WO2020194858A1 - Treatment planning device, treatment planning method, and program - Google Patents

Treatment planning device, treatment planning method, and program Download PDF

Info

Publication number
WO2020194858A1
WO2020194858A1 PCT/JP2019/045904 JP2019045904W WO2020194858A1 WO 2020194858 A1 WO2020194858 A1 WO 2020194858A1 JP 2019045904 W JP2019045904 W JP 2019045904W WO 2020194858 A1 WO2020194858 A1 WO 2020194858A1
Authority
WO
WIPO (PCT)
Prior art keywords
calculation
dose
interest
irradiation
dose distribution
Prior art date
Application number
PCT/JP2019/045904
Other languages
French (fr)
Japanese (ja)
Inventor
航 杜
祐介 藤井
嵩祐 平山
啓司 小橋
妙子 松浦
伸一 清水
Original Assignee
株式会社日立製作所
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 国立大学法人北海道大学 filed Critical 株式会社日立製作所
Publication of WO2020194858A1 publication Critical patent/WO2020194858A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the spot scanning method which uses a fine particle beam to irradiate the target so as to fill it, is becoming the mainstream irradiation method.
  • the optimization calculation determines what kind of irradiation amount should be applied to which spot from which angle to form the desired dose distribution. This process is called a treatment plan.
  • the treatment plan includes the process of inputting the contour of the organ as a ROI (Region of Interest).
  • ROI Region of Interest
  • different organs have different sensitivities to radiation, for example, when exposed to the same amount of radiation, organs with mucosa (such as the intestine) are more damaged than bone. Organs that are easily damaged by radiation are called dangerous organs (OAR: Organ at Risk).
  • OAR Organ at Risk
  • the index for evaluating the dose distribution created by the treatment plan differs for each organ and is specified by the doctor. For example, a condition such as "the volume at which organ A is irradiated with X% or more of the prescribed dose must not exceed Y%" is used in the optimization calculation.
  • the treatment planning device includes a display device for displaying tomographic image information including the affected area and a dose of particle beams irradiated to at least one region of interest set in the affected area. It has an input device that accepts input of calculation designation information that specifies the necessity of calculation of the distribution, and an arithmetic device that calculates the dose distribution of the region of interest for which the calculation of the dose distribution is designated based on the calculation designation information.
  • FIG. 1 It is a schematic block diagram which shows the particle beam therapy system which concerns on Example 1.
  • FIG. It is a schematic block diagram which shows the particle beam therapy apparatus which concerns on Example 1.
  • FIG. It is a block diagram which shows the treatment planning apparatus of Example 1.
  • FIG. It is a block diagram which shows the function of the dose calculation apparatus of Example 1.
  • FIG. It is a flowchart which shows the operation before irradiation of the particle beam therapy system which concerns on Example 1.
  • FIG. It is a flowchart which shows the treatment plan making process by the irradiation plan making apparatus of Example 1.
  • It is a flowchart which shows the interest area classification designation processing by the dose calculation apparatus of Example 1.
  • FIG. 1 is a schematic configuration diagram showing a particle beam therapy system according to Example 1 to which the treatment planning apparatus according to Example 1 is applied.
  • the particle beam therapy system S of this embodiment has a particle beam therapy device 1 and a treatment planning device 2.
  • the particle beam therapy system S of this embodiment employs a spot scanning method.
  • the particle beam therapy device 1 irradiates the affected area with particle beams to treat the affected area.
  • the treatment planning device 2 has an irradiation planning device 3 and a dose calculation device 4.
  • the dose calculation device 4 accepts input of irradiation log data including data on the irradiation position and irradiation amount when the affected area is actually irradiated from the particle beam therapy device 1. Further, the dose calculation device 4 accepts the input of kernel data from the irradiation plan creation device 3. Then, the dose calculation device 4 calculates the effective dose and the index by using the fluence map and the kernel data obtained from the irradiation log data based on the classification of ROI.
  • the irradiation plan creation device 3 reoptimizes (replans, corrects) the irradiation parameters of the particle beam in the remaining irradiation plans based on the effective dose calculated by the dose calculation device 4.
  • the treatment plan program 232 described later is executed on the treatment plan device 2 in these irradiation plan creation devices 3 and the like. As a result, it is virtually configured in one treatment planning device 2.
  • FIG. 2 is a schematic configuration diagram showing a particle beam therapy apparatus according to the first embodiment.
  • the particle beam therapy device 1 of this embodiment includes an accelerator, a beam transport system 13, an irradiation nozzle 14, a treatment table 15, and an irradiation control device 16.
  • FIG. 2 shows an example of the injector 11 and the synchrotron accelerator 12 as accelerators, a cyclotron accelerator may also be used.
  • the beam transport system 13 has a rotating gantry, but may be a fixed irradiation port.
  • the particle beam generated and accelerated by the injector 11 enters the synchrotron accelerator 12, is further accelerated by the synchrotron accelerator 12, and is emitted to the beam transport system 13.
  • the beam transport system 13 includes a plurality of deflection electromagnets 13a and a quadrupole electromagnet (not shown), and is connected to the synchrotron accelerator 12 and the irradiation nozzle 14. Further, a part of the beam transport system 13 and the irradiation nozzle 14 are installed in the rotating gantry, and can rotate together with the gantry. The particle beam emitted from the synchrotron accelerator 12 is converged by the quadrupole electromagnet while passing through the beam transport system 13, and is changed in the direction by the deflection electromagnet 13a to enter the irradiation nozzle 14.
  • the irradiation nozzle 14 has a scanning electromagnet, a dose monitor, and a beam position monitor (none of which are shown).
  • the scanning electromagnet deflects the proton beam so that it reaches the desired position in the plane perpendicular to the beam axis at the target position.
  • the dose monitor is a monitor that measures the amount of particle beam irradiation applied to the target.
  • the beam position monitor is a monitor for indirectly measuring the irradiation position of the proton beam irradiated to the target by detecting the position where the particle beam irradiated to the target has passed.
  • the particle beam that has passed through the irradiation nozzle 14 reaches a target in the irradiation target (not shown) on the treatment table 15.
  • the irradiation target represents the patient and the target represents the affected area or the like.
  • the treatment table 15 on which the irradiation target is placed can move in the directions of three orthogonal axes based on the instruction from the irradiation control device 16, and can further rotate around each axis. By these movements and rotations, the position of the irradiation target can be moved to a desired position.
  • the storage device 23 is composed of, for example, a flash memory device, a hard disk drive (HDD), or the like, and stores computer programs such as an operating system 231 and a treatment planning program 232. In addition to these computer programs 231 and 232, software (not shown) such as driver software is also stored in the storage device 23.
  • software such as driver software is also stored in the storage device 23.
  • the input unit 42 includes an information input device of the user interface device 25, etc., receives various data for the dose calculation device 4, and sends the accepted data to the control unit 40 and the storage unit 41.
  • the data received by the input unit 42 there are calculation designation information, reference value designation information, and the like.
  • the irradiation plan creation device 3 of the treatment planning device 2 creates a treatment plan (step S1). The details of the treatment planning process will be described later.
  • the irradiation plan creation device 3 transmits the treatment plan created in step S1 to the particle beam therapy device 1 (step S2), and the particle beam therapy device 1 receives the treatment plan (step S3).
  • the irradiation plan creation device 3 stores the kernel data 413 based on the treatment plan created in step S1 in the storage device 23 (step S4).
  • the kernel data 413 is data used when calculating the expected dose distribution in the patient's body including the affected area.
  • step S23 it is determined whether or not there is an area of interest for which the dose distribution is to be confirmed (step S23), and when it is determined that there is an area of interest for which the dose distribution is to be confirmed (YES in step S23), the input unit 42 Accepts a designated input of an area of interest from a doctor or the like (step S24).
  • step S24 the input unit 42 receives the designated input of the classification and the reference value of the dose condition (index) from the doctor or the like for the region of interest for which the designated input was received in step S24 (step S25).
  • the display unit 43 displays two check boxes 54 and 55 for inputting the classification designation of the region of interest.
  • the check box 54 is a check box 54 in which the input unit 42 accepts a designated input for monitoring the effective dose for the region of interest selected by operating the pull-down menu 53.
  • the other check box 55 is a check box 55 in which the input unit 42 accepts the designated input of the dose condition for the region of interest selected by operating the pull-down menu 53.
  • the input unit 42 When the input unit 42 accepts the operation input of the registration button 58 displayed by the display unit 43 in FIG. 8, it accepts the classification and reference value of the region of interest that is accepting the input at that time.
  • the control unit 40 stores the information received by the input unit 42 in the storage unit 41 as calculation designation information 416 and reference value designation information 417. After that, the control unit 40 returns to step S23 and continues the operation.
  • FIG. 9 is a flowchart showing the dose distribution calculation operation of the particle beam therapy system S according to the first embodiment.
  • the irradiation plan creation device 3 of the treatment planning device 2 reads out the kernel data 413 saved in the storage device 23 in step S18 of FIG. 6 and sends it to the dose calculation device 4.
  • the dose calculation device 4 reads the kernel data 413 sent from the irradiation plan creation device 3 (step S31).
  • the particle beam therapy device 1 irradiates the patient with particle beams (step S32). Then, when the particle beam therapy device 1 irradiates the patient with a constant dose (for example, every 0.5 Gy), the particle beam therapy device 1 transmits irradiation log data 411 to the treatment planning device 2 (step S33).
  • the irradiation log data 411 includes the irradiation amount measured by the dose monitor and the irradiation position measured by the beam position monitor.
  • the dose calculation device 4 of the treatment planning device 2 waits for the irradiation log data 411 to be transmitted from the particle beam therapy device 1, and receives the irradiation log data 411 when the particle beam therapy device 1 transmits the irradiation log data 411. (Step S34).
  • the dose distribution calculation unit 401 of the dose calculation device 4 generates a fluence map 414 based on the irradiation log data 411 received in step S32 (step S35). Further, the dose distribution calculation unit 401 calculates the effective dose for the regions of interest classified into the categories (1) and (2) based on the fluence map 414 generated in step S35 (step S36).
  • the display control unit 402 generates a display control signal for displaying the screen showing the effective dose calculated in step S36 on the display surface of the display unit 43, and sends it to the display unit 43.
  • the display unit 43 displays a screen showing the effective dose on the display surface based on the display control signal (step S37).
  • the particle beam irradiated to the patient forms a virtual fluence map (fluence map) 414.
  • the fluence map 414 has elements j arranged in a matrix. Each fluence map element j has a value corresponding to the irradiation amount of the particle beam actually irradiated to the patient from the plane position of each element j of the fluence map 414, which is calculated based on the irradiation log data 411.
  • FIG. 11 is a diagram for explaining the principle of dose distribution calculation by the dose calculation device 4 of the first embodiment, and is a diagram showing kernel data 413 read in step S31.
  • the kernel data 413 shows which of the minute volumes i of the region of interest 61 of the patient 6 when the particle beam is irradiated into the patient body from each element j of the fluence map 414. It is a set of values calculated for each element of the fluence map 414 as a value (ratio) indicating how to be absorbed. In other words, the kernel data 413 determines the dose distribution formed in each of the minute volumes i of the region of interest 61 when a unit dose (ie, the dose is 1) is incident on each element j of the fluence map 414. It is a collection.
  • Each element of the kernel data 413 shows the effect of each element j of the fluence map 414 on the minute volume i of the region of interest 61, that is, the dose contribution.
  • Row 414a of the fluence map 414 shows the effect of the minute volume i from each element j of the fluence map 414.
  • Column 414b of the fluence map 414 shows the dose distribution formed by each element j of the fluence map 414 over all of the minute volumes i.
  • FIG. 12 is a diagram for explaining the principle of dose distribution calculation by the dose calculation device 4 of the first embodiment, and is a diagram showing an equation for calculating the effective dose by the dose distribution calculation unit 401.
  • the comparison unit 403 compares the effective dose calculated in step S36 with the set reference value for the region of interest classified in the classification (1), and determines whether the effective dose satisfies the dose condition. (Step S38). To determine whether the effective dose satisfies the dose condition, the comparison unit 403 determines that the dose condition is satisfied if the effective dose is approximately equal to the reference value, and the comparison unit 403 determines whether the effective dose exceeds or falls below the reference value. Determines that the dose condition is not met.
  • step S38 the comparison unit 403 determines that the effective dose satisfies the dose condition (YES in step S38)
  • the process returns to step S34, and the dose calculation device 4 transmits the irradiation log data 411 from the particle beam therapy device 1. Wait.
  • the display control unit 402 displays a warning display screen notifying that the effective dose does not satisfy the dose condition.
  • a display control signal for displaying on the display surface of is generated, and this display control signal is transmitted to the display unit 43.
  • the display unit 43 displays a warning display screen based on the display control signal transmitted from the display control unit 402 (step S39).
  • the comparison result sending unit 404 sends an irradiation stop instruction signal instructing the stop of the particle beam irradiation by the particle beam therapy device 1 to the particle beam therapy device 1 (step S39).
  • the particle beam therapy device 1 stops the particle beam irradiation to the patient based on the irradiation stop instruction signal sent from the comparison result sending unit 404 (step S40).
  • the comparison result sending unit 404 sends the comparison result of the comparison unit 403 to the irradiation plan creating device 3.
  • the irradiation plan creation device 3 recreates the treatment plan based on the comparison result (step S41), and transmits the recreated treatment plan to the particle beam therapy device 1 (step S42).
  • the particle beam therapy device 1 receives the treatment plan transmitted from the irradiation plan creation device 3 (step S43), and irradiates the particle beam based on this treatment plan (step S44).
  • the display unit 43 displays the X-ray CT image 415 including the affected area
  • the input unit 42 calculates the dose distribution for at least one region of interest set in the affected area.
  • the control unit 40 especially the dose distribution calculation unit 401, calculates the dose distribution of the region of interest for which the calculation of the dose distribution is designated based on the calculation designation information 416. There is.
  • Anatomical changes include weight gain and loss, tumor shrinkage, stuffy nose or tissue swelling. It is conceivable that the change causes the beam range in the body to change (that is, the position where the beam stops changes). By creating kernel data 413 in consideration of daily changes in the patient's body, safer treatment can be provided.
  • the flowchart of FIG. 5 is performed using the X-ray CT image to create kernel data 413.
  • the organ name or identification number for the region of interest ROI data 412 including a contour image of the region of interest
  • calculation designation information 416 calculation designation information 416
  • a reference value a reference value for the designated information 417 is automatically transferred to a new X-ray CT image.
  • FIG. 13 is a configuration diagram showing the function of the dose calculation device 4 of the third embodiment.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be simplified.
  • a moving body tracking irradiation technique was developed to accurately irradiate a tumor whose position changes due to respiration near the trunk, especially the lungs (for example, Patent No. 5976474).
  • fluoroscopic images near the tumor are taken at a constant frequency (for example, 30 times per second).
  • a gate signal indicating that irradiation is possible is transmitted to the irradiation device.
  • the beam is irradiated while the gate signal, which means that the irradiation device can irradiate, rises.
  • the tumor position analysis includes a method of analyzing the movement of a marker artificially inserted near the tumor and a method of analyzing the position using only image data of the patient's organ.
  • the moving body tracking irradiation technology has made it possible to irradiate moving organs with high precision.
  • the beam cannot be irradiated, which may increase the treatment time.
  • the width of the gate signal is wide (that is, if the rising time is long)
  • the irradiation time is increased and the treatment time is shortened.
  • the organs are moved within the irradiation time, the irradiation accuracy is lowered.
  • accuracy and time are in a trade-off relationship.
  • the dose calculation device 4 of the present embodiment shown in FIG. 13 differs only in that it has a control signal transmission unit 405 in addition to the dose calculation device 4 of the above-described first embodiment, and the other components are the configurations of the first embodiment. Same as the element.
  • the control signal transmission unit 405 transmits a control signal for controlling the irradiation range of the particle beam irradiated to the region of interest based on the comparison result of the comparison unit 403.
  • the control signal referred to here is, for example, a gate signal transmitted to the particle beam therapy device 1.
  • FIG. 14 is a flowchart showing the dose distribution calculation operation of the particle beam therapy system S according to the third embodiment.
  • steps S51 to S57 are the same as steps S30 to S37 of the flowchart of the first embodiment shown in FIG.
  • the comparison unit 403 compares the effective dose T with the dose index C (step S58). As a result, when the comparison unit 403 determines that the effective dose T is smaller than the dose index C (T ⁇ C in step S58), the control signal transmission unit 405 is the gate signal currently transmitted to the particle beam therapy device 1. Control to widen the width is performed (step S59). Further, when the comparison unit 403 determines that the effective dose T is larger than the dose index C (T> C in step S58), the control signal transmission unit 405 has the width of the gate signal currently transmitted to the particle beam therapy device 1. Is controlled to be narrowed (step S60).
  • the process returns to step S54, and the dose calculation device 4 receives the irradiation log data 411 from the particle beam therapy device 1. Wait for to be sent.
  • control signal transmission unit 405 transmits the changed gate signal to the particle beam therapy device 1 after controlling the gate signal to be widened or narrowed (step S61).
  • the particle beam therapy device 1 changes the gate signal used for particle beam irradiation based on the gate signal received from the dose calculation device 4 (step S62).
  • FIG. 15 is a diagram illustrating an operation of gate width control by the dose calculation device 4 of the third embodiment.
  • the control signal transmission unit 405 feeds back the width of the gate signal according to the achievement level of the index, and after a certain period of time, the most efficient gate width for the patient being treated. It is possible to perform control to stabilize with.
  • the dose distribution calculation unit 401 calculates the effective dose, the width of the gate signal can be adjusted while confirming the accuracy of the effective dose with respect to the dose index.
  • the accuracy of irradiation and the irradiation time can be optimized.
  • the particle beam therapy device 1 transmits the relationship between the tumor position and the time monitored by the moving body tracking to the dose calculation device 4, and the particle beam therapy device 1 further adds the irradiation amount and the irradiation position.
  • the time information can be transmitted to the dose calculation device 4. This makes it possible for the dose calculation device 4 to reflect the amount of movement of the tumor in the irradiation position and create a fluence map 414 in consideration of body movement.
  • the present invention is not limited to the above-mentioned examples, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the irradiation plan creation device 3 and the dose calculation device 4 have been described as being realized by the same hardware, but these may be realized by different hardware.
  • Examples 1 to 3 an example in which the effective dose is calculated for each fixed dose is shown (for example, the effective dose is calculated and displayed every time 0.5 Gy is irradiated).
  • the dose to be irradiated does not have to be kept constant at all times.
  • the widow or widower treatment for example, when it is necessary to irradiate a patient with 10 Gy, first irradiate 0.5 Gy and then pause. The effective dose is then calculated and the dose distribution or indicators that can be calculated from the dose distribution are compared with the indicators in the treatment plan. If the index in the treatment plan is achieved, the next dose may be increased to 1 Gy and then paused to calculate the effective dose. It is also conceivable to implement a function that automatically repeats this process until the dose required for treatment and 10 Gy are all irradiated.
  • each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be placed in a memory, a recording device such as a hard disk or SSD, or a recording medium such as an IC card, SD card, or DVD.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are interconnected.

