WO2020195455A1 - Reinforcement fiber structure, and method for manufacturing reinforcement fiber structure - Google Patents

Reinforcement fiber structure, and method for manufacturing reinforcement fiber structure Download PDF

Info

Publication number
WO2020195455A1
WO2020195455A1 PCT/JP2020/007440 JP2020007440W WO2020195455A1 WO 2020195455 A1 WO2020195455 A1 WO 2020195455A1 JP 2020007440 W JP2020007440 W JP 2020007440W WO 2020195455 A1 WO2020195455 A1 WO 2020195455A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing fiber
sheet material
fiber sheet
fiber structure
diagonally
Prior art date
Application number
PCT/JP2020/007440
Other languages
French (fr)
Japanese (ja)
Inventor
神谷隆太
福井勇人
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2020195455A1 publication Critical patent/WO2020195455A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes

Definitions

  • the present invention relates to a reinforcing fiber structure and a method for manufacturing a reinforcing fiber structure.
  • Patent Document 1 As a conventional technique for manufacturing a reinforcing fiber structure and a reinforcing fiber structure, for example, a rapid manufacturing method for a composite gas cylinder disclosed in Patent Document 1 is known.
  • a cylinder liner having screw connection portions at both ends is arranged on a mandrel support portion, and a braided carbon fiber material is directly wound around the cylinder liner.
  • Patent Document 1 since the end portion of the braided carbon fiber material to be wound is cut, the fiber is easily unraveled at the cut end portion of the braided carbon fiber material. If the fibers are unraveled during production, it is necessary to take measures to eliminate the unraveling of the fibers, and there is a problem that the production efficiency of the reinforced fiber structure is lowered.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a reinforcing fiber structure capable of efficiently producing a reinforcing fiber structure without causing the fibers of the reinforcing fiber material to unravel during production.
  • the present invention is to provide a method for manufacturing a reinforcing fiber structure.
  • the present invention is a reinforcing fiber structure having a tubular laminated tubular portion in which reinforcing fiber sheet materials are laminated, and the reinforcing fiber sheet materials in the laminated tubular portion are mutually formed. It is composed of a biaxial braid of flat striking with diagonally intersecting diagonally crossed yarns or a triaxial braid of flat striking with diagonally intersecting diagonally crossing yarns and axial yarns, and the diagonally crossing yarn is an end of the laminated cylinder portion. It is characterized by being folded back at the part.
  • the oblique yarns constituting the flat striking biaxial braid or the flat striking triaxial braid are folded back at the end of the laminated cylinder portion of the reinforcing fiber structure. Therefore, the cut end of the oblique yarn does not exist at the end of the reinforcing fiber structure, and the fiber does not unravel at the end of the laminated cylindrical portion at the time of manufacturing the reinforcing fiber structure. As a result, an efficiently manufactured reinforcing fiber structure can be obtained.
  • the laminated tubular portion has a cylindrical portion and a dome portion extending axially from the end portion of the cylindrical portion and decreasing in diameter as the distance from the end portion increases.
  • the cylindrical portion is composed of the flat striking triaxial braid
  • the dome portion is composed of a flat striking biaxial braid of diagonally intersecting diagonally crossed yarns
  • the slanted yarn is the end of the dome portion. It may be configured to be folded back at the part.
  • the dome portion is composed of a flat striking biaxial structure that does not include the axial yarn, the axial yarn is not distorted or left over in the dome portion at the time of shaping.
  • the flat striking biaxial assembly includes a folded end portion in which the oblique yarn is folded back, and the folded end portion extends in the circumferential direction of the laminated cylinder portion. It may be configured to include a thread.
  • the winding tension required for winding the reinforcing fiber sheet material is strengthened at the time of shaping by winding the reinforcing fiber sheet material around the shaping mold. It can be applied to the folded end portion of the fiber sheet material.
  • the present invention is a method for manufacturing a reinforcing fiber structure having a tubular laminated tubular portion in which reinforcing fiber sheet materials are laminated, and forms a flat braid including at least diagonally intersecting yarns diagonally intersecting each other. Then, following the formation of the flat striking braid, the formed flat striking braid is wound around a shaping mold to form a tubular shape.
  • a flat braid is formed, but the flat braid is continuously wound around a shaped mold. Since the formation of the flat striking braid and the winding of the flat striking braid around the shaping mold are continuous, it is possible to efficiently manufacture a reinforcing fiber structure having a tubular laminated tubular portion from the flat striking braid.
  • the present invention it is possible to provide a reinforcing fiber structure and a method for producing a reinforcing fiber structure, which can be efficiently produced without causing the fibers of the reinforcing fiber material to unravel at the time of production.
  • FIG. 1 It is a perspective view which shows the outline of the reinforcing fiber structure which concerns on 1st Embodiment. It is a perspective view of the reinforcing fiber sheet material which forms the reinforcing fiber structure.
  • (A) is a perspective view of a main part of a triaxial assembly portion of a reinforcing fiber sheet material, and (b) is a perspective view of a main part of a biaxial assembly portion of a reinforcing fiber sheet material.
  • (A) is a schematic perspective view of a braiding device for manufacturing a reinforcing fiber sheet material, and (b) is a front view of the braiding device. It is a vertical sectional view of a mandrel provided in a braiding device.
  • the reinforcing fiber structure of the present embodiment is, for example, a precursor (preform) that forms a high-pressure container such as a hydrogen tank.
  • the reinforcing fiber structure has a cylindrical laminated tubular portion 10, and the laminated tubular portion 10 has a shaft continuous from a cylindrical cylindrical portion 11 and both end portions 12 of the cylindrical portion 11. It has a dome portion 13 extending in the direction.
  • the cylindrical portion 11 is a portion where the reinforcing fiber sheet material 14 is wound in a cylindrical shape and laminated, and has a structure in which the reinforcing fiber sheet material 14 is wound at least once in the circumferential direction.
  • the cylindrical portion 11 is a flat striking triaxial structure.
  • the dome portion 13 extending axially from both ends of the cylindrical portion 11 is a portion shaped so that the diameter decreases as the distance from the end portion 12 increases, and the reinforcing fiber sheet material 14 is wound at least once in the circumferential direction. It is a structure that can be taken.
  • the dome portion 13 is a flat striking biaxial structure.
  • the tip of the dome portion 13 is a portion corresponding to the connection portion with the pipe in the high-pressure container.
  • the reinforcing fiber sheet material 14 shown in FIG. 2 is a sheet-like material that forms a reinforcing fiber structure.
  • the reinforcing fiber sheet material 14 includes a triaxial braid portion 15 formed of a triaxial braid and a biaxial braid portion 16 formed continuously from both ends of the triaxial braid portion 15. Have.
  • the reinforcing fiber sheet material 14 is formed by a braiding device 20 that braids by a braiding method described later.
  • the triaxial braid portion 15 of the reinforcing fiber sheet material 14 has diagonally intersecting oblique yarns Y1 and Y2 and axial yarns Y3.
  • the oblique yarns Y1 and Y2 and the axial yarn Y3 are formed by a fiber bundle in which single fibers of reinforcing fibers such as carbon fiber, glass fiber, and ceramic fiber are aggregated, and the cross section of the fiber bundle is a flat shape close to an ellipse. Is.
  • the oblique yarn Y1 intersects the oblique yarn Y2, and the oblique yarns Y1 and Y2 intersect the axial yarn Y3.
  • the angles at which the oblique threads Y1 and Y2 intersect with respect to the axial threads Y3 are the same.
  • the biaxially assembled portion 16 of the reinforcing fiber sheet material 14 has only diagonally intersecting oblique yarns Y1 and Y2, and does not have axial yarn Y3.
  • the biaxial assembly portion 16 includes an end portion 17 parallel to the extending direction of the axial thread Y3 in the triaxial assembly portion 15. At the end 17, the oblique threads Y1 and Y2 are not cut and are folded back.
  • the end portion 17 corresponds to the tip portion of the dome portion 13 in the reinforcing fiber structure.
  • the reinforcing fiber sheet material 14 has end portions 18 in a direction orthogonal to the pair of end portions 17. The end 18 is a cut end formed by cutting.
  • the reinforcing fiber structure is formed by a flat braid forming step of forming the reinforcing fiber sheet material 14 which is a flat braiding by the braiding method and a shaping step of shaping the reinforcing fiber sheet material. obtain.
  • the reinforcing fiber sheet material 14 is formed by using the braiding device 20 shown in FIG. 4 (a).
  • the braiding device 20 includes an annular frame 21, and a mandrel 23 is inserted into a through hole 22 of the annular frame 21.
  • the annular frame 21 is provided with a plurality of bobbins 24 for supplying one oblique yarn Y1 and a plurality of bobbins 25 for supplying the other oblique yarn Y2.
  • the bobbins 24 and 25 move along the 8-shaped orbit 26 formed on the annular frame 21, but the bobbins 24 and 25 move in opposite directions.
  • the track 26 in the annular frame 21 has a pair of folding points 26A at the bottom of the annular frame 21.
  • a plurality of pipe bodies 27 are arranged in an annular shape on one surface of the annular frame 21, and the axial thread Y3 is supplied to the mandrel 23 from the pipe body 27.
  • the position of the axial thread Y3 in the mandrel 23 is set so as to correspond to the triaxial assembly portion 15 of the reinforcing fiber sheet material 14.
  • FIG. 4A only two diagonal yarns Y1 and Y2 and one axial yarn Y3 are shown, but from bobbins 24 and 25, diagonal yarns Y1 and Y2 corresponding to bobbins 24 and 25, respectively. Is supplied, and the axial thread Y3 is supplied from the pipe body 27. Of all the pipe bodies 27, the axial yarn Y3 is not supplied from some of the pipe bodies 27 near the turn-back point 26A.
  • the pipe body 27 to which the axial thread Y3 is not supplied is indicated by a black circle.
  • the reinforcing fiber sheet material 14 is formed on the outer peripheral surface of the mandrel 23, and the triaxial braid portion 15 is formed by the oblique yarns Y1 and Y2 and the axial yarn Y3, and is biaxial.
  • the braided portion 16 is formed by oblique yarns Y1 and Y2. Since the folding point 26A is formed on the orbits 26 of the bobbins 24 and 25, the diagonal crossing threads Y1 and Y2 are folded back at the end 17 and folded back by the bobbins 24 and 25 folding back the folding point 26A. After that, the biaxially assembled portion 16 is formed. As shown in FIG.
  • the folded-back portion B of the oblique yarns Y1 and Y2 is formed at the end portion 17. Therefore, the end portion 17 corresponds to a folded end portion in which the oblique threads Y1 and Y2 are folded back.
