WO2020194733A1 - 無線ノード、及び、無線通信制御方法 - Google Patents

無線ノード、及び、無線通信制御方法 Download PDF

Info

Publication number
WO2020194733A1
WO2020194733A1 PCT/JP2019/013842 JP2019013842W WO2020194733A1 WO 2020194733 A1 WO2020194733 A1 WO 2020194733A1 JP 2019013842 W JP2019013842 W JP 2019013842W WO 2020194733 A1 WO2020194733 A1 WO 2020194733A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
iab node
parameter
ssb transmission
time interval
Prior art date
Application number
PCT/JP2019/013842
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
大輔 栗田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US17/598,147 priority Critical patent/US20220167290A1/en
Priority to CN201980094791.XA priority patent/CN113632518B/zh
Priority to PCT/JP2019/013842 priority patent/WO2020194733A1/ja
Priority to JP2021508655A priority patent/JP7387716B2/ja
Priority to AU2019436850A priority patent/AU2019436850A1/en
Priority to EP19921721.7A priority patent/EP3952386A4/en
Publication of WO2020194733A1 publication Critical patent/WO2020194733A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • This disclosure relates to a wireless node and a wireless communication control method.
  • LTE Long Term Evolution
  • FAA FutureRadioAccess
  • 5G 5th generationmobilecommunication system
  • 5G + 5th generationmobilecommunication system
  • New-RAT New Radio AccessTechnology
  • NR New Radio
  • IAB Integrated Access and Backhaul
  • BH backhaul
  • An IAB node which is an example of a radio node, forms a radio access link with a user terminal (User Equipment (UE)) and also forms a radio BH link with another IAB node and / or a radio base station.
  • UE User Equipment
  • Synchronization Signal / Physical Broadcast CHannel Block (SS / PBCH Block, SSB) transmission which is an example of a synchronization signal block for wireless nodes.
  • One aspect of the present disclosure is to provide a technique for appropriately setting the transmission of the synchronization signal block for the IAB node.
  • the radio node sets parameters related to the transmission timing of the synchronization signal block transmitted in the second time interval having a different length from the first time interval according to the transmission cycle in the second time interval. It includes a control unit that is set based on a unit, and a transmission unit that transmits the set parameters.
  • FIG. 1 is a diagram showing a configuration example of a wireless communication system according to the present embodiment.
  • the wireless communication system 1 includes a plurality of IAB nodes 10A to 10C which are examples of wireless nodes, and a UE 20 which is an example of a user terminal.
  • IAB nodes 10A to 10C are described without distinction, only the common number among the reference codes may be used as in "IAB node 10".
  • Each of the IAB nodes 10A to 10C is connected to another IAB node 10 by wireless communication.
  • the IAB node 10B connects to the IAB node 10A and the IAB node 10C. Focusing on the relationship between the IAB node 10A and the IAB node 10B, the IAB node 10A is located one upstream from the IAB node 10B. In other words, the IAB node 10B is located one downstream from the IAB node 10A. Therefore, the IAB node 10A may be referred to as the parent IAB node for the IAB node 10B, and the IAB node 10B may be referred to as the child IAB node for the IAB node 10A.
  • downstream is the direction away from the IAB donor
  • upstream is the direction toward the IAB donor.
  • Each of the IAB nodes 10A to 10C forms a cell which is an area where wireless communication is possible. That is, the IAB node 10 has a function as a base station.
  • the UE 20 in the cell can wirelessly connect to the IAB node 10 forming the cell.
  • the IAB node 10A When the IAB node 10A is an IAB donor, the IAB node 10A connects to a communication system such as a core network (CN) through a transmission / reception means such as a fiber BH.
  • the fiber BH is not limited to an optical fiber, and may be any means capable of transmitting and receiving data. Further, the transmission / reception means between the IAB node 10A and the core network or the like may be a large-capacity radio.
  • the number of IAB nodes 10 and the number of UEs 20 included in the wireless communication system 1 are not limited to the example of FIG. For example, the number of parent IAB nodes 10A connected to the IAB node 10B may be two or more. Further, the number of child IAB nodes 10C connected to the IAB node 10B may be two or more. Further, the number of UEs 20 connected to the IAB node 10B may be two or more.
  • L shown in FIG. 1 and its subscripts are as follows.
  • ⁇ L P, DL is, Downlink from the parent IAB node 10A to IAB node 10B; indicating the (DL downlink).
  • -LP , UL indicate Uplink (UL; uplink) from the IAB node 10B to the parent IAB node 10A.
  • ⁇ L C, DL indicates the DL to IAB node 10B child IAB node 10C.
  • ⁇ L C, UL represents a UL to IAB node 10B from the child IAB node 10C.
  • ⁇ L A, DL indicates the DL from IAB node 10B to UE 20.
  • ⁇ L A, UL represents a UL to IAB node 10B from UE 20.
  • LA , DL and / or LA , UL are called access links.
  • LP , DL , LP , UL , LC , DL and / or LC , UL are called BH links.
  • FIG. 2 is a diagram showing a configuration example of an IAB node according to the present embodiment.
  • the IAB node 10 has a control unit 100, a Mobile-Termination (MT) 102, and a Distributed Unit (DU) 103.
  • the MT102 and DU103 may be functional blocks.
  • the DU 103 may have a function corresponding to a base station.
  • the DU 103 may have a function corresponding to an overhanging station in a base station including an overhanging station that processes the wireless portion and an centralized station that performs processing other than the wireless portion.
  • an example of MT102 may have a function corresponding to a terminal.
  • the MT102 of the IAB node 10B controls a BH link (hereinafter referred to as "parent link") with the parent IAB node 10A.
  • the DU 103 of the IAB node 10B controls the BH link with the child IAB node 10C and / or the access link with the UE 20.
  • the BH link with the child IAB node 10C and / or the access link with the UE 20 will be referred to as a “child link”.
  • the control unit 100 controls MT102 and DU103.
  • the operation of the IAB node 10 described later may be realized by the control unit 100 controlling the MT102 and the DU103.
  • the control unit 100 may include a storage unit for storing various types of information.
  • the MT 102 in the IAB node 10B is an example of a receiving unit when receiving a signal from the DU 103 of the IAB node 10A, and is an example of a transmitting unit when transmitting a signal to the DU 103 of the IAB node 10A.
  • the DU 103 in the IAB node 10B is an example of a transmission unit when transmitting a signal to the UE 20 and / or the MT 102 of the IAB node 10C, and the signal is transmitted from the UE 20 and / or the MT 102 of the IAB node 10C.
  • This is an example of a receiving unit for receiving.
  • a half-duplex constraint may be applied between the parent link and the child link.
  • Time Division Multiplexing may be applied to the parent link and the child link.
  • the time resource may be available to either the parent link or the child link.
  • TDM Time Division Multiplexing
  • FDM Frequency Division Multiplexing
  • SDM Space Division Multiplexing
  • MT resource One of the following types is set for the time resource (hereinafter referred to as "MT resource") in the parent link.
  • -MT resources for which the DL type is set (hereinafter referred to as "MT-D") are used as LP and DL .
  • -MT resources for which UL type is set (hereinafter referred to as "MT-U”) are used as LP and UL .
  • -MT resources for which the Flexible (FL) type is set (hereinafter referred to as "MT-F”) are used as LP , DL or LP , UL .
  • the MT resource is read as another expression such as a resource used for communication with the parent IAB node 10A, a resource used for backhaul link communication with the parent IAB node 10A, or a resource used for communication with the serving cell. May be good. Further, the MT resource may be an example of a resource in the first radio section.
  • DU resource One of the following types is set for the time resource (hereinafter referred to as "DU resource") in the child link.
  • DU resource for which the DL type is set (hereinafter referred to as "DU-D”) may be used as an LC , DL or LA , DL .
  • DU-U UL resource for which the UL type is set
  • DU-F ⁇ DU resource FL type is set (hereinafter referred to as "DU-F”) is, L C, DL, L C , UL, L A, DL or L A, may be used as UL.
