WO2020194919A1 - Engine device - Google Patents

Engine device Download PDF

Info

Publication number
WO2020194919A1
WO2020194919A1 PCT/JP2019/049415 JP2019049415W WO2020194919A1 WO 2020194919 A1 WO2020194919 A1 WO 2020194919A1 JP 2019049415 W JP2019049415 W JP 2019049415W WO 2020194919 A1 WO2020194919 A1 WO 2020194919A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston member
rotation
electric machine
target value
rotary electric
Prior art date
Application number
PCT/JP2019/049415
Other languages
French (fr)
Japanese (ja)
Inventor
卓央 岩橋
知史 小関
晶 福田
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2020194919A1 publication Critical patent/WO2020194919A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/02Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This disclosure relates to an engine device.
  • Patent Document 1 describes a rotating shaft, a first rotor and a second rotor rotating on the rotating shaft, and a power for transmitting the power of the first rotor and the second rotor to the rotating shaft. It is described that in a rotary engine provided with a transmission means, rotational loss is eliminated by outputting rotational power generated by the perfect circular rotational motion of the first rotor and the second rotor.
  • an engine device that enables stable continuation of engine combustion is provided.
  • an engine device including a rotating piston type engine.
  • the engine includes a housing, a first piston member rotatably supported within the housing, and a second piston member rotatably supported within the housing.
  • the housing, the first piston member and the second piston member form a combustion chamber for burning fuel.
  • the engine device further includes a first rotary electric machine, a second rotary electric machine, and a control device.
  • the first rotary electric machine is connected to the first piston member.
  • the first rotary electric machine can generate regenerative power by rotating the first piston member.
  • the second rotary electric machine is connected to the second piston member.
  • the second rotary electric machine can generate regenerative power by rotating the second piston member.
  • the control device controls the first rotary electric machine and the second rotary electric machine.
  • the control device reduces the regenerative torque generated in the first rotary electric machine when the first piston member and the second piston member rotate due to the combustion of fuel and the control amount related to the rotation of the first piston member falls below the target value.
  • the control amount related to the rotation of the first piston member exceeds the target value, the regenerative torque generated in the first rotary electric machine is increased.
  • the control device reduces the regenerative torque generated in the second rotary electric machine when the control amount related to the rotation of the second piston member is less than the target value when the first piston member and the second piston member are rotated by the combustion of fuel.
  • the control amount related to the rotation of the second piston member exceeds the target value, the regenerative torque generated in the second rotary electric machine is increased.
  • the control device feedback-controls the control amount related to the rotation of the first piston member and the second piston member while the engine is operating, and adjusts the control amount so as to approach the target value.
  • the combustion of the engine can be stably continued under a large amount of regenerative power generation and efficient conditions.
  • the combustion of the engine can be stably continued.
  • FIG. 1 It is a figure which shows an example of the schematic structure of the engine device in this embodiment. It is a perspective view which shows a part of the structure of an engine device. It is a figure which shows an example of the structure of the piston member provided in the engine. It is a figure for demonstrating an example of the operation of each component member in the case of burning fuel in a combustion chamber A. It is a figure for demonstrating an example of the operation of each component member at the time of burning fuel in a combustion chamber D. It is a figure for demonstrating an example of the change of the process in each combustion chamber. It is a graph which shows an example of the target value of the control amount with respect to the rotation of a piston member.
  • FIG. 1 is a diagram showing an example of a schematic configuration of an engine device 1 according to the present embodiment.
  • FIG. 2 is a perspective view showing a part of the configuration of the engine device 1.
  • the engine device 1 includes an engine 2, a first MG (Motor Generator) 61, a second MG (Motor Generator) 62, a first inverter 71, a second inverter 72, and a battery. 80 and load 90 are included.
  • the engine device 1 also includes a first resolver 101, a second resolver 102, and a control device 200.
  • the engine 2 is a rotating piston type internal combustion engine.
  • the fuel for the engine 2 for example, hydrogen, gasoline, gas (liquefied natural gas, liquefied petroleum gas, etc.) or light oil is used.
  • the engine 2 includes a housing 4, an intake pipe 6, an exhaust pipe 8, a fuel supply device 10, a throttle valve 12, a throttle motor 14, a first output shaft 16, and a second output shaft 18.
  • One end of the intake pipe 6 is connected to the intake port (not shown) of the housing 4.
  • an air cleaner (not shown) is connected to the other end of the intake pipe 6.
  • the air cleaner removes foreign matter from the air sucked from the outside of the engine 2. While the engine 2 is operating, the air sucked from the air cleaner flows through the intake pipe 6.
  • the air flowing through the intake pipe 6 circulates in the intake port of the housing 4.
  • the throttle valve 12 is provided in the intake pipe 6 and limits the flow rate of air flowing through the intake pipe 6.
  • the opening degree (throttle opening degree) of the throttle valve 12 is adjusted by the throttle motor 14 that operates in response to the control signal TH from the control device 200.
  • the fuel supply device 10 is provided on the upstream side of the throttle valve 12 of the intake pipe 6.
  • the fuel supply device 10 supplies fuel into the intake pipe 6 in response to the control signal INJ from the control device 200.
  • the fuel supplied into the intake pipe 6 is mixed with air in the intake pipe 6 and flows to the intake port of the housing 4.
  • the outer peripheral portion of the housing 4 is formed in a cylindrical shape, and the inner peripheral portion thereof is also formed in a cylindrical shape.
  • the housing 4 houses a first piston member connected to the first output shaft 16 and a second piston member connected to the second output shaft 18 inside the housing 4.
  • One end of the exhaust pipe 8 is connected to the exhaust port (not shown) of the housing 4.
  • An exhaust treatment device (not shown) is connected to the other end of the exhaust pipe 8, for example.
  • the exhaust generated by the combustion in the housing 4 flows from the exhaust port of the housing 4 to the exhaust pipe 8.
  • the exhaust gas flowing through the exhaust pipe 8 is purified by the exhaust treatment device and discharged to the outside of the engine 2.
  • FIG. 3 is a diagram showing an example of the configuration of a piston member provided inside the engine.
  • the first piston member 24 and the second piston member 28 are housed in the housing 4 in combination.
  • the first piston member 24 includes a first rotating body 24a and a first wall surface member 24b.
  • the second piston member 28 includes a second rotating body 28a and a second wall surface member 28b.
  • the first rotating body 24a and the second rotating body 28a are rotatably supported by the housing 4 so that the centers of rotation coincide with each other, and one end surface of the first rotating body 24a and one of the second rotating body 28a. It is provided so as to face the end face.
  • the first rotating body 24a and the second rotating body 28a are formed so as to have a slope portion in the cross section including the center of rotation thereof.
  • a recess having a V-shaped cross section is formed in the circumferential direction between the first rotating body 24a and the second rotating body 28a. Is formed in.
  • the first rotating body 24a is provided with a first wall surface member 24b that extends from the center of rotation toward the inner peripheral surface of the housing 4 and whose end abuts on the inner peripheral surface of the housing 4.
  • the first wall surface member 24b is composed of two triangular plate-shaped members.
  • the two triangular plate-shaped members of the first wall surface member 24b are provided on the first rotating body 24a so as to have a positional relationship symmetrical with respect to the center of rotation.
  • the second rotating body 28a is provided with a second wall surface member 28b that extends from the center of rotation toward the inner peripheral surface of the housing 4 and whose end abuts on the inner peripheral surface of the housing 4.
  • the second wall surface member 28b is composed of two triangular plate-shaped members having the same shape as the plate-shaped member constituting the first wall surface member 24b described above.
  • the two triangular plate-shaped members of the second wall surface member 28b are provided on the second rotating body 28a so as to have a positional relationship symmetrical with respect to the center of rotation.
  • the triangular plate-shaped members of the first wall surface member 24b and the second wall surface member 28b are the first rotating body 24a and the first rotating body 24a in a state where the first piston member 24 and the second piston member 28 are housed in the housing 4. It is formed so as to match the cross-sectional shape of a triangle formed by the recess between the two rotating bodies 28a and the inner peripheral surface of the housing 4. Further, the outer peripheral portions of the triangular plate-shaped members of the first wall surface member 24b and the second wall surface member 28b are configured to be slidable with the inner peripheral surface of the housing 4.
  • the first output shaft 16 is connected to the first rotating body 24a so that the centers of rotation coincide with each other.
  • the second output shaft 18 is connected to the second rotating body 28a so that the centers of rotation coincide with each other.
  • one-way clutches 22 and 26 are provided between each of the first rotating body 24a and the second rotating body 28a and the housing 4.
  • the one-way clutch 22 allows rotation of the first rotating body 24a only in a predetermined rotation direction in the housing 4, and suppresses rotation in a direction opposite to the predetermined rotation direction.
  • the one-way clutch 26 allows rotation of the second rotating body 28a only in a predetermined rotation direction in the housing 4, and suppresses rotation in a direction opposite to the predetermined rotation direction.
  • Both the first output shaft 16 and the second output shaft 18 rotate due to the combustion of fuel in the housing 4.
  • the first output shaft 16 is connected to the rotation shaft of the first MG61.
  • the second output shaft 18 is connected to the rotation shaft of the second MG 62.
  • the first MG61 and the second MG62 are, for example, both three-phase AC rotary electric machines.
  • Both the first inverter 71 and the second inverter 72 are power conversion devices configured to enable power conversion between DC power and AC power.
  • the first MG 61 is electrically connected to the first inverter 71.
  • the first inverter 71 is controlled by the control signal INV1 from the control device 200. That is, the electric power transmitted and received between the first MG 61 and the first inverter 71 is controlled by the control signal INV1 from the control device 200.
  • the control device 200 controls the first inverter 71 so that the regenerative torque is generated in the first MG 61, for example. At this time, the regenerative power generated in the first MG 61 is converted from AC power to DC power in the first inverter 71 and supplied to the battery 80. The battery 80 is charged by the DC power supplied from the first inverter 71.
  • the first MG 61 is connected to the first piston member 24 via the first output shaft 16, and the first MG 61 is configured to be capable of regenerative power generation by the rotation of the first piston member 24.
  • the control device 200 controls the first inverter 71 so that the drive torque is generated in the first MG 61.
  • the power of the battery 80 is converted from DC power to AC power in the first inverter 71 and supplied to the first MG 61.
  • the first MG 61 is connected to the first piston member 24 via the first output shaft 16, and the first MG 61 is configured to be able to rotationally drive the first piston member 24.
  • the control device 200 controls the rotational operation of the first piston member 24 by transmitting the control signal INV1 to the first inverter 71.
  • the first resolver 101 detects the rotation angle (hereinafter, referred to as the rotation angle CA1) of the rotation axis (first output shaft 16) of the first MG61.
  • the first resolver 101 transmits a signal indicating the detected rotation angle CA1 to the control device 200.
  • the second MG 62 is electrically connected to the second inverter 72.
  • the second inverter 72 is controlled by the control signal INV2 from the control device 200. That is, the electric power exchanged between the second MG 62 and the second inverter 72 is controlled by the control signal INV2 from the control device 200.
  • the control device 200 controls the second inverter 72 so that the regenerative torque is generated in the second MG 62, for example. At this time, the regenerative power generated in the second MG 62 is converted from AC power to DC power in the second inverter 72 and supplied to the battery 80. The battery 80 is charged by the DC power supplied from the second inverter 72.
  • the second MG 62 is connected to the second piston member 28 via the second output shaft 18, and the second MG 62 is configured to be capable of regenerative power generation by the rotation of the second piston member 28.
  • control device 200 controls the second inverter 72 so that the drive torque is generated in the second MG 62.
  • the power of the battery 80 is converted from DC power to AC power in the second inverter 72 and supplied to the second MG 62.
  • the second MG 62 is connected to the second piston member 28 via the second output shaft 18, and the second MG 62 is configured to be able to rotationally drive the second piston member 28.
  • the control device 200 controls the rotational operation of the second piston member 28 by transmitting the control signal INV2 to the second inverter 72.
  • the second resolver 102 detects the rotation angle (hereinafter, referred to as the rotation angle CA2) of the rotation axis (second output shaft 18) of the second MG 62.
  • the second resolver 102 transmits a signal indicating the detected rotation angle CA2 to the control device 200.
  • the battery 80 is a DC power source composed of a secondary battery such as a nickel hydrogen battery or a lithium ion battery, for example.
  • the battery 80 may be a power storage device capable of storing DC power supplied from the first inverter 71 or the second inverter 72, and for example, a capacitor or the like may be used instead of the battery 80.
  • the operation of the engine device 1 is controlled by the control device 200.
  • the control device 200 includes a CPU (Central Processing Unit) that performs various processes, a memory that includes a ROM (Read Only Memory) that stores programs and data, a RAM (Random Access Memory) that stores the processing results of the CPU, and the like. Includes input / output ports (neither shown) for exchanging information with the outside.
  • the above-mentioned sensors for example, the first resolver 101 and the second resolver 102 are connected to the input port.
  • a device to be controlled (for example, engine 2, first inverter 71, second inverter 72, etc.) is connected to the output port.
  • the control device 200 controls various devices so that the engine device 1 is in a desired operating state based on signals from each sensor and device, as well as maps and programs stored in the memory. Note that various controls are not limited to software processing, but can also be processed by dedicated hardware (electronic circuits).
  • FIG. 4 is a diagram for explaining an example of the operation of each component member when fuel is burned in the combustion chamber A.
  • FIG. 4 shows a cross section orthogonal to the center of rotation in the central portion of the housing 4 (for example, the contact portion between the first rotating body 24a and the second rotating body 28a).
  • the housing 4 in the housing 4, four combustion chambers A to D for burning fuel by the inner peripheral surface of the housing 4, the first piston member 24, and the second piston member 28 are provided. It is formed.
  • the first wall surface member 24b and the second wall surface member 28b form a wall surface in the circumferential direction of the combustion chambers A to D.
  • the two combustion chambers adjacent to each other in the circumferential direction are separated by a first wall surface member 24b and a second wall surface member 28b.
  • the one-way clutches 22 and 26 shown in FIG. 3 suppress the counterclockwise rotation of the first piston member 24 and the second piston member 28, and allow the clockwise rotation.
  • the air-fuel mixture of the compressed air and the fuel becomes an expansion stroke in which the air-fuel mixture is ignited by self-ignition. That is, when the fuel burns in the combustion chamber A, the counterclockwise movement of the first piston member 24 is suppressed by the one-way clutch 22, so that the rotational position of the first piston member 24 is maintained and the second piston member 28 Only rotates in the direction of the dashed arrow, and the volume of the combustion chamber A increases with the expansion of the gas in the combustion chamber A.
  • the expanded exhaust gas is discharged from the exhaust pipe 8. That is, when the second piston member 28 rotates in the direction of the broken arrow arrow due to the combustion of fuel in the combustion chamber A, the rotational position of the first piston member 24 is maintained, so that the volume of the combustion chamber B decreases. At this time, the combustion chamber B communicates with the exhaust pipe 8. Therefore, the exhaust gas in the combustion chamber B is discharged to the exhaust pipe 8 as the volume of the combustion chamber B decreases.
  • the intake stroke is such that the air-fuel mixture is sucked from the intake pipe 6. That is, when the second piston member 28 rotates in the direction of the broken arrow arrow due to the combustion of fuel in the combustion chamber A, the rotational position of the first piston member 24 is maintained, so that the volume of the combustion chamber C increases. At this time, the combustion chamber C communicates with the intake pipe 6 while the second piston member 28 is rotating in the direction of the broken line arrow. Therefore, as the volume of the combustion chamber C increases, the air-fuel mixture is sucked into the combustion chamber C from the intake pipe 6.
  • the air-fuel mixture sucked from the intake pipe 6 is compressed. That is, when the second piston member 28 rotates in the direction of the broken arrow arrow due to the combustion of fuel in the combustion chamber A, the rotational position of the first piston member 24 is maintained, so that the volume of the combustion chamber D decreases. At this time, since the combustion chamber D does not communicate with either the intake pipe 6 or the exhaust pipe 8, the air-fuel mixture in the combustion chamber D is compressed by the decrease in the volume of the combustion chamber D.
  • FIG. 5 is a diagram for explaining an example of the operation of each component member when fuel is burned in the combustion chamber D.
  • FIG. 5 shows a cross section orthogonal to the center of rotation in the central portion of the housing 4, as in FIG.
  • the configuration of the engine 2 shown in FIG. 5 is different from the configuration of the engine 2 shown in FIG. 4 in the positional relationship between the first piston member 24 and the second piston member 28, and the positions and volumes of the combustion chambers A to D. The same is true except that
  • the expansion stroke is performed after the compression stroke. That is, in the combustion chamber D, the air-fuel mixture of the compressed air and the fuel is ignited by self-ignition.
  • the counterclockwise movement of the second piston member 28 is suppressed by the one-way clutch 26, so that only the first piston member 24 can maintain the rotational position of the second piston member 28. It rotates clockwise and the volume of the combustion chamber D increases with the expansion of the gas in the combustion chamber D.
  • the exhaust stroke is performed after the expansion stroke. That is, when the first piston member 24 rotates clockwise due to the combustion of fuel in the combustion chamber D, the rotational position of the second piston member 28 is maintained, so that the volume of the combustion chamber A decreases. At this time, the combustion chamber A communicates with the exhaust pipe 8. Therefore, the exhaust gas in the combustion chamber A is discharged to the exhaust pipe 8 as the volume of the combustion chamber A decreases.
  • the intake stroke is performed after the exhaust stroke. That is, when the first piston member 24 rotates clockwise due to the combustion of fuel in the combustion chamber D, the rotational position of the second piston member 28 is maintained, so that the volume of the combustion chamber B increases. At this time, the combustion chamber B communicates with the intake pipe 6 while the first piston member 24 is rotating. Therefore, as the volume of the combustion chamber B increases, the air-fuel mixture is sucked into the combustion chamber B from the intake pipe 6.
  • the compression stroke is performed after the intake stroke. That is, when the first piston member 24 rotates clockwise due to the combustion of fuel in the combustion chamber D, the rotational position of the second piston member 28 is maintained, so that the volume of the combustion chamber C decreases. At this time, since the combustion chamber C does not communicate with either the intake pipe 6 or the exhaust pipe 8, the air-fuel mixture in the combustion chamber C is compressed by the decrease in the volume of the combustion chamber C.
  • first piston member 24 and the second piston member 28 rotate alternately to generate electricity in the first MG 61 and the second MG 62, and the generated AC power becomes DC power in the first inverter 71 and the second inverter 72. It is converted and supplied to the battery 80.
  • FIG. 6 is a diagram for explaining an example of a change in the process in each combustion chamber.
  • the combustion chamber A becomes an expansion stroke
  • the combustion chamber B becomes an exhaust stroke