  • the triaxial assembly portion 15 occupies about half of the circumference including the upper portion on the outer peripheral surface of the mandrel 23, and the biaxial assembly portion 16 covers the remaining portion. Occupy.
  • the reinforcing fiber sheet material 14 is continuously formed in the axial direction of the mandrel 23.
  • the obtained reinforcing fiber sheet material 14 is removed from the mandrel 23 and then cut to a predetermined size to eliminate the winding habit caused by winding the mandrel 23.
  • the end 18 is formed by cutting, and the flat braid forming step is completed.
  • the reinforcing fiber sheet material 14 is wound around the shaping mold 30 shown in FIG. 6 to shape the shape.
  • the shaped mold 30 has a shape corresponding to the shape of the reinforcing fiber structure, and has a cylindrical portion 31 corresponding to the cylindrical portion 11 and a cone portion 32 corresponding to the dome portion 13.
  • the reinforcing fiber sheet material 14 is wound around the shaping mold 30 so that the axial thread Y3 of the triaxial assembly portion 15 extends in the circumferential direction of the cylindrical portion 31.
  • the reinforcing fiber sheet material 14 is wound around one or more turns in the circumferential direction.
  • the triaxial assembly portion 15 forms a cylindrical cylindrical portion 11. Since the end portion 18 which is the cut end of the reinforcing fiber sheet material 14 overlaps the cylindrical portion 11 by winding one or more turns, the oblique yarns Y1 and Y2 and the axial yarn Y3 do not fray.
  • the cylindrical portion 11 By winding the reinforcing fiber sheet material 14 around the shaping mold 30, the cylindrical portion 11 is formed and the dome portion 13 is formed.
  • the cone portion 32 of the shaping mold 30 has a shape in which the outer diameter becomes smaller toward the tip portion. For this reason, for example, when the dome portion 13 is shaped by the triaxial assembly, the axial thread Y3 undulates and the like, so that it is difficult to shape the dome portion 13 by the triaxial assembly. It is conceivable to use a shaping aid such as glue to facilitate shaping, but it is necessary to apply the shaping aid or the shaping aid.
  • the dome portion 13 is shaped by the biaxially assembled portion 16, the dome portion 13 is easily shaped without being affected by the waviness of the axial thread Y3. Further, the tip portion of the dome portion 13 is formed by an end portion 17 having no cut end. Therefore, the oblique threads Y1 and Y2 do not fray at the tip of the dome portion 13.
  • the reinforcing fiber structure obtained by shaping the reinforcing fiber sheet material 14 is a preform of the reinforcing fiber composite material, and for example, when molded by the resin transfer molding method (RTM method), the reinforcing fiber composite material is formed. To. Further, the obtained reinforcing fiber composite material is completed as a high-pressure container by processing the details.
  • RTM method resin transfer molding method
  • the reinforcing fiber structure and the method for producing the reinforcing fiber structure of the present embodiment have the following effects.
  • (1) The oblique yarns Y1 and Y2 constituting the biaxial braid portion 16 which is a flat striking biaxial braid are folded back at the end 17 of the reinforcing fiber sheet material 14. Therefore, there is no cut end at the end of the reinforcing fiber structure, and the fiber does not unravel at the end of the reinforcing fiber structure at the time of manufacturing the reinforcing fiber structure. Therefore, it is not necessary to take measures to eliminate the unraveling of the fibers, and as a result, an efficiently manufactured reinforcing fiber structure can be obtained.
  • the reinforcing fiber structure has a tubular laminated tubular portion 10, and the laminated tubular portion 10 extends axially from the cylindrical portion 11 and the end portion 12 of the cylindrical portion 11 and has an end portion. It has a dome portion 13 whose diameter decreases as the distance from the 12 increases.
  • the cylindrical portion 11 is composed of a triaxial braided portion 15, the dome portion 13 is composed of a biaxial braided portion 16 composed of oblique yarns Y1 and Y2, and the oblique yarns Y1 and Y2 are tip portions of the dome portion 13. It is folded back at. Therefore, the cylindrical portion 11 formed of the triaxial assembly portion 15 can have sufficient strength.
  • the dome portion 13 is composed of the biaxially assembled portion 16 that does not include the axial yarn Y3, the axial yarn Y3 is not distorted or left over in the dome portion 13 at the time of shaping.
  • the shaping of the dome portion 13 becomes easy, the quality of the dome portion 13 is stabilized, the weight of the reinforcing fiber structure can be reduced, and the material cost can be reduced.
  • a shaping aid such as glue at the time of shaping the reinforcing fiber sheet material 14.
  • the method for producing a reinforcing fiber structure of the present embodiment is that a reinforcing fiber sheet material, which is a flat braid, is formed by a braiding method, and the formed sheet material is continuously shaped without being cut. , Different from the first embodiment. In the present embodiment, the description of the first embodiment is incorporated for the same configuration as that of the first embodiment, and a common reference numeral is used.
  • a reinforcing fiber structure having a tubular laminated tubular portion 40 is obtained.
  • the laminated cylinder portion 40 has a cylindrical portion and a dome portion as in the first embodiment.
  • a flattening mechanism (not shown) for flattening the reinforcing fiber sheet material 41 formed by the braiding device 20 and moving together with the mandrel 23 by continuously deploying the reinforcing fiber sheet material 41 is provided. It is equipped. Further downstream of the flattening mechanism, a shaping type rotating device 43 for rotating the shaping type 44 is provided.
  • the reinforcing fiber sheet material 41 is formed by the braiding device 20, but is a flat braided structure containing at least diagonally crossing yarns Y1 and Y2 that intersect each other diagonally.
  • the reinforcing fiber sheet material 41 does not include axial yarns. It is a framework. By not supplying the axial yarn Y3 from all the pipe bodies 27 in the braiding device 20, the reinforcing fiber sheet material 41 of the biaxial structure is formed.
  • the flattening mechanism has a function of deploying and flattening the reinforcing fiber sheet material 41 formed in a substantially tubular shape on the outer peripheral surface of the mandrel 23. By the flattening mechanism, the substantially tubular reinforcing fiber sheet material 41 is developed and flattened toward the shaping mold 44.
  • the shaped type rotating device 43 includes a rotating shaft 46 that horizontally supports the shaped type 44, and a motor 45 that rotates the rotating shaft 46.
  • the axis of the rotating shaft 46 is a direction orthogonal to the moving direction of the reinforcing fiber sheet material 41.
  • the shaped mold 44 is for forming a reinforcing fiber structure of a high-pressure container, and has the same structure as the shaped mold 30 of the first embodiment except that it has a structure supported by a rotating shaft 46. is there.
  • the axis P of the shaped type 44 and the axis of the rotating shaft 46 coincide with each other.
  • the braiding device 20 forms a reinforcing fiber sheet material 41 of a flat striking biaxial structure including diagonally crossing yarns Y1 and Y2 that intersect each other diagonally.
  • the folded portion B of the oblique yarns Y1 and Y2 is formed at the end portion 42 in the width direction of the reinforcing fiber sheet material 41 formed by the braiding device 20. Therefore, the end portion 42 corresponds to the folded end portion.
  • the reinforcing fiber sheet material 41 is gradually developed and flattened from a substantially tubular state by a flattening mechanism.
  • the flattened reinforcing fiber sheet material 41 is wound around a rotating shaping mold 44 and shaped.
  • the reinforcing fiber sheet material 41 is wound around the shaped mold 44 at least once.
  • the end portion 42 in the width direction of the reinforcing fiber sheet material 41 in the shaping mold 44 serves as a portion corresponding to the end portion of the laminated tubular portion 40 of the reinforcing fiber structure, has a folded-back portion B, and has an oblique yarn Y1. There is no cut end of Y2. Therefore, at the time of winding around the shaping mold 44, the oblique yarns Y1 and Y2 are not unraveled at the end portion 42 of the reinforcing fiber sheet material 41.
  • the formed reinforcing fiber sheet material 41 is wound around the shaping mold 44 and shaped into a cylindrical shape in succession with the formation of the reinforcing fiber sheet material 41. Therefore, after the reinforcing fiber sheet material 41 is formed, it is not necessary to completely remove the reinforcing fiber sheet material 41 from the mandrel 23 and cut it, and the reinforcing fiber sheet material 41 can be shaped following the formation of the reinforcing fiber sheet material 41. Is. Therefore, since the formation of the reinforcing fiber sheet material 41 and the winding of the reinforcing fiber sheet material 41 around the shaping mold 44 are continuous, the reinforcing fiber structure can be efficiently manufactured from the reinforcing fiber sheet material 41.
  • the reinforcing fiber structure of the present embodiment has the same shape as the reinforcing fiber structure of the first and second embodiments, but the structure of the reinforcing fiber sheet material to be shaped is the first and second embodiments. Different from. For the same configuration as the second embodiment, the same reference numerals are used with reference to the description of the first and second embodiments.
  • the reinforcing fiber sheet material 51 shown in FIG. 8 is a biaxial assembly made of oblique yarns Y1 and Y2.
  • the end portion 52 which is the folded end portion of the reinforcing fiber sheet material 51, includes an axial yarn Y4 extending in the circumferential direction of the laminated cylinder portion (not shown).
  • the axial yarn Y4 functions to apply winding tension to the end portion 52 of the reinforcing fiber sheet material 51 when the reinforcing fiber sheet material 51 is wound around the shaping mold 44.
  • the end portion 53 of the reinforcing fiber sheet material 51 is an end portion having a cut end of the oblique yarns Y1 and Y2, and corresponds to the end portion 18 in the first embodiment.
  • the other end 52 includes the axial thread Y4.
  • the axial yarn Y4 is provided at the end 52 of the reinforcing fiber sheet material 51 of the biaxial structure.
  • the reinforcing fiber sheet material is shaped according to the shape of the high-pressure container, but this is not the case.
  • the reinforcing fiber sheet material 61 may be shaped according to the shape of the pipe body.
  • the reinforcing fiber structure has a cylindrical laminated cylinder portion 60 on which the reinforcing fiber sheet material 61 shaped into the shape of a pipe body is laminated.
  • the laminated cylinder portion 60 is an example in which only the cylindrical portion is provided without the dome portion.
  • the end 62 as the folded end having the folded ends B of the oblique yarns Y1 and Y2 may be the end 63 of the laminated cylinder 60, and the reinforcing fiber sheet 61 is axially oriented. Although it is a triaxial assembly including the thread Y3, it may be a biaxial assembly.
  • a reinforcing fiber structure is obtained by using a reinforcing fiber sheet material of a biaxial structure, but this is not the case.
  • a reinforcing fiber structure may be obtained by using a reinforcing fiber sheet material of a triaxial structure.