  • DU-NA Not-Available
  • the DU resource is read as another expression such as a resource used for communication with the child IAB node 10C and / or the UE 20, a resource used for communication with the backhaul link with the child IAB node 10C and / or the access link with the UE 20. May be done. Further, the DU resource may be an example of a resource in the second radio section.
  • any of the following types is set for DU-D, DU-U and DU-F.
  • the DU resource for which the Hard type is set is used for the child link and not for the parent link.
  • the DU resource for which the Hard type is set may be expressed as "DU (H)”.
  • Availability the DU resource for which the Soft type is set can be used for a child link (hereinafter referred to as "Availability") is determined by an explicit and / or implicit instruction from the parent IAB node 10A. Ru.
  • the DU resource for which the Soft type is set may be expressed as "DU (S)".
  • the DL, FL, FL and NA settings, and the Soft and Hard settings in the DU resource may be set to quasi-static.
  • these settings for DU may be set by RRC parameters.
  • RRC is an abbreviation for Radio Resource Control.
  • the RRC parameter may be read as another term such as RRC signaling, RRC message, or RRC setting.
  • these settings for DU may be set by the F1-AP parameter.
  • the F1-AP parameter may be read as another term such as F1-AP signaling or F1-AP message.
  • SSB is an example of the synchronization signal block used for the discovery and measurement of each other's IAB nodes 10, in a framework that enhances the existing SMTC framework in the following points.
  • the SMTC is a configuration for notifying the UE 20 of the measurement cycle and timing of the SSB used by the UE 20 for measurement from the base station.
  • -The maximum number max ( NRX ) of SMTC windows that can be set for the IAB node is at least "3".
  • Each SMTC window is given an independent configuration (eg, SMTC window period, offset and duration).
  • STC SSB Transmission Configuration
  • the details of the SSB transmission configuration for the IAB node have not been examined.
  • the base station notifies the UE 20 of the settings related to the SSB transmission configuration of the serving cell by the following parameters (for example, information element (IE)) in the parameter “ServingCellConfigCommon”.
  • IE information element
  • -Parameter "ssb-periodicityServingCell” indicating the SSB transmission cycle
  • -Parameter "ssb-PositionsInBurst” that indicates the SSB index to be actually transmitted, for example, in a bitmap.
  • -Parameter "absolute Frequency SSB” indicating the SSB frequency position
  • the existing base station gives the UE 20 a parameter indicating the SSB transmission timing (for example, at which half frame the SSB is transmitted) and / or a parameter indicating the SSB's SubCarrier Spacing (SCS). Do not notify. This is because the UE 20 has already detected the SSB of the serving cell before receiving the notification of the SSB transmission configuration described above. That is, the UE 20 can recognize these parameters even if the parameters indicating the SSB transmission timing and / or the SCS of the SSB are not notified.
  • SCS SubCarrier Spacing
  • the base station notifies the UE 20 of the setting for SSB measurement of the serving cell by the following parameters in the parameter "MeasObjectNR".
  • -Parameter "ssbFrequency” indicating the SSB frequency position to be measured
  • -Parameter "ssbSubcarrierSpacing” indicating the SCS of the SSB to be measured
  • -Parameter "smtc1” indicating the setting of the first SMTC window
  • periodicityAndOffset indicating the period and offset (for example, 1 ms particle size) of the first SMTC window.
  • -Parameter “duration” indicating the period of the first SMTC window -Parameter “smtc2" indicating the setting of the second SMTC window -Parameter “pci-List” indicating a list of cell IDs to be measured in the second SMTC window.
  • -Parameter “periodicity” indicating the period of the second SMTC window -Parameter “ssb-ToMeasure” that indicates the SSB index to be measured, for example, in a bitmap.
  • -Parameter "cellsToAddModList” indicating a list of cell IDs to be measured
  • the information for determining how the IAB node 10 performs SSB transmission is insufficient.
  • the above-mentioned parameters related to the SSB transmission configuration of the serving cell lack the parameters indicating the SSB transmission timing and / or the parameters indicating the SCS of the SSB for the IAB node 10.
  • the parameter "periodicityAndOffset" for SSB measurement of the serving cell can specify the measurement cycle of SSB and the measurement start timing of 1 ms particle size.
  • one SSB transmission for the IAB node is closed within one half frame.
  • the SSB transmission timing (for example, offset from the boundary of the half frame) in the half frame is determined by the SSB index.
  • the parameters for SSB measurement of the serving cell for example, SMTC
  • the parameters for SSB measurement of the serving cell are reused as they are in the SSB transmission configuration for the IAB node
  • a problem may occur.
  • the parameter indicating the measurement start timing of the 1 ms particle size is reused as a parameter indicating the SSB transmission timing of the 1 ms particle size in the SSB transmission configuration for the IAB node.
  • a timing different from the half frame boundary for example, 0 ms, 5 ms, 10 ms, ...) Is notified as the SSB transmission timing of 1 ms particle size
  • the SSB transmission is performed at which timing due to the relationship with the SSB index. It becomes unclear whether it will be done.
  • FIG. 3 is a diagram for explaining SMTC.
  • FIG. 3 shows an example when the SSB transmission cycle is 20 ms, the SMTC window period is 2 ms, the SMTC window cycle is 40 ms, and the SMTC window timing offset is 1 ms.
  • the UE 20 measures the SSB during the SMTC window period “2 ms” from the timing offset by 1 ms from the boundary of the half frame.
  • the above SMTC window timing offset is reused as the SSB transmission timing offset in the SSB transmission configuration for the IAB node as it is, the following problem may occur.
  • the SSB transmission timing (for example, offset from the half frame boundary) within the half frame is determined by the SSB index. Therefore, when the SSB transmission timing offset is notified, there are two offsets from the boundary of the half frame, the SSB index and the SSB transmission timing offset. Therefore, it is unclear at what timing the SSB transmission is performed.
  • ⁇ SSB transmission configuration for IAB nodes At least one of the following parameters can be set as the SSB transmission configuration for the IAB node.
  • -Parameter indicating SSB transmission cycle -Parameter indicating SSB frequency position-Parameter indicating SSB index to be transmitted
  • -Parameter indicating SSB transmission timing for example, parameter indicating offset of SSB transmission timing in half frame unit
  • the following parameters and notification method may be reused.
  • the existing parameters “absoluteFrequencySSB”, “ssb-PositionsInBurst”, and “ssbSubcarrierSpacing" may be reused for the parameters indicating the SSB frequency position, the SSB index to be transmitted, and the SCS of the SSB, respectively.
  • the above parameters may be set independently for each SSB transmission configuration.
  • the above parameters can be set independently for the SSB transmission configuration for SSB transmission from the IAB node 10 to the UE 20 and the SSB transmission configuration for SSB transmission from the IAB node 10 to another IAB node 10. Good. This is because the appropriate parameters may differ between the SSB transmission configuration from the IAB node 10 to the UE 20 and the SSB transmission configuration from the IAB node 10 to another IAB node 10.
  • at least one of the above parameters may be a dependency.
  • the SCS of the SSB is one of the SSBs.
  • the setting by the transmission configuration and the other SSB transmission configuration may be omitted.
  • the upper limit of the number of SSB transmission configurations that can be set for the frequency (or the number of carriers) used for SSB transmission for the IAB node may be defined by the specifications of the Third Generation Partnership Project (3GPP). For example, at least one of the following (A1) and (A2) may be specified.
  • (A1) The maximum value of the number of SSB transmission configurations that can be set per the same SSB frequency is set to "2".
