WO2020195263A1 - Brake control apparatus - Google Patents

Brake control apparatus Download PDF

Info

Publication number
WO2020195263A1
WO2020195263A1 PCT/JP2020/005266 JP2020005266W WO2020195263A1 WO 2020195263 A1 WO2020195263 A1 WO 2020195263A1 JP 2020005266 W JP2020005266 W JP 2020005266W WO 2020195263 A1 WO2020195263 A1 WO 2020195263A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
power
control device
brake control
electric
Prior art date
Application number
PCT/JP2020/005266
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 治彦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2021508215A priority Critical patent/JP7101307B2/en
Publication of WO2020195263A1 publication Critical patent/WO2020195263A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Definitions

  • the present invention relates to a brake control device.
  • the driver of the automobile takes his hand off the steering wheel to operate the vehicle.
  • a fail operation that does not reduce the braking force is required until the control is entrusted to the driver.
  • the total braking force is 10
  • the braking force of the four-wheel brake of the automobile is generated in the ratio of front wheel 7: rear wheel 3, so that the failure of the front wheel brake in particular leads to the danger avoidance performance during automatic driving. Affect. Therefore, it is conceivable to adopt a contradictory independent configuration so that the left and right front wheels do not collapse at the same time.
  • Patent Document 1 discloses a method of controlling two or more independent motors and inverters by one CPU.
  • the brake control device has a first electric motor, a first power element, and a first calculation element, and is a first electric motor that controls the braking force of the first wheel.
  • a brake control device having a control device, a second electric motor, a second power element, and a second arithmetic element, and having a second electric motor control device for controlling the braking force of the second wheel.
  • At least one of the first power element and the second power element is configured to be capable of supplying electric power to the first electric motor and the second electric motor at the same time. Is.
  • the brake control device Since the brake control device according to the embodiment of the present invention is configured in this way, it is possible to generate an equal braking force in both systems even if the brake of one system fails.
  • the brake control device 10 is mainly shown in the first electric motor control device 12 shown on the upper side in FIG. 1 and mainly on the lower side in FIG. It also includes two control systems with a second electric motor control device 26, which usually operate independently. More specifically, the first electric motor control device 12 includes a first electric motor 14, a first inverter (first power element) 16, a first arithmetic element 18, a first pre-driver element 20, and a like. The first monitoring element 22 is included.
  • the first electric motor 14 is a three-phase motor in the present embodiment, and the first inverter 16 drives the first electric motor 14 by supplying electric power to the first electric motor 14. Three power supply lines are connected in three phases. Further, the first pre-driver element 20 pre-drives the first inverter 16.
  • the first arithmetic element 18 is composed of, for example, a CPU, and indirectly controls the first inverter 16 by controlling the first pre-driver element 20. More specifically, the first arithmetic element 18 acquires the magnetic pole position of the rotor of the first electric motor 14 (in other words, the rotational position of the first electric motor 14) via the first magnetic pole position detecting element 40. , The PWM drive signal is transmitted to the first pre-driver element 20 so as to perform calculation based on the acquired magnetic pole position and perform vector control so as to generate the maximum torque according to the magnetic pole position. ..
  • the first monitoring element 22 monitors the operation of the first arithmetic element 18, and when an abnormality of the first arithmetic element 18 is detected, the first arithmetic element 18 and the first pre-driver element are detected. A reset signal is transmitted to 20 via the reset line. The first monitoring element 22 is monitored by the first arithmetic element 18, and is in a state of mutual monitoring.
  • the second electric motor control device 26 includes a second electric motor 28, a second inverter (second power element) 30, a second arithmetic element 32, a second pre-driver element 34, and a second.
  • the monitoring element 36 of the above is included.
  • the second electric motor 28 is a three-phase motor in the present embodiment, and the second inverter 30 drives the second electric motor 28 by supplying electric power to the second electric motor 28. Three power supply lines are connected in three phases.
  • the second pre-driver element 34 predrives the second inverter 30, and the second arithmetic element 32 is composed of, for example, a CPU, and indirectly by controlling the second pre-driver element 34.
  • the second inverter 30 is specifically controlled.
  • the second arithmetic element 32 acquires the magnetic pole position of the rotor of the second electric motor 28 (in other words, the rotational position of the second electric motor 28) via the second magnetic pole position detecting element 42.
  • the PWM drive signal is transmitted to the second pre-driver element 34 so as to perform the calculation based on the acquired magnetic pole position and perform the vector control so as to generate the maximum torque according to the magnetic pole position.
  • the second monitoring element 36 monitors the operation of the second arithmetic element 32, and when an abnormality of the second arithmetic element 32 is detected, the second arithmetic element 32 or the second predriver element A reset signal is transmitted to 34 via the reset line.
  • the second monitoring element 36 is monitored by the second arithmetic element 32, and is in a state of mutually monitoring with the second arithmetic element 32. Further, the second monitoring element 36 is also in a state of mutually monitoring the first monitoring element 22 of the first electric motor control device 12. Further, the first arithmetic element 18 and the second arithmetic element 32 also exchange signals so as to directly monitor each other.
  • the first switching element 54 and the second switching element 56 are composed of, for example, FETs, the first switching element 54 is connected to one end of the coil portion of the relay element 52, and the second switching element 54 is connected to the other end of the coil portion. Switching element 56 is connected. Then, when both the first switching element 54 and the second switching element 56 are turned on at the same time, a current flows through the coil portion of the relay element 52 so that each of the three power supply lines is short-circuited. It has become.
  • the malfunction prevention circuit 60 is a logic circuit that controls a first switching element 54 and a second switching element 56 so as to prevent a malfunction of the relay drive circuit (switching device) 50, and is an inverting element 62, 64. And OR circuits 66, 68 are included. A control output line from the first arithmetic element 18 and a reset line from the first monitoring element 22 are connected to the input of one OR circuit 66, and the signal from the reset line uses the inverting element 62. It is input after being logically inverted via.
  • the gear ratio is as large as tens to hundreds of tens. Further, the first electric motor 14 (and the second electric motor 28) is returned to a certain magnetic pole position by the influence of the reaction force of a fail-open spring (not shown) incorporated in the brake mechanism 70 in a state where no torque is generated. It is designed to be used.
  • the brake control device 10 the operation when one of the control systems fails will be described.
  • the first electric motor control device 12 is used for driving the servomotor of the electric caliper on the right front wheel and the second electric motor control device 26 is used for driving the servomotor of the electric caliper on the left front wheel
  • the first electric motor is used.
  • the case where the first arithmetic element 18 of the control device 12 is lost will be described as an example.
  • the first monitoring element 22 monitoring the first arithmetic element 18 outputs a reset signal (LOW level) via the reset line. By doing so, the first pre-driver element 20 is stopped.
  • the FET of the first inverter 16 When the first pre-driver element 20 is stopped, the FET of the first inverter 16 is turned off, and the first inverter 16 and the first electric motor 14 are separated from each other. Therefore, power is not supplied from the first inverter 16 to the first electric motor 14, which makes it impossible for the first electric motor 14 to generate torque. As a result, the brake on the right side of the front wheel does not work in this state.
  • the reset signal output from the first monitoring element 22 is also input to the first arithmetic element 18, which resets the first arithmetic element 18. Further, the reset signal from the first monitoring element 22 is logically inverted from the LOW level to the HIGH level by the inverting element 62 in the malfunction prevention circuit 60, and then input to the OR circuit 66. At this time, another input to the OR circuit 66 is a control output signal from the first arithmetic element 18 that has failed and was reset, and its logic level is not guaranteed, but regardless of this logic level, Since one input is at HIGH level, the output from the OR circuit 66 is at HIGH level. As a result, the first switching element 54 of the relay drive circuit 50 that receives the output is turned on.
  • the failure of the first arithmetic element 18 is also grasped by the second arithmetic element 32 that performs mutual monitoring with the first arithmetic element 18.
  • the second arithmetic element 32 which has grasped the failure of the first arithmetic element 18, changes the control output signal output to the malfunction prevention circuit 60 from the LOW level to the HIGH level, which is the OR circuit. It is input to 68.
  • the reset signal from the second monitoring element 36 is maintained at the HIGH level, which is input to the OR circuit 68 as the LOW level via the inverting element 64, but one of the inputs is input regardless of this logic level. Since it is at the HIGH level, the output from the OR circuit 68 is at the HIGH level.
  • the second switching element 56 of the relay drive circuit 50 that receives the output is turned on.
  • both the first switching element 54 and the second switching element 56 of the relay drive circuit 50 are in the ON state, whereby a current flows through the coil portion of the relay element 52 and the relay element The contact of 52 is turned on. Then, the three power supply lines between the first electric motor 14 and the first inverter 16 and the three power supply lines between the second electric motor 28 and the second inverter 30 are short-circuited, and the second power supply line is short-circuited.
  • the first electric motor 14 and the second electric motor 28 are connected in parallel to the inverter 30. Therefore, the electric power from the second inverter 30 is supplied not only to the second electric motor 28 but also to the first electric motor 14 via the relay drive circuit 50.
  • the second electric motor 28 is driven clockwise based on the magnetic pole position of the second electric motor 28 acquired via the second magnetic pole position detecting element 42.
  • the second pre-driver element 34 is controlled by the second arithmetic element 32 so that the current is generated from the second inverter 30.
  • the second electric motor 28 rotates slightly clockwise (0 ° to 30 °), and at the same time, the second inverter 30 refers to the first electric motor 14. Since the power is also supplied, the first electric motor 14 also rotates.
  • the deviation of the magnetic pole positions between the first electric motor 14 and the second electric motor 28 at time 1 and time 2 was smaller than 180 ° with respect to the rotation direction of the second electric motor 28.
  • the first electric motor 14 rotates clockwise as shown in the upper side of the column of the first electric motor 14 at time 3.
  • the deviation of the magnetic pole positions between the first electric motor 14 and the second electric motor 28 at time 1 and time 2 is larger than 180 ° with respect to the rotation direction of the second electric motor 28.
  • the first electric motor 14 rotates counterclockwise as shown at the lower side of the column of the first electric motor 14 at time 3.
  • the second pre-driver element 34 is controlled by the second arithmetic element 32 to increase the amount of current generated from the second inverter 30, the second electric motor 28 rotates.
  • the position is locked, and the first electric motor 14 is also locked after being rotated to the same position as the second electric motor 28.
  • the phase difference between the first and second electric motors 14 and 28 as described above is a reduction gear incorporated between the first electric motor 14 or the second electric motor 28 and the rotation linear motion conversion mechanism 72. Because of the large gear ratio of, it is so small that it does not directly affect the act of applying the brakes. Therefore, even if the phases of the first and second electric motors 14 and 28 are slightly out of phase, the amount of advance of the piston 76 is small and the braking force does not fluctuate.
  • the first electric motor 28 is connected in parallel.
  • the electric motor 14 is also driven in synchronization with it.
  • the load of the first electric motor 14 becomes the second. If the load of the electric motor 28 is larger than that of the electric motor 28, or if the torque generated by the first electric motor 14 is smaller than the torque generated by the second electric motor 28, the first electric motor 14 may step out without rotating.
  • the second arithmetic element 32 acquires the first and second electric motors 14 and 28 via the third magnetic pole position detecting element 44.
  • the second pre-driver element 34 is controlled while monitoring both the rotational position of the first electric motor 14 and the rotational position of the second electric motor 28.
  • the rotation position of the first electric motor 14 and the rotation position of the second electric motor 28 are compared, and the rotor of the first electric motor 14 is behind the rotor of the second electric motor 28. In this case, control is performed based on the rotation position of the first electric motor 14. On the contrary, when the rotor of the second electric motor 28 lags behind the rotor of the first electric motor 14, control is performed based on the rotation position of the second electric motor 28. In this way, by controlling the second pre-driver element 34 by the second arithmetic element 32, that is, indirectly controlling the second inverter 30, the first electric motor control device 12 that has failed is the first. The two electric motors 14 and 28 are rotated at the same rotation speed without the electric motor 14 of 1 stepping out.
  • the brake control device 10 is a two-system electric motor control device consisting of a first electric motor control device 12 and a second electric motor control device 26, as shown in FIG. Includes.
  • the first electric motor control device 12 includes the first electric motor 14, the first power element 16, and the first arithmetic element 18, and controls the braking force of the first wheel (for example, the front wheel right).
  • the second electric motor control device 26 includes the second electric motor 28, the second power element 30, and the second arithmetic element 32, and controls the braking force of the second wheel (for example, the front wheel left).
  • At least one of the first power element 16 included in the first electric motor control device 12 and the second power element 30 included in the second electric motor control device 26 is the first electric motor 14 and the second. It is configured to be able to supply electric power to both the electric motor 28 and the electric motor 28 at the same time.
  • the power element 16 of the electric motor control device 12 or 26 of the other other system Alternatively, 30 is configured to be able to supply power to both the first and second electric motors 14 and 28, so that the power elements 16 or 30 of the other system can supply both the first and second electric motors 14 and 28. Can be supplied with power. Therefore, even though the electric motor control device 12 or 26 of one system has failed, it is possible to generate an even braking force by the electric motors 14 and 28 of the two systems, and yaw is generated during braking. Can be suppressed.
  • both the first power element 16 and the second power element 30 are connected to both the first electric motor 14 and the second electric motor 28, respectively. It is configured to be able to supply power at the same time. Then, when one of the power elements 16 or 30 becomes abnormal, the first power element 16 and the second power element 30 change from the normal other power element 16 or 30 to the first electric motor 14 And the second electric motor 28 is supplied with electric power at the same time.
  • the abnormality of the power element 16 or 30 in this case is not only when an abnormality occurs in the power element 16 or 30 itself, but also when an abnormality occurs in the arithmetic element 18 or 32 or the like that controls the power element 16 or 30. Can also occur.
  • the electric motor 14 or 28 of the same system cannot be driven via the power element 16 or 30, but the electric motor 14 or 28 itself has an abnormality. Therefore, it can be driven by the power element 16 or 30 of the normal system without any problem.
  • the power element 16 or 30 of the system in which the abnormality does not occur causes the first electric motor 14 and the second electric motor 14 and the second. Since both of the electric motors 28 can be driven, even braking force can be generated in the two systems. Further, the first power element 16 and the second power element 30 are configured to supply power to both the first and second electric motors 14 and 28 from the other only when one of them becomes abnormal. Therefore, if no abnormality has occurred in any of the power elements 16 and 30, the first and second electric motor control devices 12 and 26 can continue independent braking control.
  • each of the first arithmetic element 18 and the second arithmetic element 32 is in the rotation position of both the first electric motor 14 and the second electric motor 28 ( The magnetic pole position) can be obtained. That is, in the example of FIG. 1, the first arithmetic element 18 acquires the rotational position of the first electric motor 14 via the first magnetic pole position detecting element 40, and also via the fourth magnetic pole position detecting element 46. The rotation position of the second electric motor 28 is acquired. Further, the second arithmetic element 32 acquires the rotational position of the first electric motor 14 via the third magnetic pole position detecting element 44, and the second electric motor 28 via the second magnetic pole position detecting element 42. Get the rotation position of.
  • the first power element 16 or the second power element 30 supplies power to both the first electric motor 14 and the second electric motor 28, the first power element 16 is controlled.
  • the arithmetic element 18 and the second arithmetic element 32 that controls the second power element 30 are the first power element 16 or the second electric motor 28 based on the rotation positions of both the first electric motor 14 and the second electric motor 28.
  • the second power element 30 can be controlled.
  • the rotation positions of the first calculation element 18 and the second calculation element 32 are different.
  • the first power element 16 or the second power element 30 that supplies power to both the first and second electric motors 14 and 28 is controlled so as to eliminate the difference in the rotation position and synchronize them. be able to. Therefore, both the first electric motor 14 and the second electric motor 28 can be driven without any problem in a state where the first electric motor 14 and the second electric motor 28 are always synchronized.
  • the two electric motors 14 and 28 can be rotated at the same rotation speed without the electric motor 14 or 28 of the failed system stepping out, so that the braking force on the left and right front wheels is made uniform and one system is used. It is possible to more effectively suppress the generation of yaw even in the event of a fall.
  • the brake control device 10 from the power supply to either the first electric motor 14 or the second electric motor 28 by the first power element 16 or the second power element 30. , Switching to power supply to both the first electric motor 14 and the second electric motor 28 is performed by the switching device 50.
  • the switching device 50 As a result, when it becomes necessary to switch the power supply, for example, when an abnormality occurs in the power element 16 or 30 of one system, the power supply can be switched instantly via the switching device 50. Therefore, it is possible to quickly shift to a form in which both electric motors 14 and 28 are driven by one power element 16 or 30.
  • the malfunction of the switching device 50 for switching the power supply of the first power element 16 or the second power element 30 is caused by the malfunction prevention circuit 60. It is designed to be prevented. Therefore, for example, even though no abnormality has occurred in either the first power element 16 or the second power element 30, the first power element 16 or the second power element 30 to the first It is possible to prevent an event of being switched by the switching device 50 so that power is supplied to both the second electric motors 14 and 28.
  • the control output signal from the first arithmetic element 18 to the OR circuit 66 is the LOW level
  • the reset signal from the first monitoring element 22 is in the normal operation in which no abnormality occurs. Is maintained at the HIGH level
  • the control output signal from the second arithmetic element 32 to the OR circuit 68 is maintained at the LOW level
  • the reset signal from the second monitoring element 36 is maintained at the HIGH level.
  • a configuration in which at least one of the first power element 16 and the second power element 30 can simultaneously supply power to both the first and second electric motors 14 and 28 is realized by means different from the switching device 50. You may. Further, the internal configuration of the switching device 50 and the internal configuration of the malfunction prevention circuit 60 may be different from the example of FIG. Further, the brake control device 10 may have some of the components shown in FIG. 1 deleted or changed, or new components may be added. In addition, each component can be any component capable of performing the function required for each component.
  • the first aspect has a first electric motor (14), a first power element (16), and a first arithmetic element (18), and controls the braking force of the first wheel.
  • the electric motor control device (12), the second electric motor (28), the second power element (30), and the second arithmetic element (32) are provided to control the braking force of the second wheel.
  • the second electric motor control device (26) and the brake control device (10) including the first power element (16) and at least one of the second power element (30) are described above. It is configured to be able to supply electric power to the first electric motor (14) and the second electric motor (28) at the same time.
  • the first power element (16) and the second power element (30) are the first electric motor (14) and the second electric motor, respectively. It is configured so that power can be supplied to (28) at the same time, and one of the first power element (16) and the second power element (30), the power element (16 or 30), becomes abnormal. At that time, the other power element (16 or 30) simultaneously supplies power to the first electric motor (14) and the second electric motor (28).
  • the first arithmetic element (18) and the second arithmetic element (32) are the first electric motor (14) and the second, respectively. Both rotation positions of the electric motor (28) can be acquired.
  • a fourth aspect is the first electric motor (14) or the second electric motor by the first power element (16) or the second power element (30) in the first to third aspects. Switching from the power supply to either one of (28) to the power supply to both the first electric motor (14) and the second electric motor (28) is performed by the switching device (50). In a fifth aspect, in the fourth aspect, the switching device (50) is prevented from malfunctioning by the malfunction prevention circuit (60).
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Braking Systems And Boosters (AREA)
  • Control Of Multiple Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This brake control apparatus has: a first motor control device that includes a first motor, a first power element, and a first arithmetic element, and controls a braking force of a first wheel; and a second motor control device that includes a second motor, a second power element, and a second arithmetic element, and controls a braking force of a second wheel. At least one of the first and second power elements is configured so as to be able to simultaneously supply electric power to the first and second motors, and thus even when one of the systems fails, the power element of the other system can supply electric power to both the motors. Therefore, uniform braking forces can be generated by the motors of the two systems.

