WO2020195304A1 - Pattern matching method - Google Patents

Pattern matching method Download PDF

Info

Publication number
WO2020195304A1
WO2020195304A1 PCT/JP2020/005798 JP2020005798W WO2020195304A1 WO 2020195304 A1 WO2020195304 A1 WO 2020195304A1 JP 2020005798 W JP2020005798 W JP 2020005798W WO 2020195304 A1 WO2020195304 A1 WO 2020195304A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
matching
cad
image
sem image
Prior art date
Application number
PCT/JP2020/005798
Other languages
French (fr)
Japanese (ja)
Inventor
祐治 三浦
Original Assignee
Tasmit株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tasmit株式会社 filed Critical Tasmit株式会社
Publication of WO2020195304A1 publication Critical patent/WO2020195304A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a method of matching a pattern formed on the surface of a sample such as a wafer or a glass substrate with a CAD pattern created from pattern design data.
  • the die-to-database method is a pattern matching method that matches a pattern formed on the surface of a sample such as a wafer or a glass substrate with a CAD pattern created from pattern design data. More specifically, in the die-to-database method, the coordinates of the area to be inspected are acquired from the design data, the stage on which the sample is placed is moved to those coordinates, and the image of the pattern on the sample is irradiated with an electron beam.
  • the present invention provides a pattern matching method capable of determining the correct matching position.
  • matching of the pattern on the image with the corresponding CAD pattern is performed, within the region of interest set in the image, and within the target region located inside or outside the CAD pattern.
  • a pattern matching method is provided in which a gray level histogram is created and the matching is determined to be successful when the number of peaks appearing in the histogram is one.
  • the peak value is greater than a preset threshold.
  • the region of interest surrounds at least one portion of the pattern on the image.
  • the CAD pattern is a repeating pattern.
  • the relative positions of the pattern on the image and the corresponding CAD pattern are changed, and the pattern on the image and the corresponding CAD pattern are matched. Is repeated again to create a gray level histogram in the target area again.
  • the pattern matching method further comprises displaying the image and the region of interest on a display screen. In one aspect, the pattern matching method further comprises displaying the histogram on the display screen.
  • the pattern on the image is matched with the corresponding CAD pattern, within the region of interest set in the image, and within the target region located inside or outside the CAD pattern.
  • FIG. 2 It is a schematic diagram which shows one Embodiment of an image generation apparatus. It is a figure which shows an example of the SEM image and the example of the CAD pattern corresponding to the pattern appearing on the SEM image. It is a figure which shows the example which succeeded in matching the pattern on the SEM image shown in FIG. 2 with the corresponding CAD pattern. It is a figure which shows the example which failed to match the pattern on the SEM image shown in FIG. 2 with the corresponding CAD pattern. It is a figure which shows the example of the interest area and the target area set on the SEM image which the CAD pattern overlapped when the matching was successful.
  • FIG. 1 is a schematic view showing an embodiment of an image generator.
  • the image generator includes a scanning electron microscope 50 and an arithmetic system 150.
  • the scanning electron microscope 50 is connected to the arithmetic system 150, and the operation of the scanning electron microscope 50 is controlled by the arithmetic system 150.
  • the calculation system 150 includes a storage device 162 in which a database 161 and a program are stored, a processing device 163 that executes a calculation according to an instruction included in the program, and a display screen 165 that displays an image and a GUI (graphical user interface).
  • the processing device 163 includes a CPU (central processing unit) or a GPU (graphic processing unit) that performs operations according to instructions included in a program stored in the storage device 162.
  • the storage device 162 includes a main storage device (for example, a random access memory) accessible to the processing device 163 and an auxiliary storage device (for example, a hard disk drive or a solid state drive) for storing data and programs.
  • the arithmetic system 150 is equipped with at least one computer.
  • the arithmetic system 150 may be an edge server connected to the scanning electron microscope 50 by a communication line, or a cloud server connected to the scanning electron microscope 50 by a communication network such as the Internet or a local network. It may be a fog computing device (gateway, fog server, router, etc.) installed in a network connected to the scanning electron microscope 50.
  • the arithmetic system 150 may be a combination of a plurality of servers.
  • the arithmetic system 150 may be a combination of an edge server and a cloud server connected to each other by a communication network such as the Internet or a local network.
  • the arithmetic system 150 may include a plurality of servers (computers) that are not connected by a network.
  • the scanning electron microscope 50 includes an electron gun 111 that emits an electron beam composed of primary electrons (charged particles), a focusing lens 112 that focuses the electron beam emitted from the electron gun 111, and an X deflector that deflects the electron beam in the X direction. It includes 113, a Y deflector 114 that deflects the electron beam in the Y direction, and an objective lens 115 that focuses the electron beam on the sample wafer 124.
  • the focusing lens 112 and the objective lens 115 are connected to the lens control device 116, and the operation of the focusing lens 112 and the objective lens 115 is controlled by the lens control device 116.
  • the lens control device 116 is connected to the arithmetic system 150.
  • the X deflector 113 and the Y deflector 114 are connected to the deflection control device 117, and the deflection operation of the X deflector 113 and the Y deflector 114 is controlled by the deflection control device 117.
  • the deflection control device 117 is also connected to the arithmetic system 150 in the same manner.
  • the secondary electron detector 130 and the backscattered electron detector 131 are connected to the image acquisition device 118.
  • the image acquisition device 118 is configured to convert the output signals of the secondary electron detector 130 and the backscattered electron detector 131 into an image.
  • the image acquisition device 118 is also connected to the arithmetic system 150 in the same manner.
  • the sample stage 121 arranged in the sample chamber 120 is connected to the stage control device 122, and the position of the sample stage 121 is controlled by the stage control device 122.
  • the stage control device 122 is connected to the arithmetic system 150.
  • a wafer transfer device 140 for mounting the wafer 124 on the sample stage 121 in the sample chamber 120 is also connected to the arithmetic system 150.
  • the electron beam emitted from the electron gun 111 is focused by the focusing lens 112, then focused by the objective lens 115 while being deflected by the X deflector 113 and the Y deflector 114, and is irradiated on the surface of the wafer 124.
  • the wafer 124 is irradiated with the primary electrons of the electron beam, the secondary electrons and backscattered electrons are emitted from the wafer 124.
  • Secondary electrons are detected by the secondary electron detector 130, and backscattered electrons are detected by the backscattered electron detector 131.
  • the detected secondary electron signal and backscattered electron signal are input to the image acquisition device 118 and converted into an image. The image is transmitted to the arithmetic system 150.
  • the design data of the pattern formed on the wafer 124 is stored in advance in the storage device 162.
  • the design data includes pattern design information such as the coordinates of the vertices of the pattern formed on the wafer 124, the position, shape, and size of the pattern, and the number of the layer to which the pattern belongs.
  • a database 161 is constructed in the storage device 162.
  • the pattern design data is stored in advance in the database 161.
  • the arithmetic system 150 can read the pattern design data from the database 161 stored in the storage device 162.
  • the pattern of the wafer 124 is formed based on the design data (also referred to as CAD data).
  • CAD is an abbreviation for computer-aided design.
  • the design data is data including design information of the pattern formed on the wafer 124, and specifically, the pattern such as the coordinates of the vertices of the pattern, the position, shape, and size of the pattern, and the number of the layer to which the pattern belongs. Includes design information for.
  • the CAD pattern on the design data is a virtual pattern defined by the design information of the pattern included in the design data. In the following description, the pattern already formed on the wafer 124 may be referred to as an actual pattern.
  • the scanning electron microscope 50 generates an SEM image of a pattern formed on the wafer 124 on the sample stage 121.
  • the arithmetic system 150 acquires an SEM image from the scanning electron microscope 50.
  • FIG. 2 is a diagram showing an example of an SEM image and an example of a CAD pattern corresponding to a pattern (actual pattern) appearing on the SEM image.
  • the pattern 205 appearing on the SEM image 200 shown in FIG. 2 is a line-and-space pattern which is an example of a repeating pattern.
  • the CAD pattern 210 is created by the arithmetic system 150 based on the design data of the pattern 205.
  • the pattern 205 actually formed on the wafer 124 is formed according to the CAD pattern 210, but the corners of the actual pattern 205 on the wafer 124 may be rounded. Therefore, in order to bring the shape of the CAD pattern 210 closer to the shape of the actual pattern 205, a corner round process for rounding the corners of the CAD pattern 210 may be performed before the matching described below. ..
  • the calculation system 150 matches the pattern 205 on the SEM image 200 with the corresponding CAD pattern 210.
  • Known techniques are used for matching between these patterns 205.
  • the arithmetic system 150 superimposes the SEM image 200 and the CAD pattern 210 created from the design data, and creates a gray level profile of the SEM image 200 within a range set starting from the edge of the CAD pattern 210.
  • the edge of the pattern 205 on the SEM image 200 is determined from the gray level profile, and the matching position where the bias value between the determined edge position and the edge position of the corresponding CAD pattern 210 is minimized is determined.
  • the bias value is an index value indicating the amount of deviation (distance) between the edge determined from the gray level profile and the edge of the corresponding CAD pattern 210. Bias values are calculated for all edges in the SEM image 200.
  • FIG. 3 is a diagram showing an example in which the pattern 205 on the SEM image 200 and the corresponding CAD pattern 210 are successfully matched. As shown in FIG. 3, the entire pattern 205 on the SEM image 200 and the entire corresponding CAD pattern 210 overlap each other.
  • FIG. 4 is a diagram showing an example in which matching of the pattern 205 on the SEM image 200 with the corresponding CAD pattern 210 failed. As shown in FIG. 4, most of the pattern 205 on the SEM image 200 and most of the corresponding CAD patterns 210 overlap each other, but the entire patterns 205 and 210 overlap each other in the X direction (for example, an electron beam). (Scanning direction), and some of the patterns 205 and 210 do not overlap. Such matching failures are likely to occur in the case of repetitive patterns.
  • both the matching shown in FIG. 3 and the matching shown in FIG. 4 are determined to be successful.
  • the pattern 205 on the SEM image 200 shown in FIG. 4 and the CAD pattern 210 are deviated by one pitch, and to be exact, they have not been successfully matched.
  • the arithmetic system 150 sets the region of interest ROI on the SEM image 200 on which the CAD patterns 210 are superimposed.
  • ROI is an abbreviation for Region of Interest.
  • the region of interest ROI is a region smaller than the SEM image 200 and is located within the SEM image 200.
  • the SEM image 200 may be equally divided into a plurality of regions, and one of the plurality of regions may be used as the region of interest ROI.
  • the region of interest ROI may be one of four regions in which the SEM image 200 is equally divided.
  • the position and size of the region of interest ROI is predetermined by the arithmetic system 150 or the user.
  • the arithmetic system 150 displays the SEM image 200 on the display screen 165 shown in FIG. 1, and the user can determine the position and size of the region of interest ROI with reference to the SEM image 200 on the display screen 165. Good.
  • the arithmetic system 150 is based on the shape of the CAD pattern 210 in the region of interest ROI, the edge length of the CAD pattern 210, the distance from the proximity pattern 205, the stretching direction of the CAD pattern 210, the apex of the CAD pattern 210, and the like.
  • the position and size of the region of interest ROI are determined based on the calculated feature amount, or the combination of the region of interest ROI used for past pattern matching and the success / failure result of pattern matching is machine-learned as training data.
  • the position and size of the region of interest ROI may be determined by the model.
  • the region of interest ROI is displayed on the display screen 165 shown in FIG. 1 together with the SEM image 200.
  • the arithmetic system 150 may determine a plurality of region of interest candidates.
  • the plurality of interest region candidates are displayed on the display screen 165, and the user can select the optimum one interest region ROI from the plurality of interest region candidates on the display screen 165.
  • the region of interest ROI is an region within the SEM image 200 and surrounds at least a part of the pattern 205 appearing in the SEM image 200. In the example shown in FIG. 5, the region of interest ROI surrounds the outermost edge of pattern 205 on the SEM image 200.
  • the arithmetic system 150 creates a gray level histogram in the target region TR located in the interest region ROI set in the SEM image 200 and inside or outside the CAD pattern 210.
  • the target region TR is a region located within the region of interest ROI and outside the CAD pattern 210.
  • the entire target region TR is located in the region outside the pattern 205 on the SEM image 200, that is, in the space portion 206.
  • the gray level in the target area TR includes only the gray level G1 of the space portion 206. Therefore, only one peak indicating gray level G1 appears in the histogram.
  • the horizontal axis of the histogram represents the gray level, and the vertical axis represents the number of pixels.
  • the calculation system 150 displays the region of interest ROI, the target region TR, the SEM image 200, the CAD pattern 210, and the histogram on the display screen 165.
  • the arithmetic system 150 counts the number of peaks in the histogram, and if the number of peaks is one, it is determined that the matching is successful.
  • FIG. 6 is a diagram showing a target area TR when matching fails and a gray level histogram in the target area TR.
  • the position and size of the region of interest ROI are the same as the region of interest ROI when the matching shown in FIG. 5 is successful.
  • the target region TR extends to the pattern 205 on the SEM image 200 and the space portion 206.
  • the gray level in the target area TR includes the gray level G1 of the space portion 206 and the gray level G2 of the pattern 205. Therefore, two peaks indicating two gray levels G1 and G2 appear in the histogram.
  • the calculation system 150 counts the number of peaks in the histogram and determines that the matching has failed because the number of peaks is two.
  • the arithmetic system 150 can accurately determine whether or not the matching of the patterns 205 and 210 is successful based on the number of peaks in the histogram.
  • the arithmetic system 150 changes the relative position of the pattern 205 on the image and the corresponding CAD pattern 210 and SEM. Matching the pattern 205 on the image 200 with the corresponding CAD pattern 210 is performed again, and a gray level histogram in the target region TR is created again.
  • the arithmetic system 150 changes the relative position of the pattern 205 on the image and the corresponding CAD pattern 210 until it determines that the matching is successful (that is, until only one peak appears in the histogram), and the SEM image.
  • the step of rematching the pattern 205 on the 200 with the corresponding CAD pattern 210 and the step of recreating the gray level histogram in the target region TR are repeated. Each time matching is performed, the matching position where the bias value between the edge position of the pattern 205 on the SEM image 200 and the edge of the corresponding CAD pattern 210 is minimized is determined.
  • the edges of the actual pattern are often deformed compared to the CAD pattern. Therefore, even if pattern matching is successful, parts having different gray levels may be included in the target area TR. In such a case, multiple peaks appear in the histogram. Therefore, in order to more accurately determine the success or failure of matching, the arithmetic system 150 compares the peak value of the histogram with a preset threshold value, and the number of peaks having a value larger than the threshold value is 1. In one case, it may be determined that the matching was successful, and if there are a plurality of peaks having a value larger than the threshold value, it may be determined that the matching has failed.
  • the arithmetic system 150 is obtained from the position difference (bias value) between the edge of the CAD pattern 210 and the edge of the actual pattern 205.
  • the target area TR may be corrected using the external image (Contour).
  • FIG. 9 is a diagram showing another example of the SEM image and an example of the CAD pattern 310 corresponding to the pattern (actual pattern) on the SEM image.
  • the actual pattern 305 on the SEM image 300 shown in FIG. 9 is a line-and-space pattern which is an example of a repeating pattern, as in the embodiment shown in FIG.
  • the details of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 2 to 6, and thus the overlapping description will be omitted.
  • FIG. 10 is a diagram showing an example in which the pattern 305 on the SEM image 300 shown in FIG. 9 and the corresponding CAD pattern 310 are successfully matched. As shown in FIG. 10, the entire pattern 305 on the SEM image 300 and the entire corresponding CAD pattern 310 overlap each other.
  • FIG. 11 is a diagram showing an example in which matching of the pattern 305 on the SEM image 300 with the corresponding CAD pattern 310 failed. As shown in FIG. 11, most of the pattern 305 on the SEM image 300 and most of the corresponding CAD patterns 310 overlap each other, but the whole of these patterns 305 and 310 are displaced from each other in the X direction. , Part of the pattern 305 does not overlap.
  • FIG. 12 is a diagram showing a target region TR when matching is successful and a gray level histogram in the target region TR.
  • the position and size of the region of interest ROI is the same as in the embodiment shown in FIG. 5, but the target region TR is different from the embodiment shown in FIG. That is, the target region TR is a region located in the region of interest ROI and inside the CAD pattern 310.
  • the entire target region TR is located within the pattern 305 on the SEM image 300.
  • the gray level in the target area TR includes only the gray level G3 of the pattern 305. Therefore, only one peak showing gray level G3 appears in the histogram. Since only one peak appears in the histogram, the arithmetic system 150 determines that the matching is successful.
  • FIG. 13 is a diagram showing a target region TR when matching fails and a gray level histogram in the target region TR.
  • the position and size of the region of interest ROI are the same as the region of interest ROI when the matching shown in FIG. 12 is successful.
  • the target region TR is located in the pattern 305 on the SEM image 300 and in the space portion 306 located outside the pattern 305.
  • the gray level in the target region TR includes the gray level G3 of the pattern 305 and the gray level G4 of the space portion 306. Therefore, two peaks showing two gray levels G3 and G4 appear in the histogram. Since the two peaks appear in the histogram, the arithmetic system 150 determines that the matching has failed.
  • FIG. 14 is a diagram showing still another example of the SEM image and an example of the CAD pattern corresponding to the pattern (actual pattern) on the SEM image.
  • the actual pattern 405 on the SEM image 400 shown in FIG. 14 is a hole pattern which is an example of a repeating pattern.
  • the details of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 2 to 6, and thus the overlapping description will be omitted.
  • FIG. 15 is a diagram showing an example in which the pattern 405 on the SEM image 400 shown in FIG. 14 and the corresponding CAD pattern 410 are successfully matched. As shown in FIG. 15, the entire pattern 405 on the SEM image 400 and the entire corresponding CAD pattern 410 overlap each other.
  • FIG. 16 is a diagram showing an example in which matching of the pattern 405 on the SEM image 400 with the corresponding CAD pattern 410 failed. As shown in FIG. 16, most of the patterns 405 on the SEM image 400 and most of the corresponding CAD patterns 410 overlap each other, but the whole of these patterns 405 and 410 are displaced from each other in the X direction. , Some of the patterns 405 and 410 do not overlap.
  • FIG. 17 is a diagram showing a target region TR when matching is successful and a gray level histogram in the target region TR.
  • the target region TR is a region located within the region of interest ROI and outside the CAD pattern 410.
  • the entire target region TR is located outside the pattern 405 on the SEM image 400.
  • the gray level in the target region TR includes only the gray level G5 in the region outside the pattern 405. Therefore, only one peak showing gray level G5 appears in the histogram. Since only one peak appears in the histogram, the arithmetic system 150 determines that the matching is successful.
  • FIG. 18 is a diagram showing a target region TR when matching fails and a gray level histogram in the target region TR.
  • the position and size of the region of interest ROI are the same as the region of interest ROI when the matching shown in FIG. 17 is successful.
  • the target region TR covers both the pattern 405 on the SEM image 400 and the region outside the pattern 405.
  • the gray level in the target region TR includes the gray level G5 of the region outside the pattern 405 and the gray level G6 of the pattern 405. Therefore, two peaks showing two gray levels G5 and G6 appear in the histogram. Since the two peaks appear in the histogram, the arithmetic system 150 determines that the matching has failed.
  • FIG. 19 is a diagram showing still another example of the SEM image and an example of the CAD pattern corresponding to the pattern (actual pattern) on the SEM image.
  • the CAD pattern 510 on the SEM image 500 shown in FIG. 19 is a rectangular hole pattern.
  • the actual pattern 505 shown in FIG. 19 is a lower layer line and space pattern that can be seen through the upper hole pattern 507.
  • the details of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 2 to 6, and thus the overlapping description will be omitted.
  • the arithmetic system 150 may detect the edge of the pattern 505 of the lower layer in the pattern matching, and the matching may fail. Even in such a case, the calculation system 150 correctly determines the success or failure of the matching, and if the matching fails, repeats the matching until the matching is successful, as described above.
  • FIG. 20 is a diagram showing an example in which the hole pattern 507 in the upper layer on the SEM image 500 shown in FIG. 19 and the corresponding CAD pattern 510 are successfully matched. As shown in FIG. 20, the entire upper hole pattern 507 on the SEM image 500 and the entire corresponding CAD pattern 510 overlap each other.
  • FIG. 21 is a diagram showing an example in which matching of the upper hole pattern 507 on the SEM image 500 with the corresponding CAD pattern 510 has failed. As shown in FIG. 21, most of the upper hole pattern 507 and most of the corresponding CAD patterns 510 overlap each other, but the whole of these patterns 507 and 510 are offset from each other in the X direction, and the patterns Some of 507 and 510 do not overlap.
  • FIG. 22 is a diagram showing a target region TR when matching is successful and a gray level histogram in the target region TR.
  • the target region TR is a region located within the region of interest ROI and outside the CAD pattern 510.
  • the entire target region TR is located outside the upper hole pattern 507 and the lower line and space pattern 505 on the SEM image 500.
  • the gray level in the target region TR includes only the gray level G7 in the outer region 508 of the upper hole pattern 507. Therefore, only one peak showing gray level G7 appears in the histogram. Since only one peak appears in the histogram, the arithmetic system 150 determines that the matching is successful.
  • FIG. 23 is a diagram showing a target region TR when matching fails and a gray level histogram in the target region TR.
  • the position and size of the region of interest ROI are the same as the region of interest ROI when the matching shown in FIG. 22 is successful.
  • the target region TR covers an outer region 508 of the upper hole pattern 507 on the SEM image 500 and a part of the lower line and space pattern 505.
  • the gray level in the target region TR includes a gray level G7 in the outer region 508 of the upper hole pattern 507 and a part of the gray level G8 in the lower line and space pattern 505. Therefore, two peaks showing two gray levels G7 and G8 appear in the histogram. Since the two peaks appear in the histogram, the arithmetic system 150 determines that the matching has failed.
  • FIG. 24 is a diagram showing still another example of the SEM image and an example of the CAD pattern corresponding to the pattern (actual pattern) on the SEM image.
  • the actual pattern 605 on the SEM image 600 shown in FIG. 24 is a line-and-space pattern which is an example of a repeating pattern.
  • the details of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 2 to 6, and thus the overlapping description will be omitted.
  • FIG. 25 is a diagram showing an example in which the pattern 605 on the SEM image 600 shown in FIG. 24 and the corresponding CAD pattern 610 are successfully matched. As shown in FIG. 25, the entire pattern 605 on the SEM image 600 and the entire corresponding CAD pattern 610 overlap each other.
  • FIG. 26 is a diagram showing an example in which matching of the pattern 605 on the SEM image 600 and the corresponding CAD pattern 610 failed. As shown in FIG. 26, most of the patterns 605 on the SEM image 600 and most of the corresponding CAD patterns 610 overlap each other, but the whole of these patterns 605 and 610 are in the Y direction (X direction). It is offset in the vertical direction), and some of the patterns 605 and 610 do not overlap.
  • FIG. 27 is a diagram showing a target region TR when matching is successful and a gray level histogram in the target region TR.
  • the target region TR is a region located within the region of interest ROI and inside the CAD pattern 610.
  • the entire target region TR is located within the pattern 605 on the SEM image 600.
  • the gray level in the target area TR includes only the gray level G9 of the pattern 605. Therefore, only one peak showing gray level G9 appears in the histogram. Since only one peak appears in the histogram, the arithmetic system 150 determines that the matching is successful.
  • FIG. 28 is a diagram showing a target region TR when matching fails and a gray level histogram in the target region TR.
  • the position and size of the region of interest ROI are the same as the region of interest ROI when the matching shown in FIG. 27 is successful.
  • the target region TR is located inside the pattern 605 on the SEM image 600 and outside the pattern 605.
  • the gray level in the target region TR includes the gray level G9 of the pattern 605 and the gray level G10 outside the pattern 605. Therefore, two peaks indicating gray levels G9 and G10 appear in the histogram. Since the two peaks appear in the histogram, the arithmetic system 150 determines that the matching has failed.
  • the arithmetic system 150 can accurately determine whether or not the pattern matching is successful based on the number of peaks in the histogram. When the matching fails, the arithmetic system 150 can determine the correct matching position by repeating the matching until the matching is successful.
  • FIG. 29 is a flowchart illustrating the pattern matching method according to each of the above-described embodiments.
  • the scanning electron microscope 50 produces an SEM image of the pattern formed on the wafer 124 on the sample stage 121.
  • the arithmetic system 150 acquires an SEM image from the scanning electron microscope 50.
  • the arithmetic system 150 matches the pattern on the SEM image with the corresponding CAD pattern. More specifically, the arithmetic system 150 superimposes the SEM image and the CAD pattern created from the design data, and creates a gray level profile of the SEM image within a range set starting from the edge of the CAD pattern. The edge of the pattern on the SEM image is determined from the gray level profile, and the matching position where the bias value between the determined edge position and the edge of the corresponding CAD pattern is minimized is determined.
  • the arithmetic system 150 creates a gray level histogram in the target region TR located in the interest region ROI set in the SEM image and inside or outside the CAD pattern. Whether the target area TR is located inside or outside the CAD pattern is set in advance in the recipe based on factors such as the shape and type of the CAD pattern. In one embodiment, the arithmetic system 150 creates a gray level histogram in the target region located within the region of interest ROI set in the SEM image and inside the CAD pattern, and further in the SEM image. A gray level histogram may be created in the target region located within the region of interest ROI set to and outside the CAD pattern.
  • step 5 the arithmetic system 150 counts the number of peaks in the histogram.
  • the arithmetic system 150 may compare the peak value with the threshold value and count the number of peaks having a value larger than the threshold value.
  • step 6 the arithmetic system 150 determines that the matching is successful if the number of peaks is one, and determines that the matching is unsuccessful if the number of peaks is two or more.
  • step 7 if the matching fails, the arithmetic system 150 changes the relative position of the pattern on the image and the corresponding CAD pattern.
  • the arithmetic system 150 rematches the pattern on the SEM image with the corresponding CAD pattern, and further creates a gray level histogram in the target region TR again.
  • the arithmetic system 150 changes the relative position of the pattern on the image and the corresponding CAD pattern until it determines that the matching is successful (that is, until only one peak appears in the histogram), and on the SEM image.
  • the step of rematching the pattern with the corresponding CAD pattern and the step of recreating the gray level histogram in the target region TR are repeated. Each time matching is performed, the position of the edge of the pattern on the SEM image and the matching position where the bias value between the edge of the corresponding CAD pattern is minimized are determined.
  • FIG. 30 is a schematic diagram showing an embodiment of the configuration of the arithmetic system 150.
  • the arithmetic system 150 includes a storage device 162 that stores programs and data, and a CPU (central processing unit) or GPU (graphic processing unit) that performs arithmetic according to instructions included in the program stored in the storage device 162.
  • a communication device 195 for connecting to a communication network is provided.
  • the storage device 162 includes a main storage device 162A that can be accessed by the processing device 163, and an auxiliary storage device 162B that stores data and programs.
  • the main storage device 162A is, for example, a random access memory (RAM)
  • the auxiliary storage device 162B is a storage device such as a hard disk drive (HDD) or a solid state drive (SSD).
  • the input device 170 includes a keyboard and a mouse, and further includes a recording medium reading device 182 for reading data from the recording medium and a recording medium port 184 to which the recording medium is connected.
  • the recording medium is a computer-readable recording medium that is a non-temporary tangible object, and is, for example, an optical disk (for example, CD-ROM, DVD-ROM) or a semiconductor memory (for example, a USB flash drive or a memory card). is there.
  • Examples of the recording medium reading device 182 include an optical drive such as a CD-ROM drive and a DVD-ROM drive, and a memory reader.
  • An example of the recording medium port 184 is a USB port.
  • the program and / or data stored in the recording medium is introduced into the arithmetic system 150 via the input device 170 and stored in the auxiliary storage device 162B of the storage device 162.
  • the output device 190 includes a display screen 165 and a printing device 192.
  • the arithmetic system 150 consisting of at least one computer operates according to the instructions included in the program electrically stored in the storage device 162. That is, the arithmetic system 150 matches the pattern on the image with the corresponding CAD pattern, and is within the region of interest set in the image and within the target region located inside or outside the CAD pattern. A gray-level histogram of is created, and if the number of peaks appearing in the histogram is one, the step of determining that the matching is successful is performed.
  • the program for causing the arithmetic system 150 to execute these steps is recorded on a computer-readable recording medium which is a non-temporary tangible object, and is provided to the arithmetic system 150 via the recording medium.
  • the program may be input from the communication device 195 to the arithmetic system 150 via a communication network such as the Internet or a local area network.
  • the present invention can be used as a method for matching a pattern formed on the surface of a sample such as a wafer or a glass substrate with a CAD pattern created from pattern design data.