  • the combustion chamber C becomes an intake stroke
  • the combustion chamber D becomes a compression stroke.
  • the positional relationship between the first piston member 24 and the second piston member 28 is the positional relationship shown in FIG. Therefore, in the process (1), the second piston member 28 is rotated by the combustion in the combustion chamber A, and the regenerative torque is generated in the second MG 62.
  • the combustion chamber A becomes the exhaust stroke
  • the combustion chamber B becomes the intake stroke
  • the combustion chamber C becomes the compression stroke
  • the combustion chamber D becomes the expansion stroke.
  • the positional relationship between the first piston member 24 and the second piston member 28 is the positional relationship shown in FIG. Therefore, in the process (2), the first piston member 24 is rotated by the combustion in the combustion chamber D, and the regenerative torque is generated in the first MG 61.
  • the combustion chamber A becomes the intake stroke
  • the combustion chamber B becomes the compression stroke
  • the combustion chamber C becomes the expansion stroke
  • the combustion chamber D becomes the exhaust stroke.
  • the positional relationship between the first piston member 24 and the second piston member 28 is the positional relationship shown in FIG. Therefore, in the process (3), the second piston member 28 is rotated by the combustion in the combustion chamber C, and the regenerative torque is generated in the second MG 62.
  • the combustion chamber A becomes the compression process
  • the combustion chamber B becomes the expansion process
  • the combustion chamber C becomes the exhaust process
  • the combustion chamber D becomes the intake process.
  • the positional relationship between the first piston member 24 and the second piston member 28 is the positional relationship shown in FIG. Therefore, in the process (4), the first piston member 24 is rotated by the combustion in the combustion chamber B, and the regenerative torque is generated in the first MG 61.
  • the control device 200 controls the first MG61 and the second MG62.
  • the control device 200 executes rotation control of the first piston member 24 by increasing or decreasing the regenerative torque generated in the first MG 61, and executes rotation control of the second piston member 28 by increasing or decreasing the regenerative torque generated in the second MG 62.
  • control device 200 controls the rotation of the first piston member 24 when the first piston member 24 and the second piston member 28 rotate due to the combustion of fuel in the combustion chambers A to D.
  • the amount is less than the target value, the regenerative torque generated in the first MG61 is reduced, and when the control amount related to the rotation of the first piston member 24 exceeds the target value, the regenerative torque generated in the first MG61 is increased.
  • the control amount regarding the rotation of the second piston member 28 sets a target value.
  • the regenerative torque generated in the second MG 62 is reduced, and when the control amount related to the rotation of the second piston member 28 exceeds the target value, the regenerative torque generated in the second MG 62 is increased.
  • the control amount related to the rotation of the first piston member 24 is determined based on the control map showing the relationship between the time and the phase of the first piston member 24, and the control amount related to the rotation of the second piston member 28. Is determined based on a control map showing the relationship between time and the phase of the second piston member 28.
  • the target value of the control amount regarding the rotation of the first piston member 24 shall be determined so that the regenerative power generation amount by the first MG 61 is maximized.
  • the target value of the control amount regarding the rotation of the second piston member 28 shall be determined so that the regenerative power generation amount by the second MG 62 is maximized.
  • the control device 200 feedback-controls the phases of the first piston member 24 and the second piston member 28 while the engine 2 is operating so that the phases of the first piston member 24 and the second piston member 28 approach the target value. Adjust to.
  • the first piston member 24 and the second piston member 28 are controlled. It is possible to stably continue the combustion of the engine 2 under a large amount of regenerative power generation and efficient conditions.
  • the collision between the first piston member 24 and the second piston member 28 can be reliably avoided, and the reliability of the engine 2 can be ensured.
  • the configuration of the engine 2 can be simplified. Therefore, it is possible to suppress an increase in manufacturing cost and the number of parts and a decrease in durability.
  • FIG. 7 is a graph showing an example of a target value of a controlled amount related to rotation of the piston member.
  • the horizontal axis in FIG. 7 indicates the rotation cycle of the piston member.
  • One scale on the horizontal axis indicates one cycle.
  • the time when the coordinates on the horizontal axis take a value of zero indicates the moment of ignition of the air-fuel mixture in any one of the combustion chambers A to D. Ignition is performed every time the coordinates on the horizontal axis increase by 0.5. That is, the next ignition is performed at the time when the coordinates on the horizontal axis take a value of 0.5, and the next ignition is performed at the time when the coordinates on the horizontal axis take a value of 1.0.
  • the vertical axis of FIG. 7 indicates the angle of rotation of the piston member, that is, the phase. Since the engine 2 of the present embodiment has two piston members, a first piston member 24 and a second piston member 28, the rotation angle of the piston member in one cycle is 180 °.
  • FIG. 7 shows the rotational operation of the piston member that partitions the combustion chamber that is the expansion stroke and the combustion chamber that is the exhaust stroke. The position where the coordinates of the vertical axis take a value of zero indicates the center of the combustion chamber in the rotation direction, which is the expansion stroke. Therefore, at the moment of ignition in the combustion chamber, that is, when the coordinates on the horizontal axis are zero, the angle shown on the vertical axis has a positive value.
  • FIG. 7 shows an ideal control map (target line) showing the relationship between time and the phase of the piston member.
  • the ideal rotational operation of the piston member is roughly as follows. As the piston member rotates due to the combustion of fuel in the combustion chamber, the phase increases substantially linearly with time between 0 and 0.5 cycles, and the piston member rotates to nearly 180 °. After that, the rotational position of the piston member is maintained by the action of the one-way clutch. When the cycle is close to one cycle, pressure is applied by the rotation of another piston member, so that the piston member rotates, and at this time, the phase of the piston member gradually increases with time.
  • FIG. 8 is a graph showing an example of a target value of regenerative torque generated in a rotary electric machine.
  • the horizontal axis of FIG. 8 shows the rotation cycle of the piston member as in FIG. 7.
  • the vertical axis of FIG. 8 shows the regenerative torque generated in the rotary electric machine connected to the target piston member.
  • the regenerative torque increases and decreases along the parabolic graph in the range of the period 0 to 0.5.
  • cycle 0 the value of the regenerative torque is zero
  • the regenerative torque gradually increases to reach the maximum value in cycle 0.25, and then the regenerative torque gradually decreases and becomes zero again in cycle 0.5.
  • the value of the regenerative torque remains zero.
  • the piston member connected to the rotating electric machine that increases or decreases the regenerative torque in a parabolic shape in this way can perform the ideal rotational operation shown in FIG. 7.
  • the regenerative torque generated in the rotary electric machine differs in magnitude according to the rotation speed of the piston member. Specifically, the higher the rotational speed of the piston member, the larger the regenerative torque generated in the rotary electric machine connected to the piston member.
  • FIG. 8 shows three types of regenerative torque when the rotation speed of the piston member (that is, the rotation speed of the rotary electric machine) is 1000 rpm, 1500 rpm, and 2500 rpm.
  • the control device 200 selects the optimum target value of the regenerative torque according to the rotation speed of the piston member (rotary electric machine), and generates the regenerative torque according to the rotation cycle. Can be controlled.
  • FIG. 9 is a flowchart showing an example of processing executed by the control device 200.
  • the process shown in the flowchart of FIG. 9 is called and executed from the main routine (not shown) at predetermined control cycles.
  • the process of controlling the first MG 61 connected to the first piston member 24 will be described, but the same process is performed for the second MG 62 connected to the second piston member 28.
  • the control device 200 continuously operates the engine 2 by alternately executing the process of controlling the first MG 61 and the process of controlling the second MG 62.
  • step S1 the rotation position of the first MG61 is acquired.
  • the control device 200 uses the first resolver 101 (FIG. 1) to acquire a rotation angle CA1 (FIG. 1) indicating the rotation position of the first MG 61.
  • step S2 the rotation speed of the first MG61 is calculated.
  • the control device 200 calculates the rotation speed of the first MG 61 by dividing the amount of change in the rotation angle CA1 of the first MG 61 in the immediately preceding predetermined period by the time elapsed in the period.
  • step S3 the target value of the regenerative torque of the first MG61 is set.
  • the control device 200 sets an optimum target value of the regenerative torque based on the rotation speed of the first MG61 calculated in step S2 with reference to the map of the regenerative torque shown in FIG. As a result, the first piston member 24 connected to the first MG 61 is controlled with the ideal rotational motion shown in FIG. 7 as a target value.
  • step S4 the control device 200 determines whether or not the actual phase of the first piston member 24 detected by the rotation angle CA1 is equal to the target value of the phase with respect to the rotation cycle shown in FIG. ..
  • the process proceeds to step S5, and the regenerative torque generated in the first MG 61 is maintained as it is. Then, the process ends (end).
  • step S4 If it is determined in step S4 that the actual phase of the first piston member 24 is different from the target value (NO in step S4), the process proceeds to step S6, and the control device 200 controls the actual phase of the first piston member 24. Is larger than the target value.
  • step S6 If it is determined that the actual phase of the first piston member 24 is larger than the target value (YES in step S6), the first piston member 24 is excessively rotated with respect to the ideal position.
  • the process of suppressing the rotation of the first piston member 24 to bring it closer to the ideal position is performed.
  • step S7 the control device 200 increases the regenerative torque generated in the first MG 61.
  • the load on the rotation of the first piston member 24 increases, so that the rotation of the first piston member 24 is suppressed. Therefore, the phase of the first piston member 24 can be brought close to the ideal position. Then, the process ends (end).
  • step S6 when it is determined that the actual phase of the first piston member 24 is not larger than the target value, that is, the actual phase of the first piston member 24 is smaller than the target value (NO in step S6). , The first piston member 24 is insufficiently rotated with respect to the ideal position. In this case, the process of promoting the rotation of the first piston member 24 to bring it closer to the ideal position is performed.
  • step S8 the control device 200 determines whether or not the regenerative torque generated in the first MG 61 is zero. If it is determined that the regenerative torque is not zero (NO in step S8), in step S9, the control device 200 reduces the regenerative torque generated in the first MG 61. As a result, the load on the rotation of the first piston member 24 is reduced, so that the rotation of the first piston member 24 is promoted. Therefore, the phase of the first piston member 24 can be brought close to the ideal position.
  • step S10 the control device 200 determines whether or not the regenerative torque generated in the first MG 61 is zero. When it is determined that the regenerative torque is not zero (NO in step S10), the process ends as it is (end).
  • step S8 When it is determined in the determination in step S8 and the determination in step S10 that the regenerative torque generated in the first MG 61 is zero (YES in step S8, YES in step S10), the regenerative torque is already set to zero. Therefore, it is not possible to perform a process of reducing the regenerative torque and promoting the rotation of the first piston member 24. For example, when the engine 2 misfires, the expansion of the gas in the combustion chamber does not exert a force to rotate the piston member, so that even if the regenerative torque is reduced to zero, the first piston member 24 is in the ideal position. On the other hand, the rotation tends to be insufficient.
  • the first MG61 is used as an electric motor instead of a generator, and the first piston member 24 is driven by the first MG61 to bring the phase of the first piston member 24 closer to the ideal position. Is done.
  • the control device 200 increases the rotational driving force generated by the first MG 61. By transmitting a larger rotational driving force to the first piston member 24, the rotation of the first piston member 24 is promoted. Therefore, the phase of the first piston member 24 can be brought close to the ideal position. Then, the process ends (end).
  • FIG. 10 is a graph showing an example of feedback control of the control amount related to the rotation of the piston member with respect to the target value.
  • the phase of the first piston member 24 is larger than the target value, the rotation of the first piston member 24 is suppressed, and the phase of the first piston member 24 is smaller than the target value.
  • feedback control that promotes the rotation of the first piston member 24 is executed.
  • the phase of the first piston member 24 can be converged to the target value, and the first piston member 24 can be controlled so as to follow the target line.
  • the control device 200 reduces the regenerative torque generated in the rotary electric machine when the phase of the piston member with respect to time falls below the target value, and the phase of the piston member with respect to time. When exceeds the target value, the regenerative torque generated in the rotary electric machine is increased.
  • the phase of the piston member can be converged to the target value. Therefore, the operation of the engine 2 can be stably continued under the conditions closer to the ideal rotational operation in which the amount of regenerative power generation is maximized.
  • the first piston member 24 and the second piston member 24 and the second piston member 28 are controlled. Since unnecessary braking and reacceleration of the piston member 28 are not required, vibration of the engine device 1 can be reduced. Further, the collision between the first piston member 24 and the second piston member 28 can be reliably avoided. Therefore, the reliability of the engine device 1 can be ensured.
  • the piston member is controlled to exist at the ideal position at each moment by driving the rotary electric machine.
  • the operation in a state where ignition is possible in the combustion chamber is continued, and even if a misfire occurs, combustion can be restored at the next ignition timing, so that the combustion of the engine 2 can be stably continued.
  • FIG. 11 is a flowchart showing an example of the processing executed by the control device 200 in the second embodiment.
  • the control amount related to the rotation of the first piston member 24 is the rotation speed of the first piston member 24
  • the control amount related to the rotation of the second piston member 28 is the rotation speed of the second piston member 28. It is assumed that. More specifically, the control amount for the rotation of the first piston member 24 is the rotation speed of the first piston member 24 with respect to time or the rotation speed of the first piston member 24 with respect to the phase.
  • the control amount related to the rotation of the second piston member 28 is the rotation speed of the second piston member 28 with respect to time or the rotation speed of the second piston member 28 with respect to the phase.
  • step S101 the rotation position of the first MG61 is acquired.
  • step S102 the rotation speed of the first MG61 is calculated. Since the processing in steps S101 and S102 is the same as in steps S1 and S2 shown in FIG. 9, the description thereof will be omitted.
  • step S103 a target value of the rotational speed of the first piston member 24 is set.
  • FIG. 12 is a graph showing the first example of the target value of the rotational speed of the piston member.
  • the horizontal axis of FIG. 12 shows the rotation cycle of the piston member as in FIG. 7.
  • the vertical axis of FIG. 12 shows the rotation speed of the piston member.
  • the rotational speed of the piston member increases or decreases along the parabolic graph in the range of the period 0 to 0.5.
  • the value of the rotational speed is zero, the rotational speed gradually increases to reach the maximum value in period 0.25, and then the rotational speed gradually decreases and becomes zero again in period 0.5.
  • the value of rotational speed remains zero.
  • the piston member that increases or decreases the rotation speed in a parabolic manner in this way can perform the ideal rotation operation shown in FIG. 7.
  • FIG. 12 shows three rotation speeds when the rotation speed of the piston member (that is, the rotation speed of the rotary electric machine) is 1000 rpm, 1500 rpm, and 2500 rpm.
  • the control device 200 selects a target value of the optimum rotation speed according to the rotation speed of the piston member (rotary electric machine), and rotates the piston member so as to have the selected rotation speed according to the rotation cycle.
  • the regenerative torque generated by the electric machine can be controlled.
  • FIG. 13 is a graph showing a second example of the target value of the rotational speed of the piston member.
  • the horizontal axis of FIG. 13 indicates the angle of rotation of the piston member, that is, the phase.
  • the vertical axis of FIG. 13 shows the rotation speed of the piston member.
  • the rotational speed of the piston member increases or decreases along a parabolic graph in the phase range of 0 ° to 180 °.
  • the value of rotational speed is zero, the rotational speed gradually increases to reach the maximum value at phase 90 °, then the rotational speed gradually decreases and becomes zero again at phase 180 °.
  • the piston member that increases or decreases the rotation speed in a parabolic manner in this way can perform the ideal rotation operation shown in FIG. 7.
  • FIG. 13 shows three rotation speeds when the rotation speed of the piston member (that is, the rotation speed of the rotary electric machine) is 1000 rpm, 1500 rpm, and 2500 rpm.
  • the control device 200 selects a target value of the optimum rotation speed according to the rotation speed of the piston member (rotary electric machine), and rotates the piston member so as to have the selected rotation speed according to the rotation cycle.
  • the regenerative torque generated by the electric machine can be controlled.
  • step S103 the target value of the rotation speed of the first piston member 24 is set.
  • the control device 200 refers to the map of the rotation speed with respect to the rotation cycle (time) of the first piston member 24 shown in FIG. 12, and has an optimum rotation speed based on the rotation speed of the first MG 61 calculated in step S102. Set the target value.
  • the control device 200 sets a target value of the optimum rotation speed with reference to the map of the rotation speed with respect to the rotation phase of the first piston member 24 shown in FIG.
  • step S104 the control device 200 determines whether or not the actual rotational speed of the first piston member 24 is equal to the target value of the rotational speed shown in FIG. 12 or 13.
  • step S106 the control device 200 determines whether or not the actual rotational speed of the first piston member 24 is larger than the target value of the rotational speed shown in FIG. 12 or 13. In this way, if the rotation speed of the first piston member 24 is larger than the target value, the rotation of the first piston member 24 is suppressed, and if the rotation speed of the first piston member 24 is smaller than the target value, the first piston member Execute feedback control that promotes the rotation of 24. Since the processing of each subsequent step is the same as that of the first embodiment described with reference to FIG. 9, the description thereof will be omitted.
  • the control device 200 reduces the regenerative torque generated in the rotary electric machine when the rotation speed of the piston member is lower than the target value, and the rotation speed of the piston member becomes the target value. When it exceeds, the regenerative torque generated in the rotary electric machine is increased. In this way, by executing the feedback control with respect to the target value of the rotation speed of the piston member, the rotation speed of the piston member can be converged to the target value. Therefore, the operation of the engine 2 can be stably continued under the conditions closer to the ideal rotational operation in which the amount of regenerative power generation is maximized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Combustion of an engine is stably continued. When a first piston member and a second piston member rotate with combustion of fuel, a control device decreases a regenerative torque generated in a first rotating electric machine if a control amount related to rotation of the first piston member falls below a target value, increases the regenerative torque generated in the first rotating electric machine if the control amount related to the rotation of the first piston member exceeds the target value, decreases a regenerative torque generated in a second rotating electric machine if a control amount related to rotation of the second piston member falls below a target value, and increases the regenerative torque generated in the second rotating electric machine if the control amount related to the rotation of the second piston member exceeds the target value.

