear optical crystal may be GaSe. In this case, it is possible to obtain a wide-band spectrum covering of H 2 O absorption region and the CO 2 absorbing region.
(実施の形態)
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
(Embodiment)
Hereinafter, the present invention will be described with reference to the drawings based on preferred embodiments. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. Further, the embodiment is not limited to the invention but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the invention.
 図1は、実施の形態に係る分光器100の基本構成を示す図である。分光器100は、フーリエ変換法によって、サンプルSMPの赤外吸収(あるいは反射)とラマン散乱を同時に分光する。 FIG. 1 is a diagram showing a basic configuration of the spectroscope 100 according to the embodiment. The spectroscope 100 simultaneously disperses infrared absorption (or reflection) and Raman scattering of the sample SMP by a Fourier transform method.
 分光器100は、主として、ダブルパルス発生器110、非線形光学結晶120、検出系130を備える。 The spectroscope 100 mainly includes a double pulse generator 110, a nonlinear optical crystal 120, and a detection system 130.
 ダブルパルス発生器110は、遅延差τが可変な近赤外のダブルパルス(近赤外ダブルパルスと称する)2を繰り返し生成する。近赤外ダブルパルス2は、基準となる第1パルス2Aと、それに対して後続(あるいは先行する)第2パルス2Bを含む。CARSの測定に関して、第1パルス2Aと第2パルス2Bのうち、先行する一方がポンプ光となり、後続する他方がプローブ光となる。遅延差τは、繰り返し毎に変化する。ダブルパルス発生器110が生成する近赤外ダブルパルス2のパルス幅はフェムト秒のオーダー(たとえば10fs)であり、非常に広帯域なスペクトル成分を含む。 The double pulse generator 110 repeatedly generates a near-infrared double pulse (referred to as a near-infrared double pulse) 2 having a variable delay difference τ. The near-infrared double pulse 2 includes a reference first pulse 2A and a subsequent (or preceding) second pulse 2B. Regarding the measurement of CARS, of the first pulse 2A and the second pulse 2B, the preceding one becomes the pump light and the succeeding one becomes the probe light. The delay difference τ changes with each iteration. The pulse width of the near-infrared double pulse 2 generated by the double pulse generator 110 is on the order of femtoseconds (for example, 10 fs) and contains a very wide spectrum component.
 非線形光学結晶120は、ダブルパルス発生器110の内部あるいは後段に設けられる。図1において非線形光学結晶120はダブルパルス発生器110の後段に設けられ、近赤外ダブルパルス2が照射される。非線形光学結晶120において、近赤外のパルス2A(2B)に含まれる異なるスペクトル成分同士の差周波が発生し、これにより、広帯域なスペクトルを有する赤外線のダブルパルス4が生成される。近赤外ダブルパルス2の一部分が非線形光学結晶120において赤外ダブルパルス4に変換され、残り2’は変換されずに非線形光学結晶120を透過する。非線形光学結晶120の材質は特に限定されず、近赤外ダブルパルス2の波長と、生成したい赤外ダブルパルス4の波長とを考慮して選択すればよい。たとえば非線形光学結晶120としては、GaSe(セレン化ガリウム)を用いてもよい。 The nonlinear optical crystal 120 is provided inside or after the double pulse generator 110. In FIG. 1, the nonlinear optical crystal 120 is provided after the double pulse generator 110 and is irradiated with the near infrared double pulse 2. In the nonlinear optical crystal 120, a difference frequency between different spectral components contained in the near-infrared pulse 2A (2B) is generated, whereby an infrared double pulse 4 having a wide-band spectrum is generated. A part of the near-infrared double pulse 2 is converted into the infrared double pulse 4 in the nonlinear optical crystal 120, and the remaining 2'is transmitted through the nonlinear optical crystal 120 without being converted. The material of the nonlinear optical crystal 120 is not particularly limited, and may be selected in consideration of the wavelength of the near infrared double pulse 2 and the wavelength of the infrared double pulse 4 to be generated. For example, as the nonlinear optical crystal 120, GaSe (gallium selenium) may be used.
 近赤外ダブルパルス2’および赤外ダブルパルス4は、サンプルSMPに照射される。検出系130は、近赤外ダブルパルス2をサンプルSMPに照射して得られるラマン散乱光6と、非線形光学結晶120により生成される赤外ダブルパルス4をサンプルSMPに照射して得られる赤外透過光8と、を測定可能に構成される。たとえば検出系130は、第1検出器132と第2検出器134、を含む。第1検出器132は、ラマン散乱光6の波長に感度を有し、受光した光量に応じた検出信号S1を生成する。同様に第2検出器134は赤外透過光8の波長に感度を有し、受光した光量に応じた検出信号S2を生成する。デジタイザ136は、検出信号S1、S2をデジタルのサンプリング値D1,D2に変換する。デジタイザ136の出力D1,D2は、後段の信号処理部140に供給される。 The near-infrared double pulse 2'and the infrared double pulse 4 are applied to the sample SMP. The detection system 130 irradiates the sample SMP with the Raman scattered light 6 obtained by irradiating the sample SMP with the near infrared double pulse 2 and the infrared double pulse 4 generated by the nonlinear optical crystal 120. The transmitted light 8 is configured to be measurable. For example, the detection system 130 includes a first detector 132 and a second detector 134. The first detector 132 has sensitivity to the wavelength of the Raman scattered light 6 and generates a detection signal S1 according to the amount of received light. Similarly, the second detector 134 has sensitivity to the wavelength of the infrared transmitted light 8 and generates a detection signal S2 according to the amount of received light. The digitizer 136 converts the detection signals S1 and S2 into digital sampling values D1 and D2. The outputs D1 and D2 of the digitizer 136 are supplied to the signal processing unit 140 in the subsequent stage.
 信号処理部140は、サンプリング値D1のデータ列である波形DW1と、サンプリング値D2のデータ列である波形DW2を取得する。信号処理部140は、波形DW1にもとづいてラマン散乱光6のインターフェログラムIF_CARSを生成し、それをフーリエ変換することにより、ラマンスペクトルを生成する。また信号処理部140は、波形DW2にもとづいて赤外透過光8のインターフェログラムIF_IRを取得し、それをフーリエ変換することにより、赤外線吸収スペクトルを生成する。 The signal processing unit 140 acquires the waveform DW1 which is the data string of the sampling value D1 and the waveform DW2 which is the data string of the sampling value D2. The signal processing unit 140 generates an interferogram IF_CARS of Raman scattered light 6 based on the waveform DW1 and Fourier transforms it to generate a Raman spectrum. Further, the signal processing unit 140 acquires the interferogram IF_IR of the infrared transmitted light 8 based on the waveform DW2 and Fourier transforms it to generate an infrared absorption spectrum.
 信号処理部140は、コンピュータ、ワークステーションあるいはタブレット端末であってもよい。あるいは信号処理部140をマイコンやFPGA(Field Programmable Gate Array)、IC(Integrated Circuit)で実装して、検出系130に組み込んでもよい。 The signal processing unit 140 may be a computer, workstation or tablet terminal. Alternatively, the signal processing unit 140 may be mounted by a microcomputer, an FPGA (Field Programmable Gate Array), or an IC (Integrated Circuit) and incorporated into the detection system 130.
 以上が分光器100の構成である。続いてその動作を説明する。 The above is the configuration of the spectroscope 100. Next, the operation will be described.
 図2は、分光器100におけるフーリエ変換コヒーレント反ストークスラマン分光(FT-CARS)を説明する図である。ダブルパルス発生器110によって、遅延量(時間差)τが異なる近赤外ダブルパルス2が繰り返し生成される。i番目の近赤外ダブルパルス2を2_iと表記し、近赤外ダブルパルス2_iにおける第1パルス2Aと第2パルス2Bの時間差をτと表記する。 FIG. 2 is a diagram illustrating Fourier transform coherent anti-Stoke Raman spectroscopy (FT-CARS) in the spectroscope 100. The double pulse generator 110 repeatedly generates near-infrared double pulses 2 having different delay amounts (time difference) τ. The i-th infrared double pulse 2 is denoted by 2_I, the time difference between the first pulse 2A and the second pulse 2B in the near-infrared double pulse 2_I expressed as tau i.
 先行する近赤外の第1パルス2Aが、サンプルSMPに照射されると、第1パルス2Aに含まれるとある周波数の光が励起光となり、別の周波数がストークス光となって、サンプルSMPにおいて、それらの周波数差と同じ振動周波数を有する分子振動が誘起される。その後、分子振動が誘起されているサンプルSMPに、第2パルス2Bが照射されると、第2パルス2Bと分子振動とが作用し、第2パルス2Bに含まれる周波数がシフトして、ラマン散乱光6が放出される。 When the preceding near-infrared first pulse 2A is applied to the sample SMP, the light of a certain frequency becomes the excitation light when it is included in the first pulse 2A, and the other frequency becomes the Stokes light in the sample SMP. , Molecular vibrations with the same vibrational frequency as their frequency difference are induced. After that, when the second pulse 2B is applied to the sample SMP in which the molecular vibration is induced, the second pulse 2B and the molecular vibration act to shift the frequency contained in the second pulse 2B, resulting in Raman scattering. Light 6 is emitted.