  • (A2) The maximum value of the number of SSB transmission configurations that can be set for each CC is set to "2" with respect to the number of Component Carriers (CCs) used by the IAB node 10.
  • FIG. 4 is a diagram showing an example of parameters for collectively notifying the SSB transmission cycle and the SSB transmission timing in the SSB transmission configuration for the IAB node according to the present embodiment.
  • the SSB transmission cycle and the SSB transmission timing for the IAB node may be collectively notified by the parameter “periodicityAndOffset” 300 for collectively notifying the SSB transmission cycle and the SSB transmission timing.
  • the value “sf10” of the parameter 301 indicating the SSB transmission cycle indicates the SSB transmission cycle “10 ms”.
  • “Integer (0.1)” indicates that the parameter 302 indicating the SSB transmission timing can take “0” or "1” as the offset of the SSB transmission timing in half frame units.
  • the SSB indicates that the SSB is transmitted within the 0th half frame of the two half frames existing within 10 ms in a cycle of "10 ms".
  • the values “sf5”, “sf10”, “sf20”, ... Of the parameters 301 indicating the SSB transmission cycle are the parameter values “hf1” and “hf2” indicating the SSB transmission cycle in half frame units. , "Hf4", ... Can be replaced.
  • FIG. 5 is a diagram showing an example of parameters for separately notifying the SSB transmission cycle and the SSB transmission timing in the SSB transmission configuration for the IAB node according to the present embodiment.
  • the parameter “ssb-periodicity” 401 indicating the SSB transmission cycle and the parameter “ssb-offset” 402 indicating the SSB transmission timing may be notified separately.
  • the value “ms5” of the parameter 401 indicating the SSB transmission cycle indicates the SSB transmission cycle “5 ms”.
  • "INTERGER (0.31)” indicates that the parameter 402 indicating the SSB transmission timing can take any one of "0" to "31” as the offset of the SSB transmission timing in half frame units.
  • the value of the parameter 401 indicating the SSB transmission cycle is “ms20” and the value of the parameter 402 indicating the SSB transmission timing is “3”, the following is shown. That is, SSB indicates that the SSB is transmitted in the third half frame counting from 0 among the four half frames existing in 20 ms in the cycle of "20 ms".
  • the SSB transmission cycle for the IAB node may support a value larger than 160 ms. In this case, the range of the offset value of the SSB transmission timing that can be set may be expanded.
  • the relationship with the SSB index becomes clear by making it possible to set the parameter indicating the SSB transmission timing in half-frame units. Therefore, the SSB transmission timing for the IAB node becomes clear.
  • the parameter indicating the SSB transmission timing determines the offset of the SSB transmission in half frame units
  • the SSB index determines the offset of the SSB transmission timing within the determined half frame.
  • the IAB node 10 may assume, for example, the following. That is, it may be assumed that the IAB node 10 is not notified of a parameter value different from the half frame unit as a parameter indicating the SSB transmission timing of 1 ms particle size. Alternatively, the IAB node 10 may be fixed to a half frame (for example, as a half frame boundary) even if a parameter value different from the half frame unit is notified as a parameter indicating the SSB transmission timing of 1 ms particle size. Good.
  • the 5 ms half frame in the above description may indicate a half section of the 10 ms wireless frame.
  • the 5 ms half frame may be composed of five 1 ms subframes.
  • the half frame when the radio frame is the first time interval, the half frame may be a second time interval having a length different from that of the first time interval.
  • the above-mentioned half-frame time length "5 ms" is an example, and the half-frame time length may be determined according to the radio frame time length.
  • the IAB node sets parameters related to the transmission timing of the SSB to be transmitted within the second time interval having a different length from the first time interval according to the transmission cycle, based on the unit of the second time interval. It includes a control unit and a transmission unit that transmits parameters related to the set SSB transmission timing. According to this configuration, since the relationship with the parameter indicating the SSB index is clarified, it is clarified at what timing the SSB transmission is performed.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't.
  • a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, etc. in the embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the IAB node 10 and the UE 20 according to the embodiment of the present disclosure.
  • the above-mentioned IAB node 10 and UE 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the IAB node 10 and the UE 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 For each function of the IAB node 10 and the UE 20, the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • the above-mentioned control unit 100, MT102, DU103, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit of the UE 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the IAB node 10 and UE 20 use hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. It may be carried out by notification information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication).
  • system FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize and extend based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (for example, MME or It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • MME mobile phone
  • S-GW network gateway
  • Information and the like can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, memory), or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • ⁇ Judgment method> The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is implicitly (for example, by not notifying the predetermined information). You may.
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
  • ⁇ Information, signals> The information, signals, etc. described in the present disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station In the present disclosure, “Base Station (BS)", “Wireless Base Station”, “Fixed Station”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)", “"Accesspoint”,”transmissionpoint”,”receptionpoint”,”transmission / reception point”, “cell”, “sector”, “cell group”, “cell group” Terms such as “carrier” and “component carrier” can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)).
  • Communication services can also be provided by (Remote Radio Head).
  • the term "cell” or “sector” is a part or all of the coverage area of at least one of the base station and the base station subsystem that provides the communication service in this coverage. Point to.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be referred to as a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the functions of the above-mentioned base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the user terminal 20 described above.
  • determining and “determining” used in the present disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), confirming (ascertaining) may be regarded as “judgment” or “decision”.
  • judgment” and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal may also be abbreviated as RS (Reference Signal) and may be referred to as a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot Pilot
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS subcarrier spacing
  • TTI Transmission Time Interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI.
  • TTI transmission time interval
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a mini slot, a sub slot, a slot, or the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • BWP Bandwidth Part
  • RBs common resource blocks
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
  • the "maximum transmit power” described in the present disclosure may mean the maximum value of the transmit power, the nominal UE maximum transmit power, or the rated maximum transmit power (the nominal UE maximum transmit power). It may mean the rated UE maximum transmit power).
  • One aspect of the present disclosure is useful for wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線ノードは、送信周期に従って第1の時間区間に含まれる第2の時間区間内において送信する同期信号ブロックの送信タイミングに関するパラメータを、前記第2の時間区間の単位に基づいて設定する制御部と、設定した前記パラメータを送信する送信部と、を備える。