Abstract

A reinforcement fiber structure having a cylindrical layered tube part (10, 40, 60) in which reinforcement fiber sheet material (14, 41, 51, 61) is layered, wherein the reinforcement fiber sheet material (14, 41, 51, 61) is constituted from a flattened biaxial combination (16) of diagonally intersecting yarns (Y1, Y2) that intersect diagonally, or a flattened triaxial combination (15) of the diagonally intersecting yarns (Y1, Y2) that intersect diagonally and an axial-direction yarn (Y3), the diagonally intersecting yarns (Y1, Y2) being continuously folded back at end parts (17, 42, 52, 62).

Description

強化繊維構造体および強化繊維構造体の製造方法Reinforcing fiber structure and manufacturing method of reinforcing fiber structure
 この発明は、強化繊維構造体および強化繊維構造体の製造方法に関する。 The present invention relates to a reinforcing fiber structure and a method for manufacturing a reinforcing fiber structure.
 強化繊維構造体および強化繊維構造体の製造方法の従来技術としては、例えば、特許文献1に開示された複合ガスシリンダの急速製造方法が知られている。特許文献1では、両端にねじ接続部を有するシリンダライナがマンドレル支持部上に配置され、シリンダライナには編組炭素繊維材料が直接巻き付けされる。 As a conventional technique for manufacturing a reinforcing fiber structure and a reinforcing fiber structure, for example, a rapid manufacturing method for a composite gas cylinder disclosed in Patent Document 1 is known. In Patent Document 1, a cylinder liner having screw connection portions at both ends is arranged on a mandrel support portion, and a braided carbon fiber material is directly wound around the cylinder liner.
米国特許第8858857号明細書U.S. Pat. No. 8,858,857
 しかしながら、特許文献1では、巻き付けされる編組炭素繊維材料の端部は切断されていることから、編組炭素繊維材料における切断された端部では繊維が解れ易い。製造時に繊維の解れが生じると、繊維の解れを解消するための対策が必要となり、強化繊維構造体の製造効率が低下するという問題がある。 However, in Patent Document 1, since the end portion of the braided carbon fiber material to be wound is cut, the fiber is easily unraveled at the cut end portion of the braided carbon fiber material. If the fibers are unraveled during production, it is necessary to take measures to eliminate the unraveling of the fibers, and there is a problem that the production efficiency of the reinforced fiber structure is lowered.
 本発明は上記の問題点に鑑みてなされたもので、本発明の目的は、製造時において強化繊維材料の繊維の解れが生じることなく、効率的に製造することが可能な強化繊維構造体および強化繊維構造体の製造方法の提供にある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a reinforcing fiber structure capable of efficiently producing a reinforcing fiber structure without causing the fibers of the reinforcing fiber material to unravel during production. The present invention is to provide a method for manufacturing a reinforcing fiber structure.
 上記の課題を解決するために、本発明は、強化繊維シート材が積層された筒状の積層筒部を有する強化繊維構造体であって、前記積層筒部における前記強化繊維シート材は、互いに斜めに交差する斜交糸による平打の二軸組物又は互いに斜めに交差する斜交糸および軸方向糸による平打の三軸組物で構成され、前記斜交糸は、前記積層筒部の端部にて折り返されていることを特徴とする。 In order to solve the above problems, the present invention is a reinforcing fiber structure having a tubular laminated tubular portion in which reinforcing fiber sheet materials are laminated, and the reinforcing fiber sheet materials in the laminated tubular portion are mutually formed. It is composed of a biaxial braid of flat striking with diagonally intersecting diagonally crossed yarns or a triaxial braid of flat striking with diagonally intersecting diagonally crossing yarns and axial yarns, and the diagonally crossing yarn is an end of the laminated cylinder portion. It is characterized by being folded back at the part.
 本発明では、平打の二軸組物又は平打の三軸組物を構成する斜交糸は、強化繊維構造体が有する積層筒部の端部にて折り返されている。このため、強化繊維構造体の端部には斜交糸の切断端が存在せず、強化繊維構造体の製造時において積層円筒部の端部に繊維の解れは生じることはない。その結果、効率的に製造された強化繊維構造体を得ることができる。 In the present invention, the oblique yarns constituting the flat striking biaxial braid or the flat striking triaxial braid are folded back at the end of the laminated cylinder portion of the reinforcing fiber structure. Therefore, the cut end of the oblique yarn does not exist at the end of the reinforcing fiber structure, and the fiber does not unravel at the end of the laminated cylindrical portion at the time of manufacturing the reinforcing fiber structure. As a result, an efficiently manufactured reinforcing fiber structure can be obtained.
 また、上記の強化繊維構造体において、前記積層筒部は、円筒部と、前記円筒部の端部から軸方向へ延在し、端部から離れるにつれて小径化するドーム部と、を有し、前記円筒部は前記平打の三軸組物により構成され、前記ドーム部は、互いに斜めに交差する斜交糸による平打の二軸組物により構成され、前記斜交糸は、前記ドーム部の端部にて折り返されている構成としてもよい。
 この場合、ドーム部は軸方向糸を含まない平打の二軸組物により構成されるので、賦形時にドーム部において軸方向糸が歪んだり、余ったりすることがない。ドーム部における軸方向糸の省略により、ドーム部の品質が安定するほか、強化繊維構造体の軽量化および材料費の低減を図ることができる。
Further, in the above-mentioned reinforcing fiber structure, the laminated tubular portion has a cylindrical portion and a dome portion extending axially from the end portion of the cylindrical portion and decreasing in diameter as the distance from the end portion increases. The cylindrical portion is composed of the flat striking triaxial braid, the dome portion is composed of a flat striking biaxial braid of diagonally intersecting diagonally crossed yarns, and the slanted yarn is the end of the dome portion. It may be configured to be folded back at the part.
In this case, since the dome portion is composed of a flat striking biaxial structure that does not include the axial yarn, the axial yarn is not distorted or left over in the dome portion at the time of shaping. By omitting the axial thread in the dome portion, the quality of the dome portion can be stabilized, the weight of the reinforcing fiber structure can be reduced, and the material cost can be reduced.
 また、上記の強化繊維構造体において、前記平打の二軸組物は、前記斜交糸が折り返されている折り返し端部を備え、前記折り返し端部に前記積層筒部の周方向に延びる軸方向糸を備える構成としてもよい。
 この場合、二軸組物における折り返し端部に軸方向糸が備えられることにより、強化繊維シート材の賦形型への巻回による賦形時に、賦形型に対する巻き付けに必要な巻き付け張力を強化繊維シート材の折り返し端部に付与することができる。
Further, in the above-mentioned reinforcing fiber structure, the flat striking biaxial assembly includes a folded end portion in which the oblique yarn is folded back, and the folded end portion extends in the circumferential direction of the laminated cylinder portion. It may be configured to include a thread.
In this case, by providing an axial thread at the folded end of the biaxial assembly, the winding tension required for winding the reinforcing fiber sheet material is strengthened at the time of shaping by winding the reinforcing fiber sheet material around the shaping mold. It can be applied to the folded end portion of the fiber sheet material.
 また、本発明は、強化繊維シート材が積層された筒状の積層筒部を有する強化繊維構造体の製造方法であって、互いに斜めに交差する斜交糸を少なくとも含む平打の組物を形成し、前記平打の組物の形成と連続して、形成された前記平打の組物を賦形型に巻き付けて筒状に賦形することを特徴とする。
 本発明では、平打の組物が形成されるが、連続して平打ちの組物が賦形型に巻き付けられる。平打の組物の形成と平打の組物の賦形型への巻き付けが連続するので、平打の組物から筒状の積層筒部を有する強化繊維構造体を効率的に製造することができる。
Further, the present invention is a method for manufacturing a reinforcing fiber structure having a tubular laminated tubular portion in which reinforcing fiber sheet materials are laminated, and forms a flat braid including at least diagonally intersecting yarns diagonally intersecting each other. Then, following the formation of the flat striking braid, the formed flat striking braid is wound around a shaping mold to form a tubular shape.
In the present invention, a flat braid is formed, but the flat braid is continuously wound around a shaped mold. Since the formation of the flat striking braid and the winding of the flat striking braid around the shaping mold are continuous, it is possible to efficiently manufacture a reinforcing fiber structure having a tubular laminated tubular portion from the flat striking braid.
 本発明によれば、製造時において強化繊維材料の繊維の解れが生じることなく、効率的に製造することが可能な強化繊維構造体および強化繊維構造体の製造方法を提供できる。 According to the present invention, it is possible to provide a reinforcing fiber structure and a method for producing a reinforcing fiber structure, which can be efficiently produced without causing the fibers of the reinforcing fiber material to unravel at the time of production.
第1の実施形態に係る強化繊維構造体の概要を示す斜視図である。It is a perspective view which shows the outline of the reinforcing fiber structure which concerns on 1st Embodiment. 強化繊維構造体を形成する強化繊維シート材の斜視図である。It is a perspective view of the reinforcing fiber sheet material which forms the reinforcing fiber structure. (a)は強化繊維シート材の三軸組物部の要部斜視図であり、(b)は強化繊維シート材の二軸組物部の要部斜視図である。(A) is a perspective view of a main part of a triaxial assembly portion of a reinforcing fiber sheet material, and (b) is a perspective view of a main part of a biaxial assembly portion of a reinforcing fiber sheet material. (a)は強化繊維シート材を製造するブレーディング装置の概略斜視図であり、(b)はブレーディング装置の正面図である。(A) is a schematic perspective view of a braiding device for manufacturing a reinforcing fiber sheet material, and (b) is a front view of the braiding device. ブレーディング装置が備えるマンドレルの縦断面図である。It is a vertical sectional view of a mandrel provided in a braiding device. 賦形型の斜視図である。It is a perspective view of a shaped type. 第2の実施形態に係る強化繊維構造体の製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the reinforcing fiber structure which concerns on 2nd Embodiment. 第3の実施形態に係る強化繊維シート材の要部斜視図である。It is a main part perspective view of the reinforcing fiber sheet material which concerns on 3rd Embodiment. 変形例に係る賦形された強化繊維シート材の斜視図である。It is a perspective view of the shaped reinforcing fiber sheet material which concerns on a modification.
(第1の実施形態)
 以下、第1の実施形態に係る強化繊維構造体および強化繊維構造体の製造方法について図面を参照して説明する。本実施形態の強化繊維構造体は、例えば、水素タンク等の高圧容器を形成する前駆体(プリフォーム)である。
(First Embodiment)