Abstract

The present invention enables an effective dose calculation to be performed rapidly. A treatment planning device 2 includes: a display device 43 that displays tomographic image information including an affected part; an input device 42 that accepts an input of calculation designation information designating whether it is necessary to calculate a dose distribution of a particle beam that is projected onto at least one region of interest which has been set for the affected part; and a computation device 40 that calculates, on the basis of the calculation designation information, the dose distribution for a region of interest for which a dose distribution calculation has been designated.

Description

治療計画装置、治療計画方法及びプログラムTreatment planning equipment, treatment planning methods and programs
 本発明は、治療計画装置、治療計画方法及びプログラムに関する。 The present invention relates to a treatment planning device, a treatment planning method and a program.
 粒子線治療は、粒子線加速器により加速された荷電粒子をがん患部に照射することにより、がん細胞を破壊するがん治療法である。粒子線は、飛程の終端付近で最も線量集中性が高い。このため、がん患部で多くのエネルギーを放出させて、健康組織へのダメージを低減する特徴がある。一方、限定された小さい領域で大きなエネルギーを放出するため、高精度な計算と照射が求められる。 Particle beam therapy is a cancer treatment method that destroys cancer cells by irradiating the affected area with charged particles accelerated by a particle beam accelerator. The particle beam has the highest dose concentration near the end of the range. Therefore, it has a feature of releasing a large amount of energy in the affected area of cancer to reduce damage to healthy tissues. On the other hand, since a large amount of energy is emitted in a limited small area, highly accurate calculation and irradiation are required.
 近年、細い粒子線ビームを用いて標的を塗りつぶすように照射する、スポットスキャニング法が主流な照射法になりつつある。どの角度からどのスポットへどのような照射量を照射すれば所望の線量分布を形成できるかは、最適化計算によって決定される。この過程を治療計画という。 In recent years, the spot scanning method, which uses a fine particle beam to irradiate the target so as to fill it, is becoming the mainstream irradiation method. The optimization calculation determines what kind of irradiation amount should be applied to which spot from which angle to form the desired dose distribution. This process is called a treatment plan.
 治療計画には、臓器の輪郭をROI(Region of Interest:関心領域)として入力する過程を含む。一般的に、異なる臓器は放射線に対する感度も違い、例えば同じ量の放射線を照射される場合は、骨に比べて粘膜がある臓器(腸など)はより大きなダメージを受ける。放射線にダメージされやすい臓器を危険臓器(OAR:Organ at Risk)という。多くの場合は医師がROI入力作業を行うが、近年はソフトウェアによる自動入力もある。 The treatment plan includes the process of inputting the contour of the organ as a ROI (Region of Interest). In general, different organs have different sensitivities to radiation, for example, when exposed to the same amount of radiation, organs with mucosa (such as the intestine) are more damaged than bone. Organs that are easily damaged by radiation are called dangerous organs (OAR: Organ at Risk). In many cases, doctors perform ROI input work, but in recent years there has also been automatic input by software.
 治療計画によって作成された線量分布を評価する指標は臓器毎に異なり、医師によって指定される。例えば、「臓器Aが処方線量のX%以上を照射される体積は、Y%を超えてはならない」のような条件が最適化計算で用いられる。 The index for evaluating the dose distribution created by the treatment plan differs for each organ and is specified by the doctor. For example, a condition such as "the volume at which organ A is irradiated with X% or more of the prescribed dose must not exceed Y%" is used in the optimization calculation.
 治療に必要な線量を、一定の回数に分ける事を分割(fractionation)という。患者の身体、精神的な負担を考慮すると治療の短期間化が望ましいため、治療期間を短縮する目的で寡分割治療(hypofractionated treatment)が提案された。これは、一回の照射する放射線の量を増やし、治療に必要な日数を減らす治療法である。 Dividing the dose required for treatment into a certain number of times is called fractionation. Considering the physical and mental burden on the patient, it is desirable to shorten the treatment period. Therefore, hypofractionated treatment has been proposed for the purpose of shortening the treatment period. This is a treatment that increases the amount of radiation given at one time and reduces the number of days required for treatment.
 一回に照射する放射線を多くするには、治療の安全性を保障しなければならない。そこで、一日の照射をさらに複数回に分け、実際に照射された粒子線が形成する線量分布を確認しながら治療する方法が提案された。このように、計画していた線量分布と実際に照射されたビームが形成する線量分布(以下、実効線量と呼ぶこともある)の差を最小限に留め、安全な寡分割照射を行う。 In order to increase the amount of radiation emitted at one time, the safety of treatment must be guaranteed. Therefore, a method has been proposed in which the daily irradiation is further divided into a plurality of times, and the treatment is performed while confirming the dose distribution formed by the actually irradiated particle beams. In this way, the difference between the planned dose distribution and the dose distribution formed by the actually irradiated beam (hereinafter, also referred to as effective dose) is minimized, and safe divided irradiation is performed.
 また、分割回数によらず、治療中に実効線量を計算し、その結果に基づいて治療の続行、または中止、治療計画再作成の判断を行うことをオンラインアダプティブ治療(Online adaptive)という。 In addition, calculating the effective dose during treatment regardless of the number of divisions, and making a decision to continue or discontinue the treatment or recreate the treatment plan based on the result is called online adaptive treatment (Online adaptive).
 特許文献1には、マーカー位置データと陽子線照射データを記録する機能を備え、時刻情報を基にしてこれらマーカー位置データと陽子線照射データとを同期して、スポット照射時のマーカー位置データと陽子線照射データを用いて陽子線照射の実績線量分布を計算する粒子線線量評価システムが開示されている。 Patent Document 1 has a function of recording marker position data and proton beam irradiation data, and synchronizes these marker position data with proton beam irradiation data based on time information to obtain marker position data at the time of spot irradiation. A particle beam dose evaluation system that calculates the actual dose distribution of proton beam irradiation using proton beam irradiation data is disclosed.
特開2017-176533JP-A-2017-176533
 オンラインアダプティブ治療を実現するためには、治療中に粒子線治療装置から照射されたビームの位置、照射量、エネルギー、照射が行われた時刻のデータまたはログファイルを取得し、それに基づいて実効線量の計算を行う必要がある。しかも、一日の照射をさらに複数回に分け、実際に照射された粒子線が形成する線量分布を確認しながら治療する場合、照射毎に実効線量を計算する必要がある。 In order to realize online adaptive treatment, data or log file of the position, irradiation amount, energy, irradiation time of the beam irradiated from the particle beam therapy device during treatment is acquired, and the effective dose is based on it. Need to be calculated. Moreover, when the daily irradiation is further divided into a plurality of times and the treatment is performed while confirming the dose distribution formed by the actually irradiated particle beams, it is necessary to calculate the effective dose for each irradiation.
 しかし、粒子線の線量計算は、2つまたは3つのガウス分布を3次元CT上で畳み込み積分をする処理があり、計算時間に長時間を要する。従って、治療時間内に何回も実効線量を計算する場合は治療時間が延びてしまう。 However, the particle beam dose calculation involves a process of convolving and integrating two or three Gaussian distributions on a three-dimensional CT, which requires a long calculation time. Therefore, if the effective dose is calculated many times within the treatment time, the treatment time will be extended.
 また、オンラインアダプティブ治療に限らず、治療時間内に実効線量を計算するニーズは存在する。 In addition, there is a need to calculate the effective dose within the treatment time, not limited to online adaptive treatment.
 本発明は上記の課題に鑑みてなされたもので、実効線量の計算を高速に行うことが可能な治療計画装置、治療計画方法及びプログラムを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a treatment planning device, a treatment planning method, and a program capable of calculating an effective dose at high speed.
 上記課題を解決すべく、本発明の一つの観点に従う治療計画装置は、患部を含む断層画像情報を表示する表示装置と、患部に設定された少なくとも1つの関心領域について照射された粒子線の線量分布の算出の要否を指定する算出指定情報の入力を受け入れる入力装置と、算出指定情報に基づいて、線量分布の算出が指定された前記関心領域の線量分布を算出する演算装置とを有する。 In order to solve the above problems, the treatment planning device according to one aspect of the present invention includes a display device for displaying tomographic image information including the affected area and a dose of particle beams irradiated to at least one region of interest set in the affected area. It has an input device that accepts input of calculation designation information that specifies the necessity of calculation of the distribution, and an arithmetic device that calculates the dose distribution of the region of interest for which the calculation of the dose distribution is designated based on the calculation designation information.
 本発明によれば、実効線量の計算を高速に行うことが可能となる。 According to the present invention, it is possible to calculate the effective dose at high speed.
実施例1に係る粒子線治療システムを示す概略構成図である。It is a schematic block diagram which shows the particle beam therapy system which concerns on Example 1. FIG. 実施例1に係る粒子線治療装置を示す概略構成図である。It is a schematic block diagram which shows the particle beam therapy apparatus which concerns on Example 1. FIG. 実施例1の治療計画装置を示す構成図である。It is a block diagram which shows the treatment planning apparatus of Example 1. FIG. 実施例1の線量計算装置の機能を示す構成図である。It is a block diagram which shows the function of the dose calculation apparatus of Example 1. FIG. 実施例1に係る粒子線治療システムの照射前の動作を示すフローチャートである。It is a flowchart which shows the operation before irradiation of the particle beam therapy system which concerns on Example 1. FIG. 実施例1の照射計画作成装置による治療計画作成処理を示すフローチャートである。It is a flowchart which shows the treatment plan making process by the irradiation plan making apparatus of Example 1. 実施例1の線量計算装置による関心領域分類指定処理を示すフローチャートである。It is a flowchart which shows the interest area classification designation processing by the dose calculation apparatus of Example 1. 実施例1の線量計算装置による関心領域分類指定処理において表示される画面の一例を示す図である。It is a figure which shows an example of the screen displayed in the interest area classification designation processing by the dose calculation apparatus of Example 1. FIG. 実施例1に係る粒子線治療システムの線量分布算出動作を示すフローチャートである。It is a flowchart which shows the dose distribution calculation operation of the particle beam therapy system which concerns on Example 1. FIG. 実施例1の線量計算装置による線量分布算出の原理を説明する図である。It is a figure explaining the principle of the dose distribution calculation by the dose calculation apparatus of Example 1. FIG. 実施例1の線量計算装置による線量分布算出の原理を説明する図である。It is a figure explaining the principle of the dose distribution calculation by the dose calculation apparatus of Example 1. FIG. 実施例1の線量計算装置による線量分布算出の原理を説明する図である。It is a figure explaining the principle of the dose distribution calculation by the dose calculation apparatus of Example 1. FIG. 実施例3の線量計算装置の機能を示す構成図である。It is a block diagram which shows the function of the dose calculation apparatus of Example 3. 実施例3に係る粒子線治療システムの線量分布算出動作を示すフローチャートである。It is a flowchart which shows the dose distribution calculation operation of the particle beam therapy system which concerns on Example 3. FIG. 実施例3の線量計算装置によるゲート幅制御の動作を説明する図である。It is a figure explaining the operation of the gate width control by the dose calculation apparatus of Example 3. FIG.
 以下、本発明の実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the invention according to the claims, and all of the elements and combinations thereof described in the embodiments are essential for the means for solving the invention. Is not always.
 本発明の実施形態である治療計画装置は、陽子線や炭素線などの粒子線を用いた粒子線治療システムに適用される。粒子線治療システムは、患部に粒子線を照射することで、例えばがん患部の治療を行うシステムである。粒子線治療システムに用いられる粒子線は、上述した陽子線、炭素線など、既に実用化され、また、今後実用化されるであろう粒子線であれば限定はない。 The treatment planning device according to the embodiment of the present invention is applied to a particle beam therapy system using particle beams such as proton beams and carbon beams. The particle beam therapy system is a system that treats, for example, a cancer affected area by irradiating the affected area with a particle beam. The particle beam used in the particle beam therapy system is not limited as long as it is a particle beam that has already been put into practical use, such as the above-mentioned proton beam and carbon beam, and will be put into practical use in the future.
