WO2020194807A1 - Organic material production system - Google Patents

Organic material production system Download PDF

Info

Publication number
WO2020194807A1
WO2020194807A1 PCT/JP2019/039823 JP2019039823W WO2020194807A1 WO 2020194807 A1 WO2020194807 A1 WO 2020194807A1 JP 2019039823 W JP2019039823 W JP 2019039823W WO 2020194807 A1 WO2020194807 A1 WO 2020194807A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
organic substance
gas
liquid
foam
Prior art date
Application number
PCT/JP2019/039823
Other languages
French (fr)
Japanese (ja)
Inventor
東海林 了
心 濱地
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2019555998A priority Critical patent/JP6797317B1/en
Publication of WO2020194807A1 publication Critical patent/WO2020194807A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state

Definitions

  • the present invention relates to an organic substance manufacturing system.
  • Patent Document 1 describes "a synthetic gas generating furnace that produces a synthetic gas by partially oxidizing waste, a fermenter containing a microorganism that produces an organic substance from the synthetic gas, and the synthetic gas for the fermenter.
  • An apparatus for producing organic matter from waste including a nutrient supply unit that supplies solid or liquid nutrients to the fermenter when the supply is insufficient.
  • ”And“ Partial waste in a syngas generator A step of producing a synthetic gas by oxidation, a step of causing a microorganism to generate an organic substance from the synthetic gas in a fermenter, and a solid or liquid when the supply amount of the synthetic gas to the fermenter is insufficient.
  • a method for producing an organic substance from waste comprising a nutrient supply step of supplying the nutrients of the above to the fermenter.
  • An organic substance production system that produces an organic substance such as ethanol from a synthetic gas measures the composition of the synthetic gas supplied to the catalytic reaction device and the exhaust gas discharged from the catalytic reaction device in order to respond to fluctuations in the composition of the synthetic gas. It is measured continuously by.
  • the exhaust gas discharged from the catalytic reaction device may contain vapors, liquids or bubbles. Such contaminants in the exhaust gas may cause a failure of the measuring device and may make it impossible to continuously measure the component composition of the exhaust gas. In particular, when these contaminants contain organic substances, the flow path of the exhaust gas may be blocked, and continuous measurement of the component composition of the exhaust gas may not be possible.
  • the present invention is an organic substance production system capable of continuously measuring the component composition of the exhaust gas by the measuring device even when vapor, liquid and foam are mixed in the exhaust gas discharged from the catalytic reaction device.
  • the challenge is to provide.
  • An organic substance manufacturing system for producing an organic substance from synthetic gas which comprises a catalytic reaction device, a measuring device for measuring the component composition of exhaust gas discharged from the catalytic reaction device, and the catalytic reaction device.
  • the separation device is provided between the exhaust gas outlet of the above and the exhaust gas inlet of the measuring device, and the separation device separates and removes bubbles and liquids from the exhaust gas and steams from the exhaust gas.
  • An organic substance production system in which separation and removal are performed simultaneously or in this order.
  • the organic substance production system according to [1] wherein the fluctuation range of the content of the constituent components of the synthetic gas with respect to the synthetic gas is within the range of ⁇ 1 to 30% with respect to the standard content ratio.
  • an organic substance production system capable of continuously measuring the component composition of the exhaust gas by the measuring device even when water vapor, water and foam are mixed in the exhaust gas discharged from the catalytic reaction device. Can be provided.
  • FIG. 1 is a schematic view of the organic substance manufacturing system of the present invention.
  • FIG. 2 is a graph showing the measurement result of the amount of wastewater in Example 1.
  • FIG. 3 is a graph showing the measurement result of the amount of wastewater in Comparative Example 1.
  • FIG. 1 is a schematic view showing an embodiment of the organic substance manufacturing system of the present invention.
  • the organic substance production system 10 shown in FIG. 1 is an apparatus for producing an organic substance from synthetic gas.
  • the use of the manufactured organic substance is not particularly limited.
  • the produced organic substance can be used as a raw material for, for example, plastic or resin, or can be used as a fuel.
  • the organic substance manufacturing system 10 includes a catalytic reaction device 1, a separation device 8, and a measuring device 9.
  • the catalytic reaction device 1 has a synthetic gas inlet, an organic substance outlet, and an exhaust gas outlet (none of which are shown).
  • the syngas inlet is connected to a syngas supply source (not shown) by a syngas supply line 2.
  • the organic substance extraction line 3 is connected to the organic substance outlet.
  • a flow path switch 5 is connected to the exhaust gas outlet by an exhaust gas discharge line 4.
  • An exhaust gas discharge line 6 and an exhaust gas measurement line 7 are connected to the flow path switch 5.
  • a measuring device 9 is connected to the exhaust gas measuring line 7.
  • a separation device 8 is arranged in the middle of the exhaust gas measurement line 7 between the flow path switch 5 and the measurement device 9.
  • the flow path switch 5 may be omitted, and the exhaust gas discharge line 4 and the exhaust gas measurement line 7 may be directly connected.
  • a measuring device (not shown) similar to the measuring device 9 may be arranged in the middle of the synthetic gas supply line 2 between the synthetic gas supply source and the synthetic gas inlet.
  • the catalytic reaction device 1 is a device for producing an organic substance B from a synthetic gas A.
  • the synthetic gas A is supplied from the synthetic gas supply source to the catalytic reaction device 1 through the synthetic gas supply line 2.
  • the catalyst reaction device 1 includes a reaction unit containing a catalyst.
  • the catalyst produces organic substance B from syngas A.
  • the catalyst may be a biocatalyst, a metal catalyst or the like, but a biocatalyst is preferable.
  • the biocatalyst for producing ethanol from the synthetic gas A as the organic substance B is preferably a synthetic gas-utilizing bacterium such as Clostridium autoethanogenum.
  • the catalytic reaction device 1 is for stirring the microbial fermenter, the heat insulating means for keeping the liquid medium in the microbial fermenter, and the liquid medium in the microbial fermenter. It is preferable to have a stirring means of.
  • the separation device 8 may be configured as a foam liquid separation device 8a for separating and removing bubbles and liquid from the exhaust gas C, and a vapor separation device 8b for separating and removing vapor from the exhaust gas C.
  • the foam liquid separating device 8a is not particularly limited as long as it can separate and remove bubbles and liquid from the exhaust gas C.
  • the foam liquid separation device 8a is, for example, a device capable of cutting a foam to separate it into a gas and a liquid, and removing the liquefied foam and the liquid contained separately from the foam. Examples of such a device include a bubble removing filter and a defoaming device.
  • bubble removing filter examples include, but are not limited to, an H600 series in-line filter (manufactured by Hamlet). 8a and 8b may each have one or more. By preparing a plurality of them, it is possible to deal with cases where the composition fluctuation is extremely large.
  • the steam separation device 8b is not particularly limited as long as it can separate and remove steam from the exhaust gas C.
  • the steam separation device 8b is, for example, a device capable of liquefying steam, separating it from gas, and removing the liquefied steam. Examples of such a device include a surface tension type gas-liquid separator and a centrifugal force type gas-liquid separator. Specific examples of the surface tension type gas-liquid separator include an NRL series surface tension application micro bellows groove gas-liquid separator (manufactured by Nichirei Industries Co., Ltd.).
  • the measuring device 9 is a device for measuring the component composition of the exhaust gas C.
  • the measuring device 9 is not particularly limited as long as it can measure the component composition of the exhaust gas C, and is, for example, a gas chromatograph (GC), a mass spectrometer (MS), a gas chromatograph-mass spectrometer (GC-MS), and the like.
  • FTIR Fourier transform infrared spectrophotometer