Description

エンジン装置Engine equipment
 本開示は、エンジン装置に関する。 This disclosure relates to an engine device.
 特開平6-2559号公報(特許文献1)には、回転軸と、回転軸上で回転する第1ロータおよび第2ロータと、第1ロータおよび第2ロータの動力を回転軸へ伝達する動力伝達手段とを備えるロータリエンジンにおいて、第1ロータおよび第2ロータの真円回転運動により発生した回転動力を出力することにより回転ロスをなくすと記載されている。 Japanese Patent Application Laid-Open No. 6-2559 (Patent Document 1) describes a rotating shaft, a first rotor and a second rotor rotating on the rotating shaft, and a power for transmitting the power of the first rotor and the second rotor to the rotating shaft. It is described that in a rotary engine provided with a transmission means, rotational loss is eliminated by outputting rotational power generated by the perfect circular rotational motion of the first rotor and the second rotor.
特開平6-2559号公報Japanese Unexamined Patent Publication No. 6-2559
 複数のピストン部材が独立して回転可能な回転ピストン型のエンジンにおいて、より効率のよい条件でのエンジンの燃焼を安定して継続することが望ましいが、上記文献にはこのような観点からの記載はない。 In a rotary piston type engine in which a plurality of piston members can rotate independently, it is desirable to stably continue combustion of the engine under more efficient conditions, but the above document describes from such a viewpoint. There is no.
 本開示では、エンジンの燃焼の安定継続を可能とする、エンジン装置が提供される。 In the present disclosure, an engine device that enables stable continuation of engine combustion is provided.
 本開示に従うと、回転ピストン型のエンジンを備えるエンジン装置が提供される。エンジンは、ハウジングと、ハウジング内に回転可能に支持される第1ピストン部材と、ハウジング内に回転可能に支持される第2ピストン部材と、を含んでいる。ハウジング、第1ピストン部材および第2ピストン部材は、燃料を燃焼させるための燃焼室を形成する。エンジン装置は、第1回転電機と、第2回転電機と、制御装置とをさらに備えている。第1回転電機は、第1ピストン部材に接続されている。第1回転電機は、第1ピストン部材の回転により回生発電可能である。第2回転電機は、第2ピストン部材に接続されている。第2回転電機は、第2ピストン部材の回転により回生発電可能である。制御装置は、第1回転電機および第2回転電機を制御する。制御装置は、燃料の燃焼によって第1ピストン部材および第2ピストン部材が回転する場合において、第1ピストン部材の回転に関する制御量が目標値を下回るとき、第1回転電機において発生する回生トルクを減少させ、第1ピストン部材の回転に関する制御量が目標値を上回るとき、第1回転電機において発生する回生トルクを増大させる。制御装置は、燃料の燃焼によって第1ピストン部材および第2ピストン部材が回転する場合において、第2ピストン部材の回転に関する制御量が目標値を下回るとき、第2回転電機において発生する回生トルクを減少させ、第2ピストン部材の回転に関する制御量が目標値を上回るとき、第2回転電機において発生する回生トルクを増大させる。 According to the present disclosure, an engine device including a rotating piston type engine is provided. The engine includes a housing, a first piston member rotatably supported within the housing, and a second piston member rotatably supported within the housing. The housing, the first piston member and the second piston member form a combustion chamber for burning fuel. The engine device further includes a first rotary electric machine, a second rotary electric machine, and a control device. The first rotary electric machine is connected to the first piston member. The first rotary electric machine can generate regenerative power by rotating the first piston member. The second rotary electric machine is connected to the second piston member. The second rotary electric machine can generate regenerative power by rotating the second piston member. The control device controls the first rotary electric machine and the second rotary electric machine. The control device reduces the regenerative torque generated in the first rotary electric machine when the first piston member and the second piston member rotate due to the combustion of fuel and the control amount related to the rotation of the first piston member falls below the target value. When the control amount related to the rotation of the first piston member exceeds the target value, the regenerative torque generated in the first rotary electric machine is increased. The control device reduces the regenerative torque generated in the second rotary electric machine when the control amount related to the rotation of the second piston member is less than the target value when the first piston member and the second piston member are rotated by the combustion of fuel. When the control amount related to the rotation of the second piston member exceeds the target value, the regenerative torque generated in the second rotary electric machine is increased.
 制御装置は、エンジンの作動中に、第1ピストン部材および第2ピストン部材の回転に関する制御量をフィードバック制御して、当該制御量を目標値に近づけるように調整する。これにより、回生発電量が大きく効率のよい条件でのエンジンの燃焼を安定して継続することができる。 The control device feedback-controls the control amount related to the rotation of the first piston member and the second piston member while the engine is operating, and adjusts the control amount so as to approach the target value. As a result, the combustion of the engine can be stably continued under a large amount of regenerative power generation and efficient conditions.
 本開示に係るエンジン装置に従えば、エンジンの燃焼を安定して継続することができる。 According to the engine device according to the present disclosure, the combustion of the engine can be stably continued.
本実施形態におけるエンジン装置の概略構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the engine device in this embodiment. エンジン装置の構成の一部を示す斜視図である。It is a perspective view which shows a part of the structure of an engine device. エンジン内部に設けられるピストン部材の構成の一例を示す図である。It is a figure which shows an example of the structure of the piston member provided in the engine. 燃焼室Aで燃料が燃焼する場合における各構成部材の動作の一例を説明するための図である。It is a figure for demonstrating an example of the operation of each component member in the case of burning fuel in a combustion chamber A. 燃焼室Dで燃料が燃焼する場合における各構成部材の動作の一例を説明するための図である。It is a figure for demonstrating an example of the operation of each component member at the time of burning fuel in a combustion chamber D. 各燃焼室における行程の変化の一例を説明するための図である。It is a figure for demonstrating an example of the change of the process in each combustion chamber. ピストン部材の回転に関する制御量の目標値の一例を示すグラフである。It is a graph which shows an example of the target value of the control amount with respect to the rotation of a piston member. 回転電機において発生する回生トルクの目標値の一例を示すグラフである。It is a graph which shows an example of the target value of the regenerative torque generated in a rotary electric machine. 制御装置で実行される処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process executed by a control device. ピストン部材の回転に関する制御量の、目標値に対するフィードバック制御の一例を示すグラフである。It is a graph which shows an example of the feedback control with respect to the target value of the control amount about the rotation of a piston member. 第二実施形態における制御装置で実行される処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process executed by the control device in 2nd Embodiment. ピストン部材の回転速度の目標値の第一の例を示すグラフである。It is a graph which shows the 1st example of the target value of the rotational speed of a piston member. ピストン部材の回転速度の目標値の第二の例を示すグラフである。It is a graph which shows the 2nd example of the target value of the rotational speed of a piston member.
 以下、図面を参照しつつ、本発明の実施形態について説明する。以下の説明では、同一の部品には同一の符号が付されている。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are designated by the same reference numerals. Their names and functions are the same. Therefore, detailed explanations about them will not be repeated.
 [第一実施形態]
 <エンジン装置1の概略構成について>
 図1は、本実施形態におけるエンジン装置1の概略構成の一例を示す図である。図2は、エンジン装置1の構成の一部を示す斜視図である。図1および図2に示すように、エンジン装置1は、エンジン2と、第1MG(Motor Generator)61と、第2MG(Motor Generator)62と、第1インバータ71と、第2インバータ72と、バッテリ80と、負荷90とを含む。エンジン装置1はまた、第1レゾルバ101と、第2レゾルバ102と、制御装置200とを含む。
[First Embodiment]
<About the schematic configuration of engine device 1>
FIG. 1 is a diagram showing an example of a schematic configuration of an engine device 1 according to the present embodiment. FIG. 2 is a perspective view showing a part of the configuration of the engine device 1. As shown in FIGS. 1 and 2, the engine device 1 includes an engine 2, a first MG (Motor Generator) 61, a second MG (Motor Generator) 62, a first inverter 71, a second inverter 72, and a battery. 80 and load 90 are included. The engine device 1 also includes a first resolver 101, a second resolver 102, and a control device 200.
 <エンジン2の構成について>
 本実施形態において、エンジン2は、回転ピストン型の内燃機関である。エンジン2の燃料には、たとえば、水素、ガソリン、ガス(液化天然ガス、液化石油ガスなど)または軽油などが用いられる。エンジン2は、ハウジング4と、吸気管6と、排気管8と、燃料供給装置10と、スロットルバルブ12と、スロットルモータ14と、第1出力軸16と、第2出力軸18とを含む。
<About the configuration of engine 2>
In the present embodiment, the engine 2 is a rotating piston type internal combustion engine. As the fuel for the engine 2, for example, hydrogen, gasoline, gas (liquefied natural gas, liquefied petroleum gas, etc.) or light oil is used. The engine 2 includes a housing 4, an intake pipe 6, an exhaust pipe 8, a fuel supply device 10, a throttle valve 12, a throttle motor 14, a first output shaft 16, and a second output shaft 18.
 吸気管6の一方端は、ハウジング4の吸気ポート(図示せず)に接続される。吸気管6の他方端には、たとえば、エアクリーナ(図示せず)が接続される。エアクリーナは、エンジン2の外部から吸入される空気から異物を除去する。エンジン2の作動中において、吸気管6には、エアクリーナから吸入された空気が流通する。吸気管6を流通する空気は、ハウジング4の吸気ポートに流通する。 One end of the intake pipe 6 is connected to the intake port (not shown) of the housing 4. For example, an air cleaner (not shown) is connected to the other end of the intake pipe 6. The air cleaner removes foreign matter from the air sucked from the outside of the engine 2. While the engine 2 is operating, the air sucked from the air cleaner flows through the intake pipe 6. The air flowing through the intake pipe 6 circulates in the intake port of the housing 4.
 スロットルバルブ12は、吸気管6に設けられ、吸気管6を流通する空気の流量を制限する。スロットルバルブ12の開度(スロットル開度)は、制御装置200からの制御信号THに応じて動作するスロットルモータ14によって調整される。 The throttle valve 12 is provided in the intake pipe 6 and limits the flow rate of air flowing through the intake pipe 6. The opening degree (throttle opening degree) of the throttle valve 12 is adjusted by the throttle motor 14 that operates in response to the control signal TH from the control device 200.
 燃料供給装置10は、吸気管6のスロットルバルブ12よりも上流側に設けられる。燃料供給装置10は、制御装置200からの制御信号INJに応じて、燃料を吸気管6内に供給する。吸気管6内に供給された燃料は、吸気管6内で空気と混合されて、ハウジング4の吸気ポートに流通する。 The fuel supply device 10 is provided on the upstream side of the throttle valve 12 of the intake pipe 6. The fuel supply device 10 supplies fuel into the intake pipe 6 in response to the control signal INJ from the control device 200. The fuel supplied into the intake pipe 6 is mixed with air in the intake pipe 6 and flows to the intake port of the housing 4.
 ハウジング4の外周部分は、円筒形状によって形成されており、その内周部分も円筒形状に形成されている。ハウジング4は、その内部に、第1出力軸16に接続される第1ピストン部材と、第2出力軸18に接続される第2ピストン部材とを収納する。 The outer peripheral portion of the housing 4 is formed in a cylindrical shape, and the inner peripheral portion thereof is also formed in a cylindrical shape. The housing 4 houses a first piston member connected to the first output shaft 16 and a second piston member connected to the second output shaft 18 inside the housing 4.
 排気管8の一方端は、ハウジング4の排気ポート(図示せず)に接続される。排気管8の他方端には、たとえば、排気処理装置(図示せず)が接続される。エンジン2の作動中において、ハウジング4内での燃焼により生じた排気は、ハウジング4の排気ポートから排気管8に流通する。排気管8に流通する排気は、排気処理装置によって浄化されて、エンジン2の外部に排出される。 One end of the exhaust pipe 8 is connected to the exhaust port (not shown) of the housing 4. An exhaust treatment device (not shown) is connected to the other end of the exhaust pipe 8, for example. During the operation of the engine 2, the exhaust generated by the combustion in the housing 4 flows from the exhaust port of the housing 4 to the exhaust pipe 8. The exhaust gas flowing through the exhaust pipe 8 is purified by the exhaust treatment device and discharged to the outside of the engine 2.
 <エンジン2の内部構造について>
 以下、エンジン2の内部構造の一例について図3を参照しつつ説明する。図3は、エンジン内部に設けられるピストン部材の構成の一例を示す図である。
<About the internal structure of engine 2>
Hereinafter, an example of the internal structure of the engine 2 will be described with reference to FIG. FIG. 3 is a diagram showing an example of the configuration of a piston member provided inside the engine.
 図3に示すように、ハウジング4内には、第1ピストン部材24と、第2ピストン部材28とが組み合わされて収納される。第1ピストン部材24は、第1回転体24aと、第1壁面部材24bとを含む。第2ピストン部材28は、第2回転体28aと、第2壁面部材28bとを含む。 As shown in FIG. 3, the first piston member 24 and the second piston member 28 are housed in the housing 4 in combination. The first piston member 24 includes a first rotating body 24a and a first wall surface member 24b. The second piston member 28 includes a second rotating body 28a and a second wall surface member 28b.
 第1回転体24aと、第2回転体28aとは、回転中心が一致するようにハウジング4によって回転自在に支持され、第1回転体24aの一方の端面と、第2回転体28aの一方の端面とが対向するように設けられる。 The first rotating body 24a and the second rotating body 28a are rotatably supported by the housing 4 so that the centers of rotation coincide with each other, and one end surface of the first rotating body 24a and one of the second rotating body 28a. It is provided so as to face the end face.
 第1回転体24aおよび第2回転体28aは、その回転中心を含む断面に斜面部分を有するように形成される。これにより、第1回転体24aと第2回転体28aとが組み合わされた状態において、第1回転体24aと第2回転体28aとの間には、V字形状の断面を有する凹部が周方向に形成される。 The first rotating body 24a and the second rotating body 28a are formed so as to have a slope portion in the cross section including the center of rotation thereof. As a result, in a state where the first rotating body 24a and the second rotating body 28a are combined, a recess having a V-shaped cross section is formed in the circumferential direction between the first rotating body 24a and the second rotating body 28a. Is formed in.
 第1回転体24aには、回転中心からハウジング4の内周面に向けて延在するように設けられ、端部がハウジング4の内周面に当接する第1壁面部材24bが設けられる。第1壁面部材24bは、2つの三角形の板状部材によって構成される。第1壁面部材24bの2つの三角形の板状部材は、回転中心について互いに対称となる位置関係になるように第1回転体24aに設けられる。 The first rotating body 24a is provided with a first wall surface member 24b that extends from the center of rotation toward the inner peripheral surface of the housing 4 and whose end abuts on the inner peripheral surface of the housing 4. The first wall surface member 24b is composed of two triangular plate-shaped members. The two triangular plate-shaped members of the first wall surface member 24b are provided on the first rotating body 24a so as to have a positional relationship symmetrical with respect to the center of rotation.
 第2回転体28aには、回転中心からハウジング4の内周面に向けて延在するように設けられ、端部がハウジング4の内周面に当接する第2壁面部材28bが設けられる。第2壁面部材28bは、上述の第1壁面部材24bを構成する板状部材と同形状となる、2つの三角形の板状部材によって構成される。第2壁面部材28bの2つの三角形の板状部材は、回転中心について互いに対称となる位置関係になるように第2回転体28aに設けられる。 The second rotating body 28a is provided with a second wall surface member 28b that extends from the center of rotation toward the inner peripheral surface of the housing 4 and whose end abuts on the inner peripheral surface of the housing 4. The second wall surface member 28b is composed of two triangular plate-shaped members having the same shape as the plate-shaped member constituting the first wall surface member 24b described above. The two triangular plate-shaped members of the second wall surface member 28b are provided on the second rotating body 28a so as to have a positional relationship symmetrical with respect to the center of rotation.
 第1壁面部材24bおよび第2壁面部材28bの三角形の板状部材は、いずれも、第1ピストン部材24と第2ピストン部材28がハウジング4に収納されている状態において第1回転体24aと第2回転体28aとの間の凹部とハウジング4の内周面とによって形成される三角形の断面形状に合致するように形成される。また、第1壁面部材24bおよび第2壁面部材28bの三角形の板状部材の外周部分は、ハウジング4の内周面と摺動可能に構成される。 The triangular plate-shaped members of the first wall surface member 24b and the second wall surface member 28b are the first rotating body 24a and the first rotating body 24a in a state where the first piston member 24 and the second piston member 28 are housed in the housing 4. It is formed so as to match the cross-sectional shape of a triangle formed by the recess between the two rotating bodies 28a and the inner peripheral surface of the housing 4. Further, the outer peripheral portions of the triangular plate-shaped members of the first wall surface member 24b and the second wall surface member 28b are configured to be slidable with the inner peripheral surface of the housing 4.
 各部材間の当接部分や摺動部分には、シール等が適宜設けられる。第1回転体24aには、回転中心が一致するように第1出力軸16が接続される。第2回転体28aには、回転中心が一致するように第2出力軸18が接続される。さらに、第1回転体24aおよび第2回転体28aの各々とハウジング4との間には、たとえば、ワンウェイクラッチ22,26が設けられる。ワンウェイクラッチ22は、第1回転体24aのハウジング4内における予め定められた回転方向へのみ回転を許容し、予め定められた回転方向とは逆方向への回転を抑制する。同様に、ワンウェイクラッチ26は、第2回転体28aのハウジング4内における予め定められた回転方向へのみ回転を許容し、予め定められた回転方向とは逆方向への回転を抑制する。 Seals and the like are appropriately provided on the contact portion and the sliding portion between the members. The first output shaft 16 is connected to the first rotating body 24a so that the centers of rotation coincide with each other. The second output shaft 18 is connected to the second rotating body 28a so that the centers of rotation coincide with each other. Further, for example, one- way clutches 22 and 26 are provided between each of the first rotating body 24a and the second rotating body 28a and the housing 4. The one-way clutch 22 allows rotation of the first rotating body 24a only in a predetermined rotation direction in the housing 4, and suppresses rotation in a direction opposite to the predetermined rotation direction. Similarly, the one-way clutch 26 allows rotation of the second rotating body 28a only in a predetermined rotation direction in the housing 4, and suppresses rotation in a direction opposite to the predetermined rotation direction.
 <エンジン2以外の構成について>
 図1および図2に戻って、以下にエンジン装置1のエンジン2以外の構成について説明する。
<About configurations other than engine 2>
Returning to FIGS. 1 and 2, the configuration of the engine device 1 other than the engine 2 will be described below.
 第1出力軸16および第2出力軸18は、いずれもハウジング4内での燃料の燃焼によって回転する。第1出力軸16は、第1MG61の回転軸に接続される。第2出力軸18は、第2MG62の回転軸に接続される。 Both the first output shaft 16 and the second output shaft 18 rotate due to the combustion of fuel in the housing 4. The first output shaft 16 is connected to the rotation shaft of the first MG61. The second output shaft 18 is connected to the rotation shaft of the second MG 62.
 第1MG61および第2MG62は、たとえば、いずれも三相交流回転電機である。第1インバータ71および第2インバータ72は、いずれも直流電力と交流電力との間で電力変換が可能に構成される電力変換装置である。 The first MG61 and the second MG62 are, for example, both three-phase AC rotary electric machines. Both the first inverter 71 and the second inverter 72 are power conversion devices configured to enable power conversion between DC power and AC power.
 第1MG61は、第1インバータ71と電気的に接続される。第1インバータ71は、制御装置200からの制御信号INV1によって制御される。すなわち、第1MG61と第1インバータ71との間で授受される電力は、制御装置200からの制御信号INV1によって制御される。 The first MG 61 is electrically connected to the first inverter 71. The first inverter 71 is controlled by the control signal INV1 from the control device 200. That is, the electric power transmitted and received between the first MG 61 and the first inverter 71 is controlled by the control signal INV1 from the control device 200.