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Image Analysis (AREA)

Abstract

The present invention relates to a method for matching a pattern formed on the surface of a sample such as a wafer or a glass substrate, and a CAD pattern created from pattern design data. This pattern matching method includes: executing matching between a pattern on an image (200) and a corresponding CAD pattern (210); creating a histogram of gray levels within a target region (TR) which is within a region-of-interest (ROI) set within the image (200) and which is positioned inside or outside the CAD pattern (210); and determining the matching to have been successful if the number of peaks appearing in the histogram is one.

Description

パターンマッチング方法Pattern matching method
 本発明は、ウェーハまたはガラス基板などの試料の表面に形成されたパターンと、パターンの設計データから作成されたCADパターンとのマッチングを行う方法に関する。 The present invention relates to a method of matching a pattern formed on the surface of a sample such as a wafer or a glass substrate with a CAD pattern created from pattern design data.
 ダイ・ツー・データベース方式は、ウェーハまたはガラス基板などの試料の表面に形成されたパターンと、パターンの設計データから作成されたCADパターンとのマッチングを行うパターンマッチング方法である。より具体的には、ダイ・ツー・データベース方式は、検査したいエリアの座標を設計データから取得し、試料が置かれたステージをその座標へ移動させ、試料上のパターンの画像を電子ビーム照射により生成し、画像と設計データから作成されたCADパターンとを重ね合わせ、CADパターンのエッジを起点として設定された範囲で画像のグレーレベルのプロファイルを作成し、グレーレベルのプロファイルから画像上のパターンのエッジを決定し、決定されたエッジの位置と、対応するCADパターンのエッジとのバイアス値が最小になるマッチング位置を決定する。 The die-to-database method is a pattern matching method that matches a pattern formed on the surface of a sample such as a wafer or a glass substrate with a CAD pattern created from pattern design data. More specifically, in the die-to-database method, the coordinates of the area to be inspected are acquired from the design data, the stage on which the sample is placed is moved to those coordinates, and the image of the pattern on the sample is irradiated with an electron beam. Generated, overlay the image and the CAD pattern created from the design data, create a gray level profile of the image within the set range starting from the edge of the CAD pattern, and from the gray level profile to the pattern on the image The edge is determined, and the matching position where the bias value between the determined edge position and the edge of the corresponding CAD pattern is minimized is determined.
特開平5-324836号公報Japanese Unexamined Patent Publication No. 5-324863
 しかしながら、ラインアンドスペースパターン、ホールパターンなどの繰り返しパターンの場合は、マッチング位置候補が複数存在する。すなわち、実際のパターンと、CADパターンとが1ピッチまたは数ピッチずれても、実際のパターンとCADパターンは部分的に一致する。結果的に、正しくないマッチング位置が選択されるという問題が発生することがある。 However, in the case of repeating patterns such as line-and-space patterns and hole patterns, there are multiple matching position candidates. That is, even if the actual pattern and the CAD pattern deviate by one pitch or several pitches, the actual pattern and the CAD pattern partially match. As a result, the problem of selecting the wrong matching position may occur.
 そこで、本発明は、正しいマッチング位置を決定することができるパターンマッチング方法を提供する。 Therefore, the present invention provides a pattern matching method capable of determining the correct matching position.
 一態様では、画像上のパターンと、対応するCADパターンとのマッチングを実施し、前記画像内に設定された関心領域内であって、かつ前記CADパターンの内側または外側に位置するターゲット領域内のグレーレベルのヒストグラムを作成し、前記ヒストグラムに現れるピークの数が1つである場合に、前記マッチングは成功したと判定する、パターンマッチング方法が提供される。 In one aspect, matching of the pattern on the image with the corresponding CAD pattern is performed, within the region of interest set in the image, and within the target region located inside or outside the CAD pattern. A pattern matching method is provided in which a gray level histogram is created and the matching is determined to be successful when the number of peaks appearing in the histogram is one.
 一態様では、前記ピークの値は、予め設定されたしきい値よりも大きい。
 一態様では、前記関心領域は、前記画像上のパターンの少なくとも1部を囲む。
 一態様では、前記CADパターンは、繰り返しパターンである。
 一態様では、前記ヒストグラムに複数のピークが現れた場合は、前記画像上のパターンと、前記対応するCADパターンとの相対位置を変え、前記画像上のパターンと、前記対応するCADパターンとのマッチングを再度実施し、前記ターゲット領域内のグレーレベルのヒストグラムを再度作成する。
 一態様では、前記マッチングが成功したと判定するまで、前記画像上のパターンと、前記対応するCADパターンとの相対位置を変える工程と、前記画像上のパターンと、前記対応するCADパターンとのマッチングを再度実施する工程と、前記ターゲット領域内のグレーレベルのヒストグラムを再度作成する工程を繰り返す。
 一態様では、前記パターンマッチング方法は、前記画像および前記関心領域を、表示画面上に表示する工程をさらに含む。
 一態様では、前記パターンマッチング方法は、前記ヒストグラムを前記表示画面上に表示する工程をさらに含む。
In one aspect, the peak value is greater than a preset threshold.
In one aspect, the region of interest surrounds at least one portion of the pattern on the image.
In one aspect, the CAD pattern is a repeating pattern.
In one aspect, when a plurality of peaks appear in the histogram, the relative positions of the pattern on the image and the corresponding CAD pattern are changed, and the pattern on the image and the corresponding CAD pattern are matched. Is repeated again to create a gray level histogram in the target area again.
In one aspect, a step of changing the relative position of the pattern on the image and the corresponding CAD pattern, and matching of the pattern on the image and the corresponding CAD pattern until it is determined that the matching is successful. And the step of recreating the gray level histogram in the target area are repeated.
In one aspect, the pattern matching method further comprises displaying the image and the region of interest on a display screen.
In one aspect, the pattern matching method further comprises displaying the histogram on the display screen.
 一態様では、画像上のパターンと、対応するCADパターンとのマッチングを実施し、前記画像内に設定された関心領域内であって、かつ前記CADパターンの内側または外側に位置するターゲット領域内のグレーレベルのヒストグラムを作成し、前記ヒストグラムに現れるピークの数が1つである場合に、前記マッチングは成功したと判定するステップをコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。 In one aspect, the pattern on the image is matched with the corresponding CAD pattern, within the region of interest set in the image, and within the target region located inside or outside the CAD pattern. A computer-readable recording medium containing a program for creating a gray-level histogram and causing the computer to perform a step of determining that the matching was successful when the number of peaks appearing in the histogram is one. Provided.
 本発明によれば、ヒストグラムのピークの数に基づいて、パターンのマッチングに成功したか否かを正確に判定することができる。 According to the present invention, it is possible to accurately determine whether or not pattern matching is successful based on the number of peaks in the histogram.
画像生成装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of an image generation apparatus. SEM画像の一例と、SEM画像上に現れているパターンに対応するCADパターンの一例を示す図である。It is a figure which shows an example of the SEM image and the example of the CAD pattern corresponding to the pattern appearing on the SEM image. 図2に示すSEM画像上のパターンと、対応するCADパターンとのマッチングに成功した例を示す図である。It is a figure which shows the example which succeeded in matching the pattern on the SEM image shown in FIG. 2 with the corresponding CAD pattern. 図2に示すSEM画像上のパターンと、対応するCADパターンとのマッチングに失敗した例を示す図である。It is a figure which shows the example which failed to match the pattern on the SEM image shown in FIG. 2 with the corresponding CAD pattern. マッチングが成功したときの、CADパターンが重ね合わされたSEM画像上に設定された関心領域とターゲット領域の例を示す図である。It is a figure which shows the example of the interest area and the target area set on the SEM image which the CAD pattern overlapped when the matching was successful. マッチングに失敗したときの、CADパターンが重ね合わされたSEM画像上に設定された関心領域とターゲット領域の例を示す図である。It is a figure which shows the example of the interest area and the target area set on the SEM image which overlapped the CAD pattern at the time of failure of matching. 実パターンのエッジ位置がCADパターンのエッジ位置から大きく乖離している場合のターゲット領域の一例を示す図である。It is a figure which shows an example of the target area when the edge position of an actual pattern deviates greatly from the edge position of a CAD pattern. 関心領域内のCADパターンのエッジを実パターンのエッジに近づける補正を行う一実施形態を示す図である。It is a figure which shows one Embodiment which performs the correction which brings the edge of a CAD pattern in an area of interest closer to the edge of an actual pattern. SEM画像の一例と、SEM画像上に現れているパターンに対応するCADパターンの一例を示す図である。It is a figure which shows an example of the SEM image and the example of the CAD pattern corresponding to the pattern appearing on the SEM image. 図9に示すSEM画像上のパターンと、対応するCADパターンとのマッチングに成功した例を示す図である。It is a figure which shows the example which succeeded in matching the pattern on the SEM image shown in FIG. 9 with the corresponding CAD pattern. 図9に示すSEM画像上のパターンと、対応するCADパターンとのマッチングに失敗した例を示す図である。It is a figure which shows the example which failed to match the pattern on the SEM image shown in FIG. 9 with the corresponding CAD pattern. マッチングが成功したときの、CADパターンが重ね合わされたSEM画像上に設定された関心領域とターゲット領域の例を示す図である。It is a figure which shows the example of the interest area and the target area set on the SEM image which the CAD pattern overlapped when the matching was successful. マッチングに失敗したときの、CADパターンが重ね合わされたSEM画像上に設定された関心領域とターゲット領域の例を示す図である。It is a figure which shows the example of the interest area and the target area set on the SEM image which overlapped the CAD pattern at the time of failure of matching. SEM画像の一例と、SEM画像上に現れているパターンに対応するCADパターンの一例を示す図である。It is a figure which shows an example of the SEM image and the example of the CAD pattern corresponding to the pattern appearing on the SEM image. 図14に示すSEM画像上のパターンと、対応するCADパターンとのマッチングに成功した例を示す図である。It is a figure which shows the example which succeeded in matching the pattern on the SEM image shown in FIG. 14 with the corresponding CAD pattern. 図14に示すSEM画像上のパターンと、対応するCADパターンとのマッチングに失敗した例を示す図である。It is a figure which shows the example which failed to match the pattern on the SEM image shown in FIG. 14 with the corresponding CAD pattern. マッチングが成功したときの、CADパターンが重ね合わされたSEM画像上に設定された関心領域とターゲット領域の例を示す図である。It is a figure which shows the example of the interest area and the target area set on the SEM image which the CAD pattern overlapped when the matching was successful. マッチングに失敗したときの、CADパターンが重ね合わされたSEM画像上に設定された関心領域とターゲット領域の例を示す図である。It is a figure which shows the example of the interest area and the target area set on the SEM image which overlapped the CAD pattern at the time of failure of matching. SEM画像の一例と、SEM画像上に現れているパターンに対応するCADパターンの一例を示す図である。It is a figure which shows an example of the SEM image and the example of the CAD pattern corresponding to the pattern appearing on the SEM image. 図19に示すSEM画像上のパターンと、対応するCADパターンとのマッチングに成功した例を示す図である。It is a figure which shows the example which succeeded in matching the pattern on the SEM image shown in FIG. 19 with the corresponding CAD pattern. 図19に示すSEM画像上のパターンと、対応するCADパターンとのマッチングに失敗した例を示す図である。It is a figure which shows the example which failed to match the pattern on the SEM image shown in FIG. 19 with the corresponding CAD pattern. マッチングが成功したときの、CADパターンが重ね合わされたSEM画像上に設定された関心領域とターゲット領域の例を示す図である。It is a figure which shows the example of the interest area and the target area set on the SEM image which the CAD pattern overlapped when the matching was successful. マッチングに失敗したときの、CADパターンが重ね合わされたSEM画像上に設定された関心領域とターゲット領域の例を示す図である。It is a figure which shows the example of the interest area and the target area set on the SEM image which overlapped the CAD pattern at the time of failure of matching. SEM画像の一例と、SEM画像上に現れているパターンに対応するCADパターンの一例を示す図である。It is a figure which shows an example of the SEM image and the example of the CAD pattern corresponding to the pattern appearing on the SEM image. 図24に示すSEM画像上のパターンと、対応するCADパターンとのマッチングに成功した例を示す図である。It is a figure which shows the example which succeeded in matching the pattern on the SEM image shown in FIG. 24, and the corresponding CAD pattern. 図24に示すSEM画像上のパターンと、対応するCADパターンとのマッチングに失敗した例を示す図である。It is a figure which shows the example which failed to match the pattern on the SEM image shown in FIG. 24, and the corresponding CAD pattern. マッチングが成功したときの、CADパターンが重ね合わされたSEM画像上に設定された関心領域とターゲット領域の例を示す図である。It is a figure which shows the example of the interest area and the target area set on the SEM image which the CAD pattern overlapped when the matching was successful. マッチングに失敗したときの、CADパターンが重ね合わされたSEM画像上に設定された関心領域とターゲット領域の例を示す図である。It is a figure which shows the example of the interest area and the target area set on the SEM image which overlapped the CAD pattern at the time of failure of matching. 上述した各実施形態に係るパターンマッチング方法を説明するフローチャートである。It is a flowchart explaining the pattern matching method which concerns on each above-described embodiment. 演算システムの構成の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the structure of the arithmetic system.
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、画像生成装置の一実施形態を示す模式図である。図1に示すように、画像生成装置は、走査電子顕微鏡50および演算システム150を備えている。走査電子顕微鏡50は、演算システム150に接続されており、走査電子顕微鏡50の動作は演算システム150によって制御される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of an image generator. As shown in FIG. 1, the image generator includes a scanning electron microscope 50 and an arithmetic system 150. The scanning electron microscope 50 is connected to the arithmetic system 150, and the operation of the scanning electron microscope 50 is controlled by the arithmetic system 150.