Description

ブレーキ制御装置Brake control device
 本発明は、ブレーキ制御装置に関するものである。 The present invention relates to a brake control device.
 例えば、レベル3以上の自動運転時に、自動車の運転者は、ハンドルから手を離して運転操作する。このとき、危険回避をする緊急時等にブレーキが失陥した場合を考えると、運転者にコントロールを委ねるまでは、制動力の低下しないフェールオペレーショナルが要求されることとなる。ここで、自動車の4輪ブレーキの制動力は、全制動力を10とすると、前輪7:後輪3の割合で発生するため、特に前輪ブレーキの失陥は、自動運転中の危険回避性能へ影響する。従って、前輪左右の同時失陥が起こらないような背反独立な構成を取ることが考えられる。これを背景にして、従来、電動キャリパを利用した制動は、各々がCPU、電動機及びインバータを含む2つの制御系統により、前輪左右のそれぞれの制動を担当する電動キャリパを独立して制御することで実現している。一方、特許文献1には、1つのCPUによって、独立する2系統以上のモータ及びインバータを制御する方法が開示されている。 For example, during automatic driving at level 3 or higher, the driver of the automobile takes his hand off the steering wheel to operate the vehicle. At this time, considering the case where the brake fails in an emergency to avoid danger, a fail operation that does not reduce the braking force is required until the control is entrusted to the driver. Here, assuming that the total braking force is 10, the braking force of the four-wheel brake of the automobile is generated in the ratio of front wheel 7: rear wheel 3, so that the failure of the front wheel brake in particular leads to the danger avoidance performance during automatic driving. Affect. Therefore, it is conceivable to adopt a contradictory independent configuration so that the left and right front wheels do not collapse at the same time. Against this background, conventional braking using electric calipers is performed by independently controlling the electric calipers responsible for braking the left and right front wheels by two control systems, each including a CPU, an electric motor, and an inverter. It has been realized. On the other hand, Patent Document 1 discloses a method of controlling two or more independent motors and inverters by one CPU.
特開2001-037277号公報Japanese Unexamined Patent Publication No. 2001-037277
 ここで、電動キャリパによる上述した特許文献1の制動方法では、例えば一方の系統のCPUが失陥すると、片側輪のブレーキが失陥することになる。このとき、残りの片側輪のみに強い制動力を発生させると、ヨーイングが発生して運転者に不安を与える虞がある。この状況を回避するために、各輪の制動アシスト力が低減しないように、前輪左右のそれぞれに制御系統を2つ設けることも考えられるが、この場合はコストが非常に嵩んでしまう問題がある。また、特許文献1に記載された制御方法を、電動キャリパを利用したブレーキに適用した場合を考慮すると、CPUが故障した場合に、前輪左右の制動を担当する双方の電動機が駆動できなくなる問題がある。
 本発明は上記課題に鑑みてなされたものであり、その目的とするところは、片系統のブレーキが失陥した場合でも両系統に均等な制動力を発生させることにある。
Here, in the braking method of Patent Document 1 described above by the electric caliper, for example, if the CPU of one system fails, the brake of one side wheel fails. At this time, if a strong braking force is generated only on the remaining one side wheel, yawing may occur and cause anxiety to the driver. In order to avoid this situation, it is conceivable to provide two control systems on each of the left and right front wheels so that the braking assist force of each wheel does not decrease, but in this case, there is a problem that the cost becomes very high. .. Further, considering the case where the control method described in Patent Document 1 is applied to a brake using an electric caliper, there is a problem that both electric motors in charge of braking the left and right front wheels cannot be driven when the CPU fails. is there.
The present invention has been made in view of the above problems, and an object of the present invention is to generate an equal braking force in both systems even if the brake of one system fails.
 本発明の一実施形態に係るブレーキ制御装置は、第1の電動機と、第1のパワー素子と、第1の演算素子とを有し、第1の車輪の制動力を制御する第1の電動機制御装置と、第2の電動機と、第2のパワー素子と、第2の演算素子とを有し、第2の車輪の制動力を制御する第2の電動機制御装置と、を有するブレーキ制御装置であって、前記第1のパワー素子と前記第2のパワー素子との少なくとも一方は、前記第1の電動機及び前記第2の電動機へ同時に電力供給可能に構成されていることを特徴とするものである。 The brake control device according to the embodiment of the present invention has a first electric motor, a first power element, and a first calculation element, and is a first electric motor that controls the braking force of the first wheel. A brake control device having a control device, a second electric motor, a second power element, and a second arithmetic element, and having a second electric motor control device for controlling the braking force of the second wheel. At least one of the first power element and the second power element is configured to be capable of supplying electric power to the first electric motor and the second electric motor at the same time. Is.
 本発明の一実施形態に係るブレーキ制御装置はこのように構成したので、片系統のブレーキが失陥した場合でも両系統に均等な制動力を発生させることが可能となる。 Since the brake control device according to the embodiment of the present invention is configured in this way, it is possible to generate an equal braking force in both systems even if the brake of one system fails.
本発明の実施の形態に係るブレーキ制御装置の構成を概略的に示す回路図である。It is a circuit diagram which shows schematic structure of the brake control device which concerns on embodiment of this invention. 本発明の実施の形態に係るブレーキ制御装置により制御されるブレーキ機構を概略的に示すイメージ構造図である。It is an image structure diagram which shows typically the brake mechanism controlled by the brake control device which concerns on embodiment of this invention. 一方のパワー素子により2つの電動機に対して電力供給する際の、2つの電動機の磁極位置を同調する方法を説明するための説明図である。It is explanatory drawing for demonstrating the method of synchronizing the magnetic pole positions of two electric motors when power is supplied to two electric motors by one power element.
 以下、実施の形態を図面に基づき説明する。なお、全ての図面にわたって、共通する部分については同一の符号を付している。
 図1に示すように、本発明の実施の形態に係るブレーキ制御装置10は、主に図1における上側に図示された第1の電動機制御装置12と、主に図1における下側に図示された第2の電動機制御装置26との、2つの制御系統を含み、通常はこれらが独立して動作するようになっている。より具体的に、第1の電動機制御装置12は、第1の電動機14、第1のインバータ(第1のパワー素子)16、第1の演算素子18、第1のプリドライバ素子20、及び、第1の監視素子22を含んでいる。第1の電動機14は、本実施形態では3相モータであり、第1のインバータ16は、第1の電動機14に対して電力供給することで、第1の電動機14を駆動するものであり、3相で3本の電力供給ラインが接続されている。また、第1のプリドライバ素子20は、第1のインバータ16をプリドライブするものである。
Hereinafter, embodiments will be described with reference to the drawings. In addition, the same reference numerals are given to common parts throughout all the drawings.
As shown in FIG. 1, the brake control device 10 according to the embodiment of the present invention is mainly shown in the first electric motor control device 12 shown on the upper side in FIG. 1 and mainly on the lower side in FIG. It also includes two control systems with a second electric motor control device 26, which usually operate independently. More specifically, the first electric motor control device 12 includes a first electric motor 14, a first inverter (first power element) 16, a first arithmetic element 18, a first pre-driver element 20, and a like. The first monitoring element 22 is included. The first electric motor 14 is a three-phase motor in the present embodiment, and the first inverter 16 drives the first electric motor 14 by supplying electric power to the first electric motor 14. Three power supply lines are connected in three phases. Further, the first pre-driver element 20 pre-drives the first inverter 16.
 第1の演算素子18は、例えばCPUにより構成され、第1のプリドライバ素子20を制御することで、間接的に第1のインバータ16を制御するものである。より詳しくは、第1の演算素子18は、第1の磁極位置検出素子40を介して第1の電動機14の回転子の磁極位置(換言すれば第1の電動機14の回転位置)を取得し、取得した磁極位置に基づいて演算を行い、磁極位置に応じた最大トルクを発生するようなベクトル制御を行うように、第1のプリドライバ素子20へPWM駆動信号を送信する構成となっている。また、第1の監視素子22は、第1の演算素子18の動作を監視するものであり、第1の演算素子18の異常を検出すると、第1の演算素子18や第1のプリドライバ素子20に対して、リセットラインを介してリセット信号を送信する。なお、第1の監視素子22は第1の演算素子18によって監視されており、これによって相互に監視する状態になっている。 The first arithmetic element 18 is composed of, for example, a CPU, and indirectly controls the first inverter 16 by controlling the first pre-driver element 20. More specifically, the first arithmetic element 18 acquires the magnetic pole position of the rotor of the first electric motor 14 (in other words, the rotational position of the first electric motor 14) via the first magnetic pole position detecting element 40. , The PWM drive signal is transmitted to the first pre-driver element 20 so as to perform calculation based on the acquired magnetic pole position and perform vector control so as to generate the maximum torque according to the magnetic pole position. .. Further, the first monitoring element 22 monitors the operation of the first arithmetic element 18, and when an abnormality of the first arithmetic element 18 is detected, the first arithmetic element 18 and the first pre-driver element are detected. A reset signal is transmitted to 20 via the reset line. The first monitoring element 22 is monitored by the first arithmetic element 18, and is in a state of mutual monitoring.
 同様に、第2の電動機制御装置26は、第2の電動機28、第2のインバータ(第2のパワー素子)30、第2の演算素子32、第2のプリドライバ素子34、及び、第2の監視素子36を含んでいる。第2の電動機28は、本実施形態では3相モータであり、第2のインバータ30は、第2の電動機28に対して電力供給することで、第2の電動機28を駆動するものであり、3相で3本の電力供給ラインが接続されている。第2のプリドライバ素子34は、第2のインバータ30をプリドライブするものであり、第2の演算素子32は、例えばCPUにより構成され、第2のプリドライバ素子34を制御することで、間接的に第2のインバータ30を制御するものである。 Similarly, the second electric motor control device 26 includes a second electric motor 28, a second inverter (second power element) 30, a second arithmetic element 32, a second pre-driver element 34, and a second. The monitoring element 36 of the above is included. The second electric motor 28 is a three-phase motor in the present embodiment, and the second inverter 30 drives the second electric motor 28 by supplying electric power to the second electric motor 28. Three power supply lines are connected in three phases. The second pre-driver element 34 predrives the second inverter 30, and the second arithmetic element 32 is composed of, for example, a CPU, and indirectly by controlling the second pre-driver element 34. The second inverter 30 is specifically controlled.
 より詳しくは、第2の演算素子32は、第2の磁極位置検出素子42を介して第2の電動機28の回転子の磁極位置(換言すれば第2の電動機28の回転位置)を取得し、取得した磁極位置に基づいて演算を行い、磁極位置に応じた最大トルクを発生するようなベクトル制御を行うように、第2のプリドライバ素子34へPWM駆動信号を送信する構成となっている。また、第2の監視素子36は、第2の演算素子32の動作を監視するものであり、第2の演算素子32の異常を検出すると、第2の演算素子32や第2のプリドライバ素子34に対して、リセットラインを介してリセット信号を送信する。なお、第2の監視素子36は第2の演算素子32によって監視されており、これによって第2の演算素子32と相互に監視する状態になっている。更に、第2の監視素子36は、第1の電動機制御装置12の第1の監視素子22に対しても、相互に監視する状態になっている。また、第1の演算素子18及び第2の演算素子32も、直接的に互いを監視するように信号のやり取りを行っている。 More specifically, the second arithmetic element 32 acquires the magnetic pole position of the rotor of the second electric motor 28 (in other words, the rotational position of the second electric motor 28) via the second magnetic pole position detecting element 42. , The PWM drive signal is transmitted to the second pre-driver element 34 so as to perform the calculation based on the acquired magnetic pole position and perform the vector control so as to generate the maximum torque according to the magnetic pole position. .. Further, the second monitoring element 36 monitors the operation of the second arithmetic element 32, and when an abnormality of the second arithmetic element 32 is detected, the second arithmetic element 32 or the second predriver element A reset signal is transmitted to 34 via the reset line. The second monitoring element 36 is monitored by the second arithmetic element 32, and is in a state of mutually monitoring with the second arithmetic element 32. Further, the second monitoring element 36 is also in a state of mutually monitoring the first monitoring element 22 of the first electric motor control device 12. Further, the first arithmetic element 18 and the second arithmetic element 32 also exchange signals so as to directly monitor each other.