 遅延量τを変化させながら、ラマン散乱光6の測定を繰り返すことにより、ラマン散乱光6のインターフェログラムIF_CARSが生成される。このインターフェログラムIF_CARSを高速フーリエ変換することにより、ラマンスペクトルが生成される。 By repeating the measurement of Raman scattered light 6 while changing the delay amount τ, the interferogram IF_CARS of Raman scattered light 6 is generated. A Raman spectrum is generated by performing a fast Fourier transform on this interferogram IF_CARS.
 図3は、分光器100におけるフーリエ変換赤外分光(FT-IR)を説明する図である。ダブルパルス発生器110によって、遅延量(時間差)τが異なる近赤外ダブルパルス2が繰り返し生成され、非線形光学結晶120によって、赤外ダブルパルス4に変換される。赤外ダブルパルス4の第1パルス4Aと第2パルス4Bの時間差τは、変換前の近赤外ダブルパルス2の時間差τと等しい。 FIG. 3 is a diagram illustrating Fourier transform infrared spectroscopy (FT-IR) in the spectroscope 100. The double pulse generator 110 repeatedly generates near-infrared double pulses 2 having different delay amounts (time difference) τ, and the nonlinear optical crystal 120 converts them into infrared double pulses 4. The time difference τ i between the first pulse 4A and the second pulse 4B of the infrared double pulse 4 is equal to the time difference τ i of the near infrared double pulse 2 before conversion.
 先行する赤外の第1パルス4Aが、サンプルSMPに照射され、所定のスペクトル成分が吸収される。続いて第2パルス4BがサンプルSMPに照射され、所定のスペクトル成分が吸収される。図3には、第1パルス4A、第2パルス4BそれぞれのサンプルSMPの透過光8A,8Bが示される。赤外透過光8は、透過光8Aと8Bの干渉光である。赤外透過光のインターフェログラムIF_IRは、遅延量τと赤外透過光8のパルスごとのエネルギーの関係を示す。このインターフェログラムIF_IRを高速フーリエ変換することにより、赤外吸収スペクトルが生成される。 The preceding infrared first pulse 4A is applied to the sample SMP to absorb a predetermined spectral component. Subsequently, the second pulse 4B is applied to the sample SMP to absorb a predetermined spectral component. FIG. 3 shows transmitted lights 8A and 8B of the sample SMPs of the first pulse 4A and the second pulse 4B, respectively. The infrared transmitted light 8 is interference light of transmitted lights 8A and 8B. Interferogram IF_IR infrared transmitted light, shows the energy relationship between each pulse of the delay tau i and the infrared light transmitted through 8. An infrared absorption spectrum is generated by performing a fast Fourier transform on this interferogram IF_IR.
 以上が分光器100の動作である。この分光器100によれば、非線形光学結晶において、広帯域なスペクトルを有する赤外線のダブルパルスを生成することができる。そして赤外線のダブルパルスと、近赤外のダブルパルスをサンプルに照射し、ダブルパルスの時間差を変化させながら、赤外域と近赤外域それぞれの光強度を測定することで、赤外域のインターフェログラムIF_IRと、近赤外のCARSインターフェログラムIF_CARSとを同時に生成することができる。これにより、赤外活性の振動とラマン活性の振動を同時に測定できる。 The above is the operation of the spectroscope 100. According to this spectroscope 100, it is possible to generate an infrared double pulse having a wide spectrum in a nonlinear optical crystal. Then, by irradiating the sample with an infrared double pulse and a near-infrared double pulse and measuring the light intensity of each of the infrared region and the near-infrared region while changing the time difference of the double pulse, the infrared interferogram IF_IR and near-infrared CARS interferogram IF_CARS can be generated at the same time. As a result, infrared active vibration and Raman active vibration can be measured at the same time.
 本発明は、上述の説明から導かれるさまざまな装置、方法に及ぶものであり、特定の構成に限定されるものではない。以下、本発明の範囲を狭めるためではなく、発明の本質や動作の理解を助け、またそれらを明確化するために、より具体的な構成例や実施例を説明する。 The present invention extends to various devices and methods derived from the above description, and is not limited to a specific configuration. Hereinafter, more specific configuration examples and examples will be described not for narrowing the scope of the present invention but for helping to understand the essence and operation of the invention and clarifying them.
(実施例1)
 図4は、実施例1に係る分光器100Aを示す図である。分光器100Aにおいて、ダブルパルス発生器110Aは、パルスレーザ光源112、マイケルソン干渉計114、ロングパスフィルタ116を含む。パルスレーザ光源112は、フェムト秒-チタンサファイアレーザであり、波長690~920nmの広帯域スペクトルを有する近赤外の超短パルス10を生成する。マイケルソン干渉計114は、ビームスプリッタBS、固定ミラーM1および可動ミラーM2を有する。干渉計114は、近赤外の超短パルス10を2つのアームに分岐する。マイケルソン干渉計114は、2個のアームの光路長差Lが可変に構成されており、光路長差Lが、近赤外ダブルパルス2に含まれる2個のパルス2A,2Bの遅延時間τを与える。基準アームを伝搬するパルス2Aと、スキャンアームを伝搬するパルス2Bは、ビームスプリッタBSによって再結合され、ロングパスフィルタ116を透過し、近赤外ダブルパルス2が生成される。
(Example 1)
FIG. 4 is a diagram showing the spectroscope 100A according to the first embodiment. In the spectroscope 100A, the double pulse generator 110A includes a pulsed laser light source 112, a Michelson interferometer 114, and a long pass filter 116. The pulsed laser light source 112 is a femtosecond-titanium sapphire laser that produces a near-infrared ultrashort pulse 10 having a broadband spectrum with a wavelength of 690 to 920 nm. The Michelson interferometer 114 has a beam splitter BS, a fixed mirror M1 and a movable mirror M2. The interferometer 114 splits the near-infrared ultrashort pulse 10 into two arms. In the Michelson interferometer 114, the optical path length difference L of the two arms is variably configured, and the optical path length difference L is the delay time τ of the two pulses 2A and 2B included in the near infrared double pulse 2. give. The pulse 2A propagating in the reference arm and the pulse 2B propagating in the scan arm are recombined by the beam splitter BS and transmitted through the long path filter 116 to generate a near-infrared double pulse 2.
 検出系130Aは、ダイクロイックミラーDM1、第1検出器132、第2検出器134、デジタイザ136、ショートパスフィルタSPFを含む。ダイクロイックミラーDM1は、近赤外の反射率が高く、赤外域の透過率が高い。 The detection system 130A includes a dichroic mirror DM1, a first detector 132, a second detector 134, a digitizer 136, and a short pass filter SPF. The dichroic mirror DM1 has a high reflectance in the near infrared region and a high transmittance in the infrared region.
 ダイクロイックミラーDM1の反射光には、近赤外の元のダブルパルスのスペクトル成分と、近赤外のラマンスペクトル成分が含まれる。ショートパスフィルタSPFは、ダブルパルスのスペクトル成分を除去し、ラマンスペクトル成分のみを透過する。第1検出器132は、ラマン散乱光6の強度を測定する。 The reflected light of the dichroic mirror DM1 includes a spectrum component of the original double pulse in the near infrared and a Raman spectrum component in the near infrared. The short pass filter SPF removes the spectral component of the double pulse and transmits only the Raman spectral component. The first detector 132 measures the intensity of the Raman scattered light 6.
 赤外透過光8は、ダイクロイックミラーDM1を透過する。第2検出器134はたとえばMCT(HgCdTe:Mercury Cadmium Telluride)赤外光検出器であり、ダイクロイックミラーDM1を透過した赤外透過光8の強度を検出する。デジタイザ136は、第1検出器132、第2検出器134それぞれの出力をデジタル信号に変換する。 The infrared transmitted light 8 transmits through the dichroic mirror DM1. The second detector 134 is, for example, an MCT (HgCdTe: Mercury Cadmium Telluride) infrared photodetector, which detects the intensity of the infrared transmitted light 8 transmitted through the dichroic mirror DM1. The digitizer 136 converts the outputs of the first detector 132 and the second detector 134 into digital signals.
(実施例2)
 図5は、実施例2に係る分光器100Bを示す図である。分光器100Bは、図1のダブルパルス発生器110、非線形光学結晶120、検出系130に加えて、第1分散補償器150および集光光学系160を備える。
(Example 2)
FIG. 5 is a diagram showing the spectroscope 100B according to the second embodiment. The spectroscope 100B includes a first dispersion compensator 150 and a condensing optical system 160 in addition to the double pulse generator 110, the nonlinear optical crystal 120, and the detection system 130 shown in FIG.