 演算システム150は、データベース161およびプログラムが格納された記憶装置162と、プログラムに含まれる命令に従って演算を実行する処理装置163と、画像およびGUI(グラフィカルユーザーインターフェイス)などを表示する表示画面165を備えている。処理装置163は、記憶装置162に格納されているプログラムに含まれる命令に従って演算を行うCPU(中央処理装置)またはGPU(グラフィックプロセッシングユニット)などを含む。記憶装置162は、処理装置163がアクセス可能な主記憶装置(例えばランダムアクセスメモリ)と、データおよびプログラムを格納する補助記憶装置(例えば、ハードディスクドライブまたはソリッドステートドライブ)を備えている。 The calculation system 150 includes a storage device 162 in which a database 161 and a program are stored, a processing device 163 that executes a calculation according to an instruction included in the program, and a display screen 165 that displays an image and a GUI (graphical user interface). ing. The processing device 163 includes a CPU (central processing unit) or a GPU (graphic processing unit) that performs operations according to instructions included in a program stored in the storage device 162. The storage device 162 includes a main storage device (for example, a random access memory) accessible to the processing device 163 and an auxiliary storage device (for example, a hard disk drive or a solid state drive) for storing data and programs.
 演算システム150は、少なくとも1台のコンピュータを備えている。例えば、演算システム150は、走査電子顕微鏡50に通信線で接続されたエッジサーバであってもよいし、インターネットまたはローカルネットワークなどの通信ネットワークによって走査電子顕微鏡50に接続されたクラウドサーバであってもよいし、あるいは走査電子顕微鏡50に接続されたネットワーク内に設置されたフォグコンピューティングデバイス(ゲートウェイ、フォグサーバ、ルーターなど)であってもよい。演算システム150は、複数のサーバの組み合わせであってもよい。例えば、演算システム150は、インターネットまたはローカルネットワークなどの通信ネットワークにより互いに接続されたエッジサーバとクラウドサーバとの組み合わせであってもよい。他の例では、演算システム150は、ネットワークで接続されていない複数のサーバ(コンピュータ)を備えてもよい。 The arithmetic system 150 is equipped with at least one computer. For example, the arithmetic system 150 may be an edge server connected to the scanning electron microscope 50 by a communication line, or a cloud server connected to the scanning electron microscope 50 by a communication network such as the Internet or a local network. It may be a fog computing device (gateway, fog server, router, etc.) installed in a network connected to the scanning electron microscope 50. The arithmetic system 150 may be a combination of a plurality of servers. For example, the arithmetic system 150 may be a combination of an edge server and a cloud server connected to each other by a communication network such as the Internet or a local network. In another example, the arithmetic system 150 may include a plurality of servers (computers) that are not connected by a network.
 走査電子顕微鏡50は、一次電子(荷電粒子)からなる電子ビームを発する電子銃111と、電子銃111から放出された電子ビームを集束する集束レンズ112、電子ビームをX方向に偏向するX偏向器113、電子ビームをY方向に偏向するY偏向器114、電子ビームを試料であるウェーハ124にフォーカスさせる対物レンズ115を有する。 The scanning electron microscope 50 includes an electron gun 111 that emits an electron beam composed of primary electrons (charged particles), a focusing lens 112 that focuses the electron beam emitted from the electron gun 111, and an X deflector that deflects the electron beam in the X direction. It includes 113, a Y deflector 114 that deflects the electron beam in the Y direction, and an objective lens 115 that focuses the electron beam on the sample wafer 124.
 集束レンズ112および対物レンズ115はレンズ制御装置116に接続され、集束レンズ112および対物レンズ115の動作はレンズ制御装置116によって制御される。このレンズ制御装置116は演算システム150に接続されている。X偏向器113、Y偏向器114は、偏向制御装置117に接続されており、X偏向器113、Y偏向器114の偏向動作は偏向制御装置117によって制御される。この偏向制御装置117も同様に演算システム150に接続されている。二次電子検出器130と反射電子検出器131は画像取得装置118に接続されている。画像取得装置118は二次電子検出器130と反射電子検出器131の出力信号を画像に変換するように構成される。この画像取得装置118も同様に演算システム150に接続されている。 The focusing lens 112 and the objective lens 115 are connected to the lens control device 116, and the operation of the focusing lens 112 and the objective lens 115 is controlled by the lens control device 116. The lens control device 116 is connected to the arithmetic system 150. The X deflector 113 and the Y deflector 114 are connected to the deflection control device 117, and the deflection operation of the X deflector 113 and the Y deflector 114 is controlled by the deflection control device 117. The deflection control device 117 is also connected to the arithmetic system 150 in the same manner. The secondary electron detector 130 and the backscattered electron detector 131 are connected to the image acquisition device 118. The image acquisition device 118 is configured to convert the output signals of the secondary electron detector 130 and the backscattered electron detector 131 into an image. The image acquisition device 118 is also connected to the arithmetic system 150 in the same manner.
 試料チャンバー120内に配置される試料ステージ121は、ステージ制御装置122に接続されており、試料ステージ121の位置はステージ制御装置122によって制御される。このステージ制御装置122は演算システム150に接続されている。ウェーハ124を、試料チャンバー120内の試料ステージ121に載置するためのウェーハ搬送装置140も同様に演算システム150に接続されている。 The sample stage 121 arranged in the sample chamber 120 is connected to the stage control device 122, and the position of the sample stage 121 is controlled by the stage control device 122. The stage control device 122 is connected to the arithmetic system 150. A wafer transfer device 140 for mounting the wafer 124 on the sample stage 121 in the sample chamber 120 is also connected to the arithmetic system 150.
 電子銃111から放出された電子ビームは集束レンズ112で集束された後に、X偏向器113、Y偏向器114で偏向されつつ対物レンズ115により集束されてウェーハ124の表面に照射される。ウェーハ124に電子ビームの一次電子が照射されると、ウェーハ124からは二次電子および反射電子が放出される。二次電子は二次電子検出器130により検出され、反射電子は反射電子検出器131により検出される。検出された二次電子の信号、および反射電子の信号は、画像取得装置118に入力され画像に変換される。画像は演算システム150に送信される。 The electron beam emitted from the electron gun 111 is focused by the focusing lens 112, then focused by the objective lens 115 while being deflected by the X deflector 113 and the Y deflector 114, and is irradiated on the surface of the wafer 124. When the wafer 124 is irradiated with the primary electrons of the electron beam, the secondary electrons and backscattered electrons are emitted from the wafer 124. Secondary electrons are detected by the secondary electron detector 130, and backscattered electrons are detected by the backscattered electron detector 131. The detected secondary electron signal and backscattered electron signal are input to the image acquisition device 118 and converted into an image. The image is transmitted to the arithmetic system 150.
 ウェーハ124に形成されているパターンの設計データは、記憶装置162に予め記憶されている。設計データは、ウェーハ124上に形成されたパターンの頂点の座標、パターンの位置、形状、および大きさ、パターンが属する層の番号などのパターンの設計情報を含む。記憶装置162には、データベース161が構築されている。パターンの設計データは、データベース161内に予め格納される。演算システム150は、記憶装置162に格納されているデータベース161からパターンの設計データを読み込むことが可能である。 The design data of the pattern formed on the wafer 124 is stored in advance in the storage device 162. The design data includes pattern design information such as the coordinates of the vertices of the pattern formed on the wafer 124, the position, shape, and size of the pattern, and the number of the layer to which the pattern belongs. A database 161 is constructed in the storage device 162. The pattern design data is stored in advance in the database 161. The arithmetic system 150 can read the pattern design data from the database 161 stored in the storage device 162.
 次に、走査電子顕微鏡50によって生成された画像上のパターンと、設計データ上の対応するCADパターンとのマッチングを行う方法の一実施形態について説明する。以下の説明では、走査電子顕微鏡50によって生成された画像を、SEM画像という。ウェーハ124のパターンは、設計データ(CADデータともいう)に基づいて形成されている。CADは、コンピュータ支援設計(computer-aided design)の略語である。 Next, an embodiment of a method of matching the pattern on the image generated by the scanning electron microscope 50 with the corresponding CAD pattern on the design data will be described. In the following description, the image generated by the scanning electron microscope 50 is referred to as an SEM image. The pattern of the wafer 124 is formed based on the design data (also referred to as CAD data). CAD is an abbreviation for computer-aided design.
 設計データは、ウェーハ124に形成されたパターンの設計情報を含むデータであり、具体的には、パターンの頂点の座標、パターンの位置、形状、および大きさ、パターンが属する層の番号などのパターンの設計情報を含む。設計データ上のCADパターンは、設計データに含まれるパターンの設計情報によって定義される仮想パターンである。以下の説明では、ウェーハ124に既に形成されているパターンを実パターンということがある。 The design data is data including design information of the pattern formed on the wafer 124, and specifically, the pattern such as the coordinates of the vertices of the pattern, the position, shape, and size of the pattern, and the number of the layer to which the pattern belongs. Includes design information for. The CAD pattern on the design data is a virtual pattern defined by the design information of the pattern included in the design data. In the following description, the pattern already formed on the wafer 124 may be referred to as an actual pattern.
 走査電子顕微鏡50は、試料ステージ121上のウェーハ124に形成されているパターンのSEM画像を生成する。演算システム150は、SEM画像を走査電子顕微鏡50から取得する。図2は、SEM画像の一例と、SEM画像上に現れているパターン(実パターン)に対応するCADパターンの一例を示す図である。図2に示すSEM画像200上に現れているパターン205は、繰り返しパターンの一例であるラインアンドスペースパターンである。 The scanning electron microscope 50 generates an SEM image of a pattern formed on the wafer 124 on the sample stage 121. The arithmetic system 150 acquires an SEM image from the scanning electron microscope 50. FIG. 2 is a diagram showing an example of an SEM image and an example of a CAD pattern corresponding to a pattern (actual pattern) appearing on the SEM image. The pattern 205 appearing on the SEM image 200 shown in FIG. 2 is a line-and-space pattern which is an example of a repeating pattern.
 CADパターン210は、パターン205の設計データに基づいて演算システム150によって作成される。ウェーハ124上に実際に形成されるパターン205は、CADパターン210に従って形成されるが、ウェーハ124上の実パターン205のコーナー部は丸みを帯びていることがある。したが って、CADパターン210の形状を実パターン205の形状に近づけるために、以下に説明するマッチングの前に、CADパターン210のコーナー部に丸みを持たせるコーナーラウンド処理を実施してもよい。 The CAD pattern 210 is created by the arithmetic system 150 based on the design data of the pattern 205. The pattern 205 actually formed on the wafer 124 is formed according to the CAD pattern 210, but the corners of the actual pattern 205 on the wafer 124 may be rounded. Therefore, in order to bring the shape of the CAD pattern 210 closer to the shape of the actual pattern 205, a corner round process for rounding the corners of the CAD pattern 210 may be performed before the matching described below. ..
 演算システム150は、SEM画像200上のパターン205と、対応するCADパターン210とのマッチングを行う。これらのパターン205間のマッチングには、公知の技術が使用される。一例では、演算システム150は、SEM画像200と設計データから作成されたCADパターン210とを重ね合わせ、CADパターン210のエッジを起点として設定された範囲でSEM画像200のグレーレベルのプロファイルを作成し、グレーレベルのプロファイルからSEM画像200上のパターン205のエッジを決定し、決定されたエッジの位置と、対応するCADパターン210のエッジの位置とのバイアス値が最小になるマッチング位置を決定する。バイアス値は、グレーレベルのプロファイルから決定されたエッジと、対応するCADパターン210のエッジとのずれ量(距離)を示す指標値である。バイアス値は、SEM画像200内のすべてのエッジについて算出される。 The calculation system 150 matches the pattern 205 on the SEM image 200 with the corresponding CAD pattern 210. Known techniques are used for matching between these patterns 205. In one example, the arithmetic system 150 superimposes the SEM image 200 and the CAD pattern 210 created from the design data, and creates a gray level profile of the SEM image 200 within a range set starting from the edge of the CAD pattern 210. , The edge of the pattern 205 on the SEM image 200 is determined from the gray level profile, and the matching position where the bias value between the determined edge position and the edge position of the corresponding CAD pattern 210 is minimized is determined. The bias value is an index value indicating the amount of deviation (distance) between the edge determined from the gray level profile and the edge of the corresponding CAD pattern 210. Bias values are calculated for all edges in the SEM image 200.
 図3は、SEM画像200上のパターン205と、対応するCADパターン210とのマッチングに成功した例を示す図である。図3に示すように、SEM画像200上のパターン205の全体と、対応するCADパターン210の全体は、互いに重なり合っている。これに対して、図4は、SEM画像200上のパターン205と、対応するCADパターン210とのマッチングに失敗した例を示す図である。図4に示すように、SEM画像200上のパターン205の大部分と、対応するCADパターン210の大部分は、互いに重なり合っているが、これらパターン205,210の全体は互いにX方向(例えば電子ビームの走査方向)にずれており、パターン205,210の一部は重なり合っていない。このようなマッチングの失敗は、繰り返しパターンの場合に起こりやすい。 FIG. 3 is a diagram showing an example in which the pattern 205 on the SEM image 200 and the corresponding CAD pattern 210 are successfully matched. As shown in FIG. 3, the entire pattern 205 on the SEM image 200 and the entire corresponding CAD pattern 210 overlap each other. On the other hand, FIG. 4 is a diagram showing an example in which matching of the pattern 205 on the SEM image 200 with the corresponding CAD pattern 210 failed. As shown in FIG. 4, most of the pattern 205 on the SEM image 200 and most of the corresponding CAD patterns 210 overlap each other, but the entire patterns 205 and 210 overlap each other in the X direction (for example, an electron beam). (Scanning direction), and some of the patterns 205 and 210 do not overlap. Such matching failures are likely to occur in the case of repetitive patterns.
 従来のアルゴリズムでは、図4に示す2つのパターン205,210は部分的に一致しているため、マッチングの失敗を判定することは難しい。言い換えれば、従来のアルゴリズムに従えば、図3に示すマッチングと、図4に示すマッチングは、いずれも成功したと判定される。しかしながら、図4に示すSEM画像200上のパターン205と、CADパターン210は、1ピッチずれており、正確に言えばマッチングに成功していない。 In the conventional algorithm, since the two patterns 205 and 210 shown in FIG. 4 partially match, it is difficult to determine the matching failure. In other words, according to the conventional algorithm, both the matching shown in FIG. 3 and the matching shown in FIG. 4 are determined to be successful. However, the pattern 205 on the SEM image 200 shown in FIG. 4 and the CAD pattern 210 are deviated by one pitch, and to be exact, they have not been successfully matched.