  • the method for producing an organic substance of the present invention includes a synthetic gas supply step of supplying a synthetic gas to a catalytic reaction device, an organic substance synthesis step of synthesizing an organic substance from the synthetic gas in the catalytic reaction device, and exhaust gas from the reaction device. Exhaust gas discharge step, a contaminant removal step of separating and removing at least one of steam, liquid, and foam mixed in the exhaust gas from the exhaust gas, and an exhaust gas for measuring the component composition of the exhaust gas. Includes measurement steps.
  • the synthetic gas A is supplied from the synthetic gas source (not shown) to the synthetic gas inlet of the catalytic reaction device 1 through the synthetic gas supply line 2.
  • Syngas A is, for example, a mixed gas containing carbon monoxide, hydrogen, carbon dioxide and nitrogen.
  • the synthetic gas is preferably produced by treating a raw material gas such as a raw material gas generated from a waste incinerator and a raw material gas generated from a steel mill.
  • the amount of the synthetic gas A supplied to the catalytic reaction device 1 is the component composition of the synthetic gas A obtained from the measuring device installed in the synthetic gas supply line 2 and the exhaust gas obtained from the measuring device installed in the exhaust gas measuring line 7. It is preferable to set so that the organic substance B can be efficiently produced by the catalytic reaction device 1 based on the component composition of C.
  • the component composition of syngas A may fluctuate due to the influence of fluctuations in the composition of the raw material gas.
  • the fluctuation range of the content ratio of each component of the raw material gas A to the raw material gas A is usually in the range of ⁇ 1 to 30% with respect to the standard content ratio. ..
  • the synthetic gas A contains carbon monoxide and the standard content ratio of carbon monoxide in the synthetic gas A is 30% by volume
  • the fluctuation range is ⁇ 30%. It means that the content ratio of carbon monoxide in the gas A fluctuates in the range of 21% by volume (-30% fluctuation) to 39% by volume (+30 fluctuation) by volume.
  • the organic substance B is synthesized from the syngas A in the reaction section containing the catalyst of the catalyst reaction device 1.
  • the organic substance B include alcohols, organic acids, fatty acids, fats and oils, ketones, biomass or sugars.
  • a specific example of an alcohol is ethanol, and a specific example of an organic acid is acetic acid.
  • Ethanol is particularly preferable as the organic substance B.
  • the synthesized organic substance B is extracted from the organic substance outlet of the catalyst reaction device 1 to the outside of the catalyst reaction device 1 through the organic substance extraction line 3.
  • Exhaust gas C contains at least a part of by-products of organic substance B and a part of substances contained in the reaction part, in addition to the surplus of synthetic gas A that was not used for the synthesis of organic substance B.
  • At least a part of the by-product of the organic substance B and a part of the substance contained in the reaction part are usually in one or more states selected from vapors, liquids and bubbles, and are used as contaminants in the exhaust gas C. include. If such a contaminant enters the inside of the measuring device 9, it causes a malfunction or failure of the measuring device 9. In addition, such a contaminant causes the exhaust gas measurement line 7 to be blocked, making it impossible to measure the component composition of the exhaust gas C.
  • the contaminant removal step contaminants in at least one state of vapor, liquid and foam contained in the exhaust gas C are separated and removed from the exhaust gas C.
  • the exhaust gas C discharged in the exhaust gas discharge process passes through the exhaust gas discharge line 4, the flow path switch 5, and the exhaust gas measurement line 7, and is a separator 8 arranged in the middle of the exhaust gas measurement line 7. Guided to.
  • the foam liquid separation device 8a separates and removes the foam and the liquid from the exhaust gas C, and then the vapor separation device 8b separates and removes the vapor from the exhaust gas C.
  • Examples of the method for separating and removing the foam and the liquid from the exhaust gas C include a method of cutting the foam to separate the gas and the liquid and removing the liquefied foam and the liquid contained separately from the foam. ..
  • Examples of the method of separating and removing the vapor from the exhaust gas C include a method of liquefying the vapor, separating it from the gas, and removing the liquefied vapor.
  • the separation device 8 separates and removes 50% by mass or more of the vapor contained in the exhaust gas C, 80% by mass or more of the liquid, and 80% by mass or more of the foam.
  • the component composition of the exhaust gas C is measured.
  • the method for analyzing the component composition of exhaust gas C include gas chromatography (GC) method, mass spectrum (MS) method, gas chromatography-mass spectrometry (GC-MS) method, and Fourier transform infrared spectroscopy (FTIR). ) Law, etc.
  • the flow rate of the exhaust gas C flowing into the measuring device 9 is not particularly limited, but is preferably in the range of 0.01 to 1 m 3 / hr.
  • the component composition of the exhaust gas C can be adjusted without causing the measuring device 9 to malfunction. Can be measured continuously.
  • the separation device 8 performs the treatment by the vapor separation device 8b after the treatment by the foam liquid separation device 8a, but is not limited to this.
  • the mist separator and the knockout pod may be cooled so that the vapor can be removed at the same time as the bubbles, so that the treatment by the foam liquid separation device 8a and the vapor separation device 8b can be performed at the same time.
  • Example 1 Manufacturing of raw material gas> The gas generated by burning general waste in a waste incineration facility was used as a raw material gas.
  • the composition of the raw material gas was 30% by volume of carbon monoxide, 30% by volume of carbon dioxide, 30% by volume of hydrogen and 10% by volume of nitrogen.
  • the catalytic reaction device 1 was filled with a liquid medium, and an inoculum of the synthetic gas assimilating bacterium Clostridium autoethanogenum was added. While maintaining the temperature of the liquid medium at 36 to 38 ° C., the synthetic gas was continuously supplied to the catalytic reaction device 1 through the synthetic gas supply line 2 to allow fermentation under anaerobic conditions. The surplus synthetic gas and the gas generated by fermentation were discharged from the catalyst reactor 1 as exhaust gas through the exhaust gas discharge line 4.
  • Example 1 Except for the fact that the foam liquid separator 8a and the vapor separator 8b were not used, the displacement measurement and the exhaust gas measurement results were evaluated in the same manner as in Example 1.
  • FIG. 3 shows the measurement result of the amount of drainage.
  • Example 1 bubbles and liquids containing organic substances could be separated from the exhaust gas, and the exhaust gas could be continuously measured.
  • Comparative Example 1 bubbles and liquid invaded the measuring device, and continuous measurement of exhaust gas could not be performed.
  • Comparative Examples 2 to 4 the separation of bubbles and liquids containing organic substances was insufficient, and measurement results could not be obtained. From this, by separating and removing the foam and liquid by the foam liquid separation device in the first stage and separating and removing the vapor by the vapor separation device in the second stage, the foam and liquid do not enter the measuring device. It can be seen that continuous measurement of exhaust gas can be performed.
  • the organic substance production system of the present invention can continuously measure the component composition of the exhaust gas discharged from the catalytic reaction device, it is possible to produce an organic substance corresponding to the fluctuation of the component composition of the synthetic gas. Therefore, an organic substance such as ethanol can be produced with high efficiency, and the utilization rate of synthetic gas can be increased.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Treating Waste Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is an organic material production system whereby it is possible to use a measurement device to continuously measure the component composition of exhaust gas even when steam, liquid, and foam are mixed in with exhaust gas discharged from a catalytic reactor. The organic material production system (10) produces organic material from a syngas having a variable composition and is provided with a catalytic reactor (1), a measurement device (9) for measuring the component composition of exhaust gas, and a separation device (8) positioned in the interval from an exhaust gas outlet in the catalytic reactor to an exhaust gas inlet in the measurement device. The separation device (8) performs separation and removal of foam and liquid from the exhaust gas and separation and removal of steam from the exhaust gas either simultaneously or in this order.

