WO2020195328A1 - Method for producing nanodiamond dispersion composition, and nanodiamond dispersion composition - Google Patents

Method for producing nanodiamond dispersion composition, and nanodiamond dispersion composition Download PDF

Info

Publication number
WO2020195328A1
WO2020195328A1 PCT/JP2020/006056 JP2020006056W WO2020195328A1 WO 2020195328 A1 WO2020195328 A1 WO 2020195328A1 JP 2020006056 W JP2020006056 W JP 2020006056W WO 2020195328 A1 WO2020195328 A1 WO 2020195328A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanodiamond
dispersion composition
treatment step
plasma treatment
producing
Prior art date
Application number
PCT/JP2020/006056
Other languages
French (fr)
Japanese (ja)
Inventor
城大輔
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2020195328A1 publication Critical patent/WO2020195328A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery

Definitions

  • the present invention relates to a method for producing a nanodiamond dispersion composition and a nanodiamond dispersion composition. More specifically, the present invention relates to a method for producing a nanodiamond dispersion composition and a nanodiamond dispersion composition obtained by the production method.
  • the present application claims the priority of Japanese Patent Application No. 2019-058006 filed in Japan on March 26, 2019, the contents of which are incorporated herein by reference.
  • nano-sized fine substances have new properties that cannot be expressed in the bulk state.
  • nanodiamond particles generally have a large proportion of surface atoms, the sum of van der Waals forces that can act between the surface atoms of adjacent particles is large, and agglutination is likely to occur.
  • a phenomenon called agglutination can occur in which the Coulomb interaction between the crystal planes of adjacent crystal faces contributes and very strongly aggregates. Therefore, it has been very difficult to disperse the nanodiamond particles in the form of primary particles in an organic solvent or resin.
  • a method for dispersing nanodiamond particles for example, a method of preparing a nanodiamond suspension, adjusting the pH of the suspension, and then bead milling using zirconia beads or the like to crush it is known (patented). Reference 1).
  • an object of the present invention is a method for producing a nanodiamond dispersion composition having excellent dispersibility of nanodiamond particles in a dispersion medium while preventing the inflow of zirconia, and a nanodiamond dispersion composition obtained by the method. To provide.
  • the present inventor removed graphite from the crude nanodiamond product produced by the detonation method using an oxidizing agent, and then subjected to submerged plasma treatment.
  • nanodiamonds can be well dispersed without the use of zirconia beads.
  • the present invention has been completed based on these findings.
  • the present invention relates to a production step of obtaining a crude nanodiamond product by a roaring method, an oxidation treatment step of removing graphite from the crude nanodiamond product obtained in the above production step using an oxidizing agent, and the oxidation treatment step.
  • a method for producing a nanodiamond dispersion composition which comprises an in-liquid plasma treatment step of subjecting nanodiamonds that have undergone
  • the production method preferably includes an oxygen oxidation step of heating nanodiamonds in an oxygen-containing gas atmosphere after the oxidation treatment step and before the plasma treatment step in liquid.
  • the present invention also provides a nanodiamond dispersion composition containing a dispersion medium, nanodiamond particles dispersed in the dispersion medium, and tungsten.
  • a nanodiamond dispersion composition having excellent dispersibility of nanodiamond particles in a dispersion medium can be obtained while preventing the inflow of zirconia beads.
  • the method for producing the nanodiamond dispersion composition of the present invention includes a step of producing a nanodiamond crude product by a roaring method (production step) and graphite using an oxidizing agent from the nanodiamond crude product obtained in the above production step. (Oxidation treatment step) and a step of subjecting the nanodiamonds that have undergone the oxidation treatment step to plasma treatment in a liquid to disperse the nanodiamonds (in-liquid plasma treatment step).
  • the manufacturing method of the nanodiamond dispersion composition of this invention may be simply referred to as "the manufacturing method of this invention".
  • the production method of the present invention may include other purification steps in addition to the production step, the oxidation treatment step, and the submerged plasma treatment step.
  • the other purification steps include an acid treatment step, an alkaline superwater treatment step, an oxygen oxidation step, a hydrogenation treatment step, and a drying step.
  • FIG. 1 is a process diagram showing an embodiment of the manufacturing method of the present invention.
  • One embodiment of the production method of the present invention shown in FIG. 1 includes at least a production step S1, an oxidation treatment step S2, an oxygen oxidation step S3, and a submerged plasma treatment step S4.
  • a crude nanodiamond product is produced by a detonation method. Specifically, first, a molded explosive equipped with an electric detonator is installed inside a pressure-resistant container for detonation, and a gas having a specific composition and the explosive used coexist in the container. , Seal the container.
  • the container is made of iron, for example.
  • the volume of the container is, for example, 0.5 to 40 m 3 .
  • As the explosive a mixture of trinitrotoluene (TNT) and cyclotrimethylene trinitroamine or hexogen (RDX) can be used.
  • TNT trinitrotoluene
  • RDX cyclotrimethylene trinitroamine or hexogen
  • the mass ratio of TNT to RDX is, for example, in the range of 40/60 to 60/40.
  • the amount of explosive used is, for example, 0.05 to 2.0 kg.
  • Nanodiamond is a product obtained by the detonation method.
  • the container and its inside are then cooled by allowing it to cool at room temperature for about 24 hours.
  • the nanodiamond crude products including the nanodiamond adherents and soot produced as described above
  • adhering to the inner wall of the container are scraped off with a spatula. Collect the product.
  • a crude product of nanodiamond particles can be obtained.
  • a strong acid is allowed to act on the raw material nanodiamond crude product, for example, in an aqueous solvent to remove the metal oxide.
  • the nanodiamond crude product obtained by the detonation method tends to contain metal oxides, and these metal oxides are oxides of Fe, Co, Ni, etc. derived from containers and the like used in the detonation method. ..
  • metal oxides can be dissolved and removed from the crude nanodiamond product (acid treatment).
  • the strong acid used for this acid treatment is preferably a mineral acid, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia.
  • the strong acid one kind may be used, or two or more kinds may be used.
  • the concentration of the strong acid used in the acid treatment is, for example, 1 to 50% by mass.
  • the acid treatment temperature is, for example, 70 to 150 ° C.
  • the acid treatment time is, for example, 0.1 to 24 hours.
  • the acid treatment can be performed under reduced pressure, normal pressure, or pressure.
  • the solid content (including the nanodiamond adherent) is washed with water, for example, by decantation. It is preferable to repeatedly wash the solid content with water by decantation until the pH of the precipitate reaches, for example, 2 to 3.
  • the above acid treatment may be omitted.
  • the oxidation treatment step is a step of removing graphite from the crude nanodiamond product using an oxidizing agent.
  • the crude nanodiamond product obtained by the detonation method contains graphite (graphite), which does not form nanodiamond crystals out of the carbon released by the explosive used due to partial incomplete combustion. Derived from graphite.
  • graphite can be removed from the crude nanodiamond product by allowing an oxidizing agent to act in an aqueous solvent after undergoing the above acid treatment. Further, by acting an oxidizing agent, an oxygen-containing group such as a carboxyl group or a hydroxyl group can be introduced into the surface of nanodiamond.
  • Examples of the oxidizing agent used in this oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, nitric acid, mixtures thereof, and at least one acid selected from these and others.
  • the mixing ratio (former / latter; mass ratio) of sulfuric acid and nitric acid in the mixed acid is, for example, 60/40 to 95/5, even under pressure near normal pressure (for example, 0.5 to 2 atm).
  • the lower limit is preferably 65/35, more preferably 70/30.
  • the upper limit is preferably 90/10, more preferably 85/15, and even more preferably 80/20.
  • the mixing ratio is 60/40 or more, the content of sulfuric acid having a high boiling point is high, so that the reaction temperature becomes, for example, 120 ° C. or more under pressure near normal pressure, and the graphite removal efficiency tends to improve. is there.
  • the mixing ratio is 95/5 or less, the content of nitric acid that greatly contributes to the oxidation of graphite increases, so that the efficiency of removing graphite tends to improve.
  • the amount of the oxidizing agent (particularly the mixed acid) used is, for example, 10 to 50 parts by mass, preferably 15 to 40 parts by mass, and more preferably 20 to 40 parts by mass with respect to 1 part by mass of the crude nanodiamond product.
  • the amount of sulfuric acid used in the mixed acid is, for example, 5 to 48 parts by mass, preferably 10 to 35 parts by mass, and more preferably 15 to 30 parts by mass with respect to 1 part by mass of the crude nanodiamond product.
  • the amount of nitric acid used in the mixed acid is, for example, 2 to 20 parts by mass, preferably 4 to 10 parts by mass, and more preferably 5 to 8 parts by mass with respect to 1 part by mass of the crude nanodiamond product.
  • a catalyst may be used together with the mixed acid.
  • the efficiency of removing graphite can be further improved.
  • the catalyst include copper (II) carbonate and the like.
  • the amount of the catalyst used is, for example, about 0.01 to 10 parts by mass with respect to 100 parts by mass of the crude nanodiamond product.
  • the oxidation treatment temperature is, for example, 100 to 200 ° C.
  • the oxidation treatment time is, for example, 1 to 24 hours.
  • the oxidation treatment can be performed under reduced pressure, normal pressure, or pressure.
  • the primary particles interact very strongly with each other to form an aggregate (secondary). It takes the form of particles).
  • the nanodiamond may be allowed to act with alkali and hydrogen peroxide in an aqueous solvent. As a result, the metal oxide remaining on the nanodiamond can be removed, and the separation of the primary particles from the adherent can be promoted.
  • the above oxidation treatment step it is preferable to remove the supernatant by, for example, decantation. Further, at the time of decantation, it is preferable to wash the solid content with water. Although the supernatant liquid at the beginning of washing with water is colored, it is preferable to repeatedly wash the solid content with water until the supernatant liquid becomes visually transparent.
  • the production method of the present invention may include a drying step. For example, after evaporating the liquid content from the nanodiamond-containing solution obtained through the above oxidation treatment step using a spray drying device, an evaporator, or the like, the residual solid content generated thereby is heated and dried in a drying oven. dry.
  • the heating and drying temperature is, for example, 40 to 150 ° C.
  • the nanodiamond may be subjected to an oxidation treatment (for example, oxygen oxidation) or a reduction treatment (for example, hydrogenation treatment) in the gas phase, if necessary.
  • an oxidation treatment for example, oxygen oxidation
  • a reduction treatment for example, hydrogenation treatment
  • the reduction treatment in the gas phase nanodiamonds having many CH groups on the surface can be obtained.
  • oxygen oxidation in which nanodiamond powder that has undergone the oxidation treatment step and, if necessary, another step such as a drying step is heated in a gas atmosphere containing oxygen using a gas atmosphere furnace. It is preferable to carry out the process.
  • the oxygen oxidation step specifically, nanodiamond powder is arranged in a gas atmosphere furnace, oxygen-containing gas is supplied or passed through the furnace, and the inside of the furnace reaches a temperature condition set as a heating temperature. Is heated and oxygen oxidation treatment is carried out.
  • the temperature condition of this oxygen oxidation treatment is, for example, 250 to 500 ° C.
  • the temperature condition of this oxygen oxidation treatment is preferably relatively high, for example, 400 to 450 ° C. is there.
  • the oxygen-containing gas used in the oxygen oxidation step may be a mixed gas containing an inert gas in addition to oxygen.
  • the inert gas include nitrogen, argon, carbon dioxide and helium.
  • the oxygen concentration of the mixed gas is, for example, 1 to 35% by volume.
  • a hydrogenation step may be performed after the oxygen oxidation step.
  • the nanodiamond powder that has undergone the oxygen oxidation step is heated in a gas atmosphere containing hydrogen using a gas atmosphere furnace.
  • hydrogen-containing gas is supplied or passed through a gas atmosphere furnace in which nanodiamond powder is arranged, and the temperature inside the furnace is raised to the temperature condition set as the heating temperature to generate hydrogen.
  • Chemical processing is carried out.
  • the temperature condition of this hydrogenation treatment is, for example, 400 to 800 ° C.
  • the hydrogen-containing gas used in the hydrogenation step may be a mixed gas containing an inert gas in addition to hydrogen.
  • the inert gas include nitrogen, argon, carbon dioxide and helium.
  • the hydrogen concentration of the mixed gas is, for example, 1 to 50% by volume.
  • the nanodiamonds are subjected to plasma treatment in the liquid to disperse the nanodiamonds.
  • the submerged plasma treatment can be performed using a known or conventional plasma generator.
  • the submerged plasma treatment is performed using, for example, a reaction vessel in which a pair of electrodes for generating plasma are inserted so that the tips of the electrodes face each other and have a gap.
  • Examples of the liquid to be subjected to the plasma treatment in the liquid include water and an organic solvent.
  • Examples of the organic solvent include those exemplified and described as the dispersion medium described later. Of these, water is preferable from the viewpoint of being able to generate plasma in the liquid more efficiently and disperse the nanodiamonds. As the above liquid, only one kind may be used, or two or more kinds may be used.
  • the concentration of nanodiamonds in the liquid in the plasma treatment step in the liquid is preferably 1 to 15% by mass, more preferably 2 to 8% by mass.
  • concentration is 1% by mass or more (particularly 2% by mass or more), the reaction time is shortened.
  • concentration is 15% by mass or less, the yield is improved.
  • the submerged plasma treatment is preferably performed under conditions where the pH exceeds 7.
  • the pH is more preferably more than 7 and 14 or less, still more preferably 7.5 to 12, and particularly preferably 8 to 10. It is presumed that nanodiamonds (particularly nanodiamonds that have undergone oxygen oxidation treatment) are easily hydrophilized or oxidized by performing the submerged plasma treatment under conditions exceeding pH 7, and are susceptible to the effects of the submerged plasma treatment.
  • the dispersibility in the obtained nanodiamond dispersion composition is more excellent.
  • the pH may be adjusted so as to meet the above pH conditions.
  • a known or commonly used pH adjuster such as sodium hydroxide can be used to adjust the pH.
  • Nanodiamonds subjected to submerged plasma treatment preferably have a negative zeta potential.
  • the nanodiamonds are easily oxidized by the plasma treatment, and the dispersibility of the nanodiamonds is more excellent.
  • the submerged plasma treatment is a treatment involving heat generation, and is carried out at a temperature of, for example, 49 to 90 ° C., preferably 50 to 85 ° C., and a reaction time of, for example, about 1 minute to 3 hours, preferably about 10 minutes to 2 hours. Is preferable.
  • the distance between the electrodes that generate plasma is not particularly limited, but is, for example, 0.1 to 20 mm, preferably 0.2 to 15 mm, and more preferably 0.5 to 10 mm. Is. When the distance between the electrodes is within the above range, heat generation can be suppressed and plasma treatment can be sufficiently performed.
  • hydrogen radicals are mainly generated when the distance between electrodes is short (for example, 2 mm or less), while hydroxyl radicals are generated when the distance between electrodes is long (for example, 5 mm or more).
  • the distance between the electrodes is important, such as the occurrence of radicals becoming the mainstream.
  • the manufacturing method of the present invention can surprisingly disperse nanodiamonds in a liquid over a wide range of interelectrode distance conditions.
  • a solvent may be newly mixed and stirred, that is, the solvent may be exchanged.
  • the nanodiamond dispersion composition in which nanodiamonds are dispersed in the dispersion medium can be obtained by the production method of the present invention.
  • a nanodiamond dispersion composition having excellent dispersibility of nanodiamond can be obtained without crushing by bead mill treatment using zirconia beads. Further, according to the production method of the present invention, since the nanodiamond dispersion composition can be obtained by using a known plasma generator, the scale-up is easy and the productivity is excellent.
  • the nanodiamond dispersion composition of the present invention contains at least a dispersion medium, nanodiamonds dispersed in the dispersion medium, and tungsten.
  • the nanodiamond dispersion composition of the present invention is a dispersion composition obtained by the production method of the present invention, and contains tungsten derived from an electrode.
  • nanodiamond particles are dispersed in a dispersion medium in nano size.
  • the average dispersed particle diameter (D50, median diameter) of the nanodiamond particles in the nanodiamond dispersion composition of the present invention is preferably 1 to 100 nm, more preferably 2 to 80 nm, more preferably 5 to 50 nm, still more preferably 10. It is ⁇ 30 nm.
  • the average dispersed particle size can be measured by a dynamic light scattering method. When the average dispersed particle size of the nanodiamond particles is within the above range, the dispersibility of the nanodiamond particles in the nanodiamond dispersion composition is excellent.
  • the content ratio of nanodiamond in the nanodiamond dispersion composition of the present invention is, for example, 0.1% by mass or more and 5.0% by mass or less, preferably 0.2% by mass or more and 4.0% by mass or less, more preferably 0. It is 5.5 mass ppm or more and 3.0 mass% or less, more preferably 1 mass ppm or more and 2.0 mass% or less, and may be 1 to 100 mass ppm.
  • the nanodiamond dispersion composition of the present invention is more excellent in dispersibility in the dispersion medium at a content ratio in the above range.
  • the dispersion medium is a medium for dispersing nanodiamonds, and examples thereof include water, organic solvents, and ionic liquids.
  • the dispersion medium only one kind may be used, or two or more kinds may be used.
  • the organic solvent includes, for example, a protic organic solvent and an aprotic organic solvent, and includes a polar organic solvent and a non-polar organic solvent.
  • the organic solvent has an SP value [(cal / cm 3 ) 0.5 : Fedors calculated value] at 25 ° C., for example, 7 to 23, preferably 7 to 17, more preferably 7 to 15, and even more preferably 7 to. 13, more preferably 7 to 12, particularly preferably 7 to 10.
  • the above-mentioned organic solvent has a relative permittivity at 25 ° C., for example, 1 to 40, preferably 2 to 3.
  • the relative permittivity in this specification is a value described in the Chemical Handbook, 5th Edition, Basic Edition, Maruzen Co., Ltd., and the Chemical Society of Japan.
  • an organic solvent was injected into a glass cell with an ITO transparent electrode having a cell gap of 10 ⁇ m, and the electric capacity of the obtained cell was measured using a model 2353LCR meter (measurement frequency: 1 kHz) manufactured by NF Co., Ltd. It can also be obtained by measuring at 25 ° C. and 40% RH.
  • the polar organic solvent has an SP value at 25 ° C. of, for example, 10.0 or more, preferably 10.0 to 23.0, and more preferably 10.0 to 15.0.
  • the non-polar organic solvent has an SP value at 25 ° C. of, for example, less than 10.0, preferably 7.5 to 9.5, and more preferably 8.0 to 9.3.
  • the polar organic solvent has a relative permittivity at 25 ° C., for example, 15 to 40, preferably 15 to 35, and more preferably 18 to 35.
  • the non-polar organic solvent has a relative permittivity at 25 ° C. of, for example, 1 or more, preferably less than 15, more preferably 1 to 10, and even more preferably 1 to 5.
  • protic organic solvent examples include methanol (SP value: 13.8, relative permittivity: 32.6), ethanol (SP value: 12.6, relative permittivity: 24.30), and 1-propanol (SP). Value: 11.8, relative permittivity: 20.1), monovalent alcohol having 1 to 5 carbon atoms such as isopropyl alcohol (SP value: 11.6, relative permittivity: 19.92); carbon such as ethylene glycol Examples thereof include polyhydric alcohols of numbers 2 to 5.
  • aproton organic solvent examples include toluene (SP value: 9.14, relative permittivity: 2.379), o-xylene (SP value: 9.10), aromatic hydrocarbons such as benzene; cyclohexane and the like. Alicyclic hydrocarbons; aliphatic hydrocarbons such as n-hexane (SP value: 7.29); halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, ethylene dichloride, chloroform; isopropyl ether, tetrahydrofuran (SP).
  • ethers such as diethyl ether (SP value: 7.25); ethyl acetate (SP value: 8.75), esters such as butyl acetate (SP value: 8.70); acetone (SP value) : 9.07, relative permittivity: 20.7), methyl ethyl ketone (SP value: 8.99), cyclohexanone (SP value: 9.80) and other ketones.
  • the nanodiamond dispersion composition of the present invention contains at least tungsten.
  • the content ratio of tungsten in the nanodiamond dispersion composition of the present invention is, for example, 10 to 2000 mass ppm, preferably 15 to 1750 mass ppm, more preferably 20 to 1500 mass ppm, still more preferably 25 to 1250 mass ppm. ..
  • the content ratio of zirconia in the nanodiamond dispersion composition of the present invention is, for example, 60 mass ppm or less, preferably 40 mass ppm or less, and more preferably 20 mass ppm or less.
  • nanodiamonds can be dispersed without going through a crushing step using a bead mill such as zirconia, so that mixing of zirconia from the bead mill can be avoided, and the above-mentioned zirconia concentration can be avoided.
  • Nanodiamond dispersion composition can be obtained.
  • the content ratio of tungsten and zirconia shall be determined based on the amount of W or Si detected based on the dispersion liquid whose content ratio is known by detecting W by high frequency inductively coupled plasma emission spectroscopy (ICP emission spectroscopy). Can be done.
  • ICP emission spectroscopy high frequency inductively coupled plasma emission spectroscopy
  • the nanodiamond dispersion composition of the present invention preferably has a haze value of 5 or less, more preferably 3 or less, and even more preferably 1 or less. Since the nanodiamond dispersion composition of the present invention is excellent in dispersibility of nanodiamond particles, the nanodiamond dispersion composition having the above haze value can be obtained. The haze value can be measured based on JIS K 7136.
  • the nanodiamond dispersion composition of the present invention may consist only of a dispersion medium, nanodiamond, and tungsten, or may contain other components.
  • Other components include, for example, surfactants, thickeners, coupling agents, dispersants, rust preventives, corrosion inhibitors, freezing point lowering agents, defoamers, abrasion resistant additives, preservatives, colorants and the like. Can be mentioned.
  • As the other components only one kind may be used, or two or more kinds may be used.
  • the nanodiamond dispersion composition of the present invention can be preferably used, for example, as an additive that imparts the characteristics of fine nanodiamond particles to a resin or the like (for example, a heat or photocurable resin, a thermoplastic resin, or the like). ..
  • a resin or the like for example, a heat or photocurable resin, a thermoplastic resin, or the like.
  • the characteristics of the nanodiamond particles include mechanical strength, high refractive index, thermal conductivity, insulating property, antioxidant property, crystallization promoting action, and dendrite suppressing action.
  • the composition obtained by adding the nanodiamond dispersion composition of the present invention to a resin is, for example, a functional hybrid material, a thermal function (heat resistance, heat storage, thermoconductivity, heat insulation, etc.) material, and photonics (organic EL element).
  • the nanodiamond dispersion composition of the present invention is preferably used as an anti-friction agent or a lubricant (initial familiar use, present lubrication use, etc.) applied to sliding parts of mechanical parts (for example, automobiles, aircraft, etc.). Can be used.
  • Example 1 The nanodiamond dispersion composition was produced through the following steps.
  • the temperature of the container and its inside was lowered by leaving it at room temperature for 24 hours. After this cooling, the crude nanodiamond products adhering to the inner wall of the container (including the adherents of nanodiamond particles and soot generated by the above detonation method) are scraped off with a spatula, and the nanodiamonds are removed. The crude product was recovered.
  • an acid treatment step was carried out on the nanodiamond crude product obtained by carrying out the above-mentioned formation step a plurality of times. Specifically, the slurry obtained by adding 6 L of 10% by mass hydrochloric acid to 200 g of the crude nanodiamond product was heat-treated for 1 hour under reflux under normal pressure conditions. The heating temperature in this acid treatment is 85 to 100 ° C. Next, after cooling, the solid content (including nanodiamond adherents and soot) was washed with water by decantation. The solid content was repeatedly washed with water by decantation until the pH of the precipitate was from the low pH side to 2.
  • an oxidation treatment step was performed. Specifically, 6 L of 98% by mass sulfuric acid and 1 L of 69% by mass nitric acid were added to a precipitate (including nanodiamond adherents) obtained through decantation after acid treatment to form a slurry, which was then added to form a slurry. This slurry was heat-treated for 48 hours under reflux under normal pressure conditions. The heating temperature in this oxidation treatment is 140 to 160 ° C. Next, after cooling, the solid content (including the nanodiamond adherent) was washed with water by decantation. The supernatant liquid at the beginning of washing with water was colored, and the solid content was washed with water repeatedly by decantation until the supernatant liquid became visually transparent.
  • the rate of temperature rise was 10 ° C./min up to 380 ° C., which is 20 ° C. lower than the set heating temperature, and 1 ° C./min from 380 ° C. to 400 ° C. thereafter. Then, while maintaining the temperature condition in the furnace at 400 ° C., the nanodiamond powder in the furnace was subjected to oxygen oxidation treatment (oxygen oxidation step). The processing time was 3 hours.
  • the zeta potential of the nanodiamond powder obtained as described above was measured by a laser Doppler electrophoresis method using an apparatus manufactured by Malvern (trade name "Zetasizer Nano ZS").
  • the nanodiamond dispersion liquid subjected to the measurement was diluted with ultrapure water so that the nanodiamond concentration was 0.2% by mass, and then subjected to ultrasonic irradiation with an ultrasonic cleaner.
  • the zeta potential measurement temperature is 25 ° C.
  • the zeta potential of the nanodiamond dispersion was -38 mV.
  • the particle size distribution of the nanodiamond particles in the obtained nanodiamond dispersion composition is subjected to a dynamic light scattering method (non-contact backscattering method) using an apparatus manufactured by Malvern (trade name "Zetasizer Nano ZS").
  • the average dispersed particle size (D50) of the nanodiamond particles was determined by 13.7 nm.
  • the nanodiamond concentration was 0.28% by mass, and it was confirmed that tungsten was contained in a proportion of 50% by mass or less.
  • the nanodiamond concentration was calculated from the absorbance at 350 nm.
  • the tungsten concentration was determined by ICP emission spectroscopy.
  • Example 2 In the submerged plasma treatment step, a nanodiamond dispersion composition was produced in the same manner as in Example 1 except that the distance between the electrodes was 1 mm. When the average dispersed particle size (D50) of the nanodiamond particles was determined, it was 15.2 nm. At this time, the nanodiamond concentration was 0.21% by mass, and the tungsten concentration was 1000% by mass.
  • D50 average dispersed particle size
  • Example 3 The production step, the acid treatment step, the oxidation treatment step, the drying step, and the oxygen oxidation step were carried out in the same manner as in Example 1, and then the hydrogenation step was carried out using the gas atmosphere furnace in the oxygen oxidation step. Specifically, nitrogen gas is continuously passed through a gas atmosphere furnace in which nanodiamond powder that has undergone an oxygen oxidation step is arranged at a flow rate of 1 L / min for 30 minutes, and then the flowing gas is transferred from nitrogen. The gas was switched to a mixed gas of hydrogen and nitrogen, and the mixed gas was continuously passed through the core tube at a flow rate of 1 L / min. The hydrogen concentration in the mixed gas is 2% by volume.
  • the temperature inside the furnace was raised to the set heating temperature of 600 ° C.
  • the heating rate was 10 ° C./min.
  • the nanodiamond powder in the furnace was subjected to hydrogen oxidation treatment.
  • the processing time was 5 hours.
  • a submerged plasma treatment step was carried out in the same manner as in Example 1 to produce a nanodiamond dispersion composition.
  • the average dispersed particle size (D50) of the nanodiamond particles was determined and found to be 23.3 nm. At this time, the nanodiamond concentration was 0.006 mass%, and it was confirmed that tungsten was contained in a proportion of 50 mass ppm or less.
  • Example 4 In the submerged plasma treatment step, a nanodiamond dispersion composition was produced in the same manner as in Example 3 except that the distance between the electrodes was 1 mm. The average dispersed particle size (D50) of the nanodiamond particles was determined and found to be 22.3 nm. At this time, the nanodiamond concentration was 0.007 mass% and the tungsten concentration was 800 mass ppm.
  • D50 average dispersed particle size
  • Example 5 Using the nanodiamond powder obtained in the drying step, a nanodiamond dispersion composition was produced in the same manner as in Example 1 except that it was subjected to a submerged plasma treatment step without going through an oxygen oxidation step.
  • D50 average dispersed particle size of the nanodiamond particles
  • the nanodiamond concentration was 0.081 mass%, and it was confirmed that tungsten was contained in a proportion of 50 mass ppm or less.
  • Example 6 In the submerged plasma treatment step, a nanodiamond dispersion composition was produced in the same manner as in Example 5 except that the distance between the electrodes was 1 mm. When the average dispersed particle size (D50) of the nanodiamond particles was determined, it was about 52 nm. At this time, the nanodiamond concentration was 0.063% by mass, and the tungsten concentration was 850% by mass.
  • D50 average dispersed particle size
  • a production step of obtaining a crude nanodiamond product by a roaring method, an oxidation treatment step of removing graphite from the crude nanodiamond product obtained in the production step using an oxidizing agent, and the oxidation treatment step were performed.
  • a method for producing a nanodiamond dispersion composition which comprises an in-liquid plasma treatment step of subjecting nanodiamonds to plasma treatment in a liquid to disperse the nanodiamonds.
  • the crude nanodiamond product obtained in the production step contains a strong acid (preferably containing a mineral acid).
  • a strong acid more preferably a strong acid containing one or more acids selected from the group consisting of hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia) is allowed to act to remove the metal oxide.
  • [Appendix 3] The method for producing a nanodiamond dispersion composition according to Appendix 1 or 2, wherein the oxidizing agent contains a mixed acid of two kinds of acids (preferably a mixed acid of sulfuric acid and nitric acid).
  • the mixing ratio (former / latter; mass ratio) of sulfuric acid and nitric acid in the mixed acid is 60/40 to 95/5 (preferably 65/35 to 90/10, more preferably 70/30 to 85).
  • the nanodiamond crude product obtained through the acid treatment step is subjected to alkali and hydrogen peroxide in an aqueous solution to cause a metal.
  • the supernatant is removed and the solid content is washed with water, and the solid content is repeatedly washed with water until the supernatant is visually transparent.
  • the method for producing a nanodiamond dispersion composition according to any one.
  • [Supplementary Note 7] The nanodiamond dispersion composition according to any one of Supplementary notes 1 to 6, which comprises a drying step of drying the nanodiamond-containing solution obtained through the oxidation treatment step to obtain a nanodiamond adherent. Manufacturing method.
  • Appendix 8 The method for producing a nanodiamond dispersion composition according to Appendix 7, which comprises an oxygen oxidation step of heating the nanodiamond adhering body obtained after the drying step in an oxygen-containing gas atmosphere.
  • Appendix 9 Any one of Appendix 1 to 8, which comprises an oxygen oxidation step of heating nanodiamonds in an oxygen-containing gas atmosphere after the oxidation treatment step and before the submerged plasma treatment step.
  • Appendix 10 The method for producing a nanodiamond dispersion composition according to any one of Supplementary notes 1 to 9, wherein nanodiamonds having a negative zeta potential are dispersed in the submerged plasma treatment step.
  • [Supplementary Note 11] The method for producing a nanodiamond dispersion composition according to any one of Supplementary notes 1 to 10, wherein the in-liquid plasma treatment step is performed under a condition where the pH exceeds 7.
  • Supplementary Note 12 The method for producing a nanodiamond dispersion composition according to any one of Supplementary notes 1 to 11, wherein the in-liquid plasma treatment step is performed in water.
  • [Appendix 15] A nanodiamond dispersion composition containing a dispersion medium, nanodiamond particles dispersed in the dispersion medium, and tungsten.
  • Appendix 16 The method for producing a nanodiamond dispersion composition according to Appendix 15, wherein the nanodiamond particles are dispersed in the dispersion medium in a nano size.
  • the average dispersed particle diameter (D50, median diameter) of the nanodiamond particles in the nanodiamond dispersion composition is 1 to 100 nm (preferably 2 to 80 nm, more preferably 5 to 50 nm, still more preferably 10 to 10 to 30 nm).
  • the organic solvent has an SP value [(cal / cm 3 ) 0.5 : Fedors calculated value] at 25 ° C. of 7 to 23 (preferably 7 to 17, more preferably 7 to 15, still more preferably 7 to 7 to].
  • [Supplementary Note 20] The method for producing a nanodiamond dispersion composition according to Supplementary note 18 or 19, wherein the organic solvent has a relative permittivity of 1 to 40 (preferably 2 to 3) at 25 ° C.
  • the content ratio of the tungsten in the nanodiamond dispersion composition is 10 to 2000 mass ppm (preferably 15 to 1750 mass ppm, more preferably 20 to 1500 mass ppm, still more preferably 25 to 1250 mass ppm. ).
  • the content of zirconia in the nanodiamond dispersion composition is 60 mass ppm or less (preferably 40 mass ppm or less, more preferably 20 mass ppm or less) according to any one of Appendix 15 to 21.
  • Method for producing nanodiamond dispersion composition is [Appendix 23] The method for producing a nanodiamond dispersion composition according to any one of Appendix 15 to 22, wherein the haze value is 5 or less (preferably 3 or less, more preferably 1 or less).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Provided are: a method for producing a nanodiamond dispersion composition which has excellent dispersibility of nanodiamond particles in a dispersion medium while preventing the inflow of zirconia beads; and a nanodiamond dispersion composition obtained by said method. A method for producing a nanodiamond dispersion composition according to the present invention comprises: a preparation step in which a crude nanodiamond product is obtained by the detonation process; an oxidation treatment step in which an oxidizing agent is used to remove graphite from the crude nanodiamond product obtained in the preparation step; and an in-liquid plasma treatment step in which nanodiamond, which has been subjected to the oxygen treatment step, is subjected to plasma treatment in a liquid, and dispersed.