 制御装置200は、たとえば、第1MG61において回生トルクが発生するように第1インバータ71を制御する。このとき、第1MG61において発生する回生電力は、第1インバータ71において交流電力から直流電力に変換され、バッテリ80に供給される。バッテリ80は、第1インバータ71から供給される直流電力によって充電される。第1MG61は第1出力軸16を介して第1ピストン部材24に接続されており、第1MG61は第1ピストン部材24の回転により回生発電可能に構成されている。 The control device 200 controls the first inverter 71 so that the regenerative torque is generated in the first MG 61, for example. At this time, the regenerative power generated in the first MG 61 is converted from AC power to DC power in the first inverter 71 and supplied to the battery 80. The battery 80 is charged by the DC power supplied from the first inverter 71. The first MG 61 is connected to the first piston member 24 via the first output shaft 16, and the first MG 61 is configured to be capable of regenerative power generation by the rotation of the first piston member 24.
 または、制御装置200は、第1MG61において駆動トルクが発生するように第1インバータ71を制御する。このとき、バッテリ80の電力は、第1インバータ71において直流電力から交流電力に変換され第1MG61に供給される。第1MG61は第1出力軸16を介して第1ピストン部材24に接続されており、第1MG61は第1ピストン部材24を回転駆動可能に構成されている。 Alternatively, the control device 200 controls the first inverter 71 so that the drive torque is generated in the first MG 61. At this time, the power of the battery 80 is converted from DC power to AC power in the first inverter 71 and supplied to the first MG 61. The first MG 61 is connected to the first piston member 24 via the first output shaft 16, and the first MG 61 is configured to be able to rotationally drive the first piston member 24.
 制御装置200は、第1インバータ71に制御信号INV1を送信することにより、第1ピストン部材24の回転動作を制御する。 The control device 200 controls the rotational operation of the first piston member 24 by transmitting the control signal INV1 to the first inverter 71.
 第1レゾルバ101は、第1MG61の回転軸(第1出力軸16)の回転角度(以下、回転角度CA1と記載する)を検出する。第1レゾルバ101は、検出した回転角度CA1を示す信号を制御装置200に送信する。 The first resolver 101 detects the rotation angle (hereinafter, referred to as the rotation angle CA1) of the rotation axis (first output shaft 16) of the first MG61. The first resolver 101 transmits a signal indicating the detected rotation angle CA1 to the control device 200.
 第2MG62は、第2インバータ72と電気的に接続される。第2インバータ72は、制御装置200からの制御信号INV2によって制御される。すなわち、第2MG62と第2インバータ72との間で授受される電力は、制御装置200からの制御信号INV2によって制御される。 The second MG 62 is electrically connected to the second inverter 72. The second inverter 72 is controlled by the control signal INV2 from the control device 200. That is, the electric power exchanged between the second MG 62 and the second inverter 72 is controlled by the control signal INV2 from the control device 200.
 制御装置200は、たとえば、第2MG62において回生トルクが発生するように第2インバータ72を制御する。このとき、第2MG62において発生する回生電力は、第2インバータ72において交流電力から直流電力に変換され、バッテリ80に供給される。バッテリ80は、第2インバータ72から供給される直流電力によって充電される。第2MG62は第2出力軸18を介して第2ピストン部材28に接続されており、第2MG62は第2ピストン部材28の回転により回生発電可能に構成されている。 The control device 200 controls the second inverter 72 so that the regenerative torque is generated in the second MG 62, for example. At this time, the regenerative power generated in the second MG 62 is converted from AC power to DC power in the second inverter 72 and supplied to the battery 80. The battery 80 is charged by the DC power supplied from the second inverter 72. The second MG 62 is connected to the second piston member 28 via the second output shaft 18, and the second MG 62 is configured to be capable of regenerative power generation by the rotation of the second piston member 28.
 または、制御装置200は、第2MG62において駆動トルクが発生するように第2インバータ72を制御する。このとき、バッテリ80の電力は、第2インバータ72において直流電力から交流電力に変換され第2MG62に供給される。第2MG62は第2出力軸18を介して第2ピストン部材28に接続されており、第2MG62は第2ピストン部材28を回転駆動可能に構成されている。 Alternatively, the control device 200 controls the second inverter 72 so that the drive torque is generated in the second MG 62. At this time, the power of the battery 80 is converted from DC power to AC power in the second inverter 72 and supplied to the second MG 62. The second MG 62 is connected to the second piston member 28 via the second output shaft 18, and the second MG 62 is configured to be able to rotationally drive the second piston member 28.
 制御装置200は、第2インバータ72に制御信号INV2を送信することにより、第2ピストン部材28の回転動作を制御する。 The control device 200 controls the rotational operation of the second piston member 28 by transmitting the control signal INV2 to the second inverter 72.
 第2レゾルバ102は、第2MG62の回転軸(第2出力軸18)の回転角度(以下、回転角度CA2と記載する)を検出する。第2レゾルバ102は、検出した回転角度CA2を示す信号を制御装置200に送信する。 The second resolver 102 detects the rotation angle (hereinafter, referred to as the rotation angle CA2) of the rotation axis (second output shaft 18) of the second MG 62. The second resolver 102 transmits a signal indicating the detected rotation angle CA2 to the control device 200.
 バッテリ80は、たとえば、ニッケル水素電池やリチウムイオン電池等の二次電池によって構成される直流電源である。なお、バッテリ80は、第1インバータ71あるいは第2インバータ72から供給される直流電力の貯蔵が可能な蓄電装置であればよく、たとえば、バッテリ80に代えて、キャパシタ等が用いられてもよい。 The battery 80 is a DC power source composed of a secondary battery such as a nickel hydrogen battery or a lithium ion battery, for example. The battery 80 may be a power storage device capable of storing DC power supplied from the first inverter 71 or the second inverter 72, and for example, a capacitor or the like may be used instead of the battery 80.
 エンジン装置1の動作は、制御装置200によって制御される。制御装置200は、各種処理を行なうCPU(Central Processing Unit)と、プログラムおよびデータを記憶するROM(Read Only Memory)およびCPUの処理結果等を記憶するRAM(Random Access Memory)等を含むメモリと、外部との情報のやり取りを行なうための入・出力ポート(いずれも図示せず)とを含む。入力ポートには、上述したセンサ類(たとえば、第1レゾルバ101および第2レゾルバ102)が接続される。出力ポートには、制御対象となる機器(たとえば、エンジン2、第1インバータ71、第2インバータ72等)が接続される。 The operation of the engine device 1 is controlled by the control device 200. The control device 200 includes a CPU (Central Processing Unit) that performs various processes, a memory that includes a ROM (Read Only Memory) that stores programs and data, a RAM (Random Access Memory) that stores the processing results of the CPU, and the like. Includes input / output ports (neither shown) for exchanging information with the outside. The above-mentioned sensors (for example, the first resolver 101 and the second resolver 102) are connected to the input port. A device to be controlled (for example, engine 2, first inverter 71, second inverter 72, etc.) is connected to the output port.
 制御装置200は、各センサおよび機器からの信号、ならびにメモリに格納されたマップおよびプログラムに基づいて、エンジン装置1が所望の作動状態となるように各種機器を制御する。なお、各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。 The control device 200 controls various devices so that the engine device 1 is in a desired operating state based on signals from each sensor and device, as well as maps and programs stored in the memory. Note that various controls are not limited to software processing, but can also be processed by dedicated hardware (electronic circuits).
 <燃焼室A~D、第1ピストン部材24および第2ピストン部材28の動作>
 以上のような構成を有するエンジン装置1において、ハウジング4内に形成される燃焼室、およびピストン部材の動作について、以下に説明する。図4は、燃焼室Aで燃料が燃焼する場合における各構成部材の動作の一例を説明するための図である。
<Operation of combustion chambers A to D, first piston member 24, and second piston member 28>
In the engine device 1 having the above configuration, the operations of the combustion chamber and the piston member formed in the housing 4 will be described below. FIG. 4 is a diagram for explaining an example of the operation of each component member when fuel is burned in the combustion chamber A.
 図4には、ハウジング4の中央部分(たとえば、第1回転体24aと第2回転体28aとの当接部分)における、回転中心に直交する断面が示される。図4に示すように、ハウジング4内には、ハウジング4の内周面と、第1ピストン部材24と、第2ピストン部材28とによって、燃料を燃焼させるための4つの燃焼室A~Dが形成される。第1壁面部材24bおよび第2壁面部材28bは、燃焼室A~Dの周方向の壁面を構成している。周方向に隣り合う2つの燃焼室は、第1壁面部材24bおよび第2壁面部材28bによって仕切られている。 FIG. 4 shows a cross section orthogonal to the center of rotation in the central portion of the housing 4 (for example, the contact portion between the first rotating body 24a and the second rotating body 28a). As shown in FIG. 4, in the housing 4, four combustion chambers A to D for burning fuel by the inner peripheral surface of the housing 4, the first piston member 24, and the second piston member 28 are provided. It is formed. The first wall surface member 24b and the second wall surface member 28b form a wall surface in the circumferential direction of the combustion chambers A to D. The two combustion chambers adjacent to each other in the circumferential direction are separated by a first wall surface member 24b and a second wall surface member 28b.
 図3に示されるワンウェイクラッチ22,26は、図4においては、第1ピストン部材24と第2ピストン部材28の反時計回りの回転を抑制し、時計回りの回転を許容する。 In FIG. 4, the one- way clutches 22 and 26 shown in FIG. 3 suppress the counterclockwise rotation of the first piston member 24 and the second piston member 28, and allow the clockwise rotation.
 図4に示される燃焼室Aでは、圧縮された空気と燃料との混合気が自着火によって着火する膨張行程となる。すなわち、燃焼室Aで燃料が燃焼すると、第1ピストン部材24の反時計回りの移動がワンウェイクラッチ22によって抑制されるため、第1ピストン部材24の回転位置が維持されつつ、第2ピストン部材28のみが破線矢印の方向に回転し、燃焼室A内の気体の膨張とともに燃焼室Aの容積が増加する。 In the combustion chamber A shown in FIG. 4, the air-fuel mixture of the compressed air and the fuel becomes an expansion stroke in which the air-fuel mixture is ignited by self-ignition. That is, when the fuel burns in the combustion chamber A, the counterclockwise movement of the first piston member 24 is suppressed by the one-way clutch 22, so that the rotational position of the first piston member 24 is maintained and the second piston member 28 Only rotates in the direction of the dashed arrow, and the volume of the combustion chamber A increases with the expansion of the gas in the combustion chamber A.
 図4に示される燃焼室Bでは、膨張した排気が排気管8から排出される排気行程となる。すなわち、燃焼室Aでの燃料の燃焼によって、第2ピストン部材28が破線矢印の方向に回転すると、第1ピストン部材24の回転位置が維持されるため、燃焼室Bの容積が減少する。このとき、燃焼室Bは、排気管8と連通している。そのため、燃焼室B内の排気は、燃焼室Bの容積の減少とともに、排気管8に排出されていく。 In the combustion chamber B shown in FIG. 4, the expanded exhaust gas is discharged from the exhaust pipe 8. That is, when the second piston member 28 rotates in the direction of the broken arrow arrow due to the combustion of fuel in the combustion chamber A, the rotational position of the first piston member 24 is maintained, so that the volume of the combustion chamber B decreases. At this time, the combustion chamber B communicates with the exhaust pipe 8. Therefore, the exhaust gas in the combustion chamber B is discharged to the exhaust pipe 8 as the volume of the combustion chamber B decreases.
 図4に示される燃焼室Cでは、吸気管6から空気と燃料との混合気が吸入される吸気行程となる。すなわち、燃焼室Aでの燃料の燃焼によって、第2ピストン部材28が破線矢印の方向に回転すると、第1ピストン部材24の回転位置が維持されるため、燃焼室Cの容積が増加する。このとき、燃焼室Cは、第2ピストン部材28が破線矢印の方向に回転する途中で、吸気管6と連通する。そのため、燃焼室Cの容積の増加とともに、吸気管6から混合気が燃焼室C内に吸入される。 In the combustion chamber C shown in FIG. 4, the intake stroke is such that the air-fuel mixture is sucked from the intake pipe 6. That is, when the second piston member 28 rotates in the direction of the broken arrow arrow due to the combustion of fuel in the combustion chamber A, the rotational position of the first piston member 24 is maintained, so that the volume of the combustion chamber C increases. At this time, the combustion chamber C communicates with the intake pipe 6 while the second piston member 28 is rotating in the direction of the broken line arrow. Therefore, as the volume of the combustion chamber C increases, the air-fuel mixture is sucked into the combustion chamber C from the intake pipe 6.
 図4に示される燃焼室Dでは、吸気管6から吸入された混合気が圧縮される圧縮行程となる。すなわち、燃焼室Aでの燃料の燃焼によって、第2ピストン部材28が破線矢印の方向に回転すると、第1ピストン部材24の回転位置が維持されるため、燃焼室Dの容積が減少する。このとき、燃焼室Dは、吸気管6および排気管8のいずれにも連通していないため、燃焼室Dの容積の減少によって燃焼室D内の混合気が圧縮される。 In the combustion chamber D shown in FIG. 4, the air-fuel mixture sucked from the intake pipe 6 is compressed. That is, when the second piston member 28 rotates in the direction of the broken arrow arrow due to the combustion of fuel in the combustion chamber A, the rotational position of the first piston member 24 is maintained, so that the volume of the combustion chamber D decreases. At this time, since the combustion chamber D does not communicate with either the intake pipe 6 or the exhaust pipe 8, the air-fuel mixture in the combustion chamber D is compressed by the decrease in the volume of the combustion chamber D.
 そして、燃焼室D内の圧力が上昇することによって第1ピストン部材24に時計回りの力が作用すると、第1ピストン部材24が回転し、第1ピストン部材24と第2ピストン部材28との位置関係が図5に示す位置関係となる。 Then, when a clockwise force acts on the first piston member 24 due to the increase in the pressure in the combustion chamber D, the first piston member 24 rotates, and the positions of the first piston member 24 and the second piston member 28 are located. The relationship is the positional relationship shown in FIG.
 図5は、燃焼室Dで燃料が燃焼する場合における各構成部材の動作の一例を説明するための図である。図5には、図4と同様に、ハウジング4の中央部分における回転中心に直交する断面が示される。図5に示されるエンジン2の構成は、図4に示されるエンジン2の構成と比較して、第1ピストン部材24と第2ピストン部材28との位置関係ならびに燃焼室A~Dの位置および容積が異なる点以外は同様である。 FIG. 5 is a diagram for explaining an example of the operation of each component member when fuel is burned in the combustion chamber D. FIG. 5 shows a cross section orthogonal to the center of rotation in the central portion of the housing 4, as in FIG. The configuration of the engine 2 shown in FIG. 5 is different from the configuration of the engine 2 shown in FIG. 4 in the positional relationship between the first piston member 24 and the second piston member 28, and the positions and volumes of the combustion chambers A to D. The same is true except that
 図5に示される燃焼室Dでは、圧縮行程の後の膨張行程となる。すなわち、燃焼室Dでは、圧縮された空気と燃料との混合気が自着火によって着火する。燃焼室Dで燃料が燃焼すると、第2ピストン部材28の反時計回りの移動がワンウェイクラッチ26によって抑制されるため、第2ピストン部材28の回転位置が維持されつつ、第1ピストン部材24のみが時計回りに回転し、燃焼室D内の気体の膨張とともに燃焼室Dの容積が増加する。 In the combustion chamber D shown in FIG. 5, the expansion stroke is performed after the compression stroke. That is, in the combustion chamber D, the air-fuel mixture of the compressed air and the fuel is ignited by self-ignition. When the fuel burns in the combustion chamber D, the counterclockwise movement of the second piston member 28 is suppressed by the one-way clutch 26, so that only the first piston member 24 can maintain the rotational position of the second piston member 28. It rotates clockwise and the volume of the combustion chamber D increases with the expansion of the gas in the combustion chamber D.
 図5に示される燃焼室Aでは、膨張行程の後の排気行程となる。すなわち、燃焼室Dでの燃料の燃焼によって、第1ピストン部材24が時計回りに回転すると、第2ピストン部材28の回転位置が維持されるため、燃焼室Aの容積が減少する。このとき、燃焼室Aは、排気管8と連通している。そのため、燃焼室A内の排気は、燃焼室Aの容積の減少とともに、排気管8に排出されていく。 In the combustion chamber A shown in FIG. 5, the exhaust stroke is performed after the expansion stroke. That is, when the first piston member 24 rotates clockwise due to the combustion of fuel in the combustion chamber D, the rotational position of the second piston member 28 is maintained, so that the volume of the combustion chamber A decreases. At this time, the combustion chamber A communicates with the exhaust pipe 8. Therefore, the exhaust gas in the combustion chamber A is discharged to the exhaust pipe 8 as the volume of the combustion chamber A decreases.
 図5に示される燃焼室Bでは、排気行程の後の吸気行程となる。すなわち、燃焼室Dでの燃料の燃焼によって、第1ピストン部材24が時計回りに回転すると、第2ピストン部材28の回転位置が維持されるため、燃焼室Bの容積が増加する。このとき、燃焼室Bは、第1ピストン部材24が回転する途中で、吸気管6と連通する。そのため、燃焼室Bの容積の増加とともに、吸気管6から混合気が燃焼室B内に吸入される。 In the combustion chamber B shown in FIG. 5, the intake stroke is performed after the exhaust stroke. That is, when the first piston member 24 rotates clockwise due to the combustion of fuel in the combustion chamber D, the rotational position of the second piston member 28 is maintained, so that the volume of the combustion chamber B increases. At this time, the combustion chamber B communicates with the intake pipe 6 while the first piston member 24 is rotating. Therefore, as the volume of the combustion chamber B increases, the air-fuel mixture is sucked into the combustion chamber B from the intake pipe 6.
 図5に示される燃焼室Cでは、吸気行程の後の圧縮行程となる。すなわち、燃焼室Dでの燃料の燃焼によって、第1ピストン部材24が時計回りに回転すると、第2ピストン部材28の回転位置が維持されるため、燃焼室Cの容積が減少する。このとき、燃焼室Cは、吸気管6および排気管8のいずれにも連通していないため、燃焼室Cの容積の減少によって燃焼室C内の混合気が圧縮される。 In the combustion chamber C shown in FIG. 5, the compression stroke is performed after the intake stroke. That is, when the first piston member 24 rotates clockwise due to the combustion of fuel in the combustion chamber D, the rotational position of the second piston member 28 is maintained, so that the volume of the combustion chamber C decreases. At this time, since the combustion chamber C does not communicate with either the intake pipe 6 or the exhaust pipe 8, the air-fuel mixture in the combustion chamber C is compressed by the decrease in the volume of the combustion chamber C.
 そして、燃焼室C内の圧力が上昇することによって第2ピストン部材28に時計回りの力が作用すると、第2ピストン部材28が回転し、第1ピストン部材24と第2ピストン部材28との位置関係が図4に示す位置関係となる。 Then, when a clockwise force acts on the second piston member 28 due to the increase in the pressure in the combustion chamber C, the second piston member 28 rotates, and the positions of the first piston member 24 and the second piston member 28 are located. The relationship is the positional relationship shown in FIG.
 このようにして、燃焼室A~Dのうちのいずれかで燃焼する毎に、第1ピストン部材24と第2ピストン部材28とが交互に回転することによって、エンジン2が動作する。この場合において、図4に示すように、燃焼室Aまたは燃焼室Cにおいて燃料が燃焼する場合には、第2ピストン部材28が所定の回転位置まで回転する間に、第2ピストン部材28の回転を制動する回生トルクを第2MG62において発生させることによって発電する。同様に、図5に示すように、燃焼室Bまたは燃焼室Dにおいて燃料が燃焼する場合には、第1ピストン部材24が所定の回転位置まで回転する間に、第1ピストン部材24の回転を制動する回生トルクを第1MG61において発生させることによって発電する。 In this way, each time combustion is performed in any of the combustion chambers A to D, the first piston member 24 and the second piston member 28 rotate alternately, so that the engine 2 operates. In this case, as shown in FIG. 4, when the fuel burns in the combustion chamber A or the combustion chamber C, the rotation of the second piston member 28 while the second piston member 28 rotates to a predetermined rotation position. Is generated by generating a regenerative torque for braking in the second MG 62. Similarly, as shown in FIG. 5, when the fuel burns in the combustion chamber B or the combustion chamber D, the rotation of the first piston member 24 is performed while the first piston member 24 rotates to a predetermined rotation position. Power is generated by generating a regenerative torque for braking in the first MG61.
 すなわち、第1ピストン部材24と第2ピストン部材28とが交互に回転することによって、第1MG61および第2MG62において発電され、発電された交流電力が第1インバータ71および第2インバータ72において直流電力に変換され、バッテリ80に供給される。 That is, the first piston member 24 and the second piston member 28 rotate alternately to generate electricity in the first MG 61 and the second MG 62, and the generated AC power becomes DC power in the first inverter 71 and the second inverter 72. It is converted and supplied to the battery 80.