Hereinafter, the reinforcing fiber structure and the method for manufacturing the reinforcing fiber structure according to the first embodiment will be described with reference to the drawings. The reinforcing fiber structure of the present embodiment is, for example, a precursor (preform) that forms a high-pressure container such as a hydrogen tank.
 まず、強化繊維構造体について説明する。図1に示すように、強化繊維構造体は、筒状の積層筒部10を有し、積層筒部10は、円筒状の円筒部11と、円筒部11の両端部12から連続して軸方向へ延在するドーム部13とを有している。円筒部11は、強化繊維シート材14が円筒状に巻かれて積層された部位であり、強化繊維シート材14が少なくとも周方向に一周以上巻かれる構造である。円筒部11は平打の三軸組物である。 First, the reinforcing fiber structure will be described. As shown in FIG. 1, the reinforcing fiber structure has a cylindrical laminated tubular portion 10, and the laminated tubular portion 10 has a shaft continuous from a cylindrical cylindrical portion 11 and both end portions 12 of the cylindrical portion 11. It has a dome portion 13 extending in the direction. The cylindrical portion 11 is a portion where the reinforcing fiber sheet material 14 is wound in a cylindrical shape and laminated, and has a structure in which the reinforcing fiber sheet material 14 is wound at least once in the circumferential direction. The cylindrical portion 11 is a flat striking triaxial structure.
 円筒部11の両端部から軸方向へ延在するドーム部13は、端部12から離れるにつれて小径化するように賦形された部位であり、強化繊維シート材14が少なくとも周方向に一周以上巻かれる構造である。ドーム部13は平打の二軸組物である。ドーム部13の先端部は、高圧容器における配管との接続部に対応する部位である。 The dome portion 13 extending axially from both ends of the cylindrical portion 11 is a portion shaped so that the diameter decreases as the distance from the end portion 12 increases, and the reinforcing fiber sheet material 14 is wound at least once in the circumferential direction. It is a structure that can be taken. The dome portion 13 is a flat striking biaxial structure. The tip of the dome portion 13 is a portion corresponding to the connection portion with the pipe in the high-pressure container.
 図2に示す強化繊維シート材14は、強化繊維構造体を形成するシート状の材料の状態である。強化繊維シート材14は、三軸組物により形成されている三軸組物部15と、三軸組物部15の両端からそれぞれ連続して形成されている二軸組物部16と、を有している。強化繊維シート材14は、後述するブレーディング法による編組を行うブレーディング装置20により形成される。 The reinforcing fiber sheet material 14 shown in FIG. 2 is a sheet-like material that forms a reinforcing fiber structure. The reinforcing fiber sheet material 14 includes a triaxial braid portion 15 formed of a triaxial braid and a biaxial braid portion 16 formed continuously from both ends of the triaxial braid portion 15. Have. The reinforcing fiber sheet material 14 is formed by a braiding device 20 that braids by a braiding method described later.
 図3(a)に示すように、強化繊維シート材14の三軸組物部15は、斜めに交差する斜交糸Y1、Y2および軸方向糸Y3を有している。斜交糸Y1、Y2および軸方向糸Y3は、カーボン繊維、ガラス繊維、セラミックス繊維等の強化繊維の単繊維が集合した繊維束により形成されており、繊維束の断面は楕円形に近い扁平形状である。斜交糸Y1は斜交糸Y2に対して交差し、斜交糸Y1、Y2は軸方向糸Y3に対して交差する。斜交糸Y1、Y2の軸方向糸Y3に対して交差する角度は同じである。 As shown in FIG. 3A, the triaxial braid portion 15 of the reinforcing fiber sheet material 14 has diagonally intersecting oblique yarns Y1 and Y2 and axial yarns Y3. The oblique yarns Y1 and Y2 and the axial yarn Y3 are formed by a fiber bundle in which single fibers of reinforcing fibers such as carbon fiber, glass fiber, and ceramic fiber are aggregated, and the cross section of the fiber bundle is a flat shape close to an ellipse. Is. The oblique yarn Y1 intersects the oblique yarn Y2, and the oblique yarns Y1 and Y2 intersect the axial yarn Y3. The angles at which the oblique threads Y1 and Y2 intersect with respect to the axial threads Y3 are the same.
 図3(b)に示すように、強化繊維シート材14の二軸組物部16は、斜めに交差する斜交糸Y1、Y2のみを有し、軸方向糸Y3を有しない。二軸組物部16は、三軸組物部15における軸方向糸Y3の延在方向と平行な端部17を備えている。端部17では斜交糸Y1、Y2が切断されず折り返されている。端部17は、強化繊維構造体におけるドーム部13の先端部と対応する。強化繊維シート材14は、一対の端部17と直交する方向の端部18を有している。端部18は切断によって形成された切断端部である。 As shown in FIG. 3B, the biaxially assembled portion 16 of the reinforcing fiber sheet material 14 has only diagonally intersecting oblique yarns Y1 and Y2, and does not have axial yarn Y3. The biaxial assembly portion 16 includes an end portion 17 parallel to the extending direction of the axial thread Y3 in the triaxial assembly portion 15. At the end 17, the oblique threads Y1 and Y2 are not cut and are folded back. The end portion 17 corresponds to the tip portion of the dome portion 13 in the reinforcing fiber structure. The reinforcing fiber sheet material 14 has end portions 18 in a direction orthogonal to the pair of end portions 17. The end 18 is a cut end formed by cutting.
 次に、強化繊維構造体の製造方法について説明する。本実施形態では、ブレーディング法により平打ちの組物である強化繊維シート材14を形成する平打組物形成工程と、強化繊維シート材を賦形する賦形工程とにより、強化繊維構造体を得る。 Next, a method for manufacturing the reinforcing fiber structure will be described. In the present embodiment, the reinforcing fiber structure is formed by a flat braid forming step of forming the reinforcing fiber sheet material 14 which is a flat braiding by the braiding method and a shaping step of shaping the reinforcing fiber sheet material. obtain.
 平打組物形成工程では、図4(a)に示すブレーディング装置20を用いて強化繊維シート材14を形成する。ブレーディング装置20は環状フレーム21を備えており、環状フレーム21の貫通孔22にマンドレル23が挿通される。環状フレーム21には、一方の斜交糸Y1を供給する複数のボビン24と、他方の斜交糸Y2を供給する複数のボビン25が配設されている。ボビン24およびボビン25は環状フレーム21に形成された8字状の軌道26に沿って移動するが、ボビン24、25の移動方向は互いに逆方向である。図4(b)に示すように、環状フレーム21における軌道26は環状フレーム21の下部にて一対の折り返し点26Aを有する。 In the flat braid forming step, the reinforcing fiber sheet material 14 is formed by using the braiding device 20 shown in FIG. 4 (a). The braiding device 20 includes an annular frame 21, and a mandrel 23 is inserted into a through hole 22 of the annular frame 21. The annular frame 21 is provided with a plurality of bobbins 24 for supplying one oblique yarn Y1 and a plurality of bobbins 25 for supplying the other oblique yarn Y2. The bobbins 24 and 25 move along the 8-shaped orbit 26 formed on the annular frame 21, but the bobbins 24 and 25 move in opposite directions. As shown in FIG. 4B, the track 26 in the annular frame 21 has a pair of folding points 26A at the bottom of the annular frame 21.
 環状フレーム21の一方の面には複数のパイプ体27が環状に配列されており、パイプ体27から軸方向糸Y3がマンドレル23に供給される。強化繊維シート材14の三軸組物部15に対応するように、マンドレル23における軸方向糸Y3の位置が設定されている。因みに、図4(a)では2つの斜交糸Y1、Y2と1本の軸方向糸Y3のみを図示したが、ボビン24、25からはボビン24、25にそれぞれ対応する斜交糸Y1、Y2が供給され、パイプ体27からは軸方向糸Y3が供給される。全てのパイプ体27のうち、折り返し点26Aに近い幾つかのパイプ体27からは軸方向糸Y3が供給されない状態としている。図4(b)では、軸方向糸Y3が供給されないパイプ体27を黒丸にて示す。 A plurality of pipe bodies 27 are arranged in an annular shape on one surface of the annular frame 21, and the axial thread Y3 is supplied to the mandrel 23 from the pipe body 27. The position of the axial thread Y3 in the mandrel 23 is set so as to correspond to the triaxial assembly portion 15 of the reinforcing fiber sheet material 14. Incidentally, in FIG. 4A, only two diagonal yarns Y1 and Y2 and one axial yarn Y3 are shown, but from bobbins 24 and 25, diagonal yarns Y1 and Y2 corresponding to bobbins 24 and 25, respectively. Is supplied, and the axial thread Y3 is supplied from the pipe body 27. Of all the pipe bodies 27, the axial yarn Y3 is not supplied from some of the pipe bodies 27 near the turn-back point 26A. In FIG. 4B, the pipe body 27 to which the axial thread Y3 is not supplied is indicated by a black circle.
 ブレーディング装置20の作動により、強化繊維シート材14がマンドレル23の外周面に形成されるが、三軸組物部15は、斜交糸Y1、Y2と軸方向糸Y3により形成され、二軸組物部16は、斜交糸Y1、Y2により形成される。ボビン24、25の軌道26には折り返し点26Aが形成されているので、ボビン24、25が折り返し点26Aを折り返すことにより、斜交糸Y1、Y2は、端部17にて折り返され、折り返された後も二軸組物部16を形成する。図3(b)に示すように、端部17には斜交糸Y1、Y2における折り返し部Bが形成されている。したがって、端部17は、斜交糸Y1、Y2が折り返されている折り返し端部に相当する。 By the operation of the braiding device 20, the reinforcing fiber sheet material 14 is formed on the outer peripheral surface of the mandrel 23, and the triaxial braid portion 15 is formed by the oblique yarns Y1 and Y2 and the axial yarn Y3, and is biaxial. The braided portion 16 is formed by oblique yarns Y1 and Y2. Since the folding point 26A is formed on the orbits 26 of the bobbins 24 and 25, the diagonal crossing threads Y1 and Y2 are folded back at the end 17 and folded back by the bobbins 24 and 25 folding back the folding point 26A. After that, the biaxially assembled portion 16 is formed. As shown in FIG. 3 (b), the folded-back portion B of the oblique yarns Y1 and Y2 is formed at the end portion 17. Therefore, the end portion 17 corresponds to a folded end portion in which the oblique threads Y1 and Y2 are folded back.
 図5に示すように、マンドレル23における強化繊維シート材14では、三軸組物部15がマンドレル23の外周面において上部を含む約半周分を占め、二軸組物部16は残りの部分を占める。強化繊維シート材14は、マンドレル23の軸方向に連続的に形成される。得られた強化繊維シート材14は、マンドレル23から取り外した後、所定の寸法に切断し、マンドレル23の巻き付けによる巻き癖を解消する。切断により端部18が形成され、平打組物形成工程が完了する。 As shown in FIG. 5, in the reinforcing fiber sheet material 14 in the mandrel 23, the triaxial assembly portion 15 occupies about half of the circumference including the upper portion on the outer peripheral surface of the mandrel 23, and the biaxial assembly portion 16 covers the remaining portion. Occupy. The reinforcing fiber sheet material 14 is continuously formed in the axial direction of the mandrel 23. The obtained reinforcing fiber sheet material 14 is removed from the mandrel 23 and then cut to a predetermined size to eliminate the winding habit caused by winding the mandrel 23. The end 18 is formed by cutting, and the flat braid forming step is completed.