Description

有機物質製造システムOrganic substance manufacturing system
 本発明は有機物質製造システムに関する。 The present invention relates to an organic substance manufacturing system.
 近年、一酸化炭素及び水素を含む合成ガスを原料として、微生物発酵によってエタノール等の有機物質を製造する有機物質製造システムが注目されている。 In recent years, an organic substance production system that produces an organic substance such as ethanol by microbial fermentation using a synthetic gas containing carbon monoxide and hydrogen as a raw material has attracted attention.
 特許文献1には、「廃棄物を部分酸化させることにより合成ガスを生成させる合成ガス生成炉と、前記合成ガスから有機物質を生成させる微生物を含む発酵器と、前記発酵器に対する前記合成ガスの供給量が不足する際に、固体又は液体の養分を前記発酵器に供給する養分供給部と、を備える、廃棄物からの有機物質の製造装置。」及び「合成ガス生成炉において廃棄物を部分酸化させることにより合成ガスを生成させる工程と、発酵器において、微生物に、前記合成ガスから有機物質を生成させる工程と、前記発酵器に対する前記合成ガスの供給量が不足する際に、固体又は液体の養分を前記発酵器に供給する養分供給工程と、を備える、廃棄物からの有機物質の製造方法。」が記載されている。 Patent Document 1 describes "a synthetic gas generating furnace that produces a synthetic gas by partially oxidizing waste, a fermenter containing a microorganism that produces an organic substance from the synthetic gas, and the synthetic gas for the fermenter. An apparatus for producing organic matter from waste, including a nutrient supply unit that supplies solid or liquid nutrients to the fermenter when the supply is insufficient. ”And“ Partial waste in a syngas generator. A step of producing a synthetic gas by oxidation, a step of causing a microorganism to generate an organic substance from the synthetic gas in a fermenter, and a solid or liquid when the supply amount of the synthetic gas to the fermenter is insufficient. A method for producing an organic substance from waste, comprising a nutrient supply step of supplying the nutrients of the above to the fermenter. "
国際公開第2016/017573号International Publication No. 2016/017573
 合成ガスからエタノール等の有機物質を製造する有機物質製造システムは、合成ガスの組成変動に対応するため、触媒反応装置に供給する合成ガス及び触媒反応装置から排出する排気ガスの成分組成を測定装置によって連続的に測定している。しかし、触媒反応装置から排出する排気ガスには、蒸気、液体又は泡沫が混入している場合がある。排気ガス中のこのような混入物は、測定装置の故障の原因となり、排気ガスの成分組成を連続的に測定できなくなることがある。特に、これらの混入物に有機物が含まれるときは、排気ガスの流路を閉塞してしまい、排気ガスの成分組成の連続測定ができなくなることがある。 An organic substance production system that produces an organic substance such as ethanol from a synthetic gas measures the composition of the synthetic gas supplied to the catalytic reaction device and the exhaust gas discharged from the catalytic reaction device in order to respond to fluctuations in the composition of the synthetic gas. It is measured continuously by. However, the exhaust gas discharged from the catalytic reaction device may contain vapors, liquids or bubbles. Such contaminants in the exhaust gas may cause a failure of the measuring device and may make it impossible to continuously measure the component composition of the exhaust gas. In particular, when these contaminants contain organic substances, the flow path of the exhaust gas may be blocked, and continuous measurement of the component composition of the exhaust gas may not be possible.
 そこで、本発明は、触媒反応装置から排出される排気ガスに蒸気、液体及び泡沫が混入している場合であっても、測定装置によって排気ガスの成分組成を連続的に測定できる有機物質製造システムを提供することを課題とする。 Therefore, the present invention is an organic substance production system capable of continuously measuring the component composition of the exhaust gas by the measuring device even when vapor, liquid and foam are mixed in the exhaust gas discharged from the catalytic reaction device. The challenge is to provide.
 上記課題は、以下の構成によって解決される。
 [1]合成ガスから有機物質を生産する有機物質製造システムであって、触媒反応装置と、前記触媒反応装置から排出される排気ガスの成分組成を測定するための測定装置と、前記触媒反応装置の排気ガス出口から前記測定装置の排気ガス入口までの間に位置する分離装置と、を備え、前記分離装置は、前記排気ガスからの泡沫及び液体の分離除去と、前記排気ガスからの蒸気の分離除去とを、同時に又はこの順に行う、有機物質製造システム。
 [2]前記合成ガスの構成成分の合成ガスに対する含有量の変動幅が標準的な含有割合に対して±1~30%の範囲内である、[1]に記載の有機物質製造システム。
 [3]前記分離装置は、排気ガスに含まれる蒸気の50質量%以上、液体の80質量%以上、及び泡沫の80質量%以上を分離除去する、[1]又は[2]に記載の有機物質製造システム。
 [4]前記測定装置に供給される前記排気ガスの流量が0.01~1m/hrである、[1]~[3]のいずれか1項に記載の有機物質製造システム。
The above problem is solved by the following configuration.
[1] An organic substance manufacturing system for producing an organic substance from synthetic gas, which comprises a catalytic reaction device, a measuring device for measuring the component composition of exhaust gas discharged from the catalytic reaction device, and the catalytic reaction device. The separation device is provided between the exhaust gas outlet of the above and the exhaust gas inlet of the measuring device, and the separation device separates and removes bubbles and liquids from the exhaust gas and steams from the exhaust gas. An organic substance production system in which separation and removal are performed simultaneously or in this order.
[2] The organic substance production system according to [1], wherein the fluctuation range of the content of the constituent components of the synthetic gas with respect to the synthetic gas is within the range of ± 1 to 30% with respect to the standard content ratio.
[3] The organic according to [1] or [2], wherein the separation device separates and removes 50% by mass or more of vapor contained in exhaust gas, 80% by mass or more of liquid, and 80% by mass or more of foam. Material manufacturing system.
[4] The organic substance manufacturing system according to any one of [1] to [3], wherein the flow rate of the exhaust gas supplied to the measuring device is 0.01 to 1 m 3 / hr.
 本発明によれば、触媒反応装置から排出される排気ガスに水蒸気、水及び泡沫が混入している場合であっても、測定装置によって排気ガスの成分組成を連続的に測定できる有機物質製造システムを提供できる。 According to the present invention, an organic substance production system capable of continuously measuring the component composition of the exhaust gas by the measuring device even when water vapor, water and foam are mixed in the exhaust gas discharged from the catalytic reaction device. Can be provided.
図1は、本発明の有機物質製造システムの概要図である。FIG. 1 is a schematic view of the organic substance manufacturing system of the present invention. 図2は、実施例1における排水量の測定結果を表すグラフである。FIG. 2 is a graph showing the measurement result of the amount of wastewater in Example 1. 図3は、比較例1における排水量の測定結果を表すグラフである。FIG. 3 is a graph showing the measurement result of the amount of wastewater in Comparative Example 1.
 以下、本発明を実施するための形態を、図1を参照しながら説明する。ただし、本発明は、後述する実施の形態に限定されるものではなく、本発明の要旨を変更しない限り、種々の変形が可能である。 Hereinafter, a mode for carrying out the present invention will be described with reference to FIG. However, the present invention is not limited to the embodiments described later, and various modifications can be made as long as the gist of the present invention is not changed.
 [有機物質製造システム]
 図1は、本発明の有機物質製造システムの一実施形態を表す概要図である。図1に示される有機物質製造システム10は、合成ガスから有機物質を製造するための装置である。
[Organic substance manufacturing system]
FIG. 1 is a schematic view showing an embodiment of the organic substance manufacturing system of the present invention. The organic substance production system 10 shown in FIG. 1 is an apparatus for producing an organic substance from synthetic gas.
 製造された有機物質の用途は、特に限定されない。製造された有機物質は、例えば、プラスチック又は樹脂の原料として用いることもできるし、燃料として用いることもできる。 The use of the manufactured organic substance is not particularly limited. The produced organic substance can be used as a raw material for, for example, plastic or resin, or can be used as a fuel.
