WO2020194684A1 - Battery module, battery pack, and vehicle - Google Patents

Battery module, battery pack, and vehicle Download PDF

Info

Publication number
WO2020194684A1
WO2020194684A1 PCT/JP2019/013679 JP2019013679W WO2020194684A1 WO 2020194684 A1 WO2020194684 A1 WO 2020194684A1 JP 2019013679 W JP2019013679 W JP 2019013679W WO 2020194684 A1 WO2020194684 A1 WO 2020194684A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
batteries
battery module
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2019/013679
Other languages
French (fr)
Japanese (ja)
Inventor
黒川 健也
敦美 近藤
怜 和田
辰己 松尾
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2021508615A priority Critical patent/JP7124209B2/en
Priority to CN201980079015.2A priority patent/CN113169410A/en
Priority to PCT/JP2019/013679 priority patent/WO2020194684A1/en
Publication of WO2020194684A1 publication Critical patent/WO2020194684A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs

Definitions

  • Embodiments of the present invention relate to battery modules, battery packs and vehicles.
  • a battery such as a secondary battery includes an electrode group including a positive electrode and a negative electrode, and an exterior portion in which an internal cavity for accommodating the electrode group is formed.
  • Some batteries have an exterior portion formed of a metal such as stainless steel, and an exterior portion formed of two exterior members, a first exterior member and a second exterior member.
  • the first exterior member is formed in the shape of a bottomed container having a bottom wall and a peripheral wall, and the peripheral wall surrounds the outer peripheral side of the internal cavity.
  • a flange is formed on the first exterior member, and the flange projects from the end portion of the peripheral wall opposite to the bottom wall to the outer peripheral side.
  • the second exterior member faces the flange from the side opposite to the bottom wall and is welded to the flange.
  • the height dimension between the bottom wall and the second exterior member intersects the height direction in the vertical direction, and the height direction and It is smaller than each of the horizontal dimensions that intersect with the vertical direction, and the exterior portion is formed in a flat shape.
  • a battery module there is a battery module provided with a plurality of batteries having a flat outer portion having a small dimension in the height direction.
  • a plurality of batteries are electrically connected via a bus bar or the like.
  • it is required that the heat generated in each of the batteries is appropriately dissipated. Further, it is required to reduce the volume of the entire battery module and secure a high volume energy density of the battery module.
  • the problem to be solved by the present invention is to provide a battery module in which heat generated in each battery is appropriately dissipated and a high volumetric energy density is secured, a battery pack including the battery module, and the battery pack.
  • the purpose is to provide a vehicle to be equipped.
  • the battery module includes a battery array and a base plate.
  • the battery array includes a plurality of batteries arranged in the arrangement direction, and the battery array is installed on the installation surface of the base plate.
  • Each of the plurality of batteries includes an electrode group including a positive electrode and a negative electrode, and an exterior portion formed of metal and defining an internal cavity in which the electrode group is housed.
  • Each exterior portion of the plurality of batteries includes a first exterior member and a second exterior member, and the first exterior member includes a bottom wall, a peripheral wall surrounding the outer peripheral side of the internal cavity, and a bottom wall in the peripheral wall. Includes a flange that projects from the opposite end to the outer peripheral side.
  • the second exterior member is attached to the flange from the side opposite to the bottom wall in the height direction.
  • the dimensions in the height direction are smaller than the dimensions in the vertical direction intersecting the height directions, and the dimensions in the vertical direction are higher. It is smaller than the dimensions in the horizontal direction that intersect both the directional and vertical directions.
  • Each of the plurality of batteries is arranged so that the vertical direction is along the arrangement direction.
  • the plurality of batteries include a first battery in which the bottom wall faces the installation surface of the base plate and a second battery in which the second exterior member faces the installation surface of the base plate. The first battery and the second battery are arranged next to each other.
  • a battery pack including the above-mentioned battery module is provided.
  • a vehicle equipped with the above-mentioned battery pack is provided.
  • FIG. 1 is a perspective view schematically showing an example of a battery according to an embodiment.
  • FIG. 2 is a perspective view schematically showing the battery of FIG. 1 disassembled for each member.
  • FIG. 3 is a schematic view showing the configuration of the electrode group of the battery of FIG.
  • FIG. 4 is a schematic view showing an electrical connection configuration between an electrode group and one of a pair of electrode terminals in the battery of FIG.
  • FIG. 5 is a perspective view schematically showing an example of the battery module according to the embodiment, omitting the cover.
  • FIG. 6 is a perspective view schematically showing the battery module of FIG. 5 in a state of being viewed from a direction different from that of FIG.
  • FIG. 7 is a perspective view schematically showing the battery module of FIG.
  • FIG. 8 is a perspective view schematically showing two adjacent batteries in the battery array of the battery module of FIG.
  • FIG. 9 is a schematic view showing two adjacent batteries in the battery array of the battery module of FIG. 5 as viewed from one side in the second direction.
  • FIG. 10 is a perspective view schematically showing two adjacent batteries in the battery array of the battery module of FIG. 5 in a state where the two batteries and the insulating member between the two batteries are separated from each other. ..
  • FIG. 11 is a perspective view schematically showing a single insulating member provided in the battery array of the battery module of FIG.
  • FIG. 12 is a schematic view showing a structure for attaching an insulating member to a base plate in the battery module of FIG. FIG.
  • FIG. 13 is a schematic view showing a connection state of a bus bar to a target terminal of a certain battery in the battery module of FIG.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of the base plate of the battery module of FIG.
  • FIG. 15 is a schematic view illustrating the installation of the battery array on the installation surface of the base plate in the battery module of FIG.
  • FIG. 16 is a schematic view showing an example of a battery pack in which the battery module according to the embodiment is used.
  • FIG. 17 is a schematic view showing an example of a vehicle in which the battery pack according to the embodiment is used.
  • the battery module according to the embodiment includes a plurality of batteries.
  • FIG. 1 shows an example of the battery 1 according to the embodiment. Further, FIG. 2 shows the battery 1 of FIG. 1 disassembled for each member.
  • Each of the plurality of batteries provided in the battery module has the same configuration as the battery 1 described below.
  • the battery 1 is, for example, a secondary battery.
  • the battery 1 includes an exterior portion 3.
  • the exterior portion 3 is formed of a metal such as stainless steel. Examples of the metal other than stainless steel forming the exterior portion 3 include aluminum, aluminum alloy, iron, and plated steel. Further, an internal cavity 11 is formed inside the exterior portion 3.
  • the vertical direction (direction indicated by arrows X1 and X2)
  • the horizontal direction (vertical or substantially vertical) intersecting the vertical direction (direction indicated by arrow Y1 and arrow Y2)
  • Height directions directions indicated by arrows Z1 and Z2) that intersect (vertical or substantially vertical) with respect to both the vertical and horizontal directions are defined.
  • the exterior portion 3 includes a first exterior member (cup member) 5 and a second exterior member (lid member) 6.
  • the first exterior member 5 is formed in the shape of a container with a bottom.
  • the first exterior member 5 has a bottom wall 7 and a peripheral wall 4, and is formed in a substantially rectangular parallelepiped shape with one side open.
  • the bottom wall 7 is located on one side (arrow Z1 side) in the height direction with respect to the internal cavity 11.
  • the peripheral wall 4 extends along the circumferential direction of the exterior portion 3, and the outer peripheral side of the internal cavity 11 is surrounded by the peripheral wall 4.
  • the internal cavity 11 is adjacent to the peripheral wall 4 on the inner peripheral side.
  • the internal space of the first exterior member 5 forms at least a part of the internal cavity 11 of the exterior portion 3, and opens toward the side opposite to the side where the bottom wall 7 is located.
  • the opening edge of the opening of the internal space of the first exterior member 5 is formed on the peripheral wall 4 at the end opposite to the bottom wall 7.
  • the direction along the opening edge of the internal space of the first exterior member 5 coincides with or substantially coincides with the circumferential direction.
  • the side where the internal cavity 11 (internal space) is located with respect to the peripheral wall 4 is the inner peripheral side, and the side opposite to the inner peripheral side is the outer peripheral side.
  • the peripheral wall 4 includes two pairs of side walls 8 and 9.
  • the pair of side walls (first side wall) 8 face each other with the internal cavity 11 interposed therebetween in the vertical direction.
  • the pair of side walls (second side wall) 9 face each other with the internal cavity 11 interposed therebetween in the lateral direction.
  • Each of the side walls 8 is continuously extended along the lateral direction between the side walls 9. Further, each of the side walls 9 is continuously extended along the vertical direction between the side walls 8.
  • the first exterior member 5 includes a flange 13.
  • the flange 13 projects from the end of the peripheral wall 4 (side walls 8 and 9) opposite to the bottom wall 7 to the outer peripheral side. Therefore, the flange 13 projects toward the outer peripheral side with respect to the peripheral wall 4, and is formed apart from the bottom wall 7 in the height direction.
  • the flange 13 is formed over the entire circumference in the circumferential direction of the exterior portion 3, and projects toward the outer periphery over the entire circumference in the circumferential direction of the exterior portion 3. Further, the flange 13 extends from the opening edge of the internal space of the first exterior member 5 toward the outer peripheral side.
  • the second exterior member 6 is a substantially plate-shaped member, and is formed, for example, in a substantially rectangular shape.
  • the second exterior member 6 is attached to the flange 13 from the side opposite to the side where the bottom wall 7 is located in the height direction of the battery 1, and faces the flange 13 from the side opposite to the bottom wall 7. Then, the opening of the internal space of the first exterior member 5 is closed by the second exterior member 6.
  • the second exterior member 6 includes a top wall 15 facing the bottom wall 7 with the internal cavity 11 interposed therebetween in the height direction. Therefore, the bottom wall 7 of the first exterior member 5 faces the second exterior member 6 (top wall 15) with the internal cavity 11 interposed therebetween in the height direction. Further, the peripheral wall 4 and the flange 13 are provided between the bottom wall 7 and the second exterior member 6 in the height direction.
  • the second exterior member 6 projects toward the outer peripheral side with respect to the peripheral wall 4 (side walls 8 and 9). Then, the second exterior member 6 projects toward the outer periphery over the entire circumference in the circumferential direction of the exterior portion 3. Further, in the present embodiment, the thickness direction of the plate-shaped second exterior member 6 coincides with or substantially coincides with the height direction of the battery 1 (exterior portion 3).
  • the second exterior member 6 is welded to the flange 13 in a state of being arranged on the side opposite to the bottom wall 7 with respect to the flange 13.
  • the flange 13 and the second exterior member 6 are airtightly welded.
  • the welded portion of the flange 13 to the second exterior member 6 is formed on the outer peripheral side of the exterior portion 3 with respect to the opening edge of the internal space of the first exterior member 5. Further, the welded portions of the flange 13 and the second exterior member 6 are continuously formed over the entire circumference in the circumferential direction. Therefore, the internal cavity of the exterior portion 3 is sealed and sealed.
  • the flange 13 and the second exterior member 6 are welded by, for example, resistance seam welding. By performing resistance seam welding, the cost is suppressed as compared with laser welding and the like, and the airtightness between the flange 13 and the second exterior member 6 is high.
  • the height dimension between the bottom wall 7 and the second exterior member 6 is the vertical dimension between the pair of side walls (first side wall) 8. And, in the lateral direction between the pair of side walls (second side wall) 9, they are much smaller than each of the dimensions. Therefore, in the internal cavity 11, the dimensions in the height direction are much smaller than the dimensions in the vertical direction and the dimensions in the horizontal direction. Further, the wall thickness of the exterior portion 3 is formed uniformly or substantially uniformly over the entire exterior portion 3 (exterior members 5, 6). The wall thickness of the exterior portion 3 is thin, for example, 0.02 mm or more and 0.3 mm or less. Therefore, in the battery 1, the dimensions in the height direction are much smaller than the dimensions in the vertical direction and the dimensions in the horizontal direction. That is, the exterior portion 3 is formed in a flat shape in which the height direction dimension is smaller than the vertical dimension and the horizontal dimension respectively.
  • the dimension in the vertical direction between the pair of side walls 8 is smaller than the dimension in the horizontal direction between the pair of side walls 9. Therefore, in the internal cavity 11, the dimension in the vertical direction is smaller than the dimension in the horizontal direction. Then, in the battery 1, the dimension in the vertical direction is smaller than the dimension in the horizontal direction.
  • the protruding dimensions of the flange 13 and the second exterior member 6 from the peripheral wall 4 to the outer peripheral side are about 2 mm or more and 5 mm or less.
  • the outer peripheral end E of the exterior portion 3 (battery 1) is formed by the protruding ends of the flange 13 and the protruding portion of the second exterior member 6.
  • the area of the outer surface of each of the bottom wall 7 and the second exterior member 6 (top wall 15) is a pair of side walls (first).
  • Side wall) 8 is larger than the area of each outer surface.
  • the area of each outer surface of the side wall 8 is larger than the area of each outer surface of the pair of side walls (second side wall) 9.
  • the dimensions of the side wall 8 in each lateral direction are larger than the dimensions of the side wall 9 in each vertical direction.
  • FIG. 3 is a diagram illustrating the configuration of the electrode group 10.
  • the electrode group 10 is formed in a flat shape, for example, and includes a positive electrode 21, a negative electrode 22, and separators 23 and 25.
  • the positive electrode 21 includes a positive electrode current collector foil 21A as a positive electrode current collector and a positive electrode active material-containing layer 21B supported on the surface of the positive electrode current collector foil 21A.
  • the positive electrode current collecting foil 21A is an aluminum foil, an aluminum alloy foil, or the like, and has a thickness of about 10 ⁇ m to 20 ⁇ m.
  • a slurry containing a positive electrode active material, a binder and a conductive agent is applied to the positive electrode current collector foil 21A.
  • the positive electrode active material include, but are not limited to, oxides, sulfides, polymers, and the like that can occlude and release lithium. Further, from the viewpoint of obtaining a high positive electrode potential, it is preferable to use lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, iron lithium phosphate or the like as the positive electrode active material.
  • the negative electrode 22 includes a negative electrode current collector foil 22A as a negative electrode current collector and a negative electrode active material-containing layer 22B supported on the surface of the negative electrode current collector foil 22A.
  • the negative electrode current collecting foil 22A is an aluminum foil, an aluminum alloy foil, a copper foil, or the like, and has a thickness of about 10 ⁇ m to 20 ⁇ m.
  • a slurry containing a negative electrode active material, a binder and a conductive agent is applied to the negative electrode current collector foil 22A.
  • the negative electrode active material is not particularly limited, and examples thereof include metal oxides, metal sulfides, metal nitrides, and carbon materials capable of occluding and releasing lithium ions.
  • the negative electrode active material a substance having a lithium ion occlusion / release potential of 0.4 V or more with respect to the metallic lithium potential, that is, a lithium ion occlusion / release potential of 0.4 V (vs. Li + / Li) or more. It is preferably a substance.
  • a negative electrode active material having such a lithium ion occlusion / release potential the alloy reaction between aluminum or an aluminum alloy and lithium is suppressed. Therefore, aluminum and aluminum and the constituent members related to the negative electrode current collecting foil 22A and the negative electrode 22 are used. Aluminum alloy can be used. Examples of the negative electrode active material in which the storage / release potential of lithium ions is 0.4 V (vs.
  • Li + / Li) or more include titanium oxide, lithium titanium composite oxide such as lithium titanate, tungsten oxide, and amorphous tin. Examples thereof include oxides, niobium-titanium composite oxides, tin silicon oxides, silicon oxide and the like, and it is particularly preferable to use lithium titanium composite oxides as the negative electrode active material.
  • a carbon material that occludes and releases lithium ions is used as the negative electrode active material, it is preferable to use a copper foil for the negative electrode current collecting foil 22A.
  • the carbon material used as the negative electrode active material has an occlusion / release potential of lithium ions of about 0 V (vs. Li + / Li).
  • the aluminum alloy used for the positive electrode current collecting foil 21A and the negative electrode current collecting foil 22A preferably contains one or more elements selected from Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the purity of aluminum and aluminum alloy can be 98% by weight or more, preferably 99.99% by weight or more. Further, pure aluminum having a purity of 100% can be used as a material for the positive electrode current collector and / or the negative electrode current collector.
  • the content of transition metals such as nickel and chromium in aluminum and aluminum alloys is preferably 100 ppm by weight or less (including 0 ppm by weight).
  • the positive electrode current collecting tab 21D is formed by one long side edge 21C and a portion in the vicinity thereof. In one example of FIG. 3, the positive electrode current collecting tab 21D is formed over the entire length of the long edge 21C. In the positive electrode current collecting tab 21D, the positive electrode active material-containing layer 21B is not supported on the surface of the positive electrode current collecting foil 21A. Therefore, the positive electrode current collecting foil 21A includes a positive electrode current collecting tab 21D as a portion where the positive electrode active material-containing layer 21B is not supported. Further, in the negative electrode current collecting foil 22A, the negative electrode current collecting tab 22D is formed by one long side edge 22C and a portion in the vicinity thereof. In one example of FIG.
  • the negative electrode current collecting tab 22D is formed over the entire length of the long side edge 22C.
  • the negative electrode active material-containing layer 22B is not supported on the surface of the negative electrode current collecting foil 22A. Therefore, the negative electrode current collecting foil 22A includes a negative electrode current collecting tab 22D as a portion where the negative electrode active material-containing layer 22B is not supported.
  • Each of the separators 23 and 25 is formed of an electrically insulating material, and electrically insulates between the positive electrode 21 and the negative electrode 22.
  • Each of the separators 23 and 25 may be a sheet or the like separate from the positive electrode 21 and the negative electrode 22, or may be integrally formed with one of the positive electrode 21 and the negative electrode 22.
  • the separators 23 and 25 may be formed of an organic material, an inorganic material, or a mixture of the organic material and the inorganic material. Examples of the organic material forming the separators 23 and 25 include engineering plastics and super engineering plastics.
  • Examples of engineering plastics include polyamide, polyacetal, polybutylene terephthalate, polyethylene terephthalate, syndiotactic polystyrene, polycarbonate, polyamideimide, polyvinyl alcohol, polyvinylidene fluoride, and modified polyphenylene ether.
  • Examples of the superempura include polyphenylene sulfide, polyetheretherketone, liquid crystal polymer, polyvinylidene fluoride, polytetrafluoroethylene (PTFE), polyethernitrile, polysulfone, polyacrylate, polyetherimide, and thermoplastic polyimide. Be done.
  • Examples of the inorganic material forming the separators 23 and 25 include oxides (for example, aluminum oxide, silicon dioxide, magnesium oxide, phosphor oxide, calcium oxide, iron oxide, titanium oxide) and nitrides (for example, boron nitride, etc.). (Aluminum nitride, silicon nitride, barium nitride) and the like.
  • the positive electrode 21, the negative electrode 22, and the separators 23 and 25 are wound shaft B with the separators 23 and 25 sandwiched between the positive electrode active material-containing layer 21B and the negative electrode active material-containing layer 22B. It is wound into a flat shape around the center.
  • the positive electrode 21, the separator 23, the negative electrode 22, and the separator 25 are wound in a state of being stacked in this order, for example.
  • the positive electrode current collecting tab 21D of the positive electrode current collecting foil 21A projects to one side in the direction along the winding axis B with respect to the negative electrode 22 and the separators 23 and 25.
  • the negative electrode current collecting tab 22D of the negative electrode current collecting foil 22A protrudes from the positive electrode 21 and the separators 23 and 25 on the side opposite to the side on which the positive electrode current collecting tab 21D protrudes in the direction along the winding axis B. To do.
  • the electrode group 10 is arranged so that the winding shaft B is parallel or substantially parallel to the lateral direction of the battery 1. Therefore, in the internal cavity 11 of the exterior portion 3, the positive electrode current collecting tab 21D projects to one side in the lateral direction with respect to the negative electrode 22 and the separators 23 and 25. Then, the negative electrode current collecting tab 22D projects laterally to the positive electrode 21 and the separators 23 and 25 on the side opposite to the side on which the positive electrode current collecting tab 21D protrudes.
  • the electrode group 10 does not need to have a winding structure in which the positive electrode, the negative electrode and the separator are wound.
  • the electrode group 10 has a stack structure in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated, and a separator is provided between the positive electrode and the negative electrode.
  • the positive electrode current collecting tab protrudes to one side in the lateral direction of the battery 1 (exterior portion 3) with respect to the negative electrode.
  • the negative electrode current collecting tab protrudes with respect to the positive electrode in the lateral direction of the battery 1 to the side opposite to the side on which the positive electrode current collecting tab protrudes.
  • the electrode group 10 is impregnated with an electrolytic solution (not shown) in the internal cavity 11.
  • an electrolytic solution a non-aqueous electrolytic solution is used.
  • a non-aqueous electrolytic solution prepared by dissolving an electrolyte in an organic solvent is used.
  • lithium perchlorate LiClO 4
  • lithium hexafluorophosphate LiPF 6
  • lithium tetrafluoroborate LiBF 4
  • lithium hexafluoroarsenide LiAsF 6
  • Lithium salts such as lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], and mixtures thereof.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC) and vinylene carbonate; chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC); tetrahydrofuran.
  • Cyclic ethers such as (THF), dimethyltetrahydrofuran (2MeTHF), and dioxolane (DOX); chain ethers such as dimethoxyethane (DME) and diethoxyethane (DEE); ⁇ -butyrolactone (GBL), acetonitrile (AN). And sulfolane (SL) and the like.
  • non-aqueous electrolyte a gel-like non-aqueous electrolyte in which a non-aqueous electrolyte solution and a polymer material are composited is used instead of the electrolyte solution.
  • the above-mentioned electrolyte and organic solvent are used.
  • the polymer material include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO) and the like.
  • a solid electrolyte such as a polymer solid electrolyte and an inorganic solid electrolyte is provided as a non-aqueous electrolyte.
  • the electrodes 23 and 25 may not be provided in the electrode group 10.
  • a solid electrolyte is sandwiched between the positive electrode 21 and the negative electrode 22. Therefore, in this embodiment, the solid electrolyte electrically insulates between the positive electrode 21 and the negative electrode 22.
  • an aqueous electrolyte containing an aqueous solvent instead of the non-aqueous electrolyte may be used as the electrolyte.
  • a pair of electrode terminals 27 are attached to the outer surface of the exterior portion 3.
  • One of the electrode terminals 27 serves as the positive electrode terminal of the battery 1, and the other of the electrode terminals 27 serves as the negative electrode terminal of the battery 1. Therefore, the electrode terminals 27 have opposite polarities with respect to each other.
  • a pair of inclined surfaces 26 are formed on the outer surface of the first exterior member 5. Each of the inclined surfaces 26 is provided between the corresponding one side wall (second side wall) 9 and the bottom wall 7. Each of the pair of inclined surfaces 26 extends continuously along the longitudinal direction between the side walls 8.
  • each of the inclined surfaces 26 is extended over the same or substantially the same range as the corresponding one of the side walls 9 in the circumferential direction of the battery 1 (exterior portion 3).
  • Each of the inclined surfaces 26 is inclined with respect to the bottom wall 7 and the side wall 9.
  • Each of the inclined surfaces 26 is inclined inward in the lateral direction as it approaches the bottom wall 7.
  • each of the electrode terminals 27 is attached to the corresponding one of the inclined surfaces 26 in a state of being exposed to the outside. Therefore, each of the electrode terminals 27 is provided in the circumferential direction of the exterior portion 3 within a range in which one of the side walls (second side wall) 9 extends.
  • each of the electrode terminals 27 is arranged at the corresponding center position or substantially center position of the inclined surface 26 in the vertical direction. Then, the electrode group 10 is arranged between the pair of electrode terminals 27 in the lateral direction.
  • Each of the electrode terminals 27 is formed of a conductive material, for example, from any of aluminum, copper, stainless steel, and the like.
  • a pair of insulating members 28 electrically formed from an insulating material are provided on the outer surface of the first exterior member 5.
  • Each of the insulating members 28 is arranged on one of the corresponding outer surfaces of the side wall 9 and on the corresponding one of the inclined surfaces 26.
  • Each of the insulating members 28 is interposed between the corresponding one of the inclined surfaces 26 and the corresponding one of the electrode terminals 27, and the corresponding one of the electrode terminals 27 is provided with respect to the exterior portion 3 (first exterior member 5). Electrically insulate.
  • FIG. 4 shows an electrical connection configuration between the electrode group 10 and one of the pair of electrode terminals 27.
  • the positive electrode current collecting tabs 21D of the electrode group 10 are bundled by welding such as ultrasonic welding. Then, the bundle of the positive electrode current collecting tab 21D is connected to one of the electrode terminals 27 (positive electrode terminal) via one or more positive electrode leads including the positive electrode backup lead 31A, the positive electrode relay lead 32A, the positive electrode terminal lead 33A, and the like. It is electrically connected.
  • the connection between the positive electrode current collecting tab 21D and the positive electrode lead, the connection between the positive electrode leads, and the connection between the positive electrode lead and the positive electrode terminal are performed by welding such as ultrasonic welding.
  • the positive electrode lead is formed of a conductive metal.
  • the positive electrode terminal (corresponding one of 27), the positive electrode current collecting tab 21D, and the positive electrode lead are electrically insulated from the exterior portion 3 (exterior members 5, 6) by an insulating member (not shown) or the like. ..
  • the negative electrode current collecting tab 22D of the electrode group 10 is bundled by welding such as ultrasonic welding. Then, the bundle of the negative electrode current collecting tab 22D is connected to one of the electrode terminals 27 (negative electrode terminal) via one or more negative electrode leads including the negative electrode backup lead 31B, the negative electrode relay lead 32B, the negative electrode terminal lead 33B, and the like. It is electrically connected.
  • the connection between the negative electrode current collecting tab 22D and the negative electrode lead, the connection between the negative electrode leads, and the connection between the negative electrode lead and the negative electrode terminal are performed by welding such as ultrasonic welding.
  • the negative electrode lead is formed of a conductive metal. Further, the negative electrode terminal (corresponding one of 27), the negative electrode current collecting tab 22D, and the negative electrode lead are electrically insulated from the exterior portion 3 (exterior members 5, 6) by an insulating member (not shown) or the like. ..
  • spaces are formed on both sides of the electrode group 10 in the lateral direction. That is, a space is formed between each inner surface of the side wall (second side wall) 9 and the electrode group 10.
  • the corresponding one of the positive electrode current collecting tab 21D and the negative electrode current collecting tab 22D is arranged, and the corresponding one of the positive electrode lead and the negative electrode lead is arranged.
  • the dimensions in the height direction are much smaller than the dimensions in the vertical direction, and the dimensions in the vertical direction are the dimensions in the horizontal direction. It is smaller than the size. Therefore, the electrode group 10 and the like of the internal cavity 11 easily come into contact with the bottom wall 7 and the second exterior member 6 (top wall 15), but are difficult to come into contact with each of the side walls 8. Therefore, a gap is likely to be formed between each of the electrode group 10 and the side wall (first side wall) 8. Further, a space is formed between the electrode group 10 and each of the side wall (second side wall) 9 as described above.
  • the area of each outer surface of the bottom wall 7 and the second exterior member 6 (top wall 15) is larger than the area of each outer surface of the side walls 8 and 9. large. Due to the above-described configuration, in the battery 1, the heat dissipation from each of the bottom wall 7 and the top wall 15 to the outside is higher than the heat dissipation from each of the side walls 8 and 9 to the outside.
  • the wall thickness of the exterior part 3 is thin as described above. Therefore, the thermal conductivity between the peripheral wall 4 (side walls 8 and 9) and the bottom wall 7 is low. Similarly, the thermal conductivity between the peripheral wall 4 (side walls 8 and 9) and the top wall 15 (second exterior member 6) is also low. Further, the battery 1 (exterior portion 3) has a large size in the lateral direction and a small size in the height direction. Therefore, the battery 1 is easily bent in a state in which the amount of bending in the height direction changes along the lateral direction.
  • a plurality of electrode groups may be housed in the internal cavity 11.
  • the second exterior member (lid member) 6 is not formed in a plate shape, but is formed in a substantially rectangular parallelepiped shape having one surface open like the first exterior member 5.
  • the second exterior member 6 includes, in addition to the top wall 15, a peripheral wall and a flange, similarly to the first exterior member 5. Then, the flange 13 of the first exterior member 5 and the flange of the second exterior member 6 are airtightly welded.
  • the battery 1 (exterior portion 3) is formed into a flat shape in which the dimensions in the height direction are smaller than the dimensions in the vertical direction and the dimensions in the horizontal direction.
  • the dimension in the height direction between the bottom wall 7 and the second exterior member 6 (top wall 15) is that of the pair of side walls (first side wall) 8. It is smaller than the dimension in the vertical direction between them, and the dimension in the vertical direction is smaller than the dimension in the horizontal direction between the pair of side walls (second side wall) 9.
  • the battery module according to the embodiment includes a plurality of the above-mentioned flat-shaped batteries 1 having a small dimension in the height direction.
  • 5 to 7 show an example of the battery module 40 according to the embodiment.
  • the battery module 40 includes one or more battery arrays 41A, 41B, and a base plate 42.
  • two battery arrays 41A and 41B are provided.
  • the battery module 40 in the first direction (direction indicated by arrows X3 and X4), in the second direction (vertical or substantially vertical) intersecting with the first direction (arrow Y3 and arrow Y4).
  • the direction indicated) and the third direction (vertical or substantially vertical) intersecting (vertical or substantially vertical) with respect to both the first and second directions (directions indicated by arrows Z3 and Z4) are defined.
  • 5 and 6 show the battery module 40 by omitting the covers 61A and 61B described later. Further, in FIGS. 5 and 6, the viewing directions are different from each other.
  • the outer surface of the base plate 42 includes installation surfaces (main surfaces) 45 and 46.
  • the installation surface (first installation surface) 45 faces one side (arrow Z3 side) in the third direction.
  • the installation surface (second installation surface) 46 faces the side opposite to the installation surface 45 (arrow Z4 side) in the third direction.
  • the battery array (first battery array) 41A is installed on the installation surface 45
  • the battery array (second battery array) 41B is installed on the installation surface 46. Therefore, the base plate 42 is interposed between the battery arrays 41A and 41B. Further, the base plate 42 is arranged in a state where the thickness direction coincides with or substantially coincides with the third direction.
  • each of the battery arrays 41A and 41B a plurality of batteries 1 are arranged along the arrangement direction.
  • five batteries 1 are arranged in each of the battery arrays 41A and 41B.
  • the arrangement direction of the batteries 1 in each of the battery arrangements 41A and 41B coincides with or substantially coincides with the first direction.
  • the arrangement direction of the batteries 1 in the battery array (first battery array) 41A is the arrangement direction of the batteries 1 in the battery array (second battery array) 41B. And match or substantially match.