 なお、本明細書において「情報」と「データ」とは同義であるとし、特に区別せずに用いる。また、「情報」「データ」と記されている場合、その個数についての限定はない。さらに、その形式に限定はない。加えて言えば、いわゆるテーブル形式で記憶媒体に保管、格納されているデータ等もここにいう「情報」「データ」である。 In this specification, "information" and "data" are synonymous and are used without particular distinction. In addition, when "information" and "data" are described, there is no limitation on the number of them. Furthermore, the format is not limited. In addition, the data stored and stored in the storage medium in the so-called table format are also referred to as "information" and "data".
 図1は、実施例1である治療計画装置が適用される、実施例1に係る粒子線治療システムを示す概略構成図である。本実施例の粒子線治療システムSは、粒子線治療装置1と治療計画装置2とを有する。本実施例の粒子線治療システムSは、スポットスキャニング法を採用したものである。 FIG. 1 is a schematic configuration diagram showing a particle beam therapy system according to Example 1 to which the treatment planning apparatus according to Example 1 is applied. The particle beam therapy system S of this embodiment has a particle beam therapy device 1 and a treatment planning device 2. The particle beam therapy system S of this embodiment employs a spot scanning method.
 粒子線治療装置1は、患部に対して粒子線を照射してこの患部に対して治療を行う。 The particle beam therapy device 1 irradiates the affected area with particle beams to treat the affected area.
 治療計画装置2は、照射計画作成装置3と線量計算装置4とを有する。 The treatment planning device 2 has an irradiation planning device 3 and a dose calculation device 4.
 照射計画作成装置3は、患部に照射する粒子線の照射パラメータを決定する。決定される照射パラメータには、スポット毎のガントリー角度、エネルギー、照射位置、照射量が含まれている。照射計画作成装置3は、任意の粒子線の照射パラメータで照射した場合の線量分布を計算することができ、オペレータが標的に照射すべき線量を指定すると、照射計画作成装置3は患部が指定された線量で覆われるような線量分布を形成するために必要な粒子線の照射パラメータを最適化する計算を行う。照射計画作成装置3は、最適化計算の結果得られた照射パラメータで照射した場合の線量分布を計算し、オペレータ(含む医師)に提示する。照射計画作成装置3が計算した線量分布を医師が承認したら、照射計画作成装置3は照射パラメータを含む治療計画を粒子線治療装置1に送出する。 The irradiation plan creation device 3 determines the irradiation parameters of the particle beam to be irradiated to the affected area. The determined irradiation parameters include the gantry angle, energy, irradiation position, and irradiation amount for each spot. The irradiation plan creation device 3 can calculate the dose distribution when irradiated with an irradiation parameter of an arbitrary particle beam, and when the operator specifies the dose to be irradiated to the target, the irradiation plan creation device 3 specifies the affected area. Calculations are performed to optimize the irradiation parameters of the particle beam required to form a dose distribution that is covered with a large dose. The irradiation plan creation device 3 calculates the dose distribution when irradiation is performed with the irradiation parameters obtained as a result of the optimization calculation, and presents it to the operator (including the doctor). When the doctor approves the dose distribution calculated by the irradiation plan creation device 3, the irradiation plan creation device 3 sends a treatment plan including irradiation parameters to the particle beam therapy device 1.
 照射計画作成装置3は、事前にX線CT装置により撮像した、患部を含む断層画像情報である3次元X線CT画像の入力を受け入れ、これに基づいて断層画像情報に対して関心領域(ROI)の輪郭を抽出する。 The irradiation plan creation device 3 accepts the input of the three-dimensional X-ray CT image which is the tomographic image information including the affected part captured by the X-ray CT device in advance, and based on this, the region of interest (ROI) for the tomographic image information ) Is extracted.
 線量計算装置4は、照射計画作成装置3から関心領域の輪郭に関するデータを含むROIデータを受け入れ、X線CT画像にROIの輪郭画像を重畳して表示する。そして、線量計算装置4は、オペレータ(含む医師)からROIの分類の指定入力を受け入れる。 The dose calculation device 4 receives ROI data including data related to the contour of the region of interest from the irradiation plan creation device 3, and superimposes and displays the contour image of the ROI on the X-ray CT image. Then, the dose calculation device 4 accepts the designated input of the ROI classification from the operator (including the doctor).
 また、線量計算装置4は、粒子線治療装置1から実際に患部に照射した際の照射位置及び照射量に関するデータを含む照射ログデータの入力を受け入れる。また、線量計算装置4は、照射計画作成装置3からカーネルデータの入力を受け入れる。そして、線量計算装置4は、ROIの分類に基づいて、照射ログデータから得られるフルエンスマップ及びカーネルデータを用いて実効線量及び指標を算出する。 Further, the dose calculation device 4 accepts input of irradiation log data including data on the irradiation position and irradiation amount when the affected area is actually irradiated from the particle beam therapy device 1. Further, the dose calculation device 4 accepts the input of kernel data from the irradiation plan creation device 3. Then, the dose calculation device 4 calculates the effective dose and the index by using the fluence map and the kernel data obtained from the irradiation log data based on the classification of ROI.
 照射計画作成装置3は、線量計算装置4により計算された実効線量等に基づいて、残りの照射計画における粒子線の照射パラメータの再度の最適化(再計画、修正)を行う。 The irradiation plan creation device 3 reoptimizes (replans, corrects) the irradiation parameters of the particle beam in the remaining irradiation plans based on the effective dose calculated by the dose calculation device 4.
 治療計画装置2、特に照射計画作成装置3及び線量計算装置4の動作の詳細については後に詳述する。 The details of the operation of the treatment planning device 2, particularly the irradiation planning device 3 and the dose calculation device 4, will be described in detail later.
 なお、図1では照射計画作成装置3と線量計算装置4とは別々に図示されているが、これら照射計画作成装置3等は、後述する治療計画プログラム232が治療計画装置2上において実行されることで、1台の治療計画装置2内に仮想的に構成されている。 Although the irradiation plan creation device 3 and the dose calculation device 4 are shown separately in FIG. 1, the treatment plan program 232 described later is executed on the treatment plan device 2 in these irradiation plan creation devices 3 and the like. As a result, it is virtually configured in one treatment planning device 2.
 図2は、実施例1に係る粒子線治療装置を示す概略構成図である。本実施例の粒子線治療装置1は、加速器、ビーム輸送系13、照射ノズル14、治療台15及び照射制御装置16を有する。図2では、加速器として入射器11、シンクロトロン加速器12の例を示したが、サイクロトロン加速器でも良い。ビーム輸送系13は回転ガントリーを有するが、固定照射ポートでも良い。 FIG. 2 is a schematic configuration diagram showing a particle beam therapy apparatus according to the first embodiment. The particle beam therapy device 1 of this embodiment includes an accelerator, a beam transport system 13, an irradiation nozzle 14, a treatment table 15, and an irradiation control device 16. Although FIG. 2 shows an example of the injector 11 and the synchrotron accelerator 12 as accelerators, a cyclotron accelerator may also be used. The beam transport system 13 has a rotating gantry, but may be a fixed irradiation port.
 入射器11で発生して加速された粒子線はシンクロトロン加速器12に入射し、このシンクロトロン加速器12でさらに加速されてビーム輸送系13に出射される。 The particle beam generated and accelerated by the injector 11 enters the synchrotron accelerator 12, is further accelerated by the synchrotron accelerator 12, and is emitted to the beam transport system 13.
 ビーム輸送系13は、複数の偏向電磁石13aと四極電磁石(図示せず)を備えており、シンクロトロン加速器12と照射ノズル14とに接続されている。また、ビーム輸送系13の一部と照射ノズル14は回転ガントリーに設置されており、ガントリーとともに回転することができる。シンクロトロン加速器12から出射された粒子線は、ビーム輸送系13内を通過しながら四極電磁石によって収束し、偏向電磁石13aによって方向を変えて照射ノズル14に入射する。 The beam transport system 13 includes a plurality of deflection electromagnets 13a and a quadrupole electromagnet (not shown), and is connected to the synchrotron accelerator 12 and the irradiation nozzle 14. Further, a part of the beam transport system 13 and the irradiation nozzle 14 are installed in the rotating gantry, and can rotate together with the gantry. The particle beam emitted from the synchrotron accelerator 12 is converged by the quadrupole electromagnet while passing through the beam transport system 13, and is changed in the direction by the deflection electromagnet 13a to enter the irradiation nozzle 14.
 照射ノズル14は、走査電磁石と線量モニタとビーム位置モニタ(いずれも図示せず)とを有する。走査電磁石は、標的の位置においてビーム軸に垂直な面内の所望の位置に陽子線が到達するように陽子線を偏向する。線量モニタは、標的に照射される粒子線の照射量を計測するモニタである。ビーム位置モニタは、標的に照射される粒子線が通過した位置を検出することで、標的に照射される陽子線の照射位置を間接的に計測するためのモニタである。照射ノズル14を通過した粒子線は、治療台15上の照射対象(図示せず)内の標的に到達する。なお、癌などの患者を治療する場合、照射対象は患者を表し、標的は患部などを表す。 The irradiation nozzle 14 has a scanning electromagnet, a dose monitor, and a beam position monitor (none of which are shown). The scanning electromagnet deflects the proton beam so that it reaches the desired position in the plane perpendicular to the beam axis at the target position. The dose monitor is a monitor that measures the amount of particle beam irradiation applied to the target. The beam position monitor is a monitor for indirectly measuring the irradiation position of the proton beam irradiated to the target by detecting the position where the particle beam irradiated to the target has passed. The particle beam that has passed through the irradiation nozzle 14 reaches a target in the irradiation target (not shown) on the treatment table 15. When treating a patient such as cancer, the irradiation target represents the patient and the target represents the affected area or the like.
 照射対象が載せられる治療台15は照射制御装置16からの指示に基づき、直交する3軸の方向へ移動することができ、さらにそれぞれの軸を中心として回転することができる。これらの移動と回転により、照射対象の位置を所望の位置に移動することができる。 The treatment table 15 on which the irradiation target is placed can move in the directions of three orthogonal axes based on the instruction from the irradiation control device 16, and can further rotate around each axis. By these movements and rotations, the position of the irradiation target can be moved to a desired position.
 照射制御装置16は、シンクロトロン加速器12、ビーム輸送系13、照射ノズル14、治療台15などと接続されており、これらの機器を制御する。 The irradiation control device 16 is connected to the synchrotron accelerator 12, the beam transport system 13, the irradiation nozzle 14, the treatment table 15, and the like, and controls these devices.
 図3は、実施例1の治療計画装置2を示す構成図である。 FIG. 3 is a configuration diagram showing the treatment planning device 2 of the first embodiment.
 治療計画装置2は、例えば、マイクロプロセッサ(図中、CPU:Central Processing Unit)21、メモリ22、記憶装置23、通信インターフェース装置24、ユーザインターフェース装置25を有するコンピュータシステムとして構成される。 The treatment planning device 2 is configured as, for example, a computer system including a microprocessor (CPU: Central Processing Unit) 21, a memory 22, a storage device 23, a communication interface device 24, and a user interface device 25 in the figure.
 記憶装置23は、例えば、フラッシュメモリデバイス、ハードディスクドライブ(HDD)などから構成されており、オペレーティングシステム231と治療計画プログラム232といったコンピュータプログラムを記憶している。これらのコンピュータプログラム231、232以外に、ドライバソフトウェアなどのソフトウェア(不図示)も記憶装置23に格納されている。 The storage device 23 is composed of, for example, a flash memory device, a hard disk drive (HDD), or the like, and stores computer programs such as an operating system 231 and a treatment planning program 232. In addition to these computer programs 231 and 232, software (not shown) such as driver software is also stored in the storage device 23.
 マイクロプロセッサ21が、記憶装置23に格納された治療計画プログラム232をメモリ22に読み出して実行することにより、照射計画作成装置3及び線量計算装置4を含む治療計画装置2としての機能が実現される。 When the microprocessor 21 reads the treatment planning program 232 stored in the storage device 23 into the memory 22 and executes it, the function as the treatment planning device 2 including the irradiation plan creating device 3 and the dose calculation device 4 is realized. ..
 通信インターフェース装置24は、粒子線治療装置1の照射制御装置16と通信するための装置である。ユーザインターフェース装置25は、治療計画装置2を使用するユーザ(医師)との間で情報を交換する装置である。ユーザインターフェース装置25は、情報出力装置と情報入力装置とを含む。情報出力装置としては、例えば、ディスプレイ、プリンタ、音声合成装置等がある。情報入力装置としては、例えば、キーボード、ポインティングデバイス、タッチパネル、音声認識装置等がある。例えば、治療計画の計算結果と、治療計画プログラム232への操作とはディスプレイに表示される。 The communication interface device 24 is a device for communicating with the irradiation control device 16 of the particle beam therapy device 1. The user interface device 25 is a device for exchanging information with a user (doctor) who uses the treatment planning device 2. The user interface device 25 includes an information output device and an information input device. Examples of the information output device include a display, a printer, a voice synthesizer, and the like. Examples of the information input device include a keyboard, a pointing device, a touch panel, a voice recognition device, and the like. For example, the calculation result of the treatment plan and the operation to the treatment plan program 232 are displayed on the display.