 有機物質製造システム10は、触媒反応装置1と、分離装置8と、測定装置9とを備えている。触媒反応装置1は、合成ガス入口と、有機物質出口と、排気ガス出口を有する(いずれも図示せず)。前記合成ガス入口は、合成ガス供給ライン2によって、合成ガス供給源(図示せず)と接続されている。前記有機物質出口は、有機物質抜取ライン3が接続されている。前記排気ガス出口には、排気ガス排出ライン4によって、流路切替器5が接続されている。流路切替器5には、排気ガス排出ライン6及び排気ガス測定ライン7が接続されている。排気ガス測定ライン7には、測定装置9が接続されている。流路切替器5と測定装置9との間の排気ガス測定ライン7の途中には、分離装置8が配置されている。流路切替器5を省略して、排気ガス排出ライン4と排気ガス測定ライン7とを直接接続してもよい。合成ガス供給源と合成ガス入口との間の合成ガス供給ライン2の途中には、測定装置9と同様の測定装置(図示せず)を配置してもよい。 The organic substance manufacturing system 10 includes a catalytic reaction device 1, a separation device 8, and a measuring device 9. The catalytic reaction device 1 has a synthetic gas inlet, an organic substance outlet, and an exhaust gas outlet (none of which are shown). The syngas inlet is connected to a syngas supply source (not shown) by a syngas supply line 2. The organic substance extraction line 3 is connected to the organic substance outlet. A flow path switch 5 is connected to the exhaust gas outlet by an exhaust gas discharge line 4. An exhaust gas discharge line 6 and an exhaust gas measurement line 7 are connected to the flow path switch 5. A measuring device 9 is connected to the exhaust gas measuring line 7. A separation device 8 is arranged in the middle of the exhaust gas measurement line 7 between the flow path switch 5 and the measurement device 9. The flow path switch 5 may be omitted, and the exhaust gas discharge line 4 and the exhaust gas measurement line 7 may be directly connected. A measuring device (not shown) similar to the measuring device 9 may be arranged in the middle of the synthetic gas supply line 2 between the synthetic gas supply source and the synthetic gas inlet.
 触媒反応装置1は、合成ガスAから有機物質Bを製造する装置である。合成ガスAは、合成ガス供給源から、合成ガス供給ライン2を通じて、触媒反応装置1に供給される。 The catalytic reaction device 1 is a device for producing an organic substance B from a synthetic gas A. The synthetic gas A is supplied from the synthetic gas supply source to the catalytic reaction device 1 through the synthetic gas supply line 2.
 触媒反応装置1は、触媒を含む反応部を含む。触媒は、合成ガスAから有機物質Bを生成する。触媒は、生物触媒、金属触媒等であってよいが、生物触媒が好ましい。合成ガスAから有機物質Bとしてエタノールを製造する場合の生物触媒は、Clostridium autoethanogenum(クロストリジウム・オートエタノゲナム)等の合成ガス資化性細菌が好ましい。合成ガス資化性細菌を触媒として用いる場合、触媒反応装置1は、微生物発酵槽と、微生物発酵槽内の液状培地を保温するための保温手段と、微生物発酵槽内の液状培地を撹拌するための撹拌手段とを有することが好ましい。 The catalyst reaction device 1 includes a reaction unit containing a catalyst. The catalyst produces organic substance B from syngas A. The catalyst may be a biocatalyst, a metal catalyst or the like, but a biocatalyst is preferable. The biocatalyst for producing ethanol from the synthetic gas A as the organic substance B is preferably a synthetic gas-utilizing bacterium such as Clostridium autoethanogenum. When a synthetic gas assimilating bacterium is used as a catalyst, the catalytic reaction device 1 is for stirring the microbial fermenter, the heat insulating means for keeping the liquid medium in the microbial fermenter, and the liquid medium in the microbial fermenter. It is preferable to have a stirring means of.
 分離装置8は、排気ガスCから泡沫及び液体を分離除去するための泡沫液体分離装置8aと、排気ガスCから蒸気を分離除去するための蒸気分離装置8bの構成にしてもよい。泡沫液体分離装置8aは、排気ガスCから泡沫及び液体を分離除去できる装置であれば特に限定されない。泡沫液体分離装置8aは、例えば、泡沫を切断して気体と液体に分離し、液体化した泡沫及び泡沫とは別に含まれていた液体を除去できる装置である。このような装置としては、気泡除去フィルター、消泡装置等が挙げられる。気泡除去フィルターとしては、具体的には、H600シリーズインラインフィルター(ハムレット社製)が挙げられるが、これらに限定されない。8aと8bは、各々を1つもしくは2つ以上有していてもよい。複数用意することで、組成変動が極端に大きい場合にも対応が可能となる。 The separation device 8 may be configured as a foam liquid separation device 8a for separating and removing bubbles and liquid from the exhaust gas C, and a vapor separation device 8b for separating and removing vapor from the exhaust gas C. The foam liquid separating device 8a is not particularly limited as long as it can separate and remove bubbles and liquid from the exhaust gas C. The foam liquid separation device 8a is, for example, a device capable of cutting a foam to separate it into a gas and a liquid, and removing the liquefied foam and the liquid contained separately from the foam. Examples of such a device include a bubble removing filter and a defoaming device. Specific examples of the bubble removing filter include, but are not limited to, an H600 series in-line filter (manufactured by Hamlet). 8a and 8b may each have one or more. By preparing a plurality of them, it is possible to deal with cases where the composition fluctuation is extremely large.
 蒸気分離装置8bは、排気ガスCから蒸気を分離除去できる装置であれば特に限定されない。蒸気分離装置8bは、例えば、蒸気を液化して気体と分離し、液化した蒸気を除去できる装置である。このような装置としては、表面張力式気液分離装置、遠心力式気液分離装置が挙げられる。表面張力式気液分離装置としては、具体的には、NRLシリーズ表面張力応用マイクロ蛇腹溝気液分離器(日冷工業社製)が挙げられる。 The steam separation device 8b is not particularly limited as long as it can separate and remove steam from the exhaust gas C. The steam separation device 8b is, for example, a device capable of liquefying steam, separating it from gas, and removing the liquefied steam. Examples of such a device include a surface tension type gas-liquid separator and a centrifugal force type gas-liquid separator. Specific examples of the surface tension type gas-liquid separator include an NRL series surface tension application micro bellows groove gas-liquid separator (manufactured by Nichirei Industries Co., Ltd.).
 測定装置9は、排気ガスCの成分組成を測定する装置である。測定装置9は、排気ガスCの成分組成を測定できる装置であれば特に限定されないが、例えば、ガスクロマトグラフ(GC)、質量分析計(MS)、ガスクロマトグラフ-質量分析計(GC-MS)、フーリエ変換赤外分光光度計(FTIR)等である。 The measuring device 9 is a device for measuring the component composition of the exhaust gas C. The measuring device 9 is not particularly limited as long as it can measure the component composition of the exhaust gas C, and is, for example, a gas chromatograph (GC), a mass spectrometer (MS), a gas chromatograph-mass spectrometer (GC-MS), and the like. A Fourier transform infrared spectrophotometer (FTIR) or the like.
 [有機物質製造方法]
 本発明の有機物質製造方法は、合成ガスを触媒反応装置に供給する合成ガス供給工程と、触媒反応装置において合成ガスから有機物質を合成する有機物質合成工程と、前記反応装置から排気ガスを排出する排気ガス排出工程と、前記排気ガスに混入している蒸気、液体及び泡沫のうち少なくとも1種を前記排気ガスから分離除去する混入物除去工程と、前記排気ガスの成分組成を測定する排気ガス測定工程とを含む。以下では、本発明の有機物質製造システム10を用いる場合の本発明の有機物質製造方法の実施形態について詳細に説明する。
[Organic substance manufacturing method]
The method for producing an organic substance of the present invention includes a synthetic gas supply step of supplying a synthetic gas to a catalytic reaction device, an organic substance synthesis step of synthesizing an organic substance from the synthetic gas in the catalytic reaction device, and exhaust gas from the reaction device. Exhaust gas discharge step, a contaminant removal step of separating and removing at least one of steam, liquid, and foam mixed in the exhaust gas from the exhaust gas, and an exhaust gas for measuring the component composition of the exhaust gas. Includes measurement steps. Hereinafter, embodiments of the organic substance manufacturing method of the present invention when the organic substance manufacturing system 10 of the present invention is used will be described in detail.
 合成ガス供給工程では、合成ガスAを、合成ガス源(図示せず)から合成ガス供給ライン2を通じて、触媒反応装置1の合成ガス入口に供給する。合成ガスAは、例えば、一酸化炭素、水素、二酸化炭素及び窒素を含む混合ガスである。合成ガスは、廃棄物焼却炉から発生する原料ガス、製鉄所から発生する原料ガス等の原料ガスを処理して、製造したものが好ましい。合成ガスAの触媒反応装置1への供給量は、合成ガス供給ライン2に設置した測定装置から得られる合成ガスAの成分組成、及び排気ガス測定ライン7に設置した測定装置から得られる排気ガスCの成分組成に基づいて、触媒反応装置1による有機物質Bの製造が効率的に行えるように設定することが好ましい。 In the synthetic gas supply step, the synthetic gas A is supplied from the synthetic gas source (not shown) to the synthetic gas inlet of the catalytic reaction device 1 through the synthetic gas supply line 2. Syngas A is, for example, a mixed gas containing carbon monoxide, hydrogen, carbon dioxide and nitrogen. The synthetic gas is preferably produced by treating a raw material gas such as a raw material gas generated from a waste incinerator and a raw material gas generated from a steel mill. The amount of the synthetic gas A supplied to the catalytic reaction device 1 is the component composition of the synthetic gas A obtained from the measuring device installed in the synthetic gas supply line 2 and the exhaust gas obtained from the measuring device installed in the exhaust gas measuring line 7. It is preferable to set so that the organic substance B can be efficiently produced by the catalytic reaction device 1 based on the component composition of C.