 そこで、本実施形態では、SEM画像200上のパターン205と、CADパターン210とのマッチングをした後に、次のようにしてマッチングの成否を判定する。図5に示すように、演算システム150は、CADパターン210が重ね合わされたSEM画像200上に関心領域ROIを設定する。ROIとは、Region of Interestの略語である。関心領域ROIは、SEM画像200よりも小さい領域であり、SEM画像200内に位置している。一実施形態では、SEM画像200を複数領域に等分割し、これら複数の領域のうちの1つを関心領域ROIとしてもよい。例えば、図5に示す例のように、関心領域ROIは、SEM画像200を等分割した4つの領域のうちの1つであってもよい。 Therefore, in the present embodiment, after matching the pattern 205 on the SEM image 200 with the CAD pattern 210, the success or failure of the matching is determined as follows. As shown in FIG. 5, the arithmetic system 150 sets the region of interest ROI on the SEM image 200 on which the CAD patterns 210 are superimposed. ROI is an abbreviation for Region of Interest. The region of interest ROI is a region smaller than the SEM image 200 and is located within the SEM image 200. In one embodiment, the SEM image 200 may be equally divided into a plurality of regions, and one of the plurality of regions may be used as the region of interest ROI. For example, as in the example shown in FIG. 5, the region of interest ROI may be one of four regions in which the SEM image 200 is equally divided.
 関心領域ROIの位置および大きさは、演算システム150またはユーザーによって予め決定される。例えば、演算システム150は、SEM画像200を図1に示す表示画面165上に表示し、ユーザーは表示画面165上のSEM画像200を参照して関心領域ROIの位置および大きさを決定してもよい。他の例では、演算システム150は、関心領域ROI内のCADパターン210の形状、CADパターン210のエッジ長さ、近接パターン205との距離、CADパターン210の延伸方向、CADパターン210の頂点などから算出された特徴量に基づいて関心領域ROIの位置および大きさを決定するか、あるいは過去のパターンマッチングに使用された関心領域ROIと、パターンマッチングの成否結果との組み合わせを訓練データとして機械学習させたモデルによって関心領域ROIの位置および大きさを決定してもよい。 The position and size of the region of interest ROI is predetermined by the arithmetic system 150 or the user. For example, the arithmetic system 150 displays the SEM image 200 on the display screen 165 shown in FIG. 1, and the user can determine the position and size of the region of interest ROI with reference to the SEM image 200 on the display screen 165. Good. In another example, the arithmetic system 150 is based on the shape of the CAD pattern 210 in the region of interest ROI, the edge length of the CAD pattern 210, the distance from the proximity pattern 205, the stretching direction of the CAD pattern 210, the apex of the CAD pattern 210, and the like. The position and size of the region of interest ROI are determined based on the calculated feature amount, or the combination of the region of interest ROI used for past pattern matching and the success / failure result of pattern matching is machine-learned as training data. The position and size of the region of interest ROI may be determined by the model.
 関心領域ROIは、SEM画像200とともに、図1に示す表示画面165上に表示される。演算システム150は複数の関心領域候補を決定してもよい。複数の関心領域候補は表示画面165上に表示され、ユーザーは表示画面165上の複数の関心領域候補から最適な1つの関心領域ROIを選択することができる。 The region of interest ROI is displayed on the display screen 165 shown in FIG. 1 together with the SEM image 200. The arithmetic system 150 may determine a plurality of region of interest candidates. The plurality of interest region candidates are displayed on the display screen 165, and the user can select the optimum one interest region ROI from the plurality of interest region candidates on the display screen 165.
 関心領域ROIは、SEM画像200内の領域であり、SEM画像200に現れているパターン205の少なくとも一部を囲んでいる。図5に示す例では、関心領域ROIは、SEM画像200上のパターン205の最外端部を囲んでいる。 The region of interest ROI is an region within the SEM image 200 and surrounds at least a part of the pattern 205 appearing in the SEM image 200. In the example shown in FIG. 5, the region of interest ROI surrounds the outermost edge of pattern 205 on the SEM image 200.
 演算システム150は、SEM画像200内に設定された関心領域ROI内であって、かつCADパターン210の内側または外側に位置するターゲット領域TR内のグレーレベルのヒストグラムを作成する。図5に示す実施形態では、ターゲット領域TRは、関心領域ROI内に位置し、かつCADパターン210の外側に位置する領域である。図5から分かるように、ターゲット領域TRの全体は、SEM画像200上のパターン205の外側にある領域、すなわちスペース部206内に位置している。ターゲット領域TR内のグレーレベルは、スペース部206のグレーレベルG1のみを含む。したがって、ヒストグラムには、グレーレベルG1を示す1つのピークのみが現れる。ヒストグラムの横軸はグレーレベルを表し、縦軸は画素数を表している。 The arithmetic system 150 creates a gray level histogram in the target region TR located in the interest region ROI set in the SEM image 200 and inside or outside the CAD pattern 210. In the embodiment shown in FIG. 5, the target region TR is a region located within the region of interest ROI and outside the CAD pattern 210. As can be seen from FIG. 5, the entire target region TR is located in the region outside the pattern 205 on the SEM image 200, that is, in the space portion 206. The gray level in the target area TR includes only the gray level G1 of the space portion 206. Therefore, only one peak indicating gray level G1 appears in the histogram. The horizontal axis of the histogram represents the gray level, and the vertical axis represents the number of pixels.
 演算システム150は、関心領域ROI、ターゲット領域TR、SEM画像200、CADパターン210、およびヒストグラムを表示画面165上に表示する。演算システム150は、ヒストグラムのピークの数を計数し、ピークの数が1つであれば、マッチングに成功したと判定する。 The calculation system 150 displays the region of interest ROI, the target region TR, the SEM image 200, the CAD pattern 210, and the histogram on the display screen 165. The arithmetic system 150 counts the number of peaks in the histogram, and if the number of peaks is one, it is determined that the matching is successful.
 図6は、マッチングに失敗したときのターゲット領域TRと、ターゲット領域TR内のグレーレベルのヒストグラムを示す図である。関心領域ROIの位置および大きさは、図5に示すマッチングに成功したときの関心領域ROIと同じである。ターゲット領域TRは、SEM画像200上のパターン205と、スペース部206に及んでいる。ターゲット領域TR内のグレーレベルは、スペース部206のグレーレベルG1と、パターン205のグレーレベルG2を含む。したがって、ヒストグラムには、2つのグレーレベルG1,G2を示す2つのピークが現れる。 FIG. 6 is a diagram showing a target area TR when matching fails and a gray level histogram in the target area TR. The position and size of the region of interest ROI are the same as the region of interest ROI when the matching shown in FIG. 5 is successful. The target region TR extends to the pattern 205 on the SEM image 200 and the space portion 206. The gray level in the target area TR includes the gray level G1 of the space portion 206 and the gray level G2 of the pattern 205. Therefore, two peaks indicating two gray levels G1 and G2 appear in the histogram.
 演算システム150は、ヒストグラムのピークの数を計数し、ピークの数が2つであるので、マッチングに失敗したと判定する。 The calculation system 150 counts the number of peaks in the histogram and determines that the matching has failed because the number of peaks is two.
 このように、演算システム150は、ヒストグラムのピークの数に基づいて、パターン205,210のマッチングに成功したか否かを正確に判定することができる。 In this way, the arithmetic system 150 can accurately determine whether or not the matching of the patterns 205 and 210 is successful based on the number of peaks in the histogram.
 パターン205,210のマッチングに失敗した場合(すなわち、ヒストグラムに複数のピークが現れた場合)は、演算システム150は、画像上のパターン205と、対応するCADパターン210との相対位置を変え、SEM画像200上のパターン205と、対応するCADパターン210とのマッチングを再度実施し、さらに、ターゲット領域TR内のグレーレベルのヒストグラムを再度作成する。 If the matching of patterns 205 and 210 fails (that is, if multiple peaks appear in the histogram), the arithmetic system 150 changes the relative position of the pattern 205 on the image and the corresponding CAD pattern 210 and SEM. Matching the pattern 205 on the image 200 with the corresponding CAD pattern 210 is performed again, and a gray level histogram in the target region TR is created again.
 演算システム150は、マッチングが成功したと判定するまで(すなわち、ヒストグラムに1つのピークのみが現れるまで)、画像上のパターン205と、対応するCADパターン210との相対位置を変える工程と、SEM画像200上のパターン205と、対応するCADパターン210とのマッチングを再度実施する工程と、ターゲット領域TR内のグレーレベルのヒストグラムを再度作成する工程を繰り返す。マッチングを実行するたびに、SEM画像200上のパターン205のエッジの位置と、対応するCADパターン210のエッジとのバイアス値が最小になるマッチング位置を決定する。 The arithmetic system 150 changes the relative position of the pattern 205 on the image and the corresponding CAD pattern 210 until it determines that the matching is successful (that is, until only one peak appears in the histogram), and the SEM image. The step of rematching the pattern 205 on the 200 with the corresponding CAD pattern 210 and the step of recreating the gray level histogram in the target region TR are repeated. Each time matching is performed, the matching position where the bias value between the edge position of the pattern 205 on the SEM image 200 and the edge of the corresponding CAD pattern 210 is minimized is determined.
 一般に、実パターンのエッジは、CADパターンに比べて変形していることが多い。このため、パターンマッチングに成功した場合でも、グレーレベルの異なる部分がターゲット領域TR内に含まれることがある。このような場合は、ヒストグラムに複数のピークが現れる。そこで、マッチングの成否をより正確に判定するために、演算システム150は、ヒストグラムのピーク値を、予め設定されたしきい値と比較し、しきい値よりも大きい値を持つピークの数が1つの場合には、マッチングに成功したと判定し、しきい値よりも大きい値を持つピークの数が複数の場合には、マッチングに失敗したと判定してもよい。 In general, the edges of the actual pattern are often deformed compared to the CAD pattern. Therefore, even if pattern matching is successful, parts having different gray levels may be included in the target area TR. In such a case, multiple peaks appear in the histogram. Therefore, in order to more accurately determine the success or failure of matching, the arithmetic system 150 compares the peak value of the histogram with a preset threshold value, and the number of peaks having a value larger than the threshold value is 1. In one case, it may be determined that the matching was successful, and if there are a plurality of peaks having a value larger than the threshold value, it may be determined that the matching has failed.
 図7に示すように、実パターン205のエッジ位置がCADパターン210のエッジ位置から大きく乖離している場合、ターゲット領域TR内のグレーレベルのヒストグラムには、複数のピークが現れることがある。そこで、このような場合は、図8に示すように、関心領域ROI内のCADパターン210のエッジを実パターン205のエッジに近づける補正を行うことが好ましい。この補正は、ユーザーが表示画面165上で関心領域ROIを目視しながらGUIを介して手動で実施してもよいし、あるいは演算システム150がCADパターン210のエッジと実パターン205のエッジとの位置の差(バイアス値)に基づいて自動で補正してもよい。さらに、実パターンがOPE(光近接効果)による形状変形または位置変化をした場合は、演算システム150は、CADパターン210のエッジと実パターン205のエッジとの位置の差(バイアス値)から得られる外形イメージ(Contour)を使ってターゲット領域TRを補正してもよい。 As shown in FIG. 7, when the edge position of the actual pattern 205 deviates greatly from the edge position of the CAD pattern 210, a plurality of peaks may appear in the gray level histogram in the target area TR. Therefore, in such a case, as shown in FIG. 8, it is preferable to perform correction to bring the edge of the CAD pattern 210 in the region of interest ROI closer to the edge of the actual pattern 205. This correction may be performed manually by the user via the GUI while visually observing the region of interest ROI on the display screen 165, or the arithmetic system 150 may perform the position of the edge of the CAD pattern 210 and the edge of the actual pattern 205. May be automatically corrected based on the difference (bias value) of. Further, when the actual pattern undergoes shape deformation or position change due to OPE (optical proximity effect), the arithmetic system 150 is obtained from the position difference (bias value) between the edge of the CAD pattern 210 and the edge of the actual pattern 205. The target area TR may be corrected using the external image (Contour).
 図9は、SEM画像の他の例と、SEM画像上のパターン(実パターン)に対応するCADパターン310の一例を示す図である。図9に示すSEM画像300上の実パターン305は、図2に示す実施形態と同様に、繰り返しパターンの一例であるラインアンドスペースパターンである。特に説明しない本実施形態の詳細は、図2乃至図6を参照して説明した実施形態と同じであるので、その重複する説明を省略する。 FIG. 9 is a diagram showing another example of the SEM image and an example of the CAD pattern 310 corresponding to the pattern (actual pattern) on the SEM image. The actual pattern 305 on the SEM image 300 shown in FIG. 9 is a line-and-space pattern which is an example of a repeating pattern, as in the embodiment shown in FIG. The details of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 2 to 6, and thus the overlapping description will be omitted.
 図10は、図9に示すSEM画像300上のパターン305と、対応するCADパターン310とのマッチングに成功した例を示す図である。図10に示すように、SEM画像300上のパターン305の全体と、対応するCADパターン310の全体は、互いに重なり合っている。これに対して、図11は、SEM画像300上のパターン305と、対応するCADパターン310とのマッチングに失敗した例を示す図である。図11に示すように、SEM画像300上のパターン305の大部分と、対応するCADパターン310の大部分は、互いに重なり合っているが、これらパターン305,310の全体は互いにX方向にずれており、パターン305の一部は重なり合っていない。 FIG. 10 is a diagram showing an example in which the pattern 305 on the SEM image 300 shown in FIG. 9 and the corresponding CAD pattern 310 are successfully matched. As shown in FIG. 10, the entire pattern 305 on the SEM image 300 and the entire corresponding CAD pattern 310 overlap each other. On the other hand, FIG. 11 is a diagram showing an example in which matching of the pattern 305 on the SEM image 300 with the corresponding CAD pattern 310 failed. As shown in FIG. 11, most of the pattern 305 on the SEM image 300 and most of the corresponding CAD patterns 310 overlap each other, but the whole of these patterns 305 and 310 are displaced from each other in the X direction. , Part of the pattern 305 does not overlap.