  • each of the batteries 1 coincides with or substantially coincides with the arrangement direction (first direction), and the horizontal direction coincides with or substantially coincides with the second direction. And will be placed. That is, each of the batteries 1 is arranged in a state in which the vertical direction is along the arrangement direction. Therefore, in each of the battery arrays 41A and 41B, each of the batteries 1 is arranged in a state in which the height direction coincides with or substantially coincides with the third direction.
  • the plurality of batteries 1 used in the battery module 40 are formed to have the same or substantially the same dimensions with respect to each other. Further, in each of the battery arrays 41A and 41B, the plurality of batteries 1 are arranged in the second direction (the lateral directions of the batteries 1) with respect to each other or with almost no deviation from each other. .. Then, in each of the battery arrays 41A and 41B, the plurality of batteries 1 are arranged in a third direction (in each height direction of the battery 1) with no deviation from each other or with almost no deviation from each other. To.
  • the battery arrays 41A and 41B and the base plate 42 are housed inside the covers 61A and 61B and the like.
  • Each of the covers 61A and 61B is formed of, for example, a resin and has electrical insulation. Further, each of the covers 61A and 61B is formed in a cup shape and is formed in a substantially rectangular parallelepiped shape having one side open.
  • the cover 61A covers the battery array 41A from one side in the third direction. Further, the cover 61B covers the battery array 41B from the side opposite to the cover 61A in the third direction.
  • a plurality of engaging grooves 65 recessed toward the inner peripheral side are formed on the outer edge of the base plate 42. Further, a plurality of engaging claws 66A are provided on the opening edge of the cover 61A, and a plurality of engaging claws 66B are provided on the opening edge of the cover 61B. Each of the engaging claws 66A, 66B engages with the corresponding one of the engaging grooves 65. As a result, each of the covers 61A and 61B is fixed to the base plate 42. Further, one or more engaging pieces 67A are provided on the opening edge of the cover 61A, and one or more engaging pieces 67B are provided on the opening edge of the cover 61B. Each of the engaging pieces 67A engages with the corresponding one of the engaging pieces 67B to the extent that the base plate 42 is not extended. As a result, the covers 61A and 61B are fixed to each other.
  • each of the battery arrays 41A and 41B includes an insulating member 43.
  • the insulating member 43 is formed of a resin or the like and has electrical insulating properties.
  • each of the batteries 1 sandwiches the insulating member 43 with each of the adjacent batteries 1 in the arrangement direction. Therefore, the insulating member 43 is interposed between the two batteries 1 adjacent to each other in the arrangement direction. Note that FIG.
  • FIG. 10 shows a state in which the two adjacent batteries 1 and the insulating member 43 between the two batteries 1 are separated from each other. Further, in an example such as FIG. 5, five batteries are provided in each of the battery arrays 41A and 41B. Therefore, four insulating members 43 are provided in each of the battery arrays 41A and 41B.
  • each of the batteries 1 is arranged in a state where the vertical direction is along the arrangement direction. Therefore, in each of the batteries 1 of the battery arrays 41A and 41B, one of the pair of side walls (first side wall) 8 corresponding to each of the adjacent batteries 1 in the arrangement direction is the insulating member 43. Oppose each other across.
  • the batteries 1 ⁇ and 1 ⁇ arranged at both ends in the arrangement direction are defined in the battery array 41A, and the batteries 1 ⁇ and 1 ⁇ arranged at both ends in the arrangement direction in the battery array 41B.
  • the other batteries 1 are adjacent to each other only on one side in the arrangement direction.
  • each of the batteries 1 other than the batteries 1 ⁇ , 1 ⁇ , 1 ⁇ , and 1 ⁇ the other batteries 1 are adjacent to each other on both sides in the arrangement direction. Therefore, in each of the batteries 1, one or two batteries 1 are adjacent to each other in the arrangement direction.
  • the plurality of batteries 1 forming the battery arrays 41A and 41B include a first battery 1A and a second battery 1B.
  • the first battery 1A the bottom wall 7 faces one of the corresponding installation surfaces 45, 46 of the base plate 42.
  • the second battery 1B the second exterior member 6 (top wall 15) faces the corresponding one of the installation surfaces 45, 46 of the base plate 42.
  • the first battery 1A and the second battery 1B are alternately arranged in the arrangement direction. Therefore, the first battery 1A and the second battery 1B are arranged next to each other in the arrangement direction.
  • the plurality of batteries 1 include two first batteries 1A and three second batteries 1B.
  • the batteries 1 ⁇ , 1 ⁇ , 1 ⁇ , and 1 ⁇ are all the first batteries 1A.
  • FIG. 11 shows the insulating member 43 alone
  • FIG. 12 shows the mounting structure of the insulating member 43 on the base plate 42.
  • each of the insulating members 43 is a bar member extending along the longitudinal direction, and each of the insulating members 43 has a larger dimension in the longitudinal direction.
  • each of the insulating members 43 is arranged in a state in which the longitudinal direction coincides with or substantially coincides with the second direction. Therefore, in each of the battery arrays 41A and 41B, each of the insulating members 43 is arranged in a state in which the longitudinal direction coincides with the lateral direction of the battery 1.
  • the dimensions of the insulating member 43 in the longitudinal direction are the same as or substantially the same as the dimensions of the side wall (first side wall) 8 in the lateral direction of each battery 1.
  • each of the batteries 1 of the battery array 41A and 41B the peripheral wall 4 abuts on each of the insulating members 43 adjacent in the array direction.
  • the corresponding one of the side walls (first side wall) 8 is in contact with each of the adjacent insulating members 43, and the corresponding one of the side walls 8 is bonded by adhesion or the like.
  • each of the batteries 1 (exterior portion 3) is fixed to each of the adjacent insulating members 43.
  • the corresponding one side wall 8 abuts against each of the adjacent insulating members 43 in the lateral direction over the entire length or substantially the entire length.
  • each of the batteries 1 is fixed to each of the adjacent insulating members 43 in a state of receiving a pressing force inward in the vertical direction from each of the adjacent batteries 1.
  • each of the insulating members 43 is provided with one or more engaging protrusions 62.
  • two engaging protrusions 62 are provided on each of the insulating members 43.
  • a plurality of engaging holes 63 are formed on the installation surface 45 of the base plate 42.
  • each of the engaging projections 62 of the insulating member 43 engages with the corresponding one of the engaging holes 63.
  • Each of the insulating members 43 is positioned in the first direction and the second direction with respect to the installation surface 45 of the base plate 42 by engaging each of the engaging protrusions 62 with the corresponding one of the engaging holes 63. Will be done.
  • each of the insulating members 43 is fixed to the installation surface 45 by adhesion or the like in a state of being positioned with respect to the installation surface 45. Further, each of the insulating members 43 is fixed to the installation surface 45 in a state of surface contact with the installation surface 45.
  • a plurality of engagement holes similar to the engagement holes 63 are formed on the installation surface 46 of the base plate 42. Then, each of the insulating members 43 of the battery array 41B is positioned in the first direction and the second direction with respect to the installation surface 46 of the base plate 42 in the same manner as the insulating member 43 of the battery array 41A. To. Then, each of the insulating members 43 is fixed to the installation surface 46 by adhesion or the like in a state of being positioned with respect to the installation surface 46. Further, each of the insulating members 43 is fixed to the installation surface 46 in a state of surface contact with the installation surface 46.
  • each of the batteries 1 is fixed to each of the adjacent insulating members 43 as described above. Therefore, by positioning the insulating member 43 with respect to the installation surface 45, each of the batteries 1 is also positioned with respect to the installation surface 45 in the first direction and the second direction.
  • the insulating member 43 is positioned with respect to the installation surface 46 as described above, so that each of the batteries 1 also has a first direction and a second direction with respect to the installation surface 46. Is positioned.
  • each pair of electrode terminals 27 of the battery 1 is also positioned with respect to the base plate 42 in the first direction and the second direction.
  • each of the battery arrays 41A and 41B the outer surface of each bottom wall 7 of the first battery 1A comes into surface contact with the corresponding one of the installation surfaces 45 and 46. Then, each of the first batteries 1A is fixed to the corresponding one of the installation surfaces 45, 46 by adhesion or the like in a state where the outer surface of the bottom wall 7 is in surface contact with the corresponding one of the installation surfaces 45, 46. .. Further, in each of the battery arrays 41A and 41B, the outer surface of each of the second exterior members 6 (top wall 15) of the second battery 1B comes into surface contact with the corresponding one of the installation surfaces 45 and 46.
  • the outer surface of the second exterior member 6 is in surface contact with the corresponding one of the installation surfaces 45 and 46, and is adhered to the corresponding one of the installation surfaces 45 and 46 by adhesion or the like. It is fixed.
  • the battery module 40 of the embodiment shown in FIG. 5 or the like is provided with a plurality of bus bars (first bus bars) 53 and bus bars 55, 56, 57.
  • Each of the bus bars 53, 55 to 57 is formed of a conductive material such as metal.
  • each of the bus bars 53 electrically connects two batteries 1 adjacent to each other in the arrangement direction in each of the battery arrangements 41A and 41B.
  • a configuration for electrically connecting two adjacent batteries 1 via one bus bar 53 will be described.
  • each of the batteries 1 is electrically connected to each of the adjacent batteries 1 via one bus bar 53 as follows.
  • the bus bar 53 comes into contact with the corresponding target terminal of the pair of electrode terminals 27.
  • the bus bar 53 is connected to the target terminal by welding or the like.
  • the target terminals of the two batteries 1 are arranged on the same side with respect to the central position of the battery module 40 in the second direction. That is, the target terminals of the two batteries 1 are located on the same side with respect to the respective electrode group 10 of the battery 1 in each lateral direction of the battery 1.
  • the bus bar 53 relays between the target terminals (first target terminals) of the two batteries 1.
  • the bus bar 53 is located between the target terminals of the two batteries 1 along the arrangement direction (the first direction of the battery module 40), that is, each of the batteries 1. It is extended along the vertical direction.
  • three or more batteries 1 may be electrically connected by one bus bar 53.
  • the bus bar 53 comes into contact with the corresponding target terminal (first target terminal) of the pair of electrode terminals 27, and the bus bar 53 is connected to the target terminal.
  • the target terminals of the three or more batteries 1 are arranged on the same side with respect to the central position of the battery module 40 (each electrode group 10 of the battery 1) in the second direction.
  • the bus bar 53 extends between the target terminals of the three or more batteries 1 along the arrangement direction, that is, along the respective vertical directions of the batteries 1. Will be done.
  • FIG. 13 shows the connection state of the bus bar 53 to the target terminal (corresponding one of 27) of a certain battery 1.
  • the inner peripheral side with respect to the protruding end of the protruding portion of the flange 13 and the second exterior member 6
  • the bus bar 53 is located (inside). That is, in each of the batteries 1 electrically connected by one bus bar 53, the bus bar 53 is located between the peripheral wall 4 (corresponding side of the side wall 9) and the outer peripheral end E of the exterior portion 3 (battery 1). To do.
  • the bus bar 53 does not protrude from the outer peripheral end E of the exterior portion 3 to the outer peripheral side (outside) in the lateral direction. Then, in each of the battery arrays 41A and 41B, none of the bus bars 53 protrudes to the outer peripheral side (outside) with respect to the outer peripheral end E of each outer peripheral portion 3 of the battery 1 in the second direction.
  • two adjacent batteries 1 are electrically connected in series by one bus bar 53. Therefore, the two target terminals connected by one bus bar 53 are one positive electrode terminal and the other negative electrode terminal.
  • two or more batteries 1 may be electrically connected in parallel using two bus bars 53. In this case, the positive electrode terminals of the two or more batteries 1 are connected to each other by one of the two bus bars 53 on one side with respect to the central position of the battery module 40 in the second direction. Then, the negative electrode terminals of the two or more batteries 1 are connected to each other by the other of the two bus bars 53 on the other side with respect to the central position of the battery module 40 in the second direction.
  • the battery module 40 of the embodiment shown in FIG. 5 or the like is provided with module terminals 51 and 52.
  • the module terminal 51 is a module terminal on the positive electrode side
  • the module terminal 52 is a module terminal on the negative electrode side.
  • the battery arrays 41A and 41B are arranged in the first direction and the second direction with no deviation from each other or with almost no deviation from each other.
  • the module terminals 51 and 52 are located on the same side with respect to the battery arrays 41A and 41B in the first direction.
  • the module terminals 51 and 52 are arranged apart from each other in the second direction.
  • the module terminal 52 is arranged on the side opposite to the module terminal 51 with respect to the central position of the battery module 40 in the second direction.
  • each electrode group 10 of the battery 1 is located between the module terminals 51 and 52 in the second direction.
  • the battery 1 ⁇ is arranged at the end near the module terminals 51 and 52 in the first direction (arrangement direction), and the battery is arranged at the end far from the module terminals 51 and 52 in the first direction. 1 ⁇ is arranged. Further, in the battery array 41B, the battery 1 ⁇ is arranged at the end near the module terminals 51 and 52 in the first direction (arrangement direction), and the end far from the module terminals 51 and 52 in the first direction. The battery 1 ⁇ is arranged in.
  • the bus bar 53 is not connected to the pair of electrode terminals 27, while the bus bar 57 is in contact with the battery 1 ⁇ . Then, the bus bar 57 is connected to the corresponding one of the electrode terminals 27 of the battery 1 ⁇ .
  • the battery 1 ⁇ is electrically connected to the module terminal 52 on the negative electrode side via the bus bar 57.
  • the bus bar 57 extends from one of the electrode terminals 27 of the battery 1 ⁇ to the module terminal 52 in a substantially L shape. That is, the bus bar 57 extends outward from one of the corresponding electrode terminals 27 of the battery 1 ⁇ in the first direction, and extends along the corresponding one of the pair of side walls 9 of the battery 1 ⁇ . Then, in the region adjacent to the outside of the battery 1 ⁇ in the first direction, the bus bar 57 extends along the second direction to the module terminal 52 along the corresponding one of the pair of side walls 8 of the battery 1 ⁇ . It will be extended toward.
  • the bus bar 53 is not connected to the pair of electrode terminals 27, while the bus bar 56 is in contact with the battery 1 ⁇ . Then, the bus bar 56 is connected to the corresponding one of the electrode terminals 27 of the battery 1 ⁇ .
  • the battery 1 ⁇ is electrically connected to the module terminal 51 on the positive electrode side via the bus bar 56.
  • the bus bar 56 extends outward from one of the corresponding electrode terminals 27 of the battery 1 ⁇ in the first direction and extends along the corresponding one of the pair of side walls 9 of the battery 1 ⁇ .
  • the bus bar (second bus bar) 55 comes into contact with the target terminal to which the bus bar 53 is not connected at the pair of electrode terminals 27. Then, the bus bar 55 is connected to the corresponding target terminal of the electrode terminal 27 of the battery 1 ⁇ . Further, in the battery 1 ⁇ , the bus bar 55 comes into contact with the target terminal on which the bus bar 53 is not connected at the pair of electrode terminals 27. Then, the bus bar 55 is connected to the corresponding target terminal of the electrode terminal 27 of the battery 1 ⁇ . Therefore, one of the pair of electrode terminals 27 is used in each of the corresponding one (1 ⁇ ) of the plurality of batteries 1 of the battery array 41A and the corresponding one (1 ⁇ ) of the plurality of batteries 1 of the battery array 41B. The bus bar 55 comes into contact with the target terminal (second target terminal). As a result, the battery arrays 41A and 41B are electrically connected by the bus bar 55.
  • the target terminals of the two batteries 1 ⁇ and 1 ⁇ connected by the bus bar 55 are arranged on the same side with respect to the central position of the battery module 40 in the second direction. That is, the target terminals of the two batteries 1 ⁇ and 1 ⁇ are located on the same side with respect to the respective electrode groups 10 of the batteries 1 ⁇ and 1 ⁇ in the lateral directions of the batteries 1 ⁇ and 1 ⁇ .
  • the bus bar 55 relays between the target terminals (second target terminals) of the two batteries 1 ⁇ and 1 ⁇ .
  • the bus bar 55 extends along the third direction between the target terminals of the two batteries 1 ⁇ and 1 ⁇ . That is, the bus bar 55 is extended along the direction intersecting the arrangement direction of the batteries 1 (the first direction of the battery module 40) in the battery arrangements 41A and 41B.
  • the bus bar 55 extends (beyond the base plate 42) across the base plate 42 between the target terminals (second target terminals) of the two batteries 1 ⁇ and 1 ⁇ .
  • the plurality of batteries 1 are electrically connected by each of the bus bars 53, 55 to 57 as described above.
  • a plurality of (10) batteries 1 forming the battery arrays 41A and 41B are electrically connected in series between the module terminals 51 and 52 by bus bars 53, 55 to 57.
  • the respective exterior portions 3 (exterior members 5, 6) of the battery 1 do not come into contact with any of the bus bars 53, 55 to 57.
  • the printed wiring board 71 is installed on the installation surface 45 of the base plate 42.
  • the printed wiring board 71 is located on the side where the module terminals 51 and 52 are located with respect to the battery arrays 41A and 41B in the first direction.
  • the printed wiring board 71 is located between the module terminals 51 and 52 in the second direction.
  • FIG. 14 shows the configuration of the base plate 42.
  • the base plate 42 includes a plate-shaped base material 68 formed of metal.
  • the base material 68 is arranged in a state where the thickness direction coincides with or substantially coincides with the third direction.
  • insulating layers 69 are formed on both surfaces of the base material 68.
  • the insulating layer 69 is formed of, for example, a resin or the like, and has electrical insulating properties.
  • An insulating layer 69 is formed on both sides of the base metal 68, either entirely or substantially entirely.
  • the insulating layer 69 is formed by depositing or coating an insulating material on the surface of the base material 68.
  • the insulating layer 69 may be formed by adhering an insulating sheet or the like to the surface of the base material 68.
  • the installation surface 45 on which the battery array 41A is installed and the installation surface 46 on which the battery array 41B is installed are formed from the insulating layer 69. Therefore, each of the batteries 1 is appropriately insulated from the base material 68.
  • FIG. 15 is a diagram illustrating the installation of the battery array 41A on the installation surface 45 of the base plate 42.
  • each of the insulating members 43 is engaged with the corresponding one of the engaging holes 63 by engaging each of the engaging projections 62 with the installation surface 45. Attach to.
  • each of the insulating members 43 is fixed to the installation surface 45 in a state of being in surface contact with the installation surface 45 and being positioned with respect to the base plate 42 in the first direction and the second direction.
  • each of the second batteries 1B in which the second exterior member 6 (top wall 15) faces the base plate 42 is attached to one or more corresponding one or more of the insulating members 43 and the installation surface 45.
  • each of the second batteries 1B the outer surface of the second exterior member 6 was in surface contact with the installation surface 45, and each of the second batteries 1B was positioned with respect to the base plate 42 in the first direction and the second direction. In the state, it is fixed to one or more corresponding members of the insulating member 43 and the installation surface 45.
  • the plurality of insulating members 43 are fixed to the installation surface 45 in a state where the interval (pitch) in the first direction is slightly smaller than the dimension in each vertical direction of the battery 1. That is, in the state where the insulating member 43 is fixed to the installation surface 45, the first direction of the insulating member 43 is compared with the vertical dimension between the outer surfaces of the pair of side walls 8 of each battery 1. The interval between is slightly smaller. Then, with the insulating member 43 and the second battery 1B attached to the installation surface 45, each of the first batteries 1A whose bottom wall 7 faces the base plate 42 is attached to one or more corresponding ones or more of the insulating member 43. And attach to the installation surface 45.
  • each of the first batteries 1A is in a state where the outer surface of the bottom wall 7 is in surface contact with the installation surface 45 and is positioned with respect to the base plate 42 in the first direction and the second direction. It is fixed to one or more corresponding members of the insulating member 43 and the installation surface 45.
  • the distance between the plurality of insulating members 43 in the first direction is slightly smaller than the dimensions of the battery 1 in each vertical direction. Therefore, by mounting the first battery 1A on the installation surface 45, each of the batteries 1 receives a pressing force inward in the vertical direction from each of the adjacent batteries 1.
  • the battery array 41B is also attached to the installation surface 46 in the same manner as the battery array 41A is attached to the installation surface 45.
  • each of the batteries 1 sandwiches the insulating member 43 between the batteries 1 adjacent to each other in the arrangement direction. Therefore, it is effectively prevented that the batteries 1 adjacent to each other are electrically conductive via a path other than the bus bar 53. As a result, the occurrence of a short circuit or the like is effectively prevented in each of the battery arrays 41A and 41B.
  • the installation surface 45 on which the battery array 41A is installed and the installation surface 46 on which the battery array 41B is installed are formed from the insulating layer 69. Therefore, the occurrence of a short circuit or the like is more effectively prevented in each of the battery arrays 41A and 41B. Further, it is also possible to effectively prevent a short circuit between the battery arrays 41A and 41B via the base metal 68. Therefore, the battery module 40 is formed with an insulating structure that effectively prevents short circuits and the like.
  • each exterior portion 3 of the battery 1 of the embodiment or the like is formed in a flat shape having a small dimension in the height direction.
  • each of the batteries 1 the area of the outer surface of each of the bottom wall 7 and the second exterior member 6 (top wall 15) is larger than the area of the outer surface of each of the side walls 8 and 9. Due to the above-described configuration, in each of the batteries 1, the heat dissipation from each of the bottom wall 7 and the top wall 15 to the outside is higher than the heat dissipation from each of the side walls 8 and 9 to the outside.
  • each of the batteries 1 is arranged so that the outer surface of the bottom wall 7 or the outer surface of the top wall 15 faces outward in the third direction. Therefore, in the battery module 40, the heat generated in each of the batteries 1 is dissipated to the outside through the bottom wall 7 or the second exterior member 6 (top wall 15). In each of the batteries 1, the bottom wall 7 or the second exterior member 6 having high heat dissipation dissipates heat to the outside, so that the generated heat is appropriately dissipated in the battery module 40. Therefore, the battery module 40 is appropriately cooled. Further, since each of the batteries 1 is arranged so that the outer surface of the bottom wall 7 or the outer surface of the top wall 15 faces outward in the third direction, it is easy to uniformly cool the entire battery module 40. Will be feasible.
  • the first battery 1A and the second battery 1B are arranged adjacent to each other, and the first battery 1A and the second battery 1B are arranged alternately in the arrangement direction. ..
  • the flange 13 and the second exterior member 6 project toward the outer peripheral side with respect to the peripheral wall 4.
  • each of the batteries 1 is arranged in a state in which the vertical direction is along the array direction.
  • each of the batteries 1 one of the corresponding side walls 8 faces each of the adjacent batteries 1 with the insulating member 43 interposed therebetween, and the side wall (first) is opposed to each of the adjacent insulating members 43.
  • the corresponding one of the side walls) 8 is joined. Since each of the battery arrays 41A and 41B is assembled as described above, the battery arrays 41A and 41B having high strength are formed. As a result, in each of the battery arrays 41A and 41B, deformation of the battery 1 due to resonance or the like is suppressed.
  • each of the batteries 1 is fixed to each of the adjacent insulating members 43 in a state of receiving a pressing force inward in the vertical direction from each of the adjacent batteries 1. Therefore, in each of the battery arrays 41A and 41B, the vibration of each of the batteries 1 is suppressed by the pressing force from each of the adjacent batteries 1. As a result, the deformation of each of the batteries 1 is suppressed more effectively. Further, even if there is a manufacturing tolerance of the battery 1, the manufacturing tolerance can be absorbed by receiving a pressing force inward from each of the adjacent batteries 1 in the vertical direction and compressing the battery 1.
  • the battery 1 when assembling the battery module 40, by fixing the battery 1 with a two-component mixed adhesive having a long curing time, the battery 1 is slid on the base plate 42 at an appropriate position in the time until the battery 1 is cured. Can be fixed to. This not only facilitates assembly, but also makes the fixed position more accurate.
  • each of the battery arrays 41A and 41B are extended so as to pass between the peripheral wall 4 and the outer peripheral end E of the exterior portion 3 (battery 1). Therefore, in each of the battery arrays 41A and 41B, none of the bus bars 53 protrudes to the outer peripheral side (outside) with respect to the outer peripheral end E of each outer peripheral portion 3 of the battery 1 in the second direction. .. Since each of the bus bars 53 in each of the battery arrays 41A and 41B is located on the inner peripheral side with respect to the outer peripheral end E of each of the batteries 1, space loss is reduced in each of the battery arrays 41A and 41B. .. As a result, each of the battery arrays 41A and 41B can be further miniaturized, and the volumetric energy density of each of the battery arrays 41A and 41B can be further increased.
  • a modified example only one battery array similar to the battery arrays 41A and 41B is provided.
  • one side of the base plate 42 is the installation surface on which the battery array is installed.
  • a plurality of batteries 1 are arranged in the battery array in the same manner as in each of the battery arrays 41A and 41B.
  • FIG. 16 shows an example of a battery pack 70 in which the battery module 40 of the embodiment shown in FIG. 5 or the like is used.
  • a plurality of batteries 1 are electrically connected in series.
  • the batteries 1 are electrically connected to each other via the bus bars 53, 55 and the like described above.
  • a plurality of batteries 1 may be electrically connected in parallel.
  • both a series connection in which the batteries 1 are connected in series and a parallel connection in which the batteries 1 are connected in parallel may be formed.
  • one (1 ⁇ ) positive electrode terminal (corresponding one of 27) of the plurality of batteries 1 is connected to the positive electrode side module via the bus bar (positive electrode side lead) 56. It is connected to the terminal 51. Then, in the corresponding one (1 ⁇ ) different from the battery (1 ⁇ ) to which the bus bar 56 is connected among the plurality of batteries 1, the negative electrode terminal (corresponding one of 27) is the bus bar (negative electrode side lead). It is connected to the module terminal 52 on the negative electrode side via 57.
  • the battery pack 70 is provided with the printed wiring board 71 described above.
  • a protection circuit 72, a thermistor 73 which is a temperature detector, and an external terminal 75 for energization are mounted on the printed wiring board 71.
  • an insulating member (not shown) prevents unnecessary connection between the electric path on the printed wiring board 84 and the wiring of the battery module 40.
  • the module terminal 51 on the positive electrode side is connected to the protection circuit 72 via the wiring 76 or the like formed on the printed wiring board 71, and the module terminal 52 on the negative electrode side connects the wiring 77 or the like formed on the printed wiring board 71. It is connected to the protection circuit 72 via.
  • the thermistor 73 which is a temperature detector, detects the temperature of each of the plurality of batteries 1 forming the battery module 40. Then, the thermistor 73 outputs a detection signal about the temperature to the protection circuit 72.
  • the battery pack 70 has a current detection function and a voltage detection function.
  • the input current to the battery module 40 and the output current from the battery module 40 may be detected, and the current flowing through any of the plurality of batteries 1 forming the battery module 40 is detected. May be good.
  • the respective voltages of the batteries 1 may be detected in the battery module 40, or the voltage applied to the entire battery module 40 may be detected.
  • the battery module 40 and the protection circuit 72 are connected via the wiring 74.
  • a detection signal for current and a detection signal for voltage are output to the protection circuit 72 via the wiring 74.
  • the positive electrode potential or the negative electrode potential is detected for each of the batteries 1 forming the battery module 40.
  • the battery module 40 is provided with a lithium electrode or the like as a reference electrode. Then, each positive electrode potential or negative electrode potential of the battery 1 is detected with reference to the potential at the reference electrode.
  • the external terminal 75 is connected to an external device of the battery pack 70.
  • the external terminal 75 is used for outputting the current from the battery module 40 to the outside and / or inputting the current to the battery module 40.
  • an electric current is supplied to the outside of the battery pack 70 through an external terminal 75 for energization.
  • the charging current is supplied to the battery module 40 through the external terminal 75 for energization.
  • the charging current of the battery module 40 includes, for example, regenerative energy for power of an automobile or the like.
  • the protection circuit 72 can be connected to the external terminal 75 via the positive wiring 78 and the negative wiring 79.
  • the protection circuit 72 has a function of being able to cut off the electrical connection between the battery module 40 and the external terminal 75.
  • the protection circuit 72 is provided with a relay, a fuse, or the like as a connection cutoff portion. Further, the protection circuit 72 has a function of controlling charging / discharging of the battery module 40.
  • the protection circuit 72 controls charging / discharging of the battery module 40 based on the detection result regarding any of the above-mentioned current, voltage, temperature, and the like.
  • the protection circuit 72 determines that the predetermined condition has been met. Further, when any of overcharge, overdischarge, overcurrent, etc. is detected in the battery module 40, the protection circuit 72 determines that the battery module 40 has met the predetermined conditions. Then, when it is determined that the battery module 40 meets the above-mentioned predetermined conditions, the protection circuit 72 can cut off the continuity between the protection circuit 72 and the external terminal 75 for energization. By cutting off the continuity between the protection circuit 72 and the external terminal 75 for energization, the output of the current from the battery module 40 to the outside and the input of the current to the battery module 40 are stopped. As a result, the continuous generation of overcurrent or the like in the battery module 40 is effectively prevented.
  • a circuit formed in a device that uses the battery pack 70 (battery module 40) as a power source may be used as a protection circuit. Further, in the battery pack 70, a plurality of battery modules 40 may be provided, and the battery modules 40 may be electrically connected in series and / or in parallel.
  • the configuration of the battery pack 70 including the battery module 40 described above is appropriately changed depending on the application.
  • the battery pack 70 is preferably used in a device or the like that is required to be charged and discharged with a large current.
  • Specific uses of the battery pack 70 include a power source for a digital camera, a vehicle-mounted power source for a vehicle, and a stationary power source.
  • examples of the vehicle on which the battery pack 70 including the battery module 40 is mounted include a two-wheel to four-wheel hybrid electric vehicle, a two-wheel to four-wheel electric vehicle, an assisted bicycle, and a railroad vehicle.
  • the battery pack 70 including the battery module 40 of the above-described embodiment has a high volume energy density. Therefore, the battery pack 70 (battery module 40) is preferably used as a starter power source for vehicles as an alternative power source for lead batteries, and is also suitable as an in-vehicle power source mounted on a hybrid vehicle and a stationary power source. Is.
  • FIG. 17 shows an application example to the vehicle 80 as an application example of the battery pack 70 described above.
  • the vehicle 80 includes a vehicle body 81 and a battery pack 70.
  • the vehicle 80 is a four-wheeled vehicle.
  • the vehicle 80 may be equipped with a plurality of battery packs 70.
  • the battery pack 70 is mounted in the engine room located in front of the vehicle body 81.
  • the battery pack 70 may be mounted, for example, behind the vehicle body 81 or under the seat.
  • the battery pack 70 including the battery module 40 described above can be arranged even in a narrow space under the seat.
  • the battery pack 70 can be used as a power source for the vehicle 80. Further, the battery pack 70 can recover the regenerative energy of the power of the vehicle 80.
  • each of the plurality of batteries is arranged in a state in which the vertical direction is along the arrangement direction.
  • the plurality of batteries include a first battery whose bottom wall faces the installation surface of the base plate and a second battery whose second exterior member faces the installation surface of the base plate, and is a battery array. Then, the first battery and the second battery are arranged next to each other. As a result, it is possible to provide a battery module in which the heat generated in each of the batteries is appropriately dissipated and the volumetric energy density is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