 図6は、各燃焼室における行程の変化の一例を説明するための図である。図6に示すように、たとえば、行程(1)では、燃焼室Aが膨張行程となり、燃焼室Bが排気行程となり、燃焼室Cが吸気行程となり、燃焼室Dが圧縮行程となる。第1ピストン部材24と第2ピストン部材28との位置関係は、図4に示す位置関係となる。そのため、行程(1)においては、燃焼室Aでの燃焼により第2ピストン部材28が回転し、第2MG62において回生トルクが発生させられる。 FIG. 6 is a diagram for explaining an example of a change in the process in each combustion chamber. As shown in FIG. 6, for example, in the stroke (1), the combustion chamber A becomes an expansion stroke, the combustion chamber B becomes an exhaust stroke, the combustion chamber C becomes an intake stroke, and the combustion chamber D becomes a compression stroke. The positional relationship between the first piston member 24 and the second piston member 28 is the positional relationship shown in FIG. Therefore, in the process (1), the second piston member 28 is rotated by the combustion in the combustion chamber A, and the regenerative torque is generated in the second MG 62.
 行程(2)では、燃焼室Aが排気行程となり、燃焼室Bが吸気行程となり、燃焼室Cが圧縮行程となり、燃焼室Dが膨張行程となる。第1ピストン部材24と第2ピストン部材28との位置関係は、図5に示す位置関係となる。そのため、行程(2)においては、燃焼室Dでの燃焼により第1ピストン部材24が回転し、第1MG61において回生トルクが発生させられる。 In the process (2), the combustion chamber A becomes the exhaust stroke, the combustion chamber B becomes the intake stroke, the combustion chamber C becomes the compression stroke, and the combustion chamber D becomes the expansion stroke. The positional relationship between the first piston member 24 and the second piston member 28 is the positional relationship shown in FIG. Therefore, in the process (2), the first piston member 24 is rotated by the combustion in the combustion chamber D, and the regenerative torque is generated in the first MG 61.
 行程(3)では、燃焼室Aが吸気行程となり、燃焼室Bが圧縮行程となり、燃焼室Cが膨張行程となり、燃焼室Dが排気行程となる。第1ピストン部材24と第2ピストン部材28との位置関係は、図4に示す位置関係となる。そのため、行程(3)においては、燃焼室Cでの燃焼により第2ピストン部材28が回転し、第2MG62において回生トルクが発生させられる。 In the process (3), the combustion chamber A becomes the intake stroke, the combustion chamber B becomes the compression stroke, the combustion chamber C becomes the expansion stroke, and the combustion chamber D becomes the exhaust stroke. The positional relationship between the first piston member 24 and the second piston member 28 is the positional relationship shown in FIG. Therefore, in the process (3), the second piston member 28 is rotated by the combustion in the combustion chamber C, and the regenerative torque is generated in the second MG 62.
 行程(4)では、燃焼室Aが圧縮行程となり、燃焼室Bが膨張行程となり、燃焼室Cが排気行程となり、燃焼室Dが吸気行程となる。第1ピストン部材24と第2ピストン部材28との位置関係は、図5に示す位置関係となる。そのため、行程(4)においては、燃焼室Bでの燃焼により第1ピストン部材24が回転し、第1MG61において回生トルクが発生させられる。 In the process (4), the combustion chamber A becomes the compression process, the combustion chamber B becomes the expansion process, the combustion chamber C becomes the exhaust process, and the combustion chamber D becomes the intake process. The positional relationship between the first piston member 24 and the second piston member 28 is the positional relationship shown in FIG. Therefore, in the process (4), the first piston member 24 is rotated by the combustion in the combustion chamber B, and the regenerative torque is generated in the first MG 61.
 以降、エンジン2の動作が継続する限り、行程(1)~行程(4)の動作が繰り返し行なわれることになる。 After that, as long as the operation of the engine 2 continues, the operations of the steps (1) to (4) will be repeated.
 <エンジン装置1の制御について>
 このような構成を有するエンジン装置1において、エンジン2の動作を適切に継続するために(すなわち、行程(1)~(4)において、膨張行程、排気行程、吸気行程および圧縮行程を適切に行なうために)、ハウジング4内を回転摺動する第1ピストン部材24および第2ピストン部材28の回転制御を精度高く行なうことが求められる。
<Control of engine device 1>
In the engine device 1 having such a configuration, in order to appropriately continue the operation of the engine 2 (that is, in the strokes (1) to (4), the expansion stroke, the exhaust stroke, the intake stroke and the compression stroke are appropriately performed. Therefore, it is required to control the rotation of the first piston member 24 and the second piston member 28 that rotate and slide in the housing 4 with high accuracy.
 上述の構成を備えているエンジン2において、制御装置200は、第1MG61および第2MG62を制御する。制御装置200は、第1MG61において発生する回生トルクの増減によって第1ピストン部材24の回転制御を実行し、第2MG62において発生する回生トルクの増減によって第2ピストン部材28の回転制御を実行する。 In the engine 2 having the above configuration, the control device 200 controls the first MG61 and the second MG62. The control device 200 executes rotation control of the first piston member 24 by increasing or decreasing the regenerative torque generated in the first MG 61, and executes rotation control of the second piston member 28 by increasing or decreasing the regenerative torque generated in the second MG 62.
 より具体的には、制御装置200は、燃焼室A~D内で燃料が燃焼することによって第1ピストン部材24および第2ピストン部材28が回転する場合において、第1ピストン部材24の回転に関する制御量が目標値を下回るとき、第1MG61において発生する回生トルクを減少させ、第1ピストン部材24の回転に関する制御量が目標値を上回るとき、第1MG61において発生する回生トルクを増大させる。 More specifically, the control device 200 controls the rotation of the first piston member 24 when the first piston member 24 and the second piston member 28 rotate due to the combustion of fuel in the combustion chambers A to D. When the amount is less than the target value, the regenerative torque generated in the first MG61 is reduced, and when the control amount related to the rotation of the first piston member 24 exceeds the target value, the regenerative torque generated in the first MG61 is increased.
 また制御装置200は、燃焼室A~D内で燃料が燃焼することによって第1ピストン部材24および第2ピストン部材28が回転する場合において、第2ピストン部材28の回転に関する制御量が目標値を下回るとき、第2MG62において発生する回生トルクを減少させ、第2ピストン部材28の回転に関する制御量が目標値を上回るとき、第2MG62において発生する回生トルクを増大させる。 Further, in the control device 200, when the first piston member 24 and the second piston member 28 rotate due to the combustion of fuel in the combustion chambers A to D, the control amount regarding the rotation of the second piston member 28 sets a target value. When it falls below the target value, the regenerative torque generated in the second MG 62 is reduced, and when the control amount related to the rotation of the second piston member 28 exceeds the target value, the regenerative torque generated in the second MG 62 is increased.
 本実施形態においては、第1ピストン部材24の回転に関する制御量は、時間と第1ピストン部材24の位相との関係を示す制御マップに基づいて定められ、第2ピストン部材28の回転に関する制御量は、時間と第2ピストン部材28の位相との関係を示す制御マップに基づいて定められるものとする。第1ピストン部材24の回転に関する制御量の目標値は、第1MG61による回生発電量が最大となるように定められるものとする。第2ピストン部材28の回転に関する制御量の目標値は、第2MG62による回生発電量が最大となるように定められるものとする。 In the present embodiment, the control amount related to the rotation of the first piston member 24 is determined based on the control map showing the relationship between the time and the phase of the first piston member 24, and the control amount related to the rotation of the second piston member 28. Is determined based on a control map showing the relationship between time and the phase of the second piston member 28. The target value of the control amount regarding the rotation of the first piston member 24 shall be determined so that the regenerative power generation amount by the first MG 61 is maximized. The target value of the control amount regarding the rotation of the second piston member 28 shall be determined so that the regenerative power generation amount by the second MG 62 is maximized.
 制御装置200は、エンジン2の作動中において、第1ピストン部材24および第2ピストン部材28の位相をフィードバック制御して、第1ピストン部材24および第2ピストン部材28の位相を目標値に近づけるように調整する。第1ピストン部材24および第2ピストン部材28の回転位置の制御を精度高く行ない、目標値の推移を示す目標ラインに沿うように第1ピストン部材24および第2ピストン部材28を制御することにより、回生発電量が大きく効率のよい条件でのエンジン2の燃焼を安定して継続することができる。加えて、第1ピストン部材24と第2ピストン部材28との衝突を確実に回避でき、エンジン2の信頼性を確保することができる。 The control device 200 feedback-controls the phases of the first piston member 24 and the second piston member 28 while the engine 2 is operating so that the phases of the first piston member 24 and the second piston member 28 approach the target value. Adjust to. By controlling the rotational positions of the first piston member 24 and the second piston member 28 with high accuracy and controlling the first piston member 24 and the second piston member 28 so as to follow the target line indicating the transition of the target value, the first piston member 24 and the second piston member 28 are controlled. It is possible to stably continue the combustion of the engine 2 under a large amount of regenerative power generation and efficient conditions. In addition, the collision between the first piston member 24 and the second piston member 28 can be reliably avoided, and the reliability of the engine 2 can be ensured.
 このような制御を行なうために新たな機構や部品等を別途追加する必要がないため、エンジン2の構成を簡易な構成とすることができる。そのため、製造コストおよび部品点数の増加を抑制するとともに耐久性の低下を抑制することができる。 Since it is not necessary to separately add a new mechanism, parts, etc. in order to perform such control, the configuration of the engine 2 can be simplified. Therefore, it is possible to suppress an increase in manufacturing cost and the number of parts and a decrease in durability.
 以下、図7~10を参照して、本実施形態における制御装置200で実行される制御処理の詳細について説明する。図7は、ピストン部材の回転に関する制御量の目標値の一例を示すグラフである。 Hereinafter, the details of the control process executed by the control device 200 in the present embodiment will be described with reference to FIGS. 7 to 10. FIG. 7 is a graph showing an example of a target value of a controlled amount related to rotation of the piston member.
 図7の横軸は、ピストン部材の回転の周期を示す。横軸の1目盛りが1周期を示す。横軸の座標がゼロの値をとる時刻は、燃焼室A~Dのいずれか1つの燃焼室における混合気の着火の瞬間を示す。横軸の座標が0.5ずつ増加する毎に、着火が行なわれる。すなわち、横軸の座標が0.5の値をとる時刻に次回の着火が行なわれ、横軸の座標が1.0の値をとる時刻にさらにその次の着火が行なわれる。 The horizontal axis in FIG. 7 indicates the rotation cycle of the piston member. One scale on the horizontal axis indicates one cycle. The time when the coordinates on the horizontal axis take a value of zero indicates the moment of ignition of the air-fuel mixture in any one of the combustion chambers A to D. Ignition is performed every time the coordinates on the horizontal axis increase by 0.5. That is, the next ignition is performed at the time when the coordinates on the horizontal axis take a value of 0.5, and the next ignition is performed at the time when the coordinates on the horizontal axis take a value of 1.0.
 図7の縦軸は、ピストン部材の回転の角度、すなわち位相を示す。本実施形態のエンジン2は第1ピストン部材24と第2ピストン部材28との2つのピストン部材を有しているので、1周期におけるピストン部材の回転角度は180°である。図7には、膨張行程となる燃焼室と排気行程となる燃焼室とを仕切るピストン部材の回転動作が示されている。縦軸の座標がゼロの値をとる位置は、膨張行程となる燃焼室の回転方向の中心を示す。そのため、燃焼室における着火の瞬間、すなわち横軸の座標がゼロであるときに、縦軸に示す角度は正の値をとっている。 The vertical axis of FIG. 7 indicates the angle of rotation of the piston member, that is, the phase. Since the engine 2 of the present embodiment has two piston members, a first piston member 24 and a second piston member 28, the rotation angle of the piston member in one cycle is 180 °. FIG. 7 shows the rotational operation of the piston member that partitions the combustion chamber that is the expansion stroke and the combustion chamber that is the exhaust stroke. The position where the coordinates of the vertical axis take a value of zero indicates the center of the combustion chamber in the rotation direction, which is the expansion stroke. Therefore, at the moment of ignition in the combustion chamber, that is, when the coordinates on the horizontal axis are zero, the angle shown on the vertical axis has a positive value.
 図7には、時間とピストン部材の位相との関係を示す理想的な制御マップ(目標ライン)が図示されている。図7に示されるように、ピストン部材の理想的な回転動作は、概略以下の通りである。燃焼室での燃料の燃焼によってピストン部材が回転することにより、0~0.5周期の間に位相が時間に対してほぼ線形に増加し、ピストン部材は180°近くまで回転する。その後ピストン部材は、ワンウェイクラッチの作用によって回転位置が維持される。1周期近くなると、もう一つのピストン部材の回転によって圧力が作用することにより、ピストン部材が回転し、このときピストン部材の位相は時間に対して緩やかに増加する。 FIG. 7 shows an ideal control map (target line) showing the relationship between time and the phase of the piston member. As shown in FIG. 7, the ideal rotational operation of the piston member is roughly as follows. As the piston member rotates due to the combustion of fuel in the combustion chamber, the phase increases substantially linearly with time between 0 and 0.5 cycles, and the piston member rotates to nearly 180 °. After that, the rotational position of the piston member is maintained by the action of the one-way clutch. When the cycle is close to one cycle, pressure is applied by the rotation of another piston member, so that the piston member rotates, and at this time, the phase of the piston member gradually increases with time.
 図8は、回転電機において発生する回生トルクの目標値の一例を示すグラフである。図8の横軸は、図7と同様の、ピストン部材の回転の周期を示す。図8の縦軸は、対象のピストン部材に接続されている回転電機において発生する回生トルクを示す。 FIG. 8 is a graph showing an example of a target value of regenerative torque generated in a rotary electric machine. The horizontal axis of FIG. 8 shows the rotation cycle of the piston member as in FIG. 7. The vertical axis of FIG. 8 shows the regenerative torque generated in the rotary electric machine connected to the target piston member.
 図8に示されるように、周期0~0.5の範囲において、回生トルクは放物線状のグラフに沿って増減している。周期0では回生トルクの値がゼロであり、回生トルクは次第に増加して周期0.25で最大の値をとり、その後回生トルクは次第に減少して周期0.5で値が再びゼロとなる。周期0.5~1の範囲では、回生トルクの値はゼロのままとされる。 As shown in FIG. 8, the regenerative torque increases and decreases along the parabolic graph in the range of the period 0 to 0.5. In cycle 0, the value of the regenerative torque is zero, the regenerative torque gradually increases to reach the maximum value in cycle 0.25, and then the regenerative torque gradually decreases and becomes zero again in cycle 0.5. In the range of the period 0.5 to 1, the value of the regenerative torque remains zero.
 このように放物線状に回生トルクを増減する回転電機に接続されたピストン部材は、図7に示される理想的な回転動作をすることができる。 The piston member connected to the rotating electric machine that increases or decreases the regenerative torque in a parabolic shape in this way can perform the ideal rotational operation shown in FIG. 7.
 図8に示されるように、回転電機において発生する回生トルクは、ピストン部材の回転数に対応して、その大きさが異なる。具体的には、ピストン部材の回転速度が大きいほど、当該ピストン部材に接続された回転電機において発生する回生トルクも大きくなる。図8には、ピストン部材の回転数(すなわち、回転電機の回転数)が1000rpmのとき、1500rpmのとき、および2500rpmのときの3通りの回生トルクが図示されている。制御装置200は、ピストン部材(回転電機)の回転速度に対応して最適な回生トルクの目標値を選定して、その選定した回生トルクを回転の周期に合わせて発生するように、回転電機を制御することができる。 As shown in FIG. 8, the regenerative torque generated in the rotary electric machine differs in magnitude according to the rotation speed of the piston member. Specifically, the higher the rotational speed of the piston member, the larger the regenerative torque generated in the rotary electric machine connected to the piston member. FIG. 8 shows three types of regenerative torque when the rotation speed of the piston member (that is, the rotation speed of the rotary electric machine) is 1000 rpm, 1500 rpm, and 2500 rpm. The control device 200 selects the optimum target value of the regenerative torque according to the rotation speed of the piston member (rotary electric machine), and generates the regenerative torque according to the rotation cycle. Can be controlled.
 図9は、制御装置200で実行される処理の一例を示すフローチャートである。図9のフローチャートに示される処理は、所定の制御周期毎にメインルーチン(図示せず)から呼び出されて実行される。以下、第1ピストン部材24に接続されている第1MG61を制御対象とする処理について説明するが、第2ピストン部材28に接続されている第2MG62についても同様の処理が行なわれる。制御装置200は、第1MG61を制御対象とする処理と、第2MG62を制御対象とする処理とを交互に実行することによって、エンジン2を継続的に動作させる。 FIG. 9 is a flowchart showing an example of processing executed by the control device 200. The process shown in the flowchart of FIG. 9 is called and executed from the main routine (not shown) at predetermined control cycles. Hereinafter, the process of controlling the first MG 61 connected to the first piston member 24 will be described, but the same process is performed for the second MG 62 connected to the second piston member 28. The control device 200 continuously operates the engine 2 by alternately executing the process of controlling the first MG 61 and the process of controlling the second MG 62.
 図9に示されるように、まずステップS1において、第1MG61の回転位置を取得する。制御装置200は、第1レゾルバ101(図1)を用いて、第1MG61の回転位置を示す回転角度CA1(図1)を取得する。 As shown in FIG. 9, first, in step S1, the rotation position of the first MG61 is acquired. The control device 200 uses the first resolver 101 (FIG. 1) to acquire a rotation angle CA1 (FIG. 1) indicating the rotation position of the first MG 61.
 次にステップS2において、第1MG61の回転数を算出する。制御装置200は、直前の予め定められた期間における第1MG61の回転角度CA1の変化量を、当該期間に経過した時間で除算することにより、第1MG61の回転数を算出する。 Next, in step S2, the rotation speed of the first MG61 is calculated. The control device 200 calculates the rotation speed of the first MG 61 by dividing the amount of change in the rotation angle CA1 of the first MG 61 in the immediately preceding predetermined period by the time elapsed in the period.
 次にステップS3において、第1MG61の回生トルクの目標値を設定する。制御装置200は、図8に示される回生トルクのマップを参照して、ステップS2で算出した第1MG61の回転数に基づいて最適な回生トルクの目標値を設定する。これにより、第1MG61に接続されている第1ピストン部材24は、図7に示される理想的な回転動作を目標値として、制御される。 Next, in step S3, the target value of the regenerative torque of the first MG61 is set. The control device 200 sets an optimum target value of the regenerative torque based on the rotation speed of the first MG61 calculated in step S2 with reference to the map of the regenerative torque shown in FIG. As a result, the first piston member 24 connected to the first MG 61 is controlled with the ideal rotational motion shown in FIG. 7 as a target value.
 次にステップS4において、制御装置200は、回転角度CA1により検出される第1ピストン部材24の実際の位相が、図7に示される回転の周期に対する位相の目標値と等しいか否かを判断する。第1ピストン部材24の実際の位相が目標値と等しいと判断された場合(ステップS4においてYES)、ステップS5に進み、第1MG61において発生する回生トルクは現状のまま維持される。そして、処理を終了する(エンド)。 Next, in step S4, the control device 200 determines whether or not the actual phase of the first piston member 24 detected by the rotation angle CA1 is equal to the target value of the phase with respect to the rotation cycle shown in FIG. .. When it is determined that the actual phase of the first piston member 24 is equal to the target value (YES in step S4), the process proceeds to step S5, and the regenerative torque generated in the first MG 61 is maintained as it is. Then, the process ends (end).
 ステップS4の判断において第1ピストン部材24の実際の位相が目標値と異なると判断された場合(ステップS4においてNO)、ステップS6に進み、制御装置200は、第1ピストン部材24の実際の位相が目標値よりも大きいか否かを判断する。 If it is determined in step S4 that the actual phase of the first piston member 24 is different from the target value (NO in step S4), the process proceeds to step S6, and the control device 200 controls the actual phase of the first piston member 24. Is larger than the target value.