 また、本発明の実施の形態に係るブレーキ制御装置10は、更に、リレー駆動回路(切替装置)50、誤作動防止回路60、第3の磁極位置検出素子44、及び、第4の磁極位置検出素子46を備えている。リレー駆動回路50は、第1の電動機14及び第1のインバータ16間の3本の電力供給ラインと、第2の電動機28及び第2のインバータ30間の3本の電力供給ラインとを、短絡するように接続されている。具体的に、リレー駆動回路50は、リレー素子52、第1のスイッチング素子54及び第2のスイッチング素子56を備えており、リレー素子52は、内蔵したコイル部の制御に応じて、上述した3本の電力供給ライン間のそれぞれを同時に短絡するものである。第1のスイッチング素子54及び第2のスイッチング素子56は、例えばFETにより構成され、リレー素子52のコイル部の一端に第1のスイッチング素子54が接続されると共に、コイル部の他端に第2のスイッチング素子56が接続されている。そして、第1のスイッチング素子54及び第2のスイッチング素子56の双方が同時にON状態になると、リレー素子52のコイル部に電流が流れ、3本の電力供給ライン間のそれぞれが短絡されるようになっている。 Further, the brake control device 10 according to the embodiment of the present invention further includes a relay drive circuit (switching device) 50, a malfunction prevention circuit 60, a third magnetic pole position detecting element 44, and a fourth magnetic pole position detection. It includes an element 46. The relay drive circuit 50 short-circuits the three power supply lines between the first electric motor 14 and the first inverter 16 and the three power supply lines between the second electric motor 28 and the second inverter 30. It is connected to do so. Specifically, the relay drive circuit 50 includes a relay element 52, a first switching element 54, and a second switching element 56, and the relay element 52 is described above in accordance with the control of the built-in coil unit. It short-circuits each of the power supply lines of the book at the same time. The first switching element 54 and the second switching element 56 are composed of, for example, FETs, the first switching element 54 is connected to one end of the coil portion of the relay element 52, and the second switching element 54 is connected to the other end of the coil portion. Switching element 56 is connected. Then, when both the first switching element 54 and the second switching element 56 are turned on at the same time, a current flows through the coil portion of the relay element 52 so that each of the three power supply lines is short-circuited. It has become.
 誤作動防止回路60は、リレー駆動回路(切替装置)50の誤作動を防止するように、第1のスイッチング素子54及び第2のスイッチング素子56を制御する論理回路であり、反転素子62、64及びOR回路66、68を含んでいる。一方のOR回路66の入力には、第1の演算素子18からの制御出力ラインと、第1の監視素子22からのリセットラインとが接続されており、リセットラインからの信号は反転素子62を介して論理反転された後に入力される。同様に、もう一方のOR回路68の入力には、第2の演算素子32からの制御出力ラインと、第2の監視素子36からのリセットラインとが接続されており、リセットラインからの信号は反転素子64を介して論理反転された後に入力される。 The malfunction prevention circuit 60 is a logic circuit that controls a first switching element 54 and a second switching element 56 so as to prevent a malfunction of the relay drive circuit (switching device) 50, and is an inverting element 62, 64. And OR circuits 66, 68 are included. A control output line from the first arithmetic element 18 and a reset line from the first monitoring element 22 are connected to the input of one OR circuit 66, and the signal from the reset line uses the inverting element 62. It is input after being logically inverted via. Similarly, the control output line from the second arithmetic element 32 and the reset line from the second monitoring element 36 are connected to the input of the other OR circuit 68, and the signal from the reset line is It is input after being logically inverted via the inverting element 64.
 そして、OR回路66の出力が、第1のスイッチング素子54を制御するように接続されると共に、OR回路68の出力が、第2のスイッチング素子56を制御するように接続されている。具体的には、OR回路66の出力がHIGHレベルであると第1のスイッチング素子54がONとなり、OR回路68の出力がHIGHレベルであると第2のスイッチング素子56がONとなる。なお、通常の動作状態では、第1の演算素子18からOR回路66への制御出力信号はLOWレベル、第1の監視素子22からのリセット信号はHIGHレベル、第2の演算素子32からOR回路68への制御出力信号はLOWレベル、第2の監視素子36からのリセット信号はHIGHレベルに維持されている。 Then, the output of the OR circuit 66 is connected so as to control the first switching element 54, and the output of the OR circuit 68 is connected so as to control the second switching element 56. Specifically, when the output of the OR circuit 66 is at the HIGH level, the first switching element 54 is turned on, and when the output of the OR circuit 68 is at the HIGH level, the second switching element 56 is turned on. In a normal operating state, the control output signal from the first arithmetic element 18 to the OR circuit 66 is the LOW level, the reset signal from the first monitoring element 22 is the HIGH level, and the OR circuit from the second arithmetic element 32. The control output signal to 68 is maintained at the LOW level, and the reset signal from the second monitoring element 36 is maintained at the HIGH level.
 第3の磁極位置検出素子44は、第1の磁極位置検出素子40と同様に、第1の電動機14の回転子の磁極位置を検出するものであるが、その検出結果が第2の演算素子32によって取得されるように接続されている。また、第4の磁極位置検出素子46は、第2の磁極位置検出素子42と同様に、第2の電動機28の回転子の磁極位置を検出するものであるが、その検出結果が第1の演算素子18によって取得されるように接続されている。すなわち、第1の演算素子18は、第1の磁極位置検出素子40及び第4の磁極位置検出素子46を介して、第1の電動機14と第2の電動機28との双方の回転位置を取得可能になっており、同様に、第2の演算素子32は、第2の磁極位置検出素子42及び第3の磁極位置検出素子44を介して、第1の電動機14と第2の電動機28との双方の回転位置を取得可能になっている。 Like the first magnetic pole position detecting element 40, the third magnetic pole position detecting element 44 detects the magnetic pole position of the rotor of the first electric motor 14, but the detection result is the second arithmetic element. Connected to be acquired by 32. Further, the fourth magnetic pole position detecting element 46 detects the magnetic pole position of the rotor of the second electric motor 28 in the same manner as the second magnetic pole position detecting element 42, and the detection result is the first. It is connected so as to be acquired by the arithmetic element 18. That is, the first arithmetic element 18 acquires the rotation positions of both the first electric motor 14 and the second electric motor 28 via the first magnetic pole position detecting element 40 and the fourth magnetic pole position detecting element 46. Similarly, the second arithmetic element 32 is connected to the first electric motor 14 and the second electric motor 28 via the second magnetic pole position detecting element 42 and the third magnetic pole position detecting element 44. It is possible to acquire both rotation positions.
 ここで、図1に示したブレーキ制御装置10は、自動車の電動キャリパのサーボモータ駆動用として適用される場合、例えば、第1の電動機制御装置12が前輪右のサーボモータ駆動用、第2の電動機制御装置26が前輪左のサーボモータ駆動用、といった態様で適用される。図2には、前輪片側のブレーキ機構70を概略的に示しており、このブレーキ機構70は、電動キャリパのサーボモータとしての第1の電動機14(或いは第2の電動機28)、回転直動変換機構72、キャリパ74に内蔵のピストン76、ブレーキパッド78及びブレーキパッド80を含んでいる。ブレーキディスク82は、自動車の各車輪と共に回転するものであり、ブレーキディスク82に付与された制動力が各車輪へと伝達される。 Here, when the brake control device 10 shown in FIG. 1 is applied for driving a servomotor of an electric caliper of an automobile, for example, the first electric motor control device 12 is for driving a servomotor on the right side of the front wheel, and the second The electric motor control device 26 is applied in such a manner that the front wheel left servomotor is driven. FIG. 2 schematically shows a brake mechanism 70 on one side of the front wheel, and the brake mechanism 70 is a first electric motor 14 (or a second electric motor 28) as a servomotor of an electric caliper, and a rotation linear motion conversion. The mechanism 72, the piston 76 built into the caliper 74, the brake pad 78, and the brake pad 80 are included. The brake disc 82 rotates together with each wheel of the automobile, and the braking force applied to the brake disc 82 is transmitted to each wheel.
 図2のような構成において、第1の電動機制御装置12(或いは第2の電動機制御装置26)により制御される第1の電動機14(或いは第2の電動機28)の回転は、回転直動変換機構72によって直線運動に変換されて、ピストン76に伝達される。ピストン76は、その直線運動によってブレーキパッド78及びブレーキパッド80を移動させ、この移動によってブレーキパッド78及びブレーキパッド80がブレーキディスク82に押圧されることで、自動車の各車輪に対して制動力が付与されることとなる。なお、図2には図示していないが、第1の電動機14(或いは第2の電動機28)と回転直動変換機構72との間には、力を増幅するための減速ギアが組み込まれており、そのギア比は数十~百数十と大きいものである。また、第1の電動機14(及び第2の電動機28)は、トルクが発生していない状態では、ブレーキ機構70に組み込まれた図示しないフェールオープンバネの反力の影響によって、ある磁極位置に戻されるようになっている。 In the configuration as shown in FIG. 2, the rotation of the first electric motor 14 (or the second electric motor 28) controlled by the first electric motor control device 12 (or the second electric motor control device 26) is rotational linear motion conversion. It is converted into a linear motion by the mechanism 72 and transmitted to the piston 76. The piston 76 moves the brake pad 78 and the brake pad 80 by its linear motion, and the brake pad 78 and the brake pad 80 are pressed against the brake disc 82 by this movement, so that a braking force is applied to each wheel of the automobile. It will be granted. Although not shown in FIG. 2, a reduction gear for amplifying the force is incorporated between the first electric motor 14 (or the second electric motor 28) and the rotation linear motion conversion mechanism 72. The gear ratio is as large as tens to hundreds of tens. Further, the first electric motor 14 (and the second electric motor 28) is returned to a certain magnetic pole position by the influence of the reaction force of a fail-open spring (not shown) incorporated in the brake mechanism 70 in a state where no torque is generated. It is designed to be used.
 次に、本発明の実施の形態に係るブレーキ制御装置10において、一方の制御系統が失陥した場合の作用について説明する。ここでは、第1の電動機制御装置12を前輪右の電動キャリパのサーボモータ駆動用、第2の電動機制御装置26を前輪左の電動キャリパのサーボモータ駆動用として適用した構成において、第1の電動機制御装置12の第1の演算素子18が失陥した場合を例にして説明する。
 図1を参照して、第1の演算素子18が失陥すると、第1の演算素子18を監視している第1の監視素子22は、リセットラインを介してリセット信号(LOWレベル)を出力することで、第1のプリドライバ素子20を停止させる。第1のプリドライバ素子20が停止されると、第1のインバータ16のFETがOFFになり、第1のインバータ16と第1の電動機14とが切り離された状態になる。このため、第1のインバータ16から第1の電動機14へ電力が供給されなくなり、これによって第1の電動機14がトルクを発生できなくなる結果、この状態では前輪右のブレーキが効かなくなる。
Next, in the brake control device 10 according to the embodiment of the present invention, the operation when one of the control systems fails will be described. Here, in a configuration in which the first electric motor control device 12 is used for driving the servomotor of the electric caliper on the right front wheel and the second electric motor control device 26 is used for driving the servomotor of the electric caliper on the left front wheel, the first electric motor is used. The case where the first arithmetic element 18 of the control device 12 is lost will be described as an example.
With reference to FIG. 1, when the first arithmetic element 18 fails, the first monitoring element 22 monitoring the first arithmetic element 18 outputs a reset signal (LOW level) via the reset line. By doing so, the first pre-driver element 20 is stopped. When the first pre-driver element 20 is stopped, the FET of the first inverter 16 is turned off, and the first inverter 16 and the first electric motor 14 are separated from each other. Therefore, power is not supplied from the first inverter 16 to the first electric motor 14, which makes it impossible for the first electric motor 14 to generate torque. As a result, the brake on the right side of the front wheel does not work in this state.