According to an embodiment, a battery module comprises a battery array and a base plate, wherein the battery array includes a plurality of batteries. In an exterior part of each of the batteries, a first exterior member includes a bottom wall, a peripheral wall, and a flange that protrudes from an end portion on an opposite side to the bottom wall in the peripheral wall, and a second exterior member is attached to the flange. In each exterior part, the dimension in the height direction is smaller than the dimension in the vertical direction, and the dimension in the vertical direction is smaller than the dimension in the horizontal direction. For each of the batteries, the vertical direction is along the array direction, and in the battery array, a first battery having a bottom wall facing the base plate and a second battery having a second exterior member facing the base plate are adjacent to each other.

Description

電池モジュール、電池パック及び車両Battery modules, battery packs and vehicles
 本発明の実施形態は、電池モジュール、電池パック及び車両に関する。 Embodiments of the present invention relate to battery modules, battery packs and vehicles.
 二次電池等の電池は、正極及び負極を備える電極群と、電極群を収納する内部空洞が形成される外装部と、を備える。そして、電池には、外装部がステンレス等の金属から形成され、外装部が第1の外装部材及び第2の外装部材の2つの外装部材から形成されるものがある。この電池では、第1の外装部材は、底壁及び周壁を備える底付きの容器形状に形成され、周壁によって、内部空洞の外周側が囲まれる。そして、第1の外装部材にはフランジが形成され、フランジは、周壁において底壁とは反対側の端部から外周側へ突出する。この電池では、第2の外装部材は、底壁とは反対側からフランジと対向し、フランジに溶接される。前述のような外装部を備える電池では、底壁と第2の外装部材との間の高さ方向についての寸法が、高さ方向に対して交差する縦方向の寸法、及び、高さ方向及び縦方向に対して交差する横方向の寸法のそれぞれに比べて小さく、外装部が扁平形状に形成される。 A battery such as a secondary battery includes an electrode group including a positive electrode and a negative electrode, and an exterior portion in which an internal cavity for accommodating the electrode group is formed. Some batteries have an exterior portion formed of a metal such as stainless steel, and an exterior portion formed of two exterior members, a first exterior member and a second exterior member. In this battery, the first exterior member is formed in the shape of a bottomed container having a bottom wall and a peripheral wall, and the peripheral wall surrounds the outer peripheral side of the internal cavity. A flange is formed on the first exterior member, and the flange projects from the end portion of the peripheral wall opposite to the bottom wall to the outer peripheral side. In this battery, the second exterior member faces the flange from the side opposite to the bottom wall and is welded to the flange. In a battery having an exterior portion as described above, the height dimension between the bottom wall and the second exterior member intersects the height direction in the vertical direction, and the height direction and It is smaller than each of the horizontal dimensions that intersect with the vertical direction, and the exterior portion is formed in a flat shape.
 また、電池モジュールとして、前述の高さ方向の寸法が小さい扁平形状の外装部を備える電池が、複数設けられたものがある。このような電池モジュールでは、複数の電池がバスバー等を介して電気的に接続される。このような電池モジュールでは、電池のそれぞれで発生した熱が適切に放熱されることが求められる。また、電池モジュール全体の体積を小さくし、電池モジュールの体積エネルギー密度を高く確保することが求められる。 Further, as a battery module, there is a battery module provided with a plurality of batteries having a flat outer portion having a small dimension in the height direction. In such a battery module, a plurality of batteries are electrically connected via a bus bar or the like. In such a battery module, it is required that the heat generated in each of the batteries is appropriately dissipated. Further, it is required to reduce the volume of the entire battery module and secure a high volume energy density of the battery module.
日本国特開2009-99445号公報Japanese Patent Application Laid-Open No. 2009-9445 日本国特開2014-157721号公報Japanese Patent Application Laid-Open No. 2014-157721
 本発明が解決しようとする課題は、電池のそれぞれで発生した熱が適切に放熱されるとともに、体積エネルギー密度が高く確保される電池モジュール、その電池モジュールを備える電池パック、及び、その電池パックを備える車両を提供することにある。 The problem to be solved by the present invention is to provide a battery module in which heat generated in each battery is appropriately dissipated and a high volumetric energy density is secured, a battery pack including the battery module, and the battery pack. The purpose is to provide a vehicle to be equipped.
 実施形態によれば、電池モジュールは、電池配列体及びベース板を備える。電池配列体は、配列方向に配列される複数の電池を備え、ベース板の設置面には、電池配列体が設置される。複数の電池のそれぞれは、正極及び負極を備える電極群と、金属から形成されるとともに、電極群が収納される内部空洞を規定する外装部と、を備える。複数の電池のそれぞれの外装部は、第1の外装部材及び第2の外装部材を備え、第1の外装部材は、底壁と、内部空洞の外周側を囲む周壁と、周壁において底壁とは反対側の端部から外周側へ突出するフランジと、を備える。第2の外装部材は、高さ方向について底壁とは反対側からフランジに取付けられる。複数の電池のそれぞれの外装部及び内部空洞のそれぞれでは、高さ方向についての寸法が、高さ方向に交差する縦方向についての寸法に比べて小さく、かつ、縦方向についての寸法が、高さ方向及び縦方向の両方に交差する横方向についての寸法に比べて小さくなる。複数の電池のそれぞれは、縦方向が配列方向に沿う状態で配置される。複数の電池は、ベース板の設置面に底壁が対向する第1の電池と、ベース板の設置面に第2の外装部材が対向する第2の電池と、を備え、電池配列体では、第1の電池及び第2の電池が隣り合って配置される。 According to the embodiment, the battery module includes a battery array and a base plate. The battery array includes a plurality of batteries arranged in the arrangement direction, and the battery array is installed on the installation surface of the base plate. Each of the plurality of batteries includes an electrode group including a positive electrode and a negative electrode, and an exterior portion formed of metal and defining an internal cavity in which the electrode group is housed. Each exterior portion of the plurality of batteries includes a first exterior member and a second exterior member, and the first exterior member includes a bottom wall, a peripheral wall surrounding the outer peripheral side of the internal cavity, and a bottom wall in the peripheral wall. Includes a flange that projects from the opposite end to the outer peripheral side. The second exterior member is attached to the flange from the side opposite to the bottom wall in the height direction. In each of the exterior and internal cavities of the plurality of batteries, the dimensions in the height direction are smaller than the dimensions in the vertical direction intersecting the height directions, and the dimensions in the vertical direction are higher. It is smaller than the dimensions in the horizontal direction that intersect both the directional and vertical directions. Each of the plurality of batteries is arranged so that the vertical direction is along the arrangement direction. The plurality of batteries include a first battery in which the bottom wall faces the installation surface of the base plate and a second battery in which the second exterior member faces the installation surface of the base plate. The first battery and the second battery are arranged next to each other.
 また、実施形態によれば、前述の電池モジュールを備える電池パックが提供される。 Further, according to the embodiment, a battery pack including the above-mentioned battery module is provided.
 また、実施形態によれば、前述の電池パックを備える車両が提供される。 Further, according to the embodiment, a vehicle equipped with the above-mentioned battery pack is provided.
図1は、実施形態に係る電池の一例を概略的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of a battery according to an embodiment. 図2は、図1の電池を部材ごとに分解して概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing the battery of FIG. 1 disassembled for each member. 図3は、図1の電池の電極群の構成を示す概略図である。FIG. 3 is a schematic view showing the configuration of the electrode group of the battery of FIG. 図4は、図1の電池において、電極群と一対の電極端子の一方との間の電気的な接続構成を示す概略図である。FIG. 4 is a schematic view showing an electrical connection configuration between an electrode group and one of a pair of electrode terminals in the battery of FIG. 図5は、実施形態に係る電池モジュールの一例を、カバーを省略して、概略的に示す斜視図である。FIG. 5 is a perspective view schematically showing an example of the battery module according to the embodiment, omitting the cover. 図6は、図5の電池モジュールを、図5から異なる方向から視た状態で概略的に示す斜視図である。FIG. 6 is a perspective view schematically showing the battery module of FIG. 5 in a state of being viewed from a direction different from that of FIG. 図7は、図5の電池モジュールを、カバーで覆われた状態で概略的に示す斜視図である。FIG. 7 is a perspective view schematically showing the battery module of FIG. 5 in a state of being covered with a cover. 図8は、図5の電池モジュールの電池配列体において、隣り合う2つの電池を概略的に示す斜視図である。FIG. 8 is a perspective view schematically showing two adjacent batteries in the battery array of the battery module of FIG. 図9は、図5の電池モジュールの電池配列体において、隣り合う2つの電池を、第2の方向の一方側から視た状態で示す概略図である。FIG. 9 is a schematic view showing two adjacent batteries in the battery array of the battery module of FIG. 5 as viewed from one side in the second direction. 図10は、図5の電池モジュールの電池配列体において、隣り合う2つの電池を、2つ電池及びこれらの電池の間の絶縁部材を互いに対して分離した状態で概略的に示す斜視図である。FIG. 10 is a perspective view schematically showing two adjacent batteries in the battery array of the battery module of FIG. 5 in a state where the two batteries and the insulating member between the two batteries are separated from each other. .. 図11は、図5の電池モジュールの電池配列体に設けられる絶縁部材単体を概略的に示す斜視図である。FIG. 11 is a perspective view schematically showing a single insulating member provided in the battery array of the battery module of FIG. 図12は、図5の電池モジュールにおいて、絶縁部材のベース板への取付け構造を示す概略図である。FIG. 12 is a schematic view showing a structure for attaching an insulating member to a base plate in the battery module of FIG. 図13は、図5の電池モジュールにおいて、ある1つの電池の対象端子へのバスバーの接続状態を示す概略図である。FIG. 13 is a schematic view showing a connection state of a bus bar to a target terminal of a certain battery in the battery module of FIG. 図14は、図5の電池モジュールのベース板の構成を概略的に示す断面図である。FIG. 14 is a cross-sectional view schematically showing the configuration of the base plate of the battery module of FIG. 図15は、図5の電池モジュールにおいて、ベース板の設置面への電池配列体の設置を説明する概略図である。FIG. 15 is a schematic view illustrating the installation of the battery array on the installation surface of the base plate in the battery module of FIG. 図16は、実施形態に係る電池モジュールが用いられる電池パックの一例を示す概略図である。FIG. 16 is a schematic view showing an example of a battery pack in which the battery module according to the embodiment is used. 図17は、実施形態に係る電池パックが用いられる車両の一例を示す概略図である。FIG. 17 is a schematic view showing an example of a vehicle in which the battery pack according to the embodiment is used.
 以下、実施形態について図面を参照して説明する。実施形態に係る電池モジュールは、複数の電池を備える。 Hereinafter, embodiments will be described with reference to the drawings. The battery module according to the embodiment includes a plurality of batteries.
 [電池]
 まず、電池モジュールに用いられる電池の単体について、説明する。図1は、実施形態に係る電池1の一例を示す。また、図2は、図1の電池1を部材ごとに分解して示す。電池モジュールに設けられる複数の電池のそれぞれは、以下に説明する電池1と同様の構成である。電池1は、例えば二次電池である。
[battery]
First, a single battery used in the battery module will be described. FIG. 1 shows an example of the battery 1 according to the embodiment. Further, FIG. 2 shows the battery 1 of FIG. 1 disassembled for each member. Each of the plurality of batteries provided in the battery module has the same configuration as the battery 1 described below. The battery 1 is, for example, a secondary battery.
 図1及び図2に示すように、電池1は、外装部3を備える。外装部3は、ステンレス鋼等の金属から形成される。外装部3を形成するステンレス鋼以外の金属としては、アルミニウム、アルミニウム合金、鉄、及び、メッキ鋼等が挙げられる。また、外装部3の内部には、内部空洞11が形成される。電池1及び外装部3では、縦方向(矢印X1及び矢印X2で示す方向)、縦方向に対して交差する(垂直又は略垂直な)横方向(矢印Y1及び矢印Y2で示す方向)、及び、縦方向及び横方向の両方に対して交差する(垂直又は略垂直な)高さ方向(矢印Z1及び矢印Z2で示す方向)が、規定される。 As shown in FIGS. 1 and 2, the battery 1 includes an exterior portion 3. The exterior portion 3 is formed of a metal such as stainless steel. Examples of the metal other than stainless steel forming the exterior portion 3 include aluminum, aluminum alloy, iron, and plated steel. Further, an internal cavity 11 is formed inside the exterior portion 3. In the battery 1 and the exterior portion 3, the vertical direction (direction indicated by arrows X1 and X2), the horizontal direction (vertical or substantially vertical) intersecting the vertical direction (direction indicated by arrow Y1 and arrow Y2), and Height directions (directions indicated by arrows Z1 and Z2) that intersect (vertical or substantially vertical) with respect to both the vertical and horizontal directions are defined.
 外装部3は、第1の外装部材(カップ部材)5及び第2の外装部材(蓋部材)6を備える。第1の外装部材5は、底付きの容器形状に形成される。本実施形態では、第1の外装部材5は、底壁7及び周壁4を有し、一面が開口した略直方体状に形成される。底壁7は、内部空洞11に対して高さ方向の一方側(矢印Z1側)に位置する。また、周壁4は、外装部3の周方向に沿って延設され、内部空洞11の外周側は、周壁4によって囲まれる。そして、内部空洞11は、周壁4に対して、内周側に隣接する。 The exterior portion 3 includes a first exterior member (cup member) 5 and a second exterior member (lid member) 6. The first exterior member 5 is formed in the shape of a container with a bottom. In the present embodiment, the first exterior member 5 has a bottom wall 7 and a peripheral wall 4, and is formed in a substantially rectangular parallelepiped shape with one side open. The bottom wall 7 is located on one side (arrow Z1 side) in the height direction with respect to the internal cavity 11. Further, the peripheral wall 4 extends along the circumferential direction of the exterior portion 3, and the outer peripheral side of the internal cavity 11 is surrounded by the peripheral wall 4. The internal cavity 11 is adjacent to the peripheral wall 4 on the inner peripheral side.
 また、第1の外装部材5の内部空間は、外装部3の内部空洞11の少なくとも一部を形成し、底壁7が位置する側とは反対側へ向かって開口する。そして、第1の外装部材5の内部空間の開口の開口縁は、周壁4において、底壁7とは反対側の端部に形成される。ここで、電池1及び外装部3では、第1の外装部材5の内部空間の開口縁に沿う方向が、周方向と一致又は略一致する。そして、周壁4に対して内部空洞11(内部空間)が位置する側が内周側であり、内周側とは反対側が外周側である。 Further, the internal space of the first exterior member 5 forms at least a part of the internal cavity 11 of the exterior portion 3, and opens toward the side opposite to the side where the bottom wall 7 is located. The opening edge of the opening of the internal space of the first exterior member 5 is formed on the peripheral wall 4 at the end opposite to the bottom wall 7. Here, in the battery 1 and the exterior portion 3, the direction along the opening edge of the internal space of the first exterior member 5 coincides with or substantially coincides with the circumferential direction. The side where the internal cavity 11 (internal space) is located with respect to the peripheral wall 4 is the inner peripheral side, and the side opposite to the inner peripheral side is the outer peripheral side.
 周壁4は、二対の側壁8,9を備える。一対の側壁(第1の側壁)8は、縦方向について内部空洞11を挟んで対向する。そして、一対の側壁(第2の側壁)9は、横方向について内部空洞11を挟んで対向する。側壁8のそれぞれは、側壁9の間に、横方向に沿って連続して延設される。また、側壁9のそれぞれは、側壁8の間に、縦方向に沿って連続して延設される。 The peripheral wall 4 includes two pairs of side walls 8 and 9. The pair of side walls (first side wall) 8 face each other with the internal cavity 11 interposed therebetween in the vertical direction. The pair of side walls (second side wall) 9 face each other with the internal cavity 11 interposed therebetween in the lateral direction. Each of the side walls 8 is continuously extended along the lateral direction between the side walls 9. Further, each of the side walls 9 is continuously extended along the vertical direction between the side walls 8.
 第1の外装部材5は、フランジ13を備える。フランジ13は、周壁4(側壁8,9)において底壁7とは反対側の端部から外周側へ突出する。このため、フランジ13は、周壁4に対して外周側へ突出するとともに、高さ方向について底壁7から離れて形成される。フランジ13は、外装部3の周方向について全周に渡って形成され、外装部3の周方向について全周に渡って外周側へ突出する。また、フランジ13は、第1の外装部材5の内部空間の開口縁から、外周側へ向かって延設される。 The first exterior member 5 includes a flange 13. The flange 13 projects from the end of the peripheral wall 4 (side walls 8 and 9) opposite to the bottom wall 7 to the outer peripheral side. Therefore, the flange 13 projects toward the outer peripheral side with respect to the peripheral wall 4, and is formed apart from the bottom wall 7 in the height direction. The flange 13 is formed over the entire circumference in the circumferential direction of the exterior portion 3, and projects toward the outer periphery over the entire circumference in the circumferential direction of the exterior portion 3. Further, the flange 13 extends from the opening edge of the internal space of the first exterior member 5 toward the outer peripheral side.
 本実施形態では、第2の外装部材6は、略板状の部材であり、例えば、略長方形状に形成される。第2の外装部材6は、電池1の高さ方向について底壁7が位置する側とは反対側から、フランジ13に取付けられ、底壁7とは反対側からフランジ13と対向する。そして、第1の外装部材5の内部空間の開口は、第2の外装部材6によって塞がれる。第2の外装部材6は、高さ方向について内部空洞11を挟んで底壁7と対向する頂壁15を備える。このため、第1の外装部材5の底壁7は、高さ方向について内部空洞11を挟んで第2の外装部材6(頂壁15)と対向する。また、周壁4及びフランジ13は、高さ方向について底壁7と第2の外装部材6との間に、設けられる。 In the present embodiment, the second exterior member 6 is a substantially plate-shaped member, and is formed, for example, in a substantially rectangular shape. The second exterior member 6 is attached to the flange 13 from the side opposite to the side where the bottom wall 7 is located in the height direction of the battery 1, and faces the flange 13 from the side opposite to the bottom wall 7. Then, the opening of the internal space of the first exterior member 5 is closed by the second exterior member 6. The second exterior member 6 includes a top wall 15 facing the bottom wall 7 with the internal cavity 11 interposed therebetween in the height direction. Therefore, the bottom wall 7 of the first exterior member 5 faces the second exterior member 6 (top wall 15) with the internal cavity 11 interposed therebetween in the height direction. Further, the peripheral wall 4 and the flange 13 are provided between the bottom wall 7 and the second exterior member 6 in the height direction.
 第2の外装部材6は、周壁4(側壁8,9)に対して外周側へ突出する。そして、第2の外装部材6は、外装部3の周方向について全周に渡って外周側へ突出する。また、本実施形態では、板状の第2の外装部材6の厚さ方向は、電池1(外装部3)の高さ方向と一致又は略一致する。 The second exterior member 6 projects toward the outer peripheral side with respect to the peripheral wall 4 (side walls 8 and 9). Then, the second exterior member 6 projects toward the outer periphery over the entire circumference in the circumferential direction of the exterior portion 3. Further, in the present embodiment, the thickness direction of the plate-shaped second exterior member 6 coincides with or substantially coincides with the height direction of the battery 1 (exterior portion 3).
 第2の外装部材6は、フランジ13に対して底壁7とは反対側に配置された状態でフランジ13に溶接される。溶接部分では、フランジ13及び第2の外装部材6が、気密に溶接される。フランジ13の第2の外装部材6への溶接部分は、第1の外装部材5の内部空間の開口縁に対して、外装部3の外周側に形成される。また、フランジ13及び第2の外装部材6の溶接部分は、周方向について全周に渡って連続して形成される。このため、外装部3の内部空洞は、密閉及び封止される。なお、溶接部分では、例えば、抵抗シーム溶接によって、フランジ13及び第2の外装部材6が溶接される。抵抗シーム溶接が行われることにより、レーザ溶接等に比べて、コストが抑えられるとともに、フランジ13と第2の外装部材6との間の気密性が高い。 The second exterior member 6 is welded to the flange 13 in a state of being arranged on the side opposite to the bottom wall 7 with respect to the flange 13. At the welded portion, the flange 13 and the second exterior member 6 are airtightly welded. The welded portion of the flange 13 to the second exterior member 6 is formed on the outer peripheral side of the exterior portion 3 with respect to the opening edge of the internal space of the first exterior member 5. Further, the welded portions of the flange 13 and the second exterior member 6 are continuously formed over the entire circumference in the circumferential direction. Therefore, the internal cavity of the exterior portion 3 is sealed and sealed. In the welded portion, the flange 13 and the second exterior member 6 are welded by, for example, resistance seam welding. By performing resistance seam welding, the cost is suppressed as compared with laser welding and the like, and the airtightness between the flange 13 and the second exterior member 6 is high.
 本実施形態では、底壁7と第2の外装部材6(頂壁15)との間の高さ方向についての寸法は、一対の側壁(第1の側壁)8の間の縦方向についての寸法、及び、一対の側壁(第2の側壁)9の間の横方向について寸法のそれぞれに比べて、遥かに小さい。このため、内部空洞11では、高さ方向についての寸法が、縦方向についての寸法、及び、横方向についての寸法のそれぞれに比べて、遥かに小さくなる。また、外装部3の肉厚は、外装部3(外装部材5,6)の全体に渡って均一又は略均一に形成される。外装部3の肉厚は、薄く、例えば、0.02mm以上0.3mm以下に形成される。したがって、電池1では、高さ方向についての寸法が、縦方向についての寸法、及び、横方向についての寸法のそれぞれに比べて、遥かに小さくなる。すなわち、外装部3は、高さ方向の寸法が縦方向の寸法及び横方向の寸法のそれぞれに比べて小さい扁平形状に、形成される。 In the present embodiment, the height dimension between the bottom wall 7 and the second exterior member 6 (top wall 15) is the vertical dimension between the pair of side walls (first side wall) 8. And, in the lateral direction between the pair of side walls (second side wall) 9, they are much smaller than each of the dimensions. Therefore, in the internal cavity 11, the dimensions in the height direction are much smaller than the dimensions in the vertical direction and the dimensions in the horizontal direction. Further, the wall thickness of the exterior portion 3 is formed uniformly or substantially uniformly over the entire exterior portion 3 (exterior members 5, 6). The wall thickness of the exterior portion 3 is thin, for example, 0.02 mm or more and 0.3 mm or less. Therefore, in the battery 1, the dimensions in the height direction are much smaller than the dimensions in the vertical direction and the dimensions in the horizontal direction. That is, the exterior portion 3 is formed in a flat shape in which the height direction dimension is smaller than the vertical dimension and the horizontal dimension respectively.
 また、本実施形態では、一対の側壁8の間の縦方向についての寸法が、一対の側壁9の間の横方向についての寸法に比べて小さい。このため、内部空洞11では、縦方向についての寸法が、横方向についての寸法に比べて、小さくなる。そして、電池1では、縦方向についての寸法は、横方向についての寸法に比べて、小さくなる。また、周壁4から外周側へのフランジ13及び第2の外装部材6の突出寸法は、2mm以上5mm以下程度である。本実施形態では、フランジ13及び第2の外装部材6の突出部分の突出端によって、外装部3(電池1)の外周端Eが形成される。 Further, in the present embodiment, the dimension in the vertical direction between the pair of side walls 8 is smaller than the dimension in the horizontal direction between the pair of side walls 9. Therefore, in the internal cavity 11, the dimension in the vertical direction is smaller than the dimension in the horizontal direction. Then, in the battery 1, the dimension in the vertical direction is smaller than the dimension in the horizontal direction. Further, the protruding dimensions of the flange 13 and the second exterior member 6 from the peripheral wall 4 to the outer peripheral side are about 2 mm or more and 5 mm or less. In the present embodiment, the outer peripheral end E of the exterior portion 3 (battery 1) is formed by the protruding ends of the flange 13 and the protruding portion of the second exterior member 6.
 外装部3(外装部材5,6)が前述のような構成であるため、底壁7及び第2の外装部材6(頂壁15)のそれぞれの外表面の面積は、一対の側壁(第1の側壁)8のそれぞれの外表面の面積に比べて、大きい。そして、側壁8のそれぞれの外表面の面積は、一対の側壁(第2の側壁)9のそれぞれの外表面の面積に比べて、大きい。また、側壁8のそれぞれの横方向についての寸法は、側壁9のそれぞれの縦方向についての寸法に比べて、大きい。 Since the exterior portion 3 (exterior members 5 and 6) has the above-described configuration, the area of the outer surface of each of the bottom wall 7 and the second exterior member 6 (top wall 15) is a pair of side walls (first). Side wall) 8 is larger than the area of each outer surface. The area of each outer surface of the side wall 8 is larger than the area of each outer surface of the pair of side walls (second side wall) 9. Further, the dimensions of the side wall 8 in each lateral direction are larger than the dimensions of the side wall 9 in each vertical direction.
 外装部3の内部空洞11には、電極群10が収納される。図3は、電極群10の構成を説明する図である。図3に示すように、電極群10は、例えば、扁平形状に形成され、正極21、負極22及びセパレータ23,25を備える。正極21は、正極集電体としての正極集電箔21Aと、正極集電箔21Aの表面に担持される正極活物質含有層21Bと、を備える。正極集電箔21Aは、アルミニウム箔又はアルミニウム合金箔等であり、厚さが10μm~20μm程度である。正極集電箔21Aには、正極活物質、結着剤及び導電剤を含むスラリーが塗布される。正極活物質としては、これらに限定されるものではないが、リチウムを吸蔵放出できる酸化物、硫化物及びポリマー等が挙げられる。また、高い正極電位を得られる観点から、正極活物質は、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物及びリチウム燐酸鉄等が、用いられることが好ましい。 The electrode group 10 is housed in the internal cavity 11 of the exterior portion 3. FIG. 3 is a diagram illustrating the configuration of the electrode group 10. As shown in FIG. 3, the electrode group 10 is formed in a flat shape, for example, and includes a positive electrode 21, a negative electrode 22, and separators 23 and 25. The positive electrode 21 includes a positive electrode current collector foil 21A as a positive electrode current collector and a positive electrode active material-containing layer 21B supported on the surface of the positive electrode current collector foil 21A. The positive electrode current collecting foil 21A is an aluminum foil, an aluminum alloy foil, or the like, and has a thickness of about 10 μm to 20 μm. A slurry containing a positive electrode active material, a binder and a conductive agent is applied to the positive electrode current collector foil 21A. Examples of the positive electrode active material include, but are not limited to, oxides, sulfides, polymers, and the like that can occlude and release lithium. Further, from the viewpoint of obtaining a high positive electrode potential, it is preferable to use lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, iron lithium phosphate or the like as the positive electrode active material.
 負極22は、負極集電体としての負極集電箔22Aと、負極集電箔22Aの表面に担持される負極活物質含有層22Bと、を備える。負極集電箔22Aは、アルミニウム箔、アルミニウム合金箔又は銅箔等であり、厚さが10μm~20μm程度である。負極集電箔22Aには、負極活物質、結着剤及び導電剤を含むスラリーが塗布される。負極活物質としては、特に限定されるものではないが、リチウムイオンを吸蔵放出できる金属酸化物、金属硫化物、金属窒化物及び炭素材料等が挙げられる。負極活物質としては、リチウムイオンの吸蔵放出電位が金属リチウム電位に対して0.4V以上となる物質、すなわち、リチウムイオンの吸蔵放出電位が0.4V(vs.Li/Li)以上になる物質であることが好ましい。このようなリチウムイオン吸蔵放出電位を有する負極活物質を用いることにより、アルミニウム又はアルミニウム合金とリチウムとの合金反応が抑えられるため、負極集電箔22A及び負極22に関連する構成部材に、アルミニウム及びアルミニウム合金を使用可能になる。リチウムイオンの吸蔵放出電位が0.4V(vs.Li/Li)以上になる負極活物質としては、例えば、チタン酸化物、チタン酸リチウム等のリチウムチタン複合酸化物、タングステン酸化物、アモルファススズ酸化物、ニオブ・チタン複合酸化物、スズ珪素酸化物、及び、酸化珪素等が挙げられ、リチウムチタン複合酸化物を負極活物質として用いることが、特に好ましい。なお、リチウムイオンを吸蔵放出する炭素材料を負極活物質として用いる場合は、負極集電箔22Aは銅箔を用いるとよい。負極活物質として用いられる炭素材料は、リチウムイオンの吸蔵放出電位が0V(vs.Li/Li)程度になる。 The negative electrode 22 includes a negative electrode current collector foil 22A as a negative electrode current collector and a negative electrode active material-containing layer 22B supported on the surface of the negative electrode current collector foil 22A. The negative electrode current collecting foil 22A is an aluminum foil, an aluminum alloy foil, a copper foil, or the like, and has a thickness of about 10 μm to 20 μm. A slurry containing a negative electrode active material, a binder and a conductive agent is applied to the negative electrode current collector foil 22A. The negative electrode active material is not particularly limited, and examples thereof include metal oxides, metal sulfides, metal nitrides, and carbon materials capable of occluding and releasing lithium ions. As the negative electrode active material, a substance having a lithium ion occlusion / release potential of 0.4 V or more with respect to the metallic lithium potential, that is, a lithium ion occlusion / release potential of 0.4 V (vs. Li + / Li) or more. It is preferably a substance. By using a negative electrode active material having such a lithium ion occlusion / release potential, the alloy reaction between aluminum or an aluminum alloy and lithium is suppressed. Therefore, aluminum and aluminum and the constituent members related to the negative electrode current collecting foil 22A and the negative electrode 22 are used. Aluminum alloy can be used. Examples of the negative electrode active material in which the storage / release potential of lithium ions is 0.4 V (vs. Li + / Li) or more include titanium oxide, lithium titanium composite oxide such as lithium titanate, tungsten oxide, and amorphous tin. Examples thereof include oxides, niobium-titanium composite oxides, tin silicon oxides, silicon oxide and the like, and it is particularly preferable to use lithium titanium composite oxides as the negative electrode active material. When a carbon material that occludes and releases lithium ions is used as the negative electrode active material, it is preferable to use a copper foil for the negative electrode current collecting foil 22A. The carbon material used as the negative electrode active material has an occlusion / release potential of lithium ions of about 0 V (vs. Li + / Li).
 正極集電箔21A及び負極集電箔22Aに用いられるアルミニウム合金は、Mg、Ti、Zn、Mn、Fe、Cu及びSiから選択される1種または2種以上の元素を含むことが望ましい。アルミニウム及びアルミニウム合金の純度は、98重量%以上にすることができ、99.99重量%以上が好ましい。また、純度100%の純アルミニウムを、正極集電体及び/又は負極集電体の材料として用いることが可能である。アルミニウム及びアルミニウム合金における、ニッケル、クロムなどの遷移金属の含有量は100重量ppm以下(0重量ppmを含む)にすることが好ましい。 The aluminum alloy used for the positive electrode current collecting foil 21A and the negative electrode current collecting foil 22A preferably contains one or more elements selected from Mg, Ti, Zn, Mn, Fe, Cu and Si. The purity of aluminum and aluminum alloy can be 98% by weight or more, preferably 99.99% by weight or more. Further, pure aluminum having a purity of 100% can be used as a material for the positive electrode current collector and / or the negative electrode current collector. The content of transition metals such as nickel and chromium in aluminum and aluminum alloys is preferably 100 ppm by weight or less (including 0 ppm by weight).