 第1分散補償器150は、非線形光学結晶120の後段に設けられ、非線形光学結晶120を透過した近赤外のダブルパルス2’に含まれるパルスのパルス幅を圧縮する。近赤外ダブルパルス2が非線形光学結晶120内を伝搬することにより、2次およびそれより高次の分散が導入され、近赤外ダブルパルス2’の2個のパルスのパルス幅が伸び、光強度が低下する。一方、コヒーレント反ストークスラマン散乱は3次の非線形光学現象であるため、サンプルSMPに照射する近赤外のダブルパルスの光強度は高いことが望ましい。そこで第1分散補償器150によってサンプルSMPへの照射前に分散補償を行うことにより、近赤外のダブルパルス2”のパルス幅をフーリエ限界パルス幅に近づけて光強度を高めることができ、ラマン散乱光6の強度を高めることができる。これによりS/N比が高い測定が可能となる。 The first dispersion compensator 150 is provided after the nonlinear optical crystal 120 and compresses the pulse width of the pulse included in the near-infrared double pulse 2'transmitted through the nonlinear optical crystal 120. By propagating the near-infrared double pulse 2 in the nonlinear optical crystal 120, a second-order and higher-order dispersion is introduced, the pulse width of the two pulses of the near-infrared double pulse 2'is extended, and the light is emitted. The strength decreases. On the other hand, since coherent anti-Stoke Raman scattering is a third-order nonlinear optical phenomenon, it is desirable that the light intensity of the near-infrared double pulse irradiating the sample SMP is high. Therefore, by performing dispersion compensation before irradiating the sample SMP with the first dispersion compensator 150, the pulse width of the near-infrared double pulse 2 "can be brought closer to the Fourier limit pulse width to increase the light intensity, and Raman The intensity of the scattered light 6 can be increased, which enables measurement with a high S / N ratio.
 第1分散補償器150の種類は特に限定されず、公知の、あるいは将来利用可能なさまざまな分散補償器を用いることができる。たとえば第1分散補償器150は、チャープドミラーペア(CMP:Chirped Mirror Pair)で構成してもよいし、プリズムペアやグレーティングペアを用いてもよい。第1分散補償器150においては、最低2次、好ましくは3次の分散まで補償することが望ましい。 The type of the first dispersion compensator 150 is not particularly limited, and various known or future available dispersion compensators can be used. For example, the first dispersion compensator 150 may be composed of a chirped mirror pair (CMP: Chirped Mirror Pair), or may use a prism pair or a grating pair. In the first dispersion compensator 150, it is desirable to compensate at least the second-order, preferably the third-order dispersion.
 集光光学系160は、第1分散補償器150を通過した近赤外ダブルパルス2”と、赤外ダブルパルス4と、を受け、それらを同軸でサンプルSMPに照射する。集光光学系は、軸外放物面ミラー(OAPM:Off-Axis Parabolic Mirror)を含んでもよい。これにより、近赤外のダブルパルスと赤外のダブルパルスを、面内方向と深さ方向について、同じ位置に集光することができる。 The condensing optical system 160 receives a near-infrared double pulse 2 ”that has passed through the first dispersion compensator 150 and an infrared double pulse 4, and irradiates the sample SMP coaxially. , Off-Axis Parabolic Mirror (OAPM) may be included, which causes the near-infrared double pulse and the infrared double pulse to be placed at the same position in the in-plane direction and the depth direction. Can be focused.
 図6は、図5の分光器100Bの具体的な構成例を示す図である。ダブルパルス発生器110Bは、パルスレーザ光源112、マイケルソン干渉計114B、ロングパスフィルタ116、第2分散補償器118を含む。マイケルソン干渉計114Bは、偏光ビームスプリッタPBS、固定ミラーM1、可動ミラーM2、1/2波長板HWP1,HWP2、1/4波長板QWP1,QWP2を含む。このマイケルソン干渉計114Bでは、2個のアームを伝搬する光パルス2A,2Bの偏光方向が直交し、それらが合成されて近赤外ダブルパルス2が生成される。図4のマイケルソン干渉計114では、パルスレーザ光源112の光エネルギーの1/2が捨てられるが、図6のマイケルソン干渉計114Bを採用することで、光の利用効率を理論上、100%に高めることができる。 FIG. 6 is a diagram showing a specific configuration example of the spectroscope 100B of FIG. The double pulse generator 110B includes a pulsed laser light source 112, a Michelson interferometer 114B, a long pass filter 116, and a second dispersion compensator 118. The Michelson interferometer 114B includes a polarizing beam splitter PBS, a fixed mirror M1, a movable mirror M2, 1/2 wave plates HWP1 and HWP2, and 1/4 wave plates QWP1 and QWP2. In this Michelson interferometer 114B, the polarization directions of the optical pulses 2A and 2B propagating in the two arms are orthogonal to each other, and they are combined to generate a near-infrared double pulse 2. In the Michelson interferometer 114 of FIG. 4, 1/2 of the light energy of the pulsed laser light source 112 is discarded, but by adopting the Michelson interferometer 114B of FIG. 6, the light utilization efficiency is theoretically 100%. Can be enhanced to.
 第2分散補償器118は、超短パルス10がマイケルソン干渉計114Bを伝搬する間に導入される分散を補償するために設けられる。マイケルソン干渉計114Bは、図4のマイケルソン干渉計114と比べて、光が透過する光学素子の枚数が多いため、より多くの分散を受けやすく、パルス波形が劣化し、強度が低下する。後段の非線形光学結晶120における差周波発生は2次の非線形光学現象であるため、非線形光学結晶120に入射する近赤外のダブルパルスの光強度は高いことが望ましい。そこで第2分散補償器118によって非線形光学結晶120への照射前に分散補償を行うことにより、近赤外のダブルパルス2A,2Bのパルス幅をフーリエ限界パルス幅に近づけて光強度を高めることができ、差周波発生の効率を改善することができる。第1分散補償器150と同様に、第2分散補償器118の構成は限定されるものではないが、図5ではチャープドミラーペアCMP2を含む。 The second dispersion compensator 118 is provided to compensate for the dispersion introduced while the ultrashort pulse 10 propagates through the Michelson interferometer 114B. Compared to the Michelson interferometer 114 of FIG. 4, the Michelson interferometer 114B has a larger number of optical elements through which light transmits, so that it is more susceptible to dispersion, the pulse waveform is deteriorated, and the intensity is lowered. Since the generation of the difference frequency in the nonlinear optical crystal 120 in the subsequent stage is a second-order nonlinear optical phenomenon, it is desirable that the light intensity of the near-infrared double pulse incident on the nonlinear optical crystal 120 is high. Therefore, by performing dispersion compensation before irradiating the nonlinear optical crystal 120 with the second dispersion compensator 118, the pulse width of the near-infrared double pulses 2A and 2B can be brought close to the Fourier limit pulse width to increase the light intensity. It is possible to improve the efficiency of differential frequency generation. Similar to the first dispersion compensator 150, the configuration of the second dispersion compensator 118 is not limited, but FIG. 5 includes a chirped mirror pair CMP2.
 集光光学系170は、近赤外ダブルパルス2を非線形光学結晶120に集光するとともに、非線形光学結晶120を通過した近赤外ダブルパルス2および赤外ダブルパルス4をコリメートする。集光光学系170は、透過光学系で構成することも可能であるが、近赤外ダブルパルス2と赤外ダブルパルス4のスペクトルが非常に広範囲にわたることから、反射光学系で構成するとよい。たとえば集光光学系170は、軸外放物面ミラー(OAPM:Off-Axis Parabolic Mirror)で構成することができる。 The condensing optical system 170 condenses the near-infrared double pulse 2 on the nonlinear optical crystal 120, and collimates the near-infrared double pulse 2 and the infrared double pulse 4 that have passed through the nonlinear optical crystal 120. Although the condensing optical system 170 can be composed of a transmission optical system, it is preferable to use a reflective optical system because the spectra of the near infrared double pulse 2 and the infrared double pulse 4 are very wide. For example, the condensing optical system 170 can be configured by an off-axis parabolic mirror (OAPM).
 第1分散補償器150は、ダイクロイックミラーDM2,DM3およびチャープドミラーペアCMP1を含む。ダイクロイックミラーDM2,DM3は、近赤外において高い反射率を有し、赤外において高い透過率を有する。ダイクロイックミラーDM2は、近赤外ダブルパルス2を反射する。チャープドミラーペアCMP1は、近赤外ダブルパルス2のパルス幅を圧縮する。圧縮後の近赤外ダブルパルス2は、ダイクロイックミラーDM3によって赤外ダブルパルス4と再合成され、集光光学系160に導かれる。 The first dispersion compensator 150 includes a dichroic mirror DM2, DM3 and a chirp mirror pair CMP1. The dichroic mirrors DM2 and DM3 have a high reflectance in the near infrared and a high transmittance in the infrared. The dichroic mirror DM2 reflects the near-infrared double pulse 2. The chirped mirror pair CMP1 compresses the pulse width of the near-infrared double pulse 2. The compressed near-infrared double pulse 2 is recombined with the infrared double pulse 4 by the dichroic mirror DM3 and guided to the focusing optical system 160.
 検出系130Bは、第1検出器132、第2検出器134、ダイクロイックミラーDM1、ショートパスフィルタSPF、デジタイザ136に加えて、偏光子138およびノイズ除去用のローパスフィルタLPF1,LPF2を含む。 The detection system 130B includes a first detector 132, a second detector 134, a dichroic mirror DM1, a short pass filter SPF, a digitizer 136, a polarizer 138, and low-pass filters LPF1 and LPF2 for noise removal.
 第2検出器134の前段には偏光子138が挿入される。偏光子138は、余計な直交成分が残っている場合にそれらを除去するために設けられる。 A polarizer 138 is inserted in front of the second detector 134. The polarizer 138 is provided to remove extra orthogonal components when they remain.
 以上が分光器100Bの構成である。続いて分光器100Bを実際に実装して、その特性について評価した結果を説明する。 The above is the configuration of the spectroscope 100B. Subsequently, the result of actually mounting the spectroscope 100B and evaluating its characteristics will be described.