Description

無線ノード、及び、無線通信制御方法
 本開示は、無線ノード、及び、無線通信制御方法に関する。
 Universal Mobile Telecommunication System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(Long Term Evolution(LTE))が仕様化された。また、LTEからの更なる広帯域化および高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-Advanced(LTE-A)、Future Radio Access(FRA)、5th generation mobile communication system(5G)、5G plus(5G+)、New Radio Access Technology(New-RAT)、New Radio(NR)などと呼ばれるシステムがある。
 将来の無線通信システム(例えば、5G)に関して、アクセスリンクとバックホール(Backhaul;BH)リンクを統合するIntegrated Access and Backhaul(IAB)の技術について検討される(非特許文献1)。無線ノードの一例であるIABノードは、ユーザ端末(User Equipment(UE))と、無線のアクセスリンクを形成すると共に、他のIABノード及び/又は無線基地局と無線のBHリンクを形成する。
 無線ノード向けの、同期信号ブロックの一例であるSynchronization Signal/Physical Broadcast CHannel Block(SS/PBCH Block、SSB)送信に関する設定については、検討が不十分である。
 本開示の一態様は、IABノード向けの同期信号ブロックの送信に関する設定を適切に行う技術の提供を目的の1つとする。
 本開示の一態様に係る無線ノードは、送信周期に従って第1の時間区間と長さの異なる第2の時間区間内において送信する同期信号ブロックの送信タイミングに関するパラメータを、前記第2の時間区間の単位に基づいて設定する制御部と、設定した前記パラメータを送信する送信部と、を備える。
 本開示によれば、無線ノード向けの同期信号ブロックの送信に関する設定を適切に行える。
本実施の形態に係る無線通信システムの構成例を示す図である。 本実施の形態に係るIABノードの構成例を示す図である。 SSB based RRM Measurement Timing Configuration(SMTC)を説明するための図である。 本実施の形態に係る、IABノード向けのSSB送信構成において、SSB送信周期及びSSB送信タイミングをまとめて通知するためのパラメータの一例を示す図である。 本実施の形態に係る、IABノード向けのSSB送信構成において、SSB送信周期及びSSB送信タイミングを別に通知するためのパラメータの一例を示す図である。 本開示に係るIABノード及びユーザ端末のハードウェア構成の例を示す図である。
 以下、本開示の実施の形態について、図面を参照して説明する。
 (本実施の形態)
 <システム構成>
 図1は、本実施の形態に係る無線通信システムの構成例を示す図である。
 無線通信システム1は、無線ノードの一例である複数のIABノード10A~10Cと、ユーザ端末の一例であるUE20とを含む。以下、IABノード10A~10Cを区別しないで説明する場合には、「IABノード10」のように、参照符号のうち共通番号のみを使用することがある。
 IABノード10A~10Cは、それぞれ、無線通信によって、他のIABノード10に接続する。図1に示すように、IABノード10Bは、IABノード10A及びIABノード10Cに接続する。IABノード10AとIABノード10Bとの関係に注目すると、IABノード10AはIABノード10Bよりも1つ上流に位置する。別言すると、IABノード10BはIABノード10Aよりも1つ下流に位置する。よって、IABノード10AはIABノード10Bにとっての親IABノード、IABノード10BはIABノード10Aにとっての子IABノードと呼ばれてよい。ここで、「下流」はIABドナーから遠ざかる方向であり、「上流」はIABドナーに近づく方向である。
 IABノード10A~10Cは、それぞれ、無線通信可能なエリアであるセルを形成する。すなわち、IABノード10は、基地局としての機能を有する。セル内のUE20は、当該セルを形成するIABノード10に無線接続できる。
 IABノード10AがIABドナーである場合、IABノード10Aは、ファイバBH等の送受信手段を通じて、コアネットワーク(Core Network(CN))等の通信システムに接続する。なお、ファイバBHは、光ファイバに限らず、データを送受信できる手段であればよい。また、IABノード10Aとコアネットワーク等の間の送受信手段は、大容量の無線を用いたものであってもよい。なお、無線通信システム1に含まれるIABノード10の数及びUE20の数は、図1の例に限られない。例えば、IABノード10Bに接続される親IABノード10Aは、2以上であってもよい。また、IABノード10Bに接続される子IABノード10Cは、2以上であってもよい。また、IABノード10Bに接続されるUE20は、2以上であってもよい。
 図1に示すLとその添え字は以下を示す。
 ・LP,DLは、親IABノード10AからIABノード10BへのDownlink(DL;下りリンク)を示す。
 ・LP,ULは、IABノード10Bから親IABノード10AへのUplink(UL;上りリンク)を示す。
 ・LC,DLは、IABノード10Bから子IABノード10CへのDLを示す。
 ・LC,ULは、子IABノード10CからIABノード10BへのULを示す。
 ・LA,DLは、IABノード10BからUE20へのDLを示す。
 ・LA,ULは、UE20からIABノード10BへのULを示す。
 LA,DL及び/又はLA,ULは、アクセスリンクと呼ばれる。LP,DL、LP,UL、LC,DL及び/又はLC,ULは、BHリンクと呼ばれる。
 <IABノード>
 図2は、本実施の形態に係るIABノードの構成例を示す図である。
 図2に示すように、IABノード10は、制御部100と、Mobile-Termination(MT)102と、Distributed Unit(DU)103とを有する。なお、MT102及びDU103は、機能ブロックであってよい。以下、MT102の機能を表現する場合、MTのように参照符号を付さずに表現し、DU103の機能を表現する場合、DUのように参照符号を付さずに表現する場合がある。また、DU103は、基地局に相当する機能を有してよい。また、DU103は、無線部分の処理を行う張出局と、無線部分以外の処理を行う集約局とを備える基地局における、張出局に相当する機能を有してもよい。また、MT102の一例は、端末に相当する機能を有してよい。
 IABノード10BのMT102は、親IABノード10AとのBHリンク(以下「親リンク」という)を制御する。IABノード10BのDU103は、子IABノード10CとのBHリンク、及び/又は、UE20とのアクセスリンクを制御する。以下、子IABノード10CとのBHリンク及び/又はUE20とのアクセスリンクを、「子リンク」という。
 制御部100は、MT102及びDU103を制御する。なお、後述するIABノード10の動作は、当該制御部100がMT102及びDU103を制御することによって実現されてよい。また、制御部100は、各種情報を記憶するための記憶部を備えてもよい。また、IABノード10BにおけるMT102は、IABノード10AのDU103からの信号を受信する場合の受信部の一例であり、IABノード10AのDU103に対して信号を送信する場合の送信部の一例である。また、IABノード10BにおけるDU103は、UE20、及び/又は、IABノード10CのMT102に対して信号を送信する場合の送信部の一例であり、UE20、及び/又は、IABノード10CのMT102から信号を受信する場合の受信部の一例である。