 正極集電箔21Aでは、一方の長辺縁21C及びその近傍部位によって、正極集電タブ21Dが形成される。図3の一例では、正極集電タブ21Dは、長辺縁21Cの全長に渡って形成される。正極集電タブ21Dでは、正極集電箔21Aの表面に正極活物質含有層21Bが担持されない。したがって、正極集電箔21Aは、正極活物質含有層21Bが未担持の部分として正極集電タブ21Dを備える。また、負極集電箔22Aでは、一方の長辺縁22C及びその近傍部位によって、負極集電タブ22Dが形成される。図3の一例では、負極集電タブ22Dは、長辺縁22Cの全長に渡って形成される。負極集電タブ22Dでは、負極集電箔22Aの表面に負極活物質含有層22Bが担持されない。したがって、負極集電箔22Aは、負極活物質含有層22Bが未担持の部分として負極集電タブ22Dを備える。 In the positive electrode current collecting foil 21A, the positive electrode current collecting tab 21D is formed by one long side edge 21C and a portion in the vicinity thereof. In one example of FIG. 3, the positive electrode current collecting tab 21D is formed over the entire length of the long edge 21C. In the positive electrode current collecting tab 21D, the positive electrode active material-containing layer 21B is not supported on the surface of the positive electrode current collecting foil 21A. Therefore, the positive electrode current collecting foil 21A includes a positive electrode current collecting tab 21D as a portion where the positive electrode active material-containing layer 21B is not supported. Further, in the negative electrode current collecting foil 22A, the negative electrode current collecting tab 22D is formed by one long side edge 22C and a portion in the vicinity thereof. In one example of FIG. 3, the negative electrode current collecting tab 22D is formed over the entire length of the long side edge 22C. In the negative electrode current collecting tab 22D, the negative electrode active material-containing layer 22B is not supported on the surface of the negative electrode current collecting foil 22A. Therefore, the negative electrode current collecting foil 22A includes a negative electrode current collecting tab 22D as a portion where the negative electrode active material-containing layer 22B is not supported.
 セパレータ23,25のそれぞれは、電気的に絶縁性を有する材料から形成され、正極21と負極22との間を電気的に絶縁する。セパレータ23,25のそれぞれは、正極21及び負極22とは別体のシート等であってもよく、正極21及び負極22の一方と一体に形成されてもよい。また、セパレータ23,25は、有機材料から形成されてもよく、無機材料から形成されてもよく、有機材料と無機材料との混合物から形成されてもよい。セパレータ23,25を形成する有機材料としては、エンプラ及びスーパーエンプラが挙げられる。そして、エンプラとしては、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ポリエチレンテレフタレート、シンジオタクチック・ポリスチレン、ポリカーボネート、ポリアミドイミド、ポリビニルアルコール、ポリフッ化ビニリデン及び変性ポリフェニレンエーテル等が挙げられる。また、スーパーエンプラとしては、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、ポリビニリデンフロライド、ポリテトラフルオロエチレン(PTFE)、ポリエーテルニトリル、ポリサルホン、ポリアクリレート、ポリエーテルイミド及び熱可塑性ポリイミド等が挙げられる。また、セパレータ23,25を形成する無機材料としては、酸化物(例えば、酸化アルミニウム、二酸化ケイ素、酸化マグネシウム、リン酸化物、酸化カルシウム、酸化鉄、酸化チタン)、窒化物(例えば、窒化ホウ素、窒化アルミニウム、窒化珪素、窒化バリウム)等が挙げられる。 Each of the separators 23 and 25 is formed of an electrically insulating material, and electrically insulates between the positive electrode 21 and the negative electrode 22. Each of the separators 23 and 25 may be a sheet or the like separate from the positive electrode 21 and the negative electrode 22, or may be integrally formed with one of the positive electrode 21 and the negative electrode 22. Further, the separators 23 and 25 may be formed of an organic material, an inorganic material, or a mixture of the organic material and the inorganic material. Examples of the organic material forming the separators 23 and 25 include engineering plastics and super engineering plastics. Examples of engineering plastics include polyamide, polyacetal, polybutylene terephthalate, polyethylene terephthalate, syndiotactic polystyrene, polycarbonate, polyamideimide, polyvinyl alcohol, polyvinylidene fluoride, and modified polyphenylene ether. Examples of the superempura include polyphenylene sulfide, polyetheretherketone, liquid crystal polymer, polyvinylidene fluoride, polytetrafluoroethylene (PTFE), polyethernitrile, polysulfone, polyacrylate, polyetherimide, and thermoplastic polyimide. Be done. Examples of the inorganic material forming the separators 23 and 25 include oxides (for example, aluminum oxide, silicon dioxide, magnesium oxide, phosphor oxide, calcium oxide, iron oxide, titanium oxide) and nitrides (for example, boron nitride, etc.). (Aluminum nitride, silicon nitride, barium nitride) and the like.
 電極群10では、正極活物質含有層21Bと負極活物質含有層22Bとの間でセパレータ23,25のそれぞれが挟まれた状態で、正極21、負極22及びセパレータ23,25が捲回軸Bを中心として扁平形状に捲回される。正極21、セパレータ23、負極22及びセパレータ25は、例えば、この順に重ねられた状態で、捲回される。また、電極群10では、正極集電箔21Aの正極集電タブ21Dが、負極22及びセパレータ23,25に対して、捲回軸Bに沿う方向の一方側へ突出する。そして、負極集電箔22Aの負極集電タブ22Dが、正極21及びセパレータ23,25に対して、捲回軸Bに沿う方向について正極集電タブ21Dが突出する側とは反対側に、突出する。 In the electrode group 10, the positive electrode 21, the negative electrode 22, and the separators 23 and 25 are wound shaft B with the separators 23 and 25 sandwiched between the positive electrode active material-containing layer 21B and the negative electrode active material-containing layer 22B. It is wound into a flat shape around the center. The positive electrode 21, the separator 23, the negative electrode 22, and the separator 25 are wound in a state of being stacked in this order, for example. Further, in the electrode group 10, the positive electrode current collecting tab 21D of the positive electrode current collecting foil 21A projects to one side in the direction along the winding axis B with respect to the negative electrode 22 and the separators 23 and 25. Then, the negative electrode current collecting tab 22D of the negative electrode current collecting foil 22A protrudes from the positive electrode 21 and the separators 23 and 25 on the side opposite to the side on which the positive electrode current collecting tab 21D protrudes in the direction along the winding axis B. To do.
 電極群10は、捲回軸Bが電池1の横方向に対して平行又は略平行になる状態で配置される。このため、外装部3の内部空洞11では、正極集電タブ21Dは、横方向の一方側へ負極22及びセパレータ23,25に対して突出する。そして、負極集電タブ22Dは、正極21及びセパレータ23,25に対して、横方向について正極集電タブ21Dが突出する側とは反対側に、突出する。 The electrode group 10 is arranged so that the winding shaft B is parallel or substantially parallel to the lateral direction of the battery 1. Therefore, in the internal cavity 11 of the exterior portion 3, the positive electrode current collecting tab 21D projects to one side in the lateral direction with respect to the negative electrode 22 and the separators 23 and 25. Then, the negative electrode current collecting tab 22D projects laterally to the positive electrode 21 and the separators 23 and 25 on the side opposite to the side on which the positive electrode current collecting tab 21D protrudes.
 また、電極群10は、正極、負極及びセパレータが捲回される捲回構造を有する必要はない。ある実施例では、電極群10は、複数の正極及び複数の負極が交互に積層されるスタック構造を有し、正極と負極との間にはセパレータが設けられる。この場合も、電極群10では、正極集電タブが、電池1(外装部3)の横方向について一方側へ、負極に対して突出する。そして、電極群では、負極集電タブが、電池1の横方向について、正極集電タブが突出する側とは反対側へ、正極に対して突出する。 Further, the electrode group 10 does not need to have a winding structure in which the positive electrode, the negative electrode and the separator are wound. In one embodiment, the electrode group 10 has a stack structure in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated, and a separator is provided between the positive electrode and the negative electrode. Also in this case, in the electrode group 10, the positive electrode current collecting tab protrudes to one side in the lateral direction of the battery 1 (exterior portion 3) with respect to the negative electrode. Then, in the electrode group, the negative electrode current collecting tab protrudes with respect to the positive electrode in the lateral direction of the battery 1 to the side opposite to the side on which the positive electrode current collecting tab protrudes.
 ある実施例では、内部空洞11において、電極群10に、電解液(図示しない)が含浸される。電解液としては、非水電解液が用いられ、例えば、電解質を有機溶媒に溶解することにより調製される非水電解液が用いられる。この場合、有機溶媒に溶解させる電解質として、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)及びビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]等のリチウム塩、及び、これらの混合物が挙げられる。また、有機溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)及びビニレンカーボネート等の環状カーボネート;ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)及びメチルエチルカーボネート(MEC)等の鎖状カーボネート;テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、及びジオキソラン(DOX)等の環状エーテル;ジメトキシエタン(DME)及びジエトキシエタン(DEE)等の鎖状エーテル;γ-ブチロラクトン(GBL)、アセトニトリル(AN)及びスルホラン(SL)等が挙げられる。これらの有機溶媒は、単独で、又は、混合溶媒として用いられる。 In one embodiment, the electrode group 10 is impregnated with an electrolytic solution (not shown) in the internal cavity 11. As the electrolytic solution, a non-aqueous electrolytic solution is used. For example, a non-aqueous electrolytic solution prepared by dissolving an electrolyte in an organic solvent is used. In this case, as the electrolyte to be dissolved in the organic solvent, lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6) ), Lithium salts such as lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) and bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], and mixtures thereof. Further, as the organic solvent, cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC) and vinylene carbonate; chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC); tetrahydrofuran. Cyclic ethers such as (THF), dimethyltetrahydrofuran (2MeTHF), and dioxolane (DOX); chain ethers such as dimethoxyethane (DME) and diethoxyethane (DEE); γ-butyrolactone (GBL), acetonitrile (AN). And sulfolane (SL) and the like. These organic solvents are used alone or as a mixed solvent.
 また、ある実施例では、非水電解質として、非水電解液と高分子材料とを複合化したゲル状非水電解質が、電解液の代わりに用いられる。この場合、前述した電解質及び有機溶媒が用いられる。また、高分子材料として、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)及びポリエチレンオキサイド(PEO)等が挙げられる。 Further, in a certain embodiment, as the non-aqueous electrolyte, a gel-like non-aqueous electrolyte in which a non-aqueous electrolyte solution and a polymer material are composited is used instead of the electrolyte solution. In this case, the above-mentioned electrolyte and organic solvent are used. Examples of the polymer material include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO) and the like.
 また、ある実施例では、電解液の代わりに、高分子固体電解質及び無機固体電解質等の固体電解質が非水電解質として設けられる。この場合、電極群10に、セパレータ23,25が設けられなくてもよい。そして、電極群10では、セパレータ23,25の代わりに、固体電解質が正極21と負極22との間で挟まれる。このため、本実施例では、固体電解質によって、正極21と負極22との間が電気的に絶縁される。また、ある実施例では、非水電解質の代わりに水系溶媒を含む水系電解質が、電解質として用いられてもよい。 Further, in a certain embodiment, instead of the electrolytic solution, a solid electrolyte such as a polymer solid electrolyte and an inorganic solid electrolyte is provided as a non-aqueous electrolyte. In this case, the electrodes 23 and 25 may not be provided in the electrode group 10. Then, in the electrode group 10, instead of the separators 23 and 25, a solid electrolyte is sandwiched between the positive electrode 21 and the negative electrode 22. Therefore, in this embodiment, the solid electrolyte electrically insulates between the positive electrode 21 and the negative electrode 22. Further, in some examples, an aqueous electrolyte containing an aqueous solvent instead of the non-aqueous electrolyte may be used as the electrolyte.
 図1及び図2に示すように、外装部3の外表面には、一対の電極端子27が取付けられる。電極端子27の一方が電池1の正極端子となり、電極端子27の他方が電池1の負極端子となる。このため、電極端子27は、互いに対して反対の極性を有する。また、図1等の実施形態では、第1の外装部材5の外表面に、一対の傾斜面26が形成される。傾斜面26のそれぞれは、側壁(第2の側壁)9の対応する一方と底壁7との間に、設けられる。一対の傾斜面26のそれぞれは、側壁8の間に、縦方向に沿って連続して延設される。このため、傾斜面26のそれぞれは、電池1(外装部3)の周方向について、側壁9の対応する一方と同一又は略同一の範囲に渡って、延設される。傾斜面26のそれぞれは、底壁7及び側壁9に対して、傾斜する。傾斜面26のそれぞれは、底壁7に近づくほど横方向について内側へ向かう状態に、傾斜する。 As shown in FIGS. 1 and 2, a pair of electrode terminals 27 are attached to the outer surface of the exterior portion 3. One of the electrode terminals 27 serves as the positive electrode terminal of the battery 1, and the other of the electrode terminals 27 serves as the negative electrode terminal of the battery 1. Therefore, the electrode terminals 27 have opposite polarities with respect to each other. Further, in the embodiment shown in FIG. 1 and the like, a pair of inclined surfaces 26 are formed on the outer surface of the first exterior member 5. Each of the inclined surfaces 26 is provided between the corresponding one side wall (second side wall) 9 and the bottom wall 7. Each of the pair of inclined surfaces 26 extends continuously along the longitudinal direction between the side walls 8. Therefore, each of the inclined surfaces 26 is extended over the same or substantially the same range as the corresponding one of the side walls 9 in the circumferential direction of the battery 1 (exterior portion 3). Each of the inclined surfaces 26 is inclined with respect to the bottom wall 7 and the side wall 9. Each of the inclined surfaces 26 is inclined inward in the lateral direction as it approaches the bottom wall 7.
 図1等の実施形態では、電極端子27のそれぞれは、傾斜面26の対応する一方に、外部に露出する状態で取付けられる。したがって、電極端子27のそれぞれは、外装部3の周方向について、側壁(第2の側壁)9の対応する一方が延設される範囲に、設けられる。図1及び図2等の一例では、電極端子27のそれぞれは、縦方向について、傾斜面26の対応する一方の中央位置又は略中央位置に配置される。そして、電極群10は、横方向について、一対の電極端子27の間に配置される。電極端子27のそれぞれは、導電材料から形成され、例えば、アルミニウム、銅及びステンレス等のいずれかから形成される。 In the embodiment shown in FIG. 1 and the like, each of the electrode terminals 27 is attached to the corresponding one of the inclined surfaces 26 in a state of being exposed to the outside. Therefore, each of the electrode terminals 27 is provided in the circumferential direction of the exterior portion 3 within a range in which one of the side walls (second side wall) 9 extends. In an example such as FIG. 1 and FIG. 2, each of the electrode terminals 27 is arranged at the corresponding center position or substantially center position of the inclined surface 26 in the vertical direction. Then, the electrode group 10 is arranged between the pair of electrode terminals 27 in the lateral direction. Each of the electrode terminals 27 is formed of a conductive material, for example, from any of aluminum, copper, stainless steel, and the like.
 また、第1の外装部材5の外表面には、電気的に絶縁材料から形成される一対の絶縁部材28が設けられる。絶縁部材28のそれぞれは、側壁9の対応する一方の外表面及び傾斜面26の対応する一方に配置される。絶縁部材28のそれぞれは、傾斜面26の対応する一方と電極端子27の対応する一方との間に介在し、電極端子27の対応する一方を外装部3(第1の外装部材5)に対して電気的に絶縁する。 Further, a pair of insulating members 28 electrically formed from an insulating material are provided on the outer surface of the first exterior member 5. Each of the insulating members 28 is arranged on one of the corresponding outer surfaces of the side wall 9 and on the corresponding one of the inclined surfaces 26. Each of the insulating members 28 is interposed between the corresponding one of the inclined surfaces 26 and the corresponding one of the electrode terminals 27, and the corresponding one of the electrode terminals 27 is provided with respect to the exterior portion 3 (first exterior member 5). Electrically insulate.
 図4は、電極群10と一対の電極端子27の一方との間の電気的な接続構成を示す。図4に示すように、電極群10の正極集電タブ21Dは、超音波溶接等の溶接によって束ねられる。そして、正極集電タブ21Dの束は、正極バックアップリード31A、正極中継リード32A及び正極端子リード33A等を含む1つ以上の正極リードを介して、電極端子27の対応する一方(正極端子)に電気的に接続される。正極集電タブ21Dと正極リードとの間の接続、正極リード同士の接続、及び、正極リードと正極端子との間の接続は、超音波溶接等の溶接によって、行われる。ここで、正極リードは、導電性を有する金属から形成される。また、正極端子(27の対応する一方)、正極集電タブ21D及び正極リードは、絶縁部材(図示しない)等によって、外装部3(外装部材5,6)に対して電気的に絶縁される。 FIG. 4 shows an electrical connection configuration between the electrode group 10 and one of the pair of electrode terminals 27. As shown in FIG. 4, the positive electrode current collecting tabs 21D of the electrode group 10 are bundled by welding such as ultrasonic welding. Then, the bundle of the positive electrode current collecting tab 21D is connected to one of the electrode terminals 27 (positive electrode terminal) via one or more positive electrode leads including the positive electrode backup lead 31A, the positive electrode relay lead 32A, the positive electrode terminal lead 33A, and the like. It is electrically connected. The connection between the positive electrode current collecting tab 21D and the positive electrode lead, the connection between the positive electrode leads, and the connection between the positive electrode lead and the positive electrode terminal are performed by welding such as ultrasonic welding. Here, the positive electrode lead is formed of a conductive metal. Further, the positive electrode terminal (corresponding one of 27), the positive electrode current collecting tab 21D, and the positive electrode lead are electrically insulated from the exterior portion 3 (exterior members 5, 6) by an insulating member (not shown) or the like. ..
 同様に、電極群10の負極集電タブ22Dは、超音波溶接等の溶接によって束ねられる。そして、負極集電タブ22Dの束は、負極バックアップリード31B、負極中継リード32B及び負極端子リード33B等を含む1つ以上の負極リードを介して、電極端子27の対応する一方(負極端子)に電気的に接続される。負極集電タブ22Dと負極リードとの間の接続、負極リード同士の接続、及び、負極リードと負極端子との間の接続は、超音波溶接等の溶接によって、行われる。ここで、負極リードは、導電性を有する金属から形成される。また、負極端子(27の対応する一方)、負極集電タブ22D及び負極リードは、絶縁部材(図示しない)等によって、外装部3(外装部材5,6)に対して電気的に絶縁される。 Similarly, the negative electrode current collecting tab 22D of the electrode group 10 is bundled by welding such as ultrasonic welding. Then, the bundle of the negative electrode current collecting tab 22D is connected to one of the electrode terminals 27 (negative electrode terminal) via one or more negative electrode leads including the negative electrode backup lead 31B, the negative electrode relay lead 32B, the negative electrode terminal lead 33B, and the like. It is electrically connected. The connection between the negative electrode current collecting tab 22D and the negative electrode lead, the connection between the negative electrode leads, and the connection between the negative electrode lead and the negative electrode terminal are performed by welding such as ultrasonic welding. Here, the negative electrode lead is formed of a conductive metal. Further, the negative electrode terminal (corresponding one of 27), the negative electrode current collecting tab 22D, and the negative electrode lead are electrically insulated from the exterior portion 3 (exterior members 5, 6) by an insulating member (not shown) or the like. ..
 また、内部空洞11では、横方向について電極群10の両側に空間が形成される。すなわち、側壁(第2の側壁)9のそれぞれの内表面と電極群10との間に、空間が形成される。一対の空間のそれぞれには、正極集電タブ21D及びで負極集電タブ22Dの対応する一方が配置されるとともに、正極リード及び負極リードの対応する一方が配置される。 Further, in the internal cavity 11, spaces are formed on both sides of the electrode group 10 in the lateral direction. That is, a space is formed between each inner surface of the side wall (second side wall) 9 and the electrode group 10. In each of the pair of spaces, the corresponding one of the positive electrode current collecting tab 21D and the negative electrode current collecting tab 22D is arranged, and the corresponding one of the positive electrode lead and the negative electrode lead is arranged.
 前述のように、電池1の外装部3及び内部空洞11のそれぞれでは、高さ方向について寸法が、縦方向について寸法に比べて遥かに小さく、かつ、縦方向についての寸法が、横方向についての寸法に比べて小さくなる。このため、内部空洞11の電極群10等は、底壁7及び第2の外装部材6(頂壁15)には当接し易いが、側壁8のそれぞれには当接し難い。このため、電極群10と側壁(第1の側壁)8のそれぞれとの間には、隙間が形成され易い。また、電極群10と側壁(第2の側壁)9のそれぞれとの間には、前述のように空間が形成される。また、電池1では、前述のように、底壁7及び第2の外装部材6(頂壁15)のそれぞれの外表面の面積は、側壁8,9のそれぞれの外表面の面積に比べて、大きい。前述のような構成であるため、電池1では、底壁7及び頂壁15のそれぞれから外部への放熱性が、側壁8,9のそれぞれから外部への放熱性に比べて、高い。 As described above, in each of the exterior portion 3 and the internal cavity 11 of the battery 1, the dimensions in the height direction are much smaller than the dimensions in the vertical direction, and the dimensions in the vertical direction are the dimensions in the horizontal direction. It is smaller than the size. Therefore, the electrode group 10 and the like of the internal cavity 11 easily come into contact with the bottom wall 7 and the second exterior member 6 (top wall 15), but are difficult to come into contact with each of the side walls 8. Therefore, a gap is likely to be formed between each of the electrode group 10 and the side wall (first side wall) 8. Further, a space is formed between the electrode group 10 and each of the side wall (second side wall) 9 as described above. Further, in the battery 1, as described above, the area of each outer surface of the bottom wall 7 and the second exterior member 6 (top wall 15) is larger than the area of each outer surface of the side walls 8 and 9. large. Due to the above-described configuration, in the battery 1, the heat dissipation from each of the bottom wall 7 and the top wall 15 to the outside is higher than the heat dissipation from each of the side walls 8 and 9 to the outside.
 また、外装部3の肉厚は、前述のように薄い。このため、周壁4(側壁8,9)と底壁7との間の熱伝導性は低い。同様に、周壁4(側壁8,9)と頂壁15(第2の外装部材6)との間の熱伝導性も低い。また、電池1(外装部3)では、横方向についての寸法が大きいとともに、高さ方向についての寸法が小さい。このため、電池1は、高さ方向についての撓み量が横方向に沿って変化する状態に、曲がり易い。 Also, the wall thickness of the exterior part 3 is thin as described above. Therefore, the thermal conductivity between the peripheral wall 4 (side walls 8 and 9) and the bottom wall 7 is low. Similarly, the thermal conductivity between the peripheral wall 4 (side walls 8 and 9) and the top wall 15 (second exterior member 6) is also low. Further, the battery 1 (exterior portion 3) has a large size in the lateral direction and a small size in the height direction. Therefore, the battery 1 is easily bent in a state in which the amount of bending in the height direction changes along the lateral direction.
 なお、ある変形例では、内部空洞11に複数の電極群が収納されてもよい。また、別のある変形例では、第2の外装部材(蓋部材)6が、板状ではなく、第1の外装部材5と同様に、一面が開口する略直方体形状に形成される。この場合、第2の外装部材6は、頂壁15に加えて、第1の外装部材5と同様に周壁及びフランジを備える。そして、第1の外装部材5のフランジ13及び第2の外装部材6のフランジが、気密に溶接される。ただし、いずれの変形例でも、電池1(外装部3)は、高さ方向についての寸法が縦方向の寸法及び横方向の寸法のそれぞれに比べて小さい扁平形状に形成される。そして、いずれの場合も、内部空洞11において、底壁7と第2の外装部材6(頂壁15)との間の高さ方向についての寸法は、一対の側壁(第1の側壁)8の間の縦方向についての寸法に比べて小さく、縦方向についての寸法は、一対の側壁(第2の側壁)9の間の横方向について寸法に比べて小さくなる。 In a modified example, a plurality of electrode groups may be housed in the internal cavity 11. Further, in another modification, the second exterior member (lid member) 6 is not formed in a plate shape, but is formed in a substantially rectangular parallelepiped shape having one surface open like the first exterior member 5. In this case, the second exterior member 6 includes, in addition to the top wall 15, a peripheral wall and a flange, similarly to the first exterior member 5. Then, the flange 13 of the first exterior member 5 and the flange of the second exterior member 6 are airtightly welded. However, in any of the modified examples, the battery 1 (exterior portion 3) is formed into a flat shape in which the dimensions in the height direction are smaller than the dimensions in the vertical direction and the dimensions in the horizontal direction. In any case, in the internal cavity 11, the dimension in the height direction between the bottom wall 7 and the second exterior member 6 (top wall 15) is that of the pair of side walls (first side wall) 8. It is smaller than the dimension in the vertical direction between them, and the dimension in the vertical direction is smaller than the dimension in the horizontal direction between the pair of side walls (second side wall) 9.
 [電池モジュール] 
 次に、電池モジュールについて説明する。実施形態に係る電池モジュールは、高さ方向についての寸法が小さい扁平形状の前述の電池1を、複数備える。図5乃至図7は、実施形態に係る電池モジュール40の一例を示す。図5及び図6に示すように、電池モジュール40は、1つ以上の電池配列体41A,41B、及び、ベース板42を備える。図5等の実施形態では、2つの電池配列体41A,41Bが、設けられる。ここで、電池モジュール40では、第1の方向(矢印X3及び矢印X4で示す方向)、第1の方向に対して交差する(垂直又は略垂直な)第2の方向(矢印Y3及び矢印Y4で示す方向)、及び、第1の方向及び第2の方向の両方に対して交差する(垂直又は略垂直な)第3の方向(矢印Z3及び矢印Z4で示す方向)が、規定される。図5及び図6は、後述するカバー61A,61Bを省略して電池モジュール40を示す。また、図5及び図6では、互いに対して視る方向が異なる。
[Battery module]
Next, the battery module will be described. The battery module according to the embodiment includes a plurality of the above-mentioned flat-shaped batteries 1 having a small dimension in the height direction. 5 to 7 show an example of the battery module 40 according to the embodiment. As shown in FIGS. 5 and 6, the battery module 40 includes one or more battery arrays 41A, 41B, and a base plate 42. In the embodiment shown in FIG. 5 and the like, two battery arrays 41A and 41B are provided. Here, in the battery module 40, in the first direction (direction indicated by arrows X3 and X4), in the second direction (vertical or substantially vertical) intersecting with the first direction (arrow Y3 and arrow Y4). The direction indicated) and the third direction (vertical or substantially vertical) intersecting (vertical or substantially vertical) with respect to both the first and second directions (directions indicated by arrows Z3 and Z4) are defined. 5 and 6 show the battery module 40 by omitting the covers 61A and 61B described later. Further, in FIGS. 5 and 6, the viewing directions are different from each other.
 ベース板42の外表面は、設置面(主面)45,46を備える。設置面(第1の設置面)45は、第3の方向の一方側(矢印Z3側)を向く。設置面(第2の設置面)46は、第3の方向について、設置面45とは反対側(矢印Z4側)を向く。図5等の実施形態では、設置面45に、電池配列体(第1の電池配列体)41Aが設置され、設置面46に電池配列体(第2の電池配列体)41Bが設置される。このため、電池配列体41A,41Bの間には、ベース板42が介在する。また、ベース板42は、厚さ方向が第3の方向と一致又は略一致する状態で、配置される。 The outer surface of the base plate 42 includes installation surfaces (main surfaces) 45 and 46. The installation surface (first installation surface) 45 faces one side (arrow Z3 side) in the third direction. The installation surface (second installation surface) 46 faces the side opposite to the installation surface 45 (arrow Z4 side) in the third direction. In the embodiment shown in FIG. 5 and the like, the battery array (first battery array) 41A is installed on the installation surface 45, and the battery array (second battery array) 41B is installed on the installation surface 46. Therefore, the base plate 42 is interposed between the battery arrays 41A and 41B. Further, the base plate 42 is arranged in a state where the thickness direction coincides with or substantially coincides with the third direction.
 電池配列体41A,41Bのそれぞれでは、複数の電池1が配列方向に沿って配列される。図5等の実施形態では、電池配列体41A,41Bのそれぞれにおいて、5つの電池1が配列される。電池配列体41A,41Bのそれぞれでの電池1の配列方向は、第1の方向と一致又は略一致する。また、図5等の実施形態では、電池配列体(第1の電池配列体)41Aでの電池1の配列方向は、電池配列体(第2の電池配列体)41Bでの電池1の配列方向と、一致又は略一致する。電池配列体41A,41Bのそれぞれでは、電池1のそれぞれは、縦方向が配列方向(第1の方向)と一致又は略一致し、かつ、横方向が第2の方向と一致又は略一致する状態で、配置される。すなわち、電池1のそれぞれは、縦方向が配列方向に沿う状態で、配置される。このため、電池配列体41A,41Bのそれぞれでは、電池1のそれぞれは、高さ方向が第3の方向と一致又は略一致する状態で、配置される。 In each of the battery arrays 41A and 41B, a plurality of batteries 1 are arranged along the arrangement direction. In the embodiment shown in FIG. 5 and the like, five batteries 1 are arranged in each of the battery arrays 41A and 41B. The arrangement direction of the batteries 1 in each of the battery arrangements 41A and 41B coincides with or substantially coincides with the first direction. Further, in the embodiment shown in FIG. 5 and the like, the arrangement direction of the batteries 1 in the battery array (first battery array) 41A is the arrangement direction of the batteries 1 in the battery array (second battery array) 41B. And match or substantially match. In each of the battery arrays 41A and 41B, the vertical direction of each of the batteries 1 coincides with or substantially coincides with the arrangement direction (first direction), and the horizontal direction coincides with or substantially coincides with the second direction. And will be placed. That is, each of the batteries 1 is arranged in a state in which the vertical direction is along the arrangement direction. Therefore, in each of the battery arrays 41A and 41B, each of the batteries 1 is arranged in a state in which the height direction coincides with or substantially coincides with the third direction.
 電池モジュール40に用いられる複数の電池1は、互いに対して同一又は略同一の寸法に形成される。また、電池配列体41A,41Bのそれぞれでは、複数の電池1は、第2の方向(電池1のそれぞれの横方向)について、互いに対してずれることなく、又は、ほとんどずれることなく、配列される。そして、電池配列体41A,41Bのそれぞれでは、複数の電池1は、第3の方向(電池1のそれぞれの高さ方向)について、互いに対してずれることなく、又は、ほとんどずれることなく、配列される。 The plurality of batteries 1 used in the battery module 40 are formed to have the same or substantially the same dimensions with respect to each other. Further, in each of the battery arrays 41A and 41B, the plurality of batteries 1 are arranged in the second direction (the lateral directions of the batteries 1) with respect to each other or with almost no deviation from each other. .. Then, in each of the battery arrays 41A and 41B, the plurality of batteries 1 are arranged in a third direction (in each height direction of the battery 1) with no deviation from each other or with almost no deviation from each other. To.
 図7等に示すように、電池配列体41A,41B及びベース板42は、カバー61A,61B等の内部に収納される。カバー61A,61Bのそれぞれは、例えば樹脂から形成され、電気的絶縁性を有する。また、カバー61A,61Bのそれぞれは、カップ状に形成され、一面が開口する略直方体形状に形成される。カバー61Aは、第3の方向の一方側から電池配列体41Aを覆う。また、カバー61Bは、第3の方向について、カバー61Aとは反対側から電池配列体41Bを覆う。 As shown in FIG. 7 and the like, the battery arrays 41A and 41B and the base plate 42 are housed inside the covers 61A and 61B and the like. Each of the covers 61A and 61B is formed of, for example, a resin and has electrical insulation. Further, each of the covers 61A and 61B is formed in a cup shape and is formed in a substantially rectangular parallelepiped shape having one side open. The cover 61A covers the battery array 41A from one side in the third direction. Further, the cover 61B covers the battery array 41B from the side opposite to the cover 61A in the third direction.