 図12は、マッチングに成功したときのターゲット領域TRと、ターゲット領域TR内のグレーレベルのヒストグラムを示す図である。この実施形態では、関心領域ROIの位置および大きさは、図5に示す実施形態と同じであるが、ターゲット領域TRが図5に示す実施形態と異なる。すなわち、ターゲット領域TRは、関心領域ROI内に位置し、かつCADパターン310の内側に位置する領域である。図12から分かるように、ターゲット領域TRの全体は、SEM画像300上のパターン305内に位置している。ターゲット領域TR内のグレーレベルは、パターン305のグレーレベルG3のみを含む。したがって、ヒストグラムには、グレーレベルG3を示す1つのピークのみが現れる。演算システム150は、1つのピークのみがヒストグラムに現れているので、マッチングに成功したと判定する。 FIG. 12 is a diagram showing a target region TR when matching is successful and a gray level histogram in the target region TR. In this embodiment, the position and size of the region of interest ROI is the same as in the embodiment shown in FIG. 5, but the target region TR is different from the embodiment shown in FIG. That is, the target region TR is a region located in the region of interest ROI and inside the CAD pattern 310. As can be seen from FIG. 12, the entire target region TR is located within the pattern 305 on the SEM image 300. The gray level in the target area TR includes only the gray level G3 of the pattern 305. Therefore, only one peak showing gray level G3 appears in the histogram. Since only one peak appears in the histogram, the arithmetic system 150 determines that the matching is successful.
 図13は、マッチングに失敗したときのターゲット領域TRと、ターゲット領域TR内のグレーレベルのヒストグラムを示す図である。関心領域ROIの位置および大きさは、図12に示すマッチングに成功したときの関心領域ROIと同じである。ターゲット領域TRは、SEM画像300上のパターン305内と、パターン305の外側に位置するスペース部306内に位置している。ターゲット領域TR内のグレーレベルは、パターン305のグレーレベルG3と、スペース部306のグレーレベルG4を含む。したがって、ヒストグラムには、2つのグレーレベルG3,G4を示す2つのピークが現れる。演算システム150は、2つのピークがヒストグラムに現れているので、マッチングに失敗したと判定する。 FIG. 13 is a diagram showing a target region TR when matching fails and a gray level histogram in the target region TR. The position and size of the region of interest ROI are the same as the region of interest ROI when the matching shown in FIG. 12 is successful. The target region TR is located in the pattern 305 on the SEM image 300 and in the space portion 306 located outside the pattern 305. The gray level in the target region TR includes the gray level G3 of the pattern 305 and the gray level G4 of the space portion 306. Therefore, two peaks showing two gray levels G3 and G4 appear in the histogram. Since the two peaks appear in the histogram, the arithmetic system 150 determines that the matching has failed.
 図14は、SEM画像のさらに他の例と、SEM画像上のパターン(実パターン)に対応するCADパターンの一例を示す図である。図14に示すSEM画像400上の実パターン405は、繰り返しパターンの一例であるホールパターンである。特に説明しない本実施形態の詳細は、図2乃至図6を参照して説明した実施形態と同じであるので、その重複する説明を省略する。 FIG. 14 is a diagram showing still another example of the SEM image and an example of the CAD pattern corresponding to the pattern (actual pattern) on the SEM image. The actual pattern 405 on the SEM image 400 shown in FIG. 14 is a hole pattern which is an example of a repeating pattern. The details of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 2 to 6, and thus the overlapping description will be omitted.
 図15は、図14に示すSEM画像400上のパターン405と、対応するCADパターン410とのマッチングに成功した例を示す図である。図15に示すように、SEM画像400上のパターン405の全体と、対応するCADパターン410の全体は、互いに重なり合っている。これに対して、図16は、SEM画像400上のパターン405と、対応するCADパターン410とのマッチングに失敗した例を示す図である。図16に示すように、SEM画像400上のパターン405の大部分と、対応するCADパターン410の大部分は、互いに重なり合っているが、これらパターン405,410の全体は互いにX方向にずれており、パターン405,410の一部は重なり合っていない。 FIG. 15 is a diagram showing an example in which the pattern 405 on the SEM image 400 shown in FIG. 14 and the corresponding CAD pattern 410 are successfully matched. As shown in FIG. 15, the entire pattern 405 on the SEM image 400 and the entire corresponding CAD pattern 410 overlap each other. On the other hand, FIG. 16 is a diagram showing an example in which matching of the pattern 405 on the SEM image 400 with the corresponding CAD pattern 410 failed. As shown in FIG. 16, most of the patterns 405 on the SEM image 400 and most of the corresponding CAD patterns 410 overlap each other, but the whole of these patterns 405 and 410 are displaced from each other in the X direction. , Some of the patterns 405 and 410 do not overlap.
 図17は、マッチングに成功したときのターゲット領域TRと、ターゲット領域TR内のグレーレベルのヒストグラムを示す図である。この実施形態では、関心領域ROIの位置および大きさは、図5に示す実施形態と同じであるが、異なってもよい。ターゲット領域TRは、関心領域ROI内に位置し、かつCADパターン410の外側に位置する領域である。図17から分かるように、ターゲット領域TRの全体は、SEM画像400上のパターン405の外に位置している。ターゲット領域TR内のグレーレベルは、パターン405の外側にある領域のグレーレベルG5のみを含む。したがって、ヒストグラムには、グレーレベルG5を示す1つのピークのみが現れる。演算システム150は、1つのピークのみがヒストグラムに現れているので、マッチングに成功したと判定する。 FIG. 17 is a diagram showing a target region TR when matching is successful and a gray level histogram in the target region TR. In this embodiment, the location and size of the region of interest ROI is the same as in the embodiment shown in FIG. 5, but may be different. The target region TR is a region located within the region of interest ROI and outside the CAD pattern 410. As can be seen from FIG. 17, the entire target region TR is located outside the pattern 405 on the SEM image 400. The gray level in the target region TR includes only the gray level G5 in the region outside the pattern 405. Therefore, only one peak showing gray level G5 appears in the histogram. Since only one peak appears in the histogram, the arithmetic system 150 determines that the matching is successful.
 図18は、マッチングに失敗したときのターゲット領域TRと、ターゲット領域TR内のグレーレベルのヒストグラムを示す図である。関心領域ROIの位置および大きさは、図17に示すマッチングに成功したときの関心領域ROIと同じである。ターゲット領域TRは、SEM画像400上のパターン405と、パターン405の外側にある領域の両方に及んでいる。ターゲット領域TR内のグレーレベルは、パターン405の外側にある領域のグレーレベルG5と、パターン405のグレーレベルG6を含む。したがって、ヒストグラムには、2つのグレーレベルG5,G6を示す2つのピークが現れる。演算システム150は、2つのピークがヒストグラムに現れているので、マッチングに失敗したと判定する。 FIG. 18 is a diagram showing a target region TR when matching fails and a gray level histogram in the target region TR. The position and size of the region of interest ROI are the same as the region of interest ROI when the matching shown in FIG. 17 is successful. The target region TR covers both the pattern 405 on the SEM image 400 and the region outside the pattern 405. The gray level in the target region TR includes the gray level G5 of the region outside the pattern 405 and the gray level G6 of the pattern 405. Therefore, two peaks showing two gray levels G5 and G6 appear in the histogram. Since the two peaks appear in the histogram, the arithmetic system 150 determines that the matching has failed.
 図19は、SEM画像のさらに他の例と、SEM画像上のパターン(実パターン)に対応するCADパターンの一例を示す図である。図19に示すSEM画像500上のCADパターン510は、矩形状のホールパターンである。図19に示す実パターン505は、上層のホールパターン507を通して見える下層のラインアンドスペースパターンである。特に説明しない本実施形態の詳細は、図2乃至図6を参照して説明した実施形態と同じであるので、その重複する説明を省略する。 FIG. 19 is a diagram showing still another example of the SEM image and an example of the CAD pattern corresponding to the pattern (actual pattern) on the SEM image. The CAD pattern 510 on the SEM image 500 shown in FIG. 19 is a rectangular hole pattern. The actual pattern 505 shown in FIG. 19 is a lower layer line and space pattern that can be seen through the upper hole pattern 507. The details of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 2 to 6, and thus the overlapping description will be omitted.
 下層の輝度が、上層の輝度とほとんど同じである場合、パターンマッチングにおいて、演算システム150は下層のパターン505のエッジを検出してしまい、マッチングに失敗してしまうことがある。このような場合でも、演算システム150は、マッチングの成否を正しく判定し、マッチングに失敗した場合には、上述したように、マッチングに成功するまで、マッチングを繰り返す。 When the brightness of the lower layer is almost the same as the brightness of the upper layer, the arithmetic system 150 may detect the edge of the pattern 505 of the lower layer in the pattern matching, and the matching may fail. Even in such a case, the calculation system 150 correctly determines the success or failure of the matching, and if the matching fails, repeats the matching until the matching is successful, as described above.
 図20は、図19に示すSEM画像500上の上層のホールパターン507と、対応するCADパターン510とのマッチングに成功した例を示す図である。図20に示すように、SEM画像500上の上層のホールパターン507の全体と、対応するCADパターン510の全体は、互いに重なり合っている。これに対して、図21は、SEM画像500上の上層のホールパターン507と、対応するCADパターン510とのマッチングに失敗した例を示す図である。図21に示すように、上層のホールパターン507の大部分と、対応するCADパターン510の大部分は、互いに重なり合っているが、これらパターン507,510の全体は互いにX方向にずれており、パターン507,510の一部は重なり合っていない。 FIG. 20 is a diagram showing an example in which the hole pattern 507 in the upper layer on the SEM image 500 shown in FIG. 19 and the corresponding CAD pattern 510 are successfully matched. As shown in FIG. 20, the entire upper hole pattern 507 on the SEM image 500 and the entire corresponding CAD pattern 510 overlap each other. On the other hand, FIG. 21 is a diagram showing an example in which matching of the upper hole pattern 507 on the SEM image 500 with the corresponding CAD pattern 510 has failed. As shown in FIG. 21, most of the upper hole pattern 507 and most of the corresponding CAD patterns 510 overlap each other, but the whole of these patterns 507 and 510 are offset from each other in the X direction, and the patterns Some of 507 and 510 do not overlap.
 図22は、マッチングに成功したときのターゲット領域TRと、ターゲット領域TR内のグレーレベルのヒストグラムを示す図である。この実施形態では、関心領域ROIの位置および大きさは、図5に示す実施形態と同じであるが、異なってもよい。ターゲット領域TRは、関心領域ROI内に位置し、かつCADパターン510の外側に位置する領域である。図22から分かるように、ターゲット領域TRの全体は、SEM画像500上の上層のホールパターン507および下層のラインアンドスペースパターン505の外に位置している。ターゲット領域TR内のグレーレベルは、上層のホールパターン507の外側の領域508のグレーレベルG7のみを含む。したがって、ヒストグラムには、グレーレベルG7を示す1つのピークのみが現れる。演算システム150は、1つのピークのみがヒストグラムに現れているので、マッチングに成功したと判定する。 FIG. 22 is a diagram showing a target region TR when matching is successful and a gray level histogram in the target region TR. In this embodiment, the location and size of the region of interest ROI is the same as in the embodiment shown in FIG. 5, but may be different. The target region TR is a region located within the region of interest ROI and outside the CAD pattern 510. As can be seen from FIG. 22, the entire target region TR is located outside the upper hole pattern 507 and the lower line and space pattern 505 on the SEM image 500. The gray level in the target region TR includes only the gray level G7 in the outer region 508 of the upper hole pattern 507. Therefore, only one peak showing gray level G7 appears in the histogram. Since only one peak appears in the histogram, the arithmetic system 150 determines that the matching is successful.
 図23は、マッチングに失敗したときのターゲット領域TRと、ターゲット領域TR内のグレーレベルのヒストグラムを示す図である。関心領域ROIの位置および大きさは、図22に示すマッチングに成功したときの関心領域ROIと同じである。ターゲット領域TRは、SEM画像500上の上層のホールパターン507の外側の領域508と、下層のラインアンドスペースパターン505の一部に及んでいる。ターゲット領域TR内のグレーレベルは、上層のホールパターン507の外側の領域508のグレーレベルG7と、下層のラインアンドスペースパターン505の一部のグレーレベルG8を含む。したがって、ヒストグラムには、2つのグレーレベルG7,G8を示す2つのピークが現れる。演算システム150は、2つのピークがヒストグラムに現れているので、マッチングに失敗したと判定する。 FIG. 23 is a diagram showing a target region TR when matching fails and a gray level histogram in the target region TR. The position and size of the region of interest ROI are the same as the region of interest ROI when the matching shown in FIG. 22 is successful. The target region TR covers an outer region 508 of the upper hole pattern 507 on the SEM image 500 and a part of the lower line and space pattern 505. The gray level in the target region TR includes a gray level G7 in the outer region 508 of the upper hole pattern 507 and a part of the gray level G8 in the lower line and space pattern 505. Therefore, two peaks showing two gray levels G7 and G8 appear in the histogram. Since the two peaks appear in the histogram, the arithmetic system 150 determines that the matching has failed.
 図24は、SEM画像のさらに他の例と、SEM画像上のパターン(実パターン)に対応するCADパターンの一例を示す図である。図24に示すSEM画像600上の実パターン605は、繰り返しパターンの一例であるラインアンドスペースパターンである。特に説明しない本実施形態の詳細は、図2乃至図6を参照して説明した実施形態と同じであるので、その重複する説明を省略する。 FIG. 24 is a diagram showing still another example of the SEM image and an example of the CAD pattern corresponding to the pattern (actual pattern) on the SEM image. The actual pattern 605 on the SEM image 600 shown in FIG. 24 is a line-and-space pattern which is an example of a repeating pattern. The details of the present embodiment, which are not particularly described, are the same as those of the embodiments described with reference to FIGS. 2 to 6, and thus the overlapping description will be omitted.
 図25は、図24に示すSEM画像600上のパターン605と、対応するCADパターン610とのマッチングに成功した例を示す図である。図25に示すように、SEM画像600上のパターン605の全体と、対応するCADパターン610の全体は、互いに重なり合っている。これに対して、図26は、SEM画像600上のパターン605と、対応するCADパターン610とのマッチングに失敗した例を示す図である。図26に示すように、SEM画像600上のパターン605の大部分と、対応するCADパターン610の大部分は、互いに重なり合っているが、これらパターン605,610の全体は互いにY方向(X方向に垂直な方向)にずれており、パターン605,610の一部は重なり合っていない。 FIG. 25 is a diagram showing an example in which the pattern 605 on the SEM image 600 shown in FIG. 24 and the corresponding CAD pattern 610 are successfully matched. As shown in FIG. 25, the entire pattern 605 on the SEM image 600 and the entire corresponding CAD pattern 610 overlap each other. On the other hand, FIG. 26 is a diagram showing an example in which matching of the pattern 605 on the SEM image 600 and the corresponding CAD pattern 610 failed. As shown in FIG. 26, most of the patterns 605 on the SEM image 600 and most of the corresponding CAD patterns 610 overlap each other, but the whole of these patterns 605 and 610 are in the Y direction (X direction). It is offset in the vertical direction), and some of the patterns 605 and 610 do not overlap.