 第1ピストン部材24の実際の位相が目標値よりも大きいと判断された場合(ステップS6においてYES)、第1ピストン部材24は理想の位置に対して過剰に回転していることになるので、第1ピストン部材24の回転を抑制して理想の位置に近づける処理が行なわれる。具体的には、ステップS7において、制御装置200は、第1MG61において発生する回生トルクを増加させる。これにより、第1ピストン部材24の回転に対する負荷が増大することとなるので、第1ピストン部材24の回転が抑制される。したがって、第1ピストン部材24の位相を理想の位置に近づけることができる。そして、処理を終了する(エンド)。 If it is determined that the actual phase of the first piston member 24 is larger than the target value (YES in step S6), the first piston member 24 is excessively rotated with respect to the ideal position. The process of suppressing the rotation of the first piston member 24 to bring it closer to the ideal position is performed. Specifically, in step S7, the control device 200 increases the regenerative torque generated in the first MG 61. As a result, the load on the rotation of the first piston member 24 increases, so that the rotation of the first piston member 24 is suppressed. Therefore, the phase of the first piston member 24 can be brought close to the ideal position. Then, the process ends (end).
 ステップS6の判断において、第1ピストン部材24の実際の位相が目標値よりも大きくない、すなわち第1ピストン部材24の実際の位相が目標値よりも小さいと判断された場合(ステップS6においてNO)、第1ピストン部材24は理想の位置に対して回転が不足していることになる。この場合、第1ピストン部材24の回転を促進して理想の位置に近づける処理が行なわれる。 In the determination in step S6, when it is determined that the actual phase of the first piston member 24 is not larger than the target value, that is, the actual phase of the first piston member 24 is smaller than the target value (NO in step S6). , The first piston member 24 is insufficiently rotated with respect to the ideal position. In this case, the process of promoting the rotation of the first piston member 24 to bring it closer to the ideal position is performed.
 具体的には、まずステップS8において、制御装置200は、第1MG61において発生する回生トルクがゼロであるか否かを判断する。回生トルクがゼロでないと判断された場合(ステップS8においてNO)、ステップS9において、制御装置200は、第1MG61において発生する回生トルクを減少させる。これにより、第1ピストン部材24の回転に対する負荷が減少することとなるので、第1ピストン部材24の回転が促進される。したがって、第1ピストン部材24の位相を理想の位置に近づけることができる。 Specifically, first, in step S8, the control device 200 determines whether or not the regenerative torque generated in the first MG 61 is zero. If it is determined that the regenerative torque is not zero (NO in step S8), in step S9, the control device 200 reduces the regenerative torque generated in the first MG 61. As a result, the load on the rotation of the first piston member 24 is reduced, so that the rotation of the first piston member 24 is promoted. Therefore, the phase of the first piston member 24 can be brought close to the ideal position.
 続いてステップS10において、制御装置200は、第1MG61において発生する回生トルクがゼロであるか否かを判断する。回生トルクがゼロでないと判断された場合(ステップS10においてNO)、そのまま処理を終了する(エンド)。 Subsequently, in step S10, the control device 200 determines whether or not the regenerative torque generated in the first MG 61 is zero. When it is determined that the regenerative torque is not zero (NO in step S10), the process ends as it is (end).
 ステップS8の判断、およびステップS10の判断において、第1MG61において発生する回生トルクがゼロであると判断された場合(ステップS8においてYES、ステップS10においてYES)、既に回生トルクがゼロに設定されているので、回生トルクを減少させて第1ピストン部材24の回転を促進させる処理をすることができない。たとえば、エンジン2が失火したときには、燃焼室における気体の膨張がピストン部材を回転させる力を及ぼすことがなくなるので、回生トルクをゼロまで減少させたとしても、第1ピストン部材24は理想の位置に対して回転不足となりやすい。 When it is determined in the determination in step S8 and the determination in step S10 that the regenerative torque generated in the first MG 61 is zero (YES in step S8, YES in step S10), the regenerative torque is already set to zero. Therefore, it is not possible to perform a process of reducing the regenerative torque and promoting the rotation of the first piston member 24. For example, when the engine 2 misfires, the expansion of the gas in the combustion chamber does not exert a force to rotate the piston member, so that even if the regenerative torque is reduced to zero, the first piston member 24 is in the ideal position. On the other hand, the rotation tends to be insufficient.
 そこでこのような場合は、第1MG61を発電機ではなく電動機として使用して、第1MG61によって第1ピストン部材24を駆動させることにより、第1ピストン部材24の位相を理想の位置に近づける処理が行なわれる。具体的には、ステップS11において、制御装置200は、第1MG61の発生する回転駆動力を増加させる。より大きな回転駆動力を第1ピストン部材24に伝達することにより、第1ピストン部材24の回転が促進される。したがって、第1ピストン部材24の位相を理想の位置に近づけることができる。そして、処理を終了する(エンド)。 Therefore, in such a case, the first MG61 is used as an electric motor instead of a generator, and the first piston member 24 is driven by the first MG61 to bring the phase of the first piston member 24 closer to the ideal position. Is done. Specifically, in step S11, the control device 200 increases the rotational driving force generated by the first MG 61. By transmitting a larger rotational driving force to the first piston member 24, the rotation of the first piston member 24 is promoted. Therefore, the phase of the first piston member 24 can be brought close to the ideal position. Then, the process ends (end).
 図10は、ピストン部材の回転に関する制御量の、目標値に対するフィードバック制御の一例を示すグラフである。図9のフローチャートを参照して説明した通り、第1ピストン部材24の位相が目標値よりも大きければ第1ピストン部材24の回転を抑制し、第1ピストン部材24の位相が目標値よりも小さければ第1ピストン部材24の回転を促進するフィードバック制御を実行する。これにより、図10のグラフに示されるように、第1ピストン部材24の位相を目標値に収束させ、第1ピストン部材24を目標ラインに沿うように制御することができる。 FIG. 10 is a graph showing an example of feedback control of the control amount related to the rotation of the piston member with respect to the target value. As described with reference to the flowchart of FIG. 9, if the phase of the first piston member 24 is larger than the target value, the rotation of the first piston member 24 is suppressed, and the phase of the first piston member 24 is smaller than the target value. For example, feedback control that promotes the rotation of the first piston member 24 is executed. As a result, as shown in the graph of FIG. 10, the phase of the first piston member 24 can be converged to the target value, and the first piston member 24 can be controlled so as to follow the target line.
 以上説明したように、本実施形態のエンジン装置1では、制御装置200は、時間に対するピストン部材の位相が目標値を下回るとき、回転電機において発生する回生トルクを減少させ、時間に対するピストン部材の位相が目標値を上回るとき、回転電機において発生する回生トルクを増大させる。このように、ピストン部材の位相の目標値に対するフィードバック制御を実行することで、ピストン部材の位相を目標値に収束させることができる。したがって、回生発電量が最大となる理想的な回転動作により近い条件でのエンジン2の運転を、安定して継続することができる。 As described above, in the engine device 1 of the present embodiment, the control device 200 reduces the regenerative torque generated in the rotary electric machine when the phase of the piston member with respect to time falls below the target value, and the phase of the piston member with respect to time. When exceeds the target value, the regenerative torque generated in the rotary electric machine is increased. By executing the feedback control with respect to the target value of the phase of the piston member in this way, the phase of the piston member can be converged to the target value. Therefore, the operation of the engine 2 can be stably continued under the conditions closer to the ideal rotational operation in which the amount of regenerative power generation is maximized.
 第1ピストン部材24および第2ピストン部材28の時間に対する位相の目標値を設定し、各瞬間にその位置にピストン部材が存在するように制御を実施することで、第1ピストン部材24および第2ピストン部材28の無駄なブレーキングおよび再加速が不要になるため、エンジン装置1の振動を低減できる。また、第1ピストン部材24と第2ピストン部材28との衝突を確実に回避することができる。したがって、エンジン装置1の信頼性を確保することができる。 By setting the target value of the phase of the first piston member 24 and the second piston member 28 with respect to time and performing control so that the piston member exists at that position at each moment, the first piston member 24 and the second piston member 24 and the second piston member 28 are controlled. Since unnecessary braking and reacceleration of the piston member 28 are not required, vibration of the engine device 1 can be reduced. Further, the collision between the first piston member 24 and the second piston member 28 can be reliably avoided. Therefore, the reliability of the engine device 1 can be ensured.
 エンジン2が失火した場合でも、回転電機の駆動によって、各瞬間における理想の位置にピストン部材が存在するように制御される。燃焼室での着火が可能な状態での運転が継続され、失火しても次の着火タイミングで燃焼復帰が可能となるため、エンジン2の燃焼を安定して継続することができる。 Even if the engine 2 misfires, the piston member is controlled to exist at the ideal position at each moment by driving the rotary electric machine. The operation in a state where ignition is possible in the combustion chamber is continued, and even if a misfire occurs, combustion can be restored at the next ignition timing, so that the combustion of the engine 2 can be stably continued.
 [第二実施形態]
 図11は、第二実施形態における制御装置200で実行される処理の一例を示すフローチャートである。第二実施形態においては、第1ピストン部材24の回転に関する制御量は、第1ピストン部材24の回転速度であり、第2ピストン部材28の回転に関する制御量は、第2ピストン部材28の回転速度であるものとする。より詳細には、第1ピストン部材24の回転に関する制御量は、時間に対する第1ピストン部材24の回転速度、または、位相に対する第1ピストン部材24の回転速度である。第2ピストン部材28の回転に関する制御量は、時間に対する第2ピストン部材28の回転速度、または、位相に対する第2ピストン部材28の回転速度である。
[Second Embodiment]
FIG. 11 is a flowchart showing an example of the processing executed by the control device 200 in the second embodiment. In the second embodiment, the control amount related to the rotation of the first piston member 24 is the rotation speed of the first piston member 24, and the control amount related to the rotation of the second piston member 28 is the rotation speed of the second piston member 28. It is assumed that. More specifically, the control amount for the rotation of the first piston member 24 is the rotation speed of the first piston member 24 with respect to time or the rotation speed of the first piston member 24 with respect to the phase. The control amount related to the rotation of the second piston member 28 is the rotation speed of the second piston member 28 with respect to time or the rotation speed of the second piston member 28 with respect to the phase.
 以下、図11~13を参照して、第二実施形態における制御装置200で実行される制御処理の詳細について説明する。以下の説明では、第1ピストン部材24に接続されている第1MG61を制御対象とする処理について説明するが、第2ピストン部材28に接続されている第2MG62についても同様の処理が行なわれる。 Hereinafter, details of the control process executed by the control device 200 in the second embodiment will be described with reference to FIGS. 11 to 13. In the following description, the process of controlling the first MG 61 connected to the first piston member 24 will be described, but the same process will be performed on the second MG 62 connected to the second piston member 28.
 図11に示されるように、まずステップS101において、第1MG61の回転位置を取得する。次にステップS102において、第1MG61の回転数を算出する。ステップS101,S102における処理は、図9に示されるステップS1,S2と同様であるので、説明を省略する。次にステップS103において、第1ピストン部材24の回転速度の目標値を設定する。 As shown in FIG. 11, first, in step S101, the rotation position of the first MG61 is acquired. Next, in step S102, the rotation speed of the first MG61 is calculated. Since the processing in steps S101 and S102 is the same as in steps S1 and S2 shown in FIG. 9, the description thereof will be omitted. Next, in step S103, a target value of the rotational speed of the first piston member 24 is set.
 図12は、ピストン部材の回転速度の目標値の第一の例を示すグラフである。図12の横軸は、図7と同様の、ピストン部材の回転の周期を示す。図12の縦軸は、ピストン部材の回転速度を示す。 FIG. 12 is a graph showing the first example of the target value of the rotational speed of the piston member. The horizontal axis of FIG. 12 shows the rotation cycle of the piston member as in FIG. 7. The vertical axis of FIG. 12 shows the rotation speed of the piston member.
 図12に示されるように、周期0~0.5の範囲において、ピストン部材の回転速度は放物線状のグラフに沿って増減している。周期0では回転速度の値がゼロであり、回転速度は次第に増加して周期0.25で最大の値をとり、その後回転速度は次第に減少して周期0.5で値が再びゼロとなる。周期0.5~1の範囲では、回転速度の値はゼロのままとされる。このように放物線状に回転速度を増減するピストン部材は、図7に示される理想的な回転動作をすることができる。 As shown in FIG. 12, the rotational speed of the piston member increases or decreases along the parabolic graph in the range of the period 0 to 0.5. In cycle 0, the value of the rotational speed is zero, the rotational speed gradually increases to reach the maximum value in period 0.25, and then the rotational speed gradually decreases and becomes zero again in period 0.5. In the range of period 0.5 to 1, the value of rotational speed remains zero. The piston member that increases or decreases the rotation speed in a parabolic manner in this way can perform the ideal rotation operation shown in FIG. 7.
 図12には、ピストン部材の回転数(すなわち、回転電機の回転数)が1000rpmのとき、1500rpmのとき、および2500rpmのときの3通りの回転速度が図示されている。制御装置200は、ピストン部材(回転電機)の回転数に対応して最適な回転速度の目標値を選定して、ピストン部材が回転の周期に合わせてその選定した回転速度になるように、回転電機で発生させる回生トルクを制御することができる。 FIG. 12 shows three rotation speeds when the rotation speed of the piston member (that is, the rotation speed of the rotary electric machine) is 1000 rpm, 1500 rpm, and 2500 rpm. The control device 200 selects a target value of the optimum rotation speed according to the rotation speed of the piston member (rotary electric machine), and rotates the piston member so as to have the selected rotation speed according to the rotation cycle. The regenerative torque generated by the electric machine can be controlled.
 図13は、ピストン部材の回転速度の目標値の第二の例を示すグラフである。図13の横軸は、ピストン部材の回転の角度、すなわち位相を示す。図13の縦軸は、ピストン部材の回転速度を示す。 FIG. 13 is a graph showing a second example of the target value of the rotational speed of the piston member. The horizontal axis of FIG. 13 indicates the angle of rotation of the piston member, that is, the phase. The vertical axis of FIG. 13 shows the rotation speed of the piston member.
 図13に示されるように、0°~180°の位相の範囲において、ピストン部材の回転速度は放物線状のグラフに沿って増減している。位相0°では回転速度の値がゼロであり、回転速度は次第に増加して位相90°で最大の値をとり、その後回転速度は次第に減少して位相180°で値が再びゼロとなる。このように放物線状に回転速度を増減するピストン部材は、図7に示される理想的な回転動作をすることができる。 As shown in FIG. 13, the rotational speed of the piston member increases or decreases along a parabolic graph in the phase range of 0 ° to 180 °. At phase 0 °, the value of rotational speed is zero, the rotational speed gradually increases to reach the maximum value at phase 90 °, then the rotational speed gradually decreases and becomes zero again at phase 180 °. The piston member that increases or decreases the rotation speed in a parabolic manner in this way can perform the ideal rotation operation shown in FIG. 7.
 図13には、ピストン部材の回転数(すなわち、回転電機の回転数)が1000rpmのとき、1500rpmのとき、および2500rpmのときの3通りの回転速度が図示されている。制御装置200は、ピストン部材(回転電機)の回転数に対応して最適な回転速度の目標値を選定して、ピストン部材が回転の周期に合わせてその選定した回転速度になるように、回転電機で発生させる回生トルクを制御することができる。 FIG. 13 shows three rotation speeds when the rotation speed of the piston member (that is, the rotation speed of the rotary electric machine) is 1000 rpm, 1500 rpm, and 2500 rpm. The control device 200 selects a target value of the optimum rotation speed according to the rotation speed of the piston member (rotary electric machine), and rotates the piston member so as to have the selected rotation speed according to the rotation cycle. The regenerative torque generated by the electric machine can be controlled.
 図11に戻って、次にステップS103において、第1ピストン部材24の回転速度の目標値を設定する。制御装置200は、図12に示される第1ピストン部材24の回転の周期(時間)に対する回転速度のマップを参照して、ステップS102で算出した第1MG61の回転数に基づいて最適な回転速度の目標値を設定する。または制御装置200は、図13に示される第1ピストン部材24の回転の位相に対する回転速度のマップを参照して、最適な回転速度の目標値を設定する。 Returning to FIG. 11, next, in step S103, the target value of the rotation speed of the first piston member 24 is set. The control device 200 refers to the map of the rotation speed with respect to the rotation cycle (time) of the first piston member 24 shown in FIG. 12, and has an optimum rotation speed based on the rotation speed of the first MG 61 calculated in step S102. Set the target value. Alternatively, the control device 200 sets a target value of the optimum rotation speed with reference to the map of the rotation speed with respect to the rotation phase of the first piston member 24 shown in FIG.
 ステップS104の判断において、制御装置200は、第1ピストン部材24の実際の回転速度が、図12または図13に示される回転速度の目標値と等しいか否かを判断する。ステップS106の判断において、制御装置200は、第1ピストン部材24の実際の回転速度が、図12または図13に示される回転速度の目標値よりも大きいか否かを判断する。このようにして、第1ピストン部材24の回転速度が目標値よりも大きければ第1ピストン部材24の回転を抑制し、第1ピストン部材24の回転速度が目標値よりも小さければ第1ピストン部材24の回転を促進するフィードバック制御を実行する。以降の各ステップの処理については、図9を参照して説明した第一実施形態と同様であるので、説明を省略する。 In the determination in step S104, the control device 200 determines whether or not the actual rotational speed of the first piston member 24 is equal to the target value of the rotational speed shown in FIG. 12 or 13. In the determination in step S106, the control device 200 determines whether or not the actual rotational speed of the first piston member 24 is larger than the target value of the rotational speed shown in FIG. 12 or 13. In this way, if the rotation speed of the first piston member 24 is larger than the target value, the rotation of the first piston member 24 is suppressed, and if the rotation speed of the first piston member 24 is smaller than the target value, the first piston member Execute feedback control that promotes the rotation of 24. Since the processing of each subsequent step is the same as that of the first embodiment described with reference to FIG. 9, the description thereof will be omitted.
 このように、第二実施形態におけるエンジン装置1では、制御装置200は、ピストン部材の回転速度が目標値を下回るとき、回転電機において発生する回生トルクを減少させ、ピストン部材の回転速度が目標値を上回るとき、回転電機において発生する回生トルクを増大させる。このように、ピストン部材の回転速度の目標値に対するフィードバック制御を実行することで、ピストン部材の回転速度を目標値に収束させることができる。したがって、回生発電量が最大となる理想的な回転動作により近い条件でのエンジン2の運転を、安定して継続することができる。 As described above, in the engine device 1 of the second embodiment, the control device 200 reduces the regenerative torque generated in the rotary electric machine when the rotation speed of the piston member is lower than the target value, and the rotation speed of the piston member becomes the target value. When it exceeds, the regenerative torque generated in the rotary electric machine is increased. In this way, by executing the feedback control with respect to the target value of the rotation speed of the piston member, the rotation speed of the piston member can be converged to the target value. Therefore, the operation of the engine 2 can be stably continued under the conditions closer to the ideal rotational operation in which the amount of regenerative power generation is maximized.
 以上のように実施形態について説明を行なったが、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments have been described as described above, it should be considered that the embodiments disclosed this time are examples in all respects and are not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope of the claims.
 1 エンジン装置、2 エンジン、4 ハウジング、6 吸気管、8 排気管、10 燃料供給装置、12 スロットルバルブ、14 スロットルモータ、16 第1出力軸、18 第2出力軸、22,26 ワンウェイクラッチ、24 第1ピストン部材、24a 第1回転体、24b 第1壁面部材、28 第2ピストン部材、28a 第2回転体、28b 第2壁面部材、61 第1MG、62 第2MG、71 第1インバータ、72 第2インバータ、80 バッテリ、90 負荷、101 第1レゾルバ、102 第2レゾルバ、200 制御装置、A,B,C,D 燃焼室、CA1,CA2 回転角度、INJ,INV1,INV2,TH 制御信号。 1 engine device, 2 engine, 4 housing, 6 intake pipe, 8 exhaust pipe, 10 fuel supply device, 12 throttle valve, 14 throttle motor, 16 1st output shaft, 18 2nd output shaft, 22, 26 one-way clutch, 24 1st piston member, 24a 1st rotating body, 24b 1st wall surface member, 28 2nd piston member, 28a 2nd rotating body, 28b 2nd wall surface member, 61 1st MG, 62 2nd MG, 71 1st inverter, 72nd 2 inverter, 80 battery, 90 load, 101 1st resolver, 102 2nd resolver, 200 control device, A, B, C, D combustion chamber, CA1, CA2 rotation angle, INJ, INV1, INV2, TH control signal.