 一方、第1の監視素子22から出力されたリセット信号は、第1の演算素子18にも入力され、これによって第1の演算素子18がリセットされる。更に、第1の監視素子22からのリセット信号は、誤作動防止回路60において、反転素子62によってLOWレベルからHIGHレベルへと論理反転された後、OR回路66へ入力される。このとき、OR回路66へのもう1つの入力は、失陥してリセットされた第1の演算素子18からの制御出力信号であり、その論理レベルは保証されないが、この論理レベルに関わらず、一方の入力がHIGHレベルであるため、OR回路66からの出力はHIGHレベルになる。これにより、その出力を受けたリレー駆動回路50の第1のスイッチング素子54がON状態になる。 On the other hand, the reset signal output from the first monitoring element 22 is also input to the first arithmetic element 18, which resets the first arithmetic element 18. Further, the reset signal from the first monitoring element 22 is logically inverted from the LOW level to the HIGH level by the inverting element 62 in the malfunction prevention circuit 60, and then input to the OR circuit 66. At this time, another input to the OR circuit 66 is a control output signal from the first arithmetic element 18 that has failed and was reset, and its logic level is not guaranteed, but regardless of this logic level, Since one input is at HIGH level, the output from the OR circuit 66 is at HIGH level. As a result, the first switching element 54 of the relay drive circuit 50 that receives the output is turned on.
 他方、第1の演算素子18の失陥は、第1の演算素子18と相互監視を行っている第2の演算素子32によっても把握される。第1の演算素子18の失陥を把握した第2の演算素子32は、誤作動防止回路60に対して出力している制御出力信号を、LOWレベルからHIGHレベルへと変更し、これがOR回路68へと入力される。このとき、第2の監視素子36からのリセット信号はHIGHレベルが維持され、これが反転素子64を介してLOWレベルとしてOR回路68へ入力されるが、この論理レベルに関わらず、一方の入力がHIGHレベルであるため、OR回路68からの出力はHIGHレベルになる。これにより、その出力を受けたリレー駆動回路50の第2のスイッチング素子56がON状態になる。 On the other hand, the failure of the first arithmetic element 18 is also grasped by the second arithmetic element 32 that performs mutual monitoring with the first arithmetic element 18. The second arithmetic element 32, which has grasped the failure of the first arithmetic element 18, changes the control output signal output to the malfunction prevention circuit 60 from the LOW level to the HIGH level, which is the OR circuit. It is input to 68. At this time, the reset signal from the second monitoring element 36 is maintained at the HIGH level, which is input to the OR circuit 68 as the LOW level via the inverting element 64, but one of the inputs is input regardless of this logic level. Since it is at the HIGH level, the output from the OR circuit 68 is at the HIGH level. As a result, the second switching element 56 of the relay drive circuit 50 that receives the output is turned on.
 上述したように、リレー駆動回路50の第1のスイッチング素子54及び第2のスイッチング素子56は、双方ともON状態になっており、これによって、リレー素子52のコイル部に電流が流れ、リレー素子52の接点がONになる。すると、第1の電動機14及び第1のインバータ16間の3本の電力供給ラインと、第2の電動機28及び第2のインバータ30間の3本の電力供給ラインとが短絡され、第2のインバータ30に対して、第1の電動機14と第2の電動機28とが並列に接続された状態になる。このため、第2のインバータ30からの電力は、第2の電動機28に対してのみではなく、リレー駆動回路50を介して第1の電動機14に対しても供給されるようになる。このとき、第1のインバータ16は上述したように第1の電動機14から切り離されているため、第1のインバータ16からの出力が第2のインバータ30からの出力と衝突することはない。これにより、第1の電動機14がトルクを発生できるようになり、前輪右のブレーキが有効になる。以降は、失陥していない正常な第2の電動機制御装置26側の第2の電動機28をマスター、失陥した第1の電動機制御装置12側の第1の電動機14をスレーブとして、第1及び第2の電動機14、28の同時駆動が行われる。 As described above, both the first switching element 54 and the second switching element 56 of the relay drive circuit 50 are in the ON state, whereby a current flows through the coil portion of the relay element 52 and the relay element The contact of 52 is turned on. Then, the three power supply lines between the first electric motor 14 and the first inverter 16 and the three power supply lines between the second electric motor 28 and the second inverter 30 are short-circuited, and the second power supply line is short-circuited. The first electric motor 14 and the second electric motor 28 are connected in parallel to the inverter 30. Therefore, the electric power from the second inverter 30 is supplied not only to the second electric motor 28 but also to the first electric motor 14 via the relay drive circuit 50. At this time, since the first inverter 16 is separated from the first electric motor 14 as described above, the output from the first inverter 16 does not collide with the output from the second inverter 30. As a result, the first electric motor 14 can generate torque, and the brake on the right side of the front wheel becomes effective. After that, the second electric motor 28 on the normal second electric motor control device 26 side that has not failed is used as the master, and the first electric motor 14 on the first electric motor control device 12 side that has failed is used as the slave. And the second electric motors 14 and 28 are simultaneously driven.
 ここで、一方のパワー素子30によって2つの電動機14、28を同時に駆動するためには、初めに2つの電動機14、28の回転子の磁極位置を同調させる必要があり、その方法について図3を参照しながら説明する。
 まず、失陥した第1の電動機制御装置12の第1の電動機14は、前輪右のブレーキ機構70のフェールオープンバネの反力の影響によって、戻されて推力が抜けている状態にあり、回転子がある磁極位置にある。このため、前輪左右の推力が同等になるように、第2の演算素子32により第2のプリドライバ素子34を制御して、意図的に第2の電動機28も戻し位置に戻す。このとき、戻された状態の第1の電動機14の磁極位置と、戻された状態の第2の電動機28の磁極位置とは、図3の時刻1に示すように、最悪の場合で180°ズレている可能性がある。
Here, in order to drive the two electric motors 14 and 28 at the same time by one of the power elements 30, it is necessary to first synchronize the magnetic pole positions of the rotors of the two electric motors 14 and 28, and FIG. It will be explained with reference to it.
First, the first electric motor 14 of the first electric motor control device 12 that has fallen is returned to a state where the thrust is released due to the influence of the reaction force of the fail open spring of the brake mechanism 70 on the right side of the front wheel, and rotates. The child is at the magnetic pole position. Therefore, the second pre-driver element 34 is controlled by the second arithmetic element 32 so that the thrusts on the left and right sides of the front wheels are equal, and the second electric motor 28 is also intentionally returned to the return position. At this time, the magnetic pole positions of the first electric motor 14 in the returned state and the magnetic pole positions of the second electric motor 28 in the returned state are 180 ° in the worst case as shown at time 1 in FIG. There is a possibility that it is out of alignment.
 そこで、図3の時刻2のタイミングにおいて、第2の磁極位置検出素子42を介して取得される第2の電動機28の磁極位置に基づいて、第2の電動機28を時計回りに駆動させるような電流が第2のインバータ30から発生するように、第2の演算素子32により第2のプリドライバ素子34を制御する。すると、図3の時刻3に示すように、第2の電動機28は僅かに時計回りに回転(0°~30°)し、同時に、第2のインバータ30からは第1の電動機14に対しても電力供給されていることから、第1の電動機14も回転する。このとき、時刻1や時刻2の時点での、第1の電動機14と第2の電動機28との磁極位置のズレが、180°より第2の電動機28の回転方向に対して遅れが小さかった場合は、時刻3の第1の電動機14の欄の上側に示すように、第1の電動機14は時計回りに回転する。これに対し、時刻1や時刻2の時点での、第1の電動機14と第2の電動機28との磁極位置のズレが、180°より第2の電動機28の回転方向に対して遅れが大きかった場合は、時刻3の第1の電動機14の欄の下側に示すように、第1の電動機14は反時計回りに回転する。 Therefore, at the timing of time 2 in FIG. 3, the second electric motor 28 is driven clockwise based on the magnetic pole position of the second electric motor 28 acquired via the second magnetic pole position detecting element 42. The second pre-driver element 34 is controlled by the second arithmetic element 32 so that the current is generated from the second inverter 30. Then, as shown at time 3 in FIG. 3, the second electric motor 28 rotates slightly clockwise (0 ° to 30 °), and at the same time, the second inverter 30 refers to the first electric motor 14. Since the power is also supplied, the first electric motor 14 also rotates. At this time, the deviation of the magnetic pole positions between the first electric motor 14 and the second electric motor 28 at time 1 and time 2 was smaller than 180 ° with respect to the rotation direction of the second electric motor 28. In this case, the first electric motor 14 rotates clockwise as shown in the upper side of the column of the first electric motor 14 at time 3. On the other hand, the deviation of the magnetic pole positions between the first electric motor 14 and the second electric motor 28 at time 1 and time 2 is larger than 180 ° with respect to the rotation direction of the second electric motor 28. In this case, the first electric motor 14 rotates counterclockwise as shown at the lower side of the column of the first electric motor 14 at time 3.
 その後、図3の時刻4において、第2の演算素子32により第2のプリドライバ素子34を制御して、第2のインバータ30から発生する電流量を増大させると、第2の電動機28の回転位置がロックされると共に、第1の電動機14も第2の電動機28と同じ位置まで回転された後にロックされる。このようにして、第1の電動機14と第2の電動機28との位相の同調が行われるものである。なお、上述したような第1及び第2の電動機14、28間の位相差は、第1の電動機14や第2の電動機28と回転直動変換機構72との間に組み込まれた、減速ギアのギア比が大きいため、ブレーキをかける行為自体に直接的に影響しない程小さいものである。従って、第1及び第2の電動機14、28間で位相が多少ズレていたとしても、ピストン76の進み量は微小なものでブレーキ力の変動はない。 After that, at time 4 in FIG. 3, when the second pre-driver element 34 is controlled by the second arithmetic element 32 to increase the amount of current generated from the second inverter 30, the second electric motor 28 rotates. The position is locked, and the first electric motor 14 is also locked after being rotated to the same position as the second electric motor 28. In this way, the phases of the first electric motor 14 and the second electric motor 28 are tuned. The phase difference between the first and second electric motors 14 and 28 as described above is a reduction gear incorporated between the first electric motor 14 or the second electric motor 28 and the rotation linear motion conversion mechanism 72. Because of the large gear ratio of, it is so small that it does not directly affect the act of applying the brakes. Therefore, even if the phases of the first and second electric motors 14 and 28 are slightly out of phase, the amount of advance of the piston 76 is small and the braking force does not fluctuate.
 上記のような方法で第1の電動機14と第2の電動機28との位相の同調が完了した後は、第2のインバータ30によって第2の電動機28を駆動すると、並列接続された第1の電動機14もそれに同期して駆動される。この際、第2の磁極位置検出素子42を介して取得される第2の電動機28の磁極位置に基づいて、第2のインバータ30の制御を行うと、第1の電動機14の負荷が第2の電動機28の負荷より大きい場合や、第1の電動機14の発生トルクが第2の電動機28の発生トルクより小さい場合は、第1の電動機14が回転せずに脱調する虞がある。このため、脱調を防止しながら第1及び第2の電動機14、28の同時制御を実現するために、第2の演算素子32により、第3の磁極位置検出素子44を介して取得される第1の電動機14の回転位置と、第2の電動機28の回転位置との双方を監視しながら、第2のプリドライバ素子34を制御する。 After the phase synchronization between the first electric motor 14 and the second electric motor 28 is completed by the method as described above, when the second electric motor 28 is driven by the second inverter 30, the first electric motor 28 connected in parallel is connected. The electric motor 14 is also driven in synchronization with it. At this time, when the second inverter 30 is controlled based on the magnetic pole position of the second electric motor 28 acquired via the second magnetic pole position detecting element 42, the load of the first electric motor 14 becomes the second. If the load of the electric motor 28 is larger than that of the electric motor 28, or if the torque generated by the first electric motor 14 is smaller than the torque generated by the second electric motor 28, the first electric motor 14 may step out without rotating. Therefore, in order to realize simultaneous control of the first and second electric motors 14 and 28 while preventing step-out, the second arithmetic element 32 acquires the first and second electric motors 14 and 28 via the third magnetic pole position detecting element 44. The second pre-driver element 34 is controlled while monitoring both the rotational position of the first electric motor 14 and the rotational position of the second electric motor 28.