 図27は、マッチングに成功したときのターゲット領域TRと、ターゲット領域TR内のグレーレベルのヒストグラムを示す図である。この実施形態では、関心領域ROIの位置は、図5に示す実施形態と異なっているが、同じであってもよい。ターゲット領域TRは、関心領域ROI内に位置し、かつCADパターン610の内側に位置する領域である。図27から分かるように、ターゲット領域TRの全体は、SEM画像600上のパターン605内に位置している。ターゲット領域TR内のグレーレベルは、パターン605のグレーレベルG9のみを含む。したがって、ヒストグラムには、グレーレベルG9を示す1つのピークのみが現れる。演算システム150は、1つのピークのみがヒストグラムに現れているので、マッチングに成功したと判定する。 FIG. 27 is a diagram showing a target region TR when matching is successful and a gray level histogram in the target region TR. In this embodiment, the location of the region of interest ROI is different from, but may be the same, as in the embodiment shown in FIG. The target region TR is a region located within the region of interest ROI and inside the CAD pattern 610. As can be seen from FIG. 27, the entire target region TR is located within the pattern 605 on the SEM image 600. The gray level in the target area TR includes only the gray level G9 of the pattern 605. Therefore, only one peak showing gray level G9 appears in the histogram. Since only one peak appears in the histogram, the arithmetic system 150 determines that the matching is successful.
 図28は、マッチングに失敗したときのターゲット領域TRと、ターゲット領域TR内のグレーレベルのヒストグラムを示す図である。関心領域ROIの位置および大きさは、図27に示すマッチングに成功したときの関心領域ROIと同じである。ターゲット領域TRは、SEM画像600上のパターン605の内部と、パターン605の外部に位置している。ターゲット領域TR内のグレーレベルは、パターン605のグレーレベルG9と、パターン605の外部のグレーレベルG10を含む。したがって、ヒストグラムには、グレーレベルG9,G10を示す2つのピークが現れる。演算システム150は、2つのピークがヒストグラムに現れているので、マッチングに失敗したと判定する。 FIG. 28 is a diagram showing a target region TR when matching fails and a gray level histogram in the target region TR. The position and size of the region of interest ROI are the same as the region of interest ROI when the matching shown in FIG. 27 is successful. The target region TR is located inside the pattern 605 on the SEM image 600 and outside the pattern 605. The gray level in the target region TR includes the gray level G9 of the pattern 605 and the gray level G10 outside the pattern 605. Therefore, two peaks indicating gray levels G9 and G10 appear in the histogram. Since the two peaks appear in the histogram, the arithmetic system 150 determines that the matching has failed.
 上述した各実施形態によれば、演算システム150は、ヒストグラムのピークの数に基づいて、パターンのマッチングに成功したか否かを正確に判定することができる。マッチングに失敗した場合には、演算システム150は、マッチングに成功するまでマッチングを繰り返すことで、正しいマッチング位置を決定することができる。 According to each of the above-described embodiments, the arithmetic system 150 can accurately determine whether or not the pattern matching is successful based on the number of peaks in the histogram. When the matching fails, the arithmetic system 150 can determine the correct matching position by repeating the matching until the matching is successful.
 図29は、上述した各実施形態に係るパターンマッチング方法を説明するフローチャートである。
 ステップ1では、走査電子顕微鏡50は、試料ステージ121上のウェーハ124に形成されているパターンのSEM画像を生成する。
 ステップ2では、演算システム150は、SEM画像を走査電子顕微鏡50から取得する。
 ステップ3では、演算システム150は、SEM画像上のパターンと、対応するCADパターンとのマッチングを行う。より具体的には、演算システム150は、SEM画像と設計データから作成されたCADパターンとを重ね合わせ、CADパターンのエッジを起点として設定された範囲でSEM画像のグレーレベルのプロファイルを作成し、グレーレベルのプロファイルからSEM画像上のパターンのエッジを決定し、決定されたエッジの位置と、対応するCADパターンのエッジとのバイアス値が最小になるマッチング位置を決定する。
FIG. 29 is a flowchart illustrating the pattern matching method according to each of the above-described embodiments.
In step 1, the scanning electron microscope 50 produces an SEM image of the pattern formed on the wafer 124 on the sample stage 121.
In step 2, the arithmetic system 150 acquires an SEM image from the scanning electron microscope 50.
In step 3, the arithmetic system 150 matches the pattern on the SEM image with the corresponding CAD pattern. More specifically, the arithmetic system 150 superimposes the SEM image and the CAD pattern created from the design data, and creates a gray level profile of the SEM image within a range set starting from the edge of the CAD pattern. The edge of the pattern on the SEM image is determined from the gray level profile, and the matching position where the bias value between the determined edge position and the edge of the corresponding CAD pattern is minimized is determined.
 ステップ4では、演算システム150は、SEM画像内に設定された関心領域ROI内であって、かつCADパターンの内側または外側に位置するターゲット領域TR内のグレーレベルのヒストグラムを作成する。ターゲット領域TRがCADパターンの内側または外側のいずれかに位置するかは、CADパターンの形状、種類などの要素に基づいて、予めレシピに設定される。一実施形態では、演算システム150は、SEM画像内に設定された関心領域ROI内であって、かつCADパターンの内側に位置するターゲット領域内のグレーレベルのヒストグラムを作成し、さらに、SEM画像内に設定された関心領域ROI内であって、かつCADパターンの外側に位置するターゲット領域内のグレーレベルのヒストグラムを作成してもよい。 In step 4, the arithmetic system 150 creates a gray level histogram in the target region TR located in the interest region ROI set in the SEM image and inside or outside the CAD pattern. Whether the target area TR is located inside or outside the CAD pattern is set in advance in the recipe based on factors such as the shape and type of the CAD pattern. In one embodiment, the arithmetic system 150 creates a gray level histogram in the target region located within the region of interest ROI set in the SEM image and inside the CAD pattern, and further in the SEM image. A gray level histogram may be created in the target region located within the region of interest ROI set to and outside the CAD pattern.
 ステップ5では、演算システム150は、ヒストグラムのピークの数を計数する。演算システム150は、ピークの値をしきい値と比較し、しきい値よりも大きい値を持つピークの数を計数してもよい。
 ステップ6では、演算システム150は、ピークの数が1つであれば、マッチングに成功したと判定し、ピークの数が2つ以上であれば、マッチングに失敗したと判定する。
In step 5, the arithmetic system 150 counts the number of peaks in the histogram. The arithmetic system 150 may compare the peak value with the threshold value and count the number of peaks having a value larger than the threshold value.
In step 6, the arithmetic system 150 determines that the matching is successful if the number of peaks is one, and determines that the matching is unsuccessful if the number of peaks is two or more.
 ステップ7では、マッチングに失敗した場合は、演算システム150は、画像上のパターンと、対応するCADパターンとの相対位置を変える。演算システム150は、SEM画像上のパターンと、対応するCADパターンとのマッチングを再度実施し、さらに、ターゲット領域TR内のグレーレベルのヒストグラムを再度作成する。 In step 7, if the matching fails, the arithmetic system 150 changes the relative position of the pattern on the image and the corresponding CAD pattern. The arithmetic system 150 rematches the pattern on the SEM image with the corresponding CAD pattern, and further creates a gray level histogram in the target region TR again.
 演算システム150は、マッチングが成功したと判定するまで(すなわち、ヒストグラムに1つのピークのみが現れるまで)、画像上のパターンと、対応するCADパターンとの相対位置を変える工程と、SEM画像上のパターンと、対応するCADパターンとのマッチングを再度実施する工程と、ターゲット領域TR内のグレーレベルのヒストグラムを再度作成する工程を繰り返す。マッチングを実行するたびに、SEM画像上のパターンのエッジの位置と、対応するCADパターンのエッジとのバイアス値が最小になるマッチング位置を決定する。 The arithmetic system 150 changes the relative position of the pattern on the image and the corresponding CAD pattern until it determines that the matching is successful (that is, until only one peak appears in the histogram), and on the SEM image. The step of rematching the pattern with the corresponding CAD pattern and the step of recreating the gray level histogram in the target region TR are repeated. Each time matching is performed, the position of the edge of the pattern on the SEM image and the matching position where the bias value between the edge of the corresponding CAD pattern is minimized are determined.
 図30は、演算システム150の構成の一実施形態を示す模式図である。演算システム150は、プログラムやデータなどが格納される記憶装置162と、記憶装置162に格納されているプログラムに含まれる命令に従って演算を行うCPU(中央処理装置)またはGPU(グラフィックプロセッシングユニット)などの処理装置163と、データ、プログラム、および各種情報を記憶装置162に入力するための入力装置170と、処理結果や処理されたデータを出力するための出力装置190と、インターネットまたはローカルエリアネットワークなどの通信ネットワークに接続するための通信装置195を備えている。 FIG. 30 is a schematic diagram showing an embodiment of the configuration of the arithmetic system 150. The arithmetic system 150 includes a storage device 162 that stores programs and data, and a CPU (central processing unit) or GPU (graphic processing unit) that performs arithmetic according to instructions included in the program stored in the storage device 162. A processing unit 163, an input device 170 for inputting data, programs, and various information to the storage device 162, an output device 190 for outputting processing results and processed data, the Internet, a local area network, and the like. A communication device 195 for connecting to a communication network is provided.
 記憶装置162は、処理装置163がアクセス可能な主記憶装置162Aと、データおよびプログラムを格納する補助記憶装置162Bを備えている。主記憶装置162Aは、例えばランダムアクセスメモリ(RAM)であり、補助記憶装置162Bは、ハードディスクドライブ(HDD)またはソリッドステートドライブ(SSD)などのストレージ装置である。 The storage device 162 includes a main storage device 162A that can be accessed by the processing device 163, and an auxiliary storage device 162B that stores data and programs. The main storage device 162A is, for example, a random access memory (RAM), and the auxiliary storage device 162B is a storage device such as a hard disk drive (HDD) or a solid state drive (SSD).
 入力装置170は、キーボード、マウスを備えており、さらに、記録媒体からデータを読み出すための記録媒体読み出し装置182と、記録媒体が接続される記録媒体ポート184を備えている。記録媒体は、非一時的な有形物であるコンピュータ読み取り可能な記録媒体であり、例えば、光ディスク(例えば、CD-ROM、DVD-ROM)や、半導体メモリ(例えば、USBフラッシュドライブ、メモリーカード)である。記録媒体読み出し装置182の例としては、CD-ROMドライブ、DVD-ROMドライブなどの光学ドライブや、メモリーリーダーが挙げられる。記録媒体ポート184の例としては、USBポートが挙げられる。記録媒体に記憶されているプログラムおよび/またはデータは、入力装置170を介して演算システム150に導入され、記憶装置162の補助記憶装置162Bに格納される。出力装置190は、表示画面165、印刷装置192を備えている。 The input device 170 includes a keyboard and a mouse, and further includes a recording medium reading device 182 for reading data from the recording medium and a recording medium port 184 to which the recording medium is connected. The recording medium is a computer-readable recording medium that is a non-temporary tangible object, and is, for example, an optical disk (for example, CD-ROM, DVD-ROM) or a semiconductor memory (for example, a USB flash drive or a memory card). is there. Examples of the recording medium reading device 182 include an optical drive such as a CD-ROM drive and a DVD-ROM drive, and a memory reader. An example of the recording medium port 184 is a USB port. The program and / or data stored in the recording medium is introduced into the arithmetic system 150 via the input device 170 and stored in the auxiliary storage device 162B of the storage device 162. The output device 190 includes a display screen 165 and a printing device 192.
 少なくとも1台のコンピュータからなる演算システム150は、記憶装置162に電気的に格納されたプログラムに含まれる命令に従って動作する。すなわち、演算システム150は、画像上のパターンと、対応するCADパターンとのマッチングを実施し、画像内に設定された関心領域内であって、かつCADパターンの内側または外側に位置するターゲット領域内のグレーレベルのヒストグラムを作成し、ヒストグラムに現れるピークの数が1つである場合に、マッチングは成功したと判定するステップを実行する。 The arithmetic system 150 consisting of at least one computer operates according to the instructions included in the program electrically stored in the storage device 162. That is, the arithmetic system 150 matches the pattern on the image with the corresponding CAD pattern, and is within the region of interest set in the image and within the target region located inside or outside the CAD pattern. A gray-level histogram of is created, and if the number of peaks appearing in the histogram is one, the step of determining that the matching is successful is performed.
 これらステップを演算システム150に実行させるためのプログラムは、非一時的な有形物であるコンピュータ読み取り可能な記録媒体に記録され、記録媒体を介して演算システム150に提供される。または、プログラムは、インターネットまたはローカルエリアネットワークなどの通信ネットワークを介して通信装置195から演算システム150に入力されてもよい。 The program for causing the arithmetic system 150 to execute these steps is recorded on a computer-readable recording medium which is a non-temporary tangible object, and is provided to the arithmetic system 150 via the recording medium. Alternatively, the program may be input from the communication device 195 to the arithmetic system 150 via a communication network such as the Internet or a local area network.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。 The above-described embodiment is described for the purpose of allowing a person having ordinary knowledge in the technical field to which the present invention belongs to carry out the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Therefore, the present invention is not limited to the described embodiments, but is construed in the broadest range according to the technical idea defined by the claims.
 本発明は、ウェーハまたはガラス基板などの試料の表面に形成されたパターンと、パターンの設計データから作成されたCADパターンとのマッチングを行う方法に利用可能である。 The present invention can be used as a method for matching a pattern formed on the surface of a sample such as a wafer or a glass substrate with a CAD pattern created from pattern design data.
 50   走査電子顕微鏡
111   電子銃
112   集束レンズ
113   X偏向器
114   Y偏向器
115   対物レンズ
116   レンズ制御装置
117   偏向制御装置
118   画像取得装置
120   試料チャンバー
121   試料ステージ
122   ステージ制御装置
124   ウェーハ
130   二次電子検出器
131   反射電子検出器
140   ウェーハ搬送装置
150   演算システム
161   データベース
162   記憶装置
163   処理装置
165   表示画面
200,300,400,500,600   SEM画像
205,305,405,505,605   画像上のパターン
210,310,410,510,610   CADパターン
ROI   関心領域
 TR   ターゲット領域
50 Scanning electron microscope 111 Electron gun 112 Condensing lens 113 X deflector 114 Y deflector 115 Objective lens 116 Lens control device 117 Deflection control device 118 Image acquisition device 120 Sample chamber 121 Sample stage 122 Stage control device 124 Wafer 130 Secondary electron detection Instrument 131 Reflected electron detector 140 Wafer transfer device 150 Computational system 161 Database 162 Storage device 163 Processing device 165 Display screen 200, 300, 400, 500, 600 SEM image 205, 305, 405,505,605 Pattern 210 on the image, 310,410,510,610 CAD pattern ROI area of interest TR target area