Description

ナノダイヤモンド分散組成物の製造方法及びナノダイヤモンド分散組成物Method for producing nanodiamond dispersion composition and nanodiamond dispersion composition
 本発明は、ナノダイヤモンド分散組成物の製造方法及びナノダイヤモンド分散組成物に関する。より詳細には、本発明は、ナノダイヤモンド分散組成物の製造方法及び当該製造方法により得られるナノダイヤモンド分散組成物に関する。本願は、2019年3月26日に日本に出願した特願2019-058006号の優先権を主張し、その内容をここに援用する。 The present invention relates to a method for producing a nanodiamond dispersion composition and a nanodiamond dispersion composition. More specifically, the present invention relates to a method for producing a nanodiamond dispersion composition and a nanodiamond dispersion composition obtained by the production method. The present application claims the priority of Japanese Patent Application No. 2019-058006 filed in Japan on March 26, 2019, the contents of which are incorporated herein by reference.
 ナノサイズの微細な物質は、バルク状態では発現し得ない新しい特性を有することが知られている。例えば、ナノダイヤモンド粒子(=ナノサイズのダイヤモンド粒子)は、機械的強度、高屈折率、熱伝導性、絶縁性、酸化防止性、樹脂等の結晶化を促進する作用等を有する。しかし、ナノダイヤモンド粒子は、一般に、表面原子の割合が大きいので、隣接粒子の表面原子間で作用し得るファンデルワールス力の総和が大きく、凝集(aggregation)しやすい。これに加えて、ナノダイヤモンド粒子の場合、隣接結晶子の結晶面間クーロン相互作用が寄与して非常に強固に集成する凝着(agglutination)という現象が生じ得る。そのため、ナノダイヤモンド粒子を一次粒子の状態で有機溶媒や樹脂中に分散させることは非常に困難であった。 It is known that nano-sized fine substances have new properties that cannot be expressed in the bulk state. For example, nanodiamond particles (= nano-sized diamond particles) have mechanical strength, high refractive index, thermal conductivity, insulating property, antioxidant property, and an action of promoting crystallization of a resin or the like. However, since nanodiamond particles generally have a large proportion of surface atoms, the sum of van der Waals forces that can act between the surface atoms of adjacent particles is large, and agglutination is likely to occur. In addition to this, in the case of nanodiamond particles, a phenomenon called agglutination can occur in which the Coulomb interaction between the crystal planes of adjacent crystal faces contributes and very strongly aggregates. Therefore, it has been very difficult to disperse the nanodiamond particles in the form of primary particles in an organic solvent or resin.
 ナノダイヤモンド粒子を分散させる方法として、例えば、ナノダイヤモンド懸濁液を調製し、懸濁液のpHの調節したのち、ジルコニアビーズ等を用いてビーズミル処理し解砕する方法が知られている(特許文献1参照)。 As a method for dispersing nanodiamond particles, for example, a method of preparing a nanodiamond suspension, adjusting the pH of the suspension, and then bead milling using zirconia beads or the like to crush it is known (patented). Reference 1).
特表2016-501811号公報Special Table 2016-501811
 しかしながら、ジルコニアビーズを用いたビーズミル処理による解砕では、ジルコニアビーズ由来のジルコニアがナノダイヤモンド分散組成物に流入するのを避けることが極めて困難であった。 However, it was extremely difficult to prevent zirconia derived from zirconia beads from flowing into the nanodiamond dispersion composition by crushing by bead mill treatment using zirconia beads.
 従って、本発明の目的は、ジルコニアの流入を防止しつつ、分散媒中のナノダイヤモンド粒子の分散性に優れるナノダイヤモンド分散組成物を製造する方法、及び当該方法により得られるナノダイヤモンド分散組成物を提供することにある。 Therefore, an object of the present invention is a method for producing a nanodiamond dispersion composition having excellent dispersibility of nanodiamond particles in a dispersion medium while preventing the inflow of zirconia, and a nanodiamond dispersion composition obtained by the method. To provide.
 本発明者は、上記目的を達成するため鋭意検討した結果、爆轟法により生成されたナノダイヤモンド粗生成物について、酸化剤を用いてグラファイトを除去した後、液中プラズマ処理を施すことにより、ジルコニアビーズを使用せずにナノダイヤモンドを良好に分散させることができることを見出した。本発明はこれらの知見に基づいて完成させたものである。 As a result of diligent studies to achieve the above object, the present inventor removed graphite from the crude nanodiamond product produced by the detonation method using an oxidizing agent, and then subjected to submerged plasma treatment. We have found that nanodiamonds can be well dispersed without the use of zirconia beads. The present invention has been completed based on these findings.
 すなわち、本発明は、爆轟法によりナノダイヤモンド粗生成物を得る生成工程、上記生成工程で得たナノダイヤモンド粗生成物から酸化剤を用いてグラファイトを除去する酸化処理工程、及び上記酸化処理工程を経たナノダイヤモンドを液体中でプラズマ処理に付してナノダイヤモンドを分散させる液中プラズマ処理工程を含む、ナノダイヤモンド分散組成物の製造方法を提供する。 That is, the present invention relates to a production step of obtaining a crude nanodiamond product by a roaring method, an oxidation treatment step of removing graphite from the crude nanodiamond product obtained in the above production step using an oxidizing agent, and the oxidation treatment step. Provided is a method for producing a nanodiamond dispersion composition, which comprises an in-liquid plasma treatment step of subjecting nanodiamonds that have undergone
 上記製造方法は、上記酸化処理工程後であり、且つ上記液中プラズマ処理工程前に、酸素を含有するガス雰囲気下にてナノダイヤモンドを加熱する酸素酸化工程を含むことが好ましい。 The production method preferably includes an oxygen oxidation step of heating nanodiamonds in an oxygen-containing gas atmosphere after the oxidation treatment step and before the plasma treatment step in liquid.
 上記液中プラズマ処理工程において、ゼータ電位がネガティブであるナノダイヤモンドを分散させることが好ましい。 In the submerged plasma treatment step, it is preferable to disperse nanodiamonds having a negative zeta potential.
 上記液中プラズマ処理工程をpHが7を超える条件下で行うことが好ましい。 It is preferable to carry out the above-mentioned in-liquid plasma treatment step under conditions where the pH exceeds 7.
 また、本発明は、分散媒と、前記分散媒中に分散しているナノダイヤモンド粒子と、タングステンとを含むナノダイヤモンド分散組成物を提供する。 The present invention also provides a nanodiamond dispersion composition containing a dispersion medium, nanodiamond particles dispersed in the dispersion medium, and tungsten.
 本発明のナノダイヤモンド分散組成物の製造方法によれば、ジルコニアビーズの流入を防止しつつ、分散媒中のナノダイヤモンド粒子の分散性に優れるナノダイヤモンド分散組成物が得られる。 According to the method for producing a nanodiamond dispersion composition of the present invention, a nanodiamond dispersion composition having excellent dispersibility of nanodiamond particles in a dispersion medium can be obtained while preventing the inflow of zirconia beads.
本発明のナノダイヤモンド分散組成物の製造方法の一実施形態を示す工程図である。It is a process drawing which shows one Embodiment of the manufacturing method of the nanodiamond dispersion composition of this invention.
 本発明のナノダイヤモンド分散組成物の製造方法は、爆轟法によりナノダイヤモンド粗生成物を生成させる工程(生成工程)と、上記生成工程で得たナノダイヤモンド粗生成物から酸化剤を用いてグラファイトを除去する工程(酸化処理工程)と、上記酸化処理工程を経たナノダイヤモンドを液体中でプラズマ処理に付してナノダイヤモンドを分散させる工程(液中プラズマ処理工程)とを含む。なお、本明細書において、本発明のナノダイヤモンド分散組成物の製造方法を、単に「本発明の製造方法」と称する場合がある。本発明の製造方法は、生成工程、酸化処理工程、及び液中プラズマ処理工程以外に、その他の精製工程を含んでいてもよい。上記その他の精製工程としては、例えば、酸処理工程、アルカリ過水処理工程、酸素酸化工程、水素化処理工程、乾燥工程などが挙げられる。 The method for producing the nanodiamond dispersion composition of the present invention includes a step of producing a nanodiamond crude product by a roaring method (production step) and graphite using an oxidizing agent from the nanodiamond crude product obtained in the above production step. (Oxidation treatment step) and a step of subjecting the nanodiamonds that have undergone the oxidation treatment step to plasma treatment in a liquid to disperse the nanodiamonds (in-liquid plasma treatment step). In addition, in this specification, the manufacturing method of the nanodiamond dispersion composition of this invention may be simply referred to as "the manufacturing method of this invention". The production method of the present invention may include other purification steps in addition to the production step, the oxidation treatment step, and the submerged plasma treatment step. Examples of the other purification steps include an acid treatment step, an alkaline superwater treatment step, an oxygen oxidation step, a hydrogenation treatment step, and a drying step.
 図1は、本発明の製造方法の一実施形態を示す工程図である。図1に示す本発明の製造方法の一実施形態は、生成工程S1と、酸化処理工程S2と、酸素酸化工程S3と、液中プラズマ処理工程S4とを少なくとも含む。 FIG. 1 is a process diagram showing an embodiment of the manufacturing method of the present invention. One embodiment of the production method of the present invention shown in FIG. 1 includes at least a production step S1, an oxidation treatment step S2, an oxygen oxidation step S3, and a submerged plasma treatment step S4.
(生成工程)
 生成工程(ナノダイヤモンド生成工程)では、爆轟法によって、ナノダイヤモンド粗生成物を生成させる。具体的には、まず、成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器の内部に設置し、容器内において特定の組成の気体と使用爆薬とが共存する状態で、容器を密閉する。容器は例えば鉄製である。容器の容積は、例えば0.5~40m3である。爆薬としては、トリニトロトルエン(TNT)とシクロトリメチレントリニトロアミンすなわちヘキソーゲン(RDX)との混合物を使用することができる。TNTとRDXの質量比(TNT/RDX)は、例えば40/60~60/40の範囲とされる。爆薬の使用量は、例えば0.05~2.0kgである。
(Generation process)
In the production step (nanodiamond production step), a crude nanodiamond product is produced by a detonation method. Specifically, first, a molded explosive equipped with an electric detonator is installed inside a pressure-resistant container for detonation, and a gas having a specific composition and the explosive used coexist in the container. , Seal the container. The container is made of iron, for example. The volume of the container is, for example, 0.5 to 40 m 3 . As the explosive, a mixture of trinitrotoluene (TNT) and cyclotrimethylene trinitroamine or hexogen (RDX) can be used. The mass ratio of TNT to RDX (TNT / RDX) is, for example, in the range of 40/60 to 60/40. The amount of explosive used is, for example, 0.05 to 2.0 kg.
 生成工程では、次に、電気雷管を起爆させ、容器内で爆薬を爆轟させる。爆轟とは、化学反応に伴う爆発のうち反応の生じる火炎面が音速を超えた高速で移動するものをいう。爆轟の際、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素を原料として、爆発で生じた衝撃波の圧力とエネルギーの作用によってナノダイヤモンドが生成する。ナノダイヤモンドは、爆轟法により得られる生成物にて先ずは、隣接する一次粒子ないし結晶子の間がファンデルワールス力の作用に加えて結晶面間クーロン相互作用が寄与して非常に強固に集成し、凝着体となる。 In the generation process, the electric detonator is then detonated and the explosive is detonated in the container. Detonation is an explosion that accompanies a chemical reaction in which the flame surface on which the reaction occurs moves at a high speed that exceeds the speed of sound. At the time of detonation, nanodiamonds are produced by the action of the pressure and energy of the shock wave generated by the explosion, using the carbon released by the explosive used as a partial incomplete combustion as a raw material. Nanodiamond is a product obtained by the detonation method. First of all, between adjacent primary particles or crystallites, in addition to the action of van der Waals force, the Coulomb interaction between crystal planes contributes to make nanodiamond very strong. It assembles and becomes an adhesive body.
 生成工程では、次に、室温において24時間程度放置することにより放冷し、容器及びその内部を降温させる。この放冷の後、容器の内壁に付着しているナノダイヤモンド粗生成物(上述のようにして生成したナノダイヤモンドの凝着体と煤を含む)をヘラで掻き取る作業を行い、ナノダイヤモンド粗生成物を回収する。以上のような爆轟法によって、ナノダイヤモンド粒子の粗生成物を得ることができる。また、以上のような生成工程を必要回数行うことによって、所望量のナノダイヤモンド粗生成物を取得することが可能である。 In the production process, the container and its inside are then cooled by allowing it to cool at room temperature for about 24 hours. After this cooling, the nanodiamond crude products (including the nanodiamond adherents and soot produced as described above) adhering to the inner wall of the container are scraped off with a spatula. Collect the product. By the detonation method as described above, a crude product of nanodiamond particles can be obtained. In addition, it is possible to obtain a desired amount of crude nanodiamond product by performing the above-mentioned production steps a required number of times.
(酸処理工程)
 酸処理工程では、原料であるナノダイヤモンド粗生成物に例えば水溶媒中で強酸を作用させて金属酸化物を除去する。爆轟法で得られるナノダイヤモンド粗生成物には金属酸化物が含まれやすく、この金属酸化物は、爆轟法に使用される容器等に由来するFe、Co、Ni等の酸化物である。例えば水溶媒中で強酸を作用させることにより、ナノダイヤモンド粗生成物から金属酸化物を溶解・除去することができる(酸処理)。この酸処理に用いられる強酸としては、鉱酸が好ましく、例えば、塩酸、フッ化水素酸、硫酸、硝酸、王水が挙げられる。上記強酸は、一種を使用してもよいし、二種以上を使用してもよい。
(Acid treatment process)
In the acid treatment step, a strong acid is allowed to act on the raw material nanodiamond crude product, for example, in an aqueous solvent to remove the metal oxide. The nanodiamond crude product obtained by the detonation method tends to contain metal oxides, and these metal oxides are oxides of Fe, Co, Ni, etc. derived from containers and the like used in the detonation method. .. For example, by allowing a strong acid to act in an aqueous solvent, metal oxides can be dissolved and removed from the crude nanodiamond product (acid treatment). The strong acid used for this acid treatment is preferably a mineral acid, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia. As the strong acid, one kind may be used, or two or more kinds may be used.
 酸処理で使用される強酸の濃度は例えば1~50質量%である。酸処理温度は例えば70~150℃である。酸処理時間は例えば0.1~24時間である。また、酸処理は、減圧下、常圧下、又は加圧下で行うことが可能である。このような酸処理の後、例えばデカンテーションにより、固形分(ナノダイヤモンド凝着体を含む)の水洗を行う。沈殿液のpHが例えば2~3に至るまで、デカンテーションによる当該固形分の水洗を反復して行うのが好ましい。爆轟法で得られるナノダイヤモンド粗生成物における金属酸化物の含有量が少ない場合には、以上のような酸処理を省略してもよい。 The concentration of the strong acid used in the acid treatment is, for example, 1 to 50% by mass. The acid treatment temperature is, for example, 70 to 150 ° C. The acid treatment time is, for example, 0.1 to 24 hours. Further, the acid treatment can be performed under reduced pressure, normal pressure, or pressure. After such acid treatment, the solid content (including the nanodiamond adherent) is washed with water, for example, by decantation. It is preferable to repeatedly wash the solid content with water by decantation until the pH of the precipitate reaches, for example, 2 to 3. When the content of the metal oxide in the crude nanodiamond product obtained by the detonation method is small, the above acid treatment may be omitted.
(酸化処理工程)