 具体的には、第1の電動機14の回転位置と第2の電動機28の回転位置とを比較し、第1の電動機14の回転子が、第2の電動機28の回転子よりも遅れている場合は、第1の電動機14の回転位置に基づいて制御を行う。これとは反対に、第2の電動機28の回転子が、第1の電動機14の回転子よりも遅れている場合は、第2の電動機28の回転位置に基づいて制御を行う。このようにして、第2の演算素子32により第2のプリドライバ素子34を制御、すなわち、間接的に第2のインバータ30を制御することで、失陥した第1の電動機制御装置12の第1の電動機14が脱調することなく、2つの電動機14、28が同回転数で回転されることになる。
 なお、ここまでは、第1の電動機制御装置12の第1の演算素子18が失陥し、第2の電動機28をマスター、第1の電動機14をスレーブとして制御する場合を例にして説明してきたが、第2の電動機制御装置26の第2の演算素子32が失陥した場合も、第1の電動機14をマスター、第2の電動機28をスレーブとして、同様の制御が行われることは、理解されるであろう。
Specifically, the rotation position of the first electric motor 14 and the rotation position of the second electric motor 28 are compared, and the rotor of the first electric motor 14 is behind the rotor of the second electric motor 28. In this case, control is performed based on the rotation position of the first electric motor 14. On the contrary, when the rotor of the second electric motor 28 lags behind the rotor of the first electric motor 14, control is performed based on the rotation position of the second electric motor 28. In this way, by controlling the second pre-driver element 34 by the second arithmetic element 32, that is, indirectly controlling the second inverter 30, the first electric motor control device 12 that has failed is the first. The two electric motors 14 and 28 are rotated at the same rotation speed without the electric motor 14 of 1 stepping out.
Up to this point, the case where the first arithmetic element 18 of the first electric motor control device 12 is lost and the second electric motor 28 is controlled as the master and the first electric motor 14 is controlled as the slave will be described as an example. However, even if the second arithmetic element 32 of the second electric motor control device 26 fails, the same control can be performed with the first electric motor 14 as the master and the second electric motor 28 as the slave. Will be understood.
 以上説明したように、本発明の実施の形態に係るブレーキ制御装置10は、図1に示すように、第1の電動機制御装置12と第2の電動機制御装置26との2系統の電動機制御装置を含んでいる。第1の電動機制御装置12は、第1の電動機14、第1のパワー素子16及び第1の演算素子18を含み、第1の車輪(例えば前輪右)の制動力を制御する。第2の電動機制御装置26は、第2の電動機28、第2のパワー素子30及び第2の演算素子32を含み、第2の車輪(例えば前輪左)の制動力を制御する。そして、第1の電動機制御装置12に含まれる第1のパワー素子16と、第2の電動機制御装置26に含まれる第2のパワー素子30との少なくとも一方が、第1の電動機14と第2の電動機28との双方へ、同時に電力供給可能に構成されているものである。 As described above, the brake control device 10 according to the embodiment of the present invention is a two-system electric motor control device consisting of a first electric motor control device 12 and a second electric motor control device 26, as shown in FIG. Includes. The first electric motor control device 12 includes the first electric motor 14, the first power element 16, and the first arithmetic element 18, and controls the braking force of the first wheel (for example, the front wheel right). The second electric motor control device 26 includes the second electric motor 28, the second power element 30, and the second arithmetic element 32, and controls the braking force of the second wheel (for example, the front wheel left). Then, at least one of the first power element 16 included in the first electric motor control device 12 and the second power element 30 included in the second electric motor control device 26 is the first electric motor 14 and the second. It is configured to be able to supply electric power to both the electric motor 28 and the electric motor 28 at the same time.
 これにより、仮に第1の電動機制御装置12と第2の電動機制御装置26との、いずれか一方の系統が失陥したとしても、残りの他方の系統の電動機制御装置12または26のパワー素子16または30が、第1及び第2の電動機14、28の双方へ電力供給可能に構成されていることによって、他方の系統のパワー素子16または30から第1及び第2の電動機14、28の双方へ電力供給することができる。従って、一方の系統の電動機制御装置12または26が失陥しているにも関わらず、2つの系統の電動機14、28によって均等な制動力を発生させることが可能となり、ブレーキ時のヨーの発生を抑制することができる。 As a result, even if one of the systems of the first electric motor control device 12 and the second electric motor control device 26 fails, the power element 16 of the electric motor control device 12 or 26 of the other other system Alternatively, 30 is configured to be able to supply power to both the first and second electric motors 14 and 28, so that the power elements 16 or 30 of the other system can supply both the first and second electric motors 14 and 28. Can be supplied with power. Therefore, even though the electric motor control device 12 or 26 of one system has failed, it is possible to generate an even braking force by the electric motors 14 and 28 of the two systems, and yaw is generated during braking. Can be suppressed.
 また、本発明の実施の形態に係るブレーキ制御装置10は、第1のパワー素子16と第2のパワー素子30との双方が、それぞれ、第1の電動機14及び第2の電動機28の双方へ同時に電力供給可能に構成されている。そして、第1のパワー素子16及び第2のパワー素子30は、いずれか一方のパワー素子16または30が異常となったときに、正常な他方のパワー素子16または30から、第1の電動機14及び第2の電動機28に対して同時に電力供給を行うものである。この場合のパワー素子16または30の異常は、パワー素子16または30自体に異常が発生した場合のみではなく、そのパワー素子16または30を制御する演算素子18または32等に異常が発生した場合にも起こり得る。また、パワー素子16または30の異常により、このパワー素子16または30を介してこれと同系統の電動機14または28の駆動を行えなくなるが、その電動機14または28自体に異常が発生している状態ではないため、正常な系統のパワー素子16または30によって問題なく駆動することができる。 Further, in the brake control device 10 according to the embodiment of the present invention, both the first power element 16 and the second power element 30 are connected to both the first electric motor 14 and the second electric motor 28, respectively. It is configured to be able to supply power at the same time. Then, when one of the power elements 16 or 30 becomes abnormal, the first power element 16 and the second power element 30 change from the normal other power element 16 or 30 to the first electric motor 14 And the second electric motor 28 is supplied with electric power at the same time. The abnormality of the power element 16 or 30 in this case is not only when an abnormality occurs in the power element 16 or 30 itself, but also when an abnormality occurs in the arithmetic element 18 or 32 or the like that controls the power element 16 or 30. Can also occur. Further, due to an abnormality in the power element 16 or 30, the electric motor 14 or 28 of the same system cannot be driven via the power element 16 or 30, but the electric motor 14 or 28 itself has an abnormality. Therefore, it can be driven by the power element 16 or 30 of the normal system without any problem.
 これにより、第1のパワー素子16と第2のパワー素子30とのいずれに異常が発生した場合でも、異常が発生していない系統のパワー素子16または30によって、第1の電動機14及び第2の電動機28の双方を駆動することができるため、2つの系統で均等な制動力を発生させることができる。更に、第1のパワー素子16及び第2のパワー素子30は、いずれか一方が異常となった場合にのみ、他方から第1及び第2の電動機14、28の双方へ電力供給するように構成されているため、いずれのパワー素子16及び30にも異常が発生していない場合は、第1及び第2の電動機制御装置12、26のそれぞれで、独立した制動制御を続けることができる。 As a result, even if an abnormality occurs in either the first power element 16 or the second power element 30, the power element 16 or 30 of the system in which the abnormality does not occur causes the first electric motor 14 and the second electric motor 14 and the second. Since both of the electric motors 28 can be driven, even braking force can be generated in the two systems. Further, the first power element 16 and the second power element 30 are configured to supply power to both the first and second electric motors 14 and 28 from the other only when one of them becomes abnormal. Therefore, if no abnormality has occurred in any of the power elements 16 and 30, the first and second electric motor control devices 12 and 26 can continue independent braking control.
 また、本発明の実施の形態に係るブレーキ制御装置10は、第1の演算素子18及び第2の演算素子32のそれぞれが、第1の電動機14及び第2の電動機28の双方の回転位置(磁極位置)を取得できるものである。すなわち、図1の例では、第1の演算素子18が、第1の磁極位置検出素子40を介して第1の電動機14の回転位置を取得すると共に、第4の磁極位置検出素子46を介して第2の電動機28の回転位置を取得する。また、第2の演算素子32が、第3の磁極位置検出素子44を介して第1の電動機14の回転位置を取得すると共に、第2の磁極位置検出素子42を介して第2の電動機28の回転位置を取得する。これにより、第1のパワー素子16または第2のパワー素子30によって、第1の電動機14及び第2の電動機28の双方に電力供給する際に、第1のパワー素子16を制御する第1の演算素子18と、第2のパワー素子30を制御する第2の演算素子32とは、第1の電動機14及び第2の電動機28の双方の回転位置に基づいて、第1のパワー素子16または第2のパワー素子30を制御することができる。 Further, in the brake control device 10 according to the embodiment of the present invention, each of the first arithmetic element 18 and the second arithmetic element 32 is in the rotation position of both the first electric motor 14 and the second electric motor 28 ( The magnetic pole position) can be obtained. That is, in the example of FIG. 1, the first arithmetic element 18 acquires the rotational position of the first electric motor 14 via the first magnetic pole position detecting element 40, and also via the fourth magnetic pole position detecting element 46. The rotation position of the second electric motor 28 is acquired. Further, the second arithmetic element 32 acquires the rotational position of the first electric motor 14 via the third magnetic pole position detecting element 44, and the second electric motor 28 via the second magnetic pole position detecting element 42. Get the rotation position of. As a result, when the first power element 16 or the second power element 30 supplies power to both the first electric motor 14 and the second electric motor 28, the first power element 16 is controlled. The arithmetic element 18 and the second arithmetic element 32 that controls the second power element 30 are the first power element 16 or the second electric motor 28 based on the rotation positions of both the first electric motor 14 and the second electric motor 28. The second power element 30 can be controlled.
 このため、第1の演算素子18及び第2の演算素子32は、第1の電動機14の回転位置と第2の電動機28の回転位置とを比較して、それらの回転位置が異なっていた場合に、その回転位置の差分を解消して同期させるように、第1及び第2の電動機14、28の双方に電力供給している第1のパワー素子16または第2のパワー素子30を制御することができる。従って、第1の電動機14と第2の電動機28とを常に同期させた状態で、第1の電動機14及び第2の電動機28の双方を問題なく駆動することができる。これにより、例えば失陥した系統の電動機14または28が脱調することなく、2つの電動機14、28を同回転数で廻すことが可能となるため、前輪左右の制動力を均一にし、片系統の失陥時にもヨーの発生をより効果的に抑制することが可能となる。 Therefore, when the rotation position of the first electric motor 14 and the rotation position of the second electric motor 28 are compared with each other, the rotation positions of the first calculation element 18 and the second calculation element 32 are different. In addition, the first power element 16 or the second power element 30 that supplies power to both the first and second electric motors 14 and 28 is controlled so as to eliminate the difference in the rotation position and synchronize them. be able to. Therefore, both the first electric motor 14 and the second electric motor 28 can be driven without any problem in a state where the first electric motor 14 and the second electric motor 28 are always synchronized. As a result, for example, the two electric motors 14 and 28 can be rotated at the same rotation speed without the electric motor 14 or 28 of the failed system stepping out, so that the braking force on the left and right front wheels is made uniform and one system is used. It is possible to more effectively suppress the generation of yaw even in the event of a fall.