 パルスレーザ光源112としては、Spectra Physics社のチタンサファイアレーザSynergy Pro-WG-KE(繰り返し周波数75MHz、中心波長800nm、バンド幅230nm)を用いた。ロングパスフィルタ116は、Thorlabs社のFELH0700を用いている。 As the pulsed laser light source 112, a titanium sapphire laser Synergy Pro-WG-KE (repetition frequency 75 MHz, center wavelength 800 nm, bandwidth 230 nm) manufactured by Spectra Physics was used. As the long pass filter 116, FELH0700 manufactured by Thorlabs is used.
 リファレンスアームの第1パルス2Aのエネルギーは、2.5nJであり、スキャンアームの第2パルス2Bのエネルギーは5.5nJである。それらは集光光学系170の入力側の焦点距離25.4mmの軸外放物面ミラーによって、30ミクロンのGaSe結晶(EKSMA OPTICS社 GaSe-30H1)に集光され、同じ焦点距離25.4mmの出力側の軸外放物面ミラーによってコリメートされる。 The energy of the first pulse 2A of the reference arm is 2.5 nJ, and the energy of the second pulse 2B of the scan arm is 5.5 nJ. They are focused on a 30-micron GaSe crystal (GaSe-30H1 by EKSMA OPTICS) by an off-axis radial mirror with a focal length of 25.4 mm on the input side of the focusing optical system 170, and have the same focal length of 25.4 mm. It is collimated by an off-axis radial mirror on the output side.
 第1分散補償器150において、近赤外のダブルパルスがサンプルSMPに至る光路長は、赤外のダブルパルスがサンプルSMPに至る光路長よりも約30cm、長くなっており、これにより、近赤外のパルスと赤外のパルスの相互作用を抑制し、ラマン散乱と赤外吸収を別々の現象として切り分けて測定できる。 In the first dispersion compensator 150, the optical path length of the near-infrared double pulse to the sample SMP is about 30 cm longer than the optical path length of the infrared double pulse to the sample SMP, whereby near red. Raman scattering and infrared absorption can be separated and measured as separate phenomena by suppressing the interaction between external pulses and infrared pulses.
 サンプルSMPに入射する近赤外ダブルパルス2のエネルギーはトータルで3.5nJであり、その内訳は、第1パルス2Aが1.1nJ、第2パルス2Bが2.4nJである。 The total energy of the near-infrared double pulse 2 incident on the sample SMP is 3.5 nJ, and the breakdown is 1.1 nJ for the first pulse 2A and 2.4 nJ for the second pulse 2B.
 サンプルホルダとして、厚み3mmのKBr(臭化カリウム)の窓を用いた。KBrは、近赤外(10870-14490cm-1)と中赤外(790-1800cm-1)の両方に対して透明である。50μmのテフロン(登録商標)スペーサが、2枚のKBrウィンドウの間に設けられ、液体サンプルがそれらの間に充填される。ダイクロイックミラーDM1として、ZnSe(セレン化亜鉛)を用いている。第1検出器132は、アバランシェ光検出器(Thorlabs社のAPD410A2/M)であり、第2検出器134は、チッ素で冷却されたHgCdTe検出器(Kolmar Technologies社KDL-0.5-J1-3/11)である。反ストークス検出に関して、元の入射パルスと、2次高調波信号がショートパスフィルタSPF(Thorlabs社FESH0700)およびロングパスフィルタ(Thorlabs社FESH0550)によって除去される。デジタイザ136は、AlazarTech社のATS9440を用いている。 As a sample holder, a KBr (potassium bromide) window having a thickness of 3 mm was used. KBr is transparent to both near infrared (10870-14490cm -1 ) and mid-infrared (790-1800cm -1 ). A 50 μm Teflon® spacer is provided between the two KBr windows and a liquid sample is filled between them. ZnSe (zinc selenide) is used as the dichroic mirror DM1. The first detector 132 is an avalanche photodetector (Thorlabs APD410A2 / M), and the second detector 134 is a nitrogen-cooled HgCdTe detector (Kolmar Technologies KDL-0.5-J1-3 /). 11). For anti-Stokes detection, the original incident pulse and second harmonic signal are removed by a short pass filter SPF (Thorlabs FESH0700) and a long pass filter (Thorlabs FESH0550). The digitizer 136 uses ATS9440 manufactured by AlazarTech.
 図7は、近赤外ダブルパルス2および赤外ダブルパルス4のスペクトルを示す図である。パルスレーザ光源112として、10fs、スペクトル700~920nm幅の近赤外超短パルスチタンサファイアレーザを用いており、非線形光学結晶120としてGaSeを用いている。パルス内の差周波発生により、790~1800cm-1の赤外(中赤外)スペクトルを得ることができることがわかる。なお、中赤外の長波長側のスペクトルが、900nm付近で急激に落ち込んでいるが、これは、スペクトルの測定に使用した検出器の波長感度の制約によるものであり、実際には、中赤外のスペクトルはより長波長側に伸びている。 FIG. 7 is a diagram showing spectra of a near-infrared double pulse 2 and an infrared double pulse 4. A near-infrared ultrashort pulse titanium sapphire laser having a spectrum of 700 to 920 nm with a spectrum of 700 to 920 nm is used as the pulsed laser light source 112, and GaSe is used as the nonlinear optical crystal 120. It can be seen that an infrared (mid-infrared) spectrum of 790 to 1800 cm -1 can be obtained by generating a difference frequency in the pulse. The spectrum on the long wavelength side of mid-infrared drops sharply near 900 nm, but this is due to the limitation of the wavelength sensitivity of the detector used to measure the spectrum, and in reality, it is mid-red. The outer spectrum extends to the longer wavelength side.
 図8は、近赤外パルスのフリンジ分解自己相関(Fringe-resolved Autocorrelation)の測定結果を示す図である。この測定結果から、最小12fs程度まで補償できていることが分かる。 FIG. 8 is a diagram showing the measurement results of Fringe-resolved Autocorrelation of the near-infrared pulse. From this measurement result, it can be seen that the minimum compensation is about 12 fs.
 CVSでは、第1パルス2Aと第2パルス2Bの遅延量が小さいときに、非線形光学結晶120における差周波発生において、第1パルス2Aと第2パルス2Bの非線形な相互作用の影響が現れる。この相互作用は、フーリエ変換後のスペクトルの歪みの要因となるため、補償することが好ましい。 In CVS, when the delay amount of the first pulse 2A and the second pulse 2B is small, the influence of the non-linear interaction between the first pulse 2A and the second pulse 2B appears in the generation of the difference frequency in the nonlinear optical crystal 120. It is preferable to compensate for this interaction because it causes distortion of the spectrum after the Fourier transform.
 図9(a)~(c)は、スペクトルの歪みの補償を説明する図である。図9(a)は、光検出器により得られた補正前の時間波形DW2を示す。CVSにより得られる時間波形は、線形MIRインターフェログラムのほか、いくつかの成分を含む。不要な成分は、2つの近赤外パルスが非線形光学結晶中で時間的にオーバーラップしたときに発生する中赤外光に起因する。これは差周波発生型のインターフェロメトリック自己相関とのアナロジーで理解される。図9(a)は、CVS測定により得られる波形のAC成分を示す。これは、強度自己相関、MIRインターフェログラムに付加される高周波フリンジなど、いくつかの成分を含む。したがってこの波形をフーリエ変換して得られるスペクトルは、破線で示すように、いくつかの部分を含んでいる。ゼロ周波数付近の最も低周波側(長波長側)の部分は、ゆっくりと変化する強度自己相関波形(図9(a)に示す)に起因するものであり、12,500cm-1付近と25,000cm-1付近のスペクトル成分は、近赤外パルスの基本波と2次高調波に対応する高周波フリンジである。目的とする中赤外スペクトルは、790~1800cm-1にわたって現れている。中赤外スペクトルは周波数領域において他の周波数成分から十分に分離しているから、図9(a)の波形を単純にフーリエ変換したスペクトルからも、中赤外スペクトルを取り出すことができる。 9 (a) to 9 (c) are diagrams illustrating compensation for spectral distortion. FIG. 9A shows the uncorrected time waveform DW2 obtained by the photodetector. The time waveform obtained by CVS contains several components in addition to the linear MIR interferogram. The unwanted component is due to the mid-infrared light generated when the two near-infrared pulses overlap in time in the nonlinear optical crystal. This is understood by the analogy with differential frequency generation type interferometric autocorrelation. FIG. 9A shows the AC component of the waveform obtained by the CVS measurement. It contains several components such as intensity autocorrelation, high frequency fringes added to the MIR interferogram. Therefore, the spectrum obtained by Fourier transforming this waveform contains some parts as shown by the broken line. The lowest frequency side (long wavelength side) near the zero frequency is due to the slowly changing intensity autocorrelation waveform (shown in FIG. 9A), which is around 12,500 cm -1 and 25, The spectral component near 000 cm -1 is the high frequency fringe corresponding to the fundamental wave and the second harmonic of the near infrared pulse. The mid-infrared spectrum of interest appears over 790-1800 cm -1 . Since the mid-infrared spectrum is sufficiently separated from other frequency components in the frequency domain, the mid-infrared spectrum can be extracted from the spectrum obtained by simply Fourier transforming the waveform of FIG. 9A.