 図4は、実施例1の線量計算装置4の機能を示す構成図である。本実施例の線量計算装置4は、制御部(演算装置)40、記憶部41、入力部(入力装置)42及び表示部(表示装置)43を有する。 FIG. 4 is a configuration diagram showing the function of the dose calculation device 4 of the first embodiment. The dose calculation device 4 of this embodiment includes a control unit (arithmetic unit) 40, a storage unit 41, an input unit (input device) 42, and a display unit (display device) 43.
 制御部40はマイクロプロセッサ201等からなり、線量計算装置4全体の制御を行う。制御部40は、線量分布算出部401、表示制御部402、比較部403及び比較結果送出部404を有する。 The control unit 40 includes a microprocessor 201 and the like, and controls the entire dose calculation device 4. The control unit 40 includes a dose distribution calculation unit 401, a display control unit 402, a comparison unit 403, and a comparison result transmission unit 404.
 線量分布算出部401は、入力部42が受け入れた、患部に設定された少なくとも1つの関心領域について照射された粒子線の線量分布の算出の要否を指定する算出指定情報に基づいて、線量分布の算出が指定された関心領域の実効線量(線量分布)を算出する。線量分布算出部401が行う実効線量の算出手順については後に詳述する。 The dose distribution calculation unit 401 receives the dose distribution based on the calculation designation information received by the input unit 42, which specifies the necessity of calculating the dose distribution of the particle beam irradiated for at least one region of interest set in the affected area. Calculate the effective dose (dose distribution) of the area of interest for which the calculation of is specified. The procedure for calculating the effective dose performed by the dose distribution calculation unit 401 will be described in detail later.
 表示制御部402は、ユーザインターフェース装置205の情報出力装置であるディスプレイに各種画像を表示させるための表示制御信号を生成し、この表示制御信号をディスプレイに送出する。 The display control unit 402 generates a display control signal for displaying various images on the display which is an information output device of the user interface device 205, and sends this display control signal to the display.
 具体的には、表示制御部402は、治療計画装置2が受け入れた3次元X線CT画像(断層画像情報)をディスプレイに表示させるとともに、照射計画作成装置3が抽出した関心領域の輪郭画像をこのX線CT画像に重畳して表示させる。また、表示制御部402は、比較部403による比較結果をディスプレイに表示させる。比較部403による比較結果の具体例については後述する。 Specifically, the display control unit 402 displays the three-dimensional X-ray CT image (tomographic image information) received by the treatment planning device 2 on the display, and displays the contour image of the region of interest extracted by the irradiation plan creating device 3. It is superimposed on this X-ray CT image and displayed. Further, the display control unit 402 displays the comparison result by the comparison unit 403 on the display. A specific example of the comparison result by the comparison unit 403 will be described later.
 比較部403は、基準値の設定が指定された関心領域について、線量分布算出部401が算出した実効線量と基準値とを比較する。この基準値は、入力部42が受け入れた、実効線量の算出が指定された関心領域について、実効線量または実効線量に基づいて算出可能な指標についての基準値である。入力部42は、この基準値の設定の要否及び基準値を基準値指定情報として受け入れる。 The comparison unit 403 compares the effective dose calculated by the dose distribution calculation unit 401 with the reference value for the region of interest for which the reference value setting is specified. This reference value is a reference value for an index that can be calculated based on the effective dose or the effective dose for the region of interest for which the calculation of the effective dose is specified, which is accepted by the input unit 42. The input unit 42 accepts the necessity of setting the reference value and the reference value as the reference value designation information.
 指標の一例として、関心領域にどれだけの線量の粒子線を照射させるかという線量条件が挙げられる。ある関心領域について実効線量がこの線量条件を上回っても下回っても、その後の治療計画を再計画または中止する必要があるので、比較部403の比較結果に基づいて照射計画作成装置3が治療計画の再計画等を行い、また、粒子線治療装置1が粒子線照射を停止する。加えて、比較部403は、治療計画装置2のオペレータ(含む医師)に対して、上述の表示制御部402及びディスプレイを介して、比較部403の比較結果を報知し、時には警告表示を行う。 As an example of the index, there is a dose condition of how much particle beam should be irradiated to the area of interest. Whether the effective dose exceeds or falls below this dose condition for a region of interest, the subsequent treatment plan needs to be replanned or discontinued, so the irradiation plan creation device 3 uses the treatment plan based on the comparison result of the comparison unit 403. The particle beam therapy device 1 stops the particle beam irradiation. In addition, the comparison unit 403 notifies the operator (including the doctor) of the treatment planning device 2 of the comparison result of the comparison unit 403 via the display control unit 402 and the display described above, and sometimes displays a warning.
 比較結果送出部404は、比較部403の比較結果を照射計画作成装置3に送出する。 The comparison result sending unit 404 sends the comparison result of the comparison unit 403 to the irradiation plan creating device 3.
 記憶部41は、メモリ22及び記憶装置23等からなり、線量計算装置4の動作に必要なオペレーティングシステム231、治療計画プログラム232のうち線量計算装置4の動作にかかわるもの等のコンピュータプログラムを格納する。また、記憶部41は、線量計算装置4の制御動作における各種データが一時的に格納する。 The storage unit 41 includes a memory 22 and a storage device 23, and stores computer programs such as an operating system 231 necessary for the operation of the dose calculation device 4 and a treatment planning program 232 related to the operation of the dose calculation device 4. .. Further, the storage unit 41 temporarily stores various data in the control operation of the dose calculation device 4.
 さらに、記憶部41は、照射ログデータ411、ROIデータ412、カーネルデータ413、フルエンスマップ414、断層画像情報415、算出指定情報416、基準値指定情報417、線量分布データ418及び線量指標データ419を格納する。これらデータのうち一部については既に説明しており、説明をまだ行っていないデータについては後に詳述する。 Further, the storage unit 41 stores irradiation log data 411, ROI data 412, kernel data 413, fluence map 414, tomographic image information 415, calculation designation information 416, reference value designation information 417, dose distribution data 418, and dose index data 419. Store. Some of these data have already been described, and data that have not yet been described will be described in detail later.
 入力部42はユーザインターフェース装置25の情報入力装置等からなり、線量計算装置4に対する各種データを受け入れ、受け入れたデータを制御部40、記憶部41に送出する。入力部42が受け入れるデータの一例として、算出指定情報、基準値指定情報などがある。 The input unit 42 includes an information input device of the user interface device 25, etc., receives various data for the dose calculation device 4, and sends the accepted data to the control unit 40 and the storage unit 41. As an example of the data received by the input unit 42, there are calculation designation information, reference value designation information, and the like.
 表示部43はユーザインターフェース装置25の情報出力装置であるディスプレイ等からなり、制御部40の表示制御部402が生成した表示制御信号に基づいて、表示面に画面を表示する。表示部43が表示面に表示する画面の一例としては、断層画像情報であるX線CT画像、関心領域の輪郭画像、及び比較部403の比較結果などがある。 The display unit 43 includes a display or the like which is an information output device of the user interface device 25, and displays a screen on the display surface based on a display control signal generated by the display control unit 402 of the control unit 40. Examples of the screen displayed on the display surface by the display unit 43 include an X-ray CT image which is tomographic image information, a contour image of an area of interest, and a comparison result of the comparison unit 403.
 図5は、実施例1に係る粒子線治療システムSの照射前の動作を示すフローチャートである。 FIG. 5 is a flowchart showing the operation of the particle beam therapy system S according to the first embodiment before irradiation.
 まず、治療計画装置2の照射計画作成装置3は治療計画を作成する(ステップS1)。治療計画作成処理の詳細は後述する。次に、照射計画作成装置3は、ステップS1で作成した治療計画を粒子線治療装置1に送信し(ステップS2)、粒子線治療装置1は治療計画を受信する(ステップS3)。 First, the irradiation plan creation device 3 of the treatment planning device 2 creates a treatment plan (step S1). The details of the treatment planning process will be described later. Next, the irradiation plan creation device 3 transmits the treatment plan created in step S1 to the particle beam therapy device 1 (step S2), and the particle beam therapy device 1 receives the treatment plan (step S3).
 そして、照射計画作成装置3は、ステップS1で作成した治療計画に基づいたカーネルデータ413を記憶装置23に保存する(ステップS4)。ここに、カーネルデータ413とは、患部を含む患者体内の予想される線量分布を算出する際に用いられるデータである。 Then, the irradiation plan creation device 3 stores the kernel data 413 based on the treatment plan created in step S1 in the storage device 23 (step S4). Here, the kernel data 413 is data used when calculating the expected dose distribution in the patient's body including the affected area.
 図6は、実施例1の照射計画作成装置3による治療計画作成処理を示すフローチャートである。図6に示すフローチャートは、図5におけるステップS1の詳細な動作を示すものである。 FIG. 6 is a flowchart showing a treatment plan creation process by the irradiation plan creation device 3 of the first embodiment. The flowchart shown in FIG. 6 shows the detailed operation of step S1 in FIG.
 まず、照射計画作成装置3は、照射対象の患者のX線CT画像を読み込む(ステップS11)。粒子線治療システムSの外部にあるX線CT装置は、このX線CT画像を撮像する。X線CT装置によるX線CT画像の撮像のタイミングは任意である。X線CT装置は、撮像直後にX線CT画像を照射計画作成装置3に送出してもよいし、X線CT装置が自身のまたは外部の記憶装置にX線CT画像を格納し、照射計画作成装置3が図6に示す治療計画作成処理を開始するにあたってX線CT画像を読み込んでもよい。 First, the irradiation plan creation device 3 reads an X-ray CT image of the patient to be irradiated (step S11). An X-ray CT apparatus outside the particle beam therapy system S captures this X-ray CT image. The timing of imaging the X-ray CT image by the X-ray CT apparatus is arbitrary. The X-ray CT device may send an X-ray CT image to the irradiation plan creation device 3 immediately after imaging, or the X-ray CT device stores the X-ray CT image in its own or an external storage device and performs an irradiation plan. The X-ray CT image may be read when the creation device 3 starts the treatment plan creation process shown in FIG.
 次に、照射計画作成装置3は、ステップS11で読み込んだX線CT画像を線量計算装置4に送出し、線量計算装置4は関心領域設定処理を実行する(ステップS12)。線量計算装置4による関心領域設定処理の詳細は後述する。 Next, the irradiation plan creation device 3 sends the X-ray CT image read in step S11 to the dose calculation device 4, and the dose calculation device 4 executes the region of interest setting process (step S12). The details of the region of interest setting process by the dose calculation device 4 will be described later.
 次に、照射計画作成装置3はビームの照射方向の設定入力を受け入れ(ステップS13)、患部、重要臓器へ入力する線量の処方入力を受け入れる(ステップS14)。これらビームの照射方向の設定及び患部、重要臓器へ入力する線量の処方は、医師によりユーザインターフェース装置205の情報入力装置が操作されることにより入力される。線量の処方には、例えば、どの患部にどれだけの線量のビームを照射するか、ビームから保護すべき重要臓器はどれかといった情報が含まれる。なお、ステップS13とステップS14との実行順序は任意であり、図6に示すような順序に限定されない。 Next, the irradiation plan creation device 3 accepts the setting input of the irradiation direction of the beam (step S13), and accepts the prescription input of the dose to be input to the affected part and the important organ (step S14). The setting of the irradiation direction of these beams and the prescription of the dose to be input to the affected area and the important organ are input by the doctor operating the information input device of the user interface device 205. The dose prescription includes, for example, information about which affected area is to be irradiated with what dose of beam and which important organs should be protected from the beam. The execution order of steps S13 and S14 is arbitrary and is not limited to the order shown in FIG.
 次に、照射計画作成装置3は、各スポットへの照射線量を最適化する(ステップS15)。さらに、照射計画作成装置3は、各スポットについての照射角度と照射線量とを決定した後、患者体内の線量分布を計算する(ステップS16)。 Next, the irradiation plan creation device 3 optimizes the irradiation dose to each spot (step S15). Further, the irradiation plan creating device 3 calculates the dose distribution in the patient body after determining the irradiation angle and the irradiation dose for each spot (step S16).
 そして、照射計画作成装置3は、治療計画の作成結果をユーザインターフェース装置25の情報出力装置であるディスプレイを通じて表示し(ステップS17)、作成した治療計画を記憶装置23へ保存する(ステップS18)。 Then, the irradiation plan creation device 3 displays the creation result of the treatment plan through the display which is the information output device of the user interface device 25 (step S17), and saves the created treatment plan in the storage device 23 (step S18).
 そして、医師が治療可能な治療計画だと判断するまで、医師による設定入力、処方入力を照射計画作成装置3が受け入れ、照射計画作成装置3は、受け入れた入力に基づいてステップS13~S18の処理を繰り返す。 Then, the irradiation plan creation device 3 accepts the setting input and the prescription input by the doctor until the doctor determines that the treatment plan is treatable, and the irradiation plan creation device 3 processes the steps S13 to S18 based on the accepted input. repeat.
 図7は、実施例1の線量計算装置4による関心領域分類指定処理を示すフローチャートである。図7に示すフローチャートは、図6におけるステップS12の詳細な動作を示すものである。 FIG. 7 is a flowchart showing the region of interest classification designation process by the dose calculation device 4 of the first embodiment. The flowchart shown in FIG. 7 shows the detailed operation of step S12 in FIG.
 まず、線量計算装置4の制御部40は、照射計画作成装置3からX線CT画像及び関心領域の輪郭画像を受信する(ステップS21)。制御部40は、受信したX線CT画像(断層画像情報415)及び関心領域の輪郭画像(ROIデータ412)を記憶部41に格納する。 First, the control unit 40 of the dose calculation device 4 receives the X-ray CT image and the contour image of the region of interest from the irradiation plan creation device 3 (step S21). The control unit 40 stores the received X-ray CT image (tomographic image information 415) and the contour image (ROI data 412) of the region of interest in the storage unit 41.
 次いで、制御部40の表示制御部402は、ステップS21で受診したX線CT画像に関心領域の輪郭画像を重畳して表示させる表示制御信号を表示部43に送出する(ステップS22)。表示部43は、表示制御部402から送出された表示制御信号に基づいて、表示面にX線CT画像及び関心領域の輪郭画像を表示する。 Next, the display control unit 402 of the control unit 40 sends a display control signal to the display unit 43 for displaying the contour image of the region of interest superimposed on the X-ray CT image received in step S21 (step S22). The display unit 43 displays an X-ray CT image and a contour image of the region of interest on the display surface based on the display control signal transmitted from the display control unit 402.
 図8は、実施例1の線量計算装置4による関心領域分類指定処理において表示される画面の一例を示す図である。表示部43は、X線CT画像51と、このX線CT画像51に重畳して表示される関心領域の輪郭画像52とを有する画面50を表示する。 FIG. 8 is a diagram showing an example of a screen displayed in the region of interest classification designation process by the dose calculation device 4 of the first embodiment. The display unit 43 displays the screen 50 having the X-ray CT image 51 and the contour image 52 of the region of interest displayed superimposed on the X-ray CT image 51.
 図7のフローチャートに戻って、線量分布を確認したい関心領域があるか否かを判定し(ステップS23)、線量分布を確認したい関心領域があると判定したら(ステップS23においてYES)、入力部42は、医師等からの関心領域の指定入力を受け入れる(ステップS24)。次いで、入力部42は、ステップS24で指定入力を受け入れた関心領域について、医師等からその分類と線量条件(指標)の基準値との指定入力を受け入れる(ステップS25)。 Returning to the flowchart of FIG. 7, it is determined whether or not there is an area of interest for which the dose distribution is to be confirmed (step S23), and when it is determined that there is an area of interest for which the dose distribution is to be confirmed (YES in step S23), the input unit 42 Accepts a designated input of an area of interest from a doctor or the like (step S24). Next, the input unit 42 receives the designated input of the classification and the reference value of the dose condition (index) from the doctor or the like for the region of interest for which the designated input was received in step S24 (step S25).
 図8において、表示部43は、いずれの関心領域の指定入力を受け入れるかを選択するプルダウンメニュー53を表示する。入力部42は、このプルダウンメニュー53により選択された関心領域についての分類及び基準値の入力を受け入れる。 In FIG. 8, the display unit 43 displays a pull-down menu 53 for selecting which designated input of the region of interest is accepted. The input unit 42 accepts the input of the classification and the reference value for the region of interest selected by the pull-down menu 53.
 入力部42は、ステップS25で登録できる分類の指定入力として、まず以下の3種類を受け入れる。すなわち、(1)最重要ROIであり、実効線量を監視し、予め決定した線量条件を満たさない場合は治療計画を再度作成する、(2)重要ROIであり、実効線量を監視するが、治療を中断する指標ではない、(3)一般ROIであり、治療中に実効線量を計算しない(実効線量の確認よりも計算効率を優先する)。 The input unit 42 first accepts the following three types as the designated input of the classification that can be registered in step S25. That is, (1) the most important ROI, which monitors the effective dose, and recreates the treatment plan if the predetermined dose conditions are not met, (2) the important ROI, which monitors the effective dose, but the treatment. It is not an index to interrupt the treatment, (3) It is a general ROI, and the effective dose is not calculated during treatment (calculation efficiency is prioritized over confirmation of effective dose).
 照射計画作成装置3が抽出する関心領域は多数あるが、その中で、上述した危険臓器のように、実効線量を監視すべき臓器に対応する関心領域は限られている。そこで、実効線量を監視すべき関心領域を分類し、この関心領域については最低限実効線量を算出して監視する。これにより、線量分布算出部401が実効線量を算出する関心領域を減少させ、線量分布算出部401の演算速度を高めることができる。 There are many areas of interest extracted by the irradiation planning device 3, but among them, the areas of interest corresponding to the organs whose effective dose should be monitored, such as the dangerous organs described above, are limited. Therefore, the areas of interest for which effective dose should be monitored are classified, and the minimum effective dose is calculated and monitored for this area of interest. As a result, the area of interest in which the dose distribution calculation unit 401 calculates the effective dose can be reduced, and the calculation speed of the dose distribution calculation unit 401 can be increased.
 入力部42による分類の指定入力を受け入れない関心領域の分類は(つまりデフォルト値)は(3)一般ROIとする。すなわち、治療中の実効線量を監視する必要のない確認したくない関心領域については、入力部42は指定入力を受け入れる必要がない。線量分布算出部401は(3)一般ROIと分類された関心領域についての実効線量を算出しないため、記憶装置23の容量及び、治療中線量計算を行う照射制御装置16のメモリを節約する効果がある。 Designation of classification by input unit 42 The classification of the area of interest that does not accept input (that is, the default value) is (3) general ROI. That is, the input unit 42 does not need to accept the designated input for the region of interest that does not need to be monitored and the effective dose during treatment is not desired. Since the dose distribution calculation unit 401 does not calculate the effective dose for the region of interest classified as (3) general ROI, it has the effect of saving the capacity of the storage device 23 and the memory of the irradiation control device 16 that calculates the dose during treatment. is there.
 表示部43は、関心領域の分類指定入力用に2つのチェックボックス54、55を表示する。一方のチェックボックス54は、プルダウンメニュー53が操作されることにより選択された関心領域について、実効線量を監視する旨の指定入力を入力部42が受け入れるチェックボックス54である。他方のチェックボックス55は、プルダウンメニュー53が操作されることにより選択された関心領域について、線量条件の指定入力を入力部42が受け入れるチェックボックス55である。 The display unit 43 displays two check boxes 54 and 55 for inputting the classification designation of the region of interest. On the other hand, the check box 54 is a check box 54 in which the input unit 42 accepts a designated input for monitoring the effective dose for the region of interest selected by operating the pull-down menu 53. The other check box 55 is a check box 55 in which the input unit 42 accepts the designated input of the dose condition for the region of interest selected by operating the pull-down menu 53.
 図8において、チェックボックス54、55についての指定入力を入力部42が受け入れた関心領域は上述した(1)最重要ROIとしての指定入力であり、チェックボックス54のみの指定入力を入力部42が受け入れた関心領域は上述した(2)重要ROIとしての指定入力である。 In FIG. 8, the region of interest in which the input unit 42 accepts the designated input for the check boxes 54 and 55 is the above-mentioned (1) designated input as the most important ROI, and the input unit 42 receives the designated input only for the check box 54. The accepted region of interest is the designated input as (2) important ROI described above.
 さらに、図8において、表示部43は、線量条件の基準値についての数値入力を受け入れるボックス56、57を表示する。ボックス56は基準値として「臓器Aが処方線量のX%以上を照射される体積は、Y%を超えてはならない」といった条件におけるY%の数値入力を入力部42が受け入れるボックス56である。一方、ボックス57は基準値として粒子線照射の継続の可否を判定するための実効線量の数値(単位はGy:グレイ)の入力を入力部42が受け入れるボックス57である。 Further, in FIG. 8, the display unit 43 displays the boxes 56 and 57 that accept the numerical input of the reference value of the dose condition. The box 56 is a box 56 in which the input unit 42 accepts a numerical input of Y% under the condition that "the volume at which the organ A is irradiated with X% or more of the prescribed dose must not exceed Y%" as a reference value. On the other hand, the box 57 is a box 57 in which the input unit 42 receives an input of a numerical value (unit: Gy: Gray) of the effective dose for determining whether or not the particle beam irradiation can be continued as a reference value.
 入力部42は、図8において表示部43が表示する登録ボタン58の操作入力を受け入れると、その時点で入力を受け入れている関心領域の分類及び基準値を受け入れる。制御部40は、入力部42が受け入れた情報を、算出指定情報416及び基準値指定情報417として記憶部41に格納する。この後、制御部40はステップS23に戻り、動作を継続する。 When the input unit 42 accepts the operation input of the registration button 58 displayed by the display unit 43 in FIG. 8, it accepts the classification and reference value of the region of interest that is accepting the input at that time. The control unit 40 stores the information received by the input unit 42 in the storage unit 41 as calculation designation information 416 and reference value designation information 417. After that, the control unit 40 returns to step S23 and continues the operation.
 一方、線量分布を確認したい関心領域がない(既に関心領域の登録等を行うべき関心領域がない)と判定したら(ステップS23においてNO)、制御部40は図7に示す動作を終了する。 On the other hand, if it is determined that there is no region of interest for which the dose distribution is to be confirmed (there is no region of interest for which the region of interest should already be registered) (NO in step S23), the control unit 40 ends the operation shown in FIG.
 図9は、実施例1に係る粒子線治療システムSの線量分布算出動作を示すフローチャートである。 FIG. 9 is a flowchart showing the dose distribution calculation operation of the particle beam therapy system S according to the first embodiment.
 まず、治療計画装置2の照射計画作成装置3は、図6のステップS18で記憶装置23に保存したカーネルデータ413を読み出し、線量計算装置4に送出する。線量計算装置4は、照射計画作成装置3から送出されたカーネルデータ413を読み込む(ステップS31)。 First, the irradiation plan creation device 3 of the treatment planning device 2 reads out the kernel data 413 saved in the storage device 23 in step S18 of FIG. 6 and sends it to the dose calculation device 4. The dose calculation device 4 reads the kernel data 413 sent from the irradiation plan creation device 3 (step S31).
 一方、粒子線治療装置1は患者に対して粒子線を照射する(ステップS32)。そして、粒子線治療装置1が一定線量を患者に照射したら(例えば0.5Gy毎)、粒子線治療装置1は治療計画装置2に照射ログデータ411を送信する(ステップS33)。照射ログデータ411には、線量モニタによって測定した照射量、ビーム位置モニタによって測定した照射位置を含む 。 On the other hand, the particle beam therapy device 1 irradiates the patient with particle beams (step S32). Then, when the particle beam therapy device 1 irradiates the patient with a constant dose (for example, every 0.5 Gy), the particle beam therapy device 1 transmits irradiation log data 411 to the treatment planning device 2 (step S33). The irradiation log data 411 includes the irradiation amount measured by the dose monitor and the irradiation position measured by the beam position monitor.
 治療計画装置2の線量計算装置4は、粒子線治療装置1から照射ログデータ411が送信されるのを待機しており、粒子線治療装置1から照射ログデータ411が送信されるとこれを受信する(ステップS34)。 The dose calculation device 4 of the treatment planning device 2 waits for the irradiation log data 411 to be transmitted from the particle beam therapy device 1, and receives the irradiation log data 411 when the particle beam therapy device 1 transmits the irradiation log data 411. (Step S34).
 次いで、線量計算装置4の線量分布算出部401は、ステップS32で受信した照射ログデータ411に基づいてフルエンスマップ414を生成する(ステップS35)。さらに、線量分布算出部401は、ステップS35で生成したフルエンスマップ414に基づいて、分類(1)、(2)に分類された関心領域について実効線量を算出する(ステップS36)。 Next, the dose distribution calculation unit 401 of the dose calculation device 4 generates a fluence map 414 based on the irradiation log data 411 received in step S32 (step S35). Further, the dose distribution calculation unit 401 calculates the effective dose for the regions of interest classified into the categories (1) and (2) based on the fluence map 414 generated in step S35 (step S36).
 そして、表示制御部402は、ステップS36で算出された実効線量を表す画面を表示部43の表示面に表示させるための表示制御信号を生成し、表示部43に送出する。表示部43はこの表示制御信号に基づいて実効線量を表す画面を表示面に表示する(ステップS37)。 Then, the display control unit 402 generates a display control signal for displaying the screen showing the effective dose calculated in step S36 on the display surface of the display unit 43, and sends it to the display unit 43. The display unit 43 displays a screen showing the effective dose on the display surface based on the display control signal (step S37).
 図10は、実施例1の線量計算装置4による線量分布算出の原理を説明する図である。 FIG. 10 is a diagram for explaining the principle of dose distribution calculation by the dose calculation device 4 of the first embodiment.
 患者に照射される粒子線は、仮想的なフルエンスマップ(流量)マップ(Fluence Map)414を形成する。フルエンスマップ414はマトリクス状に配置された要素jを有する。それぞれのフルエンスマップ要素jは、照射ログデータ411に基づいて算出された、実際にフルエンスマップ414の各要素jの平面位置から患者に照射された粒子線の照射量に相当する値を有する。 The particle beam irradiated to the patient forms a virtual fluence map (fluence map) 414. The fluence map 414 has elements j arranged in a matrix. Each fluence map element j has a value corresponding to the irradiation amount of the particle beam actually irradiated to the patient from the plane position of each element j of the fluence map 414, which is calculated based on the irradiation log data 411.
 図11は、実施例1の線量計算装置4による線量分布算出の原理を説明する図であり、ステップS31で読み込んだカーネルデータ413を示す図である。 FIG. 11 is a diagram for explaining the principle of dose distribution calculation by the dose calculation device 4 of the first embodiment, and is a diagram showing kernel data 413 read in step S31.
 図10を参照して、カーネルデータ413は、フルエンスマップ414の各要素jから粒子線が患者体内に照射される際に、この粒子線が患者6の関心領域61の微小体積iのそれぞれでどのように吸収されるかを示す値(割合)をフルエンスマップ414の各要素について算出した値の集合である。言い換えれば、カーネルデータ413は、フルエンスマップ414の各要素jに単位照射量(すなわち照射量が1とする)が入射される場合、関心領域61の微小体積iのそれぞれに形成される線量分布を集合したものである。 With reference to FIG. 10, the kernel data 413 shows which of the minute volumes i of the region of interest 61 of the patient 6 when the particle beam is irradiated into the patient body from each element j of the fluence map 414. It is a set of values calculated for each element of the fluence map 414 as a value (ratio) indicating how to be absorbed. In other words, the kernel data 413 determines the dose distribution formed in each of the minute volumes i of the region of interest 61 when a unit dose (ie, the dose is 1) is incident on each element j of the fluence map 414. It is a collection.
 カーネルデータ413の各要素はKijは、フルエンスマップ414の各要素jが関心領域61の微小体積iに与える影響、すなわち線量寄与を示す。フルエンスマップ414の行414aは、微小体積iがフルエンスマップ414の各要素jから受ける影響を示す。フルエンスマップ414の列414bは、フルエンスマップ414の各要素jが微小体積iの全てに形成する線量分布を示す。 Each element of the kernel data 413 shows the effect of each element j of the fluence map 414 on the minute volume i of the region of interest 61, that is, the dose contribution. Row 414a of the fluence map 414 shows the effect of the minute volume i from each element j of the fluence map 414. Column 414b of the fluence map 414 shows the dose distribution formed by each element j of the fluence map 414 over all of the minute volumes i.
 図12は、実施例1の線量計算装置4による線量分布算出の原理を説明する図であり、線量分布算出部401による実効線量を算出する式を示す図である。 FIG. 12 is a diagram for explaining the principle of dose distribution calculation by the dose calculation device 4 of the first embodiment, and is a diagram showing an equation for calculating the effective dose by the dose distribution calculation unit 401.
 関心領域の実効線量は、カーネルデータ413とフルエンスマップ414との積で表される。ここで、図12に示すように、カーネルデータ413及びフルエンスマップ414はそれぞれ行列で表されるので、関心領域の実効線量もこれら行列の積として表される。 The effective dose in the region of interest is represented by the product of kernel data 413 and fluence map 414. Here, as shown in FIG. 12, since the kernel data 413 and the fluence map 414 are each represented by a matrix, the effective dose of the region of interest is also represented by the product of these matrices.
 従来の関心領域の実効線量を算出する手順は、2つまたは3つのガウス分布を3次元X線CT上で畳み込み積分(convolution)するものである。従って、粒子線治療装置1による一定線量の粒子線照射の度に関心領域の実効線量を算出する作業に長時間を要していた。本実施例の線量分布算出部401による実効線量の算出手順は、図12に示すように行列積を求めるものであり、一般的な畳み込み積分による算出手順に比較して算出処理が簡易であり、その結果、一般的な手法より高速に実効線量を算出することができる。 The conventional procedure for calculating the effective dose in the region of interest is to convolve two or three Gaussian distributions on a three-dimensional X-ray CT. Therefore, it takes a long time to calculate the effective dose of the region of interest each time the particle beam therapy device 1 irradiates a constant dose of particle beam. The effective dose calculation procedure by the dose distribution calculation unit 401 of this embodiment is to obtain the matrix product as shown in FIG. 12, and the calculation process is simpler than the calculation procedure by the general convolution integral. As a result, the effective dose can be calculated faster than the general method.
 図9に戻って、比較部403は、分類(1)に分類された関心領域についてステップS36で算出された実効線量と設定された基準値とを比較し、実効線量が線量条件を満たすか否かを判定する(ステップS38)。実効線量が線量条件を満たすか否かの判定は、実効線量が基準値と略等しければ比較部403は線量条件を満たすと判定し、実効線量が基準値を上回っても下回っても比較部403は線量条件を満たさないと判定する。 Returning to FIG. 9, the comparison unit 403 compares the effective dose calculated in step S36 with the set reference value for the region of interest classified in the classification (1), and determines whether the effective dose satisfies the dose condition. (Step S38). To determine whether the effective dose satisfies the dose condition, the comparison unit 403 determines that the dose condition is satisfied if the effective dose is approximately equal to the reference value, and the comparison unit 403 determines whether the effective dose exceeds or falls below the reference value. Determines that the dose condition is not met.
 比較部403は、実効線量が線量条件を満たすと判定する際の、基準値に対する範囲を設定してもよい。つまり、実効線量が基準値に対して±Z1または±Z2%(Z1、Z2ともに正の数値)以内であれば、比較部403は実効線量が基準値と略等しいと判定することができる。 The comparison unit 403 may set a range with respect to the reference value when determining that the effective dose satisfies the dose condition. That is, if the effective dose is within ± Z1 or ± Z2% (both Z1 and Z2 are positive values) with respect to the reference value, the comparison unit 403 can determine that the effective dose is substantially equal to the reference value.
 そして、比較部403が、実効線量が線量条件を満たすと判定したら(ステップS38においてYES)、ステップS34に戻って、線量計算装置4は粒子線治療装置1から照射ログデータ411が送信されるのを待機する。 Then, when the comparison unit 403 determines that the effective dose satisfies the dose condition (YES in step S38), the process returns to step S34, and the dose calculation device 4 transmits the irradiation log data 411 from the particle beam therapy device 1. Wait.
 一方、比較部403が、実効線量が線量条件を満たさないと判定したら(ステップS38においてNO)、表示制御部402は、実効線量が線量条件を満たさないことを報知する警告表示画面を表示部43の表示面に表示させるための表示制御信号を生成し、この表示制御信号を表示部43に送出する。表示部43は、表示制御部402から送出された表示制御信号に基づいて警告表示画面を表示する(ステップS39)。 On the other hand, if the comparison unit 403 determines that the effective dose does not satisfy the dose condition (NO in step S38), the display control unit 402 displays a warning display screen notifying that the effective dose does not satisfy the dose condition. A display control signal for displaying on the display surface of is generated, and this display control signal is transmitted to the display unit 43. The display unit 43 displays a warning display screen based on the display control signal transmitted from the display control unit 402 (step S39).
 また、比較結果送出部404は、粒子線治療装置1による粒子線照射の停止を指示する照射停止指示信号を粒子線治療装置1に送出する(ステップS39)。粒子線治療装置1は、比較結果送出部404から送出された照射停止指示信号に基づいて、患者への粒子線照射を停止する(ステップS40)。 Further, the comparison result sending unit 404 sends an irradiation stop instruction signal instructing the stop of the particle beam irradiation by the particle beam therapy device 1 to the particle beam therapy device 1 (step S39). The particle beam therapy device 1 stops the particle beam irradiation to the patient based on the irradiation stop instruction signal sent from the comparison result sending unit 404 (step S40).
 そして、比較結果送出部404は照射計画作成装置3に比較部403の比較結果を送出する。照射計画作成装置3は、この比較結果に基づいて治療計画を再作成し(ステップS41)、再作成した治療計画を粒子線治療装置1に送信する(ステップS42)。粒子線治療装置1は照射計画作成装置3から送信された治療計画を受信し(ステップS43)、この治療計画に基づいて粒子線を照射する(ステップS44)。 Then, the comparison result sending unit 404 sends the comparison result of the comparison unit 403 to the irradiation plan creating device 3. The irradiation plan creation device 3 recreates the treatment plan based on the comparison result (step S41), and transmits the recreated treatment plan to the particle beam therapy device 1 (step S42). The particle beam therapy device 1 receives the treatment plan transmitted from the irradiation plan creation device 3 (step S43), and irradiates the particle beam based on this treatment plan (step S44).
 なお、照射計画作成装置3による治療計画の再作成は、入力部42が医師からの治療計画の再作成に関する指示入力を受け入れてから行ってもよい。また、入力部42が医師から粒子線治療装置1による治療の続行または中止に関する指示入力を受け入れたら、照射計画作成装置3は治療計画の再作成を行わないこともできる。 Note that the treatment plan may be recreated by the irradiation plan creation device 3 after the input unit 42 accepts an instruction input regarding the re-creation of the treatment plan from the doctor. Further, when the input unit 42 receives an instruction input regarding the continuation or discontinuation of the treatment by the particle beam therapy device 1 from the doctor, the irradiation plan creation device 3 may not recreate the treatment plan.
 このように構成される本実施例によれば、表示部43が患部を含むX線CT画像415を表示し、入力部42が、患部に設定された少なくとも1つの関心領域について線量分布の算出の要否を指定する算出指定情報416の入力を受け入れ、制御部40、特に線量分布算出部401が、算出指定情報416に基づいて線量分布の算出が指定された関心領域の線量分布を算出している。 According to the present embodiment configured as described above, the display unit 43 displays the X-ray CT image 415 including the affected area, and the input unit 42 calculates the dose distribution for at least one region of interest set in the affected area. Accepting the input of the calculation designation information 416 that specifies the necessity, the control unit 40, especially the dose distribution calculation unit 401, calculates the dose distribution of the region of interest for which the calculation of the dose distribution is designated based on the calculation designation information 416. There is.
 従って、本実施例によれば、線量分布算出部401が、線量分布の算出が指定された関心領域についてのみ線量分布を算出することができる。これにより、実効線量の計算を高速に行うことが可能な治療計画装置、治療計画方法及びプログラムを提供することができる。 Therefore, according to this embodiment, the dose distribution calculation unit 401 can calculate the dose distribution only in the region of interest for which the calculation of the dose distribution is designated. Thereby, it is possible to provide a treatment planning device, a treatment planning method and a program capable of performing effective dose calculation at high speed.
 この結果、オンラインアダプティブ治療を行う際に、患者への実効線量を確認した上で粒子線照射を行うことができ、医師による判断を的確に支援することができる。また、計画した線量と照射された実効線量の差を微小な範囲に留めることが、より安全な治療を提供可能である。 As a result, when performing online adaptive treatment, it is possible to perform particle beam irradiation after confirming the effective dose to the patient, and it is possible to accurately support the judgment by the doctor. In addition, keeping the difference between the planned dose and the effective dose applied to a small range can provide safer treatment.
 上述の実施例1では、治療計画時のX線CT画像(断層画像情報415)を用いてカーネルデータ413を作成していたが、患者の身体、特に照射する標的である患部の近くで解剖学的変化が生じる恐れがある場合、照射を受ける日のX線CT画像からカーネルデータ413を作成することができる。 In Example 1 described above, the kernel data 413 was created using the X-ray CT image (tomographic image information 415) at the time of treatment planning, but the anatomy was performed near the patient's body, especially the affected area, which is the target to be irradiated. Kernel data 413 can be created from the X-ray CT image of the day of irradiation when there is a risk of a change.
 解剖学的変化は、体重の増減、腫瘍の縮小、鼻づまりまたは組織の腫れなどを含む。その変化により、体内のビーム飛程が変化すること(すなわちビームが止まる位置が変化すること)が考えられる。患者身体の日々の変化を考慮し、カーネルデータ413を作成することで、より安全な治療を提供することができる。 Anatomical changes include weight gain and loss, tumor shrinkage, stuffy nose or tissue swelling. It is conceivable that the change causes the beam range in the body to change (that is, the position where the beam stops changes). By creating kernel data 413 in consideration of daily changes in the patient's body, safer treatment can be provided.
 患者の当日のX線CT画像を撮影した後、そのX線CT画像を用いて図5のフローチャートを実施し、カーネルデータ413を作成する。既に一度同一の患者に対して図5のフローチャートを実行したことがある場合、関心領域についての臓器名または識別番号、関心領域の輪郭画像を含むROIデータ412、及び、算出指定情報416、基準値指定情報417を新しいX線CT画像に自動的に転写する。 After taking an X-ray CT image of the patient's day, the flowchart of FIG. 5 is performed using the X-ray CT image to create kernel data 413. When the flowchart of FIG. 5 has already been executed for the same patient once, the organ name or identification number for the region of interest, ROI data 412 including a contour image of the region of interest, calculation designation information 416, and a reference value. The designated information 417 is automatically transferred to a new X-ray CT image.
 これにより、医師が操作する時間を減らすことができる。加えて、カーネルデータ413の計算は他の治療準備(例えば患者の位置決め)と並行に進めることができるので、X線CT画像を置き換えたことによる時間的ロスを低減することができる。 This can reduce the time required for the doctor to operate. In addition, since the calculation of kernel data 413 can proceed in parallel with other treatment preparations (eg, patient positioning), the time loss due to the replacement of the X-ray CT image can be reduced.
 図13は、実施例3の線量計算装置4の機能を示す構成図である。なお、以下の説明において、実施例1と同様の構成要素については同一の符号を付し、その説明を簡略化する。 FIG. 13 is a configuration diagram showing the function of the dose calculation device 4 of the third embodiment. In the following description, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be simplified.
 体幹、特に肺付近の呼吸により位置が変わる腫瘍を精度よく照射するために、動体追跡照射技術が開発された(例えば特許5976474号)。動体追跡照射では、一定頻度(例えば1秒間30回)で腫瘍付近のX線透視画像を撮影する。X線透視画像を計算機で解析することで、腫瘍の位置を求め、腫瘍位置が予め設定した範囲にあるときに、照射可能を意味するゲート信号を照射装置に送信する。照射装置が照射可能を意味するゲート信号が立ち上がる間に、ビームを照射する。 A moving body tracking irradiation technique was developed to accurately irradiate a tumor whose position changes due to respiration near the trunk, especially the lungs (for example, Patent No. 5976474). In moving body follow-up irradiation, fluoroscopic images near the tumor are taken at a constant frequency (for example, 30 times per second). By analyzing the X-ray fluoroscopic image with a computer, the position of the tumor is obtained, and when the tumor position is within a preset range, a gate signal indicating that irradiation is possible is transmitted to the irradiation device. The beam is irradiated while the gate signal, which means that the irradiation device can irradiate, rises.
 なお、腫瘍位置の解析は、腫瘍付近に人工的に刺入したマーカの動きを解析するものと、患者の臓器の画像データのみで位置を解析する方法を含む。 The tumor position analysis includes a method of analyzing the movement of a marker artificially inserted near the tumor and a method of analyzing the position using only image data of the patient's organ.
 動体追跡照射技術により、動く臓器への高精度照射が可能になった。その一方、腫瘍が所定位置からずれた場合はビームを照射できないため、治療時間が増える可能性がある。ゲート信号の幅が広ければ(即ち立ち上がりの時間が長ければ)、照射できる時間も増えるため治療時間が短くなるが、照射時間内に臓器が移動しているため、照射の精度が低下する。ここで、精度と時間はトレードオフ関係にある。 The moving body tracking irradiation technology has made it possible to irradiate moving organs with high precision. On the other hand, if the tumor deviates from the predetermined position, the beam cannot be irradiated, which may increase the treatment time. If the width of the gate signal is wide (that is, if the rising time is long), the irradiation time is increased and the treatment time is shortened. However, since the organs are moved within the irradiation time, the irradiation accuracy is lowered. Here, accuracy and time are in a trade-off relationship.
 図13に示す本実施例の線量計算装置4は、上述の実施例1の線量計算装置4に加えて、制御信号送出部405を有する点のみ異なり、その他の構成要素については実施例1の構成要素と同一である。 The dose calculation device 4 of the present embodiment shown in FIG. 13 differs only in that it has a control signal transmission unit 405 in addition to the dose calculation device 4 of the above-described first embodiment, and the other components are the configurations of the first embodiment. Same as the element.
 制御信号送出部405は、比較部403の比較結果に基づいて、関心領域に照射される粒子線の照射範囲を制御する制御信号を送出する。ここにいう制御信号とは、一例として、粒子線治療装置1に送出するゲート信号である。 The control signal transmission unit 405 transmits a control signal for controlling the irradiation range of the particle beam irradiated to the region of interest based on the comparison result of the comparison unit 403. The control signal referred to here is, for example, a gate signal transmitted to the particle beam therapy device 1.
 図14は、実施例3に係る粒子線治療システムSの線量分布算出動作を示すフローチャートである。 FIG. 14 is a flowchart showing the dose distribution calculation operation of the particle beam therapy system S according to the third embodiment.
 図14に示すフローチャートにおいて、ステップS51~S57までは、図9に示す実施例1のフローチャートのステップS30~S37までと同様である。 In the flowchart shown in FIG. 14, steps S51 to S57 are the same as steps S30 to S37 of the flowchart of the first embodiment shown in FIG.
 次いで、比較部403は、実効線量Tと線量指標Cとを比較する(ステップS58)。その結果、比較部403が、実効線量Tが線量指標Cより小さいと判定したら(ステップS58においてT<C)、制御信号送出部405は、現在粒子線治療装置1に送出しているゲート信号の幅を広げる制御を行う(ステップS59)。また、比較部403が、実効線量Tが線量指標Cより大きいと判定したら(ステップS58においてT>C)、制御信号送出部405は、現在粒子線治療装置1に送出しているゲート信号の幅を狭める制御を行う(ステップS60)。そして、比較部403が、実効線量Tが線量指標Cと略等しいと判定したら(ステップS58においてT=C)、ステップS54に戻って、線量計算装置4は粒子線治療装置1から照射ログデータ411が送信されるのを待機する。 Next, the comparison unit 403 compares the effective dose T with the dose index C (step S58). As a result, when the comparison unit 403 determines that the effective dose T is smaller than the dose index C (T <C in step S58), the control signal transmission unit 405 is the gate signal currently transmitted to the particle beam therapy device 1. Control to widen the width is performed (step S59). Further, when the comparison unit 403 determines that the effective dose T is larger than the dose index C (T> C in step S58), the control signal transmission unit 405 has the width of the gate signal currently transmitted to the particle beam therapy device 1. Is controlled to be narrowed (step S60). Then, when the comparison unit 403 determines that the effective dose T is substantially equal to the dose index C (T = C in step S58), the process returns to step S54, and the dose calculation device 4 receives the irradiation log data 411 from the particle beam therapy device 1. Wait for to be sent.
 そして、制御信号送出部405は、ゲート信号を広げる、または狭める制御を行ったら、変更したゲート信号を粒子線治療装置1に送出する(ステップS61)。粒子線治療装置1は、線量計算装置4から受信したゲート信号に基づいて、粒子線照射に用いるゲート信号を変更する(ステップS62)。 Then, the control signal transmission unit 405 transmits the changed gate signal to the particle beam therapy device 1 after controlling the gate signal to be widened or narrowed (step S61). The particle beam therapy device 1 changes the gate signal used for particle beam irradiation based on the gate signal received from the dose calculation device 4 (step S62).
 図15は、実施例3の線量計算装置4によるゲート幅制御の動作を説明する図である。線量指標Cとして安全な線量指標Cを設定すると、その指標の達成度により制御信号送出部405がゲート信号の幅にフィードバックをかけ、一定時間後には治療中の患者に対する最も効率が良いゲート幅で安定させる制御を行うことができる。 FIG. 15 is a diagram illustrating an operation of gate width control by the dose calculation device 4 of the third embodiment. When a safe dose index C 0 is set as the dose index C, the control signal transmission unit 405 feeds back the width of the gate signal according to the achievement level of the index, and after a certain period of time, the most efficient gate width for the patient being treated. It is possible to perform control to stabilize with.
 従って、本実施例によれば、線量分布算出部401が実効線量を算出しているので、線量指標に対する実効線量の精度を確認しながらゲート信号の幅を調整することができる。これにより、本実施例の線量計算装置4によれば、照射の精度と照射時間とを最適化することができる。 Therefore, according to this embodiment, since the dose distribution calculation unit 401 calculates the effective dose, the width of the gate signal can be adjusted while confirming the accuracy of the effective dose with respect to the dose index. As a result, according to the dose calculation device 4 of the present embodiment, the accuracy of irradiation and the irradiation time can be optimized.
 加えて、本実施例の線量計算装置4によれば、治療効果に影響しない、例えば過去の治療経験に基づく線量条件を常に満足する前提でゲート信号の幅を広げることにより、治療時間を短縮する効果が得られる。 In addition, according to the dose calculation device 4 of the present embodiment, the treatment time is shortened by widening the width of the gate signal on the premise that the treatment effect is not affected, for example, the dose condition based on the past treatment experience is always satisfied. The effect is obtained.
 なお、本実施例において、動体追跡で監視した腫瘍位置と時間の関係を粒子線治療装置1が線量計算装置4に送信し、さらに、粒子線治療装置1が、照射量と照射位置に加え、時間情報を線量計算装置4に送信することができる。これにより、線量計算装置4において、腫瘍の移動量を照射位置に反映し、体動を考慮したフルエンスマップ414を作成する事が可能になる。 In this embodiment, the particle beam therapy device 1 transmits the relationship between the tumor position and the time monitored by the moving body tracking to the dose calculation device 4, and the particle beam therapy device 1 further adds the irradiation amount and the irradiation position. The time information can be transmitted to the dose calculation device 4. This makes it possible for the dose calculation device 4 to reflect the amount of movement of the tumor in the irradiation position and create a fluence map 414 in consideration of body movement.
変形例Modification example
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-mentioned examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 一例として、上述の実施例1~3では一定線量毎に実効線量を算出する例を示した。実効線量を算出するタイミングはこれら実施例に限定されず、例えば、粒子線ビームのエネルギー、照射角度、時間で実効線量を計算するタイミングを決めることが可能である。 As an example, in Examples 1 to 3 described above, an example of calculating the effective dose for each fixed dose was shown. The timing for calculating the effective dose is not limited to these examples, and for example, the timing for calculating the effective dose can be determined by the energy, irradiation angle, and time of the particle beam.
 また、実施例1~3では、照射計画作成装置3と線量計算装置4とは共通のハードウェアにより実現されるものとして説明したが、これらを別のハードウェアにより実現してもよい。 Further, in the first to third embodiments, the irradiation plan creation device 3 and the dose calculation device 4 have been described as being realized by the same hardware, but these may be realized by different hardware.
 さらに、線量計算装置4を構成するハードウェアはGPU(Graphics Process Unit)を搭載するものを含む。線量カーネルとフルエンスマップの行列掛け算をGPUを用いて並列に処理すればさらに計算が高速になる。 Further, the hardware constituting the dose calculation device 4 includes a hardware equipped with a GPU (Graphics Process Unit). If the matrix multiplication of the dose kernel and the fluence map is processed in parallel using the GPU, the calculation will be even faster.
 さらに、実施例1~3では、一定線量毎に実効線量を計算する例を示した(例えば0.5Gyを照射するたびに実効線量を計算し、表示する)。当然、照射する線量は常に一定に保つ必要はない。 Further, in Examples 1 to 3, an example in which the effective dose is calculated for each fixed dose is shown (for example, the effective dose is calculated and displayed every time 0.5 Gy is irradiated). Of course, the dose to be irradiated does not have to be kept constant at all times.
 寡分割治療において、例えば患者に10Gyを照射する必要がある時に、まず0.5Gyを照射し、一時停止する。その後、実効線量を計算し、線量分布または線量分布から計算可能な指標を治療計画での指標と比較する。治療計画での指標を達成している場合、次に照射する線量を1Gyに増やし、その後一時停止して実効線量を計算しても良い。治療に必要な線量、10Gyを全て照射するまでに、この過程を自動的に繰り返す機能を実装する事も考えられる。 In the widow or widower treatment, for example, when it is necessary to irradiate a patient with 10 Gy, first irradiate 0.5 Gy and then pause. The effective dose is then calculated and the dose distribution or indicators that can be calculated from the dose distribution are compared with the indicators in the treatment plan. If the index in the treatment plan is achieved, the next dose may be increased to 1 Gy and then paused to calculate the effective dose. It is also conceivable to implement a function that automatically repeats this process until the dose required for treatment and 10 Gy are all irradiated.
 この機能により、安全な治療が見込める時に、実効線量の確認回数を減らし、効率的な治療を提供する事が可能である。 With this function, it is possible to reduce the number of confirmations of effective dose and provide efficient treatment when safe treatment is expected.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 Further, each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be placed in a memory, a recording device such as a hard disk or SSD, or a recording medium such as an IC card, SD card, or DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 In addition, the control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In practice, it can be considered that almost all configurations are interconnected.
S…粒子線治療システム 1…粒子線治療装置 2…治療計画装置 3…照射計画作成装置 4…線量計算装置 40…制御部(演算装置) 41…記憶部 42…入力部(入力装置) 43…表示部(表示装置) 401…線量分布算出部 402…表示制御部 403…比較部 404…比較結果送出部 405…制御信号送出部 411…照射ログデータ 412…ROIデータ 413…カーネルデータ 414…フルエンスマップ 415…断層画像情報 416…算出指定情報 417…基準値指定情報 418…線量分布データ 419…線量指標データ
 