 酸化処理工程は、酸化剤を用いてナノダイヤモンド粗生成物からグラファイトを除去する工程である。爆轟法で得られるナノダイヤモンド粗生成物にはグラファイト(黒鉛)が含まれるが、このグラファイトは、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素のうちナノダイヤモンド結晶を形成しなかった炭素に由来する。例えば上記の酸処理を経た後に、水溶媒中で酸化剤を作用させることにより、ナノダイヤモンド粗生成物からグラファイトを除去することができる。また、酸化剤を作用させることにより、ナノダイヤモンド表面にカルボキシル基や水酸基などの酸素含有基を導入することができる。
(Oxidation process)
The oxidation treatment step is a step of removing graphite from the crude nanodiamond product using an oxidizing agent. The crude nanodiamond product obtained by the detonation method contains graphite (graphite), which does not form nanodiamond crystals out of the carbon released by the explosive used due to partial incomplete combustion. Derived from graphite. For example, graphite can be removed from the crude nanodiamond product by allowing an oxidizing agent to act in an aqueous solvent after undergoing the above acid treatment. Further, by acting an oxidizing agent, an oxygen-containing group such as a carboxyl group or a hydroxyl group can be introduced into the surface of nanodiamond.
 この酸化処理に用いられる酸化剤としては、例えば、クロム酸、無水クロム酸、二クロム酸、過マンガン酸、過塩素酸、硝酸、これらの混合物や、これらから選択される少なくとも一種の酸と他の酸(例えば硫酸等)との混酸、これらの塩が挙げられる。中でも、混酸(特に、硫酸と硝酸との混酸)を使用することが、環境に優しく、且つグラファイトを酸化・除去する作用に優れる点で好ましい。 Examples of the oxidizing agent used in this oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, nitric acid, mixtures thereof, and at least one acid selected from these and others. Examples of mixed acids with acids (such as sulfuric acid) and salts thereof. Above all, it is preferable to use a mixed acid (particularly, a mixed acid of sulfuric acid and nitric acid) because it is environmentally friendly and has an excellent action of oxidizing and removing graphite.
 上記混酸における硫酸と硝酸との混合割合(前者/後者;質量比)は、例えば60/40~95/5であることが、常圧付近の圧力(例えば、0.5~2atm)の下でも、例えば130℃以上(特に好ましくは150℃以上。なお、上限は、例えば200℃)の温度で、効率よくグラファイトを酸化して除去することができる点で好ましい。下限は、好ましくは65/35、より好ましくは70/30である。また、上限は、好ましくは90/10、より好ましくは85/15、さらに好ましくは80/20である。上記混合割合が60/40以上であると、高沸点を有する硫酸の含有量が高いため、常圧付近の圧力下では、反応温度が例えば120℃以上となり、グラファイトの除去効率が向上する傾向がある。上記混合割合が95/5以下であると、グラファイトの酸化に大きく貢献する硝酸の含有量が多くなるため、グラファイトの除去効率が向上する傾向がある。 The mixing ratio (former / latter; mass ratio) of sulfuric acid and nitric acid in the mixed acid is, for example, 60/40 to 95/5, even under pressure near normal pressure (for example, 0.5 to 2 atm). For example, it is preferable in that graphite can be efficiently oxidized and removed at a temperature of 130 ° C. or higher (particularly preferably 150 ° C. or higher; the upper limit is, for example, 200 ° C.). The lower limit is preferably 65/35, more preferably 70/30. The upper limit is preferably 90/10, more preferably 85/15, and even more preferably 80/20. When the mixing ratio is 60/40 or more, the content of sulfuric acid having a high boiling point is high, so that the reaction temperature becomes, for example, 120 ° C. or more under pressure near normal pressure, and the graphite removal efficiency tends to improve. is there. When the mixing ratio is 95/5 or less, the content of nitric acid that greatly contributes to the oxidation of graphite increases, so that the efficiency of removing graphite tends to improve.
 酸化剤(特に、上記混酸)の使用量は、ナノダイヤモンド粗生成物1質量部に対して例えば10~50質量部、好ましくは15~40質量部、より好ましくは20~40質量部である。また、上記混酸中の硫酸の使用量は、ナノダイヤモンド粗生成物1質量部に対して例えば5~48質量部、好ましくは10~35質量部、より好ましくは15~30質量部である。また、上記混酸中の硝酸の使用量は、ナノダイヤモンド粗生成物1質量部に対して例えば2~20質量部、好ましくは4~10質量部、より好ましくは5~8質量部である。 The amount of the oxidizing agent (particularly the mixed acid) used is, for example, 10 to 50 parts by mass, preferably 15 to 40 parts by mass, and more preferably 20 to 40 parts by mass with respect to 1 part by mass of the crude nanodiamond product. The amount of sulfuric acid used in the mixed acid is, for example, 5 to 48 parts by mass, preferably 10 to 35 parts by mass, and more preferably 15 to 30 parts by mass with respect to 1 part by mass of the crude nanodiamond product. The amount of nitric acid used in the mixed acid is, for example, 2 to 20 parts by mass, preferably 4 to 10 parts by mass, and more preferably 5 to 8 parts by mass with respect to 1 part by mass of the crude nanodiamond product.
 また、酸化剤として上記混酸を使用する場合、混酸と共に触媒を使用してもよい。触媒を使用することにより、グラファイトの除去効率を一層向上させることができる。上記触媒としては、例えば、炭酸銅(II)等が挙げられる。触媒の使用量は、ナノダイヤモンド粗生成物100質量部に対して例えば0.01~10質量部程度である。 When the above mixed acid is used as the oxidizing agent, a catalyst may be used together with the mixed acid. By using a catalyst, the efficiency of removing graphite can be further improved. Examples of the catalyst include copper (II) carbonate and the like. The amount of the catalyst used is, for example, about 0.01 to 10 parts by mass with respect to 100 parts by mass of the crude nanodiamond product.
 酸化処理温度は例えば100~200℃である。酸化処理時間は例えば1~24時間である。酸化処理は、減圧下、常圧下、又は加圧下で行うことが可能である。 The oxidation treatment temperature is, for example, 100 to 200 ° C. The oxidation treatment time is, for example, 1 to 24 hours. The oxidation treatment can be performed under reduced pressure, normal pressure, or pressure.
 上記酸処理工程を経た後であっても、ナノダイヤモンドに除去しきれなかった金属酸化物が残存する場合は、一次粒子間が非常に強く相互作用して集成している凝着体(二次粒子)の形態をとる。このような場合には、ナノダイヤモンドに対して水溶媒中でアルカリ及び過酸化水素を作用させてもよい。これにより、ナノダイヤモンドに残存する金属酸化物を除去することができ、凝着体から一次粒子の分離を促進することができる。 If the metal oxide that could not be completely removed remains in the nanodiamond even after the above acid treatment step, the primary particles interact very strongly with each other to form an aggregate (secondary). It takes the form of particles). In such a case, the nanodiamond may be allowed to act with alkali and hydrogen peroxide in an aqueous solvent. As a result, the metal oxide remaining on the nanodiamond can be removed, and the separation of the primary particles from the adherent can be promoted.
 上記酸化処理工程の後、例えばデカンテーションにより上澄みを除去することが好ましい。また、デカンテーションの際には、固形分の水洗を行うことが好ましい。水洗当初の上澄み液は着色しているが、上澄み液が目視で透明になるまで、当該固形分の水洗を反復して行うことが好ましい。 After the above oxidation treatment step, it is preferable to remove the supernatant by, for example, decantation. Further, at the time of decantation, it is preferable to wash the solid content with water. Although the supernatant liquid at the beginning of washing with water is colored, it is preferable to repeatedly wash the solid content with water until the supernatant liquid becomes visually transparent.
(乾燥工程)
 本発明の製造方法は、乾燥工程を有していてもよい。例えば、上記酸化処理工程を経て得られたナノダイヤモンド含有溶液から噴霧乾燥装置やエバポレーター等を使用して液分を蒸発させた後、これによって生じる残留固形分を乾燥用オーブン内での加熱乾燥によって乾燥させる。加熱乾燥温度は、例えば40~150℃である。このような乾燥工程を経ることにより、粉体としてナノダイヤモンド凝着体(ナノダイヤモンド粒子の凝着体)が得られる。
(Drying process)
The production method of the present invention may include a drying step. For example, after evaporating the liquid content from the nanodiamond-containing solution obtained through the above oxidation treatment step using a spray drying device, an evaporator, or the like, the residual solid content generated thereby is heated and dried in a drying oven. dry. The heating and drying temperature is, for example, 40 to 150 ° C. By undergoing such a drying step, a nanodiamond adhering body (an adhering body of nanodiamond particles) can be obtained as a powder.
 また、ナノダイヤモンドには、必要に応じて、気相にて酸化処理(例えば酸素酸化)や還元処理(例えば水素化処理)を施してもよい。気相にて酸化処理を施すことにより、表面にC=O基を多く有するナノダイヤモンドが得られる。また、気相にて還元処理を施すことにより、表面にC-H基を多く有するナノダイヤモンドが得られる。特に、液中プラズマ処理工程を経ることによりナノダイヤモンドの分散性に優れるナノダイヤモンド分散組成物を得やすい観点から、酸素酸化工程を含むことが好ましい。 Further, the nanodiamond may be subjected to an oxidation treatment (for example, oxygen oxidation) or a reduction treatment (for example, hydrogenation treatment) in the gas phase, if necessary. By performing the oxidation treatment in the gas phase, nanodiamonds having many C = O groups on the surface can be obtained. Further, by performing the reduction treatment in the gas phase, nanodiamonds having many CH groups on the surface can be obtained. In particular, it is preferable to include an oxygen oxidation step from the viewpoint that it is easy to obtain a nanodiamond dispersion composition having excellent dispersibility of nanodiamonds through the submerged plasma treatment step.
(酸素酸化工程)
 上記酸化処理として、上記酸化処理工程、及び必要において乾燥工程などの他の工程を経たナノダイヤモンドの粉体について、ガス雰囲気炉を使用して、酸素を含有するガス雰囲気下にて加熱する酸素酸化工程を行うことが好ましい。酸素酸化工程では、具体的には、ガス雰囲気炉内にナノダイヤモンド粉体が配され、当該炉に対して酸素含有ガスが供給ないし通流され、加熱温度として設定された温度条件まで当該炉内が昇温されて酸素酸化処理が実施される。この酸素酸化処理の温度条件は、例えば250~500℃である。作製されるナノダイヤモンド分散液に含まれるナノダイヤモンド粒子についてネガティブのゼータ電位を実現するためには、この酸素酸化処理の温度条件は、比較的に高温であるのが好ましく、例えば400~450℃である。また、酸素酸化工程で用いられる酸素含有ガスは、酸素に加えて不活性ガスを含有する混合ガスであってもよい。不活性ガスとしては、例えば、窒素、アルゴン、二酸化炭素、ヘリウムが挙げられる。当該混合ガスの酸素濃度は、例えば1~35体積%である。
(Oxygen oxidation process)
As the oxidation treatment, oxygen oxidation in which nanodiamond powder that has undergone the oxidation treatment step and, if necessary, another step such as a drying step is heated in a gas atmosphere containing oxygen using a gas atmosphere furnace. It is preferable to carry out the process. In the oxygen oxidation step, specifically, nanodiamond powder is arranged in a gas atmosphere furnace, oxygen-containing gas is supplied or passed through the furnace, and the inside of the furnace reaches a temperature condition set as a heating temperature. Is heated and oxygen oxidation treatment is carried out. The temperature condition of this oxygen oxidation treatment is, for example, 250 to 500 ° C. In order to realize a negative zeta potential for the nanodiamond particles contained in the produced nanodiamond dispersion, the temperature condition of this oxygen oxidation treatment is preferably relatively high, for example, 400 to 450 ° C. is there. Further, the oxygen-containing gas used in the oxygen oxidation step may be a mixed gas containing an inert gas in addition to oxygen. Examples of the inert gas include nitrogen, argon, carbon dioxide and helium. The oxygen concentration of the mixed gas is, for example, 1 to 35% by volume.
(水素化工程)
 作製されるナノダイヤモンド分散組成物に含まれるナノダイヤモンドについてポジティブのゼータ電位を実現するために、上記酸素酸化工程の後に水素化工程を行ってもよい。水素化工程では、酸素酸化工程を経たナノダイヤモンドの粉体について、ガス雰囲気炉を使用して、水素を含有するガス雰囲気下にて加熱する。具体的には、ナノダイヤモンド粉体が内部に配されているガス雰囲気炉に対して水素含有ガスが供給ないし通流され、加熱温度として設定された温度条件まで当該炉内が昇温されて水素化処理が実施される。この水素化処理の温度条件は、例えば400~800℃である。また、水素化工程で用いられる水素含有ガスは、水素に加えて不活性ガスを含有する混合ガスであってもよい。不活性ガスとしては、例えば、窒素、アルゴン、二酸化炭素、ヘリウムが挙げられる。当該混合ガスの水素濃度は、例えば1~50体積%である。
(Hydrogenation process)
In order to realize a positive zeta potential for the nanodiamonds contained in the produced nanodiamond dispersion composition, a hydrogenation step may be performed after the oxygen oxidation step. In the hydrogenation step, the nanodiamond powder that has undergone the oxygen oxidation step is heated in a gas atmosphere containing hydrogen using a gas atmosphere furnace. Specifically, hydrogen-containing gas is supplied or passed through a gas atmosphere furnace in which nanodiamond powder is arranged, and the temperature inside the furnace is raised to the temperature condition set as the heating temperature to generate hydrogen. Chemical processing is carried out. The temperature condition of this hydrogenation treatment is, for example, 400 to 800 ° C. Further, the hydrogen-containing gas used in the hydrogenation step may be a mixed gas containing an inert gas in addition to hydrogen. Examples of the inert gas include nitrogen, argon, carbon dioxide and helium. The hydrogen concentration of the mixed gas is, for example, 1 to 50% by volume.
(液中プラズマ処理工程)
 液中プラズマ処理工程では、ナノダイヤモンドを液体中でプラズマ処理に付してナノダイヤモンドを分散させる。液中プラズマ処理は、公知乃至慣用のプラズマ発生装置を用いて行うことができる。液中プラズマ処理は、例えばプラズマを発生するための一対の電極が、電極の先端同士が向かい合い且つ間隙を有するように挿入された反応容器を用いて行う。
(Submerged plasma treatment process)
In the submerged plasma treatment step, the nanodiamonds are subjected to plasma treatment in the liquid to disperse the nanodiamonds. The submerged plasma treatment can be performed using a known or conventional plasma generator. The submerged plasma treatment is performed using, for example, a reaction vessel in which a pair of electrodes for generating plasma are inserted so that the tips of the electrodes face each other and have a gap.
 液中プラズマ処理を行う液体としては、水、有機溶媒が挙げられる。上記有機溶媒としては、後述の分散媒として例示及び説明されたものが挙げられる。中でも、より効率的に液体中にプラズマを発生させナノダイヤモンドを分散させることができる観点から、水が好ましい。上記液体は、一種のみを使用してもよいし、二種以上を使用してもよい。 Examples of the liquid to be subjected to the plasma treatment in the liquid include water and an organic solvent. Examples of the organic solvent include those exemplified and described as the dispersion medium described later. Of these, water is preferable from the viewpoint of being able to generate plasma in the liquid more efficiently and disperse the nanodiamonds. As the above liquid, only one kind may be used, or two or more kinds may be used.
 液中プラズマ処理工程における液中のナノダイヤモンド濃度は、1~15質量%が好ましく、より好ましくは2~8質量%である。上記濃度が1質量%以上(特に2質量%以上)であると、反応時間が短縮される。上記濃度が15質量%以下であると、収率が向上する。 The concentration of nanodiamonds in the liquid in the plasma treatment step in the liquid is preferably 1 to 15% by mass, more preferably 2 to 8% by mass. When the concentration is 1% by mass or more (particularly 2% by mass or more), the reaction time is shortened. When the concentration is 15% by mass or less, the yield is improved.