 親リンクと子リンクとの間には、半二重制約(half-duplex constraint)が適用されてよい。半二重制約を実現するために、親リンクと子リンクには、Time Division Multiplexing(TDM)が適用されてよい。この場合、時間リソースは、親リンクと子リンクのうちの何れか一方が利用できてよい。なお、TDMの適用は一例であり、例えば、Frequency Division Multiplexing(FDM)、又は、Space Division Multiplexing(SDM)が適用されてもよい。
 親リンクにおける時間リソース(以下「MTリソース」という)には、次の何れかのタイプが設定される。
 ・DLタイプが設定されたMTリソース(以下「MT-D」という)は、LP,DLとして利用される。
 ・ULタイプが設定されたMTリソース(以下「MT-U」という)は、LP,ULとして利用される。
 ・Flexible(FL)タイプが設定されたMTリソース(以下「MT-F」という)は、LP,DL又はLP,ULとして利用される。
 MTリソースは、親IABノード10Aとの通信に用いられるリソース、親IABノード10Aとのバックホールリンクの通信に用いられるリソース、或いは、サービングセルとの通信に用いられるリソースといった他の表現に読み替えられてもよい。また、MTリソースは、第1の無線区間のリソースの一例であってもよい。
 子リンクにおける時間リソース(以下「DUリソース」という)には、次の何れかのタイプが設定される。
 ・DLタイプが設定されたDUリソース(以下「DU-D」という)は、LC,DL又はLA,DLとして利用されてよい。
 ・ULタイプが設定されたDUリソース(以下「DU-U」という)は、LC,UL又はLA,ULとして利用されてよい。
 ・FLタイプが設定されたDUリソース(以下「DU-F」という)は、LC,DL、LC,UL、LA,DL又はLA,ULとして利用されてよい。
 ・Not-Available(NA)タイプが設定されたDUリソース(以下「DU-NA」という)は、子リンクには利用されない。
 DUリソースは、子IABノード10C及び/又はUE20との通信に用いられるリソース、子IABノード10Cとのバックホールリンク及び/又はUE20とのアクセスリンクとの通信に用いられるリソースといった他の表現に読み替えられてもよい。また、DUリソースは、第2の無線区間のリソースの一例であってもよい。
 さらに、DU-D、DU-U及びDU-Fには、次の何れかのタイプが設定される。
 ・Hardタイプが設定されたDUリソースは、子リンクに利用され、親リンクに利用されない。以下、Hardタイプが設定されたDUリソースを「DU(H)」と表現する場合がある。
 ・Softタイプが設定されたDUリソースは、親IABノード10Aからの明示的及び/又は暗示的な指示によって、子リンクに利用できるかどうか(以下「利用可能性(Availability)」という)が決定される。以下、Softタイプが設定されたDUリソースを「DU(S)」と表現する場合がある。
 なお、DUリソースにおける、DL、FL、FL及びNAの設定、並びに、Soft及びHardの設定については、準静的(Semi-static)に設定されてもよい。例えば、これらDU向けの設定は、RRCパラメータによって設定されてもよい。RRCは、Radio Resource Controlの略である。なお、RRCパラメータは、RRCシグナリング、RRCメッセージ、又はRRC設定といった他の用語に読み替えられてよい。また、これらDU向けの設定は、F1-APパラメータによって設定されてもよい。なお、F1-APパラメータは、F1-APシグナリング、又はF1-APメッセージといった他の用語に読み替えられてよい。
 <検討>
 互いのIABノード10の発見及び測定のために使用される同期信号ブロックの一例であるSSBを、既存のSMTCフレームワークを次の点にて強化したフレームワークにて定義することが検討される。なお、SMTCは、UE20が測定に用いるSSBの測定周期及びタイミングを、基地局からUE20へ通知するための構成である。
 ・IABノード向けに設定できるSMTCウィンドウの最大数max(NRX)を、少なくとも「3」とする。
 ・各SMTCウィンドウには、独立したコンフィグレーション(例えばSMTCウィンドウの周期、オフセット及び期間)が与えられる。
 ・IABノード向けに、SSB送信に関する構成を示すSSB送信構成(SSB Transmission Configuration(STC))の導入が検討される。しかし、IABノード向けのSSB送信構成の詳細について未検討である。
 基地局は、UE20に対して、サービングセルのSSB送信構成に関する設定を、パラメータ「ServingCellConfigCommon」内の以下のパラメータ(例えば情報要素(Information Element(IE)))にて通知する。
 ・SSB送信周期を示すパラメータ「ssb-periodicityServingCell」
 ・実際に送信するSSBインデックスを例えばビットマップにて示すパラメータ「ssb-PositionsInBurst」
 ・SSB周波数位置を示すパラメータ「absoluteFrequencySSB」
 上記の通り、既存の基地局は、UE20に対して、SSB送信タイミングを示すパラメータ(例えば何れのハーフフレームにてSSBを送信するか)、及び/又は、SSBのSubCarrier Spacing(SCS)を示すパラメータを通知しない。なぜなら、UE20は、上記のSSB送信構成の通知を受信する前に、サービングセルのSSBを検出済みであるためである。つまり、UE20は、SSB送信タイミング及び/又はSSBのSCSを示すパラメータが通知されなくても、これらのパラメータを認識できるためである。
 また、基地局は、UE20に対して、サービングセルのSSB測定用の設定を、パラメータ「MeasObjectNR」内の以下のパラメータにて通知する。
 ・測定対象のSSB周波数位置を示すパラメータ「ssbFrequency」
 ・測定対象のSSBのSCSを示すパラメータ「ssbSubcarrierSpacing」
 ・1つ目のSMTCウィンドウの設定を示すパラメータ「smtc1」
  ・1つ目のSMTCウィンドウの周期及びオフセット(例えば1ms粒度)を示すパラメータ「periodicityAndOffset」
  ・1つ目のSMTCウィンドウ期間を示すパラメータ「duration」
 ・2つ目のSMTCウィンドウの設定を示すパラメータ「smtc2」
  ・2つ目のSMTCウィンドウにて測定対象とするセルIDのリストを示すパラメータ「pci-List」
  ・2つ目のSMTCウィンドウの周期を示すパラメータ「periodicity」
 ・測定対象のSSBインデックスを例えばビットマップにて示すパラメータ「ssb-ToMeasure」
 ・測定対象のセルIDのリストを示すパラメータ「cellsToAddModList」
 しかし、上記の通り、IABノード向けのSSB送信構成の詳細については、未検討である。
 例えば、上述したサービングセルのSSB送信構成に関するパラメータを、IABノード向けのSSB送信構成に再利用する場合、IABノード10がどのようにSSB送信を行うかを決定するための情報が不十分である。例えば、上述したサービングセルのSSB送信構成に関するパラメータは、IABノード10にとって、SSB送信タイミングを示すパラメータ及び/又はSSBのSCSを示すパラメータが不足している。
 また、例えば、上述したサービングセルのSSB測定用のパラメータを、IABノード向けのSSB送信構成に再利用する場合、以下に述べるように、一部のパラメータが、IABノード向けのSSB送信構成において適切ではない。