Claims (9)

  1.  画像上のパターンと、対応するCADパターンとのマッチングを実施し、
     前記画像内に設定された関心領域内であって、かつ前記CADパターンの内側または外側に位置するターゲット領域内のグレーレベルのヒストグラムを作成し、
     前記ヒストグラムに現れるピークの数が1つである場合に、前記マッチングは成功したと判定する、パターンマッチング方法。
    Matching the pattern on the image with the corresponding CAD pattern,
    Create a gray-level histogram within the region of interest set in the image and within the target region located inside or outside the CAD pattern.
    A pattern matching method for determining that the matching is successful when the number of peaks appearing in the histogram is one.
  2.  前記ピークの値は、予め設定されたしきい値よりも大きい、請求項1に記載のパターンマッチング方法。 The pattern matching method according to claim 1, wherein the value of the peak is larger than a preset threshold value.
  3.  前記関心領域は、前記画像上のパターンの少なくとも1部を囲む、請求項1または2に記載のパターンマッチング方法。 The pattern matching method according to claim 1 or 2, wherein the region of interest surrounds at least one part of the pattern on the image.
  4.  前記CADパターンは、繰り返しパターンである、請求項1乃至3のいずれか一項に記載のパターンマッチング方法。 The pattern matching method according to any one of claims 1 to 3, wherein the CAD pattern is a repeating pattern.
  5.  前記ヒストグラムに複数のピークが現れた場合は、前記画像上のパターンと、前記対応するCADパターンとの相対位置を変え、前記画像上のパターンと、前記対応するCADパターンとのマッチングを再度実施し、前記ターゲット領域内のグレーレベルのヒストグラムを再度作成する、請求項1乃至4のいずれか一項に記載のパターンマッチング方法。 When a plurality of peaks appear in the histogram, the relative positions of the pattern on the image and the corresponding CAD pattern are changed, and matching between the pattern on the image and the corresponding CAD pattern is performed again. The pattern matching method according to any one of claims 1 to 4, wherein the gray level histogram in the target area is recreated.
  6.  前記マッチングが成功したと判定するまで、前記画像上のパターンと、前記対応するCADパターンとの相対位置を変える工程と、前記画像上のパターンと、前記対応するCADパターンとのマッチングを再度実施する工程と、前記ターゲット領域内のグレーレベルのヒストグラムを再度作成する工程を繰り返す、請求項5に記載のパターンマッチング方法。 Until it is determined that the matching is successful, the step of changing the relative position between the pattern on the image and the corresponding CAD pattern, and the matching between the pattern on the image and the corresponding CAD pattern are performed again. The pattern matching method according to claim 5, wherein the step and the step of recreating the gray level histogram in the target area are repeated.
  7.  前記画像および前記関心領域を、表示画面上に表示する工程をさらに含む、請求項1乃至6のいずれか一項に記載のパターンマッチング方法。 The pattern matching method according to any one of claims 1 to 6, further comprising a step of displaying the image and the region of interest on a display screen.
  8.  前記ヒストグラムを前記表示画面上に表示する工程をさらに含む、請求項7に記載のパターンマッチング方法。 The pattern matching method according to claim 7, further comprising a step of displaying the histogram on the display screen.
  9.  画像上のパターンと、対応するCADパターンとのマッチングを実施し、
     前記画像内に設定された関心領域内であって、かつ前記CADパターンの内側または外側に位置するターゲット領域内のグレーレベルのヒストグラムを作成し、
     前記ヒストグラムに現れるピークの数が1つである場合に、前記マッチングは成功したと判定するステップをコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
    Matching the pattern on the image with the corresponding CAD pattern,
    Create a gray-level histogram within the region of interest set in the image and within the target region located inside or outside the CAD pattern.
    A computer-readable recording medium containing a program for causing a computer to perform a step of determining that the matching was successful when the number of peaks appearing in the histogram is one.
PCT/JP2020/005798 2019-03-22 2020-02-14 Pattern matching method WO2020195304A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-054678 2019-03-22
JP2019054678A JP2020154977A (en) 2019-03-22 2019-03-22 Pattern matching method