Claims (6)

  1.  ハウジングと、前記ハウジング内に回転可能に支持される第1ピストン部材と、前記ハウジング内に回転可能に支持される第2ピストン部材と、を含み、前記ハウジング、前記第1ピストン部材および前記第2ピストン部材は燃料を燃焼させるための燃焼室を形成する、回転ピストン型のエンジンと、
     前記第1ピストン部材に接続され、前記第1ピストン部材の回転により回生発電可能な、第1回転電機と、
     前記第2ピストン部材に接続され、前記第2ピストン部材の回転により回生発電可能な、第2回転電機と、
     前記第1回転電機および前記第2回転電機を制御する制御装置とを備え、
     前記制御装置は、前記燃料の燃焼によって前記第1ピストン部材および前記第2ピストン部材が回転する場合において、
      前記第1ピストン部材の回転に関する制御量が目標値を下回るとき、前記第1回転電機において発生する回生トルクを減少させ、前記第1ピストン部材の回転に関する制御量が目標値を上回るとき、前記第1回転電機において発生する回生トルクを増大させ、
      前記第2ピストン部材の回転に関する制御量が目標値を下回るとき、前記第2回転電機において発生する回生トルクを減少させ、前記第2ピストン部材の回転に関する制御量が目標値を上回るとき、前記第2回転電機において発生する回生トルクを増大させる、
     エンジン装置。
    The housing, the first piston member rotatably supported in the housing, and the second piston member rotatably supported in the housing include the housing, the first piston member, and the second. The piston member is a rotating piston type engine that forms a combustion chamber for burning fuel,
    A first rotating electric machine connected to the first piston member and capable of regenerative power generation by rotation of the first piston member.
    A second rotating electric machine connected to the second piston member and capable of regenerative power generation by rotation of the second piston member.
    A control device for controlling the first rotary electric machine and the second rotary electric machine is provided.
    The control device is used when the first piston member and the second piston member are rotated by the combustion of the fuel.
    When the control amount related to the rotation of the first piston member is less than the target value, the regenerative torque generated in the first rotary electric machine is reduced, and when the control amount related to the rotation of the first piston member exceeds the target value, the first Increase the regenerative torque generated in the one-turn electric machine,
    When the control amount related to the rotation of the second piston member is less than the target value, the regenerative torque generated in the second rotary electric machine is reduced, and when the control amount related to the rotation of the second piston member exceeds the target value, the first Increases the regenerative torque generated in a two-turn electric machine,
    Engine device.
  2.  前記第1ピストン部材および前記第2ピストン部材は、前記目標値の推移を示す目標ラインに沿うように制御される、請求項1に記載のエンジン装置。 The engine device according to claim 1, wherein the first piston member and the second piston member are controlled so as to follow a target line indicating a transition of the target value.
  3.  前記第1ピストン部材の回転に関する制御量は、時間と前記第1ピストン部材の位相との関係を示す制御マップに基づいて定められ、
     前記第2ピストン部材の回転に関する制御量は、時間と前記第2ピストン部材の位相との関係を示す制御マップに基づいて定められる、請求項1または2に記載のエンジン装置。
    The control amount related to the rotation of the first piston member is determined based on a control map showing the relationship between time and the phase of the first piston member.
    The engine device according to claim 1 or 2, wherein the control amount related to the rotation of the second piston member is determined based on a control map showing the relationship between time and the phase of the second piston member.
  4.  前記第1ピストン部材の回転に関する制御量の目標値は、前記第1回転電機による回生発電量が最大となるように定められ、
     前記第2ピストン部材の回転に関する制御量の目標値は、前記第2回転電機による回生発電量が最大となるように定められる、請求項1~3のいずれか1項に記載のエンジン装置。
    The target value of the control amount regarding the rotation of the first piston member is set so that the regenerative power generation amount by the first rotary electric machine is maximized.
    The engine device according to any one of claims 1 to 3, wherein the target value of the control amount regarding the rotation of the second piston member is determined so that the regenerative power generation amount by the second rotary electric machine is maximized.
  5.  前記第1回転電機は、前記第1ピストン部材を回転駆動可能に構成されており、
     前記第2回転電機は、前記第2ピストン部材を回転駆動可能に構成されており、
     前記第1ピストン部材の回転に関する制御量が、目標値を下回り、前記第1回転電機において発生する回生トルクをゼロまで減少させても目標値に到達できないときに、前記第1回転電機によって前記第1ピストン部材を駆動させ、
     前記第2ピストン部材の回転に関する制御量が、目標値を下回り、前記第2回転電機において発生する回生トルクをゼロまで減少させても目標値に到達できないときに、前記第2回転電機によって前記第2ピストン部材を駆動させる、請求項1~4のいずれか1項に記載のエンジン装置。
    The first rotary electric machine is configured to be able to rotationally drive the first piston member.
    The second rotary electric machine is configured to be able to rotationally drive the second piston member.
    When the control amount related to the rotation of the first piston member falls below the target value and the target value cannot be reached even if the regenerative torque generated in the first rotary electric machine is reduced to zero, the first rotary electric machine causes the first. 1 Drive the piston member,
    When the control amount related to the rotation of the second piston member falls below the target value and the target value cannot be reached even if the regenerative torque generated in the second rotary electric machine is reduced to zero, the second rotary electric machine causes the first. 2. The engine device according to any one of claims 1 to 4, which drives a piston member.
  6.  前記エンジンが失火したとき、前記第1回転電機によって前記第1ピストン部材を駆動させ、前記第2回転電機によって前記第2ピストン部材を駆動させる、請求項5に記載のエンジン装置。 The engine device according to claim 5, wherein when the engine misfires, the first rotating electric machine drives the first piston member, and the second rotating electric machine drives the second piston member.
PCT/JP2019/049415 2019-03-27 2019-12-17 Engine device WO2020194919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019060485A JP2020157976A (en) 2019-03-27 2019-03-27 Engine device
JP2019-060485 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020194919A1 true WO2020194919A1 (en) 2020-10-01