 例えば、サービングセルのSSB測定用のパラメータ「periodicityAndOffset」は、SSBの測定周期及び1ms粒度の測定開始タイミングを指定できる。しかし、IABノード向けの1つのSSB送信は、1つのハーフフレーム内にて閉じている。また、ハーフフレーム内におけるSSB送信タイミング(例えばハーフフレームの境界からのオフセット)は、SSBインデックスによって決まる。
 そのため、例えば、サービングセルのSSB測定用のパラメータ(例えばSMTC)を、そのままIABノード向けのSSB送信構成に再利用する場合、問題が生じ得る。例えば、仮に、上記の1ms粒度の測定開始タイミングを示すパラメータを、IABノード向けのSSB送信構成において、1ms粒度のSSB送信タイミングを示すパラメータとして再利用する。この場合、1ms粒度のSSB送信タイミングとして、ハーフフレームの境界(例えば0ms、5ms、10ms、…)とは異なるタイミングが通知された場合、SSBインデックスとの関係から、どのタイミングにてSSB送信が行われるのかが不明確となる。
 図3を参照してさらに説明する。図3は、SMTCを説明するための図である。図3は、SSB送信周期が20ms、SMTCウィンドウ期間が2ms、SMTCウィンドウ周期が40ms、SMTCウィンドウタイミングオフセットが1msの場合の例を示す。
 図3に示すように、SMTCウィンドウタイミングオフセットとして1msが通知された場合、UE20は、ハーフフレームの境界から1msオフセットしたタイミングからSMTCウィンドウ期間「2ms」の間、SSBを測定する。
 これに対して、仮に、上記のSMTCウィンドウタイミングオフセットを、そのままIABノード向けのSSB送信構成において、SSB送信タイミングオフセットとして再利用する場合、次の問題が生じ得る。上記のとおり、ハーフフレーム内におけるSSB送信タイミング(例えばハーフフレーム境界からのオフセット)は、SSBインデックスによって決まる。よって、SSB送信タイミングオフセットが通知された場合、ハーフフレームの境界からのオフセットとして、SSBインデックスとSSB送信タイミングオフセットとの2つが存在してしまう。よって、どのタイミングにてSSB送信が行われるのかが不明確となる。
 そこで、以下では、IABノード向けのSSB送信構成の設定を適切に行う方法について説明する。
 <IABノード向けSSB送信構成>
 IABノード向けSSB送信構成として、以下のうちの少なくとも1つのパラメータを設定可能とする。
 ・SSB送信周期を示すパラメータ
 ・SSB周波数位置を示すパラメータ
 ・送信するSSBインデックスを示すパラメータ
 ・SSB送信タイミングを示すパラメータ(例えば、ハーフフレーム単位のSSB送信タイミングのオフセットを示すパラメータ)
 ・SSBのSCSを示すパラメータ
 上記のSSB周波数位置、送信するSSBインデックス、及び、SSBのSCSを示すパラメータと、当該パラメータの通知方法(例えばシグナリング構成)については、次のパラメータ及び通知方法を再利用してよい。例えば、SSB周波数位置、送信するSSBインデックス、及び、SSBのSCSを示すパラメータに対して、それぞれ、既存のパラメータ「absoluteFrequencySSB」、「ssb-PositionsInBurst」、及び、「ssbSubcarrierSpacing」を再利用してよい。
 IABノード10に、IABノード向けの複数のSSB送信構成を設定する場合、上記のパラメータは、SSB送信構成毎に独立に設定可能であってよい。例えば、IABノード10からUE20へのSSB送信に関するSSB送信構成と、IABノード10から他IABノード10へのSSB送信に関するSSB送信構成と、に対して、上記のパラメータを独立に設定可能であってよい。IABノード10からUE20へのSSB送信構成と、IABノード10から他のIABノード10へのSSB送信構成とでは、適切なパラメータが異なり得るからである。なお、複数のSSB送信構成において、上記のパラメータの少なくとも1つが依存関係であってもよい。例えば、IABノード10からUE20へのSSB送信構成と、IABノード10から他のIABノード10へのSSB送信構成とにおいて、SSB周波数位置が共通である場合、SSBのSCSは、何れか一方のSSB送信構成に設定され、他方のSSB送信構成による設定は省略されてもよい。
 また、IABノード向けのSSB送信に用いられる周波数(又はキャリア数)に対して設定可能なSSB送信構成の数の上限が、Third Generation Partnership Project(3GPP)の仕様によって規定されてよい。例えば、次の(A1)及び(A2)のうちの少なくとも1つが規定されてよい。
 (A1)同一SSB周波数当たりに設定可能なSSB送信構成の数の最大値を「2」とする。
 (A2)IABノード10が用いるComponent Carrier(CC)数に対して、各CC当たりに設定可能なSSB送信構成の数の最大値を「2」とする。
 なお、(A1)及び(A2)に示した最大値「2」は一例であり、当該最大値は2以上のどのような値であってもよい。
 <SSB送信周期及びSSB送信タイミングを示すパラメータの詳細>
 次に、上記のIABノード向けのSSB送信構成における、SSB送信周期及びSSB送信タイミングを示すパラメータについてさらに説明する。
 図4は、本実施の形態に係る、IABノード向けのSSB送信構成において、SSB送信周期及びSSB送信タイミングをまとめて通知するためのパラメータの一例を示す図である。
 IABノード向けのSSB送信周期及びSSB送信タイミングは、図4に示すように、SSB送信周期及びSSB送信タイミングをまとめて通知するためのパラメータ「periodicityAndOffset」300によって、まとめて通知されてよい。
 図4において、SSB送信周期を示すパラメータ301の値「sf10」は、SSB送信周期「10ms」を示す。また、「INTEGER(0..1)」は、SSB送信タイミングを示すパラメータ302が、ハーフフレーム単位のSSB送信タイミングのオフセットとして、「0」又は「1」を採り得ることを示す。例えば、SSB送信周期を示すパラメータ301の値「sf10」に、SSB送信タイミングを示すパラメータ302の値「0」が対応付けられる場合、次を示す。すなわち、SSBは、「10ms」の周期にて、10ms内に2つ存在するハーフフレームのうち、0番目のハーフフレーム内にて送信されることを示す。
 なお、図4において、「sf5」に対して「NULL」が対応付けられている理由は、SSB送信周期「5ms」の場合、各ハーフフレーム内にてSSBが送信され、ハーフフレーム単位のオフセットの設定を要しないためである。
 また、図4における、SSB送信周期を示すパラメータ301の値「sf5」、「sf10」、「sf20」、…は、ハーフフレーム単位にてSSB送信周期を示すパラメータの値「hf1」、「hf2」、「hf4」、…に置き換え可能である。
 図5は、本実施の形態に係る、IABノード向けのSSB送信構成において、SSB送信周期及びSSB送信タイミングを別に通知するためのパラメータの一例を示す図である。
 図5に示すように、SSB送信周期を示すパラメータ「ssb-periodicity」401と、SSB送信タイミングを示すパラメータ「ssb-offset」402とは、別に通知されてよい。
 図5において、SSB送信周期を示すパラメータ401の値「ms5」は、SSB送信周期「5ms」を示す。また、「INTEGER(0..31)」は、SSB送信タイミングを示すパラメータ402が、ハーフフレーム単位のSSB送信タイミングのオフセットとして、「0」から「31」の何れかを採り得ることを示す。例えば、SSB送信周期を示すパラメータ401の値が「ms20」、SSB送信タイミングを示すパラメータ402の値が「3」の場合、次を示す。すなわち、SSBは、「20ms」の周期にて、20ms内に4つ存在するハーフフレームのうち、0から数えて3番目のハーフフレーム内にて送信されることを示す。