 液中プラズマ処理は、pHが7を超える条件下で行うことが好ましい。上記pHは、より好ましくは7を超え14以下、さらに好ましくは7.5~12、特に好ましくは8~10である。液中プラズマ処理をpH7を超える条件下で行うことで、ナノダイヤモンド(特に、酸素酸化処理を経たナノダイヤモンド)は、親水化し、或いは酸化されやすく、液中プラズマ処理の効果を受けやすいものと推測され、得られるナノダイヤモンド分散組成物中の分散性がより優れる。なお、上記pHの条件下となるようにpHを調整してもよい。pHの調整には、水酸化ナトリウムなどの公知乃至慣用のpH調整剤を用いることができる。 The submerged plasma treatment is preferably performed under conditions where the pH exceeds 7. The pH is more preferably more than 7 and 14 or less, still more preferably 7.5 to 12, and particularly preferably 8 to 10. It is presumed that nanodiamonds (particularly nanodiamonds that have undergone oxygen oxidation treatment) are easily hydrophilized or oxidized by performing the submerged plasma treatment under conditions exceeding pH 7, and are susceptible to the effects of the submerged plasma treatment. The dispersibility in the obtained nanodiamond dispersion composition is more excellent. The pH may be adjusted so as to meet the above pH conditions. A known or commonly used pH adjuster such as sodium hydroxide can be used to adjust the pH.
 液中プラズマ処理を施すナノダイヤモンドは、ゼータ電位がネガティブであることが好ましい。この場合、ナノダイヤモンドがプラズマ処理により酸化されやすいと推測され、ナノダイヤモンドの分散性がより優れる。 Nanodiamonds subjected to submerged plasma treatment preferably have a negative zeta potential. In this case, it is presumed that the nanodiamonds are easily oxidized by the plasma treatment, and the dispersibility of the nanodiamonds is more excellent.
 液中プラズマ処理は、発熱を伴う処理であり、温度が例えば49~90℃、好ましくは50~85℃で、反応時間が例えば1分間~3時間程度、好ましくは10分間~2時間程度で行うことが好ましい。 The submerged plasma treatment is a treatment involving heat generation, and is carried out at a temperature of, for example, 49 to 90 ° C., preferably 50 to 85 ° C., and a reaction time of, for example, about 1 minute to 3 hours, preferably about 10 minutes to 2 hours. Is preferable.
 プラズマを発生させる電極間の距離(一対の電極の先端同士の間隙の距離)は、特に限定されないが、例えば0.1~20mm、好ましくは0.2~15mm、より好ましくは0.5~10mmである。上記電極間の距離が上記範囲内であると、発熱を抑制することができ、且つ充分にプラズマ処理を行うことができる。なお、一般的に電解液をプラズマ処理する際には、電極間距離が短い場合(例えば2mm以下)では水素ラジカルの発生が主流となり、一方電極間距離が長い場合(例えば5mm以上)ではヒドロキシラジカルの発生が主流となるなど、電極間距離が重要となる。しかしながら、本発明の製造方法では、驚くべきことに、広範囲の電極間距離条件においてナノダイヤモンドを液体中に分散させることができる。 The distance between the electrodes that generate plasma (the distance between the tips of the pair of electrodes) is not particularly limited, but is, for example, 0.1 to 20 mm, preferably 0.2 to 15 mm, and more preferably 0.5 to 10 mm. Is. When the distance between the electrodes is within the above range, heat generation can be suppressed and plasma treatment can be sufficiently performed. Generally, when plasma-treating an electrolytic solution, hydrogen radicals are mainly generated when the distance between electrodes is short (for example, 2 mm or less), while hydroxyl radicals are generated when the distance between electrodes is long (for example, 5 mm or more). The distance between the electrodes is important, such as the occurrence of radicals becoming the mainstream. However, the manufacturing method of the present invention can surprisingly disperse nanodiamonds in a liquid over a wide range of interelectrode distance conditions.
 上記液中プラズマ処理工程の後、必要に応じて、エバポレーターなどで液中プラズマに用いた液体を留去した後、新たに溶媒を混合して撹拌し、すなわち溶媒の交換を行ってもよい。 After the above-mentioned in-liquid plasma treatment step, if necessary, after distilling off the liquid used for the in-liquid plasma with an evaporator or the like, a solvent may be newly mixed and stirred, that is, the solvent may be exchanged.
 以上のようにして、本発明の製造方法により、分散媒中にナノダイヤモンドが分散しているナノダイヤモンド分散組成物を得ることができる。 As described above, the nanodiamond dispersion composition in which nanodiamonds are dispersed in the dispersion medium can be obtained by the production method of the present invention.
 本発明の製造方法によれば、ジルコニアビーズを用いたビーズミル処理による解砕を行わずにナノダイヤモンドの分散性に優れるナノダイヤモンド分散組成物を得ることができる。また、本発明の製造方法によれば、公知のプラズマ発生装置を用いてナノダイヤモンド分散組成物を得ることができるため、スケールアップが容易であり、生産性にも優れる。 According to the production method of the present invention, a nanodiamond dispersion composition having excellent dispersibility of nanodiamond can be obtained without crushing by bead mill treatment using zirconia beads. Further, according to the production method of the present invention, since the nanodiamond dispersion composition can be obtained by using a known plasma generator, the scale-up is easy and the productivity is excellent.
[ナノダイヤモンド分散組成物]
 本発明のナノダイヤモンド分散組成物は、分散媒と、上記分散媒中に分散しているナノダイヤモンドと、タングステンとを少なくとも含む。本発明のナノダイヤモンド分散組成物は、本発明の製造方法により得られる分散組成物であり、電極由来のタングステンを含むこととなる。
[Nanodiamond dispersion composition]
The nanodiamond dispersion composition of the present invention contains at least a dispersion medium, nanodiamonds dispersed in the dispersion medium, and tungsten. The nanodiamond dispersion composition of the present invention is a dispersion composition obtained by the production method of the present invention, and contains tungsten derived from an electrode.
 本発明のナノダイヤモンド分散組成物は、分散媒中にナノダイヤモンド粒子がナノサイズで分散している。本発明のナノダイヤモンド分散組成物中におけるナノダイヤモンド粒子の平均分散粒子径(D50、メディアン径)は、1~100nmが好ましく、より好ましくは2~80nm、より好ましくは5~50nm、さらに好ましくは10~30nmである。上記平均分散粒子径は、動的光散乱法によって測定することができる。ナノダイヤモンド粒子の平均分散粒子径が上記範囲内であると、ナノダイヤモンド分散組成物おけるナノダイヤモンド粒子の分散性に優れる。 In the nanodiamond dispersion composition of the present invention, nanodiamond particles are dispersed in a dispersion medium in nano size. The average dispersed particle diameter (D50, median diameter) of the nanodiamond particles in the nanodiamond dispersion composition of the present invention is preferably 1 to 100 nm, more preferably 2 to 80 nm, more preferably 5 to 50 nm, still more preferably 10. It is ~ 30 nm. The average dispersed particle size can be measured by a dynamic light scattering method. When the average dispersed particle size of the nanodiamond particles is within the above range, the dispersibility of the nanodiamond particles in the nanodiamond dispersion composition is excellent.
 本発明のナノダイヤモンド分散組成物中のナノダイヤモンドの含有割合は、例えば0.1質量ppm以上5.0質量%以下、好ましくは0.2質量ppm以上4.0質量%以下、より好ましくは0.5質量ppm以上3.0質量%以下、さらに好ましくは1質量ppm以上2.0質量%以下であり、1~100質量ppmであってもよい。本発明のナノダイヤモンド分散組成物は上記範囲の含有割合において分散媒中の分散性により優れる。 The content ratio of nanodiamond in the nanodiamond dispersion composition of the present invention is, for example, 0.1% by mass or more and 5.0% by mass or less, preferably 0.2% by mass or more and 4.0% by mass or less, more preferably 0. It is 5.5 mass ppm or more and 3.0 mass% or less, more preferably 1 mass ppm or more and 2.0 mass% or less, and may be 1 to 100 mass ppm. The nanodiamond dispersion composition of the present invention is more excellent in dispersibility in the dispersion medium at a content ratio in the above range.
 上記分散媒は、ナノダイヤモンドを分散させるための媒体であり、水、有機溶媒、イオン液体などが挙げられる。上記分散媒は、一種のみを用いてもよいし、二種以上を用いてもよい。 The dispersion medium is a medium for dispersing nanodiamonds, and examples thereof include water, organic solvents, and ionic liquids. As the dispersion medium, only one kind may be used, or two or more kinds may be used.
 上記有機溶媒としては、例えば、プロトン性有機溶媒と非プロトン性有機溶媒が含まれ、極性有機溶媒と非極性有機溶媒が含まれる。 The organic solvent includes, for example, a protic organic solvent and an aprotic organic solvent, and includes a polar organic solvent and a non-polar organic solvent.
 上記有機溶媒は、25℃におけるSP値[(cal/cm30.5:Fedors計算値]が、例えば7~23であり、好ましくは7~17、より好ましくは7~15、さらに好ましくは7~13、さらに好ましくは7~12、特に好ましくは7~10である。 The organic solvent has an SP value [(cal / cm 3 ) 0.5 : Fedors calculated value] at 25 ° C., for example, 7 to 23, preferably 7 to 17, more preferably 7 to 15, and even more preferably 7 to. 13, more preferably 7 to 12, particularly preferably 7 to 10.
 また、上記有機溶媒は、25℃における比誘電率が、例えば1~40であり、好ましくは2~3である。なお、本明細書における比誘電率は、化学便覧 第5版 基礎編、丸善(株)、(社)日本化学会編に記載されている値である。また、比誘電率は、有機溶媒をセルギャップ10μmのITO透明電極付きガラスセルに注入し、得られたセルの電気容量を、エヌエフ(株)製の型式2353LCRメーター(測定周波数:1kHz)を用いて25℃、40%RHにて測定することでも求められる。 Further, the above-mentioned organic solvent has a relative permittivity at 25 ° C., for example, 1 to 40, preferably 2 to 3. The relative permittivity in this specification is a value described in the Chemical Handbook, 5th Edition, Basic Edition, Maruzen Co., Ltd., and the Chemical Society of Japan. For the relative permittivity, an organic solvent was injected into a glass cell with an ITO transparent electrode having a cell gap of 10 μm, and the electric capacity of the obtained cell was measured using a model 2353LCR meter (measurement frequency: 1 kHz) manufactured by NF Co., Ltd. It can also be obtained by measuring at 25 ° C. and 40% RH.
 上記極性有機溶媒は、25℃におけるSP値が、例えば10.0以上であり、好ましくは10.0~23.0、より好ましくは10.0~15.0である。また、上記非極性有機溶媒は、25℃におけるSP値が、例えば10.0未満であり、好ましくは7.5~9.5、より好ましくは8.0~9.3である。また、上記極性有機溶媒は、25℃における比誘電率が、例えば15~40であり、好ましくは15~35、より好ましくは18~35である。上記非極性有機溶媒は、25℃における比誘電率が、例えば1以上であり、好ましくは15未満、より好ましくは1~10、さらに好ましくは1~5である。 The polar organic solvent has an SP value at 25 ° C. of, for example, 10.0 or more, preferably 10.0 to 23.0, and more preferably 10.0 to 15.0. The non-polar organic solvent has an SP value at 25 ° C. of, for example, less than 10.0, preferably 7.5 to 9.5, and more preferably 8.0 to 9.3. The polar organic solvent has a relative permittivity at 25 ° C., for example, 15 to 40, preferably 15 to 35, and more preferably 18 to 35. The non-polar organic solvent has a relative permittivity at 25 ° C. of, for example, 1 or more, preferably less than 15, more preferably 1 to 10, and even more preferably 1 to 5.
 プロトン性有機溶媒としては、例えば、メタノール(SP値:13.8、比誘電率:32.6)、エタノール(SP値:12.6、比誘電率:24.30)、1-プロパノール(SP値:11.8、比誘電率:20.1)、イソプロピルアルコール(SP値:11.6、比誘電率:19.92)等の炭素数1~5の1価アルコール;エチレングリコール等の炭素数2~5の多価アルコールなどが挙げられる。 Examples of the protic organic solvent include methanol (SP value: 13.8, relative permittivity: 32.6), ethanol (SP value: 12.6, relative permittivity: 24.30), and 1-propanol (SP). Value: 11.8, relative permittivity: 20.1), monovalent alcohol having 1 to 5 carbon atoms such as isopropyl alcohol (SP value: 11.6, relative permittivity: 19.92); carbon such as ethylene glycol Examples thereof include polyhydric alcohols of numbers 2 to 5.
 非プロトン性有機溶媒としては、例えば、トルエン(SP値:9.14、比誘電率:2.379)、o-キシレン(SP値:9.10)、ベンゼン等の芳香族炭化水素;シクロヘキサン等の脂環式炭化水素;n-ヘキサン(SP値:7.29)等の脂肪族炭化水素;四塩化炭素、塩化メチレン、二塩化エチレン、クロロホルム等のハロゲン化炭化水素;イソプロピルエーテル、テトラヒドロフラン(SP値:8.28)、ジエチルエーテル(SP値:7.25)等のエーテル;酢酸エチル(SP値:8.75)、酢酸ブチル(SP値:8.70)等のエステル;アセトン(SP値:9.07、比誘電率:20.7)、メチルエチルケトン(SP値:8.99)、シクロヘキサノン(SP値:9.80)等のケトンなどが挙げられる。 Examples of the aproton organic solvent include toluene (SP value: 9.14, relative permittivity: 2.379), o-xylene (SP value: 9.10), aromatic hydrocarbons such as benzene; cyclohexane and the like. Alicyclic hydrocarbons; aliphatic hydrocarbons such as n-hexane (SP value: 7.29); halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, ethylene dichloride, chloroform; isopropyl ether, tetrahydrofuran (SP). Values such as ethers such as diethyl ether (SP value: 7.25); ethyl acetate (SP value: 8.75), esters such as butyl acetate (SP value: 8.70); acetone (SP value) : 9.07, relative permittivity: 20.7), methyl ethyl ketone (SP value: 8.99), cyclohexanone (SP value: 9.80) and other ketones.
 本発明のナノダイヤモンド分散組成物は、タングステンを少なくとも含む。本発明のナノダイヤモンド分散組成物中のタングステンの含有割合は、例えば10~2000質量ppm、好ましくは15~1750質量ppm、より好ましくは20~1500質量ppm、さらに好ましくは25~1250質量ppmである。 The nanodiamond dispersion composition of the present invention contains at least tungsten. The content ratio of tungsten in the nanodiamond dispersion composition of the present invention is, for example, 10 to 2000 mass ppm, preferably 15 to 1750 mass ppm, more preferably 20 to 1500 mass ppm, still more preferably 25 to 1250 mass ppm. ..
 本発明のナノダイヤモンド分散組成物中のジルコニアの含有割合は、例えば60質量ppm以下、好ましくは40質量ppm以下、より好ましくは20質量ppm以下である。本発明の製造方法によれば、ジルコニアなどのビーズミルを用いた解砕工程を経ずにナノダイヤモンドの分散を行うことができるため、ビーズミルからのジルコニアの混合を回避することができ、上記ジルコニア濃度のナノダイヤモンド分散組成物を得ることができる。 The content ratio of zirconia in the nanodiamond dispersion composition of the present invention is, for example, 60 mass ppm or less, preferably 40 mass ppm or less, and more preferably 20 mass ppm or less. According to the production method of the present invention, nanodiamonds can be dispersed without going through a crushing step using a bead mill such as zirconia, so that mixing of zirconia from the bead mill can be avoided, and the above-mentioned zirconia concentration can be avoided. Nanodiamond dispersion composition can be obtained.
 タングステン及びジルコニアの含有割合は、高周波誘導結合プラズマ発光分光分析法(ICP発光分光分析法)によりWを検出し、含有割合が既知である分散液を基準としてWあるいはSiの検出量に基づき求めることができる。 The content ratio of tungsten and zirconia shall be determined based on the amount of W or Si detected based on the dispersion liquid whose content ratio is known by detecting W by high frequency inductively coupled plasma emission spectroscopy (ICP emission spectroscopy). Can be done.
 本発明のナノダイヤモンド分散組成物は、ヘイズ値が5以下であることが好ましく、より好ましくは3以下、さらに好ましくは1以下である。本発明のナノダイヤモンド分散組成物はナノダイヤモンド粒子の分散性に優れるため、上記ヘイズ値のナノダイヤモンド分散組成物を得ることができる。上記ヘイズ値は、JIS K 7136に基づいて測定することができる。 The nanodiamond dispersion composition of the present invention preferably has a haze value of 5 or less, more preferably 3 or less, and even more preferably 1 or less. Since the nanodiamond dispersion composition of the present invention is excellent in dispersibility of nanodiamond particles, the nanodiamond dispersion composition having the above haze value can be obtained. The haze value can be measured based on JIS K 7136.