 中赤外のインターフェログラムから、不要な成分を除去してもよい。高周波スペクトルは中赤外スペクトルから十分に離れているため、ローパルフィルタによって除去することができる。また強度自己相関成分は、図9(a)の生の波形からフィッティングによって得ることができ、それを生の波形から引き算すればよい。図9(b)には、不要な成分を除去することによって復元されたインターフェログラムが示される。図9(c)には、図9(b)のインターフェログラムをフーリエ変換したスペクトルが実線で示される。この波形復元は、低周波数(この例では、850cm-1よりも低い周波数)の中赤外スペクトルを測定する必要がある状況において有用である。 Unwanted components may be removed from the mid-infrared interferrogram. The high frequency spectrum is far enough away from the mid-infrared spectrum and can be removed by a low pal filter. Further, the intensity autocorrelation component can be obtained by fitting from the raw waveform of FIG. 9A, and it may be subtracted from the raw waveform. FIG. 9B shows the interferogram restored by removing unwanted components. In FIG. 9 (c), the spectrum obtained by Fourier transforming the interferogram of FIG. 9 (b) is shown by a solid line. This waveform restoration is useful in situations where it is necessary to measure the mid-infrared spectrum at low frequencies (frequency lower than 850 cm -1 in this example).
 実装した分光器100Bを利用して、サンプル(トルエン)を測定した。図10(a)、(b)は、測定結果を示す図である。図10(a)には、検出系130により生成されるデジタル波形CVS-IR(上述のDW2に対応),CVS-Raman(上述のDW1に対応)が示される。図10(a)から明らかなように、2つの波形のピークが同じタイミングで発生しており、したがって、赤外分光とラマン分光が同時に行われていることがわかる。なお、マイケルソン干渉計114Bにおいて、可動ミラーM2を往復させているため、デジタル波形CVS-IR,CVS-Ramanは、往路と復路とで時間軸方向に反転した波形が得られる。 A sample (toluene) was measured using the mounted spectroscope 100B. 10 (a) and 10 (b) are diagrams showing the measurement results. FIG. 10A shows digital waveforms CVS-IR (corresponding to the above-mentioned DW2) and CVS-Raman (corresponding to the above-mentioned DW1) generated by the detection system 130. As is clear from FIG. 10A, it can be seen that the peaks of the two waveforms occur at the same timing, and therefore infrared spectroscopy and Raman spectroscopy are performed at the same time. Since the movable mirror M2 is reciprocated in the Michelson interferometer 114B, the digital waveforms CVS-IR and CVS-Raman can obtain waveforms inverted in the time axis direction on the outward path and the return path.
 図10(b)の上段には、図10(a)の波形CVS-IRから得られるインターフェログラム(上述のIF_IRに対応)が示される。具体的には、波形CVS-IRから、往路(もしくは復路)の波形だけを複数の周期分(ここでは15周期)、切り出して、平均することにより、インターフェログラムを得ることができる。インターフェログラムを生成する際に、横軸は、光路長差Lに変換されている。 The upper part of FIG. 10B shows an interferogram (corresponding to the above-mentioned IF_IR) obtained from the waveform CVS-IR of FIG. 10A. Specifically, an interferogram can be obtained by cutting out only the waveform of the outward path (or the return path) from the waveform CVS-IR for a plurality of cycles (15 cycles in this case) and averaging them. When generating the interferogram, the horizontal axis is converted to the optical path length difference L.
 また図10(b)の下段には、図10(a)の波形CVS-Ramanから得られるインターフェログラムが示される。インターフェログラムは、波形CVS-Ramanについて、CVS-IRと同じ処理を行うことにより得ることができる。 Further, in the lower part of FIG. 10B, the interferogram obtained from the waveform CVS-Raman of FIG. 10A is shown. The interferogram can be obtained by performing the same processing as CVS-IR for the waveform CVS-Raman.
 図11(a)、(b)は、図10(b)のインターフェログラムをフーリエ変換して得られる相補スペクトルを示す図である。図11(a)において、Referenceとして示すのは、一般的なFT-IRにより得られた結果である。また図11(b)において、Referenceとして示すのは、自発ラマン散乱分光器により得られた結果である。 11 (a) and 11 (b) are diagrams showing complementary spectra obtained by Fourier transforming the interferogram of FIG. 10 (b). In FIG. 11A, what is shown as Reference is the result obtained by general FT-IR. Further, in FIG. 11B, what is shown as a reference is a result obtained by a spontaneous Raman scattering spectroscope.
 図12(a)~(c)には、ベンゼン、クロロホルム、ベンゼンとDMSOの混合液(混合比4:1)について測定したスペクトルを示す。赤外については、800~1700cm-1の領域を、CARSは、600cm-1から3100cm-1の領域を測定しており、クロロホルムのC-Cl振動である667cm-1からベンゼンのC-H振動である3063cm-1をカバーしている。各スペクトルにおいて、特徴的なラマン/IRピークが測定できていることがわかる。 12 (a) to 12 (c) show the spectra measured for a mixed solution of benzene, chloroform, benzene and DMSO (mixing ratio 4: 1). The infrared, an area of 800 ~ 1700 cm -1, CARS is measured region of 3100 cm -1 from 600 cm -1, C-H vibrations of benzene from 667 cm -1 is a C-Cl vibration of chloroform It covers 3063 cm -1 . It can be seen that the characteristic Raman / IR peak can be measured in each spectrum.
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific terms and phrases based on the embodiments, the embodiments show only one aspect of the principles and applications of the present invention, and the embodiments are claimed. Many modifications and arrangement changes are permitted within the range not departing from the idea of the present invention defined in the scope.
(変形例1)
 図13は、変形例1に係る分光器100Cを示す図である。分光器100Cでは、非線形光学結晶120がダブルパルス発生器110Cに組み込まれている。具体的には、非線形光学結晶120は、パルスレーザ光源112とマイケルソン干渉計114の間に設けられており、マイケルソン干渉計114の前段で赤外パルス11が生成される。マイケルソン干渉計114は、近赤外の超短パルス10と赤外パルス11を、2つのアームに分岐し、近赤外ダブルパルス2および赤外ダブルパルス4を生成する。
(Modification example 1)
FIG. 13 is a diagram showing the spectroscope 100C according to the first modification. In the spectroscope 100C, the nonlinear optical crystal 120 is incorporated in the double pulse generator 110C. Specifically, the nonlinear optical crystal 120 is provided between the pulsed laser light source 112 and the Michelson interferometer 114, and an infrared pulse 11 is generated in front of the Michelson interferometer 114. The Michelson interferometer 114 branches the near-infrared ultrashort pulse 10 and the infrared pulse 11 into two arms to generate the near-infrared double pulse 2 and the infrared double pulse 4.
 この変形例1では、近赤外~赤外域にわたる広い波長域において透過率が高くなるようにマイケルソン干渉計114を構成する必要があり、今日の技術では容易ではないが、将来の技術の進歩により採用可能な技術といえる。変形例1は、図9を参照して説明したインターフェログラムIF_IRの補正が不要であるという利点を有する。また、図6に示す第2分散補償器118も不要である。 In this modification 1, it is necessary to configure the Michelson interferometer 114 so that the transmittance is high in a wide wavelength range from the near infrared to the infrared region, which is not easy with today's technology, but future technological progress. It can be said that the technology can be adopted by. The first modification has the advantage that the correction of the interferogram IF_IR described with reference to FIG. 9 is unnecessary. Further, the second dispersion compensator 118 shown in FIG. 6 is also unnecessary.
 変形例1において、マイケルソン干渉計114は、図6の構成を採用してもよいし、図4の構成を採用してもよい。 In the first modification, the Michelson interferometer 114 may adopt the configuration shown in FIG. 6 or the configuration shown in FIG. 4.
(変形例2)
 図14は、変形例2に係る分光器100Dを示す図である。ダブルパルス発生器110Dは、デュアルコム(Dual Comb)分光のアーキテクチャにもとづいて構成される。具体的には、ダブルパルス発生器110Dは、2個のパルス光源112A,112Bを含み、2個のパルス光源112A,112Bが生成する近赤外パルス2A,2Bの位相差が制御可能となっている。2個の近赤外パルス2A,2Bは結合され、近赤外ダブルパルス2が生成される。非線形光学結晶120には、近赤外ダブルパルス2が照射され、赤外ダブルパルス4が生成される。
(Modification 2)
FIG. 14 is a diagram showing the spectroscope 100D according to the second modification. The double pulse generator 110D is constructed based on the dual comb spectroscopic architecture. Specifically, the double pulse generator 110D includes two pulse light sources 112A and 112B, and the phase difference of the near infrared pulses 2A and 2B generated by the two pulse light sources 112A and 112B can be controlled. There is. The two near- infrared pulses 2A and 2B are combined to generate a near-infrared double pulse 2. The nonlinear optical crystal 120 is irradiated with the near-infrared double pulse 2 to generate the infrared double pulse 4.
(変形例3)
 干渉計114の構成は、実施の形態で説明したそれらに限定されず、高速スキャンFTS(フーリエ変換分光)や位相制御FTSのアーキテクチャを導入して、高速化を図り、連続スペクトルの取得速度を向上させてもよい。具体的には、特許文献1に記載の記述と組み合わせてもよい。あるいは干渉計114を、光ファイバーや導波路を用いて構成してもよい。
(Modification 3)
The configuration of the interferometer 114 is not limited to those described in the embodiment, and the architecture of high-speed scan FTS (Fourier transform spectroscopy) and phase control FTS is introduced to increase the speed and improve the acquisition speed of the continuous spectrum. You may let me. Specifically, it may be combined with the description described in Patent Document 1. Alternatively, the interferometer 114 may be configured by using an optical fiber or a waveguide.