Family

ID=72610689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049415 WO2020194919A1 (en) 2019-03-27 2019-12-17 Engine device

Country Status (2)

Country Link
JP (1) JP2020157976A (en)
WO (1) WO2020194919A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280369A (en) * 1992-02-07 1993-10-26 Tadashi Nishitani Reverse prevention device and power take-off device for cat and mouse type rotary engine and differential device for cat and mouse type rotary machine
US20180106151A1 (en) * 2015-06-19 2018-04-19 Anatoli Galin Electromagnetic only vane coordination of a cat and mouse engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280369A (en) * 1992-02-07 1993-10-26 Tadashi Nishitani Reverse prevention device and power take-off device for cat and mouse type rotary engine and differential device for cat and mouse type rotary machine
US20180106151A1 (en) * 2015-06-19 2018-04-19 Anatoli Galin Electromagnetic only vane coordination of a cat and mouse engine

Also Published As

Publication number Publication date
JP2020157976A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP3250483B2 (en) Drive
JP4458105B2 (en) Internal combustion engine apparatus, vehicle equipped with the same, and misfire determination method
US8839754B2 (en) Method and apparatus for starting an internal combustion engine
US20070151536A1 (en) Drive system and automobile
RU2684133C2 (en) Electromagnetic only vane coordination of a swing-piston engine
JPWO2007072627A1 (en) Internal combustion engine misfire determination device, vehicle equipped with the same, and misfire determination method
JP2004222439A (en) Torque transmission device
KR20100015415A (en) Split cycle variable capacity rotary spark ignition engine
JP5011896B2 (en) Internal combustion engine misfire determination device and vehicle
JP2017166461A (en) Automobile
JP2001123857A (en) Drive device
WO2020194919A1 (en) Engine device
JP4241674B2 (en) Hybrid vehicle and control method thereof
JP2009292362A (en) Misfire determination device for internal combustion engine, hybrid vehicle and misfire determination method for internal combustion engine
JP2007223403A (en) Power output device, its control method, and vehicle
JP6962292B2 (en) Power generation system using a rotating piston type engine
JP7156128B2 (en) ENGINE DEVICE AND METHOD OF CONTROLLING ENGINE DEVICE
JP2020204309A (en) Engine device
JP4222365B2 (en) Internal combustion engine device and control method thereof
JP2021127689A (en) Engine device
US11242045B2 (en) Hybrid vehicle
WO2020031857A1 (en) Power generation system using rotation piston type engine
JP2008063975A (en) Misfire determining device and misfire determining method for internal combustion engine, and vehicle
JP4910970B2 (en) Vehicle and control method for internal combustion engine mounted on vehicle
JP2020033975A (en) Starter of rotation piston-type engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921129

Country of ref document: EP

Kind code of ref document: A1