 本発明のナノダイヤモンド分散組成物は、分散媒、ナノダイヤモンド、及びタングステンのみからなるものであってもよく、その他の成分を含有していてもよい。その他の成分としては、例えば、界面活性剤、増粘剤、カップリング剤、分散剤、防錆剤、腐食防止剤、凝固点降下剤、消泡剤、耐摩耗添加剤、防腐剤、着色料などが挙げられる。上記その他の成分は、それぞれ、一種のみを使用してもよいし、二種以上を使用してもよい。 The nanodiamond dispersion composition of the present invention may consist only of a dispersion medium, nanodiamond, and tungsten, or may contain other components. Other components include, for example, surfactants, thickeners, coupling agents, dispersants, rust preventives, corrosion inhibitors, freezing point lowering agents, defoamers, abrasion resistant additives, preservatives, colorants and the like. Can be mentioned. As the other components, only one kind may be used, or two or more kinds may be used.
 本発明のナノダイヤモンド分散組成物は、例えば、微細なナノダイヤモンド粒子が有する特性を樹脂など(例えば、熱若しくは光硬化性樹脂や熱可塑性樹脂等)に付与する添加剤として好ましく使用することができる。上記ナノダイヤモンド粒子が有する特性としては、例えば、機械的強度、高屈折率、熱伝導性、絶縁性、酸化防止性、結晶化促進作用、デンドライト抑制作用などが挙げられる。そして、本発明のナノダイヤモンド分散組成物を樹脂に添加して得られる組成物は、例えば、機能性ハイブリッド材料、熱的機能(耐熱、蓄熱、熱電導、断熱等)材料、フォトニクス(有機EL素子、LED、液晶ディスプレイ、光ディスク等)材料、バイオ・生体適合性材料、コーティング材料、フィルム(タッチパネルや各種ディスプレイなどのハードコートフィルム、遮熱フィルム等)材料、シート材料、スクリーン(透過型透明スクリーン等)材料、フィラー(放熱用フィラー、機械特性向上用フィラー等)材料、耐熱性プラスチック基板(フレキシブルディスプレイ用基板等)材料、リチウムイオン電池等材料として好ましく使用することができる。また、本発明のナノダイヤモンド分散組成物は、その他、機械部品(例えば、自動車や航空機等)の摺動部などに適用する減摩剤又は潤滑剤(初期なじみ用途、本潤滑用途等)として好ましく使用できる。 The nanodiamond dispersion composition of the present invention can be preferably used, for example, as an additive that imparts the characteristics of fine nanodiamond particles to a resin or the like (for example, a heat or photocurable resin, a thermoplastic resin, or the like). .. Examples of the characteristics of the nanodiamond particles include mechanical strength, high refractive index, thermal conductivity, insulating property, antioxidant property, crystallization promoting action, and dendrite suppressing action. The composition obtained by adding the nanodiamond dispersion composition of the present invention to a resin is, for example, a functional hybrid material, a thermal function (heat resistance, heat storage, thermoconductivity, heat insulation, etc.) material, and photonics (organic EL element). , LED, liquid crystal display, optical disk, etc.) material, bio / biocompatible material, coating material, film (hard coat film for touch panel and various displays, heat shield film, etc.) material, sheet material, screen (transmissive transparent screen, etc.) ) Materials, fillers (fillers for heat dissipation, fillers for improving mechanical properties, etc.), heat-resistant plastic substrates (substrates for flexible displays, etc.), lithium-ion batteries, etc. can be preferably used. In addition, the nanodiamond dispersion composition of the present invention is preferably used as an anti-friction agent or a lubricant (initial familiar use, present lubrication use, etc.) applied to sliding parts of mechanical parts (for example, automobiles, aircraft, etc.). Can be used.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.
 実施例1
 下記工程を経て、ナノダイヤモンド分散組成物を製造した。
Example 1
The nanodiamond dispersion composition was produced through the following steps.
(生成工程)
 まず、爆轟法によるナノダイヤモンドの生成工程を行った。本工程では、まず、成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器の内部に設置して容器を密閉した。容器は鉄製で、容器の容積は15m3である。爆薬としては、TNTとRDXとの混合物0.50kgを使用した。この爆薬におけるTNTとRDXの質量比(TNT/RDX)は、50/50である。次に、電気雷管を起爆させ、容器内で爆薬を爆轟させた(爆轟法によるナノダイヤモンドの生成)。次に、室温での24時間の放置により、容器およびその内部を降温させた。この放冷の後、容器の内壁に付着しているナノダイヤモンド粗生成物(上記爆轟法で生成したナノダイヤモンド粒子の凝着体と煤を含む)をヘラで掻き取る作業を行い、ナノダイヤモンド粗生成物を回収した。
(Generation process)
First, the process of producing nanodiamonds by the detonation method was performed. In this step, first, a molded explosive equipped with an electric detonator was installed inside a pressure-resistant container for detonation, and the container was sealed. The container is made of iron and the volume of the container is 15 m 3 . As the explosive, 0.50 kg of a mixture of TNT and RDX was used. The mass ratio of TNT to RDX (TNT / RDX) in this explosive is 50/50. Next, the electric detonator was detonated and the explosive was detonated in the container (generation of nanodiamonds by the detonation method). Next, the temperature of the container and its inside was lowered by leaving it at room temperature for 24 hours. After this cooling, the crude nanodiamond products adhering to the inner wall of the container (including the adherents of nanodiamond particles and soot generated by the above detonation method) are scraped off with a spatula, and the nanodiamonds are removed. The crude product was recovered.
(酸処理工程)
 上述のような生成工程を複数回行うことによって取得されたナノダイヤモンド粗生成物に対し、次に、酸処理工程を行った。具体的には、当該ナノダイヤモンド粗生成物200gに6Lの10質量%塩酸を加えて得られたスラリーに対し、常圧条件での還流下で1時間の加熱処理を行った。この酸処理における加熱温度は85~100℃である。次に、冷却後、デカンテーションにより、固形分(ナノダイヤモンド凝着体と煤を含む)の水洗を行った。沈殿液のpHが低pH側から2に至るまで、デカンテーションによる当該固形分の水洗を反復して行った。
(Acid treatment process)
Next, an acid treatment step was carried out on the nanodiamond crude product obtained by carrying out the above-mentioned formation step a plurality of times. Specifically, the slurry obtained by adding 6 L of 10% by mass hydrochloric acid to 200 g of the crude nanodiamond product was heat-treated for 1 hour under reflux under normal pressure conditions. The heating temperature in this acid treatment is 85 to 100 ° C. Next, after cooling, the solid content (including nanodiamond adherents and soot) was washed with water by decantation. The solid content was repeatedly washed with water by decantation until the pH of the precipitate was from the low pH side to 2.
(酸化処理工程)
 次に、酸化処理工程を行った。具体的には、酸処理後のデカンテーションを経て得た沈殿液(ナノダイヤモンド凝着体を含む)に、6Lの98質量%硫酸と1Lの69質量%硝酸とを加えてスラリーとした後、このスラリーに対し、常圧条件での還流下で48時間の加熱処理を行った。この酸化処理における加熱温度は140~160℃である。次に、冷却後、デカンテーションにより、固形分(ナノダイヤモンド凝着体を含む)の水洗を行った。水洗当初の上澄み液は着色しているところ、上澄み液が目視で透明になるまで、デカンテーションによる当該固形分の水洗を反復して行った。
(Oxidation process)
Next, an oxidation treatment step was performed. Specifically, 6 L of 98% by mass sulfuric acid and 1 L of 69% by mass nitric acid were added to a precipitate (including nanodiamond adherents) obtained through decantation after acid treatment to form a slurry, which was then added to form a slurry. This slurry was heat-treated for 48 hours under reflux under normal pressure conditions. The heating temperature in this oxidation treatment is 140 to 160 ° C. Next, after cooling, the solid content (including the nanodiamond adherent) was washed with water by decantation. The supernatant liquid at the beginning of washing with water was colored, and the solid content was washed with water repeatedly by decantation until the supernatant liquid became visually transparent.
(乾燥工程)
 次に、上述の水洗処理を経て得られたナノダイヤモンド含有液1000mLを、噴霧乾燥装置(商品名「スプレードライヤー B-290」、日本ビュッヒ株式会社製)を使用して噴霧乾燥に付した(乾燥工程)。これにより、50gのナノダイヤモンド粉体を得た。
(Drying process)
Next, 1000 mL of the nanodiamond-containing liquid obtained through the above-mentioned washing treatment was spray-dried (drying) using a spray-drying device (trade name "Spray Dryer B-290", manufactured by Nippon Buch Co., Ltd.). Process). As a result, 50 g of nanodiamond powder was obtained.
(酸素酸化工程)
 次に、上述のようにして得られたナノダイヤモンド粉体4.5gをガス雰囲気炉(商品名「ガス雰囲気チューブ炉 KTF045N1」、光洋サーモシステム株式会社製)の炉心管内に静置し、炉心管に窒素ガスを流速1L/分で30分間通流させ続けた後、通流ガスを窒素から酸素と窒素との混合ガスへと切り替えて当該混合ガスを流速1L/分で炉心管に通流させ続けた。混合ガス中の酸素濃度は4体積%である。混合ガスへの切り替えの後、炉内を加熱設定温度たる400℃まで昇温させた。昇温速度については、加熱設定温度より20℃低い380℃までは10℃/分とし、その後の380℃から400℃までは1℃/分とした。そして、炉内の温度条件を400℃に維持しつつ、炉内のナノダイヤモンド粉体について酸素酸化処理を行った(酸素酸化工程)。処理時間は3時間とした。
(Oxygen oxidation process)
Next, 4.5 g of the nanodiamond powder obtained as described above was allowed to stand in the core tube of a gas atmosphere furnace (trade name "gas atmosphere tube furnace KTF045N1", manufactured by Koyo Thermo System Co., Ltd.), and the core tube was placed. After continuing to pass nitrogen gas at a flow rate of 1 L / min for 30 minutes, the flowing gas is switched from nitrogen to a mixed gas of oxygen and nitrogen, and the mixed gas is passed through the core tube at a flow rate of 1 L / min. Continued. The oxygen concentration in the mixed gas is 4% by volume. After switching to the mixed gas, the temperature inside the furnace was raised to 400 ° C., which is the set heating temperature. The rate of temperature rise was 10 ° C./min up to 380 ° C., which is 20 ° C. lower than the set heating temperature, and 1 ° C./min from 380 ° C. to 400 ° C. thereafter. Then, while maintaining the temperature condition in the furnace at 400 ° C., the nanodiamond powder in the furnace was subjected to oxygen oxidation treatment (oxygen oxidation step). The processing time was 3 hours.
 上記のようにして得られたナノダイヤモンド粉体に関するゼータ電位について、Malvern社製の装置(商品名「ゼータサイザー ナノZS」)を使用して、レーザードップラー式電気泳動法によって測定した。測定に付されたナノダイヤモンド分散液は、ナノダイヤモンド濃度が0.2質量%となるように超純水で希釈した後に超音波洗浄機による超音波照射を経たものである。ゼータ電位測定温度は25℃である。本測定の結果、ナノダイヤモンド分散液のゼータ電位は-38mVであった。 The zeta potential of the nanodiamond powder obtained as described above was measured by a laser Doppler electrophoresis method using an apparatus manufactured by Malvern (trade name "Zetasizer Nano ZS"). The nanodiamond dispersion liquid subjected to the measurement was diluted with ultrapure water so that the nanodiamond concentration was 0.2% by mass, and then subjected to ultrasonic irradiation with an ultrasonic cleaner. The zeta potential measurement temperature is 25 ° C. As a result of this measurement, the zeta potential of the nanodiamond dispersion was -38 mV.
(液中プラズマ処理工程)
 次に、ナノダイヤモンド濃度が5質量%となるようにナノダイヤモンド6gを水114gに混合してスラリーを作製し、水酸化ナトリウム水溶液を添加してpHを9.9に調整した。電極間距離が5mmとなるようにプラズマ発生用電極を反応容器に挿入し、これにpH調整されたスラリーを移し、スラリーを回転子で撹拌させながら、常温で1時間液中プラズマ反応を行った。なお、プラズマ発生装置として、商品名「MPP04-A4-200」(株式会社栗田製作所製)を使用した。
(Submerged plasma treatment process)
Next, 6 g of nanodiamond was mixed with 114 g of water so that the concentration of nanodiamond was 5% by mass to prepare a slurry, and an aqueous sodium hydroxide solution was added to adjust the pH to 9.9. A plasma generating electrode was inserted into a reaction vessel so that the distance between the electrodes was 5 mm, a pH-adjusted slurry was transferred thereto, and a submerged plasma reaction was carried out at room temperature for 1 hour while stirring the slurry with a rotor. .. The product name "MPP04-A4-200" (manufactured by Kurita Seisakusho Co., Ltd.) was used as the plasma generator.
 反応後のスラリー液を静置した後に上清液を採取し、遠心分離処理(遠心力13000×g、遠心時間15分間)に付して沈降した固形分を回収した。このようにして回収した固形分にIPA(SP:11.5)2gを加え、超音波処理装置(商品名「ASU-10」、アズワン(株)製)を使用して10分間の超音波処理を行いナノダイヤモンド分散組成物を得た。 After allowing the slurry liquid after the reaction to stand, the supernatant liquid was collected and subjected to a centrifugal separation treatment (centrifugal force 13000 × g, centrifugation time 15 minutes) to recover the sedimented solid content. 2 g of IPA (SP: 11.5) is added to the solid content recovered in this manner, and ultrasonic treatment is performed for 10 minutes using an ultrasonic treatment device (trade name "ASU-10", manufactured by AS ONE Corporation). To obtain a nanodiamond dispersion composition.
 得られたナノダイヤモンド分散組成物中のナノダイヤモンド粒子の粒度分布を、Malvern社製の装置(商品名「ゼータサイザー ナノZS」)を使用して、動的光散乱法(非接触後方散乱法)により測定し、ナノダイヤモンド粒子の平均分散粒子径(D50)を求めたところ、13.7nmであった。この時のナノダイヤモンド濃度は0.28質量%であり、タングステンは50質量ppm以下の割合で含有していることが確認された。なお、ナノダイヤモンド濃度は、350nmにおける吸光度より算出した。タングステン濃度は、ICP発光分光分析法より求めた。 The particle size distribution of the nanodiamond particles in the obtained nanodiamond dispersion composition is subjected to a dynamic light scattering method (non-contact backscattering method) using an apparatus manufactured by Malvern (trade name "Zetasizer Nano ZS"). The average dispersed particle size (D50) of the nanodiamond particles was determined by 13.7 nm. At this time, the nanodiamond concentration was 0.28% by mass, and it was confirmed that tungsten was contained in a proportion of 50% by mass or less. The nanodiamond concentration was calculated from the absorbance at 350 nm. The tungsten concentration was determined by ICP emission spectroscopy.
 実施例2
 液中プラズマ処理工程において、電極間距離を1mmとしたこと以外は実施例1と同様にしてナノダイヤモンド分散組成物を製造した。ナノダイヤモンド粒子の平均分散粒子径(D50)を求めたところ、15.2nmであった。この時のナノダイヤモンド濃度は0.21質量%、タングステン濃度は1000質量ppmであった。
Example 2
In the submerged plasma treatment step, a nanodiamond dispersion composition was produced in the same manner as in Example 1 except that the distance between the electrodes was 1 mm. When the average dispersed particle size (D50) of the nanodiamond particles was determined, it was 15.2 nm. At this time, the nanodiamond concentration was 0.21% by mass, and the tungsten concentration was 1000% by mass.
 実施例3
 実施例1と同様にして生成工程、酸処理工程、酸化処理工程、乾燥工程、及び酸素酸化工程を行い、その後、酸素酸化工程におけるガス雰囲気炉を引き続き使用して水素化工程を行った。具体的には、酸素酸化工程を経たナノダイヤモンド粉体が内部に配されているガス雰囲気炉に対して窒素ガスを流速1L/分で30分間通流させ続けた後、通流ガスを窒素から水素と窒素との混合ガスへと切り替えて当該混合ガスを流速1L/分で炉心管に通流させ続けた。混合ガス中の水素濃度は2体積%である。混合ガスへの切り替えの後、炉内を加熱設定温度600℃まで昇温させた。昇温速度は10℃/分とした。そして、炉内の温度条件を600℃に維持しつつ、炉内のナノダイヤモンド粉体について水素酸化処理を行った。処理時間は5時間とした。水素化工程を経たナノダイヤモンド粉体を用いて、実施例1と同様にして液中プラズマ処理工程を行い、ナノダイヤモンド分散組成物を製造した。ナノダイヤモンド粒子の平均分散粒子径(D50)を求めたところ、23.3nmであった。この時のナノダイヤモンド濃度は0.006質量%であり、タングステンは50質量ppm以下の割合で含有していることが確認された。
Example 3