 ベース板42の外縁には、内周側へ凹む係合溝65が複数形成される。また、カバー61Aの開口縁には、係合爪66Aが複数設けられ、カバー61Bの開口縁には、係合爪66Bが複数設けられる。係合爪66A,66Bのそれぞれは、係合溝65の対応する1つと係合する。これにより、カバー61A,61Bのそれぞれは、ベース板42に固定される。また、カバー61Aの開口縁には、係合片67Aが1つ以上設けられ、カバー61Bの開口縁には、係合片67Bが1つ以上設けられる。係合片67Aのそれぞれは、ベース板42が延設されていない範囲において、係合片67Bの対応する1つと係合する。これにより、カバー61A,61Bは、互いに対して固定される。 A plurality of engaging grooves 65 recessed toward the inner peripheral side are formed on the outer edge of the base plate 42. Further, a plurality of engaging claws 66A are provided on the opening edge of the cover 61A, and a plurality of engaging claws 66B are provided on the opening edge of the cover 61B. Each of the engaging claws 66A, 66B engages with the corresponding one of the engaging grooves 65. As a result, each of the covers 61A and 61B is fixed to the base plate 42. Further, one or more engaging pieces 67A are provided on the opening edge of the cover 61A, and one or more engaging pieces 67B are provided on the opening edge of the cover 61B. Each of the engaging pieces 67A engages with the corresponding one of the engaging pieces 67B to the extent that the base plate 42 is not extended. As a result, the covers 61A and 61B are fixed to each other.
 図8乃至図10は、電池配列体41A(41B)において、配列方向について隣り合う2つの電池1を示す。ここで、図8は斜視図を示し、図9は第2の方向(電池それぞれの横方向)の一方側から視た状態を示す。図8乃至図10等に示すように、電池配列体41A,41Bのそれぞれは、絶縁部材43を備える。絶縁部材43は、樹脂等から形成され、電気的絶縁性を有する。電池配列体41A,41Bのそれぞれでは、電池1のそれぞれは、配列方向について隣り合う電池1のそれぞれとの間で、絶縁部材43を挟む。したがって、配列方向について隣り合う2つの電池1の間には、絶縁部材43が介在する。なお、図10は、隣り合う2つ電池1及びこれらの電池1の間の絶縁部材43を互いに対して分離した状態が、示される。また、図5等の一例では、電池配列体41A,41Bのそれぞれに、5つの電池が設けられる。このため、電池配列体41A,41Bのそれぞれに、4つの絶縁部材43が設けられる。 8 to 10 show two batteries 1 adjacent to each other in the arrangement direction in the battery arrangement 41A (41B). Here, FIG. 8 shows a perspective view, and FIG. 9 shows a state viewed from one side in the second direction (horizontal direction of each battery). As shown in FIGS. 8 to 10, each of the battery arrays 41A and 41B includes an insulating member 43. The insulating member 43 is formed of a resin or the like and has electrical insulating properties. In each of the battery arrays 41A and 41B, each of the batteries 1 sandwiches the insulating member 43 with each of the adjacent batteries 1 in the arrangement direction. Therefore, the insulating member 43 is interposed between the two batteries 1 adjacent to each other in the arrangement direction. Note that FIG. 10 shows a state in which the two adjacent batteries 1 and the insulating member 43 between the two batteries 1 are separated from each other. Further, in an example such as FIG. 5, five batteries are provided in each of the battery arrays 41A and 41B. Therefore, four insulating members 43 are provided in each of the battery arrays 41A and 41B.
 前述のように電池1のそれぞれは、縦方向が配列方向に沿う状態で、配置される。このため、電池配列体41A,41Bのそれぞれの電池1のそれぞれでは、配列方向について隣り合う電池1のそれぞれに対して、一対の側壁(第1の側壁)8の対応する一方が、絶縁部材43を挟んで対向する。ここで、電池配列体41Aにおいて配列方向について両端に配置される電池1α,1γを規定するとともに、電池配列体41Bにおいて配列方向について両端に配置される電池1β,1δを規定する。電池1α,1β,1γ,1δのそれぞれでは、配列方向について一方側にのみ、他の電池1が隣り合う。また、電池1α,1β,1γ,1δ以外の電池1のそれぞれでは、配列方向について両側に、他の電池1が隣り合う。したがって、電池1のそれぞれでは、1つ又は2つの電池1が配列方向について隣り合う。 As described above, each of the batteries 1 is arranged in a state where the vertical direction is along the arrangement direction. Therefore, in each of the batteries 1 of the battery arrays 41A and 41B, one of the pair of side walls (first side wall) 8 corresponding to each of the adjacent batteries 1 in the arrangement direction is the insulating member 43. Oppose each other across. Here, the batteries 1α and 1γ arranged at both ends in the arrangement direction are defined in the battery array 41A, and the batteries 1β and 1δ arranged at both ends in the arrangement direction in the battery array 41B. In each of the batteries 1α, 1β, 1γ, and 1δ, the other batteries 1 are adjacent to each other only on one side in the arrangement direction. Further, in each of the batteries 1 other than the batteries 1α, 1β, 1γ, and 1δ, the other batteries 1 are adjacent to each other on both sides in the arrangement direction. Therefore, in each of the batteries 1, one or two batteries 1 are adjacent to each other in the arrangement direction.
 また、電池配列体41A,41Bを形成する複数の電池1は、第1の電池1A及び第2の電池1Bを備える。第1の電池1Aでは、底壁7が、ベース板42の設置面45,46の対応する一方と対向する。第2の電池1Bでは、第2の外装部材6(頂壁15)が、ベース板42の設置面45,46の対応する一方と対向する。電池配列体41A,41Bのそれぞれでは、配列方向について第1の電池1A及び第2の電池1Bが交互に配列される。このため、第1の電池1A及び第2の電池1Bは、配列方向について隣り合って配置される。図5等の実施形態では、電池配列体41A,41Bのそれぞれにおいて、複数の電池1は、2つの第1の電池1Aと、3つの第2の電池1Bと、を備える。そして、電池1α,1β,1γ,1δは、いずれも第1の電池1Aとなる。 Further, the plurality of batteries 1 forming the battery arrays 41A and 41B include a first battery 1A and a second battery 1B. In the first battery 1A, the bottom wall 7 faces one of the corresponding installation surfaces 45, 46 of the base plate 42. In the second battery 1B, the second exterior member 6 (top wall 15) faces the corresponding one of the installation surfaces 45, 46 of the base plate 42. In each of the battery arrays 41A and 41B, the first battery 1A and the second battery 1B are alternately arranged in the arrangement direction. Therefore, the first battery 1A and the second battery 1B are arranged next to each other in the arrangement direction. In an embodiment such as FIG. 5, in each of the battery arrays 41A and 41B, the plurality of batteries 1 include two first batteries 1A and three second batteries 1B. The batteries 1α, 1β, 1γ, and 1δ are all the first batteries 1A.
 図11は、絶縁部材43単体を示し、図12は、絶縁部材43のベース板42への取付け構造を示す。図11等に示すように、絶縁部材43のそれぞれは、長手方向に沿って延設されるバー部材であり、絶縁部材43のそれぞれでは、長手方向について寸法が大きくなる。電池モジュール40では、絶縁部材43のそれぞれは、長手方向が第2の方向と一致又は略一致する状態で、配置される。このため、電池配列体41A,41Bのそれぞれでは、絶縁部材43のそれぞれは、長手方向が電池1のそれぞれの横方向と一致する状態で、配置される。なお、絶縁部材43のそれぞれの長手方向についての寸法は、側壁(第1の側壁)8のそれぞれの電池1の横方向についての寸法と、同一又は略同一の大きさになる。 FIG. 11 shows the insulating member 43 alone, and FIG. 12 shows the mounting structure of the insulating member 43 on the base plate 42. As shown in FIG. 11 and the like, each of the insulating members 43 is a bar member extending along the longitudinal direction, and each of the insulating members 43 has a larger dimension in the longitudinal direction. In the battery module 40, each of the insulating members 43 is arranged in a state in which the longitudinal direction coincides with or substantially coincides with the second direction. Therefore, in each of the battery arrays 41A and 41B, each of the insulating members 43 is arranged in a state in which the longitudinal direction coincides with the lateral direction of the battery 1. The dimensions of the insulating member 43 in the longitudinal direction are the same as or substantially the same as the dimensions of the side wall (first side wall) 8 in the lateral direction of each battery 1.
 電池配列体41A,41Bの電池1のそれぞれでは、配列方向について隣接する絶縁部材43のそれぞれに、周壁4が当接する。電池1のそれぞれでは、隣接する絶縁部材43のそれぞれに対して、側壁(第1の側壁)8の対応する一方が当接し、側壁8の対応する一方が接着等によって結合される。これにより、電池1(外装部3)のそれぞれは、隣接する絶縁部材43のそれぞれに対して固定される。なお、電池1のそれぞれでは、隣接する絶縁部材43のそれぞれに対して、横方向について全長又は略全長に渡って、側壁8の対応する一方が当接する。また、電池1のそれぞれは、隣り合う電池1のそれぞれから縦方向について内側へ押圧力を受ける状態で、隣接する絶縁部材43のそれぞれに固定される。 In each of the batteries 1 of the battery array 41A and 41B, the peripheral wall 4 abuts on each of the insulating members 43 adjacent in the array direction. In each of the batteries 1, the corresponding one of the side walls (first side wall) 8 is in contact with each of the adjacent insulating members 43, and the corresponding one of the side walls 8 is bonded by adhesion or the like. As a result, each of the batteries 1 (exterior portion 3) is fixed to each of the adjacent insulating members 43. In each of the batteries 1, the corresponding one side wall 8 abuts against each of the adjacent insulating members 43 in the lateral direction over the entire length or substantially the entire length. Further, each of the batteries 1 is fixed to each of the adjacent insulating members 43 in a state of receiving a pressing force inward in the vertical direction from each of the adjacent batteries 1.
 また、絶縁部材43のそれぞれには、1つ以上の係合突起62が設けられる。図11等の実施形態では、絶縁部材43のそれぞれに、2つの係合突起62が設けられる。また、図12等に示すように、ベース板42の設置面45には、複数の係合孔63が形成される。電池配列体41Aでは、絶縁部材43の係合突起62のそれぞれは、係合孔63の対応する1つと係合する。絶縁部材43のそれぞれは、係合突起62のそれぞれが係合孔63の対応する1つと係合することにより、ベース板42の設置面45に対して第1の方向及び第2の方向について位置決めされる。そして、絶縁部材43のそれぞれは、設置面45に対して位置決めされた状態で、接着等によって設置面45に固定される。また、絶縁部材43のそれぞれは、設置面45と面接触する状態で、設置面45に固定される。 Further, each of the insulating members 43 is provided with one or more engaging protrusions 62. In the embodiment shown in FIG. 11 and the like, two engaging protrusions 62 are provided on each of the insulating members 43. Further, as shown in FIG. 12 and the like, a plurality of engaging holes 63 are formed on the installation surface 45 of the base plate 42. In the battery array 41A, each of the engaging projections 62 of the insulating member 43 engages with the corresponding one of the engaging holes 63. Each of the insulating members 43 is positioned in the first direction and the second direction with respect to the installation surface 45 of the base plate 42 by engaging each of the engaging protrusions 62 with the corresponding one of the engaging holes 63. Will be done. Then, each of the insulating members 43 is fixed to the installation surface 45 by adhesion or the like in a state of being positioned with respect to the installation surface 45. Further, each of the insulating members 43 is fixed to the installation surface 45 in a state of surface contact with the installation surface 45.
 なお、ベース板42の設置面46にも、係合孔63と同様の係合孔が複数形成される。そして、電池配列体41Bの絶縁部材43のそれぞれは、電池配列体41Aの絶縁部材43と同様にして、ベース板42の設置面46に対して、第1の方向及び第2の方向について位置決めされる。そして、絶縁部材43のそれぞれは、設置面46に対して位置決めされた状態で、接着等によって設置面46に固定される。また、絶縁部材43のそれぞれは、設置面46と面接触する状態で、設置面46に固定される。 A plurality of engagement holes similar to the engagement holes 63 are formed on the installation surface 46 of the base plate 42. Then, each of the insulating members 43 of the battery array 41B is positioned in the first direction and the second direction with respect to the installation surface 46 of the base plate 42 in the same manner as the insulating member 43 of the battery array 41A. To. Then, each of the insulating members 43 is fixed to the installation surface 46 by adhesion or the like in a state of being positioned with respect to the installation surface 46. Further, each of the insulating members 43 is fixed to the installation surface 46 in a state of surface contact with the installation surface 46.
 また、電池配列体41Aでは、電池1のそれぞれは、隣接する絶縁部材43のそれぞれに対して、前述のように固定される。このため、絶縁部材43が設置面45に対して位置決めされることにより、電池1のそれぞれも、第1の方向及び第2の方向について設置面45に対して位置決めされる。同様に、電池配列体41Bでも、絶縁部材43が設置面46に対して前述のように位置決めされることにより、電池1のそれぞれも、第1の方向及び第2の方向について設置面46に対して位置決めされる。電池1のそれぞれがベース板42に対して位置決めされることにより、電池1のそれぞれの一対の電極端子27も、第1の方向及び第2の方向について、ベース板42に対して位置決めされる。 Further, in the battery array 41A, each of the batteries 1 is fixed to each of the adjacent insulating members 43 as described above. Therefore, by positioning the insulating member 43 with respect to the installation surface 45, each of the batteries 1 is also positioned with respect to the installation surface 45 in the first direction and the second direction. Similarly, in the battery array 41B as well, the insulating member 43 is positioned with respect to the installation surface 46 as described above, so that each of the batteries 1 also has a first direction and a second direction with respect to the installation surface 46. Is positioned. By positioning each of the batteries 1 with respect to the base plate 42, each pair of electrode terminals 27 of the battery 1 is also positioned with respect to the base plate 42 in the first direction and the second direction.
 また、電池配列体41A,41Bのそれぞれでは、第1の電池1Aのそれぞれの底壁7の外表面は、設置面45,46の対応する一方と面接触する。そして、第1の電池1Aのそれぞれは、底壁7の外表面が設置面45,46の対応する一方と面接触する状態で、設置面45,46の対応する一方に接着等によって固定される。また、電池配列体41A,41Bのそれぞれでは、第2の電池1Bのそれぞれの第2の外装部材6(頂壁15)の外表面は、設置面45,46の対応する一方と面接触する。そして、第2の電池1Bのそれぞれは、第2の外装部材6の外表面が設置面45,46の対応する一方と面接触する状態で、設置面45,46の対応する一方に接着等によって固定される。 Further, in each of the battery arrays 41A and 41B, the outer surface of each bottom wall 7 of the first battery 1A comes into surface contact with the corresponding one of the installation surfaces 45 and 46. Then, each of the first batteries 1A is fixed to the corresponding one of the installation surfaces 45, 46 by adhesion or the like in a state where the outer surface of the bottom wall 7 is in surface contact with the corresponding one of the installation surfaces 45, 46. .. Further, in each of the battery arrays 41A and 41B, the outer surface of each of the second exterior members 6 (top wall 15) of the second battery 1B comes into surface contact with the corresponding one of the installation surfaces 45 and 46. Then, in each of the second batteries 1B, the outer surface of the second exterior member 6 is in surface contact with the corresponding one of the installation surfaces 45 and 46, and is adhered to the corresponding one of the installation surfaces 45 and 46 by adhesion or the like. It is fixed.
 また、図5等の実施形態の電池モジュール40には、バスバー(第1のバスバー)53が複数設けられるとともに、バスバー55,56,57が設けられる。バスバー53,55~57のそれぞれは、金属等の導電材料から形成される。 Further, the battery module 40 of the embodiment shown in FIG. 5 or the like is provided with a plurality of bus bars (first bus bars) 53 and bus bars 55, 56, 57. Each of the bus bars 53, 55 to 57 is formed of a conductive material such as metal.
 図5等の実施形態では、バスバー53のそれぞれは、電池配列体41A,41Bのそれぞれにおいて、配列方向について隣り合う2つの電池1の間を電気的に接続する。ここで、1つのバスバー53を介しての隣り合う2つの電池1の間を電気的接続する構成について、説明する。電池配列体41A,41Bのそれぞれでは、電池1のそれぞれは、1つのバスバー53を介して、隣り合う電池1のそれぞれに対して以下のように電気的に接続される。 In the embodiment shown in FIG. 5 and the like, each of the bus bars 53 electrically connects two batteries 1 adjacent to each other in the arrangement direction in each of the battery arrangements 41A and 41B. Here, a configuration for electrically connecting two adjacent batteries 1 via one bus bar 53 will be described. In each of the battery arrays 41A and 41B, each of the batteries 1 is electrically connected to each of the adjacent batteries 1 via one bus bar 53 as follows.
 バスバー53によって電気的に接続される2つの電池1のそれぞれでは、一対の電極端子27の対応する一方である対象端子に、バスバー53が接触する。2つの電池1のそれぞれでは、溶接等によって、対象端子にバスバー53が接続される。2つの電池1の対象端子は、第2の方向について、電池モジュール40の中央位置に対して、同一の側に配置される。すなわち、2つの電池1の対象端子は、電池1のそれぞれの横方向について、電池1のそれぞれの電極群10に対して、同一の側に位置する。バスバー53は、2つの電池1の対象端子(第1の対象端子)の間を中継する。そして、電池配列体41A,41Bのそれぞれでは、バスバー53は、2つの電池1の対象端子の間において、配列方向(電池モジュール40の第1の方向)に沿って、すなわち、電池1のそれぞれの縦方向に沿って、延設される。 In each of the two batteries 1 electrically connected by the bus bar 53, the bus bar 53 comes into contact with the corresponding target terminal of the pair of electrode terminals 27. In each of the two batteries 1, the bus bar 53 is connected to the target terminal by welding or the like. The target terminals of the two batteries 1 are arranged on the same side with respect to the central position of the battery module 40 in the second direction. That is, the target terminals of the two batteries 1 are located on the same side with respect to the respective electrode group 10 of the battery 1 in each lateral direction of the battery 1. The bus bar 53 relays between the target terminals (first target terminals) of the two batteries 1. Then, in each of the battery arrays 41A and 41B, the bus bar 53 is located between the target terminals of the two batteries 1 along the arrangement direction (the first direction of the battery module 40), that is, each of the batteries 1. It is extended along the vertical direction.
 なお、ある一例では、1つのバスバー53によって3つ以上の電池1が電気的に接続されてもよい。この場合も、3つ以上の電池1のそれぞれでは、一対の電極端子27の対応する一方である対象端子(第1の対象端子)に、バスバー53が接触し、対象端子にバスバー53が接続される。そして、3つ以上の電池1の対象端子は、第2の方向について、電池モジュール40の中央位置(電池1のそれぞれの電極群10)に対して、同一の側に配置される。そして、電池配列体41A,41Bのそれぞれでは、バスバー53は、3つ以上の電池1の対象端子の間において、配列方向に沿って、すなわち、電池1のそれぞれの縦方向に沿って、延設される。 In one example, three or more batteries 1 may be electrically connected by one bus bar 53. In this case as well, in each of the three or more batteries 1, the bus bar 53 comes into contact with the corresponding target terminal (first target terminal) of the pair of electrode terminals 27, and the bus bar 53 is connected to the target terminal. To. Then, the target terminals of the three or more batteries 1 are arranged on the same side with respect to the central position of the battery module 40 (each electrode group 10 of the battery 1) in the second direction. Then, in each of the battery arrays 41A and 41B, the bus bar 53 extends between the target terminals of the three or more batteries 1 along the arrangement direction, that is, along the respective vertical directions of the batteries 1. Will be done.
 図13は、ある1つの電池1の対象端子(27の対応する一方)へのバスバー53の接続状態を、示す。図13に示すように、1つのバスバー53によって電気的に接続される2つ以上の電池1のそれぞれでは、フランジ13及び第2の外装部材6の突出部分の突出端に対して、内周側(内側)にバスバー53が位置する。すなわち、1つのバスバー53によって電気的に接続される電池1のそれぞれでは、周壁4(側壁9の対応する一方)と外装部3(電池1)の外周端Eとの間に、バスバー53が位置する。したがって、電池1のそれぞれでは、横方向について外装部3の外周端Eより外周側(外側)に、バスバー53は突出しない。そして、電池配列体41A,41Bのそれぞれでは、バスバー53のいずれもが、第2の方向について、電池1のそれぞれの外装部3の外周端Eに対して、外周側(外側)に突出しない。 FIG. 13 shows the connection state of the bus bar 53 to the target terminal (corresponding one of 27) of a certain battery 1. As shown in FIG. 13, in each of the two or more batteries 1 electrically connected by one bus bar 53, the inner peripheral side with respect to the protruding end of the protruding portion of the flange 13 and the second exterior member 6 The bus bar 53 is located (inside). That is, in each of the batteries 1 electrically connected by one bus bar 53, the bus bar 53 is located between the peripheral wall 4 (corresponding side of the side wall 9) and the outer peripheral end E of the exterior portion 3 (battery 1). To do. Therefore, in each of the batteries 1, the bus bar 53 does not protrude from the outer peripheral end E of the exterior portion 3 to the outer peripheral side (outside) in the lateral direction. Then, in each of the battery arrays 41A and 41B, none of the bus bars 53 protrudes to the outer peripheral side (outside) with respect to the outer peripheral end E of each outer peripheral portion 3 of the battery 1 in the second direction.
 また、図5等の実施形態では、1つのバスバー53によって、隣り合う2つの電池1は、電気的に直列に接続される。したがって、1つのバスバー53によって接続される2つの対象端子は、一方が正極端子で、他方が負極端子である。また、別のある一例では、電池配列体41A,41Bのいずれかにおいて、2つ以上の電池1が、2つのバスバー53を用いて電気的に並列に接続されてもよい。この場合、第2の方向について電池モジュール40の中央位置に対して一方側で、2つ以上の電池1の正極端子同士が、2つのバスバー53の一方によって接続される。そして、第2の方向について電池モジュール40の中央位置に対して他方側で、2つ以上の電池1の負極端子同士が、2つのバスバー53の他方によって接続される。 Further, in the embodiment shown in FIG. 5 and the like, two adjacent batteries 1 are electrically connected in series by one bus bar 53. Therefore, the two target terminals connected by one bus bar 53 are one positive electrode terminal and the other negative electrode terminal. Further, in another example, in any of the battery arrays 41A and 41B, two or more batteries 1 may be electrically connected in parallel using two bus bars 53. In this case, the positive electrode terminals of the two or more batteries 1 are connected to each other by one of the two bus bars 53 on one side with respect to the central position of the battery module 40 in the second direction. Then, the negative electrode terminals of the two or more batteries 1 are connected to each other by the other of the two bus bars 53 on the other side with respect to the central position of the battery module 40 in the second direction.
 また、図5等の実施形態の電池モジュール40には、モジュール端子51,52が設けられる。ここで、例えば、モジュール端子51は、正極側のモジュール端子であり、モジュール端子52は、負極側のモジュール端子である。電池モジュール40では、電池配列体41A,41Bは、第1の方向及び第2の方向について、互いに対してずれることなく、又は、ほとんどずれることなく配置される。モジュール端子51,52は、第1の方向について、電池配列体41A,41Bに対して同一の側に位置する。また、モジュール端子51,52は、第2の方向について、互いに対して離れて配置される。そして、モジュール端子52は、第2の方向について電池モジュール40の中央位置に対して、モジュール端子51とは反対側に配置される。また、電池1のそれぞれの電極群10は、第2の方向について、モジュール端子51,52の間に位置する。 Further, the battery module 40 of the embodiment shown in FIG. 5 or the like is provided with module terminals 51 and 52. Here, for example, the module terminal 51 is a module terminal on the positive electrode side, and the module terminal 52 is a module terminal on the negative electrode side. In the battery module 40, the battery arrays 41A and 41B are arranged in the first direction and the second direction with no deviation from each other or with almost no deviation from each other. The module terminals 51 and 52 are located on the same side with respect to the battery arrays 41A and 41B in the first direction. Further, the module terminals 51 and 52 are arranged apart from each other in the second direction. The module terminal 52 is arranged on the side opposite to the module terminal 51 with respect to the central position of the battery module 40 in the second direction. Further, each electrode group 10 of the battery 1 is located between the module terminals 51 and 52 in the second direction.
 電池配列体41Aでは、第1の方向(配列方向)についてモジュール端子51,52に近い側の端に、電池1γが配置され、第1の方向についてモジュール端子51,52から遠い側の端に電池1αが配置される。また、電池配列体41Bでは、第1の方向(配列方向)についてモジュール端子51,52に近い側の端に、電池1δが配置され、第1の方向についてモジュール端子51,52から遠い側の端に電池1βが配置される。 In the battery array 41A, the battery 1γ is arranged at the end near the module terminals 51 and 52 in the first direction (arrangement direction), and the battery is arranged at the end far from the module terminals 51 and 52 in the first direction. 1α is arranged. Further, in the battery array 41B, the battery 1δ is arranged at the end near the module terminals 51 and 52 in the first direction (arrangement direction), and the end far from the module terminals 51 and 52 in the first direction. The battery 1β is arranged in.
 電池1γでは、一対の電極端子27においてバスバー53が接続されない一方に、バスバー57が接触する。そして、バスバー57は、電池1γの電極端子27の対応する一方に、接続される。電池1γは、バスバー57を介して負極側のモジュール端子52に電気的に接続される。バスバー57は、電池1γの電極端子27の対応する一方からモジュール端子52まで略L字状に延設される。すなわち、バスバー57は、電池1γの電極端子27の対応する一方から第1の方向について外側へ向かって延設され、電池1γの一対の側壁9の対応する一方に沿って延設される。そして、第1の方向について電池1γの外側に隣接する領域では、バスバー57が、第2の方向に沿って延設され、電池1γの一対の側壁8の対応する一方に沿ってモジュール端子52に向かって延設される。 In the battery 1γ, the bus bar 53 is not connected to the pair of electrode terminals 27, while the bus bar 57 is in contact with the battery 1γ. Then, the bus bar 57 is connected to the corresponding one of the electrode terminals 27 of the battery 1γ. The battery 1γ is electrically connected to the module terminal 52 on the negative electrode side via the bus bar 57. The bus bar 57 extends from one of the electrode terminals 27 of the battery 1γ to the module terminal 52 in a substantially L shape. That is, the bus bar 57 extends outward from one of the corresponding electrode terminals 27 of the battery 1γ in the first direction, and extends along the corresponding one of the pair of side walls 9 of the battery 1γ. Then, in the region adjacent to the outside of the battery 1γ in the first direction, the bus bar 57 extends along the second direction to the module terminal 52 along the corresponding one of the pair of side walls 8 of the battery 1γ. It will be extended toward.
 電池1δでは、一対の電極端子27においてバスバー53が接続されない一方に、バスバー56が接触する。そして、バスバー56は、電池1δの電極端子27の対応する一方に、接続される。電池1δは、バスバー56を介して正極側のモジュール端子51に電気的に接続される。バスバー56は、電池1δの電極端子27の対応する一方から第1の方向について外側へ向かって延設され、電池1δの一対の側壁9の対応する一方に沿って延設される。 In the battery 1δ, the bus bar 53 is not connected to the pair of electrode terminals 27, while the bus bar 56 is in contact with the battery 1δ. Then, the bus bar 56 is connected to the corresponding one of the electrode terminals 27 of the battery 1δ. The battery 1δ is electrically connected to the module terminal 51 on the positive electrode side via the bus bar 56. The bus bar 56 extends outward from one of the corresponding electrode terminals 27 of the battery 1δ in the first direction and extends along the corresponding one of the pair of side walls 9 of the battery 1δ.
 電池1αでは、一対の電極端子27においてバスバー53が接続されない一方である対象端子に、バスバー(第2のバスバー)55が接触する。そして、バスバー55は、電池1αの電極端子27の対応する一方である対象端子に、接続される。また、電池1βでは、一対の電極端子27においてバスバー53が接続されない一方である対象端子に、バスバー55が接触する。そして、バスバー55は、電池1βの電極端子27の対応する一方である対象端子に、接続される。したがって、電池配列体41Aの複数の電池1の対応する1つ(1α)、及び、電池配列体41Bの複数の電池1の対応する1つ(1β)のそれぞれでは、一対の電極端子27の一方である対象端子(第2の対象端子)に、バスバー55が接触する。これにより、電池配列体41A,41Bの間が、バスバー55によって、電気的に接続される。 In the battery 1α, the bus bar (second bus bar) 55 comes into contact with the target terminal to which the bus bar 53 is not connected at the pair of electrode terminals 27. Then, the bus bar 55 is connected to the corresponding target terminal of the electrode terminal 27 of the battery 1α. Further, in the battery 1β, the bus bar 55 comes into contact with the target terminal on which the bus bar 53 is not connected at the pair of electrode terminals 27. Then, the bus bar 55 is connected to the corresponding target terminal of the electrode terminal 27 of the battery 1β. Therefore, one of the pair of electrode terminals 27 is used in each of the corresponding one (1α) of the plurality of batteries 1 of the battery array 41A and the corresponding one (1β) of the plurality of batteries 1 of the battery array 41B. The bus bar 55 comes into contact with the target terminal (second target terminal). As a result, the battery arrays 41A and 41B are electrically connected by the bus bar 55.
 バスバー55によって接続される2つの電池1α,1βの対象端子は、第2の方向について、電池モジュール40の中央位置に対して、同一の側に配置される。すなわち、2つの電池1α,1βの対象端子は、電池1α,1βのそれぞれの横方向について、電池1α,1βのそれぞれの電極群10に対して、同一の側に位置する。バスバー55は、2つの電池1α,1βの対象端子(第2の対象端子)の間を中継する。そして、バスバー55は、2つの電池1α,1βの対象端子の間において、第3の方向に沿って延設される。すなわち、バスバー55は、電池配列体41A,41Bでの電池1の配列方向(電池モジュール40の第1の方向)に対して交差する方向に沿って、延設される。そして、バスバー55は、2つの電池1α,1βの対象端子(第2の対象端子)の間において、ベース板42を跨って(ベース板42を超えて)延設される。 The target terminals of the two batteries 1α and 1β connected by the bus bar 55 are arranged on the same side with respect to the central position of the battery module 40 in the second direction. That is, the target terminals of the two batteries 1α and 1β are located on the same side with respect to the respective electrode groups 10 of the batteries 1α and 1β in the lateral directions of the batteries 1α and 1β. The bus bar 55 relays between the target terminals (second target terminals) of the two batteries 1α and 1β. Then, the bus bar 55 extends along the third direction between the target terminals of the two batteries 1α and 1β. That is, the bus bar 55 is extended along the direction intersecting the arrangement direction of the batteries 1 (the first direction of the battery module 40) in the battery arrangements 41A and 41B. Then, the bus bar 55 extends (beyond the base plate 42) across the base plate 42 between the target terminals (second target terminals) of the two batteries 1α and 1β.
 本実施形態では、バスバー53,55~57のそれぞれによって、複数の電池1が前述のように電気的に接続される。図5等の実施形態では、電池配列体41A,41Bを形成する複数(10個)の電池1は、バスバー53,55~57によって、モジュール端子51,52の間において電気的に直列に接続される。なお、電池モジュール40では、電池1のそれぞれの外装部3(外装部材5,6)は、バスバー53,55~57のいずれとも接触しない。 In the present embodiment, the plurality of batteries 1 are electrically connected by each of the bus bars 53, 55 to 57 as described above. In an embodiment such as FIG. 5, a plurality of (10) batteries 1 forming the battery arrays 41A and 41B are electrically connected in series between the module terminals 51 and 52 by bus bars 53, 55 to 57. To. In the battery module 40, the respective exterior portions 3 (exterior members 5, 6) of the battery 1 do not come into contact with any of the bus bars 53, 55 to 57.
 また、図5等の実施形態では、ベース板42の設置面45にプリント配線基板71が設置される。プリント配線基板71は、第1の方向について、電池配列体41A,41Bに対してモジュール端子51,52が位置する側に位置する。また、プリント配線基板71は、第2の方向について、モジュール端子51,52の間に位置する。 Further, in the embodiment shown in FIG. 5, the printed wiring board 71 is installed on the installation surface 45 of the base plate 42. The printed wiring board 71 is located on the side where the module terminals 51 and 52 are located with respect to the battery arrays 41A and 41B in the first direction. The printed wiring board 71 is located between the module terminals 51 and 52 in the second direction.