Publications (1)

Publication Number Publication Date
WO2020195304A1 true WO2020195304A1 (en) 2020-10-01

Family

ID=72559344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005798 WO2020195304A1 (en) 2019-03-22 2020-02-14 Pattern matching method

Country Status (3)

Country Link
JP (1) JP2020154977A (en)
TW (1) TW202046248A (en)
WO (1) WO2020195304A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210505A1 (en) * 2020-04-17 2021-10-21 Tasmit株式会社 Pattern matching method
WO2024004718A1 (en) * 2022-06-29 2024-01-04 東レエンジニアリング先端半導体Miテクノロジー株式会社 Pattern matching method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05324836A (en) * 1992-05-19 1993-12-10 Fujitsu Ltd Pattern matching method
JP2009195283A (en) * 2008-02-19 2009-09-03 Aloka Co Ltd Ultrasonic image processor
WO2012101717A1 (en) * 2011-01-26 2012-08-02 株式会社 日立ハイテクノロジーズ Pattern matching apparatus and computer program
WO2012114410A1 (en) * 2011-02-25 2012-08-30 株式会社 日立ハイテクノロジーズ Pattern matching apparatus, and computer program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05324836A (en) * 1992-05-19 1993-12-10 Fujitsu Ltd Pattern matching method
JP2009195283A (en) * 2008-02-19 2009-09-03 Aloka Co Ltd Ultrasonic image processor
WO2012101717A1 (en) * 2011-01-26 2012-08-02 株式会社 日立ハイテクノロジーズ Pattern matching apparatus and computer program
WO2012114410A1 (en) * 2011-02-25 2012-08-30 株式会社 日立ハイテクノロジーズ Pattern matching apparatus, and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210505A1 (en) * 2020-04-17 2021-10-21 Tasmit株式会社 Pattern matching method
WO2024004718A1 (en) * 2022-06-29 2024-01-04 東レエンジニアリング先端半導体Miテクノロジー株式会社 Pattern matching method

Also Published As

Publication number Publication date
JP2020154977A (en) 2020-09-24
TW202046248A (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP4658756B2 (en) Image processing apparatus, image processing method, and scanning electron microscope
JP6038053B2 (en) Pattern evaluation method and pattern evaluation apparatus
JP5543872B2 (en) Pattern inspection method and pattern inspection apparatus
JP6731370B2 (en) Image processing system and computer program for performing image processing
US20130278748A1 (en) Pattern matching method and apparatus
WO2020195304A1 (en) Pattern matching method
US20190026881A1 (en) Method of visualizing defect using design data and defect detection method
US20230177673A1 (en) Pattern defect detection method
KR20160082530A (en) Pattern measurement device and computer program
TWI789508B (en) Method and device for generating a correction line indicating a relationship between the deviation amount between an edge of a wafer pattern and an edge of a reference pattern and blank widths of the reference pattern, and a computer readable recording medium
US20220012404A1 (en) Image matching method and arithmetic system for performing image matching process
JP6932565B2 (en) Pattern defect detection method
US20230005157A1 (en) Pattern-edge detection method, pattern-edge detection apparatus, and storage medium storing program for causing a computer to perform pattern-edge detection
JP5592414B2 (en) Template evaluation apparatus, microscope apparatus, and program
TW202040510A (en) Image matching determination method, image matching determination device, and computer-readable recording medium recording a program for making a computer to execute the image matching determination method
JP2021129043A (en) Inspection device, inspection method, and program
JP2020144995A (en) Method of removing image distortion
WO2021210505A1 (en) Pattern matching method
TWI835173B (en) Method, program, and computer for determining condition related to captured image of charged particle beam apparatus
JP7459007B2 (en) Defect inspection equipment and defect inspection method
JP2020067779A (en) Method for detecting defect of pattern formed in wafer
JP2020123034A (en) Image matching support method, image matching support device, and computer readable recording medium having program for causing computer to execute image matching support method recorded therein
JP4002037B2 (en) Reference image creation method, pattern recognition method, and recording medium
JP2023009348A (en) Pattern edge evaluation method
JP2021174305A (en) Image generation method and image generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776988

Country of ref document: EP

Kind code of ref document: A1