 更に、本発明の実施の形態に係るブレーキ制御装置10は、第1のパワー素子16または第2のパワー素子30による、第1の電動機14または第2の電動機28のいずれか一方に対する電力供給から、第1の電動機14及び第2の電動機28の双方に対する電力供給への切り替えが、切替装置50によって行われるものである。これにより、例えば片系統のパワー素子16または30に異常が発生したとき等の、電力供給の切り替えを行う必要が生じた場合に、切替装置50を介して電力供給の切り替えを瞬時に行うことができるため、一方のパワー素子16または30によって双方の電動機14、28を駆動する形態へと、迅速に移行することができる。 Further, in the brake control device 10 according to the embodiment of the present invention, from the power supply to either the first electric motor 14 or the second electric motor 28 by the first power element 16 or the second power element 30. , Switching to power supply to both the first electric motor 14 and the second electric motor 28 is performed by the switching device 50. As a result, when it becomes necessary to switch the power supply, for example, when an abnormality occurs in the power element 16 or 30 of one system, the power supply can be switched instantly via the switching device 50. Therefore, it is possible to quickly shift to a form in which both electric motors 14 and 28 are driven by one power element 16 or 30.
 しかも、本発明の実施の形態に係るブレーキ制御装置10は、第1のパワー素子16または第2のパワー素子30の電力供給の切り替えを行う切替装置50の誤作動が、誤作動防止回路60によって防止されるようになっているものである。このため、例えば、第1のパワー素子16と第2のパワー素子30とのいずれにも異常が発生していないにも関わらず、第1のパワー素子16または第2のパワー素子30から第1及び第2の電動機14、28の双方へ電力供給されるように、切替装置50よって切り替えられてしまう事象を防止することができる。この点は、図1の回路構成において、異常が発生していない通常動作時に、第1の演算素子18からOR回路66への制御出力信号がLOWレベル、第1の監視素子22からのリセット信号がHIGHレベル、第2の演算素子32からOR回路68への制御出力信号がLOWレベル、第2の監視素子36からのリセット信号がHIGHレベルに、それぞれ維持されていることで実現される。 Moreover, in the brake control device 10 according to the embodiment of the present invention, the malfunction of the switching device 50 for switching the power supply of the first power element 16 or the second power element 30 is caused by the malfunction prevention circuit 60. It is designed to be prevented. Therefore, for example, even though no abnormality has occurred in either the first power element 16 or the second power element 30, the first power element 16 or the second power element 30 to the first It is possible to prevent an event of being switched by the switching device 50 so that power is supplied to both the second electric motors 14 and 28. Regarding this point, in the circuit configuration of FIG. 1, the control output signal from the first arithmetic element 18 to the OR circuit 66 is the LOW level, and the reset signal from the first monitoring element 22 is in the normal operation in which no abnormality occurs. Is maintained at the HIGH level, the control output signal from the second arithmetic element 32 to the OR circuit 68 is maintained at the LOW level, and the reset signal from the second monitoring element 36 is maintained at the HIGH level.
 また、これとは反対に、第1のパワー素子16と第2のパワー素子30とのいずれか一方に異常が発生しているにも関わらず、切替装置50よる切り替えが行われずに、第1の電動機14または第2の電動機28のいずれか一方のみが駆動される事象を防止することもできる。この点は、図1の回路構成において、第1の電動機制御装置12または第2の電動機制御装置26に異常が発生した場合に、異常が発生した側の監視素子22または36からLOWレベルのリセット信号が発生されることで、第1のスイッチング素子54または第2のスイッチング素子56の一方がON状態とされ、かつ、正常な側の演算素子18または32からHIGHレベルの制御出力信号が出力されることで、第1のスイッチング素子54または第2のスイッチング素子56の残りの一方がON状態とされることによって実現される。これにより、ブレーキ制御の信頼性を向上させることができる。 On the contrary, even though one of the first power element 16 and the second power element 30 has an abnormality, the switching device 50 does not switch the first power element 50. It is also possible to prevent an event in which only one of the electric motor 14 and the second electric motor 28 is driven. In this respect, in the circuit configuration of FIG. 1, when an abnormality occurs in the first electric motor control device 12 or the second electric motor control device 26, the LOW level is reset from the monitoring element 22 or 36 on the side where the abnormality occurs. When the signal is generated, one of the first switching element 54 or the second switching element 56 is turned on, and the HIGH level control output signal is output from the arithmetic element 18 or 32 on the normal side. This is realized by turning on the other one of the first switching element 54 or the second switching element 56. As a result, the reliability of brake control can be improved.
 ここで、本発明の実施の形態に係るブレーキ制御装置10は、図1に示すような構成に限定されることなく、第1のパワー素子16と第2のパワー素子30との少なくとも一方が、第1の電動機14と第2の電動機28との双方へ同時に電力供給可能に構成されていれば、任意の構成を取り得るものである。例えば、ブレーキ制御装置10は、第1のパワー素子16と第2のパワー素子30との一方のみが、第1の電動機14と第2の電動機28との双方へ同時に電力供給可能な構成であってもよく、それに応じて、第3の磁極位置検出素子44や第4の磁極位置検出素子46を備えていなくてもよい。また、第1のパワー素子16と第2のパワー素子30との少なくとも一方による、第1及び第2の電動機14、28の双方へ同時に電力供給可能な構成を、切替装置50と異なる手段によって実現してもよい。更に、切替装置50の内部構成や、誤作動防止回路60の内部構成が、図1の例と異なっていてもよい。また、ブレーキ制御装置10は、図1に示された構成要素の一部が削除、変更されたものであってもよく、新たな構成要素が追加されてもよい。加えて、各構成要素には、各々の構成要素に求められる機能を実行可能な任意の部品を使用できる。 Here, in the brake control device 10 according to the embodiment of the present invention, at least one of the first power element 16 and the second power element 30 is not limited to the configuration as shown in FIG. Any configuration can be adopted as long as the first electric motor 14 and the second electric motor 28 can be supplied with electric power at the same time. For example, the brake control device 10 has a configuration in which only one of the first power element 16 and the second power element 30 can simultaneously supply electric power to both the first electric motor 14 and the second electric motor 28. However, the third magnetic pole position detecting element 44 and the fourth magnetic pole position detecting element 46 may not be provided accordingly. Further, a configuration in which at least one of the first power element 16 and the second power element 30 can simultaneously supply power to both the first and second electric motors 14 and 28 is realized by means different from the switching device 50. You may. Further, the internal configuration of the switching device 50 and the internal configuration of the malfunction prevention circuit 60 may be different from the example of FIG. Further, the brake control device 10 may have some of the components shown in FIG. 1 deleted or changed, or new components may be added. In addition, each component can be any component capable of performing the function required for each component.
 以上説明した、本実施形態に基づくブレーキ制御装置10として、例えば、以下に述べる態様のものが考えられる。
 第1の態様は、第1の電動機(14)と、第1のパワー素子(16)と、第1の演算素子(18)とを有し、第1の車輪の制動力を制御する第1の電動機制御装置(12)と、第2の電動機(28)と、第2のパワー素子(30)と、第2の演算素子(32)とを有し、第2の車輪の制動力を制御する第2の電動機制御装置(26)と、を有するブレーキ制御装置(10)であって、前記第1のパワー素子(16)と前記第2のパワー素子(30)との少なくとも一方は、前記第1の電動機(14)及び前記第2の電動機(28)へ同時に電力供給可能に構成されている。
As the brake control device 10 based on the present embodiment described above, for example, the one described below can be considered.
The first aspect has a first electric motor (14), a first power element (16), and a first arithmetic element (18), and controls the braking force of the first wheel. The electric motor control device (12), the second electric motor (28), the second power element (30), and the second arithmetic element (32) are provided to control the braking force of the second wheel. The second electric motor control device (26) and the brake control device (10) including the first power element (16) and at least one of the second power element (30) are described above. It is configured to be able to supply electric power to the first electric motor (14) and the second electric motor (28) at the same time.
 第2の態様は、第1の態様において、前記第1のパワー素子(16)と前記第2のパワー素子(30)とは、それぞれが前記第1の電動機(14)及び前記第2の電動機(28)へ同時に電力供給可能に構成されており、前記第1のパワー素子(16)と前記第2のパワー素子(30)のうちいずれか一方のパワー素子(16または30)が異常となったときに、他方のパワー素子(16または30)が前記第1の電動機(14)及び前記第2の電動機(28)へ同時に電力供給を行う。
 第3の態様は、第1または第2の態様において、前記第1の演算素子(18)及び前記第2の演算素子(32)は、それぞれが前記第1の電動機(14)及び前記第2の電動機(28)の双方の回転位置を取得できる。
In the second aspect, in the first aspect, the first power element (16) and the second power element (30) are the first electric motor (14) and the second electric motor, respectively. It is configured so that power can be supplied to (28) at the same time, and one of the first power element (16) and the second power element (30), the power element (16 or 30), becomes abnormal. At that time, the other power element (16 or 30) simultaneously supplies power to the first electric motor (14) and the second electric motor (28).
In the third aspect, in the first or second aspect, the first arithmetic element (18) and the second arithmetic element (32) are the first electric motor (14) and the second, respectively. Both rotation positions of the electric motor (28) can be acquired.
 第4の態様は、第1から第3の態様において、前記第1のパワー素子(16)または前記第2のパワー素子(30)による、前記第1の電動機(14)または前記第2の電動機(28)のいずれか一方に対する電力供給から、前記第1の電動機(14)及び前記第2の電動機(28)の双方に対する電力供給への切り替えは、切替装置(50)によって行われる。
 第5の態様は、第4の態様において、前記切替装置(50)は、誤作動防止回路(60)により誤作動が防止される。
A fourth aspect is the first electric motor (14) or the second electric motor by the first power element (16) or the second power element (30) in the first to third aspects. Switching from the power supply to either one of (28) to the power supply to both the first electric motor (14) and the second electric motor (28) is performed by the switching device (50).
In a fifth aspect, in the fourth aspect, the switching device (50) is prevented from malfunctioning by the malfunction prevention circuit (60).
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 本願は、2019年3月26日付出願の日本国特許出願第2019-058242号に基づく優先権を主張する。2019年3月26日付出願の日本国特許出願第2019-058242号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2019-058242 filed on March 26, 2019. The entire disclosure, including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2019-058242 filed March 26, 2019, is incorporated herein by reference in its entirety.
 10:ブレーキ制御装置、12:第1の電動機制御装置、14:第1の電動機、16:第1のパワー素子(第1のインバータ)、18:第1の演算素子、26:第2の電動機制御装置、28:第2の電動機、30:第2のパワー素子(第2のインバータ)、32:第2の演算素子、50:切替装置(リレー駆動回路)、60:誤作動防止回路 10: Brake control device, 12: 1st electric motor control device, 14: 1st electric motor, 16: 1st power element (1st inverter), 18: 1st arithmetic element, 26: 2nd electric motor Control device, 28: second electric motor, 30: second power element (second inverter), 32: second arithmetic element, 50: switching device (relay drive circuit), 60: malfunction prevention circuit