(変形例4)
 第2検出器134を、EO-サンプリングのアーキテクチャを導入して実装してもよい。この場合、測定可能な赤外透過光8のスペクトル領域をさらに広げることができる。またEOサンプリングを導入する場合は、第1検出器132と第2検出器134を一体に構成してもよい。
(Modification example 4)
The second detector 134 may be implemented by introducing an EO-sampling architecture. In this case, the spectral region of the measurable infrared transmitted light 8 can be further expanded. Further, when EO sampling is introduced, the first detector 132 and the second detector 134 may be integrally configured.
(変形例5)
 非線形光学結晶120はGaSeには限定されず、LBO(トリホウ酸リチウム)、KDP(リン酸二水素カリウム)、BBO(ホウ酸バリウム),KD*P(リン酸カリウム)、LiNb0(ニオブ酸リチウム)、CLBO(CsLiB10)などを用いることができる。結晶の種類は、必要とされる帯域や強度などを考慮して選べばよい。また異なる複数の非線形光学結晶を組み合わせて用いて、赤外ダブルパルス4のスペクトル幅をさらに広げてもよい。
(Modification 5)
Nonlinear optical crystal 120 is not limited to GaSe, LBO (lithium Torihou acid), KDP (potassium dihydrogen phosphate), BBO (barium borate), KD * P (potassium phosphate), LiNbO 3 (lithium niobate ), CLBO (CsLiB 6 O 10 ) and the like can be used. The type of crystal may be selected in consideration of the required band and strength. Further, the spectral width of the infrared double pulse 4 may be further widened by using a combination of a plurality of different nonlinear optical crystals.
(変形例6)
 パルスレーザ光源112として、チタンサファイア以外のレーザを用いてもよく、近赤外ダブルパルス2の波長も、チタンサファイアのそれと異なっていてもよい。
(Modification 6)
A laser other than titanium sapphire may be used as the pulsed laser light source 112, and the wavelength of the near-infrared double pulse 2 may be different from that of titanium sapphire.
(変形例7)
 実施の形態では、近赤外のダブルパルス2がサンプルSMPに至る光路長と、赤外のダブルパルス4がサンプルSMPに至る光路長が異なっていたが、その限りでなく、それらを等しくしてもよい。この場合、近赤外のパルスと赤外のパルスの相互作用による未知の分子の振る舞い、あるいは非線形効果を測定できる可能性がある。
(Modification 7)
In the embodiment, the optical path length of the near-infrared double pulse 2 to the sample SMP and the optical path length of the infrared double pulse 4 to the sample SMP are different, but they are not limited to the same. May be good. In this case, it may be possible to measure the behavior of unknown molecules or non-linear effects due to the interaction between near-infrared pulses and infrared pulses.
(変形例8)
 非線形光学結晶120において、近赤外の2次高調波(波長400nm近傍)のダブルパルスも生成されている。そこで検出系130を、2次高調波のダブルパルスをサンプルSMPに照射して得られる光を検出可能に構成してもよい。たとえばこの変形例では、2光子吸収などを測定することも可能である。
(Modification 8)
In the nonlinear optical crystal 120, a double pulse of a near-infrared second harmonic (wavelength around 400 nm) is also generated. Therefore, the detection system 130 may be configured to be able to detect the light obtained by irradiating the sample SMP with a double pulse of the second harmonic. For example, in this modification, it is also possible to measure two-photon absorption and the like.
 また分光器100により、近赤外線形分光(すなわち近赤外域の吸収スペクトル)を測定してもよい。 Further, the near-infrared spectroscopy (that is, the absorption spectrum in the near-infrared region) may be measured by the spectroscope 100.
(変形例9)
 上述の分光器では、パルス内差周波発生で得られる赤外スペクトルの帯域が非線形光学結晶の位相整合条件で制限される。したがって相補的振動スペクトルとしての帯域は800~1800cm-1の指紋領域のみにとどまる。そこで非線形光学結晶120の厚さを薄くすることで赤外スペクトルの帯域を拡張できる可能性があるが、代償として生成される中赤外光の出力が落ちてしまうという問題がある。変形例9では、赤外スペクトルの拡張について説明する。
(Modification 9)
In the above-mentioned spectroscope, the band of the infrared spectrum obtained by generating the differential frequency within the pulse is limited by the phase matching condition of the nonlinear optical crystal. Therefore, the band as a complementary vibration spectrum is limited to the fingerprint region of 800 to 1800 cm -1 . Therefore, there is a possibility that the band of the infrared spectrum can be expanded by reducing the thickness of the nonlinear optical crystal 120, but there is a problem that the output of the mid-infrared light generated as a compensation is reduced. Modification 9 describes the extension of the infrared spectrum.
 図15は、変形例9に係る分光器100Eを示す図である。分光器100Eは、異なる複数の非線形光学結晶120(この例では2個)を備える。複数の非線形結晶120_1,120_2は、ダブルパルス発生器110の後段に設けられるが、上述のようにその内部に設けてもよい。 FIG. 15 is a diagram showing the spectroscope 100E according to the modified example 9. The spectroscope 100E includes a plurality of different nonlinear optical crystals 120 (two in this example). The plurality of nonlinear crystals 120_1 and 120_2 are provided after the double pulse generator 110, but may be provided inside the double pulse generator 110 as described above.
 複数の非線形光学結晶120_1,120_2に、近赤外ダブルパルス2が照射される。非線形光学結晶120_1,120_2それぞれにおいて、近赤外のパルス2A(2B)に含まれる異なるスペクトル成分同士の差周波が発生し、これにより、広帯域なスペクトルを有する赤外線のダブルパルス4が生成される。 Near infrared double pulse 2 is applied to a plurality of nonlinear optical crystals 120_1 and 120_2. In each of the nonlinear optical crystals 120_1 and 120_2, a difference frequency between different spectral components contained in the near-infrared pulse 2A (2B) is generated, whereby an infrared double pulse 4 having a wide-band spectrum is generated.
 このダブルパルス4の中赤外スペクトル帯域は、1種類の非線形光学結晶120のみを用いた場合に比べて大幅に拡張される。変形例9のように、複数の非線形光学結晶を用いる方式を、カスケード式と称する。 The mid-infrared spectrum band of this double pulse 4 is significantly expanded as compared with the case where only one type of nonlinear optical crystal 120 is used. A method using a plurality of nonlinear optical crystals as in the modified example 9 is called a cascade method.
 図16(a)は、1個の非線形光学結晶120によるパルス内差周波発生を説明する図であり、図16(b)は、2個の非線形光学結晶120によるカスケード式パルス内差周波発生を説明する図である。図16(a)では、非線形光学結晶120としてGaSeを用い、図16(b)では、非線形光学結晶120_1,120_2として、リチウムアイオデート結晶(LiIO)およびGaSeを用いている。カスケード式パルス内差周波発生により、HO吸収領域およびCO吸収領域をカバーする広帯域なスペクトルを得ることができる。 FIG. 16A is a diagram illustrating the generation of the intra-pulse difference frequency by one nonlinear optical crystal 120, and FIG. 16B is a diagram showing the generation of the cascade-type intra-pulse difference frequency by the two nonlinear optical crystals 120. It is a figure explaining. In FIG. 16A, GaSe is used as the nonlinear optical crystal 120, and in FIG. 16B, lithium iodate crystals (LiIO 3 ) and GaSe are used as the nonlinear optical crystals 120_1 and 120_2. The cascaded pulse in difference frequency generation, it is possible to obtain a wide-band spectrum covering of H 2 O absorption region and the CO 2 absorbing region.
 図17は、分光器100Eの具体的な構成例を示す図である。ダブルパルス発生器110、検出系130の構成は、図4のそれらと同様である。ダブルパルス発生器110が生成する近赤外のダブルパルスは、LiIOである非線形光学結晶120_1に入射し、波長変換される。非線形光学結晶120_1から生じる中赤外光(MIR)は、一旦、近赤外光と分離され、近赤外光NIRのみが、後段のGaSeである非線形光学結晶120_2に入射する。分離後の近赤外光NIRは、非線形光学結晶120_2に入射する前に、必要に応じて分散補償することが好ましい。 FIG. 17 is a diagram showing a specific configuration example of the spectroscope 100E. The configurations of the double pulse generator 110 and the detection system 130 are the same as those in FIG. The near-infrared double pulse generated by the double pulse generator 110 is incident on the nonlinear optical crystal 120_1 which is LiIO 3 and is wavelength-converted. The mid-infrared light (MIR) generated from the nonlinear optical crystal 120_1 is once separated from the near-infrared light, and only the near-infrared light NIR is incident on the nonlinear optical crystal 120_2 which is the subsequent GaSe. It is preferable that the near-infrared light NIR after separation is dispersed and compensated as necessary before being incident on the nonlinear optical crystal 120_2.
 非線形光学結晶120_1,120_2から生じる中赤外光は、ロングパスフィルタのそれぞれ反射および透過特性により、波長的、空間的に結合され、サンプルSMPに照射される。 The mid-infrared light generated from the nonlinear optical crystals 120_1 and 120_2 are wavelengthally and spatially coupled by the reflection and transmission characteristics of the long-pass filter, respectively, and are applied to the sample SMP.
 なお、結晶の透過波長域から検討すると、LiIO、GaSeの順であれば中赤外光を空間的に分離せずにカスケード式パルス内差周波発生を起こすことも原理上は可能であり、たとえば結晶2枚を接合した構造をとることも可能である。この場合、前段のLiIO3で生成された中赤外光は、そのままGaSe結晶を透過する。 Considering from the transmission wavelength range of the crystal, it is possible in principle to generate a cascade type intra-pulse difference frequency without spatially separating the mid-infrared light in the order of LiIO 3 and Gase. For example, it is possible to take a structure in which two crystals are joined. In this case, the mid-infrared light generated by LiIO3 in the previous stage passes through the Gase crystal as it is.
 図18は、図17の分光器100Eの具体的な実装を示す図である。ダブルパルス発生器110および検出系130の構成は、図6のそれと同様である。 FIG. 18 is a diagram showing a specific implementation of the spectroscope 100E of FIG. The configuration of the double pulse generator 110 and the detection system 130 is similar to that of FIG.
 集光光学系170は、ダブルパルス発生器110が生成する近赤外ダブルパルス2を非線形光学結晶120_1に集光するとともに、非線形光学結晶120_1を通過した近赤外ダブルパルス2および赤外ダブルパルス4をコリメートする。上述のように、集光光学系170は、軸外放物面ミラー(OAPM:Off-Axis Parabolic Mirror)で構成することができる。 The focusing optical system 170 focuses the near-infrared double pulse 2 generated by the double pulse generator 110 on the nonlinear optical crystal 120_1, and also passes through the nonlinear optical crystal 120_1 to the near-infrared double pulse 2 and the infrared double pulse. Collimate 4 As described above, the condensing optical system 170 can be configured by an off-axis parabolic mirror (OAPM).
 集光光学系170によりコリメートされた近赤外ダブルパルス2および赤外ダブルパルス4は、ダイクロイックミラーDM2により分離される。非線形光学結晶120_1を透過したことにより広がった近赤外ダブルパルス2のパルス幅は、チャープドミラーペアCMP3により圧縮される。集光光学系172は、パルス幅が補償された近赤外ダブルパルス2を、非線形光学結晶120_2に集光し、非線形光学結晶120_2を通過した近赤外ダブルパルス2および中赤外ダブルパルス3をコリメートする。 The near-infrared double pulse 2 and the infrared double pulse 4 collimated by the condensing optical system 170 are separated by the dichroic mirror DM2. The pulse width of the near-infrared double pulse 2 expanded by passing through the nonlinear optical crystal 120_1 is compressed by the chirped mirror pair CMP3. The condensing optical system 172 condenses the near-infrared double pulse 2 whose pulse width is compensated on the nonlinear optical crystal 120_2, and passes through the nonlinear optical crystal 120_2 to the near-infrared double pulse 2 and the mid-infrared double pulse 3. Collimate.
 ダイクロイックミラーDM3は、近赤外ダブルパルス2および中赤外ダブルパルス3を分離する。近赤外ダブルパルス2は、チャープドミラーペアCMP1によりパルス幅が圧縮される。中赤外ダブルパルス3および4は、6μmのロングパスフィルタLPF、ダイクロイックミラーDM4を経て、元の近赤外ダブルパルス2と合成される。 The dichroic mirror DM3 separates the near-infrared double pulse 2 and the mid-infrared double pulse 3. The pulse width of the near-infrared double pulse 2 is compressed by the chirped mirror pair CMP1. The mid-infrared double pulses 3 and 4 are combined with the original near-infrared double pulse 2 via a 6 μm long-pass filter LPF and a dichroic mirror DM4.
 以上が分光器100Eの実装例である。続いてカスケード式パルス内差周波発生を利用した相補的振動分光法の実験を行った結果を説明する。 The above is an example of mounting the spectroscope 100E. Next, the results of an experiment of complementary vibration spectroscopy using cascaded intra-pulse differential frequency generation will be described.
 図19(a)~(c)は、図18の分光器100Eにより得られたスペクトルを示す図である。図19(a)~(c)はそれぞれ、トルエン、クロロホルム、フェニルアセチレンをサンプルとした測定結果である。各スペクトルは、25回の測定結果を平均したものである。765cm-1および819cm-1に出現するピークは、LiIO結晶由来のラマンスペクトルであり、サンプル由来ではない。 19 (a) to 19 (c) are diagrams showing the spectra obtained by the spectroscope 100E of FIG. 19 (a) to 19 (c) are measurement results using toluene, chloroform, and phenylacetylene as samples, respectively. Each spectrum is an average of the results of 25 measurements. The peaks appearing at 765 cm -1 and 819 cm -1 are Raman spectra derived from LiIO 3 crystals, not samples.
 この結果からわかるように、単一の非線形光学結晶では、800~1800cm-1に制限されていた中赤外スペクトルを、2個の非線形光学結晶を用いたカスケード式パルス内差周波発生を採用することで、800~2900cm-1に拡張できていることがわかる。これにより、CVS-IRもCVS-Ramanと同等に、指紋領域、サイレント領域、CH伸縮振動領域の超広帯域スペクトルが得られるようになっている。 As can be seen from this result, in a single nonlinear optical crystal, the mid-infrared spectrum limited to 800 to 1800 cm -1 is adopted by cascade type intra-pulse differential frequency generation using two nonlinear optical crystals. As a result, it can be seen that it can be expanded to 800 to 2900 cm -1 . As a result, CVS-IR can obtain an ultra-wideband spectrum of a fingerprint region, a silent region, and a CH expansion / contraction vibration region in the same manner as CVS-Raman.
 なお、変形例9では、2種類の非線形光学結晶を用いたが、3種類またはそれより多い種類の非線形光学結晶を用いてもよい。 In the modified example 9, two types of nonlinear optical crystals were used, but three or more types of nonlinear optical crystals may be used.
 また複数の非線形光学結晶は、同じ材料であってもよい。この場合に、非線形光学結晶ごとの厚み、入射角などを最適化することにより、1個の非線形光学結晶を用いる場合に比べて、位相整合条件を満たす帯域を広げることができ、それにより、スペクトルを広帯域化できる。 Further, the plurality of nonlinear optical crystals may be made of the same material. In this case, by optimizing the thickness, incident angle, etc. of each nonlinear optical crystal, the band satisfying the phase matching condition can be widened as compared with the case of using one nonlinear optical crystal, thereby expanding the spectrum. Can be widened.
 実施の形態にもとづき、具体的な用語を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific terms based on the embodiments, the embodiments merely indicate the principles and applications of the present invention, and the embodiments are defined in the claims. Many modifications and arrangement changes are permitted without departing from the ideas of the present invention.
 本発明は、分光器に関する。 The present invention relates to a spectroscope.
 100 分光器
 SMP サンプル
 110 ダブルパルス発生器
 112 パルスレーザ光源
 114 マイケルソン干渉計
 116 ロングパスフィルタ
 118 第2分散補償器
 120 非線形光学結晶
 130 検出系
 132 第1検出器
 134 第2検出器
 136 デジタイザ
 138 偏光子
 SPF ショートパスフィルタ
 DM1 ダイクロイックミラー
 140 信号処理部
 150 第1分散補償器
 160,170 集光光学系
 2 近赤外ダブルパルス
 2A 第1パルス
 2B 第2パルス
 4 赤外ダブルパルス
 4A 第1パルス
 4B 第2パルス
 6 ラマン散乱光
 8 赤外透過光
 10 超短パルス
100 Spectrometer SMP sample 110 Double pulse generator 112 Pulse laser light source 114 Michaelson interferometer 116 Long path filter 118 Second dispersion compensator 120 Non-linear optical crystal 130 Detection system 132 First detector 134 Second detector 136 Digitizer 138 Polarizer SPF Short Path Filter DM1 Dycroic Mirror 140 Signal Processing Unit 150 1st Dispersion Compensator 160, 170 Condensing Optical System 2 Near Infrared Double Pulse 2A 1st Pulse 2B 2nd Pulse 4 Infrared Double Pulse 4A 1st Pulse 4B 2nd Pulse 6 Raman scattered light 8 Infrared transmitted light 10 Ultra-short pulse

Claims (15)

  1.  遅延量が可変な第1ダブルパルスを生成するダブルパルス発生器と、
     前記ダブルパルス発生器の内部あるいは後段に設けられる非線形光学結晶と、
     前記第1ダブルパルスをサンプルに照射して得られるラマン散乱光と、前記非線形光学結晶により生成される赤外の第2ダブルパルスを前記サンプルに照射して得られる赤外線と、を測定可能な検出系と、
     を備えることを特徴とする分光器。
    A double pulse generator that generates a first double pulse with a variable delay amount,
    Non-linear optical crystals provided inside or after the double pulse generator,
    Raman scattered light obtained by irradiating a sample with the first double pulse and infrared rays obtained by irradiating the sample with an infrared second double pulse generated by the nonlinear optical crystal can be measured. System and
    A spectroscope characterized by comprising.
  2.  前記ダブルパルス発生器は、
     パルス光を生成するパルスレーザ光源と、
     前記パルス光を受け、前記第1ダブルパルスを生成する干渉計と、
     を含むことを特徴とする請求項1に記載の分光器。
    The double pulse generator
    With a pulsed laser light source that produces pulsed light,
    An interferometer that receives the pulsed light and generates the first double pulse,
    The spectroscope according to claim 1, wherein the spectroscope comprises.