 合成ガスAの成分組成は、原料ガスの組成の変動等の影響により、変動する場合がある。合成ガスAの成分組成が変動する場合、原料ガスAの各構成成分の原料ガスAに対する含有割合の変動幅は、通常、標準的な含有割合に対して±1~30%の範囲内である。例えば、合成ガスAが一酸化炭素を含む場合であって、合成ガスA中の一酸化炭素の標準的な含有割合が30体積%であるとき、変動幅が±30%であるとは、合成ガスA中の一酸化炭素の含有割合が、21体積%(-30%変動)~39体積%(+30変動)体積%の範囲で変動することをいう。 The component composition of syngas A may fluctuate due to the influence of fluctuations in the composition of the raw material gas. When the component composition of the synthetic gas A fluctuates, the fluctuation range of the content ratio of each component of the raw material gas A to the raw material gas A is usually in the range of ± 1 to 30% with respect to the standard content ratio. .. For example, when the synthetic gas A contains carbon monoxide and the standard content ratio of carbon monoxide in the synthetic gas A is 30% by volume, the fluctuation range is ± 30%. It means that the content ratio of carbon monoxide in the gas A fluctuates in the range of 21% by volume (-30% fluctuation) to 39% by volume (+30 fluctuation) by volume.
 有機物質合成工程では、触媒反応装置1の、触媒を含む反応部において、合成ガスAからの有機物質Bの合成が行われる。有機物質Bとしては、例えば、アルコール、有機酸、脂肪酸、油脂、ケトン、バイオマス又は糖である。アルコールの具体例はエタノールであり、有機酸の具体例は酢酸である。有機物質Bとしては、エタノールが特に好ましい。合成された有機物質Bは、触媒反応装置1の有機物質出口から、有機物質抜取ライン3を通じて、触媒反応装置1の外部に抜き取る。 In the organic substance synthesis step, the organic substance B is synthesized from the syngas A in the reaction section containing the catalyst of the catalyst reaction device 1. Examples of the organic substance B include alcohols, organic acids, fatty acids, fats and oils, ketones, biomass or sugars. A specific example of an alcohol is ethanol, and a specific example of an organic acid is acetic acid. Ethanol is particularly preferable as the organic substance B. The synthesized organic substance B is extracted from the organic substance outlet of the catalyst reaction device 1 to the outside of the catalyst reaction device 1 through the organic substance extraction line 3.
 排気ガス排出工程では、触媒反応装置1の排気ガス出口に接続された排気ガス排出ライン4を通じて、排気ガスCを排出する。排気ガスCは、合成ガスAのうち有機物質Bの合成に使われなかった余剰分の他に、有機物質Bの副生物の少なくとも一部と、反応部に含まれる物質の一部とを含むことがある。このような有機物質Bの副生物の少なくとも一部及び反応部に含まれる物質の一部は、通常、蒸気、液体及び泡から選択される1種以上の状態で、混入物として、排気ガスCに含まれる。このような混入物が、測定装置9内部に侵入すると、測定装置9の動作不良、故障の原因となる。また、このような混入物は、排気ガス測定ライン7の閉塞を引き起こし、排気ガスCの成分組成の測定が不可能になる。 In the exhaust gas discharge process, the exhaust gas C is discharged through the exhaust gas discharge line 4 connected to the exhaust gas outlet of the catalyst reaction device 1. Exhaust gas C contains at least a part of by-products of organic substance B and a part of substances contained in the reaction part, in addition to the surplus of synthetic gas A that was not used for the synthesis of organic substance B. Sometimes. At least a part of the by-product of the organic substance B and a part of the substance contained in the reaction part are usually in one or more states selected from vapors, liquids and bubbles, and are used as contaminants in the exhaust gas C. include. If such a contaminant enters the inside of the measuring device 9, it causes a malfunction or failure of the measuring device 9. In addition, such a contaminant causes the exhaust gas measurement line 7 to be blocked, making it impossible to measure the component composition of the exhaust gas C.
 混入物除去工程では、排気ガスCに含まれる蒸気、液体及び泡沫のうち少なくとも1種の状態の混入物を排気ガスCから分離除去する。排気ガス排出工程により排出された排気ガスCは、排気ガス排出ライン4、流路切替器5、及び排気ガス測定ライン7を経由して、排気ガス測定ライン7の途中に配置された分離装置8に導かれる。分離装置8において、泡沫液体分離装置8aによる排気ガスCからの泡沫及び液体の分離除去を行い、次いで、蒸気分離装置8bによる排気ガスCからの蒸気の分離除去を行う。排気ガスCから泡沫及び液体を分離除去する方法としては、例えば、泡沫を切断して気体と液体に分離し、液体化した泡沫及び泡沫とは別に含まれていた液体を除去する方法が挙げられる。排気ガスCから蒸気を分離除去する方法としては、例えば、蒸気を液化して気体と分離し、液化した蒸気を除去する方法が挙げられる。混入物除去工程では、分離装置8によって、排気ガスCに含まれる蒸気の50質量%以上、液体の80質量%以上、及び泡沫の80質量%以上を分離除去することが好ましい。 In the contaminant removal step, contaminants in at least one state of vapor, liquid and foam contained in the exhaust gas C are separated and removed from the exhaust gas C. The exhaust gas C discharged in the exhaust gas discharge process passes through the exhaust gas discharge line 4, the flow path switch 5, and the exhaust gas measurement line 7, and is a separator 8 arranged in the middle of the exhaust gas measurement line 7. Guided to. In the separation device 8, the foam liquid separation device 8a separates and removes the foam and the liquid from the exhaust gas C, and then the vapor separation device 8b separates and removes the vapor from the exhaust gas C. Examples of the method for separating and removing the foam and the liquid from the exhaust gas C include a method of cutting the foam to separate the gas and the liquid and removing the liquefied foam and the liquid contained separately from the foam. .. Examples of the method of separating and removing the vapor from the exhaust gas C include a method of liquefying the vapor, separating it from the gas, and removing the liquefied vapor. In the contaminant removal step, it is preferable that the separation device 8 separates and removes 50% by mass or more of the vapor contained in the exhaust gas C, 80% by mass or more of the liquid, and 80% by mass or more of the foam.
 排気ガス測定工程では、排気ガスCの成分組成を測定する。排気ガスCの成分組成を分析する方法としては、例えば、ガスクロマトグラフィー(GC)法、マススペクトル(MS)法、ガスクロマトグラフィー-質量分析(GC-MS)法、フーリエ変換赤外分光(FTIR)法等が挙げられる。測定装置9に流入する排気ガスCの流量は、特に限定されないが、0.01~1m/hrの範囲が好ましい。 In the exhaust gas measuring step, the component composition of the exhaust gas C is measured. Examples of the method for analyzing the component composition of exhaust gas C include gas chromatography (GC) method, mass spectrum (MS) method, gas chromatography-mass spectrometry (GC-MS) method, and Fourier transform infrared spectroscopy (FTIR). ) Law, etc. The flow rate of the exhaust gas C flowing into the measuring device 9 is not particularly limited, but is preferably in the range of 0.01 to 1 m 3 / hr.
 本実施形態によれば、混入した蒸気、液体及び泡沫を除去した後の排気ガスCを測定装置9に供給することによって、測定装置9が動作不良に陥ることなく、排気ガスCの成分組成を連続的に測定できる。 According to the present embodiment, by supplying the exhaust gas C after removing the mixed vapor, liquid and foam to the measuring device 9, the component composition of the exhaust gas C can be adjusted without causing the measuring device 9 to malfunction. Can be measured continuously.
 上述の実施形態では、分離装置8において、泡沫液体分離装置8aによる処理後に蒸気分離装置8bによる処理を行っているが、これに限定されない。例えば、ミストセパレータやノックアウトポッドを冷却し、泡と同時に蒸気も除去できる構成にすることによって、泡沫液体分離装置8a及び蒸気分離装置8bによる処理を同時に行える構成としたりしてもよい。 In the above-described embodiment, the separation device 8 performs the treatment by the vapor separation device 8b after the treatment by the foam liquid separation device 8a, but is not limited to this. For example, the mist separator and the knockout pod may be cooled so that the vapor can be removed at the same time as the bubbles, so that the treatment by the foam liquid separation device 8a and the vapor separation device 8b can be performed at the same time.
 以下では実施例によって本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されず、本発明の要旨を変更しない限り、種々の変形が可能である。 Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to the following examples, and various modifications can be made as long as the gist of the present invention is not changed.
 [実施例1]
 <原料ガスの製造>
 ごみ焼却設備で一般廃棄物を燃焼して発生したガスを原料ガスとして用いた。原料ガスの成分組成は、一酸化炭素30体積%、二酸化炭素30体積%、水素30体積%及び窒素10体積%であった。
[Example 1]