 次に、賦形工程では、図6に示す賦形型30に強化繊維シート材14を巻き付けて賦形する。賦形型30は、強化繊維構造体の形状と対応する形状であり、円筒部11に対応する円柱部31とドーム部13に対応するコーン部32を有している。賦形型30に対して三軸組物部15の軸方向糸Y3が円柱部31の周方向に延びるように強化繊維シート材14を巻き付ける。賦形型30において強化繊維シート材14は周方向に一周以上巻き付ける。賦形型30への強化繊維シート材14の巻き付けにより、三軸組物部15は円筒状の円筒部11を形成する。なお、強化繊維シート材14における切断端である端部18は、一周以上の巻き付けにより円筒部11に重なるため、斜交糸Y1、Y2および軸方向糸Y3のほつれは生じない。 Next, in the shaping step, the reinforcing fiber sheet material 14 is wound around the shaping mold 30 shown in FIG. 6 to shape the shape. The shaped mold 30 has a shape corresponding to the shape of the reinforcing fiber structure, and has a cylindrical portion 31 corresponding to the cylindrical portion 11 and a cone portion 32 corresponding to the dome portion 13. The reinforcing fiber sheet material 14 is wound around the shaping mold 30 so that the axial thread Y3 of the triaxial assembly portion 15 extends in the circumferential direction of the cylindrical portion 31. In the shaping mold 30, the reinforcing fiber sheet material 14 is wound around one or more turns in the circumferential direction. By winding the reinforcing fiber sheet material 14 around the shaping mold 30, the triaxial assembly portion 15 forms a cylindrical cylindrical portion 11. Since the end portion 18 which is the cut end of the reinforcing fiber sheet material 14 overlaps the cylindrical portion 11 by winding one or more turns, the oblique yarns Y1 and Y2 and the axial yarn Y3 do not fray.
 賦形型30への強化繊維シート材14の巻き付けにより、円筒部11の形成とともにドーム部13を形成する。ところで、賦形型30のコーン部32は先端部へ向かうにつれて外径が小さくなる形状である。このため、例えば、三軸組物によってドーム部13を賦形すると軸方向糸Y3のうねり等が生じることから、三軸組物によるドーム部13の賦形は困難である。糊などの賦形をし易くする賦形助剤を用いることも考えられるが、賦形助剤や賦形助剤を塗布する作業が必要となる。 By winding the reinforcing fiber sheet material 14 around the shaping mold 30, the cylindrical portion 11 is formed and the dome portion 13 is formed. By the way, the cone portion 32 of the shaping mold 30 has a shape in which the outer diameter becomes smaller toward the tip portion. For this reason, for example, when the dome portion 13 is shaped by the triaxial assembly, the axial thread Y3 undulates and the like, so that it is difficult to shape the dome portion 13 by the triaxial assembly. It is conceivable to use a shaping aid such as glue to facilitate shaping, but it is necessary to apply the shaping aid or the shaping aid.
 本実施形態では、ドーム部13を二軸組物部16により賦形するため、軸方向糸Y3のうねり等の影響を受けることはなく、ドーム部13の賦形は容易である。また、ドーム部13の先端部は、切断端のない端部17により形成される。このため、ドーム部13の先端部において斜交糸Y1、Y2のほつれは生じない。 In the present embodiment, since the dome portion 13 is shaped by the biaxially assembled portion 16, the dome portion 13 is easily shaped without being affected by the waviness of the axial thread Y3. Further, the tip portion of the dome portion 13 is formed by an end portion 17 having no cut end. Therefore, the oblique threads Y1 and Y2 do not fray at the tip of the dome portion 13.
 強化繊維シート材14の賦形により得られた強化繊維構造体は、強化繊維複合材のプリフォームであり、例えば、レジントランスファーモールディング法(RTM法)により成形されると強化繊維複合材が形成される。さらに、得られた強化繊維複合材は細部を加工することにより高圧容器として完成する。 The reinforcing fiber structure obtained by shaping the reinforcing fiber sheet material 14 is a preform of the reinforcing fiber composite material, and for example, when molded by the resin transfer molding method (RTM method), the reinforcing fiber composite material is formed. To. Further, the obtained reinforcing fiber composite material is completed as a high-pressure container by processing the details.
 本実施形態の強化繊維構造体および強化繊維構造体の製造方法は以下の作用効果を奏する。
(1)平打の二軸組物である二軸組物部16を構成する斜交糸Y1、Y2は、強化繊維シート材14の端部17にて折り返されている。このため、強化繊維構造体の端部には切断端が存在せず、強化繊維構造体の製造時において強化繊維構造体の端部に繊維の解れは生じることはない。従って、繊維の解れを解消するための対策を施す必要がなく、その結果、効率的に製造された強化繊維構造体を得ることができる。
The reinforcing fiber structure and the method for producing the reinforcing fiber structure of the present embodiment have the following effects.
(1) The oblique yarns Y1 and Y2 constituting the biaxial braid portion 16 which is a flat striking biaxial braid are folded back at the end 17 of the reinforcing fiber sheet material 14. Therefore, there is no cut end at the end of the reinforcing fiber structure, and the fiber does not unravel at the end of the reinforcing fiber structure at the time of manufacturing the reinforcing fiber structure. Therefore, it is not necessary to take measures to eliminate the unraveling of the fibers, and as a result, an efficiently manufactured reinforcing fiber structure can be obtained.
(2)強化繊維構造体は、筒状の積層筒部10を有しており、積層筒部10は、円筒部11と、円筒部11の端部12から軸方向へ延在し、端部12から離れるにつれて小径化するドーム部13と、を有する。円筒部11は三軸組物部15により構成され、ドーム部13は、斜交糸Y1、Y2による二軸組物部16により構成され、斜交糸Y1、Y2は、ドーム部13の先端部にて折り返されている。このため、三軸組物部15により構成される円筒部11は十分な強度を備えることができる。また、ドーム部13は軸方向糸Y3を含まない二軸組物部16により構成されるので、賦形時にドーム部13において軸方向糸Y3が歪んだり、余ったりすることがない。ドーム部13における軸方向糸Y3の省略により、ドーム部13の賦形が容易となり、ドーム部13の品質が安定するほか、強化繊維構造体の軽量化および材料費の低減を図ることができる。また、ドーム部13における軸方向糸Y3の省略により、強化繊維シート材14の賦形時において糊等の賦形助剤を用いる必要もない。 (2) The reinforcing fiber structure has a tubular laminated tubular portion 10, and the laminated tubular portion 10 extends axially from the cylindrical portion 11 and the end portion 12 of the cylindrical portion 11 and has an end portion. It has a dome portion 13 whose diameter decreases as the distance from the 12 increases. The cylindrical portion 11 is composed of a triaxial braided portion 15, the dome portion 13 is composed of a biaxial braided portion 16 composed of oblique yarns Y1 and Y2, and the oblique yarns Y1 and Y2 are tip portions of the dome portion 13. It is folded back at. Therefore, the cylindrical portion 11 formed of the triaxial assembly portion 15 can have sufficient strength. Further, since the dome portion 13 is composed of the biaxially assembled portion 16 that does not include the axial yarn Y3, the axial yarn Y3 is not distorted or left over in the dome portion 13 at the time of shaping. By omitting the axial thread Y3 in the dome portion 13, the shaping of the dome portion 13 becomes easy, the quality of the dome portion 13 is stabilized, the weight of the reinforcing fiber structure can be reduced, and the material cost can be reduced. Further, by omitting the axial thread Y3 in the dome portion 13, it is not necessary to use a shaping aid such as glue at the time of shaping the reinforcing fiber sheet material 14.
(第2の実施形態)
 次に、第2の実施形態に係る強化繊維構造体の製造方法について説明する。本実施形態の強化繊維構造体の製造方法は、ブレーディング法により平打の組物である強化繊維シート材を形成し、形成されるシート材が切断されることなく、引き続き賦形される点で、第1の実施形態と異なる。本実施形態では、第1の実施形態と同じ構成については第1の実施形態の説明を援用し、共通の符号を用いる。
(Second Embodiment)
Next, a method for manufacturing the reinforcing fiber structure according to the second embodiment will be described. The method for producing a reinforcing fiber structure of the present embodiment is that a reinforcing fiber sheet material, which is a flat braid, is formed by a braiding method, and the formed sheet material is continuously shaped without being cut. , Different from the first embodiment. In the present embodiment, the description of the first embodiment is incorporated for the same configuration as that of the first embodiment, and a common reference numeral is used.
 図7に示すように、本実施形態では、ブレーディング法により平打ちの組物である強化繊維シート材41を形成する平打組物形成工程と、強化繊維シート材41を賦形する賦形工程とにより、筒状の積層筒部40を有する強化繊維構造体を得る。積層筒部40は第1の実施形態と同様に円筒部およびドーム部を有する。ブレーディング装置20のマンドレル23の下流側に、ブレーディング装置20により形成され、マンドレル23とともに移動する強化繊維シート材41を、引き続いて展開することにより平坦化させる平坦化機構(図示せず)が備えられている。平坦化機構のさらに下流側には、賦形型44を回転させる賦形型回転装置43が備えられている。 As shown in FIG. 7, in the present embodiment, a flat braid forming step of forming a reinforcing fiber sheet material 41 which is a flat braid by a braiding method and a shaping step of shaping the reinforcing fiber sheet material 41. As a result, a reinforcing fiber structure having a tubular laminated tubular portion 40 is obtained. The laminated cylinder portion 40 has a cylindrical portion and a dome portion as in the first embodiment. On the downstream side of the mandrel 23 of the braiding device 20, a flattening mechanism (not shown) for flattening the reinforcing fiber sheet material 41 formed by the braiding device 20 and moving together with the mandrel 23 by continuously deploying the reinforcing fiber sheet material 41 is provided. It is equipped. Further downstream of the flattening mechanism, a shaping type rotating device 43 for rotating the shaping type 44 is provided.
 強化繊維シート材41は、ブレーディング装置20により形成されるが、互いに斜めに交差する斜交糸Y1、Y2を少なくとも含む平打の組物であり、本実施形態では、軸方向糸を含まない二軸組物である。ブレーディング装置20におけるすべてのパイプ体27から軸方向糸Y3を供給しないことにより、二軸組物の強化繊維シート材41が形成される。 The reinforcing fiber sheet material 41 is formed by the braiding device 20, but is a flat braided structure containing at least diagonally crossing yarns Y1 and Y2 that intersect each other diagonally. In the present embodiment, the reinforcing fiber sheet material 41 does not include axial yarns. It is a framework. By not supplying the axial yarn Y3 from all the pipe bodies 27 in the braiding device 20, the reinforcing fiber sheet material 41 of the biaxial structure is formed.
 平坦化機構は、マンドレル23の外周面に略筒状に形成される強化繊維シート材41を展開して平坦化する機能を有する。平坦化機構により略筒状の強化繊維シート材41は、賦形型44へ向かうにつれて展開されて平坦化される。 The flattening mechanism has a function of deploying and flattening the reinforcing fiber sheet material 41 formed in a substantially tubular shape on the outer peripheral surface of the mandrel 23. By the flattening mechanism, the substantially tubular reinforcing fiber sheet material 41 is developed and flattened toward the shaping mold 44.