 また、図14は、ベース板42の構成を示す。図14に示すように、ベース板42は、金属から形成される板状の母材68を備える。電池モジュール40では、母材68は、厚さ方向が第3の方向と一致又は略一致する状態で、配置される。また、ベース板42では、母材68の両面に、絶縁層69が形成される。絶縁層69は、例えば樹脂等から形成され、電気的絶縁性を有する。母材68の両面のそれぞれでは、全体又は略全体に渡って、絶縁層69が形成される。絶縁層69は、母材68の表面に絶縁材料を蒸着又はコーティングすること等によって、形成される。また、母材68の表面に絶縁シート等を粘着することにより、絶縁層69を形成してもよい。図5等の実施形態では、電池配列体41Aが設置される設置面45、及び、電池配列体41Bが設置される設置面46は、絶縁層69から形成される。したがって、電池1のそれぞれは、母材68に対して適切に絶縁される。 Further, FIG. 14 shows the configuration of the base plate 42. As shown in FIG. 14, the base plate 42 includes a plate-shaped base material 68 formed of metal. In the battery module 40, the base material 68 is arranged in a state where the thickness direction coincides with or substantially coincides with the third direction. Further, in the base plate 42, insulating layers 69 are formed on both surfaces of the base material 68. The insulating layer 69 is formed of, for example, a resin or the like, and has electrical insulating properties. An insulating layer 69 is formed on both sides of the base metal 68, either entirely or substantially entirely. The insulating layer 69 is formed by depositing or coating an insulating material on the surface of the base material 68. Further, the insulating layer 69 may be formed by adhering an insulating sheet or the like to the surface of the base material 68. In the embodiment shown in FIG. 5 and the like, the installation surface 45 on which the battery array 41A is installed and the installation surface 46 on which the battery array 41B is installed are formed from the insulating layer 69. Therefore, each of the batteries 1 is appropriately insulated from the base material 68.
 図15は、ベース板42の設置面45への電池配列体41Aの設置を説明する図である。図15に示すように、電池配列体41Aの設置では、まず、係合突起62のそれぞれを係合孔63の対応する1つに係合させる等して、絶縁部材43のそれぞれを設置面45に取付ける。この際、絶縁部材43のそれぞれは、設置面45と面接触し、かつ、第1の方向及び第2の方向についてベース板42対して位置決めされた状態で、設置面45に固定される。そして、第2の外装部材6(頂壁15)がベース板42に対向する第2の電池1Bのそれぞれを、絶縁部材43の対応する1つ以上及び設置面45に取付ける。この際、第2の電池1Bのそれぞれは、第2の外装部材6の外表面が設置面45と面接触し、かつ、第1の方向及び第2の方向についてベース板42対して位置決めされた状態で、絶縁部材43の対応する1つ以上及び設置面45に固定される。 FIG. 15 is a diagram illustrating the installation of the battery array 41A on the installation surface 45 of the base plate 42. As shown in FIG. 15, in the installation of the battery array 41A, first, each of the insulating members 43 is engaged with the corresponding one of the engaging holes 63 by engaging each of the engaging projections 62 with the installation surface 45. Attach to. At this time, each of the insulating members 43 is fixed to the installation surface 45 in a state of being in surface contact with the installation surface 45 and being positioned with respect to the base plate 42 in the first direction and the second direction. Then, each of the second batteries 1B in which the second exterior member 6 (top wall 15) faces the base plate 42 is attached to one or more corresponding one or more of the insulating members 43 and the installation surface 45. At this time, in each of the second batteries 1B, the outer surface of the second exterior member 6 was in surface contact with the installation surface 45, and each of the second batteries 1B was positioned with respect to the base plate 42 in the first direction and the second direction. In the state, it is fixed to one or more corresponding members of the insulating member 43 and the installation surface 45.
 また、複数の絶縁部材43は、第1の方向についての間隔(ピッチ)が電池1のそれぞれの縦方向についての寸法に比べて僅かに小さくなる状態で、設置面45に固定される。すなわち、絶縁部材43が設置面45に固定された状態では、電池1のそれぞれでの一対の側壁8の外表面の間の縦方向についての寸法に比べて、絶縁部材43の第1の方向についての間隔が、僅かに小さくなる。そして、絶縁部材43及び第2の電池1Bが設置面45に取付けられた状態で、底壁7がベース板42に対向する第1の電池1Aのそれぞれを、絶縁部材43の対応する1つ以上及び設置面45に取付ける。この際、第1の電池1Aのそれぞれは、底壁7の外表面が設置面45と面接触し、かつ、第1の方向及び第2の方向についてベース板42対して位置決めされた状態で、絶縁部材43の対応する1つ以上及び設置面45に固定される。 Further, the plurality of insulating members 43 are fixed to the installation surface 45 in a state where the interval (pitch) in the first direction is slightly smaller than the dimension in each vertical direction of the battery 1. That is, in the state where the insulating member 43 is fixed to the installation surface 45, the first direction of the insulating member 43 is compared with the vertical dimension between the outer surfaces of the pair of side walls 8 of each battery 1. The interval between is slightly smaller. Then, with the insulating member 43 and the second battery 1B attached to the installation surface 45, each of the first batteries 1A whose bottom wall 7 faces the base plate 42 is attached to one or more corresponding ones or more of the insulating member 43. And attach to the installation surface 45. At this time, each of the first batteries 1A is in a state where the outer surface of the bottom wall 7 is in surface contact with the installation surface 45 and is positioned with respect to the base plate 42 in the first direction and the second direction. It is fixed to one or more corresponding members of the insulating member 43 and the installation surface 45.
 前述のように、複数の絶縁部材43の第1の方向についての間隔は、電池1のそれぞれの縦方向についての寸法に比べて僅かに小さい。このため、第1の電池1Aを設置面45に取付けることにより、電池1のそれぞれは、隣り合う電池1のそれぞれから縦方向について内側へ押圧力を受ける。なお、電池配列体41Bも、電池配列体41Aの設置面45への取付けと同様にして、設置面46に取付けられる。 As described above, the distance between the plurality of insulating members 43 in the first direction is slightly smaller than the dimensions of the battery 1 in each vertical direction. Therefore, by mounting the first battery 1A on the installation surface 45, each of the batteries 1 receives a pressing force inward in the vertical direction from each of the adjacent batteries 1. The battery array 41B is also attached to the installation surface 46 in the same manner as the battery array 41A is attached to the installation surface 45.
 前述の実施形態等の電池モジュール40の電池配列体41A,41Bのそれぞれでは、電池1のそれぞれは、配列方向について隣り合う電池1のそれぞれとの間で、絶縁部材43を挟む。このため、互いに対して隣り合う電池1がバスバー53以外を介して電気的に導通することが、有効に防止される。これにより、電池配列体41A,41Bのそれぞれでは、短絡等の発生が有効に防止される。 In each of the battery arrangements 41A and 41B of the battery module 40 according to the above-described embodiment, each of the batteries 1 sandwiches the insulating member 43 between the batteries 1 adjacent to each other in the arrangement direction. Therefore, it is effectively prevented that the batteries 1 adjacent to each other are electrically conductive via a path other than the bus bar 53. As a result, the occurrence of a short circuit or the like is effectively prevented in each of the battery arrays 41A and 41B.
 また、前述の実施形態等では、電池配列体41Aが設置される設置面45、及び、電池配列体41Bが設置される設置面46は、絶縁層69から形成される。このため、電池配列体41A,41Bのそれぞれにおいて、短絡等の発生がより有効に防止される。また、電池配列体41A,41Bの間が母材68を介して短絡すること等も、有効に防止される。したがって、電池モジュール40では、短絡等が有効に防止される絶縁構造が形成される。 Further, in the above-described embodiment and the like, the installation surface 45 on which the battery array 41A is installed and the installation surface 46 on which the battery array 41B is installed are formed from the insulating layer 69. Therefore, the occurrence of a short circuit or the like is more effectively prevented in each of the battery arrays 41A and 41B. Further, it is also possible to effectively prevent a short circuit between the battery arrays 41A and 41B via the base metal 68. Therefore, the battery module 40 is formed with an insulating structure that effectively prevents short circuits and the like.
 また、第1の電池1Aのそれぞれでは、第2の外装部材6(頂壁15)が、内部空洞11に対してベース板42が位置する側とは反対側に位置し、第2の外装部材6の外表面が、第3の方向について外側を向く。そして、第2の電池1Bのそれぞれでは、底壁7が、内部空洞11に対してベース板42が位置する側とは反対側に位置し、底壁7の外表面が、第3の方向について外側を向く。前述のように、実施形態等の電池1のそれぞれの外装部3は、高さ方向についての寸法が小さい扁平形状に形成される。そして、電池1のそれぞれでは、底壁7及び第2の外装部材6(頂壁15)のそれぞれの外表面の面積は、側壁8,9のそれぞれの外表面の面積に比べて、大きい。前述のような構成であるため、電池1のそれぞれでは、底壁7及び頂壁15のそれぞれから外部への放熱性が、側壁8,9のそれぞれから外部への放熱性に比べて、高い。 Further, in each of the first batteries 1A, the second exterior member 6 (top wall 15) is located on the side opposite to the side where the base plate 42 is located with respect to the internal cavity 11, and the second exterior member The outer surface of 6 faces outward in a third direction. Then, in each of the second batteries 1B, the bottom wall 7 is located on the side opposite to the side where the base plate 42 is located with respect to the internal cavity 11, and the outer surface of the bottom wall 7 is in the third direction. Turn to the outside. As described above, each exterior portion 3 of the battery 1 of the embodiment or the like is formed in a flat shape having a small dimension in the height direction. In each of the batteries 1, the area of the outer surface of each of the bottom wall 7 and the second exterior member 6 (top wall 15) is larger than the area of the outer surface of each of the side walls 8 and 9. Due to the above-described configuration, in each of the batteries 1, the heat dissipation from each of the bottom wall 7 and the top wall 15 to the outside is higher than the heat dissipation from each of the side walls 8 and 9 to the outside.
 実施形態等の電池モジュール40では、電池1のそれぞれは、底壁7の外表面又は頂壁15の外表面が第3の方向について外側を向く状態で、配置される。このため、電池モジュール40では、電池1のそれぞれで発生した熱は、底壁7又は第2の外装部材6(頂壁15)を通して、外部へ放熱される。電池1のそれぞれにおいて、放熱性が高い底壁7又は第2の外装部材6から外部へ放熱されるため、電池モジュール40では、発生した熱が適切に放熱される。したがって、電池モジュール40が適切に冷却される。また、電池1のそれぞれが底壁7の外表面又は頂壁15の外表面が第3の方向について外側を向く状態で配置されるため、電池モジュール40の全体を均一に冷却する構成が、容易に実現可能になる。 In the battery module 40 of the embodiment or the like, each of the batteries 1 is arranged so that the outer surface of the bottom wall 7 or the outer surface of the top wall 15 faces outward in the third direction. Therefore, in the battery module 40, the heat generated in each of the batteries 1 is dissipated to the outside through the bottom wall 7 or the second exterior member 6 (top wall 15). In each of the batteries 1, the bottom wall 7 or the second exterior member 6 having high heat dissipation dissipates heat to the outside, so that the generated heat is appropriately dissipated in the battery module 40. Therefore, the battery module 40 is appropriately cooled. Further, since each of the batteries 1 is arranged so that the outer surface of the bottom wall 7 or the outer surface of the top wall 15 faces outward in the third direction, it is easy to uniformly cool the entire battery module 40. Will be feasible.
 また、電池配列体41A,41Bのそれぞれでは、第1の電池1A及び第2の電池1Bが隣り合って配置され、第1の電池1A及び第2の電池1Bが配列方向について交互に配列される。電池モジュール40に用いられる電池1のそれぞれは、周壁4に対してフランジ13及び第2の外装部材6が外周側へ突出する。実施形態等では、前述のように電池1が配列されるため、前述のような構成の電池1を用いても、電池配列体41A,41Bのそれぞれにおいて、配列方向についての寸法を小さくすることが可能になる。電池配列体41A,41Bのそれぞれの配列方向の寸法が小さくなることにより、電池配列体41A,41Bの体積が小さくなる。これにより、電池配列体41A,41Bのそれぞれの体積エネルギー密度が高く確保され、電池モジュール40の体積エネルギー密度が高く確保される。
 また、電池1は、横方向についての寸法が大きく、かつ、高さ方向についての寸法が小さいため、前述のように、高さ方向についての撓み量が横方向に沿って変化する状態に、曲がり易い。実施形態等の電池配列体41A,41Bのそれぞれでは、電池1のそれぞれは、縦方向が配列方向に沿う状態で配置される。そして、電池1のそれぞれでは、隣り合う電池1のそれぞれに対して、側壁8の対応する一方が絶縁部材43を挟んで対向し、隣接する絶縁部材43のそれぞれに対して、側壁(第1の側壁)8の対応する一方が結合される。前述のように電池配列体41A,41Bのそれぞれが組み立てられるため、強度の高い電池配列体41A,41Bが形成される。これにより、電池配列体41A,41Bのそれぞれにおいて、共振等による電池1のそれぞれの変形が抑制される。
Further, in each of the battery arrays 41A and 41B, the first battery 1A and the second battery 1B are arranged adjacent to each other, and the first battery 1A and the second battery 1B are arranged alternately in the arrangement direction. .. In each of the batteries 1 used in the battery module 40, the flange 13 and the second exterior member 6 project toward the outer peripheral side with respect to the peripheral wall 4. In the embodiment and the like, since the batteries 1 are arranged as described above, even if the batteries 1 having the above-described configuration are used, the dimensions in the arrangement direction can be reduced in each of the battery arrangements 41A and 41B. It will be possible. As the dimensions of the battery arrays 41A and 41B in the arrangement direction become smaller, the volumes of the battery arrays 41A and 41B become smaller. As a result, the volume energy densities of the battery arrays 41A and 41B are secured high, and the volume energy density of the battery module 40 is secured high.
Further, since the battery 1 has a large dimension in the lateral direction and a small dimension in the height direction, it bends in a state in which the amount of deflection in the height direction changes along the lateral direction as described above. easy. In each of the battery arrays 41A and 41B of the embodiment and the like, each of the batteries 1 is arranged in a state in which the vertical direction is along the array direction. Then, in each of the batteries 1, one of the corresponding side walls 8 faces each of the adjacent batteries 1 with the insulating member 43 interposed therebetween, and the side wall (first) is opposed to each of the adjacent insulating members 43. The corresponding one of the side walls) 8 is joined. Since each of the battery arrays 41A and 41B is assembled as described above, the battery arrays 41A and 41B having high strength are formed. As a result, in each of the battery arrays 41A and 41B, deformation of the battery 1 due to resonance or the like is suppressed.
 また、電池モジュール40では、電池1のそれぞれは、隣り合う電池1のそれぞれから縦方向について内側へ押圧力を受ける状態で、隣接する絶縁部材43のそれぞれに固定される。このため、電池配列体41A,41Bのそれぞれでは、隣り合う電池1のそれぞれからの押圧力によって、電池1のそれぞれの振動が抑制される。これにより、電池1それぞれの変形が、より有効に抑制される。さらに、電池1の製造上の公差があった場合でも、隣り合う電池1のそれぞれから縦方向について内側へ押圧力を受けて、圧縮されることで製造上の公差を吸収することもできる。
 また、電池モジュール40を組み立てる際は、硬化時間が長い2液混合型接着剤で電池1を固定することで、硬化するまでの時間に、電池1をベース板42上で滑らせて適当な位置に固定することができる。これにより、組み立てが容易になることに加え、固定位置もより正確になる。
Further, in the battery module 40, each of the batteries 1 is fixed to each of the adjacent insulating members 43 in a state of receiving a pressing force inward in the vertical direction from each of the adjacent batteries 1. Therefore, in each of the battery arrays 41A and 41B, the vibration of each of the batteries 1 is suppressed by the pressing force from each of the adjacent batteries 1. As a result, the deformation of each of the batteries 1 is suppressed more effectively. Further, even if there is a manufacturing tolerance of the battery 1, the manufacturing tolerance can be absorbed by receiving a pressing force inward from each of the adjacent batteries 1 in the vertical direction and compressing the battery 1.
Further, when assembling the battery module 40, by fixing the battery 1 with a two-component mixed adhesive having a long curing time, the battery 1 is slid on the base plate 42 at an appropriate position in the time until the battery 1 is cured. Can be fixed to. This not only facilitates assembly, but also makes the fixed position more accurate.
 また、電池1のそれぞれでは、周壁4と外装部3(電池1)の外周端Eとの間を通って、バスバー53の対応する1つ以上が延設される。このため、電池配列体41A,41Bのそれぞれでは、バスバー53のいずれもが、第2の方向について、電池1のそれぞれの外装部3の外周端Eに対して、外周側(外側)に突出しない。電池配列体41A,41Bのそれぞれにおいてバスバー53のいずれもが電池1のそれぞれの外周端Eに対して内周側に位置するため、電池配列体41A,41Bのそれぞれにおいて、スペースロスが削減される。これにより、電池配列体41A,41Bのそれぞれをさらに小型化可能になり、電池配列体41A,41Bのそれぞれの体積エネルギー密度をさらに高くすることが可能になる。 Further, in each of the batteries 1, one or more corresponding ones or more of the bus bars 53 are extended so as to pass between the peripheral wall 4 and the outer peripheral end E of the exterior portion 3 (battery 1). Therefore, in each of the battery arrays 41A and 41B, none of the bus bars 53 protrudes to the outer peripheral side (outside) with respect to the outer peripheral end E of each outer peripheral portion 3 of the battery 1 in the second direction. .. Since each of the bus bars 53 in each of the battery arrays 41A and 41B is located on the inner peripheral side with respect to the outer peripheral end E of each of the batteries 1, space loss is reduced in each of the battery arrays 41A and 41B. .. As a result, each of the battery arrays 41A and 41B can be further miniaturized, and the volumetric energy density of each of the battery arrays 41A and 41B can be further increased.
 なお、ある変形例では、電池配列体41A,41Bと同様の電池配列体が1つのみ設けられる。この場合、ベース板42の片面が、電池配列体が設置される設置面となる。本変形例でも、電池配列体41A,41Bのそれぞれと同様にして、電池配列体において複数の電池1が配列される。 In a modified example, only one battery array similar to the battery arrays 41A and 41B is provided. In this case, one side of the base plate 42 is the installation surface on which the battery array is installed. In this modification as well, a plurality of batteries 1 are arranged in the battery array in the same manner as in each of the battery arrays 41A and 41B.
 [電池パック] 
 次に、前述した実施形態等の電池モジュールが用いられる電池パックについて、説明する。図16は、図5等の実施形態の電池モジュール40が用いられる電池パック70の一例を示す。図16等の実施形態では、電池モジュール40において、複数の電池1が、電気的に直列に接続される。電池1は、前述したバスバー53,55等を介して、互いに対して電気的に接続される。なお、別の一例では、電池モジュール40において、複数の電池1が電気的に並列に接続されてもよい。また、別の一例では、電池モジュール40において、電池1が直列に接続される直列接続、及び、電池1が並列に接続される並列接続の両方が形成されてもよい。
[Battery pack]
Next, a battery pack in which the battery module of the above-described embodiment or the like is used will be described. FIG. 16 shows an example of a battery pack 70 in which the battery module 40 of the embodiment shown in FIG. 5 or the like is used. In an embodiment such as FIG. 16, in the battery module 40, a plurality of batteries 1 are electrically connected in series. The batteries 1 are electrically connected to each other via the bus bars 53, 55 and the like described above. In another example, in the battery module 40, a plurality of batteries 1 may be electrically connected in parallel. Further, in another example, in the battery module 40, both a series connection in which the batteries 1 are connected in series and a parallel connection in which the batteries 1 are connected in parallel may be formed.
 また、電池パック70の電池モジュール40では、複数の電池1の対応する1つ(1δ)の正極端子(27の対応する一方)が、バスバー(正極側リード)56を介して、正極側のモジュール端子51に接続される。そして、複数の電池1の中でバスバー56が接続される電池(1δ)とは別の対応する1つ(1γ)では、負極端子(27の対応する1つ)が、バスバー(負極側リード)57を介して、負極側のモジュール端子52に接続される。 Further, in the battery module 40 of the battery pack 70, one (1δ) positive electrode terminal (corresponding one of 27) of the plurality of batteries 1 is connected to the positive electrode side module via the bus bar (positive electrode side lead) 56. It is connected to the terminal 51. Then, in the corresponding one (1γ) different from the battery (1δ) to which the bus bar 56 is connected among the plurality of batteries 1, the negative electrode terminal (corresponding one of 27) is the bus bar (negative electrode side lead). It is connected to the module terminal 52 on the negative electrode side via 57.
 電池パック70には、前述したプリント配線基板71が設けられる。プリント配線基板71には、保護回路72、温度検出器であるサーミスタ73、及び、通電用の外部端子75が、搭載される。なお、電池パック70では、絶縁部材(図示しない)によって、プリント配線基板84上の電気経路と電池モジュール40の配線との不要な接続が、防止される。正極側のモジュール端子51は、プリント配線基板71に形成される配線76等を介して、保護回路72に接続され、負極側のモジュール端子52は、プリント配線基板71に形成される配線77等を介して、保護回路72に接続される。 The battery pack 70 is provided with the printed wiring board 71 described above. A protection circuit 72, a thermistor 73 which is a temperature detector, and an external terminal 75 for energization are mounted on the printed wiring board 71. In the battery pack 70, an insulating member (not shown) prevents unnecessary connection between the electric path on the printed wiring board 84 and the wiring of the battery module 40. The module terminal 51 on the positive electrode side is connected to the protection circuit 72 via the wiring 76 or the like formed on the printed wiring board 71, and the module terminal 52 on the negative electrode side connects the wiring 77 or the like formed on the printed wiring board 71. It is connected to the protection circuit 72 via.
 温度検出器であるサーミスタ73は、電池モジュール40を形成する複数の電池1のそれぞれについて、温度を検出する。そして、サーミスタ73は、温度についての検出信号を、保護回路72に出力する。 The thermistor 73, which is a temperature detector, detects the temperature of each of the plurality of batteries 1 forming the battery module 40. Then, the thermistor 73 outputs a detection signal about the temperature to the protection circuit 72.
 電池パック70は、電流検出機能及び電圧検出機能を有する。電池パック70では、電池モジュール40への入力電流、及び、電池モジュール40からの出力電流が検出されてもよく、電池モジュール40を形成する複数の電池1のいずれかを流れる電流が、検出されてもよい。また、電池パック70では、電池モジュール40において電池1のそれぞれの電圧が検出されてもよく、電池モジュール40全体に印加される電圧が検出されてもよい。電池パック70では、電池モジュール40と保護回路72との間が、配線74を介して、接続される。保護回路72には、電流についての検出信号、及び、電圧についての検出信号が、配線74を介して出力される。 The battery pack 70 has a current detection function and a voltage detection function. In the battery pack 70, the input current to the battery module 40 and the output current from the battery module 40 may be detected, and the current flowing through any of the plurality of batteries 1 forming the battery module 40 is detected. May be good. Further, in the battery pack 70, the respective voltages of the batteries 1 may be detected in the battery module 40, or the voltage applied to the entire battery module 40 may be detected. In the battery pack 70, the battery module 40 and the protection circuit 72 are connected via the wiring 74. A detection signal for current and a detection signal for voltage are output to the protection circuit 72 via the wiring 74.
 なお、ある実施例では、電池1のそれぞれの電圧が検出される代わりに、電池モジュール40を形成する電池1のそれぞれについて、正極電位又は負極電位が検出される。この場合、電池モジュール40に、参照極としてリチウム電極等が設けられる。そして、参照極での電位を基準として、電池1のそれぞれの正極電位又は負極電位が検出される。 In a certain embodiment, instead of detecting the respective voltages of the batteries 1, the positive electrode potential or the negative electrode potential is detected for each of the batteries 1 forming the battery module 40. In this case, the battery module 40 is provided with a lithium electrode or the like as a reference electrode. Then, each positive electrode potential or negative electrode potential of the battery 1 is detected with reference to the potential at the reference electrode.
 外部端子75は、電池パック70の外部の機器に接続される。外部端子75は、電池モジュール40からの電流の外部への出力、及び/又は、電池モジュール40への電流の入力に用いられる。電池パック70の電池モジュール40を電源として使用する際には、電流が通電用の外部端子75を通して、電池パック70の外部に供給される。また、電池モジュール40を充電する際には、充電電流は、通電用の外部端子75を通して電池モジュール40に供給される。電池モジュール40の充電電流には、例えば、自動車等の動力の回生エネルギー等が含まれる。また、保護回路72は、プラス配線78及びマイナス配線79を介して外部端子75に接続可能である。 The external terminal 75 is connected to an external device of the battery pack 70. The external terminal 75 is used for outputting the current from the battery module 40 to the outside and / or inputting the current to the battery module 40. When the battery module 40 of the battery pack 70 is used as a power source, an electric current is supplied to the outside of the battery pack 70 through an external terminal 75 for energization. Further, when charging the battery module 40, the charging current is supplied to the battery module 40 through the external terminal 75 for energization. The charging current of the battery module 40 includes, for example, regenerative energy for power of an automobile or the like. Further, the protection circuit 72 can be connected to the external terminal 75 via the positive wiring 78 and the negative wiring 79.
 保護回路72は、電池モジュール40と外部端子75との間の電気的な接続を遮断可能な機能を有する。保護回路72には、接続遮断部として、リレー又はヒューズ等が設けられる。また、保護回路72は、電池モジュール40の充放電を制御する機能を有する。保護回路72は、前述の電流、電圧及び温度等のいずれかに関する検出結果に基づいて、電池モジュール40の充放電を制御する。 The protection circuit 72 has a function of being able to cut off the electrical connection between the battery module 40 and the external terminal 75. The protection circuit 72 is provided with a relay, a fuse, or the like as a connection cutoff portion. Further, the protection circuit 72 has a function of controlling charging / discharging of the battery module 40. The protection circuit 72 controls charging / discharging of the battery module 40 based on the detection result regarding any of the above-mentioned current, voltage, temperature, and the like.
 例えば、サーミスタ73の検出温度が所定温度以上になった場合、保護回路72は、所定の条件になったと判断する。また、電池モジュール40において過充電、過放電及び過電流等のいずれかが検出された場合に、保護回路72は、電池モジュール40が所定の条件になったと判断する。そして、電池モジュール40が前述の所定の条件になったと判断した場合、保護回路72は、保護回路72と通電用の外部端子75との間の導通を、遮断できる。保護回路72と通電用の外部端子75との間の導通が遮断されることにより、電池モジュール40からの電流の外部への出力、及び、電池モジュール40への電流の入力が停止される。これにより、電池モジュール40において過電流等が継続して発生することが、有効に防止される。 For example, when the detection temperature of the thermistor 73 exceeds a predetermined temperature, the protection circuit 72 determines that the predetermined condition has been met. Further, when any of overcharge, overdischarge, overcurrent, etc. is detected in the battery module 40, the protection circuit 72 determines that the battery module 40 has met the predetermined conditions. Then, when it is determined that the battery module 40 meets the above-mentioned predetermined conditions, the protection circuit 72 can cut off the continuity between the protection circuit 72 and the external terminal 75 for energization. By cutting off the continuity between the protection circuit 72 and the external terminal 75 for energization, the output of the current from the battery module 40 to the outside and the input of the current to the battery module 40 are stopped. As a result, the continuous generation of overcurrent or the like in the battery module 40 is effectively prevented.
 なお、ある実施例では、電池パック70(電池モジュール40)を電源として使用する装置に形成される回路を、保護回路として使用してもよい。また、電池パック70において、電池モジュール40を複数設け、電池モジュール40同士を電気的に直列及び/又は並列に接続してもよい。 In a certain embodiment, a circuit formed in a device that uses the battery pack 70 (battery module 40) as a power source may be used as a protection circuit. Further, in the battery pack 70, a plurality of battery modules 40 may be provided, and the battery modules 40 may be electrically connected in series and / or in parallel.
 [電池パックの用途] 
 前述した電池モジュール40を備える電池パック70の構成等は、用途により、適宜変更される。電池パック70の用途としては、大電流での充放電が求められている装置等であることが、好ましい。具体的な電池パック70の用途には、デジタルカメラの電源用、車両の車載用、及び、定置用電源等が、挙げられる。この場合、電池モジュール40を含む電池パック70が搭載される車両としては、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車、及び、鉄道用車両等が挙げられる。
[Use of battery pack]
The configuration of the battery pack 70 including the battery module 40 described above is appropriately changed depending on the application. The battery pack 70 is preferably used in a device or the like that is required to be charged and discharged with a large current. Specific uses of the battery pack 70 include a power source for a digital camera, a vehicle-mounted power source for a vehicle, and a stationary power source. In this case, examples of the vehicle on which the battery pack 70 including the battery module 40 is mounted include a two-wheel to four-wheel hybrid electric vehicle, a two-wheel to four-wheel electric vehicle, an assisted bicycle, and a railroad vehicle.
 前述した実施形態の電池モジュール40を備える電池パック70は、前述のように、体積エネルギー密度が高い。このため、電池パック70(電池モジュール40)は、鉛電池の代替電源として車両用のスタータ電源に用いることも好適であるとともに、ハイブリッド車に搭載する車載用電源、及び、定置用電源としても好適である。 As described above, the battery pack 70 including the battery module 40 of the above-described embodiment has a high volume energy density. Therefore, the battery pack 70 (battery module 40) is preferably used as a starter power source for vehicles as an alternative power source for lead batteries, and is also suitable as an in-vehicle power source mounted on a hybrid vehicle and a stationary power source. Is.
 図17は、前述の電池パック70のある適用例として、車両80への適用例を示す。図17に示す一例では、車両80は、車両本体81と、電池パック70と、を備える。図17に示す一例では、車両80は、四輪の自動車である。なお、車両80は、複数の電池パック70を搭載してもよい。 FIG. 17 shows an application example to the vehicle 80 as an application example of the battery pack 70 described above. In the example shown in FIG. 17, the vehicle 80 includes a vehicle body 81 and a battery pack 70. In the example shown in FIG. 17, the vehicle 80 is a four-wheeled vehicle. The vehicle 80 may be equipped with a plurality of battery packs 70.
 図17の一例では、電池パック70が車両本体81の前方に位置するエンジンルーム内に搭載される。なお、電池パック70は、例えば、車両本体81の後方、又は、座席の下に搭載してもよい。特に、前述の電池モジュール40を備える電池パック70は、座席の下の狭いスペースでも、配置可能である。前述のように、電池パック70は、車両80の電源として用いることができる。また、電池パック70は、車両80の動力の回生エネルギーを、回収することができる。 In the example of FIG. 17, the battery pack 70 is mounted in the engine room located in front of the vehicle body 81. The battery pack 70 may be mounted, for example, behind the vehicle body 81 or under the seat. In particular, the battery pack 70 including the battery module 40 described above can be arranged even in a narrow space under the seat. As described above, the battery pack 70 can be used as a power source for the vehicle 80. Further, the battery pack 70 can recover the regenerative energy of the power of the vehicle 80.
 これらの少なくとも一つの実施形態又は実施例によれば、複数の電池のそれぞれは、縦方向が配列方向に沿う状態で配置される。そして、複数の電池は、ベース板の設置面に底壁が対向する第1の電池と、ベース板の設置面に第2の外装部材が対向する第2の電池と、を備え、電池配列体では、第1の電池及び第2の電池が隣り合って配置される。これにより、電池のそれぞれで発生した熱が適切に放熱されるとともに、体積エネルギー密度が高く確保される電池モジュールを提供することができる。 According to at least one of these embodiments or embodiments, each of the plurality of batteries is arranged in a state in which the vertical direction is along the arrangement direction. The plurality of batteries include a first battery whose bottom wall faces the installation surface of the base plate and a second battery whose second exterior member faces the installation surface of the base plate, and is a battery array. Then, the first battery and the second battery are arranged next to each other. As a result, it is possible to provide a battery module in which the heat generated in each of the batteries is appropriately dissipated and the volumetric energy density is high.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