<Manufacturing of raw material gas>
The gas generated by burning general waste in a waste incineration facility was used as a raw material gas. The composition of the raw material gas was 30% by volume of carbon monoxide, 30% by volume of carbon dioxide, 30% by volume of hydrogen and 10% by volume of nitrogen.
 <合成ガスの製造>
 圧力変動吸着(PSA)装置を用いて、原料ガスを80℃まで加温し、原料ガスに含まれる二酸化炭素を、もとの含有量(30体積%)の60~80%になるように除去した。除去後、150℃のスチームを用いた二重管式熱交換器によってガスを昇温し、次に、25℃の冷却水を用いた二重管式熱交換器によってガスを再冷却して、不純物を析出させた。析出した不純物をフィルターで除去して、合成ガスを製造した。
<Manufacturing of syngas>
Using a pressure fluctuation adsorption (PSA) device, the raw material gas is heated to 80 ° C. and carbon dioxide contained in the raw material gas is removed to 60 to 80% of the original content (30% by volume). did. After removal, the gas was heated by a double tube heat exchanger using steam at 150 ° C., and then the gas was recooled by a double tube heat exchanger using cooling water at 25 ° C. Impurities were precipitated. The precipitated impurities were removed with a filter to produce a synthetic gas.
 <微生物発酵及び排気ガスの排出>
 触媒反応装置1に液状培地を充填し、合成ガス資化性細菌Clostridium autoethanogenum(クロストリジウム・オートエタノゲナム)の種菌を添加した。液状培地の温度を36~38℃に維持しながら、触媒反応装置1に合成ガス供給ライン2を通じて合成ガスを連続的に供給して、嫌気条件で発酵を行わせた。余剰の合成ガス及び発酵によって発生したガスを、排気ガス排出ライン4を通じて、排気ガスとして触媒反応装置1から排出した。
<Microbial fermentation and exhaust gas emission>
The catalytic reaction device 1 was filled with a liquid medium, and an inoculum of the synthetic gas assimilating bacterium Clostridium autoethanogenum was added. While maintaining the temperature of the liquid medium at 36 to 38 ° C., the synthetic gas was continuously supplied to the catalytic reaction device 1 through the synthetic gas supply line 2 to allow fermentation under anaerobic conditions. The surplus synthetic gas and the gas generated by fermentation were discharged from the catalyst reactor 1 as exhaust gas through the exhaust gas discharge line 4.
 <排気ガスからの泡沫及び液体の分離>
 触媒反応装置1から排出した排気ガスを、流路切替器5から分岐する排気ガス測定ライン7に導き、排気ガス測定ライン7上に設置した泡沫液体分離装置8a(インラインフィルター、ハムレット社製、140μmのフィルタエレメント内蔵)を通過させて、排気ガスから泡沫及び液体を分離した。
<Separation of foam and liquid from exhaust gas>
The exhaust gas discharged from the catalyst reaction device 1 is guided to the exhaust gas measurement line 7 branching from the flow path switch 5, and the foam liquid separation device 8a (in-line filter, manufactured by Hamlet Co., Ltd., 140 μm) installed on the exhaust gas measurement line 7 Foam and liquid were separated from the exhaust gas by passing through (with built-in filter element).
 <排気ガスからの水蒸気の分離>
 泡沫液体分離装置8aを通過させた排気ガスを、さらに蒸気分離装置8b(気液分離装置、日冷工業社製)を通過させて、排気ガスから蒸気を除去した。
<Separation of water vapor from exhaust gas>
The exhaust gas that had passed through the foam liquid separation device 8a was further passed through the steam separation device 8b (gas-liquid separation device, manufactured by Nichirei Industries Co., Ltd.) to remove the vapor from the exhaust gas.
 <排水量の測定>
 蒸気分離装置8bから20m離れた場所に設置した測定装置9の直前の位置からの排水量を1日2~5回測定した。排気ガス測定ライン7の測定装置9の直前の位置の温度は-10~45℃(外気温)であった。図2に測定結果を示す。
<Measurement of drainage>
The amount of drainage from the position immediately before the measuring device 9 installed at a place 20 m away from the steam separating device 8b was measured 2 to 5 times a day. The temperature at the position immediately before the measuring device 9 of the exhaust gas measuring line 7 was −10 to 45 ° C. (outside air temperature). FIG. 2 shows the measurement results.
 <排気ガスの測定結果>
 排気ガスの測定結果を評価した。排気ガスから泡沫、液体及び蒸気が分離できている場合は、測定装置9による排気ガスの測定結果が良好(○)である。排気ガスから泡沫、液体及び蒸気が分離できていない場合は、測定装置9による排気ガスの測定結果が不良(×)である。排気ガス測定ライン7が閉塞した場合は、排気ガスの測定が不能(-)である。
<Exhaust gas measurement results>
The exhaust gas measurement results were evaluated. When bubbles, liquids and vapors can be separated from the exhaust gas, the measurement result of the exhaust gas by the measuring device 9 is good (◯). If bubbles, liquids and vapors cannot be separated from the exhaust gas, the measurement result of the exhaust gas by the measuring device 9 is defective (x). When the exhaust gas measurement line 7 is blocked, the exhaust gas cannot be measured (−).
 [比較例1]
 泡沫液体分離装置8a及び蒸気分離装置8bを使用しなかった点を除いて、実施例1と同様にして排水量の測定及び排気ガスの測定結果を評価した。図3に排水量の測定結果を示す。
[Comparative Example 1]
Except for the fact that the foam liquid separator 8a and the vapor separator 8b were not used, the displacement measurement and the exhaust gas measurement results were evaluated in the same manner as in Example 1. FIG. 3 shows the measurement result of the amount of drainage.
 [比較例2]
 蒸気分離装置8bを使用しなかった点を除いて、実施例1と同様にして排気ガスの測定結果を評価した。
[Comparative Example 2]
Exhaust gas measurement results were evaluated in the same manner as in Example 1 except that the steam separator 8b was not used.
 [比較例3]
 泡沫液体分離装置8aを使用しなかった点を除いて、実施例1と同様にして排気ガスの測定結果を評価した。
[Comparative Example 3]
The measurement result of the exhaust gas was evaluated in the same manner as in Example 1 except that the foam liquid separating device 8a was not used.
 [比較例4]
 泡沫液体分離装置8aと蒸気分離装置8bの順序を逆に変更した点を除いて、実施例1と同様にして排気ガスの測定結果を評価した。
[Comparative Example 4]
The measurement results of the exhaust gas were evaluated in the same manner as in Example 1 except that the order of the foam liquid separation device 8a and the vapor separation device 8b was changed in reverse.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [結果の説明]
 実施例1では、有機物を含む泡沫及び液体を排気ガスと分離でき、排気ガスの連続測定ができた。これに対して、比較例1では、泡沫及び液体が測定装置に侵入してしまい、排気ガスの連続測定ができなかった。比較例2~4では、有機物を含む泡及び液体の分離が不十分であり、測定結果が得られなかった。このことから、前段として泡沫液体分離装置による泡沫及び液体の分離及び除去を行い、後段として蒸気分離装置による蒸気の分離及び除去を行うことで、測定装置に泡沫及び液体が侵入することがなく、排気ガスの連続的な測定を行えることがわかる。
[Explanation of results]
In Example 1, bubbles and liquids containing organic substances could be separated from the exhaust gas, and the exhaust gas could be continuously measured. On the other hand, in Comparative Example 1, bubbles and liquid invaded the measuring device, and continuous measurement of exhaust gas could not be performed. In Comparative Examples 2 to 4, the separation of bubbles and liquids containing organic substances was insufficient, and measurement results could not be obtained. From this, by separating and removing the foam and liquid by the foam liquid separation device in the first stage and separating and removing the vapor by the vapor separation device in the second stage, the foam and liquid do not enter the measuring device. It can be seen that continuous measurement of exhaust gas can be performed.
 本発明の有機物質製造システムは、触媒反応装置から排出する排気ガスの成分組成を連続的に測定できるので、合成ガスの成分組成の変動に対応した有機物質の生産を可能とする。そのため、エタノール等の有機物質を高効率で製造することができ、合成ガスの利用率を高めることができる。 Since the organic substance production system of the present invention can continuously measure the component composition of the exhaust gas discharged from the catalytic reaction device, it is possible to produce an organic substance corresponding to the fluctuation of the component composition of the synthetic gas. Therefore, an organic substance such as ethanol can be produced with high efficiency, and the utilization rate of synthetic gas can be increased.
 1  触媒反応装置
 2  合成ガス供給ライン
 3  有機物質抜取ライン
 4、6  排気ガス排出ライン
 5  流路切替器
 7  排気ガス測定ライン
 8  分離装置
 8a  泡沫液体分離装置
 8b  蒸気分離装置
 9  測定装置
 10  有機物質製造システム
1 Catalytic reaction device 2 Syngas supply line 3 Organic substance extraction line 4, 6 Exhaust gas discharge line 5 Flow path switch 7 Exhaust gas measurement line 8 Separation device 8a Foam liquid separation device 8b Steam separation device 9 Measurement device 10 Organic substance production system