 賦形型回転装置43は、賦形型44を水平に支持する回転軸46と、回転軸46を回転させるモータ45と、を備えている。回転軸46の軸心は、強化繊維シート材41の移動方向に対して直交する方向である。賦形型44は、高圧容器の強化繊維構造体を形成するためのものであり、回転軸46に支持される構成を備えるほかは、第1の実施形態の賦形型30と構造は同じである。賦形型44の軸中心Pと回転軸46の軸心は一致する。 The shaped type rotating device 43 includes a rotating shaft 46 that horizontally supports the shaped type 44, and a motor 45 that rotates the rotating shaft 46. The axis of the rotating shaft 46 is a direction orthogonal to the moving direction of the reinforcing fiber sheet material 41. The shaped mold 44 is for forming a reinforcing fiber structure of a high-pressure container, and has the same structure as the shaped mold 30 of the first embodiment except that it has a structure supported by a rotating shaft 46. is there. The axis P of the shaped type 44 and the axis of the rotating shaft 46 coincide with each other.
 本実施形態では、互いに斜めに交差する斜交糸Y1、Y2を含む平打の二軸組物の強化繊維シート材41がブレーディング装置20により形成される。図7に示すように、ブレーディング装置20により形成される強化繊維シート材41の幅方向の端部42には、斜交糸Y1、Y2の折り返し部Bが形成されている。したがって、端部42は折り返し端部に相当する。 In the present embodiment, the braiding device 20 forms a reinforcing fiber sheet material 41 of a flat striking biaxial structure including diagonally crossing yarns Y1 and Y2 that intersect each other diagonally. As shown in FIG. 7, the folded portion B of the oblique yarns Y1 and Y2 is formed at the end portion 42 in the width direction of the reinforcing fiber sheet material 41 formed by the braiding device 20. Therefore, the end portion 42 corresponds to the folded end portion.
 強化繊維シート材41は、平坦化機構により略筒状の状態から徐々に展開されて平坦化される。平坦化された強化繊維シート材41は、回転する賦形型44に巻き付けられて賦形される。賦形型44には強化繊維シート材41が少なくとも一周以上巻き付けられる。賦形型44における強化繊維シート材41の幅方向の端部42は、強化繊維構造体が有する積層筒部40の端部に対応する部位となり、折り返し部Bを有し、斜交糸Y1、Y2の切断端は存在しない。このため、賦形型44への巻き付け時にあっては、強化繊維シート材41の端部42において斜交糸Y1、Y2は解れることはない。 The reinforcing fiber sheet material 41 is gradually developed and flattened from a substantially tubular state by a flattening mechanism. The flattened reinforcing fiber sheet material 41 is wound around a rotating shaping mold 44 and shaped. The reinforcing fiber sheet material 41 is wound around the shaped mold 44 at least once. The end portion 42 in the width direction of the reinforcing fiber sheet material 41 in the shaping mold 44 serves as a portion corresponding to the end portion of the laminated tubular portion 40 of the reinforcing fiber structure, has a folded-back portion B, and has an oblique yarn Y1. There is no cut end of Y2. Therefore, at the time of winding around the shaping mold 44, the oblique yarns Y1 and Y2 are not unraveled at the end portion 42 of the reinforcing fiber sheet material 41.
 また、本実施形態によれば、強化繊維シート材41の形成と連続して、形成された強化繊維シート材41が賦形型44に巻き付けられて円筒状に賦形される。このため、強化繊維シート材41の形成後に、強化繊維シート材41をマンドレル23から完全に取り外して切断する必要がなく、強化繊維シート材41の形成に引き続き強化繊維シート材41の賦形が可能である。従って、強化繊維シート材41の形成と強化繊維シート材41の賦形型44への巻き付けが連続するので、強化繊維シート材41から強化繊維構造体を効率的に製造することができる。 Further, according to the present embodiment, the formed reinforcing fiber sheet material 41 is wound around the shaping mold 44 and shaped into a cylindrical shape in succession with the formation of the reinforcing fiber sheet material 41. Therefore, after the reinforcing fiber sheet material 41 is formed, it is not necessary to completely remove the reinforcing fiber sheet material 41 from the mandrel 23 and cut it, and the reinforcing fiber sheet material 41 can be shaped following the formation of the reinforcing fiber sheet material 41. Is. Therefore, since the formation of the reinforcing fiber sheet material 41 and the winding of the reinforcing fiber sheet material 41 around the shaping mold 44 are continuous, the reinforcing fiber structure can be efficiently manufactured from the reinforcing fiber sheet material 41.
(第3の実施形態)
 次に、第3の実施形態に係る強化繊維構造体について説明する。本実施形態の強化繊維構造体は、第1、第2の実施形態の強化繊維構造体の形状と同じであるが、賦形される強化繊維シート材の構成が第1、第2の実施形態と異なる。第2の実施形態と同じ構成については、第1、第2の実施形態の説明を援用し、同じ符号を用いる。
(Third Embodiment)
Next, the reinforcing fiber structure according to the third embodiment will be described. The reinforcing fiber structure of the present embodiment has the same shape as the reinforcing fiber structure of the first and second embodiments, but the structure of the reinforcing fiber sheet material to be shaped is the first and second embodiments. Different from. For the same configuration as the second embodiment, the same reference numerals are used with reference to the description of the first and second embodiments.
 図8に示す強化繊維シート材51は、斜交糸Y1、Y2による二軸組物である。強化繊維シート材51の折り返し端部である端部52は、積層筒部(図示せず)の周方向に延びる軸方向糸Y4を備える。軸方向糸Y4は、強化繊維シート材51の賦形型44への巻回時に強化繊維シート材51の端部52に巻き付け張力を付与する機能を果たす。強化繊維シート材51の端部53は、斜交糸Y1、Y2の切断端を有する端部であり、第1の実施形態における端部18に相当する。なお、図8では一方の端部52のみ示すが、図示されない他方の端部52は軸方向糸Y4を備えている。 The reinforcing fiber sheet material 51 shown in FIG. 8 is a biaxial assembly made of oblique yarns Y1 and Y2. The end portion 52, which is the folded end portion of the reinforcing fiber sheet material 51, includes an axial yarn Y4 extending in the circumferential direction of the laminated cylinder portion (not shown). The axial yarn Y4 functions to apply winding tension to the end portion 52 of the reinforcing fiber sheet material 51 when the reinforcing fiber sheet material 51 is wound around the shaping mold 44. The end portion 53 of the reinforcing fiber sheet material 51 is an end portion having a cut end of the oblique yarns Y1 and Y2, and corresponds to the end portion 18 in the first embodiment. Although only one end 52 is shown in FIG. 8, the other end 52 (not shown) includes the axial thread Y4.
 本実施形態では、二軸組物の強化繊維シート材51における端部52に軸方向糸Y4が備えられる。これにより、強化繊維シート材51の賦形型44への巻回による賦形時に、賦形型44に対する巻き付けに必要な巻き付け張力が強化繊維シート材51の端部52に付与される。強化繊維シート材51の端部52に巻き付け張力を付与することにより強化繊維シート材51の賦形型44への巻き付け力が強固となり、賦形時における強化繊維シート材51のうねりを抑制することができるほか、強化繊維構造体の強度を向上させることができる。 In the present embodiment, the axial yarn Y4 is provided at the end 52 of the reinforcing fiber sheet material 51 of the biaxial structure. As a result, when shaping the reinforcing fiber sheet material 51 by winding it around the shaping mold 44, the winding tension required for winding around the shaping mold 44 is applied to the end portion 52 of the reinforcing fiber sheet material 51. By applying the winding tension to the end portion 52 of the reinforcing fiber sheet material 51, the winding force of the reinforcing fiber sheet material 51 around the shaping mold 44 is strengthened, and the waviness of the reinforcing fiber sheet material 51 at the time of shaping is suppressed. In addition, the strength of the reinforcing fiber structure can be improved.
 なお、上記の各実施形態は、本発明の一実施形態を示すものであり、本発明は、上記の各実施形態に限定されるものではなく、下記のように発明の趣旨の範囲内で種々の変更が可能である。 It should be noted that each of the above embodiments shows one embodiment of the present invention, and the present invention is not limited to each of the above embodiments, and varies within the scope of the gist of the invention as described below. Can be changed.
〇 上記の実施形態では、強化繊維シート材が高圧容器の形状に合わせて賦形されたが、この限りではない。例えば、図9の変形例に示すように、強化繊維シート材61は、パイプ体の形状に合わせて賦形してもよい。強化繊維構造体はパイプ体の形状に賦形された強化繊維シート材61が積層された円筒状の積層筒部60を有している。この場合の積層筒部60は、ドーム部を備えず円筒部のみを備える例である。強化繊維シート材61において斜交糸Y1、Y2の折り返し部Bを有する折り返し端部としての端部62が積層筒部60の端部63となればよく、また、強化繊維シート材61は軸方向糸Y3を含む三軸組物としたが二軸組物としてもよい。
〇 上記の第2の実施形態では二軸組物の強化繊維シート材を用いて強化繊維構造体を得るとしたが、この限りではない。例えば、三軸組物の強化繊維シート材を用いて強化繊維構造体を得てもよい。
〇 In the above embodiment, the reinforcing fiber sheet material is shaped according to the shape of the high-pressure container, but this is not the case. For example, as shown in the modified example of FIG. 9, the reinforcing fiber sheet material 61 may be shaped according to the shape of the pipe body. The reinforcing fiber structure has a cylindrical laminated cylinder portion 60 on which the reinforcing fiber sheet material 61 shaped into the shape of a pipe body is laminated. In this case, the laminated cylinder portion 60 is an example in which only the cylindrical portion is provided without the dome portion. In the reinforcing fiber sheet material 61, the end 62 as the folded end having the folded ends B of the oblique yarns Y1 and Y2 may be the end 63 of the laminated cylinder 60, and the reinforcing fiber sheet 61 is axially oriented. Although it is a triaxial assembly including the thread Y3, it may be a biaxial assembly.
〇 In the second embodiment described above, a reinforcing fiber structure is obtained by using a reinforcing fiber sheet material of a biaxial structure, but this is not the case. For example, a reinforcing fiber structure may be obtained by using a reinforcing fiber sheet material of a triaxial structure.
 10,40,60  積層筒部
 11  円筒部
 12,63  端部(積層筒部)
 13  ドーム部
 14,41,51,61  強化繊維シート材
 15  三軸組物部
 16  二軸組物部
 17,18,42,52,53  端部(強化繊維シート材)
 20  ブレーディング装置
 23  マンドレル
 30,44  賦形型
 31  円柱部
 32  コーン部
 43  賦形型回転装置
 B  折り返し部
 Y1,Y2  斜交糸
 Y3,Y4  軸方向糸
10, 40, 60 Laminated cylinder 11 Cylindrical portion 12, 63 End (laminated cylinder)
13 Dome part 14,41,51,61 Reinforcing fiber sheet material 15 Triaxial assembly part 16 Biaxial assembly part 17,18,42,52,53 End part (reinforced fiber sheet material)
20 Braiding device 23 Mandrel 30, 44 Shaped type 31 Cylindrical part 32 Cone part 43 Shaped type rotating device B Folding part Y1, Y2 Oblique yarn Y3, Y4 Axial yarn