Claims (15)

  1.  配列方向に配列される複数の電池を備える電池配列体と、
     前記電池配列体が設置される設置面を備えるベース板と、
     を具備し、
     複数の前記電池のそれぞれは、正極及び負極を備える電極群と、金属から形成されるとともに、前記電極群が収納される内部空洞を規定する外装部と、を備え、
     複数の前記電池のそれぞれの前記外装部は、底壁と、前記内部空洞の外周側を囲む周壁と、前記周壁において前記底壁とは反対側の端部から前記外周側へ突出するフランジと、を備える第1の外装部材と、高さ方向について前記底壁とは反対側から前記フランジに取付けられる第2の外装部材と、を備え、
     複数の前記電池のそれぞれの前記外装部及び前記内部空洞のそれぞれでは、前記高さ方向についての寸法が、前記高さ方向に交差する縦方向についての寸法に比べて小さく、かつ、前記縦方向についての前記寸法が、前記高さ方向及び前記縦方向の両方に交差する横方向についての寸法に比べて小さくなり、
     複数の前記電池のそれぞれは、前記縦方向が前記配列方向に沿う状態で配置され、
     複数の前記電池は、前記ベース板の前記設置面に前記底壁が対向する第1の電池と、前記ベース板の前記設置面に前記第2の外装部材が対向する第2の電池と、を備え、
     前記電池配列体では、前記第1の電池及び前記第2の電池が隣り合って配置される、
     電池モジュール。
    A battery array having a plurality of batteries arranged in the array direction,
    A base plate having an installation surface on which the battery array is installed, and
    Equipped with
    Each of the plurality of batteries includes an electrode group including a positive electrode and a negative electrode, and an exterior portion formed of metal and defining an internal cavity in which the electrode group is housed.
    Each of the exterior parts of the plurality of batteries includes a bottom wall, a peripheral wall surrounding the outer peripheral side of the internal cavity, and a flange protruding from an end portion of the peripheral wall opposite to the bottom wall to the outer peripheral side. A first exterior member including the above, and a second exterior member attached to the flange from the side opposite to the bottom wall in the height direction.
    In each of the exterior portion and the internal cavity of each of the plurality of batteries, the dimensions in the height direction are smaller than the dimensions in the vertical direction intersecting the height directions, and the dimensions in the vertical direction are smaller. The dimension of the above is smaller than the dimension in the lateral direction intersecting both the height direction and the vertical direction.
    Each of the plurality of batteries is arranged so that the vertical direction is along the arrangement direction.
    The plurality of batteries include a first battery in which the bottom wall faces the installation surface of the base plate, and a second battery in which the second exterior member faces the installation surface of the base plate. Prepare,
    In the battery array, the first battery and the second battery are arranged next to each other.
    Battery module.
  2.  前記第1の外装部材の周壁は、前記縦方向について前記内部空洞を挟んで対向する一対の第1の側壁と、前記横方向について前記内部空洞を挟んで対向する一対の第2の側壁と、を備え、
     前記電池配列体では、前記電池のそれぞれは、隣り合う前記電池のそれぞれに対して、前記第1の側壁の対応する一方が対向する、
     請求項1の電池モジュール。
    The peripheral wall of the first exterior member includes a pair of first side walls facing each other across the internal cavity in the vertical direction, and a pair of second side walls facing each other across the internal cavity in the horizontal direction. With
    In the battery array, each of the batteries faces each of the adjacent batteries with the corresponding one of the first side walls facing each other.
    The battery module of claim 1.
  3.  複数の前記電池のそれぞれは、前記外装部の外表面に取付けられる一対の電極端子を備え、
     複数の前記電池のそれぞれでは、前記電極群は、前記横方向について一対の前記電極端子の間に配置され、一対の前記電極端子のそれぞれは、周方向について一対の前記第2の側壁の対応する一方が延設される範囲に配置される、
     請求項2の電池モジュール。
    Each of the plurality of batteries includes a pair of electrode terminals attached to the outer surface of the exterior portion.
    In each of the plurality of batteries, the electrode group is arranged between the pair of the electrode terminals in the lateral direction, and each of the pair of electrode terminals corresponds to the pair of the second side walls in the circumferential direction. One is placed in the extended range,
    The battery module of claim 2.
  4.  前記電池配列体において複数の前記電池の中の2つ以上の間を電気的に接続するバスバーをさらに具備し、
     前記バスバーによって電気的に接続される2つ以上の前記電池のそれぞれでは、一対の前記電極端子の対応する一方である対象端子に前記バスバーが接触し、
     前記バスバーは、2つ以上の前記対象端子の間において、前記電池の前記配列方向に沿って延設される、
     請求項3の電池モジュール。
    Further comprising a bus bar in the battery array that electrically connects two or more of the plurality of batteries.
    In each of the two or more batteries electrically connected by the bus bar, the bus bar comes into contact with one of the corresponding target terminals of the pair of electrode terminals.
    The bus bar extends between the two or more target terminals along the array direction of the batteries.
    The battery module of claim 3.
  5.  複数の前記電池のそれぞれでは、前記底壁及び前記第2の外装部材のそれぞれの外表面の面積は、一対の前記第1の側壁のそれぞれの外表面の面積に比べて、大きく、一対の前記第1の側壁のそれぞれの前記外表面の前記面積は、一対の前記第2の側壁のそれぞれの外表面の面積に比べて、大きい、請求項2乃至4のいずれか1項の電池モジュール。 In each of the plurality of batteries, the area of each outer surface of the bottom wall and the second exterior member is larger than the area of each outer surface of the pair of first side walls, and the pair of said batteries. The battery module according to any one of claims 2 to 4, wherein the area of each of the outer surfaces of the first side wall is larger than the area of each outer surface of the pair of the second side walls.
  6.  複数の前記電池のそれぞれでは、一対の前記第1の側壁のそれぞれの前記横方向についての寸法は、一対の前記第2の側壁のそれぞれの前記縦方向についての寸法に比べて、大きい、請求項2乃至5のいずれか1項の電池モジュール。 A claim that, in each of the plurality of batteries, the lateral dimension of each of the pair of first sidewalls is larger than the longitudinal dimension of each of the pair of second sidewalls. The battery module according to any one of 2 to 5.
  7.  前記電池配列体は、電気的絶縁性を有する絶縁部材を備え、
     前記電池配列体では、前記電池のそれぞれは、隣り合う前記電池のそれぞれとの間で前記絶縁部材を挟む、
     請求項1乃至6のいずれか1項の電池モジュール。
    The battery array includes an insulating member having electrical insulation.
    In the battery array, each of the batteries sandwiches the insulating member with each of the adjacent batteries.
    The battery module according to any one of claims 1 to 6.
  8.  前記絶縁部材は、前記ベース板に対して固定され、
     複数の前記電池のそれぞれは、隣り合う前記電池のそれぞれから前記周壁が前記縦方向について内側へ押圧力を受ける状態で前記絶縁部材に対して固定され、前記ベース板に対して位置決めされる、
     請求項7のいずれか1項の電池モジュール。
    The insulating member is fixed to the base plate and
    Each of the plurality of batteries is fixed to the insulating member in a state where the peripheral wall receives a pressing force inward in the vertical direction from each of the adjacent batteries, and is positioned with respect to the base plate.
    The battery module according to any one of claims 7.
  9.  複数の前記電池のそれぞれでは、
      前記電極群の前記正極は、正極集電体と、前記正極集電体の表面に担持される正極活物質含有層と、を備えるとともに、前記正極集電体は、前記正極活物質含有層が未担持の部分であり、前記内部空洞において前記横方向の一方側へ前記負極に対して突出する正極集電タブを備え、
      前記電極群の前記負極は、負極集電体と、前記負極集電体の表面に担持される負極活物質含有層と、を備えるとともに、前記負極集電体は、前記負極活物質含有層が未担持の部分であり、前記内部空洞において前記横方向について前記正極集電タブが突出する側とは反対側へ前記正極に対して突出する負極集電タブを備える、
     請求項1乃至8のいずれか1項の電池モジュール。
    In each of the plurality of batteries,
    The positive electrode of the electrode group includes a positive electrode current collector and a positive electrode active material-containing layer supported on the surface of the positive electrode current collector, and the positive electrode current collector includes the positive electrode active material-containing layer. An unsupported portion, provided with a positive electrode current collecting tab protruding from the negative electrode to one side in the lateral direction in the internal cavity.
    The negative electrode of the electrode group includes a negative electrode current collector and a negative electrode active material-containing layer supported on the surface of the negative electrode current collector, and the negative electrode current collector includes the negative electrode active material-containing layer. A negative electrode current collecting tab that is an unsupported portion and protrudes with respect to the positive electrode in the lateral direction opposite to the side on which the positive electrode current collecting tab protrudes is provided.
    The battery module according to any one of claims 1 to 8.
  10.  前記ベース板は、金属から形成される母材と、電気的絶縁性を有し、前記母材の表面に形成される絶縁層と、を備え、
     前記ベース板の前記設置面は、前記絶縁層から形成される、
     請求項1乃至9のいずれか1項の電池モジュール。
    The base plate includes a base material formed of metal and an insulating layer having electrical insulating properties and formed on the surface of the base material.
    The installation surface of the base plate is formed from the insulating layer.
    The battery module according to any one of claims 1 to 9.
  11.  前記電池配列体を複数具備し、
     前記ベース板の前記設置面は、第1の設置面と、前記第1の設置面とは反対側を向く第2の設置面と、を備え、
     複数の前記電池配列体は、前記第1の設置面に設置される第1の電池配列体と、前記第2の設置面に設置される第2の電池配列体と、を備える、
     請求項1乃至10のいずれか1項の電池モジュール。
    A plurality of the battery arrays are provided.
    The installation surface of the base plate includes a first installation surface and a second installation surface facing the side opposite to the first installation surface.
    The plurality of battery arrays include a first battery array installed on the first installation surface and a second battery array installed on the second installation surface.
    The battery module according to any one of claims 1 to 10.
  12.  前記第1の電池配列体での複数の前記電池の配列方向は、前記第2の電池配列体での複数の前記電池の配列方向と一致する、請求項11の電池モジュール。 The battery module according to claim 11, wherein the arrangement directions of the plurality of batteries in the first battery arrangement coincide with the arrangement directions of the plurality of batteries in the second battery arrangement.
  13.  請求項1乃至12のいずれか1項の電池モジュールを具備する、電池パック。 A battery pack comprising the battery module according to any one of claims 1 to 12.
  14.  前記電池モジュールに電気的に接続される外部端子と、
     保護回路と、
     をさらに具備する、請求項13の電池パック。
    An external terminal that is electrically connected to the battery module,
    With protection circuit
    13. The battery pack according to claim 13.
  15.  請求項13又は14の電池パックを具備する車両。 A vehicle equipped with the battery pack of claim 13 or 14.
PCT/JP2019/013679 2019-03-28 2019-03-28 Battery module, battery pack, and vehicle WO2020194684A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021508615A JP7124209B2 (en) 2019-03-28 2019-03-28 Battery modules, battery packs and vehicles
CN201980079015.2A CN113169410A (en) 2019-03-28 2019-03-28 Battery module, battery pack, and vehicle
PCT/JP2019/013679 WO2020194684A1 (en) 2019-03-28 2019-03-28 Battery module, battery pack, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013679 WO2020194684A1 (en) 2019-03-28 2019-03-28 Battery module, battery pack, and vehicle