Claims (5)

  1.  ブレーキ制御装置であって、該ブレーキ制御装置は、
     第1の電動機と、第1のパワー素子と、第1の演算素子とを有し、第1の車輪の制動力を制御する第1の電動機制御装置と、
     第2の電動機と、第2のパワー素子と、第2の演算素子とを有し、第2の車輪の制動力を制御する第2の電動機制御装置と、を有するブレーキ制御装置であって、
     前記第1のパワー素子と前記第2のパワー素子との少なくとも一方は、前記第1の電動機及び前記第2の電動機へ同時に電力供給可能に構成されていることを特徴とするブレーキ制御装置。
    It is a brake control device, and the brake control device is
    A first electric motor control device having a first electric motor, a first power element, and a first arithmetic element and controlling a braking force of a first wheel.
    A brake control device having a second electric motor, a second power element, and a second arithmetic element, and having a second electric motor control device for controlling the braking force of the second wheel.
    A brake control device, characterized in that at least one of the first power element and the second power element is configured to be capable of supplying electric power to the first electric motor and the second electric motor at the same time.
  2.  請求項1に記載のブレーキ制御装置において、
     前記第1のパワー素子と前記第2のパワー素子とは、それぞれが前記第1の電動機及び前記第2の電動機へ同時に電力供給可能に構成されており、
     前記第1のパワー素子と前記第2のパワー素子のうちいずれか一方のパワー素子が異常となったときに、他方のパワー素子が前記第1の電動機及び前記第2の電動機へ同時に電力供給を行うことを特徴とするブレーキ制御装置。
    In the brake control device according to claim 1,
    The first power element and the second power element are configured to be capable of supplying electric power to the first electric motor and the second electric motor at the same time, respectively.
    When one of the first power element and the second power element becomes abnormal, the other power element simultaneously supplies power to the first electric motor and the second electric motor. A brake control device characterized by performing.
  3.  請求項1または2に記載のブレーキ制御装置において、
     前記第1の演算素子及び前記第2の演算素子は、それぞれが前記第1の電動機及び前記第2の電動機の双方の回転位置を取得できることを特徴とするブレーキ制御装置。
    In the brake control device according to claim 1 or 2.
    The brake control device, wherein each of the first arithmetic element and the second arithmetic element can acquire the rotation positions of both the first electric motor and the second electric motor.
  4.  請求項1から3のいずれか1項記載のブレーキ制御装置において、
     前記第1のパワー素子または前記第2のパワー素子による、前記第1の電動機または前記第2の電動機のいずれか一方に対する電力供給から、前記第1の電動機及び前記第2の電動機の双方に対する電力供給への切り替えは、切替装置によって行われることを特徴とするブレーキ制御装置。
    In the brake control device according to any one of claims 1 to 3.
    From the power supply to either the first electric motor or the second electric motor by the first power element or the second power element, the electric power to both the first electric motor and the second electric motor. A brake control device characterized in that switching to supply is performed by a switching device.
  5.  請求項4に記載のブレーキ制御装置において、
     前記切替装置は、誤作動防止回路により誤作動が防止されることを特徴とするブレーキ制御装置。
    In the brake control device according to claim 4,
    The switching device is a brake control device characterized in that malfunction is prevented by a malfunction prevention circuit.
PCT/JP2020/005266 2019-03-26 2020-02-12 Brake control apparatus WO2020195263A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021508215A JP7101307B2 (en) 2019-03-26 2020-02-12 Brake control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019058242 2019-03-26
JP2019-058242 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020195263A1 true WO2020195263A1 (en) 2020-10-01