Claims (4)

  1.  強化繊維シート材が積層された筒状の積層筒部を有する強化繊維構造体であって、
     前記積層筒部における前記強化繊維シート材は、互いに斜めに交差する斜交糸による平打の二軸組物又は互いに斜めに交差する斜交糸および軸方向糸による平打の三軸組物で構成され、
     前記斜交糸は、前記積層筒部の端部にて折り返されていることを特徴とする強化繊維構造体。
    It is a reinforcing fiber structure having a tubular laminated tubular portion in which a reinforcing fiber sheet material is laminated.
    The reinforcing fiber sheet material in the laminated cylinder portion is composed of a biaxial braid of flat striking with diagonally intersecting diagonally crossed yarns or a triaxial braid of flat striking with diagonally crossing diagonally intersecting yarns and axial yarns. ,
    The diagonally crossed yarn is a reinforcing fiber structure characterized in that it is folded back at an end portion of the laminated cylinder portion.
  2.  前記積層筒部は、円筒部と、前記円筒部の端部から軸方向へ延在し、端部から離れるにつれて小径化するドーム部と、を有し、
     前記円筒部は前記平打の三軸組物により構成され、
     前記ドーム部は、互いに斜めに交差する斜交糸による平打の二軸組物により構成され、
     前記斜交糸は、前記ドーム部の端部にて折り返されていることを特徴とする請求項1記載の強化繊維構造体。
    The laminated cylinder portion has a cylindrical portion and a dome portion that extends axially from the end portion of the cylindrical portion and decreases in diameter as the distance from the end portion increases.
    The cylindrical portion is composed of the flat striking triaxial structure.
    The dome portion is composed of a flat striking biaxial structure made of diagonally crossing threads that intersect each other diagonally.
    The reinforcing fiber structure according to claim 1, wherein the oblique yarn is folded back at an end portion of the dome portion.
  3.  前記平打の二軸組物は、前記斜交糸が折り返されている折り返し端部を備え、
     前記折り返し端部に前記積層筒部の周方向に延びる軸方向糸を備えることを特徴とする請求項1又は2記載の強化繊維構造体。
    The flat striking biaxial assembly includes a folded end portion in which the oblique yarn is folded back.
    The reinforcing fiber structure according to claim 1 or 2, wherein the folded end portion is provided with an axial thread extending in the circumferential direction of the laminated cylinder portion.
  4.  強化繊維シート材が積層された筒状の積層筒部を有する強化繊維構造体の製造方法であって、
     互いに斜めに交差する斜交糸を少なくとも含む平打の組物を形成し、
     前記平打の組物の形成と連続して、形成された前記平打の組物を賦形型に巻き付けて筒状に賦形することを特徴とする強化繊維構造体の製造方法。
    A method for manufacturing a reinforcing fiber structure having a tubular laminated cylinder portion in which a reinforcing fiber sheet material is laminated.
    Forming a flat braid containing at least diagonally intersecting diagonally intersecting threads,
    A method for producing a reinforcing fiber structure, which comprises winding the formed flat striking braid around a shaping mold and shaping the flat striking braid into a tubular shape in succession.
PCT/JP2020/007440 2019-03-28 2020-02-25 Reinforcement fiber structure, and method for manufacturing reinforcement fiber structure WO2020195455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019062155A JP2020158937A (en) 2019-03-28 2019-03-28 Reinforcing fiber structure and method for producing reinforcing fiber structure
JP2019-062155 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020195455A1 true WO2020195455A1 (en) 2020-10-01