 なお、IABノード向けのSSB送信周期は、160msよりも大きい値をサポートしてよい。この場合、設定可能なSSB送信タイミングのオフセットの値の範囲も広げられてよい。
 図4又は図5に示すように、SSB送信タイミングを示すパラメータを、ハーフフレーム単位にて設定可能とすることにより、SSBインデックスとの関係が明確になる。よって、IABノード向けのSSB送信タイミングが明確となる。例えば、SSB送信タイミングを示すパラメータによって、SSB送信が行われるハーフフレーム単位のオフセットが決定され、SSBインデックスによって、決定されたハーフフレーム内におけるSSB送信タイミングのオフセットが決定される。
 なお、上記のハーフフレーム単位のSSB送信タイミングを示すパラメータに代えて、1ms粒度のSSB送信タイミングを示すパラメータを適用する場合、IABノード10は、例えば、次を想定してよい。すなわち、IABノード10は、1ms粒度のSSB送信タイミングを示すパラメータとして、ハーフフレーム単位とは異なるパラメータ値は通知されないと想定してよい。或いは、IABノード10は、1ms粒度のSSB送信タイミングを示すパラメータとして、ハーフフレーム単位とは異なるパラメータ値が通知されたとしても、ハーフフレームに固定して(例えばハーフフレーム境界として)想定してもよい。
 なお、上記の説明における5msのハーフフレームは、10msの無線フレームの半分の区間を示してよい。また、5msのハーフフレームは、1msのサブフレームの5つによって構成されてよい。例えば、無線フレームを第1の時間区間とした場合、ハーフフレームは第1の時間区間と長さの異なる第2の時間区間であってよい。また、上記のハーフフレームの時間長「5ms」は一例であり、ハーフフレームの時間長は、無線フレームの時間長に応じて決定されてよい。
 <本開示のまとめ>
 本開示では、IABノードは、送信周期に従って第1の時間区間と長さの異なる第2の時間区間内において送信するSSBの送信タイミングに関するパラメータを、第2の時間区間の単位に基づいて設定する制御部と、その設定したSSBの送信タイミングに関するパラメータを送信する送信部と、を備える。当該構成によれば、SSBインデックスを示すパラメータとの関係が明確になるため、どのタイミングにてSSB送信が行われるのかが明確となる。
 <ハードウェア構成等>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図6は、本開示の一実施の形態に係るIABノード10及びUE20のハードウェア構成の一例を示す図である。上述のIABノード10及びUE20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。IABノード10及びUE20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 IABノード10及びUE20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部100、MT102、及びDU103などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、UE20の制御部は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、IABノード10及びUE20が備えるアンテナなどは、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、IABノード10及びUE20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 <情報の通知、シグナリング>
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 <適用システム>
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 <処理手順等>
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 <基地局の動作>
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 <入出力の方向>
 情報等(※「情報、信号」の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 <入出力された情報等の扱い>
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 <判定方法>
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 <態様のバリエーション等>
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 <ソフトウェア>
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 <情報、信号>
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 <「システム」、「ネットワーク」>
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 <パラメータ、チャネルの名称>
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 <基地局>
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 <移動局>
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 <基地局/移動局>
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局が有する構成としてもよい。
 <用語の意味、解釈>
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 <参照信号>
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 <「に基づいて」の意味>
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 <「第1の」、「第2の」>
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 <「手段」>
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 <オープン形式>
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 <TTI等の時間単位、RBなどの周波数単位、無線フレーム構成>
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 <最大送信電力>
 本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 <冠詞>
 本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 <「異なる」>
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示の一態様は、無線通信システムに有用である。
 10,10A,10B,10C IABノード
 20 UE、ユーザ端末
 100 制御部
 102 MT
 103 DU