The production step, the acid treatment step, the oxidation treatment step, the drying step, and the oxygen oxidation step were carried out in the same manner as in Example 1, and then the hydrogenation step was carried out using the gas atmosphere furnace in the oxygen oxidation step. Specifically, nitrogen gas is continuously passed through a gas atmosphere furnace in which nanodiamond powder that has undergone an oxygen oxidation step is arranged at a flow rate of 1 L / min for 30 minutes, and then the flowing gas is transferred from nitrogen. The gas was switched to a mixed gas of hydrogen and nitrogen, and the mixed gas was continuously passed through the core tube at a flow rate of 1 L / min. The hydrogen concentration in the mixed gas is 2% by volume. After switching to the mixed gas, the temperature inside the furnace was raised to the set heating temperature of 600 ° C. The heating rate was 10 ° C./min. Then, while maintaining the temperature condition in the furnace at 600 ° C., the nanodiamond powder in the furnace was subjected to hydrogen oxidation treatment. The processing time was 5 hours. Using the nanodiamond powder that had undergone the hydrogenation step, a submerged plasma treatment step was carried out in the same manner as in Example 1 to produce a nanodiamond dispersion composition. The average dispersed particle size (D50) of the nanodiamond particles was determined and found to be 23.3 nm. At this time, the nanodiamond concentration was 0.006 mass%, and it was confirmed that tungsten was contained in a proportion of 50 mass ppm or less.
 実施例4
 液中プラズマ処理工程において、電極間距離を1mmとしたこと以外は実施例3と同様にしてナノダイヤモンド分散組成物を製造した。ナノダイヤモンド粒子の平均分散粒子径(D50)を求めたところ、22.3nmであった。この時のナノダイヤモンド濃度は0.007質量%、タングステン濃度は800質量ppmであった。
Example 4
In the submerged plasma treatment step, a nanodiamond dispersion composition was produced in the same manner as in Example 3 except that the distance between the electrodes was 1 mm. The average dispersed particle size (D50) of the nanodiamond particles was determined and found to be 22.3 nm. At this time, the nanodiamond concentration was 0.007 mass% and the tungsten concentration was 800 mass ppm.
 実施例5
 乾燥工程で得られたナノダイヤモンド粉体を用いて、酸素酸化工程を経ずに液中プラズマ処理工程に処したこと以外は実施例1と同様にしてナノダイヤモンド分散組成物を製造した。ナノダイヤモンド粒子の平均分散粒子径(D50)を求めたところ、約79nmであった。この時のナノダイヤモンド濃度は0.081質量%であり、タングステンは50質量ppm以下の割合で含有していることが確認された。
Example 5
Using the nanodiamond powder obtained in the drying step, a nanodiamond dispersion composition was produced in the same manner as in Example 1 except that it was subjected to a submerged plasma treatment step without going through an oxygen oxidation step. When the average dispersed particle size (D50) of the nanodiamond particles was determined, it was about 79 nm. At this time, the nanodiamond concentration was 0.081 mass%, and it was confirmed that tungsten was contained in a proportion of 50 mass ppm or less.
 実施例6
 液中プラズマ処理工程において、電極間距離を1mmとしたこと以外は実施例5と同様にしてナノダイヤモンド分散組成物を製造した。ナノダイヤモンド粒子の平均分散粒子径(D50)を求めたところ、約52nmであった。この時のナノダイヤモンド濃度は0.063質量%、タングステン濃度は850質量ppmであった。
Example 6
In the submerged plasma treatment step, a nanodiamond dispersion composition was produced in the same manner as in Example 5 except that the distance between the electrodes was 1 mm. When the average dispersed particle size (D50) of the nanodiamond particles was determined, it was about 52 nm. At this time, the nanodiamond concentration was 0.063% by mass, and the tungsten concentration was 850% by mass.
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記しておく。
[付記1]爆轟法によりナノダイヤモンド粗生成物を得る生成工程、前記生成工程で得たナノダイヤモンド粗生成物から酸化剤を用いてグラファイトを除去する酸化処理工程、及び前記酸化処理工程を経たナノダイヤモンドを液体中でプラズマ処理に付してナノダイヤモンドを分散させる液中プラズマ処理工程を含む、ナノダイヤモンド分散組成物の製造方法。
[付記2]前記生成工程後であり、且つ前記液中プラズマ工程前(好ましくは前記酸化処理工程前)に、前記生成工程で得られたナノダイヤモンド粗生成物を強酸(好ましくは鉱酸を含む強酸、より好ましくは、塩酸、フッ化水素酸、硫酸、硝酸、及び王水からなる群より選択される1以上の酸を含む強酸)を作用させて金属酸化物を除去する酸処理工程を含む、付記1に記載のナノダイヤモンド分散組成物の製造方法。
[付記3]前記酸化剤は二種の酸の混酸(好ましくは硫酸と硝酸の混酸)を含む付記1又は2に記載のナノダイヤモンド分散組成物の製造方法。
[付記4]前記混酸における硫酸と硝酸との混合割合(前者/後者;質量比)は、60/40~95/5(好ましくは65/35~90/10、より好ましくは70/30~85/15、さらに好ましくは70/30~80/20)である、付記3に記載のナノダイヤモンド分散組成物の製造方法。
[付記5]前記酸処理工程後であり、且つ前記液中プラズマ処理工程前に、前記酸処理工程を経て得られたナノダイヤモンド粗生成物を水溶液中でアルカリ及び過酸化水素を作用させて金属酸化物を除去する工程を含む、付記1~4のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[付記6]前記酸化処理工程の後、上澄みを除去して固形分の水洗を行い、前記上澄み液が目視で透明になるまで、前記固形分の水洗を反復して行う、付記1~5のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[付記7]前記酸化処理工程を経て得られたナノダイヤモンド含有溶液を乾燥させてナノダイヤモンド凝着体を得る乾燥工程を含む、付記1~6のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[付記8]前記乾燥工程後で得られたナノダイヤモンド凝着体を、酸素を含有するガス雰囲気下にて加熱する酸素酸化工程を含む、付記7に記載のナノダイヤモンド分散組成物の製造方法。
[付記9]前記酸化処理工程後であり、且つ前記液中プラズマ処理工程前に、酸素を含有するガス雰囲気下にてナノダイヤモンドを加熱する酸素酸化工程を含む、付記1~8のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[付記10]前記液中プラズマ処理工程において、ゼータ電位がネガティブであるナノダイヤモンドを分散させる、付記1~9のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[付記11]前記液中プラズマ処理工程をpHが7を超える条件下で行う付記1~10のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[付記12]前記液中プラズマ処理工程を水中で行う付記1~11のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[付記13]前記液中プラズマ処理工程を49~90℃(好ましくは50~85℃)で行う付記1~12のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[付記14]前記液中プラズマ処理工程を、プラズマを発生させる電極間の距離が0.1~20mm(好ましくは0.2~15mm、より好ましくは0.5~10mm)の条件で行う付記1~13のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
As a summary of the above, the configuration of the present invention and variations thereof are described below.
[Appendix 1] A production step of obtaining a crude nanodiamond product by a roaring method, an oxidation treatment step of removing graphite from the crude nanodiamond product obtained in the production step using an oxidizing agent, and the oxidation treatment step were performed. A method for producing a nanodiamond dispersion composition, which comprises an in-liquid plasma treatment step of subjecting nanodiamonds to plasma treatment in a liquid to disperse the nanodiamonds.
[Appendix 2] After the production step and before the submerged plasma step (preferably before the oxidation treatment step), the crude nanodiamond product obtained in the production step contains a strong acid (preferably containing a mineral acid). A strong acid, more preferably a strong acid containing one or more acids selected from the group consisting of hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia) is allowed to act to remove the metal oxide. , The method for producing a nanodiamond dispersion composition according to Appendix 1.
[Appendix 3] The method for producing a nanodiamond dispersion composition according to Appendix 1 or 2, wherein the oxidizing agent contains a mixed acid of two kinds of acids (preferably a mixed acid of sulfuric acid and nitric acid).
[Appendix 4] The mixing ratio (former / latter; mass ratio) of sulfuric acid and nitric acid in the mixed acid is 60/40 to 95/5 (preferably 65/35 to 90/10, more preferably 70/30 to 85). The method for producing a nanodiamond dispersion composition according to Appendix 3, which is / 15, more preferably 70/30 to 80/20).
[Appendix 5] After the acid treatment step and before the liquid plasma treatment step, the nanodiamond crude product obtained through the acid treatment step is subjected to alkali and hydrogen peroxide in an aqueous solution to cause a metal. The method for producing a nanodiamond dispersion composition according to any one of Supplementary note 1 to 4, which comprises a step of removing an oxide.
[Appendix 6] After the oxidation treatment step, the supernatant is removed and the solid content is washed with water, and the solid content is repeatedly washed with water until the supernatant is visually transparent. The method for producing a nanodiamond dispersion composition according to any one.
[Supplementary Note 7] The nanodiamond dispersion composition according to any one of Supplementary notes 1 to 6, which comprises a drying step of drying the nanodiamond-containing solution obtained through the oxidation treatment step to obtain a nanodiamond adherent. Manufacturing method.
[Appendix 8] The method for producing a nanodiamond dispersion composition according to Appendix 7, which comprises an oxygen oxidation step of heating the nanodiamond adhering body obtained after the drying step in an oxygen-containing gas atmosphere.
[Appendix 9] Any one of Appendix 1 to 8, which comprises an oxygen oxidation step of heating nanodiamonds in an oxygen-containing gas atmosphere after the oxidation treatment step and before the submerged plasma treatment step. The method for producing a nanodiamond dispersion composition according to 1.
[Appendix 10] The method for producing a nanodiamond dispersion composition according to any one of Supplementary notes 1 to 9, wherein nanodiamonds having a negative zeta potential are dispersed in the submerged plasma treatment step.
[Supplementary Note 11] The method for producing a nanodiamond dispersion composition according to any one of Supplementary notes 1 to 10, wherein the in-liquid plasma treatment step is performed under a condition where the pH exceeds 7.
[Supplementary Note 12] The method for producing a nanodiamond dispersion composition according to any one of Supplementary notes 1 to 11, wherein the in-liquid plasma treatment step is performed in water.
[Appendix 13] The method for producing a nanodiamond dispersion composition according to any one of Supplementary notes 1 to 12, wherein the in-liquid plasma treatment step is performed at 49 to 90 ° C. (preferably 50 to 85 ° C.).
[Appendix 14] The submerged plasma treatment step is performed under the condition that the distance between the electrodes that generate plasma is 0.1 to 20 mm (preferably 0.2 to 15 mm, more preferably 0.5 to 10 mm). The method for producing a nanodiamond dispersion composition according to any one of 13.
[付記15]分散媒と、前記分散媒中に分散しているナノダイヤモンド粒子と、タングステンとを含むナノダイヤモンド分散組成物。
[付記16]前記ナノダイヤモンド粒子は前記分散媒中にナノサイズで分散している付記15に記載のナノダイヤモンド分散組成物の製造方法。
[付記17]前記ナノダイヤモンド分散組成物中における前記ナノダイヤモンド粒子の平均分散粒子径(D50、メディアン径)は1~100nm(好ましくは2~80nm、より好ましくは5~50nm、さらに好ましくは10~30nm)である付記15又は16に記載のナノダイヤモンド分散組成物の製造方法。
[付記18]前記分散媒は有機溶媒を含む付記15~17のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[付記19]前記有機溶媒は、25℃におけるSP値[(cal/cm30.5:Fedors計算値]が7~23(好ましくは7~17、より好ましくは7~15、さらに好ましくは7~13、さらに好ましくは7~12、特に好ましくは7~10)である付記18に記載のナノダイヤモンド分散組成物の製造方法。
[付記20]前記有機溶媒は、25℃における比誘電率が1~40(好ましくは2~3である付記18又は19に記載のナノダイヤモンド分散組成物の製造方法。
[付記21]前記ナノダイヤモンド分散組成物中の前記タングステンの含有割合は、10~2000質量ppm(好ましくは15~1750質量ppm、より好ましくは20~1500質量ppm、さらに好ましくは25~1250質量ppm)である付記15~20のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[付記22]前記ナノダイヤモンド分散組成物中のジルコニアの含有割合は60質量ppm以下(好ましくは40質量ppm以下、より好ましくは20質量ppm以下)である付記15~21のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[付記23]ヘイズ値が5以下(好ましくは3以下、より好ましくは1以下)である付記15~22のいずれか1つに記載のナノダイヤモンド分散組成物の製造方法。
[Appendix 15] A nanodiamond dispersion composition containing a dispersion medium, nanodiamond particles dispersed in the dispersion medium, and tungsten.
[Appendix 16] The method for producing a nanodiamond dispersion composition according to Appendix 15, wherein the nanodiamond particles are dispersed in the dispersion medium in a nano size.
[Appendix 17] The average dispersed particle diameter (D50, median diameter) of the nanodiamond particles in the nanodiamond dispersion composition is 1 to 100 nm (preferably 2 to 80 nm, more preferably 5 to 50 nm, still more preferably 10 to 10 to 30 nm). The method for producing a nanodiamond dispersion composition according to Appendix 15 or 16.
[Supplementary Note 18] The method for producing a nanodiamond dispersion composition according to any one of Supplementary notes 15 to 17, wherein the dispersion medium contains an organic solvent.
[Appendix 19] The organic solvent has an SP value [(cal / cm 3 ) 0.5 : Fedors calculated value] at 25 ° C. of 7 to 23 (preferably 7 to 17, more preferably 7 to 15, still more preferably 7 to 7 to]. 13. The method for producing a nanodiamond dispersion composition according to Appendix 18, further preferably 7 to 12, particularly preferably 7 to 10).
[Supplementary Note 20] The method for producing a nanodiamond dispersion composition according to Supplementary note 18 or 19, wherein the organic solvent has a relative permittivity of 1 to 40 (preferably 2 to 3) at 25 ° C.
[Appendix 21] The content ratio of the tungsten in the nanodiamond dispersion composition is 10 to 2000 mass ppm (preferably 15 to 1750 mass ppm, more preferably 20 to 1500 mass ppm, still more preferably 25 to 1250 mass ppm. ). The method for producing a nanodiamond dispersion composition according to any one of Appendix 15 to 20.
[Appendix 22] The content of zirconia in the nanodiamond dispersion composition is 60 mass ppm or less (preferably 40 mass ppm or less, more preferably 20 mass ppm or less) according to any one of Appendix 15 to 21. Method for producing nanodiamond dispersion composition.
[Appendix 23] The method for producing a nanodiamond dispersion composition according to any one of Appendix 15 to 22, wherein the haze value is 5 or less (preferably 3 or less, more preferably 1 or less).
 S1 生成工程
 S2 酸化処理工程
 S3 酸素酸化工程
 S4 液中プラズマ処理工程
S1 generation step S2 oxidation treatment step S3 oxygen oxidation step S4 liquid plasma treatment step