Publications (1)

Publication Number Publication Date
WO2020194684A1 true WO2020194684A1 (en) 2020-10-01

Family

ID=72611244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013679 WO2020194684A1 (en) 2019-03-28 2019-03-28 Battery module, battery pack, and vehicle

Country Status (3)

Country Link
JP (1) JP7124209B2 (en)
CN (1) CN113169410A (en)
WO (1) WO2020194684A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164186A (en) * 1998-11-27 2000-06-16 Matsushita Electric Ind Co Ltd Storage battery
JP2006040696A (en) * 2004-07-27 2006-02-09 Nissan Motor Co Ltd Battery pack
JP2006073368A (en) * 2004-09-02 2006-03-16 Nissan Motor Co Ltd Battery pack
WO2013011749A1 (en) * 2011-07-15 2013-01-24 Necエナジーデバイス株式会社 Battery module
JP2016222189A (en) * 2015-06-03 2016-12-28 Necスペーステクノロジー株式会社 Artificial satellite panel, artificial satellite and method for loading battery to artificial satellite

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186720B2 (en) * 2005-09-30 2013-04-24 大日本印刷株式会社 Thin battery module and battery pack
DE102012018038A1 (en) * 2012-09-13 2014-03-13 Daimler Ag Single cell and battery of a plurality of single cells
JP2014078498A (en) * 2012-09-19 2014-05-01 Toshiba Corp Battery module
CN104124411B (en) * 2014-08-07 2016-02-03 湖南丰源业翔晶科新能源股份有限公司 A kind of electric vehicle soft bag lithium ionic cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164186A (en) * 1998-11-27 2000-06-16 Matsushita Electric Ind Co Ltd Storage battery
JP2006040696A (en) * 2004-07-27 2006-02-09 Nissan Motor Co Ltd Battery pack
JP2006073368A (en) * 2004-09-02 2006-03-16 Nissan Motor Co Ltd Battery pack
WO2013011749A1 (en) * 2011-07-15 2013-01-24 Necエナジーデバイス株式会社 Battery module
JP2016222189A (en) * 2015-06-03 2016-12-28 Necスペーステクノロジー株式会社 Artificial satellite panel, artificial satellite and method for loading battery to artificial satellite

Also Published As

Publication number Publication date
JPWO2020194684A1 (en) 2021-10-21
JP7124209B2 (en) 2022-08-23
CN113169410A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
JP5774752B2 (en) Battery and battery pack
US9203059B2 (en) Battery with insulating member including bus bar fixing section
JP6686286B2 (en) Prismatic secondary battery and assembled battery using the same
JP5558262B2 (en) battery
US20130196192A1 (en) Sealed secondary battery
KR20180106809A (en) Secondary battery, battery pack and vehicle
CN113228387B (en) Battery pack and battery system
US20170317377A1 (en) Secondary battery, electric vehicle, power storage system, and manufacturing method
WO2021049032A1 (en) Battery, battery pack, and vehicle
CN111033804B (en) Power storage module and battery pack
US20210367301A1 (en) Battery module, battery pack, and vehicle
JP7024076B2 (en) Connection members and battery pack
CN111095644A (en) Battery and battery pack
JP7186802B2 (en) Battery pack and battery system
CN115719864A (en) Battery with a battery cell
JP7124209B2 (en) Battery modules, battery packs and vehicles
JP7318333B2 (en) Storage element
JP7135219B2 (en) Insulating member, battery, battery pack, vehicle, and battery manufacturing method
JP7024075B2 (en) Rechargeable batteries and battery packs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921334

Country of ref document: EP

Kind code of ref document: A1