Claims (4)

  1.  合成ガスから有機物質を生産する有機物質製造システムであって、触媒反応装置と、前記触媒反応装置から排出される排気ガスの成分組成を測定するための測定装置と、前記触媒反応装置の排気ガス出口から前記測定装置の排気ガス入口までの間に位置する分離装置と、を備え、前記分離装置は、前記排気ガスからの泡沫及び液体の分離除去と、前記排気ガスからの蒸気の分離除去とを、同時に又はこの順に行う、有機物質製造システム。 An organic substance production system that produces an organic substance from synthetic gas, the catalytic reaction device, a measuring device for measuring the component composition of the exhaust gas discharged from the catalytic reaction device, and the exhaust gas of the catalytic reaction device. A separation device located between the outlet and the exhaust gas inlet of the measuring device is provided, and the separation device separates and removes bubbles and liquids from the exhaust gas and separates and removes steam from the exhaust gas. At the same time or in this order, an organic substance production system.
  2.  前記合成ガスの構成成分の合成ガスに対する含有量の変動幅が標準的な含有割合に対して±1~30%の範囲内である、請求項1に記載の有機物質製造システム。 The organic substance manufacturing system according to claim 1, wherein the fluctuation range of the content of the constituents of the synthetic gas with respect to the synthetic gas is within the range of ± 1 to 30% with respect to the standard content ratio.
  3.  前記分離装置は、排気ガスに含まれる蒸気の50質量%以上、液体の80質量%以上、及び泡沫の80質量%以上を分離除去する、請求項1又は2に記載の有機物質製造システム。 The organic substance manufacturing system according to claim 1 or 2, wherein the separation device separates and removes 50% by mass or more of vapor contained in exhaust gas, 80% by mass or more of liquid, and 80% by mass or more of foam.
  4.  前記測定装置に供給される前記排気ガスの流量が0.01~1m/hrである、請求項1~3のいずれか1項に記載の有機物質製造システム。 The organic substance production system according to any one of claims 1 to 3, wherein the flow rate of the exhaust gas supplied to the measuring device is 0.01 to 1 m 3 / hr.
PCT/JP2019/039823 2019-03-22 2019-10-09 Organic material production system WO2020194807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019555998A JP6797317B1 (en) 2019-03-22 2019-10-09 Organic substance manufacturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019054060 2019-03-22
JP2019-054060 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020194807A1 true WO2020194807A1 (en) 2020-10-01