Claims (5)

  1.  爆轟法によりナノダイヤモンド粗生成物を得る生成工程、前記生成工程で得たナノダイヤモンド粗生成物から酸化剤を用いてグラファイトを除去する酸化処理工程、及び前記酸化処理工程を経たナノダイヤモンドを液体中でプラズマ処理に付してナノダイヤモンドを分散させる液中プラズマ処理工程を含む、ナノダイヤモンド分散組成物の製造方法。 A production step of obtaining a nanodiamond crude product by the detonation method, an oxidation treatment step of removing graphite from the nanodiamond crude product obtained in the production step using an oxidizing agent, and a liquid nanodiamond that has undergone the oxidation treatment step. A method for producing a nanodiamond dispersion composition, which comprises a submerged plasma treatment step of dispersing nanodiamonds by subjecting them to plasma treatment.
  2.  前記酸化処理工程後であり、且つ前記液中プラズマ処理工程前に、酸素を含有するガス雰囲気下にてナノダイヤモンドを加熱する酸素酸化工程を含む請求項1に記載のナノダイヤモンド分散組成物の製造方法。 The production of the nanodiamond dispersion composition according to claim 1, which comprises an oxygen oxidation step of heating the nanodiamonds in an oxygen-containing gas atmosphere after the oxidation treatment step and before the liquid plasma treatment step. Method.
  3.  前記液中プラズマ処理工程において、ゼータ電位がネガティブであるナノダイヤモンドを分散させる、請求項1又は2に記載のナノダイヤモンド分散組成物の製造方法。 The method for producing a nanodiamond dispersion composition according to claim 1 or 2, wherein in the submerged plasma treatment step, nanodiamonds having a negative zeta potential are dispersed.
  4.  前記液中プラズマ処理工程をpHが7を超える条件下で行う請求項1~3のいずれか1項に記載のナノダイヤモンド分散組成物の製造方法。 The method for producing a nanodiamond dispersion composition according to any one of claims 1 to 3, wherein the in-liquid plasma treatment step is performed under a condition where the pH exceeds 7.
  5.  分散媒と、前記分散媒中に分散しているナノダイヤモンド粒子と、タングステンとを含むナノダイヤモンド分散組成物。 A nanodiamond dispersion composition containing a dispersion medium, nanodiamond particles dispersed in the dispersion medium, and tungsten.
PCT/JP2020/006056 2019-03-26 2020-02-17 Method for producing nanodiamond dispersion composition, and nanodiamond dispersion composition WO2020195328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019058006 2019-03-26
JP2019-058006 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020195328A1 true WO2020195328A1 (en) 2020-10-01