 
S ... Particle beam therapy system 1 ... Particle beam therapy device 2 ... Treatment planning device 3 ... Irradiation plan creation device 4 ... Dose calculation device 40 ... Control unit (calculation device) 41 ... Storage unit 42 ... Input unit (input device) 43 ... Display unit (display device) 401 ... Dose distribution calculation unit 402 ... Display control unit 403 ... Comparison unit 404 ... Comparison result transmission unit 405 ... Control signal transmission unit 411 ... Irradiation log data 412 ... ROI data 413 ... Kernel data 414 ... Fluence map 415 ... Tomographic image information 416 ... Calculation designation information 417 ... Reference value designation information 418 ... Dose distribution data 419 ... Dose index data

Claims (12)

  1.  患部を含む断層画像情報を表示する表示装置と、
     前記患部に設定された少なくとも1つの関心領域について照射された粒子線の線量分布の算出の要否を指定する算出指定情報の入力を受け入れる入力装置と、
     前記算出指定情報に基づいて、前記線量分布の算出が指定された前記関心領域の前記線量分布を算出する演算装置と
    を有する治療計画装置。
    A display device that displays tomographic image information including the affected area,
    An input device that accepts input of calculation designation information that specifies whether or not it is necessary to calculate the dose distribution of the particle beam irradiated for at least one region of interest set in the affected area.
    A treatment planning device including an arithmetic unit that calculates the dose distribution of the region of interest for which the calculation of the dose distribution is designated based on the calculation designation information.
  2.  前記演算装置は、前記断層画像情報に前記関心領域を重畳して表示させる表示制御信号を前記表示装置に送出する表示制御部を有する請求項1に記載の治療計画装置。 The treatment planning device according to claim 1, wherein the arithmetic unit has a display control unit that transmits a display control signal for displaying the tomographic image information by superimposing the region of interest on the display device.
  3.  前記演算装置は、前記算出指定情報に基づいて、前記線量分布の算出が指定された前記関心領域の前記線量分布を算出する線量分布算出部を有する請求項1に記載の治療計画装置。 The treatment planning device according to claim 1, wherein the arithmetic unit has a dose distribution calculation unit that calculates the dose distribution in the region of interest for which the calculation of the dose distribution is designated based on the calculation designation information.
  4.  前記入力装置は、前記線量分布の算出が指定された前記関心領域について、前記線量分布または前記線量分布に基づいて算出可能な指標の基準値の設定の要否を指定する基準値指定情報の入力を受け入れる請求項1に記載の治療計画装置。 The input device inputs reference value designation information that specifies whether or not to set a reference value of the dose distribution or an index that can be calculated based on the dose distribution for the region of interest for which the calculation of the dose distribution is designated. The treatment planning apparatus according to claim 1.
  5.  前記入力装置は、前記基準値指定情報として、前記基準値の設定が指定された前記関心領域についての前記基準値の入力を受け入れる請求項4に記載の治療計画装置。 The treatment planning device according to claim 4, wherein the input device accepts input of the reference value for the region of interest for which the setting of the reference value is designated as the reference value designation information.
  6.  前記演算装置は、
     前記基準値の設定が指定された前記関心領域について、算出した前記線量分布と前記基準値とを比較する比較部と、
     前記比較部による比較結果を表示させる表示制御信号を前記表示装置に送出する表示制御部と
    を有する請求項5に記載の治療計画装置。
    The arithmetic unit
    A comparison unit that compares the calculated dose distribution with the reference value for the region of interest for which the setting of the reference value is specified.
    The treatment planning device according to claim 5, further comprising a display control unit that sends a display control signal for displaying the comparison result by the comparison unit to the display device.
  7.  前記治療計画装置は、前記関心領域に照射される粒子線の照射計画を作成する照射計画作成装置を有し、
     前記演算装置は、前記比較部による比較結果を前記照射計画作成装置に送出する比較結果送出部を有する
    請求項6に記載の治療計画装置。
    The treatment planning device has an irradiation planning device for creating an irradiation plan of a particle beam irradiated to the region of interest.
    The treatment planning device according to claim 6, wherein the arithmetic unit has a comparison result sending unit that sends a comparison result by the comparison unit to the irradiation plan creating device.
  8.  前記演算装置は、前記比較部による比較結果に基づいて、前記関心領域に照射される粒子線の照射範囲を制御する制御信号を送出する制御信号送出部を有する請求項6に記載の治療計画装置。 The treatment planning device according to claim 6, wherein the arithmetic unit has a control signal transmitting unit that transmits a control signal for controlling an irradiation range of a particle beam irradiated to the region of interest based on a comparison result by the comparison unit. ..
  9.  前記制御信号送出部は、前記制御信号として前記照射範囲を設定するゲート信号の幅を制御する信号を送出する請求項8に記載の治療計画装置。 The treatment planning device according to claim 8, wherein the control signal transmitting unit transmits a signal for controlling the width of the gate signal that sets the irradiation range as the control signal.
  10.  前記演算装置は、前記断層画像情報が更新されたら設定された前記関心領域及び前記算出指定情報を更新する請求項1に記載の治療計画装置。 The treatment planning device according to claim 1, wherein the arithmetic unit updates the set area of interest and the calculation designation information when the tomographic image information is updated.
  11.  患部を含む断層画像情報を表示し、
     前記患部に設定された少なくとも1つの関心領域について照射された粒子線の線量分布の算出の要否を指定する算出指定情報の入力を受け入れ、
     前記算出指定情報に基づいて、前記線量分布の算出が指定された前記関心領域の前記線量分布を算出する
    治療計画装置により実施される治療計画方法。
    Display tomographic image information including the affected area,
    Accepts the input of calculation designation information that specifies the necessity of calculating the dose distribution of the irradiated particle beam for at least one region of interest set in the affected area.
    A treatment planning method implemented by a treatment planning apparatus that calculates the dose distribution of the region of interest for which the calculation of the dose distribution is designated based on the calculation designation information.
  12.  コンピュータにより実行されるコンピュータプログラムであって、
     患部を含む断層画像情報を表示する表示機能と、
     前記患部に設定された少なくとも1つの関心領域について照射された粒子線の線量分布の算出の要否を指定する算出指定情報の入力を受け入れる入力機能と、
     前記算出指定情報に基づいて、前記線量分布の算出が指定された前記関心領域の前記線量分布を算出する演算機能と
    を実現させるコンピュータプログラム。
    A computer program run by a computer
    A display function that displays tomographic image information including the affected area,
    An input function that accepts input of calculation designation information that specifies whether or not to calculate the dose distribution of the particle beam irradiated for at least one region of interest set in the affected area, and
    A computer program that realizes a calculation function for calculating the dose distribution in the region of interest for which the calculation of the dose distribution is designated based on the calculation designation information.
PCT/JP2019/045904 2019-03-28 2019-11-25 Treatment planning device, treatment planning method, and program WO2020194858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019064207A JP7281131B2 (en) 2019-03-28 2019-03-28 Treatment planning device, treatment planning method and program
JP2019-064207 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020194858A1 true WO2020194858A1 (en) 2020-10-01

Family

ID=72608888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045904 WO2020194858A1 (en) 2019-03-28 2019-11-25 Treatment planning device, treatment planning method, and program

Country Status (2)

Country Link
JP (1) JP7281131B2 (en)
WO (1) WO2020194858A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336365A (en) * 2001-05-17 2002-11-26 Mitsubishi Electric Corp Method for calculating dose simulation
JP2017184929A (en) * 2016-04-04 2017-10-12 株式会社日立製作所 Radiation therapy planning device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336365A (en) * 2001-05-17 2002-11-26 Mitsubishi Electric Corp Method for calculating dose simulation
JP2017184929A (en) * 2016-04-04 2017-10-12 株式会社日立製作所 Radiation therapy planning device

Also Published As

Publication number Publication date
JP2020162701A (en) 2020-10-08
JP7281131B2 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
JP7245352B2 (en) Method of providing particle-based rotational radiation therapy
JP6974232B2 (en) Particle therapy planning device, particle beam therapy system and dose distribution calculation program
JP6896164B2 (en) Radiation therapy planning optimization workflow
RU2603606C2 (en) Studying dosimetric impact of motion to generate adaptive patient-specific margins in ebrt planning
JP6375097B2 (en) Radiation treatment planning apparatus and treatment planning method
US20080008291A1 (en) Spatially-variant normal tissue objective for radiotherapy
KR20170047215A (en) System and computer program product for radiation inverse treatment planning
JP5909167B2 (en) Radiation therapy planning device
JP2019136509A (en) Optimizing radiation dose to overlapping structures
JP2021175513A (en) Method of selecting beam geometries
US20200338364A1 (en) Method of providing proton radiation therapy utilizing periodic motion
JP6717453B2 (en) Radiation irradiation planning device, clinical decision support device and program
US9364686B2 (en) Planning a treatment beam aimed at one or more target regions
JP2008099807A (en) Radiotherapy planning apparatus and radiotherapy planning method
WO2020194858A1 (en) Treatment planning device, treatment planning method, and program
US11969608B2 (en) System and method for passive ion radiotherapy treatment planning and delivery
JP6842318B2 (en) Radiation therapy planning device
CN114599427A (en) Method for detecting change in internal structure of patient, device for detecting change in internal structure of patient, and computer program
EP4282469A1 (en) Workflow management system, radiotherapy system, and workflow management method
WO2024082293A1 (en) Multicriterial treatment plan optimization using let cost functions
JP7482048B2 (en) Treatment planning device, treatment planning method and computer program
US20230356004A1 (en) Composite field sequencing (cfs) for proton beam therapy
JP2022111774A (en) Determination supporting system, radiotherapy system, and determination supporting method for determination supporting system
JP2024061513A (en) Radiotherapy support device and radiotherapy support method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921413

Country of ref document: EP

Kind code of ref document: A1