Family

ID=72609194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007440 WO2020195455A1 (en) 2019-03-28 2020-02-25 Reinforcement fiber structure, and method for manufacturing reinforcement fiber structure

Country Status (2)

Country Link
JP (1) JP2020158937A (en)
WO (1) WO2020195455A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113958A (en) * 2003-10-03 2005-04-28 Fuji Heavy Ind Ltd Pressure resistant container manufacturing method
JP2010058381A (en) * 2008-09-04 2010-03-18 Murata Machinery Ltd Fiber-reinforced composite material and process for manufacturing the same
US8858857B2 (en) * 2007-03-12 2014-10-14 Geoffrey Michael Wood Process for the rapid fabrication of composite gas cylinders and related shapes
WO2018193868A1 (en) * 2017-04-20 2018-10-25 株式会社豊田自動織機 Fiber structure, pressure container, and method for manufacturing fiber structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113958A (en) * 2003-10-03 2005-04-28 Fuji Heavy Ind Ltd Pressure resistant container manufacturing method
US8858857B2 (en) * 2007-03-12 2014-10-14 Geoffrey Michael Wood Process for the rapid fabrication of composite gas cylinders and related shapes
JP2010058381A (en) * 2008-09-04 2010-03-18 Murata Machinery Ltd Fiber-reinforced composite material and process for manufacturing the same
WO2018193868A1 (en) * 2017-04-20 2018-10-25 株式会社豊田自動織機 Fiber structure, pressure container, and method for manufacturing fiber structure

Also Published As

Publication number Publication date
JP2020158937A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2011111564A1 (en) Method for producing reinforcement fiber preform, and reinforcement fiber preform
US10632353B2 (en) Method for forming a fiber-reinforced composite structure
US10232548B2 (en) Manufacturing method of tank
US9822469B2 (en) Tubular fiber arrangement of a fiber-reinforced composite part
JP6342908B2 (en) Perimeter reinforcement for composite fan cases
JP5503291B2 (en) Balloon with segmented fabric layers and method for braiding on a three-dimensional mold
TW565647B (en) Method and apparatus for fabricating complex, composite structures from continuous fibers
JP5943930B2 (en) Woven preform, fiber reinforced composite, and production method thereof
JP2013511625A (en) Closed tubular fiber structure and manufacturing method
JP2011516294A (en) Multi-directional reinforced shape woven preform for composite structures
US11680683B2 (en) High-pressure tank, high-pressure tank mounting apparatus and method for manufacturing high-pressure tank
JP6705402B2 (en) Reinforcement layer manufacturing method
JP2018204765A (en) Pressure resistant container
JP2019520537A (en) Container made of composite material for containing pressurized fluid
JP2019195955A (en) Filament winding apparatus, method for designing filament winding, and method for manufacturing tank
WO2020195455A1 (en) Reinforcement fiber structure, and method for manufacturing reinforcement fiber structure
JP2013216982A (en) Braiding machine
JP2020069757A (en) Method for manufacturing high pressure tank
US20220242062A1 (en) Fibre-Reinforced Composite Tubular Shafts and Manufacture Thereof
JP4623565B2 (en) Enclosure for drawer
CN109414889B (en) Fiber wound body, fiber-reinforced resin material, and method for producing fiber wound body
WO2012014605A1 (en) Fiber substrate and fiber-reinforced composite material
JP4563911B2 (en) Rubber cylinder
JP2004167776A (en) Frame structure
JP2009219715A (en) Shaft for golf club

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776870

Country of ref document: EP

Kind code of ref document: A1