Family

ID=72608751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005266 WO2020195263A1 (en) 2019-03-26 2020-02-12 Brake control apparatus

Country Status (2)

Country Link
JP (1) JP7101307B2 (en)
WO (1) WO2020195263A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11535221B2 (en) * 2019-06-14 2022-12-27 Hyundai Mobis Co., Ltd. Brake device for vehicle
US11919491B2 (en) * 2021-07-29 2024-03-05 Zf Active Safety Gmbh Method for operating a brake system, computer program product, control circuit and control unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145810A (en) * 1990-10-03 1992-05-19 Hitachi Ltd Electric motor vehicle
JP2013255358A (en) * 2012-06-07 2013-12-19 Jtekt Corp Traveling device for vehicle
WO2018062097A1 (en) * 2016-09-28 2018-04-05 日立オートモティブシステムズ株式会社 Electric brake device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145810A (en) * 1990-10-03 1992-05-19 Hitachi Ltd Electric motor vehicle
JP2013255358A (en) * 2012-06-07 2013-12-19 Jtekt Corp Traveling device for vehicle
WO2018062097A1 (en) * 2016-09-28 2018-04-05 日立オートモティブシステムズ株式会社 Electric brake device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11535221B2 (en) * 2019-06-14 2022-12-27 Hyundai Mobis Co., Ltd. Brake device for vehicle
US11919491B2 (en) * 2021-07-29 2024-03-05 Zf Active Safety Gmbh Method for operating a brake system, computer program product, control circuit and control unit

Also Published As

Publication number Publication date
JPWO2020195263A1 (en) 2021-10-28
JP7101307B2 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
CN109478858B (en) Motor control device and electric power steering device
JP6606780B1 (en) Electric braking device for vehicle and control method thereof
US10232874B2 (en) Motor drive device and electric power steering device
WO2017159091A1 (en) Motor control apparatus
US11584433B2 (en) Electric power steering apparatus and vehicle mounted therewith
WO2020195263A1 (en) Brake control apparatus
JP2009262609A (en) Steering system for vehicle
WO2021095644A1 (en) Motor driving system
US11973453B2 (en) Motor drive system
WO2019049731A1 (en) Control device for power steering device
US20220250676A1 (en) Motor drive system
JP6282452B2 (en) Vehicle steering control device
JP6526291B1 (en) Electric power steering device
CN110816645A (en) Vehicle control device
WO2020255897A1 (en) Electric brake device
JP7155763B2 (en) vehicle controller
JP2009029284A (en) Vehicular steering control device
US20240039451A1 (en) Motor control apparatus and motor control system
JP5892042B2 (en) Electric power steering device
JP2020192936A (en) Vehicular steering device
WO2024018874A1 (en) Motor control device and motor control system
US20230202553A1 (en) Rudder system
KR20240018605A (en) Electric power steering device, control method of electric power steering device and steering control device
JP2007252120A (en) Dual system motor controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779528

Country of ref document: EP

Kind code of ref document: A1