Family

ID=72608892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039823 WO2020194807A1 (en) 2019-03-22 2019-10-09 Organic material production system

Country Status (2)

Country Link
JP (1) JP6797317B1 (en)
WO (1) WO2020194807A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235843A (en) * 1988-08-24 1993-08-17 The Dow Chemical Company Method and apparatus for analyzing volatile chemical components in a liquid
JP2010538297A (en) * 2007-09-05 2010-12-09 ジーイー アナリティカル インスツルメンツ, インク. Carbon measurement in aqueous samples using oxidation at high temperature and pressure
WO2016017573A1 (en) * 2014-07-30 2016-02-04 積水化学工業株式会社 Apparatus for producing organic matter from waste and method for producing organic matter from waste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235843A (en) * 1988-08-24 1993-08-17 The Dow Chemical Company Method and apparatus for analyzing volatile chemical components in a liquid
JP2010538297A (en) * 2007-09-05 2010-12-09 ジーイー アナリティカル インスツルメンツ, インク. Carbon measurement in aqueous samples using oxidation at high temperature and pressure
WO2016017573A1 (en) * 2014-07-30 2016-02-04 積水化学工業株式会社 Apparatus for producing organic matter from waste and method for producing organic matter from waste

Also Published As

Publication number Publication date
JPWO2020194807A1 (en) 2021-04-08
JP6797317B1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
Adhikari et al. Technoeconomic analysis of oxygen-nitrogen separation for oxygen enrichment using membranes
JP5791503B2 (en) Solid-to-fuel conversion system and method
US6919488B2 (en) Process for producing saleable liquids from organic material
CN102649683B (en) Method for producing methanol by combined gasification of lurgi gasification wastewater through treatment of coal water slurry furnace
EP2100945A1 (en) Process for removing tar from synthesis gas
EP1223395A1 (en) Integrated process for air separation and energy generation and plant for carrying out the process
WO2017212605A1 (en) Apparatus for producing organic substance from waste, and method for producing organic substance from waste
CN102112391B (en) Process and apparatus for generating and purifying syngas
CN108530251A (en) Device and method for gaseous feed stream of the film infiltration processing comprising methane and carbon dioxide
BR112020024532A2 (en) process for the production of methanol
US20080038185A1 (en) Production of export steam in steam reformers
JP6797317B1 (en) Organic substance manufacturing system
CN1220623C (en) Process for producing synthetic gas
CN102656121A (en) Process for cleaning a process condensate
KR20070005884A (en) Syngas turbine
JP2017503802A (en) Separation of product stream of dimethyl ether reactor
CN114867966A (en) Apparatus and method for utilizing exhaust from a power multi-conversion facility
US20070245630A1 (en) Method for generating carbon monoxide from synthesis gas
CA2721239C (en) Treatment of recycling gas for direct thermochemical conversion of high molecular weight organic substances into low viscosity liquid raw materials, combustibles and fuels
JP2008063392A (en) Method for recovering methane and apparatus for purifying digestive gas
EP3333124B1 (en) Installation and method for the production of synthesis gas
Czernichowski et al. Glidarc-assisted production of synthesis gas from rapeseed oil
EP3517618B1 (en) Method and apparatus for producing valuable substance
US20110220848A1 (en) Gasification of crude glycerol
US20170233662A1 (en) Saturator and method for reusing water from a fischer-tropsch reactor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019555998

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921623

Country of ref document: EP

Kind code of ref document: A1