  3.  前記非線形光学結晶は、前記干渉計の後段に配置されることを特徴とする請求項2に記載の分光器。 The spectroscope according to claim 2, wherein the nonlinear optical crystal is arranged after the interferometer.
  4.  前記非線形光学結晶の後段に設けられ、前記第1ダブルパルスに含まれるパルスのパルス幅を圧縮する第1分散補償器をさらに備えることを特徴とする請求項3に記載の分光器。 The spectroscope according to claim 3, further comprising a first dispersion compensator which is provided after the nonlinear optical crystal and compresses the pulse width of the pulse included in the first double pulse.
  5.  前記検出系の出力を処理する信号処理部をさらに備え、
     前記信号処理部は、赤外のインターフェログラムを補正することを特徴とする請求項3または4のいずれかに記載の分光器。
    A signal processing unit that processes the output of the detection system is further provided.
    The spectroscope according to claim 3 or 4, wherein the signal processing unit corrects an infrared interferogram.
  6.  前記検出系は、
     前記サンプルの透過光を、前記第1ダブルパルスの波長域と赤外域に分離するダイクロイックミラーと、
     前記第1ダブルパルスの波長域に感度を有する第1検出器と、
     前記赤外域に感度を有する第2検出器と、
     を含むことを特徴とする請求項1から5のいずれかに記載の分光器。
    The detection system is
    A dichroic mirror that separates the transmitted light of the sample into the wavelength region and infrared region of the first double pulse.
    The first detector having sensitivity in the wavelength range of the first double pulse, and
    The second detector having sensitivity in the infrared region and
    The spectroscope according to any one of claims 1 to 5, wherein the spectroscope comprises.
  7.  前記検出系は、前記第2検出器の前に挿入された偏光子を含むことを特徴とする請求項6に記載の分光器。 The spectroscope according to claim 6, wherein the detection system includes a polarizer inserted in front of the second detector.
  8.  前記ダブルパルス発生器は、前記非線形光学結晶に入射する前記第1ダブルパルスに含まれるパルスのパルス幅を圧縮する第2分散補償器をさらに含むことを特徴とする請求項3から5のいずれかに記載の分光器。 Any of claims 3 to 5, wherein the double pulse generator further includes a second dispersion compensator that compresses the pulse width of the pulse included in the first double pulse incident on the nonlinear optical crystal. The spectroscope described in.
  9.  前記非線形光学結晶を通過した前記第1ダブルパルスをサンプルに照射する集光光学系をさらに備えることを特徴とする請求項1から8のいずれかに記載の分光器。 The spectroscope according to any one of claims 1 to 8, further comprising a condensing optical system that irradiates a sample with the first double pulse that has passed through the nonlinear optical crystal.
  10.  前記集光光学系は、前記第1ダブルパルスと前記第2ダブルパルスとを同軸で前記サンプルに集光することを特徴とする請求項9に記載の分光器。 The spectroscope according to claim 9, wherein the condensing optical system coaxially condenses the first double pulse and the second double pulse on the sample.
  11.  前記第1ダブルパルスが前記サンプルに至る光路長と、前記第2ダブルパルスが前記サンプルに至る光路長は異なることを特徴とする請求項1から10のいずれかに記載の分光器。 The spectroscope according to any one of claims 1 to 10, wherein the optical path length of the first double pulse to reach the sample and the optical path length of the second double pulse to reach the sample are different.
  12.  前記第1ダブルパルスが前記サンプルに至る光路長と、前記第2ダブルパルスが前記サンプルに至る光路長は等しいことを特徴とする請求項1から10のいずれかに記載の分光器。 The spectroscope according to any one of claims 1 to 10, wherein the optical path length of the first double pulse to reach the sample is equal to the optical path length of the second double pulse to reach the sample.
  13.  前記検出系は、前記非線形光学結晶において生成される2次高調波および/または3次高調波のダブルパルスを前記サンプルに照射して得られる光を検出可能に構成されることを特徴とする請求項1から12のいずれかに記載の分光器。 The detection system is characterized in that the light obtained by irradiating the sample with a double pulse of a second harmonic and / or a third harmonic generated in the nonlinear optical crystal can be detected. Item 4. The spectroscope according to any one of Items 1 to 12.
  14.  前記非線形光学結晶を第1非線形光学結晶とするとき、第2非線形光学結晶をさらに備えることを特徴とする請求項1から13のいずれかに記載の分光器。 The spectroscope according to any one of claims 1 to 13, wherein when the nonlinear optical crystal is a first nonlinear optical crystal, a second nonlinear optical crystal is further provided.
  15.  前記第1非線形光学結晶はLiIOであり、前記第2非線形光学結晶は、GaSeであることを特徴とする請求項14に記載の分光器。 The spectroscope according to claim 14, wherein the first nonlinear optical crystal is LiIO 3 , and the second nonlinear optical crystal is GaSe.
PCT/JP2020/009387 2019-03-28 2020-03-05 Spectrometer WO2020195674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021508924A JP7456639B2 (en) 2019-03-28 2020-03-05 spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019064838 2019-03-28
JP2019-064838 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020195674A1 true WO2020195674A1 (en) 2020-10-01

Family

ID=72611368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009387 WO2020195674A1 (en) 2019-03-28 2020-03-05 Spectrometer

Country Status (2)

Country Link
JP (1) JP7456639B2 (en)
WO (1) WO2020195674A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032290A1 (en) * 2021-08-31 2023-03-09 株式会社島津製作所 Raman spectroscopy device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243881A (en) * 1979-10-12 1981-01-06 International Business Machines Corporation Time-resolved infrared spectral photography
JP2013511718A (en) * 2009-11-18 2013-04-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Multiple pulse impulsive stimulated Raman spectroscopy apparatus and measurement method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243881A (en) * 1979-10-12 1981-01-06 International Business Machines Corporation Time-resolved infrared spectral photography
JP2013511718A (en) * 2009-11-18 2013-04-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Multiple pulse impulsive stimulated Raman spectroscopy apparatus and measurement method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MULLER, N. ET AL.: "Invited Article: Coherent Raman and mid-IR microscopy using shaped pulses in a single-beam setup", APL PHOTONICS, vol. 3, no. 092406, 27 July 2018 (2018-07-27), pages 092406-6 - 092406-9, XP012230335, Retrieved from the Internet <URL:https://doi.org/10.1063/1.5030062> *
OGILVIE, J. P ET AL.: "Fourier-transform coherent anti-Stokes Raman scattering microscopy", OPTICS LETTERS, vol. 31, no. 4, 15 February 2006 (2006-02-15), pages 480 - 842, XP001239068, DOI: 10.1364/OL.31.000480 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032290A1 (en) * 2021-08-31 2023-03-09 株式会社島津製作所 Raman spectroscopy device

Also Published As

Publication number Publication date
JPWO2020195674A1 (en) 2020-10-01
JP7456639B2 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
EP2304412B1 (en) System for generating raman vibrational analysis signals
Réhault et al. Two-dimensional electronic spectroscopy with birefringent wedges
US9207121B2 (en) Cavity-enhanced frequency comb spectroscopy system employing a prism cavity
WO2019220863A1 (en) Optical pulse pair generation device, light detection device, and light detection method
WO2020075441A1 (en) Light source for spectroscopic analysis, spectroscopic analysis device, and spectroscopic analysis method
TWI417628B (en) Coherent multiple-stage optical rectification terahertz wave generator and the operation method
US20150198482A1 (en) Method and apparatus to improve signal-to-noise ratio of ft-ir spectrometers using pulsed light source
WO2020195674A1 (en) Spectrometer
Lerch et al. Experimental requirements for entangled two-photon spectroscopy
US20200278253A1 (en) Linear time-gate method and system for ultrashort pulse characterization
Tani et al. Time-domain coherent anti-Stokes Raman scattering signal detection for terahertz vibrational spectroscopy using chirped femtosecond pulses
WO2014125775A1 (en) Infrared spectrum measuring device and method
US20150028214A1 (en) Rapid optical delay scanning method and apparatus using time dependence of acousto-optic diffraction
JP2022039856A (en) Spectroscopic measurement device and spectroscopic measurement method
CN107923798B (en) Autocorrelation measuring device
JP2723201B2 (en) Optical response speed measuring instrument
Kristensen et al. Fourier transform second harmonic generation for high-resolution nonlinear spectroscopy
Carlson et al. An ultrafast electro-optic dual comb for linear and nonlinear spectroscopy
WO2023112909A1 (en) Time-stretch optical measurement instrument and time-stretch spectroscopy
WO2021038743A1 (en) Spectroscopic measurement device
Fuji et al. Ultrabroadband Infrared Spectroscopy by Chirped Pulse Upconversion.
Ideguchi et al. Differential femtosecond coherent Stokes and anti-Stokes Raman spectroscopy
Davis et al. Decadal bandwidth phase matching for frequency resolved optical gating from the near to the long wavelength infrared
Tada et al. Broadband coherent anti-Stokes Raman scattering spectroscopy using a quasi-supercontinuum light source
Hussain et al. Sub-attosecond-precision optical-waveform stability measurements using electro-optic sampling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779691

Country of ref document: EP

Kind code of ref document: A1