Claims (6)

  1.  送信周期に従って第1の時間区間と長さの異なる第2の時間区間内において送信する同期信号ブロックの送信タイミングに関するパラメータを、前記第2の時間区間の単位に基づいて設定する制御部と、
     設定した前記パラメータを送信する送信部と、
     を備えた、無線ノード。
  2.  前記送信部は、第1の前記パラメータと、前記送信周期に関する第2のパラメータと、を含む信号を送信する、
     請求項1に記載の無線ノード。
  3.  前記送信部は、第1の前記パラメータと、前記送信周期に関する第2のパラメータ、送信する前記同期信号ブロックのインデックスに関する第3のパラメータ、前記同期信号ブロックの送信に用いる周波数に関する第4のパラメータ、及び、前記同期信号ブロックのサブキャリア間隔に関する第5のパラメータのうちの少なくとも1つと、を含む信号を送信する、
     請求項1に記載の無線ノード。
  4.  前記制御部は、端末向けの前記信号と、他の無線ノード向けの前記信号と、を個別に設定する、
     請求項3に記載の無線ノード。
  5.  前記第4のパラメータには、1つの周波数当たりに設定可能な数が規定される、
     請求項3に記載の無線ノード。
  6.  無線ノードが、
     送信周期に従って第1の時間区間と長さの異なる第2の時間区間内において送信する同期信号ブロックの送信タイミングに関するパラメータを、前記第2の時間区間の単位に基づいて設定し、
     設定した前記パラメータを送信する、
     無線通信制御方法。
PCT/JP2019/013842 2019-03-28 2019-03-28 無線ノード、及び、無線通信制御方法 WO2020194733A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/598,147 US20220167290A1 (en) 2019-03-28 2019-03-28 Radio node and radio communication control method
CN201980094791.XA CN113632518B (zh) 2019-03-28 2019-03-28 无线节点以及无线通信控制方法
PCT/JP2019/013842 WO2020194733A1 (ja) 2019-03-28 2019-03-28 無線ノード、及び、無線通信制御方法
JP2021508655A JP7387716B2 (ja) 2019-03-28 2019-03-28 Iabノード、及び、無線通信方法
AU2019436850A AU2019436850A1 (en) 2019-03-28 2019-03-28 Radio Node and Radio Communication Control Method
EP19921721.7A EP3952386A4 (en) 2019-03-28 2019-03-28 WIRELESS NODES AND CONTROL METHODS FOR WIRELESS COMMUNICATIONS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013842 WO2020194733A1 (ja) 2019-03-28 2019-03-28 無線ノード、及び、無線通信制御方法

Publications (1)

Publication Number Publication Date
WO2020194733A1 true WO2020194733A1 (ja) 2020-10-01

Family

ID=72611756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013842 WO2020194733A1 (ja) 2019-03-28 2019-03-28 無線ノード、及び、無線通信制御方法

Country Status (6)

Country Link
US (1) US20220167290A1 (ja)
EP (1) EP3952386A4 (ja)
JP (1) JP7387716B2 (ja)
CN (1) CN113632518B (ja)
AU (1) AU2019436850A1 (ja)
WO (1) WO2020194733A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022527483A (ja) * 2019-03-29 2022-06-02 テレフオンアクチーボラゲット エルエム エリクソン(パブル) サービングセルディスカバリバースト送信(dbt)ウィンドウにおける送信のハンドリング
US11785567B2 (en) * 2020-04-30 2023-10-10 Qualcomm Incorporated Method and apparatus for determining search window and SSB bitmap
US11824817B2 (en) * 2020-05-13 2023-11-21 Qualcomm Incorporated Cross-link interference signaling for integrated access and backhaul

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3372034T3 (da) * 2015-11-03 2020-12-21 Ericsson Telefon Ab L M Fremgangsmåder og indretning til planlægning i uplink
WO2017135026A1 (ja) * 2016-02-03 2017-08-10 ソニー株式会社 無線通信装置、通信方法、コンピュータプログラム及び無線通信システム
JP6325597B2 (ja) * 2016-05-10 2018-05-16 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US10420088B2 (en) * 2016-06-06 2019-09-17 Qualcomm Incorporated Downlink slot structure, channel placement, and processing timeline options
WO2018043560A1 (ja) * 2016-08-31 2018-03-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2018084208A1 (ja) * 2016-11-02 2018-05-11 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10849106B2 (en) * 2017-08-10 2020-11-24 Qualcomm Incorporated Delivery of system information
GB2580414A (en) * 2019-01-11 2020-07-22 Samsung Electronics Co Ltd Improvements in and relating to integrated access and backhaul
US10834773B2 (en) * 2018-09-28 2020-11-10 At&T Intellectual Property I, L.P. On-demand backhaul link management measurements for integrated access backhaul for 5G or other next generation network
US11997620B2 (en) * 2018-10-31 2024-05-28 Apple Inc. Off-raster SSB design in IAB networks
WO2020034432A1 (en) * 2018-11-02 2020-02-20 Zte Corporation Time domain mapping of synchronization signal blocks
US20220061010A1 (en) * 2018-12-20 2022-02-24 Ntt Docomo, Inc. Radio node and radio communication method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Study on Integrated Access and Backhaul (Release 16", 3GPP TR 38.874, December 2018 (2018-12-01)
NTT DOCOMO; INC: "Extensions of SSBs for inter-IAB-node discovery and measurements", 3GPP TSG RAN WG1 #96 R1-1902794, 25 February 2019 (2019-02-25), XP051600489 *
See also references of EP3952386A4
ZTE; SANECHIPS: "Discussion of SSB for inter-IAB-node discovery and measurements", 3GPP TSG RAN WG1 MEETING #96 R1-1902197, 25 February 2019 (2019-02-25), XP051599892 *

Also Published As

Publication number Publication date
EP3952386A1 (en) 2022-02-09
JP7387716B2 (ja) 2023-11-28
CN113632518A (zh) 2021-11-09
AU2019436850A1 (en) 2021-10-28
US20220167290A1 (en) 2022-05-26
JPWO2020194733A1 (ja) 2020-10-01
EP3952386A4 (en) 2022-11-02
CN113632518B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2020095459A1 (ja) 無線ノード、及び、無線通信方法
JP7084497B2 (ja) 無線ノード、及び、無線通信方法
WO2020166039A1 (ja) 無線ノード、及び、無線通信制御方法
US20220166567A1 (en) Radio communication node and radio communication method
WO2020129228A1 (ja) 無線ノード、及び、無線通信方法
WO2020100373A1 (ja) 無線ノード、及び、リソース制御方法
WO2020194733A1 (ja) 無線ノード、及び、無線通信制御方法
WO2020250395A1 (ja) 無線通信ノード及び無線通信方法
WO2021149110A1 (ja) 端末及び通信方法
JP7163419B2 (ja) 無線ノード、及び、無線通信制御方法
JP7122400B2 (ja) 無線ノード、及び、無線通信制御方法
WO2020230854A1 (ja) 無線ノード
EP4175381A1 (en) Wireless communication node
WO2022029983A1 (ja) 端末、基地局装置、及び受信方法
WO2021140677A1 (ja) 端末及び通信方法
WO2021130942A1 (ja) 無線通信ノード
EP4192068A1 (en) Wireless communication node
EP4322652A1 (en) Radio communication node and radio communication method
WO2022153507A1 (ja) 無線通信ノード及び無線通信方法
WO2022003834A1 (ja) 無線通信ノード
US20230309154A1 (en) Radio communication node
WO2021161480A1 (ja) 端末および通信方法
WO2022024314A1 (ja) 無線通信ノード
WO2022153512A1 (ja) 無線通信ノード
EP4102909A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019436850

Country of ref document: AU

Date of ref document: 20190328

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019921721

Country of ref document: EP

Effective date: 20211028