Family

ID=72611929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006056 WO2020195328A1 (en) 2019-03-26 2020-02-17 Method for producing nanodiamond dispersion composition, and nanodiamond dispersion composition

Country Status (1)

Country Link
WO (1) WO2020195328A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644599A (en) * 1979-09-20 1981-04-23 Tanaka Precious Metal Ind Igniter for electric detonator
JPH0942900A (en) * 1995-08-03 1997-02-14 Nippon Oil & Fats Co Ltd Electric detonator and detonating device for detonating electric detonator
JP2017048083A (en) * 2015-09-01 2017-03-09 株式会社ダイセル Nanodiamond fluid dispersion and nanodiamond
JP2017154928A (en) * 2016-03-01 2017-09-07 株式会社ダイセル Graphene oxide, graphene oxide dispersion liquid and method for producing graphene oxide
JP2018070411A (en) * 2016-10-28 2018-05-10 株式会社ダイセル Nanodiamond organic solvent dispersion and process for preparing diamond organic solvent dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644599A (en) * 1979-09-20 1981-04-23 Tanaka Precious Metal Ind Igniter for electric detonator
JPH0942900A (en) * 1995-08-03 1997-02-14 Nippon Oil & Fats Co Ltd Electric detonator and detonating device for detonating electric detonator
JP2017048083A (en) * 2015-09-01 2017-03-09 株式会社ダイセル Nanodiamond fluid dispersion and nanodiamond
JP2017154928A (en) * 2016-03-01 2017-09-07 株式会社ダイセル Graphene oxide, graphene oxide dispersion liquid and method for producing graphene oxide
JP2018070411A (en) * 2016-10-28 2018-05-10 株式会社ダイセル Nanodiamond organic solvent dispersion and process for preparing diamond organic solvent dispersion

Similar Documents

Publication Publication Date Title
KR101910924B1 (en) Large scale oxidized graphene production for industrial applications
JP6770469B2 (en) Surface-modified nanodiamond and its organic solvent dispersion
JP7094283B2 (en) Surface-modified nanodiamonds, dispersions containing surface-modified nanodiamonds, and resin dispersions
JP7074907B2 (en) Nanodiamond organic solvent dispersion
WO2020246500A1 (en) Surface-modified nanodiamond and method for producing surface-modified nanodiamond
WO2017170251A1 (en) Surface-modified nanodiamond, organic solvent dispersion thereof, and method for producing surface-modified nanodiamond
JP6927687B2 (en) Nanodiamond dispersion liquid manufacturing method and nanodiamond dispersion liquid
JP5339099B2 (en) Method for synthesizing thin-film particles having a carbon skeleton
JP6902015B2 (en) Nanodiamond dispersion and its manufacturing method
JP6824086B2 (en) Manufacturing method of surface-modified nanodiamond
JP2017202940A (en) Nano diamond production method
WO2017203763A1 (en) Nano-diamond organic solvent dispersion production method and nano-diamond organic solvent dispersion
WO2020195328A1 (en) Method for producing nanodiamond dispersion composition, and nanodiamond dispersion composition
JP2020132447A (en) Nanodiamond dispersion composition
JP6802077B2 (en) Manufacturing method of nanodiamond
JP2017048294A (en) Curable resin composition and cured resin body
JP2019006626A (en) Nanodiamond dispersion manufacturing method and nanodiamond dispersion
JP2022090385A (en) Additive for resin, additive for resin-dispersed composition, and resin composition
CN107032338A (en) A kind of method of continuous discharge-induced explosion parallel off preparing graphite alkene
JP2020172406A (en) Method for producing surface-modified nanodiamond
JPWO2019146453A1 (en) Nanodiamond particle dispersion
US20160155871A1 (en) Process for producing hollow silicon bodies
KR101563895B1 (en) Manufacturing method of graphene oxide nanopowder
TWI775727B (en) resin composition
JP6484146B2 (en) Nanodiamond dispersion and nanodiamond

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP