WO2020194649A1 - Control device and control system - Google Patents

Control device and control system Download PDF

Info

Publication number
WO2020194649A1
WO2020194649A1 PCT/JP2019/013548 JP2019013548W WO2020194649A1 WO 2020194649 A1 WO2020194649 A1 WO 2020194649A1 JP 2019013548 W JP2019013548 W JP 2019013548W WO 2020194649 A1 WO2020194649 A1 WO 2020194649A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
command
power conversion
communication unit
unit
Prior art date
Application number
PCT/JP2019/013548
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 藤原
大樹 古賀
洋介 神野
亨 平田
研太郎 土居
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/013548 priority Critical patent/WO2020194649A1/en
Priority to JP2021508588A priority patent/JP7237145B2/en
Publication of WO2020194649A1 publication Critical patent/WO2020194649A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a control device and a control system that control a power conversion device.
  • Some electric railway cars are equipped with a power conversion device that converts the power supplied from the substation through the overhead wire into the desired power and supplies the converted power to the load inside the car.
  • a power conversion device that converts the power supplied from the substation through the overhead wire into the desired power and supplies the converted power to the load inside the car.
  • the control device By controlling the switching element of the power conversion device by the control device, the power conversion device converts the power supplied from the substation into the desired power.
  • Patent Document 1 An example of this type of power conversion device is disclosed in Patent Document 1.
  • the power conversion device disclosed in Patent Document 1 measures a voltage between input terminals of a main circuit and a current flowing through an electric motor, and outputs a sensor signal indicating a voltage measurement value and a current measurement value, and a sensor. It includes a control device that generates a gate signal according to a measured value of voltage and a measured value of current indicated by the signal and outputs the gate signal in parallel, and a main circuit having a switching element that is switched on and off by the gate signal.
  • the control device performs PWM (Pulse Width Modulation) control that adjusts the duty ratio of the gate signal according to the measured value of voltage and the measured value of current indicated by the sensor signal.
  • PWM Pulse Width Modulation
  • control device and the main circuit are arranged apart from each other, the wiring connecting the control device and the main circuit becomes long, which causes a signal delay, and thus the responsiveness of PWM control deteriorates.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to improve the responsiveness of control of a power conversion device by a control device.
  • the control device of the present invention includes a first communication unit, a calculation unit, and a second communication unit.
  • the first communication unit receives a control command including an instruction to start or stop the power conversion device.
  • the arithmetic unit generates a signal for controlling the power conversion device in response to a control command received by the first communication unit.
  • the second communication unit transmits a signal to the power converter.
  • the control device is arranged adjacent to the power conversion device.
  • a control device that transmits a signal generated in response to a control command to the power conversion device is arranged adjacent to the power conversion device.
  • Block diagram of the control system according to the first embodiment of the present invention The figure which shows the implementation example of the control system which concerns on Embodiment 1.
  • Block diagram of the control system according to the second embodiment of the present invention The figure which shows the implementation example of the control system which concerns on Embodiment 2.
  • Block diagram of the control system according to the third embodiment of the present invention The figure which shows the mounting example of the command device which concerns on Embodiment 3.
  • Block diagram of the control system according to the fourth embodiment of the present invention The figure which shows the mounting example of the control apparatus which concerns on Embodiment 4.
  • control device specifically, the control device for controlling the electronic device by transmitting a signal to the electronic device and the control system having the control device will be described in detail with reference to the drawings.
  • the same or equivalent parts are designated by the same reference numerals.
  • Embodiment 1 Some electric railway vehicles are equipped with a power conversion device that converts the power supplied from the substation through the overhead wire into three-phase AC power and supplies the three-phase AC power to the electric motor. Taking this power conversion device as an example, the control device and the control system that control the power conversion device will be described in the first embodiment.
  • FIG. 1 shows a control system according to the first embodiment.
  • the control system 1 shown in FIG. 1 controls a switching element included in the power conversion device 2 that supplies electric power to the electric motor 3.
  • the control system 1 will be described by taking as an example a case where the power conversion device 2 is composed of a VVVF (Variable Voltage Variable Frequency) inverter and the electric motor 3 is composed of a three-phase induction motor.
  • the control system 1 acquires an operation command from a driver's cab (not shown) and acquires a sensor signal from the sensor 4.
  • the sensor 4 measures the current of each phase output by the power conversion device 2.
  • the sensor signal output by the sensor 4 indicates a measured value of the current of each phase.
  • the control system 1 generates a signal for controlling the power conversion device 2 and transmits the signal to the power conversion device 2. Specifically, the control system 1 generates a gate signal for controlling the switching element of each phase of the power conversion device 2 according to the operation command and the measured value of the current of each phase indicated by the sensor signal. , The gate signal is transmitted to the switching element included in the power conversion device 2. By repeating on / off of the switching element controlled by the gate signal, the power conversion device 2 converts the power supplied from a power source (not shown), for example, a substation into three-phase AC power, and converts the three-phase AC power into the electric motor 3. Supply to. By driving the electric motor 3 supplied with the three-phase AC electric power, the propulsive force of the railway vehicle can be obtained.
  • a power source not shown
  • the control system 1 is a command device 10 that generates a control command including an instruction to start or stop the power conversion device 2, and a control that generates a gate signal that controls a switching element of the power conversion device 2 in response to the control command.
  • the device 20 is provided.
  • the control system 1 further includes a high-speed serial line 5 that connects the command device 10 and the control device 20.
  • the high-speed serial line 5 may be a transmission line conforming to the Ethernet (registered trademark) standard and may be a transmission line capable of serial communication.
  • the control system 1 includes a first parallel line 6 that connects the control device 20 and the sensor 4.
  • the control system 1 includes a second parallel line 7 that connects the control device 20 and the power conversion device 2.
  • the first parallel line 6 and the second parallel line 7 are composed of transmission lines that enable parallel transmission.
  • the command device 10 includes a command generation unit 11 that acquires an operation command from a driver's cab (not shown) and generates a control command in response to the operation command, and a command transmission unit 12 that sends the control command to the control device 20.
  • the command generation unit 11 generates a control command instructing the operation or stop of the power conversion device 2 in response to the operation command, and sends the control command to the command transmission unit 12.
  • the operation command includes a power running command indicating the target acceleration of the railway vehicle, a brake command indicating the target deceleration of the railway vehicle, and the like.
  • the command transmission unit 12 is connected to the first communication unit 21 of the control device 20, which will be described later, via the high-speed serial line 5. Further, the command transmission unit 12 sends a control command to the first communication unit 21 of the control device 20.
  • the control device 20 has a first communication unit 21 that receives a control command, a calculation unit 22 that generates a gate signal in response to the control command and a sensor signal, and a second communication that transmits the gate signal to the power conversion device 2.
  • a unit 23 and a measured value acquisition unit 24 that acquires a sensor signal from the sensor 4 are provided.
  • the first communication unit 21 When the first communication unit 21 receives the control command from the command device 10 via the high-speed serial line 5, the first communication unit 21 sends the control command to the calculation unit 22.
  • the measured value acquisition unit 24 is connected to the sensor 4 via the first parallel line 6. Further, the measured value acquisition unit 24 acquires a sensor signal from the sensor 4 and sends the measured value of the current of each phase indicated by the sensor signal to the calculation unit 22.
  • the calculation unit 22 generates a gate signal for bringing the output of the power conversion device 2 closer to the target value according to the control command according to the control command and the measured value of the current of each phase.
  • the second communication unit 23 is connected to the power conversion device 2 via the second parallel line 7. Further, the second communication unit 23 sends a gate signal to the switching element of each phase of the power conversion device 2.
  • control device 20 is arranged adjacent to the power conversion device 2. Specifically, during transmission of the gate signal from the control device 20 to the power conversion device 2, the control device 20 is adjacent to the power conversion device 2 to such an extent that the influence of noise superimposed on the gate signal is sufficiently small. Be placed.
  • the distance between the control device 20 and the power conversion device 2 is preferably 1 meter or less.
  • the housing of the control device 20 may be arranged in contact with the housing of the power conversion device 2.
  • the switching element of the power conversion device 2 is housed in a shield housing made of a conductive member, and then the housing of the control device 20 is arranged in contact with the housing of the power conversion device 2. Is preferable.
  • control device 20 may be arranged adjacent to the sensor 4. Specifically, the control device 20 is arranged adjacent to the sensor 4 so that the influence of noise superimposed on the sensor signal is sufficiently reduced during transmission of the sensor signal from the sensor 4 to the measured value acquisition unit 24. Is preferable.
  • the command generation unit 11 included in the command device 10 is realized by a CPU (Central Processing Unit) 31, a memory 32, and an input IF (Interface) 33, and the command transmission unit 12 , FPGA (Field Programmable Gate Array) 34, UDP (User Datagram Protocol) / IP (Internet Protocol) core 35, and PHY (Physical layer) chip It is realized by 36.
  • the CPU 31, the memory 32, the input IF 33, and the FPGA 34 are connected to each other by the system bus 37.
  • the system bus 37 is composed of a serial bus.
  • the UDP / IP core 35 communicates with the MAC (Media Access Control) layer, the IP (Internet Protocol) layer, and the UDP layer. Further, the PHY chip 36 communicates with the physical layer.
  • the first communication unit 21 included in the control device 20 is realized by the UDP / IP core 42 included in the FPGA 41 and the PHY chip 43
  • the arithmetic unit 22 is a DSP (Digital Signal Processor) 44 and a memory. It is realized by 45 and the arithmetic circuit 46 included in the FPGA 41.
  • the second communication unit 23 is realized by the output IF 47 included in the FPGA 41.
  • the measured value acquisition unit 24 is realized by the input IF 48 included in the FPGA 41.
  • the DSP 44, the memory 45, and the FPGA 41 are connected to each other by the system bus 49.
  • the system bus 49 is composed of a serial bus.
  • the UDP / IP core 42 communicates with the MAC layer, the IP layer, and the UDP layer.
  • the PHY chip 43 communicates with the physical layer.
  • the PHY chip 36 and the PHY chip 43 are connected by a high-speed serial line 5. Further, the input IF 48 and the sensor 4 are connected by the first parallel line 6. Further, the output IF 47 and the power conversion device 2 are connected by a second parallel line 7.
  • the command generating unit 11 sends a control command instructing the operation of the power conversion device 2 to the command transmitting unit 12 so as to output a target value corresponding to the power running command.
  • the command generation unit 11 sends a control command instructing the stop of the power conversion device 2 to the command transmission unit 12.
  • the input IF 33 sends an operation command to the CPU 31 via the system bus 37 when an operation command is input from a driver's cab (not shown).
  • a program for generating a control command is stored in the memory 32.
  • the CPU 31 executes a program stored in the memory 32 and generates a control command from an operation command input via the input IF 33.
  • the CPU 31 sends a control command to the UDP / IP core 35 included in the FPGA 34 via the system bus 37.
  • the command transmission unit 12 performs serial transmission via the high-speed serial line 5 and sends a control command to the control device 20.
  • the UDP / IP core 35 generates an Ethernet packet including a control command and sends it to the PHY chip 36.
  • the PHY chip 36 generates a communication signal from the Ethernet packet and sends the communication signal to the high-speed serial line 5.
  • the first communication unit 21 When the first communication unit 21 receives the control command from the command device 10, it sends it to the calculation unit 22. Specifically, when the PHY chip 43 receives the communication signal via the high-speed serial line 5, it generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42. The UDP / IP core 42 extracts a control command from the Ethernet packet generated by the PHY chip 43, and sends the control command to the DSP 44 via the system bus 49.
  • the measured value acquisition unit 24 acquires a sensor signal indicating the measured value of the current from the sensor 4 via the first parallel line 6, and sends the measured value of the current indicated by the sensor signal to the calculation unit 22.
  • the input IF48 performs parallel-serial conversion by an A-D (Analog-to-Digital) converter (not shown), in which the measured value of the current acquired from the sensor 4 via the first parallel line 6 is serialized. Data is generated and sent to the arithmetic circuit 46.
  • the serial data converted by the AD converter (not shown) is serial-parallel converted by the arithmetic circuit 46.
  • the arithmetic circuit 46 sends parallel data to the DSP 44 via the system bus 49.
  • the calculation unit 22 generates a gate signal according to the control command and the measured value of the current.
  • the control command instructs the operation of the power conversion device 2 to output the target value corresponding to the power running command
  • the calculation unit 22 issues the magnetic flux current command Id * and the torque current command Iq * in response to the power running command. Generate.
  • the calculation unit 22 holds in advance the correspondence between the target acceleration indicated by the power running command and the magnetic flux current command and the torque current command. Then, the calculation unit 22 brings the exciting current Id obtained by three-phase and two-phase conversion of the measured value of each phase current indicated by the sensor signal close to the magnetic flux current command Id *, and sets the measured value of each phase current indicated by the sensor signal.
  • the voltage commands Vd * and Vq * are calculated so that the torque current Iq obtained by the three-phase two-phase conversion approaches the torque current command Iq *. Further, the calculation unit 22 performs rotational coordinate conversion and two-phase three-phase conversion of the voltage commands Vd * and Vq * to calculate the respective voltage commands of the U phase, the V phase, and the W phase. Then, the arithmetic unit 22 generates a gate signal for the switching element of each phase based on the comparison between the voltage commands of the U phase, the V phase, and the W phase and the triangular wave carrier signal, and sends the gate signal to the second communication unit 23.
  • the calculation unit 22 performs the U-phase, the V-phase, and the V-phase so that the respective voltage commands of the U-phase, the V-phase, and the W-phase gradually decrease.
  • W phase voltage commands are calculated.
  • the arithmetic unit 22 generates a gate signal for the switching element of each phase based on the comparison between the voltage commands of the U phase, the V phase, and the W phase and the triangular wave carrier signal, and sends the gate signal to the second communication unit 23.
  • the DSP 44 calculates each of the U-phase, V-phase, and W-phase voltage commands from the control commands according to the program for calculating the voltage commands stored in the memory 45, and via the system bus 49. And send it to the arithmetic circuit 46.
  • the arithmetic circuit 46 generates a gate signal for the switching element of each phase based on the comparison between the U-phase, V-phase, and W-phase voltage commands and the triangular wave carrier signal, and sends the gate signal to the output IF 47.
  • the second communication unit 23 sends a gate signal to the switching element of each phase of the power conversion device 2.
  • the second communication unit 23 transmits the gate signal to the power conversion device 2 by parallel communication.
  • the output IF 47 sends a gate signal of parallel data to the power conversion device 2 via the second parallel line 7.
  • the switching element of each phase of the power conversion device 2 is turned on or off according to the gate signal sent from the control device 20.
  • the power conversion device 2 converts the power supplied from a power source (not shown) into three-phase AC power, and three-phase. AC power is supplied to the electric motor 3.
  • the control device 20 As described above, the control device 20 according to the first embodiment is arranged adjacent to the power conversion device 2. As a result, the second parallel line 7 is shortened, and signal delay due to the wiring length does not occur, so that the responsiveness of the control of the power conversion device 2 by the control device 20 is improved. Further, it is possible to reduce the influence of noise superimposed on the gate signal during transmission of the gate signal. As a result, it is not always necessary to provide the control device 20 with an isolator for reducing the influence of noise superimposed on the gate signal, and by not providing the isolator, the responsiveness of the control of the power conversion device 2 by the control device 20 is improved. It is also possible.
  • the control device 20 when the control device 20 is arranged adjacent to the sensor 4, the wiring between the control device 20 and the sensor 4 is shortened, and the signal delay due to the wiring length does not occur. Therefore, the power conversion device 2 by the control device 20 The responsiveness of the control is improved. Further, by shortening the wiring between the control device 20 and the sensor 4, it is possible to reduce the influence of noise superimposed on the sensor signal output by the sensor 4.
  • the command device 10 and the control device 20 are connected by the high-speed serial line 5, the number of wirings is reduced and the man-hours for wiring work are reduced as compared with the case where the command device 10 and the control device 20 are connected by a parallel line. It becomes possible.
  • the high-speed serial line 5 is composed of, for example, a transmission line conforming to the standard of IEEE802.3u, transmission over a long distance, for example, 100 m is possible via the high-speed serial line 5. Therefore, since the command device 10 can be arranged at a position far away from the control device 20, the degree of freedom of the arrangement position of the command device 10 is increased with respect to the position of the control device 20.
  • the command transmission unit 12 is realized by the UDP / IP core 35 and the PHY chip 36 included in the FPGA 34, the processing speed of the command transmission unit 12 is higher than that in the case where the processing of the UDP / IP core 35 is performed by the CPU 31. It will be possible to make it faster.
  • the first communication unit 21 is realized by the UDP / IP core 42 included in the FPGA 41 and the PHY chip 43, the first communication unit 21 is more than the case where the processing of the UDP / IP core 42 is performed by the DSP 44. The processing speed of 21 can be increased.
  • the control system 1 may include a plurality of high-speed serial lines 5.
  • a configuration in which the control system 1 includes a plurality of high-speed serial lines 5 for connecting the command device 10 and the control device 20 will be described in the second embodiment.
  • the control system 1 includes two high-speed serial lines 5a and 5b that connect the command device 10 and the control device 20.
  • the command device 10 and the control device 20 communicate with each other via the high-speed serial line 5b.
  • the command transmission unit 12 is realized by the UDP / IP cores 35a and 35b included in the FPGA 34, the PHY chips 36a and 36b, and the switching unit 38.
  • the UDP / IP cores 35a and 35b are connected to the PHY chips 36a and 36b, respectively.
  • the UDP / IP cores 35a and 35b communicate with the MAC layer, the IP layer, and the UDP layer. Further, the PHY chips 36a and 36b communicate with each other in the physical layer.
  • the first communication unit 21 is realized by the UDP / IP cores 42a and 42b included in the FPGA 41, the PHY chips 43a and 43b, and the switching unit 50.
  • the UDP / IP cores 42a and 42b are connected to the PHY chips 43a and 43b, respectively.
  • the UDP / IP cores 42a and 42b communicate with the MAC layer, the IP layer, and the UDP layer. Further, the PHY chips 43a and 43b communicate with each other in the physical layer.
  • the operation of the control system 1 having the above configuration will be described.
  • the operation of the command generation unit 11 is the same as that of the first embodiment.
  • the CPU 31 constituting the command generation unit 11 sends the generated control command to the switching unit 38 included in the FPGA 34 via the system bus 37.
  • the switching unit 38 acquires the control command from the CPU 31, the switching unit 38 sends it to the UDP / IP core 35a.
  • the UDP / IP core 35a generates an Ethernet packet from the control command and sends it to the PHY chip 36a.
  • the PHY chip 36a generates a communication signal from the Ethernet packet and sends the communication signal to the high-speed serial line 5a.
  • the PHY chip 43a When the PHY chip 43a receives the communication signal via the high-speed serial line 5a, the PHY chip 43a generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42a.
  • the UDP / IP core 42a extracts a control command from the Ethernet packet generated by the PHY chip 43a and sends it to the switching unit 50.
  • the switching unit 50 sends a control command to the DSP 44 via the system bus 49.
  • the operation of the DSP44, the input IF48, and the output IF47 is the same as that of the first embodiment.
  • the gate signal generated in the same manner as in the first embodiment is sent to the switching element of the power conversion device 2, and the switching element is turned on or off.
  • the control system 1 determines whether or not an abnormality has occurred in the high-speed serial line 5a used for communication.
  • the control system 1 determines that an abnormality has occurred in the high-speed serial line 5a, it stops communication via the high-speed serial line 5a and starts communication via the high-speed serial line 5b.
  • the control device 20 determines whether or not an abnormality has occurred in the high-speed serial line 5a based on the error detection of the data sent from the command device 10, and the command device 10 determines the interval of communication from the control device 20.
  • a configuration for determining whether or not an abnormality has occurred in the high-speed serial line 5a will be described.
  • the first communication unit 21 performs error detection on the data transmitted from the command transmission unit 12. Specifically, the UDP / IP core 42a extracts predetermined data used for calculating the control command, the checksum value, and the checksum value from the Ethernet packet, and sends the data to the switching unit 50.
  • the UDP / IP core 35a of the command device 10 generates a checksum value from predetermined data included in the Ethernet packet when generating an Ethernet packet from a control command, and generates an Ethernet packet including the checksum value.
  • the predetermined data includes, for example, an IP header, a UDP header, and the like.
  • the switching unit 50 calculates a checksum value from predetermined data and compares it with the checksum value included in the Ethernet packet. When the switching unit 50 determines that the calculated checksum value and the checksum value included in the Ethernet packet match, the switching unit 50 sends a control command acquired from the UDP / IP core 42a to the DSP 44 via the system bus 49. send. When the switching unit 50 determines that the calculated checksum value and the checksum value included in the Ethernet packet do not match, the switching unit 50 discards the control command acquired from the UDP / IP core 42a and discards the control command acquired from the UDP / IP core 42b. Wait until a control command is received.
  • the switching unit 50 determines that the calculated checksum value and the checksum value included in the Ethernet packet match, the switching unit 50 notifies the UDP / IP core 42a of the determination result.
  • the UDP / IP core 42a notified of the discrimination result generates an Ethernet packet for notifying the discrimination result and sends it to the PHY chip 43a.
  • the PHY chip 43a generates a communication signal from an Ethernet packet for notifying the determination result, and sends the communication signal to the high-speed serial line 5a.
  • the PHY chip 36a receives the communication signal via the high-speed serial line 5a, the PHY chip 36a generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 35a.
  • the UDP / IP core 35a extracts the discrimination result from the Ethernet packet generated by the PHY chip 36a and sends it to the switching unit 38.
  • the switching unit 38 receives the determination result, the switching unit 38 continues to send the control command acquired from the CPU 31 to the UDP / IP core 35a.
  • the switching unit 50 determines that the calculated checksum value and the checksum value included in the Ethernet packet do not match, the switching unit 50 does not notify the UDP / IP core 42a of the determination result. Therefore, the UDP / IP core 42a does not generate the Ethernet packet for notifying the determination result as described above, and the communication signal is not transmitted from the PHY chip 43a to the high-speed serial line 5a.
  • the switching unit 38 determines whether or not the period during which the determination result is not received is equal to or longer than the predetermined period. When the switching unit 38 determines that the period during which the determination result is not received exceeds the predetermined period, the switching unit 38 stops sending the control command acquired from the CPU 31 to the UDP / IP core 35a.
  • the switching unit 38 sends the control command acquired from the CPU 31 to the UDP / IP core 35b.
  • the UDP / IP core 35b generates an Ethernet packet from the control command and sends it to the PHY chip 36b.
  • the PHY chip 36b generates a communication signal from the Ethernet packet and sends the communication signal to the high-speed serial line 5b.
  • the PHY chip 43b When the PHY chip 43b receives the communication signal via the high-speed serial line 5b, the PHY chip 43b generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42b.
  • the UDP / IP core 42b extracts a control command from the Ethernet packet generated by the PHY chip 43b and sends it to the switching unit 50.
  • the switching unit 50 calculates the checksum value from the predetermined data and compares it with the checksum value included in the Ethernet packet. When the switching unit 50 determines that the calculated checksum value and the checksum value included in the Ethernet packet match, the switching unit 50 sends a control command acquired from the UDP / IP core 42b to the DSP 44 via the system bus 49. send. Subsequent processing is the same as in the above example.
  • the control system 1 transmits a control command via the other of the high-speed serial lines 5a and 5b when an abnormality occurs in one of the high-speed serial lines 5a and 5b.
  • This improves the reliability of the control system 1. That is, even if a transmission abnormality occurs in one of the high-speed serial lines 5a and 5b, the transmission of the control command is not interrupted, so that the responsiveness of the control of the power conversion device 2 by the control device 20 is improved.
  • control system 1 includes one command device 10 and two control devices 20a and 20b.
  • the control device 20a is a power conversion device 2a according to a control command acquired from the command device 10 and a measured value of the current of each phase acquired from the sensor 4a that measures the current of each phase output by the power conversion device 2a. Control the switching element.
  • the control device 20b is a power conversion device 2b according to a control command acquired from the command device 10 and a measured value of the current of each phase acquired from the sensor 4b that measures the current of each phase output by the power conversion device 2b. Control the switching element.
  • the control system 1 includes a high-speed serial line 5a that connects the command device 10 and the control device 20a, and a high-speed serial line 5b that connects the command device 10 and the control device 20b. Further, the control system 1 includes a first parallel line 6a that connects the control device 20a and the sensor 4a, a second parallel line 7a that connects the second communication unit 23a and the power conversion device 2a, and the control device 20b and the sensor 4b. A first parallel line 6b for connecting the above and a second parallel line 7b for connecting the second communication unit 23b and the power conversion device 2b are provided.
  • the configuration and operation of the command device 10 are the same as those in the first embodiment, except that the command transmission unit 12 sends a control command to each of the control devices 20a and 20b.
  • the configuration and operation of the control devices 20a and 20b are the same as those of the control device 20 according to the first embodiment.
  • the control device 20a includes a first communication unit 21a, a calculation unit 22a, a second communication unit 23a, and a measured value acquisition unit 24a.
  • the control device 20a according to the second embodiment includes a first communication unit 21b, a calculation unit 22b, a second communication unit 23b, and a measured value acquisition unit 24b.
  • the control device 20a is arranged adjacent to the power conversion device 2a. Specifically, the control device 20a is adjacent to the power conversion device 2a to such an extent that the influence of noise superimposed on the gate signal during transmission of the gate signal from the control device 20a to the power conversion device 2a is sufficiently small. Be placed.
  • the distance between the control device 20a and the power conversion device 2a is preferably 1 meter or less. More preferably, the housing of the control device 20a may be arranged in contact with the housing of the power conversion device 2a. In this case, the switching element of the power conversion device 2a is housed in a shield housing made of a conductive member, and then the housing of the control device 20a is arranged in contact with the housing of the power conversion device 2a. Is preferable.
  • the control device 20a may be arranged adjacent to the sensor 4a. Specifically, the control device 20a is arranged adjacent to the sensor 4a so that the influence of noise superimposed on the sensor signal is sufficiently reduced during transmission of the sensor signal from the sensor 4a to the measured value acquisition unit 24a. Is preferable.
  • control device 20b is arranged adjacent to the power conversion device 2b. Specifically, the control device 20b is adjacent to the power conversion device 2b to such an extent that the influence of noise superimposed on the gate signal during transmission of the gate signal from the control device 20b to the power conversion device 2b is sufficiently small. Be placed.
  • the distance between the control device 20b and the power conversion device 2b is preferably 1 meter or less. More preferably, the housing of the control device 20b may come into contact with the housing of the power conversion device 2b. In this case, the switching element of the power conversion device 2b is housed in a shield housing made of a conductive member, and then the housing of the control device 20b is arranged in contact with the housing of the power conversion device 2b. Is preferable.
  • the control device 20b may be arranged adjacent to the sensor 4b. Specifically, the control device 20b is arranged adjacent to the sensor 4b so that the influence of noise superimposed on the sensor signal is sufficiently reduced during transmission of the sensor signal from the sensor 4b to the measured value acquisition unit 24b. Is preferable.
  • the command transmission unit 12 is realized by the UDP / IP cores 35a and 35b included in the FPGA 34 and the PHY chips 36a and 36b.
  • the UDP / IP cores 35a and 35b are connected to the PHY chips 36a and 36b, respectively.
  • the PHY chips 36a and 36b are connected to the PHY chips 43 of the first communication units 21a and 21b via high-speed serial lines 5a and 5b, respectively.
  • the first communication unit 21a is realized by the UDP / IP core 42 included in the FPGA 41 and the PHY chip 43, and the calculation unit 22a , The DSP 44, the memory 45, and the arithmetic circuit 46 included in the FPGA 41. Further, the second communication unit 23a is realized by the output IF47 included in the FPGA 41. Further, the measured value acquisition unit 24a is realized by the input IF48 included in the FPGA 41.
  • the DSP 44, the memory 45, and the FPGA 41 are connected to each other by the system bus 49.
  • the system bus 49 is composed of a serial bus.
  • the PHY chip 43 constituting the first communication unit 21a is connected to the PHY chip 36a constituting the command transmitting unit 12 of the command device 10 via the high-speed serial line 5a.
  • the first communication unit 21b is realized by the UDP / IP core 42 included in the FPGA 41 and the PHY chip 43, and the calculation unit 22b , The DSP 44, the memory 45, and the arithmetic circuit 46 included in the FPGA 41. Further, the second communication unit 23b is realized by the output IF47 included in the FPGA 41. Further, the measured value acquisition unit 24b is realized by the input IF48 included in the FPGA 41.
  • the DSP 44, the memory 45, and the FPGA 41 are connected to each other by the system bus 49.
  • the system bus 49 is composed of a serial bus.
  • the PHY chip 43 constituting the first communication unit 21b is connected to the PHY chip 36b constituting the command transmission unit 12 of the command device 10 via the high-speed serial line 5b.
  • the operation of the control system 1 having the above configuration will be described.
  • the operation of the command generation unit 11 is the same as that of the first embodiment.
  • the CPU 31 constituting the command generation unit 11 sends the generated control command to each of the UDP / IP cores 35a and 35b included in the FPGA 34 via the system bus 37.
  • the command transmission unit 12 sends a control command to the first communication units 21a and 21b of the control devices 20a and 20b via the high-speed serial lines 5a and 5b, respectively.
  • the UDP / IP core 35a generates an Ethernet packet from the control command and sends it to the PHY chip 36a.
  • the PHY chip 36a generates a communication signal from the Ethernet packet and sends the communication signal to the high-speed serial line 5a.
  • the UDP / IP core 35b also generates an Ethernet packet from the control command and sends it to the PHY chip 36b.
  • the PHY chip 36b generates a communication signal from the Ethernet packet and sends the communication signal to the high-speed serial line 5b.
  • the first communication unit 21a of the control device 20a When the first communication unit 21a of the control device 20a receives the control command from the command device 10 via the high-speed serial line 5a, the first communication unit 21a sends the control command to the calculation unit 22a as in the first embodiment.
  • the PHY chip 43 receives the communication signal via the high-speed serial line 5a
  • the PHY chip 43 generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42.
  • the UDP / IP core 42 extracts a control command from the Ethernet packet generated by the PHY chip 43, and sends the control command to the DSP 44 via the system bus 49.
  • the operations of the measured value acquisition unit 24a, the calculation unit 22a, and the second communication unit 23a of the control device 20a are the same as those in the first embodiment.
  • the gate signal generated in the same manner as in the first embodiment is sent to the switching element of the power conversion device 2a, and the switching element is turned on or off.
  • the first communication unit 21 of the control device 20b When the first communication unit 21 of the control device 20b receives the control command from the command device 10 via the high-speed serial line 5b, the first communication unit 21 sends the control command to the calculation unit 22b as in the first embodiment.
  • the PHY chip 43 receives a communication signal via the high-speed serial line 5b, it generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42.
  • the UDP / IP core 42 extracts a control command from the Ethernet packet generated by the PHY chip 43, and sends the control command to the DSP 44 via the system bus 49.
  • the operations of the measured value acquisition unit 24b, the calculation unit 22b, and the second communication unit 23b of the control device 20b are the same as those in the first embodiment.
  • the gate signal generated in the same manner as in the first embodiment is sent to the switching element of the power conversion device 2b, and the switching element is turned on or off.
  • control devices 20a and 20b according to the third embodiment are arranged adjacent to the power conversion devices 2a and 2b, respectively.
  • the second parallel lines 7a and 7b are shortened, and signal delay due to the wiring length does not occur, so that the responsiveness of control of the power conversion devices 2a and 2b by the control devices 20a and 20b is improved. Further, it is possible to reduce the influence of noise superimposed on the gate signal during transmission of the gate signal.
  • the wiring connecting the control devices 20a and 20b and the sensors 4a and 4b becomes shorter, and the signal delay due to the wiring length becomes shorter. Since it does not occur, the responsiveness of the control of the power conversion devices 2a and 2b by the control devices 20a and 20b is improved. Further, by shortening the wiring connecting the control devices 20a and 20b and the sensors 4a and 4b, it is possible to reduce the influence of noise superimposed on the sensor signals output by the sensors 4a and 4b.
  • the wiring is more than when the command device 10 and the control devices 20a and 20b are connected by a parallel line.
  • the number of wiring work is reduced, and the man-hours for wiring work can be reduced.
  • the high-speed serial lines 5a and 5b are composed of, for example, transmission lines compliant with the IEEE802.3u standard, a long distance, for example, 100 m, is provided via the high-speed serial lines 5a and 5b without causing signal delay. Can be transmitted. Therefore, since the command device 10 can be arranged at a position far away from the control devices 20a and 20b, the degree of freedom of the arrangement position of the command device 10 is increased with respect to the positions of the control devices 20a and 20b.
  • the command transmission unit 12 is realized by the UDP / IP cores 35a and 35b and the PHY chips 36a and 36b included in the FPGA 34, the command is issued as compared with the case where each processing of the UDP / IP cores 35a and 35b is performed by the CPU 31.
  • the processing speed of the transmission unit 12 can be increased.
  • the first communication unit 21 of each of the control devices 20a and 20b is realized by the UDP / IP core 42 included in the FPGA 41 and the PHY chip 43, the processing of the UDP / IP core 42 is performed by the DSP 44. It is possible to increase the processing speed of the first communication unit 21 more than in the case.
  • the control devices 20a and 20b may notify each other of the presence or absence of failure of the power conversion devices 2a and 2b.
  • the control device 20a according to the fourth embodiment shown in FIG. 9 further includes a failure determination unit 25a for determining the presence or absence of a failure of the power conversion device 2a.
  • the control device 20b further includes a failure determination unit 25b for determining the presence or absence of a failure of the power conversion device 2b, in addition to the configuration of the control device 20b according to the third embodiment.
  • the control system 1 further includes a high-speed serial line 8 for connecting the control devices 20a and 20b, in addition to the configuration of the control system 1 according to the third embodiment.
  • the high-speed serial line 8 may be a transmission line conforming to the Ethernet standard and may be a transmission line capable of serial communication.
  • the configuration and operation of the command device 10 are the same as those in the third embodiment.
  • the configurations of the control devices 20a and 20b will be described focusing on the differences from the third embodiment.
  • the first communication unit 21a receives the control command from the command device 10 via the high-speed serial line 5a
  • the first communication unit 21a sends the control command to the calculation unit 22a.
  • the first communication unit 21a transmits the determination result of the failure determination unit 25a, which will be described later, to the first communication unit 21b of the control device 20b.
  • the first communication unit 21a receives the determination result of the failure determination unit 25b of the control device 20b from the first communication unit 21b.
  • the calculation unit 22a generates a gate signal according to the control command, the measured value of the current, and the determination result of the failure determination units 25a and 25b. Specifically, as long as neither of the power conversion devices 2a and 2b has failed, the calculation unit 22a generates a gate signal as in the first and third embodiments. When the determination result of the failure determination unit 25a indicates that the power conversion device 2a has a failure, the calculation unit 22a generates a gate signal for stopping the power conversion device 2a. Further, the determination result of the failure determination unit 25a indicates that the failure of the power conversion device 2a has not occurred, and the determination result of the failure determination unit 25b indicates that the failure of the power conversion device 2b has occurred. If so, the arithmetic unit 22a generates a gate signal that increases the output of the power conversion device 2a.
  • the failure determination unit 25a acquires the measured value of the current of each phase output by the power conversion device 2a from the measured value acquisition unit 24a, and the power conversion device 2a fails according to the measured value of the current of each phase. Determine if or not. Specifically, the failure determination unit 25a determines whether or not the amplitude of the measured value of the current of each phase is equal to or greater than the threshold value. When the amplitude of the measured value of the current of each phase is equal to or larger than the threshold value, it can be considered that the power conversion device 2a has failed.
  • the threshold value is set to a value larger than a value that the amplitude of the current of each phase output by the power conversion device 2a can take.
  • the first communication unit 21b When the first communication unit 21b receives the control command from the command device 10 via the high-speed serial line 5b, the first communication unit 21b sends the control command to the calculation unit 22b. Further, the first communication unit 21b transmits the determination result of the failure determination unit 25b, which will be described later, to the first communication unit 21a of the control device 20a. Further, the first communication unit 21b receives the determination result of the failure determination unit 25a of the control device 20a from the first communication unit 21a.
  • the calculation unit 22b generates a gate signal according to the control command, the measured value of the current, and the determination result of the failure determination units 25a and 25b. Specifically, as long as none of the power conversion devices 2a and 2b has failed, the arithmetic units 22a and 22b generate gate signals, respectively, as in the first and third embodiments.
  • the calculation unit 22b When the determination result of the failure determination unit 25b indicates that the power conversion device 2b has a failure, the calculation unit 22b generates a gate signal for stopping the power conversion device 2b. Further, the determination result of the failure determination unit 25b indicates that the failure of the power conversion device 2b has not occurred, and the determination result of the failure determination unit 25a indicates that the failure of the power conversion device 2a has occurred. If so, the arithmetic unit 22b generates a gate signal that increases the output of the power conversion device 2b.
  • the failure determination unit 25b acquires the measured value of the current of each phase output by the power conversion device 2b from the measured value acquisition unit 24b, and a failure occurs in the power conversion device 2b according to the measured value of the current of each phase. Determine if or not. Specifically, the failure determination unit 25b determines whether or not the amplitude of the measured value of the current of each phase is equal to or greater than the threshold value. When the amplitude of the measured value of the current of each phase is equal to or larger than the threshold value, it can be considered that the power conversion device 2b has failed.
  • the threshold value is set to a value larger than a value that the amplitude of the current of each phase output by the power conversion device 2b can take.
  • the first communication unit 21a of the control device 20a is realized by the UDP / IP cores 42a and 42c included in the FPGA 41 and the PHY chips 43a and 43c.
  • the UDP / IP cores 42a and 42c are connected to the PHY chips 43a and 43c, respectively.
  • the failure determination unit 25a is realized by the failure determination circuit 51 included in the FPGA 41.
  • the first communication unit 21b of the control device 20b is realized by the UDP / IP cores 42b and 42c included in the FPGA 41 and the PHY chips 43b and 43c.
  • the UDP / IP cores 42b and 42c are connected to the PHY chips 43b and 43c, respectively.
  • the failure determination unit 25b is realized by the failure determination circuit 51 included in the FPGA 41.
  • the operation of the control system 1 having the above configuration will be described.
  • the operation of the command device 10 is the same as that of the third embodiment. Further, since the operations of the control devices 20a and 20b are the same, the operation of the control device 20a will be described in detail.
  • the first communication unit 21a receives the control command from the command device 10, the first communication unit 21a sends the control command to the calculation unit 22a as in the first embodiment. Further, when the first communication unit 21a acquires the determination result from the failure determination unit 25a, the first communication unit 21a performs serial transmission via the high-speed serial line 8 and sends the determination result to the first communication unit 21b.
  • the UDP / IP core 42c generates an Ethernet packet including the determination result and sends it to the PHY chip 43c.
  • the PHY chip 43c generates a communication signal from the Ethernet packet including the discrimination result, and sends the communication signal to the high-speed serial line 8.
  • the first communication unit 21a receives the determination result of the failure determination unit 25b from the first communication unit 21b.
  • the PHY chip 43c receives the communication signal via the high-speed serial line 8, it generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42c.
  • the UDP / IP core 42c extracts the discrimination result from the Ethernet packet generated by the PHY chip 43c, and sends the discrimination result to the DSP 44 via the system bus 49.
  • the operation of the measured value acquisition unit 24a is the same as that of the first and third embodiments. However, the measured value acquisition unit 24a sends the measured value of the current of each phase output by the power conversion device 2a indicated by the sensor signal to the calculation unit 22a and the failure determination unit 25a.
  • the failure determination unit 25a determines whether or not the amplitude of the measured value of the current of each phase is equal to or greater than the threshold value. If the amplitude of the measured current value is equal to or greater than the threshold value, it can be considered that the power conversion device 2a has failed. Then, the failure determination unit 25a transmits the determination result to the calculation unit 22a and the first communication unit 21a.
  • the failure determination circuit 51 acquires the measured value of the current of each phase output by the power conversion device 2a from the input IF48. Then, the failure determination circuit 51 determines whether or not the amplitude of the measured value of the current of each phase is equal to or greater than the threshold value, and sends the determination result to the DSP 44 via the system bus 49. Further, the failure determination circuit 51 sends the determination result to the UDP / IP core 42c.
  • the discrimination result acquired from the failure discrimination unit 25a indicates that the power conversion device 2a has not failed, and the discrimination result acquired by the first communication unit 21a from the first communication unit 21b is the power conversion device 2b.
  • the calculation unit 22a generates a gate signal as in the first and third embodiments while indicating that the device has not failed.
  • the calculation unit 22a when the determination result acquired from the failure determination unit 25a indicates that the power conversion device 2a has a failure, the calculation unit 22a generates a gate signal for stopping the power conversion device 2a.
  • the DSP 44 gradually receives voltage commands for the U phase, the V phase, and the W phase. The voltage commands for each of the U phase, V phase, and W phase are calculated so as to decrease. Then, the DSP 44 sends the calculated voltage command to the arithmetic circuit 46 via the system bus 49.
  • the arithmetic circuit 46 generates a gate signal and sends it to the output IF 47, as in the first embodiment.
  • the discrimination result acquired from the failure discrimination unit 25a indicates that the failure of the power conversion device 2a has not occurred, and the discrimination result acquired by the first communication unit 21a from the first communication unit 21b is the power conversion.
  • the arithmetic unit 22a When indicating that the device 2b is out of order, the arithmetic unit 22a generates a gate signal that increases the output of the power conversion device 2a.
  • the DSP 44 sets the magnetic flux current command Id * and the torque current command Iq according to the operation command. * And generate.
  • the discrimination result acquired from the failure discrimination circuit 51 indicates that the failure of the power conversion device 2a has not occurred, and the discrimination result obtained from the UDP / IP core 42c causes the failure of the power conversion device 2b.
  • the DSP 44 adjusts the magnetic flux current command Id * and the torque current command Iq * so as to increase the output power of the power conversion device 2a.
  • the DSP44 calculates the voltage commands Vd * and Vq * so as to approach the magnetic flux current command Id * in which the exciting current Id is adjusted and the torque current command Iq * in which the torque current Iq is adjusted.
  • the DSP 44 sends the calculated voltage commands Vd * and Vq * to the arithmetic circuit 46 via the system bus 49.
  • the arithmetic circuit 46 generates a gate signal and sends it to the output IF 47, as in the first embodiment.
  • the first communication unit 21a of the control device 20a and the first communication unit 21b of the control device 20b transmit and receive the discrimination result to each other. Therefore, when one of the power conversion devices 2a and 2b fails, the output of the other of the power conversion devices 2a and 2b can be increased. As a result, it is possible to suppress a decrease in the propulsive force of the railway vehicle on which the power conversion devices 2a and 2b are mounted.
  • control devices 20a and 20b are connected by the high-speed serial line 8
  • the wiring is reduced as compared with the case where the control devices 20a and 20b are connected by the parallel line, and the man-hours of the wiring work can be reduced.
  • the high-speed serial line 8 is composed of, for example, a transmission line conforming to the standard of IEEE802.3u, long-distance transmission, for example, 100 m is possible via the high-speed serial line 8. Therefore, since the control device 20b can be arranged at a position far away from the control device 20a, the degree of freedom of the arrangement position of the control device 20b is increased with respect to the position of the control device 20a.
  • the present invention is not limited to the example of the above-described embodiment.
  • a plurality of embodiments can be arbitrarily combined.
  • the high-speed serial lines 5a and 5b included in the control system 1 according to the third embodiment may be duplicated, respectively.
  • the circuit configuration of the control system 1 is not limited to the above example.
  • the processing of the CPU 31 may be realized by the DSP.
  • the calculation circuit 46 may generate the voltage commands for each of the U phase, V phase, and W phase performed by the DSP 44.
  • the power supply that supplies power to the power converters 2, 2a and 2b is arbitrary.
  • the power source includes a generator that generates electricity by being driven by an internal combustion engine, a power storage device mounted on a railway vehicle, and the like.
  • the power conversion devices 2, 2a and 2b are not limited to VVVF converters, and are optional as long as they are power conversion devices having a switching element.
  • the power conversion devices 2, 2a, 2b may be composed of a static inverter, a converter, or the like.
  • the load supplied by the power converters 2, 2a, 2b is not limited to the electric motors 3, 3a, 3b, and is arbitrary as long as it is a device operated by electric power.
  • the power conversion devices 2, 2a, 2b may supply electric power to in-vehicle devices such as air conditioners and lighting devices.
  • the power conversion devices 2a and 2b may supply power to loads independent of each other, the power conversion device 2a supplies power to the power conversion device 2b, and the power conversion device 2b is supplied from the power conversion device 2a.
  • the electric power may be converted into, for example, three-phase AC electric power and supplied to the electric motor 3b.
  • the power conversion device 2a may be configured by a converter, and the power conversion device 2b may be configured by an inverter.
  • the control device 20a may stop the power conversion device 2a when the power conversion device 2b fails.
  • the control device 20b may stop the power conversion device 2b.
  • the calculation unit 22a stops the power conversion device 2a. A gate signal may be generated.
  • the calculation unit 22b causes the gate signal to stop the power conversion device 2b. Should be generated.
  • the control devices 20a and 20b may be connected by a parallel line.
  • the sensors 4, 4a, 4b are not limited to the currents of the respective phases output by the power conversion devices 2, 2a, 2b, but are the direct currents output by the power conversion devices 2, 2a, 2b, and the power conversion devices 2, 2a, 2b.
  • the voltage between the output terminals, the voltage of each phase, and the like may be measured.
  • the method for discriminating the failure discriminating units 25a and 25b is not limited to the above example, and is arbitrary as long as it can detect that a failure has occurred in the power conversion devices 2a and 2b.
  • the failure determination unit 25a may determine whether or not the amplitude of the measured value of the voltage of each phase output by the power conversion device 2a is equal to or greater than the threshold voltage. In this case, when the amplitude of the measured value of the voltage of each phase is equal to or larger than the threshold voltage, it can be considered that the power conversion device 2a has failed.
  • the control target of the control devices 20, 20a, 20b is not limited to the power conversion devices 2, 2a, 2b, and is arbitrary as long as it is an electronic device mounted on a railway vehicle.
  • the control devices 20, 20a, 20b may control the propulsion control device, the power supply device, and the like.
  • the command device 10 is provided with one CPU 31, but a plurality of CPUs 31 may cooperate to execute the above-mentioned functions. Similarly, a plurality of DSPs 44 may cooperate to perform the above-mentioned functions. Further, the command device 10 may include a plurality of memories 32, and the control devices 20, 20a, and 20b may each include a plurality of memories 45. In addition, the above hardware configuration is an example, and can be changed and modified arbitrarily.
  • the control system 1 can be realized by using a normal computer system without relying on a dedicated system.
  • a computer program for executing the above operation can be a computer-readable recording medium (flexible disk, CD-ROM (Compact Disc Read-Only Memory), DVD-ROM (Digital Versatile Disc Read-Only Memory), etc. ),
  • the computer program may be installed in the computer to configure the control system 1 for executing the above-mentioned processing.
  • the control system 1 may be configured by storing the computer program in a storage device of the server device on the communication network and downloading it by a normal computer system.
  • control system 1 when the function of the control system 1 is realized by sharing the OS (Operating System) and the application program, or by coordinating the OS and the application program, only the application program part is stored in the recording medium or the storage device. You may.
  • OS Operating System
  • the computer program may be posted on a bulletin board system (BBS: Bulletin Board System) on the communication network, and the computer program may be distributed via the communication network. Then, the above-mentioned processing may be executed by starting this computer program and executing it in the same manner as other application programs under the control of the OS.
  • BSS Bulletin Board System

Abstract

This control device (20) is provided with: a first communication unit (21) which receives a control command; a computation unit (22) which, in accordance with the control command received by the first communication unit (21), generates a gate signal for controlling a switching element in an electric power conversion device (2); and a second communication unit (23) which transmits the gate signal to the electric power conversion device (2). The control command includes an instruction to operate or stop the electric power conversion device (2). In addition, the control device (20) is disposed adjacent to the electric power conversion device (2).

Description

制御装置および制御システムControl device and control system
 この発明は、電力変換装置を制御する制御装置および制御システムに関する。 The present invention relates to a control device and a control system that control a power conversion device.
 電気鉄道車両には、架線を通して変電所から供給された電力を所望の電力に変換し、変換した電力を車両内の負荷に供給する電力変換装置を搭載したものがある。電力変換装置が有するスイッチング素子が制御装置によって制御されることで、電力変換装置は、変電所から供給された電力を所望の電力に変換する。この種の電力変換装置の一例が、特許文献1に開示されている。 Some electric railway cars are equipped with a power conversion device that converts the power supplied from the substation through the overhead wire into the desired power and supplies the converted power to the load inside the car. By controlling the switching element of the power conversion device by the control device, the power conversion device converts the power supplied from the substation into the desired power. An example of this type of power conversion device is disclosed in Patent Document 1.
国際公開第2000/19590号International Publication No. 2000/19590
 特許文献1に開示される電力変換装置は、主回路の入力端子間の電圧および電動機に流れる電流を測定し、電圧の測定値および電流の測定値を示すセンサ信号を出力するセンサユニットと、センサ信号が示す電圧の測定値および電流の測定値に応じてゲート信号を生成し、パラレルに出力する制御装置と、ゲート信号によってオンオフが切り替わるスイッチング素子を有する主回路と、を備える。制御装置は、センサ信号が示す電圧の測定値および電流の測定値に応じてゲート信号のデューティ比を調節するPWM(Pulse Width Modulation:パルス幅変調)制御を行う。 The power conversion device disclosed in Patent Document 1 measures a voltage between input terminals of a main circuit and a current flowing through an electric motor, and outputs a sensor signal indicating a voltage measurement value and a current measurement value, and a sensor. It includes a control device that generates a gate signal according to a measured value of voltage and a measured value of current indicated by the signal and outputs the gate signal in parallel, and a main circuit having a switching element that is switched on and off by the gate signal. The control device performs PWM (Pulse Width Modulation) control that adjusts the duty ratio of the gate signal according to the measured value of voltage and the measured value of current indicated by the sensor signal.
 制御装置と主回路とが離れて配置されると、制御装置と主回路とを接続する配線が長くなることにより信号の遅延が生じるため、PWM制御の応答性が劣化する。 If the control device and the main circuit are arranged apart from each other, the wiring connecting the control device and the main circuit becomes long, which causes a signal delay, and thus the responsiveness of PWM control deteriorates.
 本発明は上述の事情に鑑みてなされたものであり、制御装置による電力変換装置の制御の応答性を向上させることが目的である。 The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the responsiveness of control of a power conversion device by a control device.
 上記目的を達成するために、本発明の制御装置は、第1通信部と、演算部と、第2通信部と、を備える。第1通信部は、電力変換装置の運転または停止の指示を含む制御指令を受信する。演算部は、第1通信部が受信した制御指令に応じて、電力変換装置を制御する信号を生成する。第2通信部は、信号を電力変換装置に送信する。制御装置は、電力変換装置に隣接して配置される。 In order to achieve the above object, the control device of the present invention includes a first communication unit, a calculation unit, and a second communication unit. The first communication unit receives a control command including an instruction to start or stop the power conversion device. The arithmetic unit generates a signal for controlling the power conversion device in response to a control command received by the first communication unit. The second communication unit transmits a signal to the power converter. The control device is arranged adjacent to the power conversion device.
 本発明によれば、制御指令に応じて生成した信号を電力変換装置に送信する制御装置が電力変換装置に隣接して配置される。これにより、配線長による信号の遅延が生じないため、制御装置による電力変換装置の制御の応答性が向上する。 According to the present invention, a control device that transmits a signal generated in response to a control command to the power conversion device is arranged adjacent to the power conversion device. As a result, the signal delay due to the wiring length does not occur, so that the responsiveness of the control of the power conversion device by the control device is improved.
本発明の実施の形態1に係る制御システムのブロック図Block diagram of the control system according to the first embodiment of the present invention 実施の形態1に係る制御システムの実装例を示す図The figure which shows the implementation example of the control system which concerns on Embodiment 1. 本発明の実施の形態2に係る制御システムのブロック図Block diagram of the control system according to the second embodiment of the present invention 実施の形態2に係る制御システムの実装例を示す図The figure which shows the implementation example of the control system which concerns on Embodiment 2. 本発明の実施の形態3に係る制御システムのブロック図Block diagram of the control system according to the third embodiment of the present invention 実施の形態3に係る指令装置の実装例を示す図The figure which shows the mounting example of the command device which concerns on Embodiment 3. 実施の形態3に係る制御装置の実装例を示す図The figure which shows the mounting example of the control device which concerns on Embodiment 3. 実施の形態3に係る制御装置の実装例を示す図The figure which shows the mounting example of the control device which concerns on Embodiment 3. 本発明の実施の形態4に係る制御システムのブロック図Block diagram of the control system according to the fourth embodiment of the present invention 実施の形態4に係る制御装置の実装例を示す図The figure which shows the mounting example of the control apparatus which concerns on Embodiment 4. 実施の形態4に係る制御装置の実装例を示す図The figure which shows the mounting example of the control apparatus which concerns on Embodiment 4.
 以下、本発明の実施の形態に係る制御装置、具体的には、電子機器に対して信号を送信することで電子機器を制御する制御装置および制御装置を有する制御システムについて図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。 Hereinafter, the control device according to the embodiment of the present invention, specifically, the control device for controlling the electronic device by transmitting a signal to the electronic device and the control system having the control device will be described in detail with reference to the drawings. Explain to. In the figure, the same or equivalent parts are designated by the same reference numerals.
 (実施の形態1)
 電気鉄道車両には、架線を通して変電所から供給された電力を三相交流電力に変換し、三相交流電力を電動機に供給する電力変換装置が搭載されるものがある。この電力変換装置を例にして、電力変換装置を制御する制御装置および制御システムについて実施の形態1で説明する。
(Embodiment 1)
Some electric railway vehicles are equipped with a power conversion device that converts the power supplied from the substation through the overhead wire into three-phase AC power and supplies the three-phase AC power to the electric motor. Taking this power conversion device as an example, the control device and the control system that control the power conversion device will be described in the first embodiment.
 実施の形態1に係る制御システムを図1に示す。図1に示す制御システム1は、電動機3に電力を供給する電力変換装置2が有するスイッチング素子を制御する。電力変換装置2が、VVVF(Variable Voltage Variable Frequency:可変電圧可変周波数)インバータから構成され、電動機3が三相誘導電動機から構成される場合を例にして、制御システム1について説明する。制御システム1は、図示しない運転台から運転指令を取得し、センサ4からセンサ信号を取得する。なおセンサ4は、電力変換装置2が出力する各相の電流を測定する。そして、センサ4が出力するセンサ信号は、各相の電流の測定値を示す。 FIG. 1 shows a control system according to the first embodiment. The control system 1 shown in FIG. 1 controls a switching element included in the power conversion device 2 that supplies electric power to the electric motor 3. The control system 1 will be described by taking as an example a case where the power conversion device 2 is composed of a VVVF (Variable Voltage Variable Frequency) inverter and the electric motor 3 is composed of a three-phase induction motor. The control system 1 acquires an operation command from a driver's cab (not shown) and acquires a sensor signal from the sensor 4. The sensor 4 measures the current of each phase output by the power conversion device 2. The sensor signal output by the sensor 4 indicates a measured value of the current of each phase.
 制御システム1は、電力変換装置2を制御する信号を生成し、電力変換装置2に信号を送信する。具体的には、制御システム1は、運転指令とセンサ信号が示す各相の電流の測定値とに応じて、電力変換装置2が有する各相のスイッチング素子を制御するためのゲート信号を生成し、ゲート信号を電力変換装置2が有するスイッチング素子に送信する。ゲート信号によって制御されたスイッチング素子がオンオフを繰り返すことで、電力変換装置2は、図示しない電源、例えば、変電所から供給される電力を三相交流電力に変換し、三相交流電力を電動機3に供給する。三相交流電力の供給を受けた電動機3が駆動することで、鉄道車両の推進力が得られる。 The control system 1 generates a signal for controlling the power conversion device 2 and transmits the signal to the power conversion device 2. Specifically, the control system 1 generates a gate signal for controlling the switching element of each phase of the power conversion device 2 according to the operation command and the measured value of the current of each phase indicated by the sensor signal. , The gate signal is transmitted to the switching element included in the power conversion device 2. By repeating on / off of the switching element controlled by the gate signal, the power conversion device 2 converts the power supplied from a power source (not shown), for example, a substation into three-phase AC power, and converts the three-phase AC power into the electric motor 3. Supply to. By driving the electric motor 3 supplied with the three-phase AC electric power, the propulsive force of the railway vehicle can be obtained.
 制御システム1は、電力変換装置2の運転または停止の指示を含む制御指令を生成する指令装置10と、制御指令に応じて、電力変換装置2が有するスイッチング素子を制御するゲート信号を生成する制御装置20と、を備える。
 制御システム1はさらに、指令装置10と制御装置20とを接続する高速シリアル回線5を備える。高速シリアル回線5は、イーサネット(登録商標)規格に準拠した伝送線であって、シリアル通信を可能とする伝送線であればよい。
 また制御システム1は、制御装置20とセンサ4とを接続する第1パラレル回線6を備える。さらに制御システム1は、制御装置20と電力変換装置2とを接続する第2パラレル回線7を備える。第1パラレル回線6および第2パラレル回線7は、パラレル伝送を可能とする伝送線から構成される。
The control system 1 is a command device 10 that generates a control command including an instruction to start or stop the power conversion device 2, and a control that generates a gate signal that controls a switching element of the power conversion device 2 in response to the control command. The device 20 is provided.
The control system 1 further includes a high-speed serial line 5 that connects the command device 10 and the control device 20. The high-speed serial line 5 may be a transmission line conforming to the Ethernet (registered trademark) standard and may be a transmission line capable of serial communication.
Further, the control system 1 includes a first parallel line 6 that connects the control device 20 and the sensor 4. Further, the control system 1 includes a second parallel line 7 that connects the control device 20 and the power conversion device 2. The first parallel line 6 and the second parallel line 7 are composed of transmission lines that enable parallel transmission.
 指令装置10は、図示しない運転台から運転指令を取得し、運転指令に応じて制御指令を生成する指令生成部11と、制御指令を制御装置20に送る指令送信部12と、を備える。 The command device 10 includes a command generation unit 11 that acquires an operation command from a driver's cab (not shown) and generates a control command in response to the operation command, and a command transmission unit 12 that sends the control command to the control device 20.
 指令生成部11は、運転指令に応じて、電力変換装置2の運転または停止を指示する制御指令を生成し、指令送信部12に送る。なお運転指令は、鉄道車両の目標加速度を示す力行指令、鉄道車両の目標減速度を示すブレーキ指令等を含む。
 指令送信部12は、高速シリアル回線5を介して、後述する制御装置20の第1通信部21に接続されている。また指令送信部12は、制御指令を制御装置20の第1通信部21に送る。
The command generation unit 11 generates a control command instructing the operation or stop of the power conversion device 2 in response to the operation command, and sends the control command to the command transmission unit 12. The operation command includes a power running command indicating the target acceleration of the railway vehicle, a brake command indicating the target deceleration of the railway vehicle, and the like.
The command transmission unit 12 is connected to the first communication unit 21 of the control device 20, which will be described later, via the high-speed serial line 5. Further, the command transmission unit 12 sends a control command to the first communication unit 21 of the control device 20.
 制御装置20は、制御指令を受信する第1通信部21と、制御指令とセンサ信号とに応じて、ゲート信号を生成する演算部22と、ゲート信号を電力変換装置2に送信する第2通信部23と、センサ4からセンサ信号を取得する測定値取得部24と、を備える。 The control device 20 has a first communication unit 21 that receives a control command, a calculation unit 22 that generates a gate signal in response to the control command and a sensor signal, and a second communication that transmits the gate signal to the power conversion device 2. A unit 23 and a measured value acquisition unit 24 that acquires a sensor signal from the sensor 4 are provided.
 第1通信部21は、高速シリアル回線5を介して、指令装置10から制御指令を受信すると、制御指令を演算部22に送る。
 測定値取得部24は、第1パラレル回線6を介して、センサ4に接続されている。また測定値取得部24は、センサ4からセンサ信号を取得し、センサ信号が示す各相の電流の測定値を演算部22に送る。
 演算部22は、制御指令と各相の電流の測定値とに応じて、電力変換装置2の出力を制御指令に応じた目標値に近づけるためのゲート信号を生成する。
 第2通信部23は、第2パラレル回線7を介して、電力変換装置2に接続されている。また第2通信部23は、ゲート信号を電力変換装置2の各相のスイッチング素子に送る。
When the first communication unit 21 receives the control command from the command device 10 via the high-speed serial line 5, the first communication unit 21 sends the control command to the calculation unit 22.
The measured value acquisition unit 24 is connected to the sensor 4 via the first parallel line 6. Further, the measured value acquisition unit 24 acquires a sensor signal from the sensor 4 and sends the measured value of the current of each phase indicated by the sensor signal to the calculation unit 22.
The calculation unit 22 generates a gate signal for bringing the output of the power conversion device 2 closer to the target value according to the control command according to the control command and the measured value of the current of each phase.
The second communication unit 23 is connected to the power conversion device 2 via the second parallel line 7. Further, the second communication unit 23 sends a gate signal to the switching element of each phase of the power conversion device 2.
 また制御装置20は、電力変換装置2に隣接して配置される。具体的には、制御装置20から電力変換装置2へのゲート信号の伝送中に、ゲート信号に重畳するノイズの影響が十分に小さくなる程度に、制御装置20は電力変換装置2に隣接して配置される。制御装置20と電力変換装置2との距離は、1メートル以下であることが好ましい。さらに好ましくは、制御装置20の筐体は、電力変換装置2の筐体に当接して配置されればよい。この場合、電力変換装置2が有するスイッチング素子を導電性部材から構成されるシールド筐体に収容した上で、制御装置20の筐体が電力変換装置2の筐体に当接して配置されることが好ましい。スイッチング素子をシールド筐体に収容することで、ゲート信号にスイッチングノイズが重畳することが抑制される。
 さらに好ましくは、制御装置20は、センサ4に隣接して配置されればよい。具体的には、センサ4から測定値取得部24へのセンサ信号の伝送中に、センサ信号に重畳するノイズの影響が十分に小さくなる程度に、制御装置20はセンサ4に隣接して配置されることが好ましい。
Further, the control device 20 is arranged adjacent to the power conversion device 2. Specifically, during transmission of the gate signal from the control device 20 to the power conversion device 2, the control device 20 is adjacent to the power conversion device 2 to such an extent that the influence of noise superimposed on the gate signal is sufficiently small. Be placed. The distance between the control device 20 and the power conversion device 2 is preferably 1 meter or less. More preferably, the housing of the control device 20 may be arranged in contact with the housing of the power conversion device 2. In this case, the switching element of the power conversion device 2 is housed in a shield housing made of a conductive member, and then the housing of the control device 20 is arranged in contact with the housing of the power conversion device 2. Is preferable. By accommodating the switching element in the shield housing, it is possible to suppress the superimposition of switching noise on the gate signal.
More preferably, the control device 20 may be arranged adjacent to the sensor 4. Specifically, the control device 20 is arranged adjacent to the sensor 4 so that the influence of noise superimposed on the sensor signal is sufficiently reduced during transmission of the sensor signal from the sensor 4 to the measured value acquisition unit 24. Is preferable.
 制御システム1の実装例について図2を用いて説明する。図2に示すように、指令装置10が備える指令生成部11はCPU(Central Processing Unit:中央処理装置)31とメモリ32と入力IF(Interface:インターフェース)33とで実現され、指令送信部12は、FPGA(Field Programmable Gate Array:フィールドプログラマブルゲートアレイ)34に含まれるUDP(User Datagram Protocol:ユーザデータグラムプロトコル)/IP(Internet Protocol:インターネットプロトコル)コア35と、PHY(Physical layer:物理層)チップ36とで実現される。なおCPU31、メモリ32、入力IF33、およびFPGA34は、システムバス37で互いに接続されている。なおシステムバス37は、シリアルバスから構成される。UDP/IPコア35は、MAC(Media Access Control:媒体アクセス制御)層、IP(Internet Protocol:インターネットプロトコル)層、およびUDP層の通信を行う。またPHYチップ36は、物理層の通信を行う。 An implementation example of the control system 1 will be described with reference to FIG. As shown in FIG. 2, the command generation unit 11 included in the command device 10 is realized by a CPU (Central Processing Unit) 31, a memory 32, and an input IF (Interface) 33, and the command transmission unit 12 , FPGA (Field Programmable Gate Array) 34, UDP (User Datagram Protocol) / IP (Internet Protocol) core 35, and PHY (Physical layer) chip It is realized by 36. The CPU 31, the memory 32, the input IF 33, and the FPGA 34 are connected to each other by the system bus 37. The system bus 37 is composed of a serial bus. The UDP / IP core 35 communicates with the MAC (Media Access Control) layer, the IP (Internet Protocol) layer, and the UDP layer. Further, the PHY chip 36 communicates with the physical layer.
 また制御装置20が備える第1通信部21は、FPGA41に含まれるUDP/IPコア42と、PHYチップ43とで実現され、演算部22はDSP(Digital Signal Processor:ディジタルシグナルプロセッサ)44と、メモリ45と、FPGA41に含まれる演算回路46とで実現される。また第2通信部23は、FPGA41に含まれる出力IF47で実現される。また測定値取得部24は、FPGA41に含まれる入力IF48で実現される。なおDSP44、メモリ45、およびFPGA41は、システムバス49で互いに接続されている。システムバス49は、シリアルバスから構成される。UDP/IPコア42は、MAC層、IP層、およびUDP層の通信を行う。またPHYチップ43は、物理層の通信を行う。 Further, the first communication unit 21 included in the control device 20 is realized by the UDP / IP core 42 included in the FPGA 41 and the PHY chip 43, and the arithmetic unit 22 is a DSP (Digital Signal Processor) 44 and a memory. It is realized by 45 and the arithmetic circuit 46 included in the FPGA 41. Further, the second communication unit 23 is realized by the output IF 47 included in the FPGA 41. Further, the measured value acquisition unit 24 is realized by the input IF 48 included in the FPGA 41. The DSP 44, the memory 45, and the FPGA 41 are connected to each other by the system bus 49. The system bus 49 is composed of a serial bus. The UDP / IP core 42 communicates with the MAC layer, the IP layer, and the UDP layer. Further, the PHY chip 43 communicates with the physical layer.
 PHYチップ36とPHYチップ43とは、高速シリアル回線5で接続される。また入力IF48とセンサ4は、第1パラレル回線6で接続される。また出力IF47と電力変換装置2とは、第2パラレル回線7で接続される。 The PHY chip 36 and the PHY chip 43 are connected by a high-speed serial line 5. Further, the input IF 48 and the sensor 4 are connected by the first parallel line 6. Further, the output IF 47 and the power conversion device 2 are connected by a second parallel line 7.
 上記構成を有する制御システム1の動作について説明する。
 運転指令が力行指令を含む場合、指令生成部11は、力行指令に応じた目標値を出力するように電力変換装置2の稼動を指示する制御指令を指令送信部12に送る。また運転指令がブレーキ指令を含む場合、指令生成部11は、電力変換装置2の停止を指示する制御指令を指令送信部12に送る。
The operation of the control system 1 having the above configuration will be described.
When the operation command includes a power running command, the command generating unit 11 sends a control command instructing the operation of the power conversion device 2 to the command transmitting unit 12 so as to output a target value corresponding to the power running command. When the operation command includes a brake command, the command generation unit 11 sends a control command instructing the stop of the power conversion device 2 to the command transmission unit 12.
 具体的には、入力IF33は、図示しない運転台から運転指令が入力されると、システムバス37を介してCPU31に運転指令を送る。メモリ32には、制御指令を生成するためのプログラムが記憶されている。CPU31は、メモリ32に記憶されているプログラムを実行し、入力IF33を介して入力された運転指令から制御指令を生成する。CPU31は、システムバス37を介して、FPGA34に含まれるUDP/IPコア35に制御指令を送る。 Specifically, the input IF 33 sends an operation command to the CPU 31 via the system bus 37 when an operation command is input from a driver's cab (not shown). A program for generating a control command is stored in the memory 32. The CPU 31 executes a program stored in the memory 32 and generates a control command from an operation command input via the input IF 33. The CPU 31 sends a control command to the UDP / IP core 35 included in the FPGA 34 via the system bus 37.
 次に、指令送信部12は、高速シリアル回線5を介して、シリアル伝送を行って、制御指令を制御装置20に送る。具体的には、UDP/IPコア35は、制御指令を含むイーサネットパケットを生成し、PHYチップ36に送る。PHYチップ36は、イーサネットパケットから通信信号を生成し、通信信号を高速シリアル回線5に送出する。 Next, the command transmission unit 12 performs serial transmission via the high-speed serial line 5 and sends a control command to the control device 20. Specifically, the UDP / IP core 35 generates an Ethernet packet including a control command and sends it to the PHY chip 36. The PHY chip 36 generates a communication signal from the Ethernet packet and sends the communication signal to the high-speed serial line 5.
 第1通信部21は、指令装置10から制御指令を受信すると、演算部22に送る。具体的には、PHYチップ43は、高速シリアル回線5を介して通信信号を受信すると、通信信号からイーサネットパケットを生成し、UDP/IPコア42に送る。UDP/IPコア42は、PHYチップ43が生成したイーサネットパケットから制御指令を取り出し、システムバス49を介して、制御指令をDSP44に送る。 When the first communication unit 21 receives the control command from the command device 10, it sends it to the calculation unit 22. Specifically, when the PHY chip 43 receives the communication signal via the high-speed serial line 5, it generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42. The UDP / IP core 42 extracts a control command from the Ethernet packet generated by the PHY chip 43, and sends the control command to the DSP 44 via the system bus 49.
 また測定値取得部24は、第1パラレル回線6を介して、電流の測定値を示すセンサ信号をセンサ4から取得し、センサ信号が示す電流の測定値を演算部22に送る。具体的には、入力IF48は、センサ4から第1パラレル回線6を介して取得した電流の測定値を図示しないA-D(Analog-to-Digital)コンバータによりパラレル-シリアル変換を行って、シリアルデータを生成し、演算回路46に送る。図示しないA-Dコンバータにより変換されたシリアルデータは、演算回路46にてシリアル-パラレル変換される。演算回路46は、パラレルデータを、システムバス49を介して、DSP44に送る。 Further, the measured value acquisition unit 24 acquires a sensor signal indicating the measured value of the current from the sensor 4 via the first parallel line 6, and sends the measured value of the current indicated by the sensor signal to the calculation unit 22. Specifically, the input IF48 performs parallel-serial conversion by an A-D (Analog-to-Digital) converter (not shown), in which the measured value of the current acquired from the sensor 4 via the first parallel line 6 is serialized. Data is generated and sent to the arithmetic circuit 46. The serial data converted by the AD converter (not shown) is serial-parallel converted by the arithmetic circuit 46. The arithmetic circuit 46 sends parallel data to the DSP 44 via the system bus 49.
 演算部22は、制御指令と電流の測定値とに応じて、ゲート信号を生成する。
 制御指令が、力行指令に応じた目標値を出力するように電力変換装置2の稼動を指示する場合、演算部22は、力行指令に応じて磁束電流指令Id*とトルク電流指令Iq*とを生成する。なお演算部22は、力行指令が示す目標加速度と、磁束電流指令およびトルク電流指令との対応関係を予め保持している。そして、演算部22は、センサ信号が示す各相電流の測定値を三相二相変換して得られる励磁電流Idを磁束電流指令Id*に近づけ、センサ信号が示す各相電流の測定値を三相二相変換して得られるトルク電流Iqをトルク電流指令Iq*に近づけるように、電圧指令Vd*,Vq*を算出する。さらに演算部22は、電圧指令Vd*,Vq*の回転座標変換と二相三相変換をしてU相、V相、W相のそれぞれの電圧指令を算出する。そして、演算部22は、U相、V相、W相のそれぞれの電圧指令と三角波キャリア信号との比較に基づき、各相のスイッチング素子に対するゲート信号を生成し、第2通信部23に送る。
The calculation unit 22 generates a gate signal according to the control command and the measured value of the current.
When the control command instructs the operation of the power conversion device 2 to output the target value corresponding to the power running command, the calculation unit 22 issues the magnetic flux current command Id * and the torque current command Iq * in response to the power running command. Generate. The calculation unit 22 holds in advance the correspondence between the target acceleration indicated by the power running command and the magnetic flux current command and the torque current command. Then, the calculation unit 22 brings the exciting current Id obtained by three-phase and two-phase conversion of the measured value of each phase current indicated by the sensor signal close to the magnetic flux current command Id *, and sets the measured value of each phase current indicated by the sensor signal. The voltage commands Vd * and Vq * are calculated so that the torque current Iq obtained by the three-phase two-phase conversion approaches the torque current command Iq *. Further, the calculation unit 22 performs rotational coordinate conversion and two-phase three-phase conversion of the voltage commands Vd * and Vq * to calculate the respective voltage commands of the U phase, the V phase, and the W phase. Then, the arithmetic unit 22 generates a gate signal for the switching element of each phase based on the comparison between the voltage commands of the U phase, the V phase, and the W phase and the triangular wave carrier signal, and sends the gate signal to the second communication unit 23.
 他の一例として、制御指令が電力変換装置2の停止を指示する場合、演算部22は、U相、V相、W相のそれぞれの電圧指令が徐々に減少するように、U相、V相、W相のそれぞれの電圧指令を算出する。そして、演算部22は、U相、V相、W相のそれぞれの電圧指令と三角波キャリア信号との比較に基づき、各相のスイッチング素子に対するゲート信号を生成し、第2通信部23に送る。 As another example, when the control command instructs the power conversion device 2 to stop, the calculation unit 22 performs the U-phase, the V-phase, and the V-phase so that the respective voltage commands of the U-phase, the V-phase, and the W-phase gradually decrease. , W phase voltage commands are calculated. Then, the arithmetic unit 22 generates a gate signal for the switching element of each phase based on the comparison between the voltage commands of the U phase, the V phase, and the W phase and the triangular wave carrier signal, and sends the gate signal to the second communication unit 23.
 具体的には、DSP44は、メモリ45に記憶されている電圧指令を算出するためのプログラムに従って、制御指令からU相、V相、W相のそれぞれの電圧指令を算出し、システムバス49を介して、演算回路46に送る。演算回路46は、U相、V相、W相のそれぞれの電圧指令と三角波キャリア信号との比較に基づき、各相のスイッチング素子に対するゲート信号を生成し、出力IF47に送る。 Specifically, the DSP 44 calculates each of the U-phase, V-phase, and W-phase voltage commands from the control commands according to the program for calculating the voltage commands stored in the memory 45, and via the system bus 49. And send it to the arithmetic circuit 46. The arithmetic circuit 46 generates a gate signal for the switching element of each phase based on the comparison between the U-phase, V-phase, and W-phase voltage commands and the triangular wave carrier signal, and sends the gate signal to the output IF 47.
 第2通信部23は、ゲート信号を電力変換装置2の各相のスイッチング素子に送る。なお第2通信部23は、ゲート信号をパラレル通信で電力変換装置2に送信する。具体的には、出力IF47は、パラレルデータのゲート信号を、第2パラレル回線7を介して、電力変換装置2に送る。 The second communication unit 23 sends a gate signal to the switching element of each phase of the power conversion device 2. The second communication unit 23 transmits the gate signal to the power conversion device 2 by parallel communication. Specifically, the output IF 47 sends a gate signal of parallel data to the power conversion device 2 via the second parallel line 7.
 電力変換装置2の各相のスイッチング素子は、制御装置20から送られたゲート信号に応じてオンまたはオフになる。一例として、電力変換装置2の各相のスイッチング素子が、ゲート信号に応じてオンオフを繰り返すと、電力変換装置2は、図示しない電源から供給される電力を三相交流電力に変換し、三相交流電力を電動機3に供給する。 The switching element of each phase of the power conversion device 2 is turned on or off according to the gate signal sent from the control device 20. As an example, when the switching element of each phase of the power conversion device 2 repeats on / off according to the gate signal, the power conversion device 2 converts the power supplied from a power source (not shown) into three-phase AC power, and three-phase. AC power is supplied to the electric motor 3.
 以上説明したとおり、実施の形態1に係る制御装置20は、電力変換装置2に隣接して配置される。これにより、第2パラレル回線7が短くなり、配線長による信号の遅延が生じないため、制御装置20による電力変換装置2の制御の応答性が向上する。また、ゲート信号の伝送中にゲート信号に重畳するノイズの影響を低減することが可能となる。これにより、制御装置20にゲート信号に重畳するノイズの影響を低減するためのアイソレータを必ずしも設ける必要は無く、アイソレータを設けないことにより制御装置20による電力変換装置2の制御の応答性を向上させることも可能となる。 As described above, the control device 20 according to the first embodiment is arranged adjacent to the power conversion device 2. As a result, the second parallel line 7 is shortened, and signal delay due to the wiring length does not occur, so that the responsiveness of the control of the power conversion device 2 by the control device 20 is improved. Further, it is possible to reduce the influence of noise superimposed on the gate signal during transmission of the gate signal. As a result, it is not always necessary to provide the control device 20 with an isolator for reducing the influence of noise superimposed on the gate signal, and by not providing the isolator, the responsiveness of the control of the power conversion device 2 by the control device 20 is improved. It is also possible.
 さらに制御装置20がセンサ4に隣接して配置される場合、制御装置20とセンサ4の間の配線が短くなり、配線長による信号の遅延が生じないため、制御装置20による電力変換装置2の制御の応答性が向上する。また、制御装置20とセンサ4の間の配線が短くなることにより、センサ4が出力するセンサ信号に重畳するノイズの影響を低減することが可能となる。 Further, when the control device 20 is arranged adjacent to the sensor 4, the wiring between the control device 20 and the sensor 4 is shortened, and the signal delay due to the wiring length does not occur. Therefore, the power conversion device 2 by the control device 20 The responsiveness of the control is improved. Further, by shortening the wiring between the control device 20 and the sensor 4, it is possible to reduce the influence of noise superimposed on the sensor signal output by the sensor 4.
 また指令装置10と制御装置20とを高速シリアル回線5で接続するため、指令装置10と制御装置20とがパラレル回線で接続される場合よりも、配線が少なくなり、配線作業の工数を低減することが可能となる。高速シリアル回線5が、例えば、IEEE802.3uの規格に準拠した伝送線から構成される場合、高速シリアル回線5を介して長距離、例えば、100mの伝送が可能となる。このため、制御装置20から遠く離隔した位置に指令装置10を配置することが可能となるため、制御装置20の位置に対して指令装置10の配置位置の自由度が高くなる。 Further, since the command device 10 and the control device 20 are connected by the high-speed serial line 5, the number of wirings is reduced and the man-hours for wiring work are reduced as compared with the case where the command device 10 and the control device 20 are connected by a parallel line. It becomes possible. When the high-speed serial line 5 is composed of, for example, a transmission line conforming to the standard of IEEE802.3u, transmission over a long distance, for example, 100 m is possible via the high-speed serial line 5. Therefore, since the command device 10 can be arranged at a position far away from the control device 20, the degree of freedom of the arrangement position of the command device 10 is increased with respect to the position of the control device 20.
 また指令送信部12は、FPGA34に含まれるUDP/IPコア35とPHYチップ36とで実現されるため、UDP/IPコア35の処理をCPU31で行う場合よりも、指令送信部12の処理速度を速くすることが可能となる。同様に、第1通信部21は、FPGA41に含まれるUDP/IPコア42と、PHYチップ43とで実現されるため、UDP/IPコア42の処理をDSP44で行う場合よりも、第1通信部21の処理速度を速くすることが可能となる。 Further, since the command transmission unit 12 is realized by the UDP / IP core 35 and the PHY chip 36 included in the FPGA 34, the processing speed of the command transmission unit 12 is higher than that in the case where the processing of the UDP / IP core 35 is performed by the CPU 31. It will be possible to make it faster. Similarly, since the first communication unit 21 is realized by the UDP / IP core 42 included in the FPGA 41 and the PHY chip 43, the first communication unit 21 is more than the case where the processing of the UDP / IP core 42 is performed by the DSP 44. The processing speed of 21 can be increased.
 (実施の形態2)
 高速シリアル回線5を介した通信の信頼度を高めるため、制御システム1は、複数の高速シリアル回線5を備えてもよい。制御システム1が指令装置10と制御装置20とを接続する複数の高速シリアル回線5を備える構成について、実施の形態2で説明する。図3に示すように、制御システム1は、指令装置10と制御装置20とを接続する2本の高速シリアル回線5a,5bを備える。高速シリアル回線5aを介した通信に異常が生じた場合、指令装置10と制御装置20とは、高速シリアル回線5bを介して通信を行う。
(Embodiment 2)
In order to increase the reliability of communication via the high-speed serial line 5, the control system 1 may include a plurality of high-speed serial lines 5. A configuration in which the control system 1 includes a plurality of high-speed serial lines 5 for connecting the command device 10 and the control device 20 will be described in the second embodiment. As shown in FIG. 3, the control system 1 includes two high-speed serial lines 5a and 5b that connect the command device 10 and the control device 20. When an abnormality occurs in the communication via the high-speed serial line 5a, the command device 10 and the control device 20 communicate with each other via the high-speed serial line 5b.
 上記構成を有する制御システム1の実装例について図4を用いて説明する。なお実施の形態1と異なる指令送信部12および第1通信部21の構成について説明する。図4に示すように、指令送信部12は、FPGA34に含まれるUDP/IPコア35a,35bと、PHYチップ36a,36bと、切替部38とで実現される。UDP/IPコア35a,35bはそれぞれ、PHYチップ36a,36bに接続されている。なおUDP/IPコア35a,35bは、MAC層、IP層、およびUDP層の通信を行う。またPHYチップ36a,36bは、物理層の通信を行う。 An implementation example of the control system 1 having the above configuration will be described with reference to FIG. The configuration of the command transmitting unit 12 and the first communication unit 21 different from those of the first embodiment will be described. As shown in FIG. 4, the command transmission unit 12 is realized by the UDP / IP cores 35a and 35b included in the FPGA 34, the PHY chips 36a and 36b, and the switching unit 38. The UDP / IP cores 35a and 35b are connected to the PHY chips 36a and 36b, respectively. The UDP / IP cores 35a and 35b communicate with the MAC layer, the IP layer, and the UDP layer. Further, the PHY chips 36a and 36b communicate with each other in the physical layer.
 また第1通信部21は、FPGA41に含まれるUDP/IPコア42a,42bと、PHYチップ43a,43bと、切替部50とで実現される。UDP/IPコア42a,42bはそれぞれ、PHYチップ43a,43bに接続されている。なおUDP/IPコア42a,42bは、MAC層、IP層、およびUDP層の通信を行う。またPHYチップ43a,43bは、物理層の通信を行う。 Further, the first communication unit 21 is realized by the UDP / IP cores 42a and 42b included in the FPGA 41, the PHY chips 43a and 43b, and the switching unit 50. The UDP / IP cores 42a and 42b are connected to the PHY chips 43a and 43b, respectively. The UDP / IP cores 42a and 42b communicate with the MAC layer, the IP layer, and the UDP layer. Further, the PHY chips 43a and 43b communicate with each other in the physical layer.
 上記構成を有する制御システム1の動作について説明する。
 指令生成部11の動作は、実施の形態1と同様である。ただし、指令生成部11を構成するCPU31は、生成した制御指令を、システムバス37を介して、FPGA34に含まれる切替部38に送る。切替部38は、CPU31から制御指令を取得すると、UDP/IPコア35aに送る。UDP/IPコア35aは、制御指令からイーサネットパケットを生成し、PHYチップ36aに送る。PHYチップ36aは、イーサネットパケットから通信信号を生成し、通信信号を高速シリアル回線5aに送出する。
The operation of the control system 1 having the above configuration will be described.
The operation of the command generation unit 11 is the same as that of the first embodiment. However, the CPU 31 constituting the command generation unit 11 sends the generated control command to the switching unit 38 included in the FPGA 34 via the system bus 37. When the switching unit 38 acquires the control command from the CPU 31, the switching unit 38 sends it to the UDP / IP core 35a. The UDP / IP core 35a generates an Ethernet packet from the control command and sends it to the PHY chip 36a. The PHY chip 36a generates a communication signal from the Ethernet packet and sends the communication signal to the high-speed serial line 5a.
 PHYチップ43aは、高速シリアル回線5aを介して通信信号を受信すると、通信信号からイーサネットパケットを生成し、UDP/IPコア42aに送る。UDP/IPコア42aは、PHYチップ43aが生成したイーサネットパケットから制御指令を取り出し、切替部50に送る。切替部50は、システムバス49を介して、制御指令をDSP44に送る。DSP44、入力IF48、および出力IF47の動作は、実施の形態1と同様である。実施の形態1と同様に生成されたゲート信号が電力変換装置2のスイッチング素子に送られ、スイッチング素子がオンまたはオフになる。 When the PHY chip 43a receives the communication signal via the high-speed serial line 5a, the PHY chip 43a generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42a. The UDP / IP core 42a extracts a control command from the Ethernet packet generated by the PHY chip 43a and sends it to the switching unit 50. The switching unit 50 sends a control command to the DSP 44 via the system bus 49. The operation of the DSP44, the input IF48, and the output IF47 is the same as that of the first embodiment. The gate signal generated in the same manner as in the first embodiment is sent to the switching element of the power conversion device 2, and the switching element is turned on or off.
 上述の電力変換装置2のスイッチング素子を制御する処理と並行して、制御システム1は、通信に用いられている高速シリアル回線5aの異常が生じているか否かを判別する。制御システム1は、高速シリアル回線5aの異常が生じていると判別した場合、高速シリアル回線5aを介した通信を停止し、高速シリアル回線5bを介した通信を開始する。一例として、制御装置20は、指令装置10から送られたデータの誤り検出に基づいて、高速シリアル回線5aの異常が生じているかを判別し、指令装置10は、制御装置20からの通信の間隔に基づいて、高速シリアル回線5aの異常が生じているか否かを判別する構成について説明する。 In parallel with the process of controlling the switching element of the power conversion device 2 described above, the control system 1 determines whether or not an abnormality has occurred in the high-speed serial line 5a used for communication. When the control system 1 determines that an abnormality has occurred in the high-speed serial line 5a, it stops communication via the high-speed serial line 5a and starts communication via the high-speed serial line 5b. As an example, the control device 20 determines whether or not an abnormality has occurred in the high-speed serial line 5a based on the error detection of the data sent from the command device 10, and the command device 10 determines the interval of communication from the control device 20. A configuration for determining whether or not an abnormality has occurred in the high-speed serial line 5a will be described.
 第1通信部21は、指令送信部12から送信されたデータについて、誤り検出を行う。具体的には、UDP/IPコア42aは、イーサネットパケットから制御指令、チェックサム値、およびチェックサム値の算出に用いられる所定のデータを取り出し、切替部50に送る。なお指令装置10のUDP/IPコア35aは、制御指令からイーサネットパケットを生成する際に、イーサネットパケットに含まれる所定のデータからチェックサム値を生成し、チェックサム値を含むイーサネットパケットを生成するものとする。なお所定のデータとは、例えば、IPヘッダ、UDPヘッダ等を含む。 The first communication unit 21 performs error detection on the data transmitted from the command transmission unit 12. Specifically, the UDP / IP core 42a extracts predetermined data used for calculating the control command, the checksum value, and the checksum value from the Ethernet packet, and sends the data to the switching unit 50. The UDP / IP core 35a of the command device 10 generates a checksum value from predetermined data included in the Ethernet packet when generating an Ethernet packet from a control command, and generates an Ethernet packet including the checksum value. And. The predetermined data includes, for example, an IP header, a UDP header, and the like.
 切替部50は、所定のデータからチェックサム値を算出し、イーサネットパケットに含まれていたチェックサム値と比較する。切替部50は、算出したチェックサム値と、イーサネットパケットに含まれていたチェックサム値が一致すると判別した場合、UDP/IPコア42aから取得した制御指令を、システムバス49を介して、DSP44に送る。切替部50は、算出したチェックサム値と、イーサネットパケットに含まれていたチェックサム値が一致しないと判別した場合、UDP/IPコア42aから取得した制御指令を破棄し、UDP/IPコア42bから制御指令を受信するまで待機する。 The switching unit 50 calculates a checksum value from predetermined data and compares it with the checksum value included in the Ethernet packet. When the switching unit 50 determines that the calculated checksum value and the checksum value included in the Ethernet packet match, the switching unit 50 sends a control command acquired from the UDP / IP core 42a to the DSP 44 via the system bus 49. send. When the switching unit 50 determines that the calculated checksum value and the checksum value included in the Ethernet packet do not match, the switching unit 50 discards the control command acquired from the UDP / IP core 42a and discards the control command acquired from the UDP / IP core 42b. Wait until a control command is received.
 また切替部50は、算出したチェックサム値と、イーサネットパケットに含まれていたチェックサム値が一致すると判別した場合、判別結果をUDP/IPコア42aに通知する。判別結果が通知されたUDP/IPコア42aは、判別結果を通知するためのイーサネットパケットを生成し、PHYチップ43aに送る。PHYチップ43aは、判別結果を通知するためのイーサネットパケットから通信信号を生成し、通信信号を高速シリアル回線5aに送出する。
 PHYチップ36aは、高速シリアル回線5aを介して通信信号を受信すると、通信信号からイーサネットパケットを生成し、UDP/IPコア35aに送る。UDP/IPコア35aは、PHYチップ36aが生成したイーサネットパケットから判別結果を取り出し、切替部38に送る。切替部38は、判別結果を受信した場合、CPU31から取得した制御指令を、UDP/IPコア35aに送ることを継続する。
Further, when the switching unit 50 determines that the calculated checksum value and the checksum value included in the Ethernet packet match, the switching unit 50 notifies the UDP / IP core 42a of the determination result. The UDP / IP core 42a notified of the discrimination result generates an Ethernet packet for notifying the discrimination result and sends it to the PHY chip 43a. The PHY chip 43a generates a communication signal from an Ethernet packet for notifying the determination result, and sends the communication signal to the high-speed serial line 5a.
When the PHY chip 36a receives the communication signal via the high-speed serial line 5a, the PHY chip 36a generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 35a. The UDP / IP core 35a extracts the discrimination result from the Ethernet packet generated by the PHY chip 36a and sends it to the switching unit 38. When the switching unit 38 receives the determination result, the switching unit 38 continues to send the control command acquired from the CPU 31 to the UDP / IP core 35a.
 一方、切替部50は、算出したチェックサム値と、イーサネットパケットに含まれていたチェックサム値が一致しないと判別した場合、判別結果をUDP/IPコア42aに通知しない。このため、UDP/IPコア42aは、上述のように判別結果を通知するためのイーサネットパケットを生成せず、PHYチップ43aから高速シリアル回線5aに通信信号が送出されない。
 切替部38は、判別結果を受信していない期間が、定められた期間以上であるか否かを判別する。切替部38は、判別結果を受信していない期間が、定められた期間以上になると判別した場合、CPU31から取得した制御指令を、UDP/IPコア35aに送ることを停止する。そして、切替部38は、CPU31から取得した制御指令を、UDP/IPコア35bに送る。UDP/IPコア35bは、制御指令からイーサネットパケットを生成し、PHYチップ36bに送る。PHYチップ36bは、イーサネットパケットから通信信号を生成し、通信信号を高速シリアル回線5bに送出する。
On the other hand, when the switching unit 50 determines that the calculated checksum value and the checksum value included in the Ethernet packet do not match, the switching unit 50 does not notify the UDP / IP core 42a of the determination result. Therefore, the UDP / IP core 42a does not generate the Ethernet packet for notifying the determination result as described above, and the communication signal is not transmitted from the PHY chip 43a to the high-speed serial line 5a.
The switching unit 38 determines whether or not the period during which the determination result is not received is equal to or longer than the predetermined period. When the switching unit 38 determines that the period during which the determination result is not received exceeds the predetermined period, the switching unit 38 stops sending the control command acquired from the CPU 31 to the UDP / IP core 35a. Then, the switching unit 38 sends the control command acquired from the CPU 31 to the UDP / IP core 35b. The UDP / IP core 35b generates an Ethernet packet from the control command and sends it to the PHY chip 36b. The PHY chip 36b generates a communication signal from the Ethernet packet and sends the communication signal to the high-speed serial line 5b.
 PHYチップ43bは、高速シリアル回線5bを介して通信信号を受信すると、通信信号からイーサネットパケットを生成し、UDP/IPコア42bに送る。UDP/IPコア42bは、PHYチップ43bが生成したイーサネットパケットから制御指令を取り出し、切替部50に送る。上述したように、切替部50は、所定のデータからチェックサム値を算出し、イーサネットパケットに含まれていたチェックサム値と比較する。切替部50は、算出したチェックサム値と、イーサネットパケットに含まれていたチェックサム値が一致すると判別した場合、UDP/IPコア42bから取得した制御指令を、システムバス49を介して、DSP44に送る。後続の処理は、上述の例と同様である。 When the PHY chip 43b receives the communication signal via the high-speed serial line 5b, the PHY chip 43b generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42b. The UDP / IP core 42b extracts a control command from the Ethernet packet generated by the PHY chip 43b and sends it to the switching unit 50. As described above, the switching unit 50 calculates the checksum value from the predetermined data and compares it with the checksum value included in the Ethernet packet. When the switching unit 50 determines that the calculated checksum value and the checksum value included in the Ethernet packet match, the switching unit 50 sends a control command acquired from the UDP / IP core 42b to the DSP 44 via the system bus 49. send. Subsequent processing is the same as in the above example.
 以上説明したとおり、実施の形態2に係る制御システム1は、高速シリアル回線5a,5bの一方に異常が生じた場合、高速シリアル回線5a,5bの他方を介して、制御指令の送信を行う。これにより、制御システム1の信頼性が向上する。つまり、高速シリアル回線5a,5bの一方に伝送異常が生じても制御指令の送信が途切れないことにより、制御装置20による電力変換装置2の制御の応答性が向上する。 As described above, the control system 1 according to the second embodiment transmits a control command via the other of the high-speed serial lines 5a and 5b when an abnormality occurs in one of the high-speed serial lines 5a and 5b. This improves the reliability of the control system 1. That is, even if a transmission abnormality occurs in one of the high-speed serial lines 5a and 5b, the transmission of the control command is not interrupted, so that the responsiveness of the control of the power conversion device 2 by the control device 20 is improved.
 (実施の形態3)
 指令装置10が制御指令を送る制御装置20の数は1つに限られず、複数でもよい。図5に示すように、実施の形態3に係る制御システム1は、1つの指令装置10と、2つの制御装置20a,20bとを備える。制御装置20aは、指令装置10から取得した制御指令と電力変換装置2aが出力する各相の電流を測定するセンサ4aから取得した各相の電流の測定値とに応じて、電力変換装置2aのスイッチング素子を制御する。制御装置20bは、指令装置10から取得した制御指令と電力変換装置2bが出力する各相の電流を測定するセンサ4bから取得した各相の電流の測定値とに応じて、電力変換装置2bのスイッチング素子を制御する。
(Embodiment 3)
The number of control devices 20 to which the command device 10 sends a control command is not limited to one, and may be plural. As shown in FIG. 5, the control system 1 according to the third embodiment includes one command device 10 and two control devices 20a and 20b. The control device 20a is a power conversion device 2a according to a control command acquired from the command device 10 and a measured value of the current of each phase acquired from the sensor 4a that measures the current of each phase output by the power conversion device 2a. Control the switching element. The control device 20b is a power conversion device 2b according to a control command acquired from the command device 10 and a measured value of the current of each phase acquired from the sensor 4b that measures the current of each phase output by the power conversion device 2b. Control the switching element.
 制御システム1は、指令装置10と制御装置20aとを接続する高速シリアル回線5aと、指令装置10と制御装置20bとを接続する高速シリアル回線5bと、を備える。さらに制御システム1は、制御装置20aとセンサ4aとを接続する第1パラレル回線6aと、第2通信部23aと電力変換装置2aとを接続する第2パラレル回線7aと、制御装置20bとセンサ4bとを接続する第1パラレル回線6bと、第2通信部23bと電力変換装置2bとを接続する第2パラレル回線7bと、を備える。 The control system 1 includes a high-speed serial line 5a that connects the command device 10 and the control device 20a, and a high-speed serial line 5b that connects the command device 10 and the control device 20b. Further, the control system 1 includes a first parallel line 6a that connects the control device 20a and the sensor 4a, a second parallel line 7a that connects the second communication unit 23a and the power conversion device 2a, and the control device 20b and the sensor 4b. A first parallel line 6b for connecting the above and a second parallel line 7b for connecting the second communication unit 23b and the power conversion device 2b are provided.
 指令装置10の構成および動作は、指令送信部12が制御装置20a,20bのそれぞれに制御指令を送ることを除いて、実施の形態1と同様である。
 制御装置20a,20bの構成および動作は、実施の形態1に係る制御装置20と同様である。具体的には、制御装置20aは、第1通信部21aと、演算部22aと、第2通信部23aと、測定値取得部24aと、を備える。また実施の形態2に係る制御装置20aは、第1通信部21bと、演算部22bと、第2通信部23bと、測定値取得部24bと、を備える。
The configuration and operation of the command device 10 are the same as those in the first embodiment, except that the command transmission unit 12 sends a control command to each of the control devices 20a and 20b.
The configuration and operation of the control devices 20a and 20b are the same as those of the control device 20 according to the first embodiment. Specifically, the control device 20a includes a first communication unit 21a, a calculation unit 22a, a second communication unit 23a, and a measured value acquisition unit 24a. Further, the control device 20a according to the second embodiment includes a first communication unit 21b, a calculation unit 22b, a second communication unit 23b, and a measured value acquisition unit 24b.
 制御装置20aは、電力変換装置2aに隣接して配置される。具体的には、制御装置20aから電力変換装置2aへのゲート信号の伝送中に、ゲート信号に重畳するノイズの影響が十分に小さくなる程度に、制御装置20aは電力変換装置2aに隣接して配置される。制御装置20aと電力変換装置2aとの距離は、1メートル以下であることが好ましい。さらに好ましくは、制御装置20aの筐体は、電力変換装置2aの筐体に当接して配置されればよい。この場合、電力変換装置2aが有するスイッチング素子を導電性部材から構成されるシールド筐体に収容した上で、制御装置20aの筐体が電力変換装置2aの筐体に当接して配置されることが好ましい。スイッチング素子をシールド筐体に収容することで、ゲート信号にスイッチングノイズが重畳することが抑制される。
 さらに好ましくは、制御装置20aは、センサ4aに隣接して配置されればよい。具体的には、センサ4aから測定値取得部24aへのセンサ信号の伝送中に、センサ信号に重畳するノイズの影響が十分に小さくなる程度に、制御装置20aはセンサ4aに隣接して配置されることが好ましい。
The control device 20a is arranged adjacent to the power conversion device 2a. Specifically, the control device 20a is adjacent to the power conversion device 2a to such an extent that the influence of noise superimposed on the gate signal during transmission of the gate signal from the control device 20a to the power conversion device 2a is sufficiently small. Be placed. The distance between the control device 20a and the power conversion device 2a is preferably 1 meter or less. More preferably, the housing of the control device 20a may be arranged in contact with the housing of the power conversion device 2a. In this case, the switching element of the power conversion device 2a is housed in a shield housing made of a conductive member, and then the housing of the control device 20a is arranged in contact with the housing of the power conversion device 2a. Is preferable. By accommodating the switching element in the shield housing, it is possible to suppress the superimposition of switching noise on the gate signal.
More preferably, the control device 20a may be arranged adjacent to the sensor 4a. Specifically, the control device 20a is arranged adjacent to the sensor 4a so that the influence of noise superimposed on the sensor signal is sufficiently reduced during transmission of the sensor signal from the sensor 4a to the measured value acquisition unit 24a. Is preferable.
 同様に、制御装置20bは、電力変換装置2bに隣接して配置される。具体的には、制御装置20bから電力変換装置2bへのゲート信号の伝送中に、ゲート信号に重畳するノイズの影響が十分に小さくなる程度に、制御装置20bは電力変換装置2bに隣接して配置される。制御装置20bと電力変換装置2bとの距離は、1メートル以下であることが好ましい。さらに好ましくは、制御装置20bの筐体は、電力変換装置2bの筐体に当接すればよい。この場合、電力変換装置2bが有するスイッチング素子を導電性部材から構成されるシールド筐体に収容した上で、制御装置20bの筐体が電力変換装置2bの筐体に当接して配置されることが好ましい。スイッチング素子をシールド筐体に収容することで、ゲート信号にスイッチングノイズが重畳することが抑制される。
 さらに好ましくは、制御装置20bは、センサ4bに隣接して配置されればよい。具体的には、センサ4bから測定値取得部24bへのセンサ信号の伝送中に、センサ信号に重畳するノイズの影響が十分に小さくなる程度に、制御装置20bはセンサ4bに隣接して配置されることが好ましい。
Similarly, the control device 20b is arranged adjacent to the power conversion device 2b. Specifically, the control device 20b is adjacent to the power conversion device 2b to such an extent that the influence of noise superimposed on the gate signal during transmission of the gate signal from the control device 20b to the power conversion device 2b is sufficiently small. Be placed. The distance between the control device 20b and the power conversion device 2b is preferably 1 meter or less. More preferably, the housing of the control device 20b may come into contact with the housing of the power conversion device 2b. In this case, the switching element of the power conversion device 2b is housed in a shield housing made of a conductive member, and then the housing of the control device 20b is arranged in contact with the housing of the power conversion device 2b. Is preferable. By accommodating the switching element in the shield housing, it is possible to suppress the superimposition of switching noise on the gate signal.
More preferably, the control device 20b may be arranged adjacent to the sensor 4b. Specifically, the control device 20b is arranged adjacent to the sensor 4b so that the influence of noise superimposed on the sensor signal is sufficiently reduced during transmission of the sensor signal from the sensor 4b to the measured value acquisition unit 24b. Is preferable.
 上記構成を有する制御システム1の実装例について図6から図8を用いて説明する。なお実施の形態1と異なる点を中心に説明する。
 図6に示すように、指令送信部12は、FPGA34に含まれるUDP/IPコア35a,35bと、PHYチップ36a,36bとで実現される。UDP/IPコア35a,35bはそれぞれ、PHYチップ36a,36bに接続されている。PHYチップ36a,36bはそれぞれ、高速シリアル回線5a,5bを介して、第1通信部21a,21bのそれぞれが有するPHYチップ43に接続されている。
An implementation example of the control system 1 having the above configuration will be described with reference to FIGS. 6 to 8. The points different from the first embodiment will be mainly described.
As shown in FIG. 6, the command transmission unit 12 is realized by the UDP / IP cores 35a and 35b included in the FPGA 34 and the PHY chips 36a and 36b. The UDP / IP cores 35a and 35b are connected to the PHY chips 36a and 36b, respectively. The PHY chips 36a and 36b are connected to the PHY chips 43 of the first communication units 21a and 21b via high-speed serial lines 5a and 5b, respectively.
 図7に示すように、実施の形態1に係る制御装置20と同様に、第1通信部21aは、FPGA41に含まれるUDP/IPコア42と、PHYチップ43とで実現され、演算部22aは、DSP44と、メモリ45と、FPGA41に含まれる演算回路46とで実現される。また第2通信部23aは、FPGA41に含まれる出力IF47で実現される。また測定値取得部24aは、FPGA41に含まれる入力IF48で実現される。なおDSP44、メモリ45、およびFPGA41は、システムバス49で互いに接続されている。システムバス49は、シリアルバスから構成される。第1通信部21aを構成するPHYチップ43は、高速シリアル回線5aを介して、指令装置10の指令送信部12を構成するPHYチップ36aに接続される。 As shown in FIG. 7, similarly to the control device 20 according to the first embodiment, the first communication unit 21a is realized by the UDP / IP core 42 included in the FPGA 41 and the PHY chip 43, and the calculation unit 22a , The DSP 44, the memory 45, and the arithmetic circuit 46 included in the FPGA 41. Further, the second communication unit 23a is realized by the output IF47 included in the FPGA 41. Further, the measured value acquisition unit 24a is realized by the input IF48 included in the FPGA 41. The DSP 44, the memory 45, and the FPGA 41 are connected to each other by the system bus 49. The system bus 49 is composed of a serial bus. The PHY chip 43 constituting the first communication unit 21a is connected to the PHY chip 36a constituting the command transmitting unit 12 of the command device 10 via the high-speed serial line 5a.
 図8に示すように、実施の形態1に係る制御装置20と同様に、第1通信部21bは、FPGA41に含まれるUDP/IPコア42と、PHYチップ43とで実現され、演算部22bは、DSP44と、メモリ45と、FPGA41に含まれる演算回路46とで実現される。また第2通信部23bは、FPGA41に含まれる出力IF47で実現される。また測定値取得部24bは、FPGA41に含まれる入力IF48で実現される。なおDSP44、メモリ45、およびFPGA41は、システムバス49で互いに接続されている。システムバス49は、シリアルバスから構成される。第1通信部21bを構成するPHYチップ43は、高速シリアル回線5bを介して、指令装置10の指令送信部12を構成するPHYチップ36bに接続される。 As shown in FIG. 8, similarly to the control device 20 according to the first embodiment, the first communication unit 21b is realized by the UDP / IP core 42 included in the FPGA 41 and the PHY chip 43, and the calculation unit 22b , The DSP 44, the memory 45, and the arithmetic circuit 46 included in the FPGA 41. Further, the second communication unit 23b is realized by the output IF47 included in the FPGA 41. Further, the measured value acquisition unit 24b is realized by the input IF48 included in the FPGA 41. The DSP 44, the memory 45, and the FPGA 41 are connected to each other by the system bus 49. The system bus 49 is composed of a serial bus. The PHY chip 43 constituting the first communication unit 21b is connected to the PHY chip 36b constituting the command transmission unit 12 of the command device 10 via the high-speed serial line 5b.
 上記構成を有する制御システム1の動作について説明する。
 指令生成部11の動作は、実施の形態1と同様である。ただし、指令生成部11を構成するCPU31は、生成した制御指令を、システムバス37を介して、FPGA34に含まれるUDP/IPコア35a,35bのそれぞれに送る。
 指令送信部12は、制御指令を、高速シリアル回線5a,5bのそれぞれを介して、制御装置20a,20bのそれぞれが有する第1通信部21a,21bに送る。
The operation of the control system 1 having the above configuration will be described.
The operation of the command generation unit 11 is the same as that of the first embodiment. However, the CPU 31 constituting the command generation unit 11 sends the generated control command to each of the UDP / IP cores 35a and 35b included in the FPGA 34 via the system bus 37.
The command transmission unit 12 sends a control command to the first communication units 21a and 21b of the control devices 20a and 20b via the high-speed serial lines 5a and 5b, respectively.
 具体的には、UDP/IPコア35aは、制御指令からイーサネットパケットを生成し、PHYチップ36aに送る。PHYチップ36aは、イーサネットパケットから通信信号を生成し、通信信号を高速シリアル回線5aに送出する。
 またUDP/IPコア35bは、制御指令からイーサネットパケットを生成し、PHYチップ36bに送る。PHYチップ36bは、イーサネットパケットから通信信号を生成し、通信信号を高速シリアル回線5bに送出する。
Specifically, the UDP / IP core 35a generates an Ethernet packet from the control command and sends it to the PHY chip 36a. The PHY chip 36a generates a communication signal from the Ethernet packet and sends the communication signal to the high-speed serial line 5a.
The UDP / IP core 35b also generates an Ethernet packet from the control command and sends it to the PHY chip 36b. The PHY chip 36b generates a communication signal from the Ethernet packet and sends the communication signal to the high-speed serial line 5b.
 制御装置20aの第1通信部21aは、指令装置10から高速シリアル回線5aを介して制御指令を受信すると、実施の形態1と同様に、演算部22aに送る。具体的には、PHYチップ43は、高速シリアル回線5aを介して通信信号を受信すると、通信信号からイーサネットパケットを生成し、UDP/IPコア42に送る。UDP/IPコア42は、PHYチップ43が生成したイーサネットパケットから制御指令を取り出し、システムバス49を介して、制御指令をDSP44に送る。
 制御装置20aの測定値取得部24a、演算部22a、および第2通信部23aの動作は、実施の形態1と同様である。実施の形態1と同様に生成されたゲート信号が電力変換装置2aのスイッチング素子に送られ、スイッチング素子がオンまたはオフになる。
When the first communication unit 21a of the control device 20a receives the control command from the command device 10 via the high-speed serial line 5a, the first communication unit 21a sends the control command to the calculation unit 22a as in the first embodiment. Specifically, when the PHY chip 43 receives the communication signal via the high-speed serial line 5a, the PHY chip 43 generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42. The UDP / IP core 42 extracts a control command from the Ethernet packet generated by the PHY chip 43, and sends the control command to the DSP 44 via the system bus 49.
The operations of the measured value acquisition unit 24a, the calculation unit 22a, and the second communication unit 23a of the control device 20a are the same as those in the first embodiment. The gate signal generated in the same manner as in the first embodiment is sent to the switching element of the power conversion device 2a, and the switching element is turned on or off.
 また制御装置20bの第1通信部21は、指令装置10から高速シリアル回線5bを介して制御指令を受信すると、実施の形態1と同様に、演算部22bに送る。具体的には、PHYチップ43は、高速シリアル回線5bを介して通信信号を受信すると、通信信号からイーサネットパケットを生成し、UDP/IPコア42に送る。UDP/IPコア42は、PHYチップ43が生成したイーサネットパケットから制御指令を取り出し、システムバス49を介して、制御指令をDSP44に送る。
 制御装置20bの測定値取得部24b、演算部22b、および第2通信部23bの動作は、実施の形態1と同様である。実施の形態1と同様に生成されたゲート信号が電力変換装置2bのスイッチング素子に送られ、スイッチング素子がオンまたはオフになる。
When the first communication unit 21 of the control device 20b receives the control command from the command device 10 via the high-speed serial line 5b, the first communication unit 21 sends the control command to the calculation unit 22b as in the first embodiment. Specifically, when the PHY chip 43 receives a communication signal via the high-speed serial line 5b, it generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42. The UDP / IP core 42 extracts a control command from the Ethernet packet generated by the PHY chip 43, and sends the control command to the DSP 44 via the system bus 49.
The operations of the measured value acquisition unit 24b, the calculation unit 22b, and the second communication unit 23b of the control device 20b are the same as those in the first embodiment. The gate signal generated in the same manner as in the first embodiment is sent to the switching element of the power conversion device 2b, and the switching element is turned on or off.
 以上説明したとおり、実施の形態3に係る制御装置20a,20bはそれぞれ、電力変換装置2a,2bに隣接して配置される。これにより、第2パラレル回線7a,7bが短くなり、配線長による信号の遅延が生じないため、制御装置20a,20bによる電力変換装置2a,2bの制御の応答性が向上する。また、ゲート信号の伝送中にゲート信号に重畳するノイズの影響を低減することが可能となる。 As described above, the control devices 20a and 20b according to the third embodiment are arranged adjacent to the power conversion devices 2a and 2b, respectively. As a result, the second parallel lines 7a and 7b are shortened, and signal delay due to the wiring length does not occur, so that the responsiveness of control of the power conversion devices 2a and 2b by the control devices 20a and 20b is improved. Further, it is possible to reduce the influence of noise superimposed on the gate signal during transmission of the gate signal.
 さらに制御装置20a,20bがそれぞれ、センサ4a,4bに隣接して配置される場合、制御装置20a,20bのそれぞれとセンサ4a,4bとを接続する配線が短くなり、配線長による信号の遅延が生じないため、制御装置20a,20bによる電力変換装置2a,2bの制御の応答性が向上する。また、制御装置20a,20bのそれぞれとセンサ4a,4bとを接続する配線が短くなることにより、センサ4a,4bが出力するセンサ信号に重畳するノイズの影響を低減することが可能となる。 Further, when the control devices 20a and 20b are arranged adjacent to the sensors 4a and 4b, respectively, the wiring connecting the control devices 20a and 20b and the sensors 4a and 4b becomes shorter, and the signal delay due to the wiring length becomes shorter. Since it does not occur, the responsiveness of the control of the power conversion devices 2a and 2b by the control devices 20a and 20b is improved. Further, by shortening the wiring connecting the control devices 20a and 20b and the sensors 4a and 4b, it is possible to reduce the influence of noise superimposed on the sensor signals output by the sensors 4a and 4b.
 また指令装置10と制御装置20a,20bのそれぞれとを高速シリアル回線5a,5bで接続するため、指令装置10と制御装置20a,20bのそれぞれとがパラレル回線で接続される場合よりも、配線が少なくなり、配線作業の工数を低減することが可能となる。高速シリアル回線5a,5bが、例えば、IEEE802.3uの規格に準拠した伝送線から構成される場合、信号の遅延を生じさせることなく、高速シリアル回線5a,5bを介して長距離、例えば、100mの伝送が可能となる。このため、制御装置20a,20bから遠く離隔した位置に指令装置10を配置することが可能となるため、制御装置20a,20bの位置に対して指令装置10の配置位置の自由度が高くなる。 Further, since the command device 10 and the control devices 20a and 20b are connected by high-speed serial lines 5a and 5b, the wiring is more than when the command device 10 and the control devices 20a and 20b are connected by a parallel line. The number of wiring work is reduced, and the man-hours for wiring work can be reduced. When the high-speed serial lines 5a and 5b are composed of, for example, transmission lines compliant with the IEEE802.3u standard, a long distance, for example, 100 m, is provided via the high-speed serial lines 5a and 5b without causing signal delay. Can be transmitted. Therefore, since the command device 10 can be arranged at a position far away from the control devices 20a and 20b, the degree of freedom of the arrangement position of the command device 10 is increased with respect to the positions of the control devices 20a and 20b.
 また指令送信部12がFPGA34に含まれるUDP/IPコア35a,35bとPHYチップ36a,36bとで実現されるため、UDP/IPコア35a,35bのそれぞれの処理をCPU31で行う場合よりも、指令送信部12の処理速度を速くすることが可能となる。同様に、制御装置20a,20bのそれぞれの第1通信部21は、FPGA41に含まれるUDP/IPコア42と、PHYチップ43とで実現されるため、UDP/IPコア42の処理をDSP44で行う場合よりも、第1通信部21の処理速度を速くすることが可能となる。 Further, since the command transmission unit 12 is realized by the UDP / IP cores 35a and 35b and the PHY chips 36a and 36b included in the FPGA 34, the command is issued as compared with the case where each processing of the UDP / IP cores 35a and 35b is performed by the CPU 31. The processing speed of the transmission unit 12 can be increased. Similarly, since the first communication unit 21 of each of the control devices 20a and 20b is realized by the UDP / IP core 42 included in the FPGA 41 and the PHY chip 43, the processing of the UDP / IP core 42 is performed by the DSP 44. It is possible to increase the processing speed of the first communication unit 21 more than in the case.
 (実施の形態4)
 実施の形態3に係る制御システム1において、制御装置20a,20bは互いに、電力変換装置2a,2bの故障の有無を通知してもよい。図9に示す実施の形態4に係る制御装置20aは、実施の形態3に係る制御装置20aの構成に加えて、電力変換装置2aの故障の有無を判別する故障判別部25aをさらに備える。また制御装置20bは、実施の形態3に係る制御装置20bの構成に加えて、電力変換装置2bの故障の有無を判別する故障判別部25bをさらに備える。制御システム1は、実施の形態3に係る制御システム1の構成に加えて、制御装置20a,20bを接続する高速シリアル回線8をさらに備える。好ましくは、高速シリアル回線8は、イーサネット規格に準拠した伝送線であって、シリアル通信を可能とする伝送線であればよい。
(Embodiment 4)
In the control system 1 according to the third embodiment, the control devices 20a and 20b may notify each other of the presence or absence of failure of the power conversion devices 2a and 2b. In addition to the configuration of the control device 20a according to the third embodiment, the control device 20a according to the fourth embodiment shown in FIG. 9 further includes a failure determination unit 25a for determining the presence or absence of a failure of the power conversion device 2a. Further, the control device 20b further includes a failure determination unit 25b for determining the presence or absence of a failure of the power conversion device 2b, in addition to the configuration of the control device 20b according to the third embodiment. The control system 1 further includes a high-speed serial line 8 for connecting the control devices 20a and 20b, in addition to the configuration of the control system 1 according to the third embodiment. Preferably, the high-speed serial line 8 may be a transmission line conforming to the Ethernet standard and may be a transmission line capable of serial communication.
 指令装置10の構成および動作は、実施の形態3と同様である。
 制御装置20a,20bの構成について、実施の形態3と異なる点を中心に説明する。第1通信部21aは、高速シリアル回線5aを介して、指令装置10から制御指令を受信すると、制御指令を演算部22aに送る。また第1通信部21aは後述の故障判別部25aの判別結果を、制御装置20bの第1通信部21bに送信する。さらに第1通信部21aは、制御装置20bの故障判別部25bの判別結果を、第1通信部21bから受信する。
The configuration and operation of the command device 10 are the same as those in the third embodiment.
The configurations of the control devices 20a and 20b will be described focusing on the differences from the third embodiment. When the first communication unit 21a receives the control command from the command device 10 via the high-speed serial line 5a, the first communication unit 21a sends the control command to the calculation unit 22a. Further, the first communication unit 21a transmits the determination result of the failure determination unit 25a, which will be described later, to the first communication unit 21b of the control device 20b. Further, the first communication unit 21a receives the determination result of the failure determination unit 25b of the control device 20b from the first communication unit 21b.
 演算部22aは、制御指令と電流の測定値と故障判別部25a,25bの判別結果とに応じて、ゲート信号を生成する。
 具体的には、電力変換装置2a,2bのいずれの故障も生じていない間は、演算部22aは、実施の形態1-3と同様に、ゲート信号を生成する。また故障判別部25aの判別結果が、電力変換装置2aの故障が生じていることを示している場合、演算部22aは、電力変換装置2aを停止させるゲート信号を生成する。さらに故障判別部25aの判別結果が、電力変換装置2aの故障が生じていないことを示していて、かつ、故障判別部25bの判別結果が、電力変換装置2bの故障が生じていることを示している場合、演算部22aは、電力変換装置2aの出力を増大させるゲート信号を生成する。
The calculation unit 22a generates a gate signal according to the control command, the measured value of the current, and the determination result of the failure determination units 25a and 25b.
Specifically, as long as neither of the power conversion devices 2a and 2b has failed, the calculation unit 22a generates a gate signal as in the first and third embodiments. When the determination result of the failure determination unit 25a indicates that the power conversion device 2a has a failure, the calculation unit 22a generates a gate signal for stopping the power conversion device 2a. Further, the determination result of the failure determination unit 25a indicates that the failure of the power conversion device 2a has not occurred, and the determination result of the failure determination unit 25b indicates that the failure of the power conversion device 2b has occurred. If so, the arithmetic unit 22a generates a gate signal that increases the output of the power conversion device 2a.
 故障判別部25aは、電力変換装置2aが出力する各相の電流の測定値を測定値取得部24aから取得し、各相の電流の測定値に応じて、電力変換装置2aの故障が生じているか否かを判別する。具体的には、故障判別部25aは、各相の電流の測定値の振幅が閾値以上であるか否かを判別する。各相の電流の測定値の振幅が閾値以上である場合、電力変換装置2aの故障が生じているとみなすことができる。なお閾値は、電力変換装置2aが出力する各相の電流の振幅が取り得る値より大きい値に設定される。 The failure determination unit 25a acquires the measured value of the current of each phase output by the power conversion device 2a from the measured value acquisition unit 24a, and the power conversion device 2a fails according to the measured value of the current of each phase. Determine if or not. Specifically, the failure determination unit 25a determines whether or not the amplitude of the measured value of the current of each phase is equal to or greater than the threshold value. When the amplitude of the measured value of the current of each phase is equal to or larger than the threshold value, it can be considered that the power conversion device 2a has failed. The threshold value is set to a value larger than a value that the amplitude of the current of each phase output by the power conversion device 2a can take.
 第1通信部21bは、高速シリアル回線5bを介して、指令装置10から制御指令を受信すると、制御指令を演算部22bに送る。また第1通信部21bは後述の故障判別部25bの判別結果を、制御装置20aの第1通信部21aに送信する。さらに第1通信部21bは、制御装置20aの故障判別部25aの判別結果を、第1通信部21aから受信する。 When the first communication unit 21b receives the control command from the command device 10 via the high-speed serial line 5b, the first communication unit 21b sends the control command to the calculation unit 22b. Further, the first communication unit 21b transmits the determination result of the failure determination unit 25b, which will be described later, to the first communication unit 21a of the control device 20a. Further, the first communication unit 21b receives the determination result of the failure determination unit 25a of the control device 20a from the first communication unit 21a.
 演算部22bは、制御指令と電流の測定値と故障判別部25a,25bの判別結果とに応じて、ゲート信号を生成する。
 具体的には、電力変換装置2a,2bのいずれの故障も生じていない間は、演算部22a,22bはそれぞれ、実施の形態1-3と同様に、ゲート信号を生成する。また故障判別部25bの判別結果が、電力変換装置2bの故障が生じていることを示している場合、演算部22bは、電力変換装置2bを停止させるゲート信号を生成する。さらに故障判別部25bの判別結果が、電力変換装置2bの故障が生じていないことを示していて、かつ、故障判別部25aの判別結果が、電力変換装置2aの故障が生じていることを示している場合、演算部22bは、電力変換装置2bの出力を増大させるゲート信号を生成する。
The calculation unit 22b generates a gate signal according to the control command, the measured value of the current, and the determination result of the failure determination units 25a and 25b.
Specifically, as long as none of the power conversion devices 2a and 2b has failed, the arithmetic units 22a and 22b generate gate signals, respectively, as in the first and third embodiments. When the determination result of the failure determination unit 25b indicates that the power conversion device 2b has a failure, the calculation unit 22b generates a gate signal for stopping the power conversion device 2b. Further, the determination result of the failure determination unit 25b indicates that the failure of the power conversion device 2b has not occurred, and the determination result of the failure determination unit 25a indicates that the failure of the power conversion device 2a has occurred. If so, the arithmetic unit 22b generates a gate signal that increases the output of the power conversion device 2b.
 故障判別部25bは、電力変換装置2bが出力する各相の電流の測定値を測定値取得部24bから取得し、各相の電流の測定値に応じて、電力変換装置2bの故障が生じているか否かを判別する。具体的には、故障判別部25bは、各相の電流の測定値の振幅が閾値以上であるか否かを判別する。各相の電流の測定値の振幅が閾値以上である場合、電力変換装置2bの故障が生じているとみなすことができる。なお閾値は、電力変換装置2bが出力する各相の電流の振幅が取り得る値より大きい値に設定される。 The failure determination unit 25b acquires the measured value of the current of each phase output by the power conversion device 2b from the measured value acquisition unit 24b, and a failure occurs in the power conversion device 2b according to the measured value of the current of each phase. Determine if or not. Specifically, the failure determination unit 25b determines whether or not the amplitude of the measured value of the current of each phase is equal to or greater than the threshold value. When the amplitude of the measured value of the current of each phase is equal to or larger than the threshold value, it can be considered that the power conversion device 2b has failed. The threshold value is set to a value larger than a value that the amplitude of the current of each phase output by the power conversion device 2b can take.
 上記構成を有する制御システム1の実装例について図10および図11を用いて説明する。なお指令装置10の実装例は実施の形態3と同様である。実施の形態3と異なる制御装置20a,20bの実装例について説明する。
 図10に示すように、制御装置20aの第1通信部21aは、FPGA41に含まれるUDP/IPコア42a,42cと、PHYチップ43a,43cとで実現される。UDP/IPコア42a,42cはそれぞれ、PHYチップ43a,43cに接続されている。また故障判別部25aは、FPGA41に含まれる故障判別回路51で実現される。
An implementation example of the control system 1 having the above configuration will be described with reference to FIGS. 10 and 11. The mounting example of the command device 10 is the same as that of the third embodiment. An implementation example of the control devices 20a and 20b different from the third embodiment will be described.
As shown in FIG. 10, the first communication unit 21a of the control device 20a is realized by the UDP / IP cores 42a and 42c included in the FPGA 41 and the PHY chips 43a and 43c. The UDP / IP cores 42a and 42c are connected to the PHY chips 43a and 43c, respectively. Further, the failure determination unit 25a is realized by the failure determination circuit 51 included in the FPGA 41.
 図11に示すように、制御装置20bの第1通信部21bは、FPGA41に含まれるUDP/IPコア42b,42cと、PHYチップ43b,43cとで実現される。UDP/IPコア42b,42cはそれぞれ、PHYチップ43b,43cに接続されている。また故障判別部25bは、FPGA41に含まれる故障判別回路51で実現される。 As shown in FIG. 11, the first communication unit 21b of the control device 20b is realized by the UDP / IP cores 42b and 42c included in the FPGA 41 and the PHY chips 43b and 43c. The UDP / IP cores 42b and 42c are connected to the PHY chips 43b and 43c, respectively. Further, the failure determination unit 25b is realized by the failure determination circuit 51 included in the FPGA 41.
 上記構成を有する制御システム1の動作について説明する。指令装置10の動作は、実施の形態3と同様である。また制御装置20a,20bの動作は同じであるため、制御装置20aの動作について詳細に説明する。
 第1通信部21aは、指令装置10から制御指令を受信すると、実施の形態1-3と同様に、演算部22aに送る。
 また第1通信部21aは、故障判別部25aから判別結果を取得すると、高速シリアル回線8を介してシリアル伝送を行って、判別結果を第1通信部21bに送る。具体的には、UDP/IPコア42cは、判別結果を含むイーサネットパケットを生成し、PHYチップ43cに送る。PHYチップ43cは、判別結果を含むイーサネットパケットから通信信号を生成し、通信信号を高速シリアル回線8に送出する。
The operation of the control system 1 having the above configuration will be described. The operation of the command device 10 is the same as that of the third embodiment. Further, since the operations of the control devices 20a and 20b are the same, the operation of the control device 20a will be described in detail.
When the first communication unit 21a receives the control command from the command device 10, the first communication unit 21a sends the control command to the calculation unit 22a as in the first embodiment.
Further, when the first communication unit 21a acquires the determination result from the failure determination unit 25a, the first communication unit 21a performs serial transmission via the high-speed serial line 8 and sends the determination result to the first communication unit 21b. Specifically, the UDP / IP core 42c generates an Ethernet packet including the determination result and sends it to the PHY chip 43c. The PHY chip 43c generates a communication signal from the Ethernet packet including the discrimination result, and sends the communication signal to the high-speed serial line 8.
 また第1通信部21aは、第1通信部21bから、故障判別部25bの判別結果を受信する。具体的には、PHYチップ43cは、高速シリアル回線8を介して通信信号を受信すると、通信信号からイーサネットパケットを生成し、UDP/IPコア42cに送る。UDP/IPコア42cは、PHYチップ43cが生成したイーサネットパケットから判別結果を取り出し、システムバス49を介して、判別結果をDSP44に送る。 Further, the first communication unit 21a receives the determination result of the failure determination unit 25b from the first communication unit 21b. Specifically, when the PHY chip 43c receives the communication signal via the high-speed serial line 8, it generates an Ethernet packet from the communication signal and sends it to the UDP / IP core 42c. The UDP / IP core 42c extracts the discrimination result from the Ethernet packet generated by the PHY chip 43c, and sends the discrimination result to the DSP 44 via the system bus 49.
 測定値取得部24aの動作は、実施の形態1-3と同様である。ただし、測定値取得部24aは、センサ信号が示す電力変換装置2aが出力する各相の電流の測定値を、演算部22aおよび故障判別部25aに送る。 The operation of the measured value acquisition unit 24a is the same as that of the first and third embodiments. However, the measured value acquisition unit 24a sends the measured value of the current of each phase output by the power conversion device 2a indicated by the sensor signal to the calculation unit 22a and the failure determination unit 25a.
 故障判別部25aは、各相の電流の測定値の振幅が閾値以上であるか否かを判別する。なお電流の測定値の振幅が閾値以上である場合、電力変換装置2aの故障が生じているとみなすことができる。そして、故障判別部25aは、判別結果を演算部22aおよび第1通信部21aに送信する。 The failure determination unit 25a determines whether or not the amplitude of the measured value of the current of each phase is equal to or greater than the threshold value. If the amplitude of the measured current value is equal to or greater than the threshold value, it can be considered that the power conversion device 2a has failed. Then, the failure determination unit 25a transmits the determination result to the calculation unit 22a and the first communication unit 21a.
 具体的には、故障判別回路51は、電力変換装置2aが出力する各相の電流の測定値を入力IF48から取得する。そして、故障判別回路51は、各相の電流の測定値の振幅が閾値以上であるか否かを判別し、判別結果を、システムバス49を介して、DSP44に送る。また故障判別回路51は、判別結果をUDP/IPコア42cに送る。 Specifically, the failure determination circuit 51 acquires the measured value of the current of each phase output by the power conversion device 2a from the input IF48. Then, the failure determination circuit 51 determines whether or not the amplitude of the measured value of the current of each phase is equal to or greater than the threshold value, and sends the determination result to the DSP 44 via the system bus 49. Further, the failure determination circuit 51 sends the determination result to the UDP / IP core 42c.
 故障判別部25aから取得した判別結果が、電力変換装置2aが故障していないことを示していて、かつ、第1通信部21aが第1通信部21bから取得した判別結果が、電力変換装置2bが故障していないことを示している間は、演算部22aは、実施の形態1-3と同様に、ゲート信号を生成する。 The discrimination result acquired from the failure discrimination unit 25a indicates that the power conversion device 2a has not failed, and the discrimination result acquired by the first communication unit 21a from the first communication unit 21b is the power conversion device 2b. The calculation unit 22a generates a gate signal as in the first and third embodiments while indicating that the device has not failed.
 また故障判別部25aから取得した判別結果が、電力変換装置2aの故障が生じていることを示す場合、演算部22aは、電力変換装置2aを停止させるゲート信号を生成する。具体的には、故障判別回路51から取得した判別結果が、電力変換装置2aの故障が生じていることを示す場合、DSP44は、U相、V相、W相のそれぞれの電圧指令が徐々に減少するように、U相、V相、W相のそれぞれの電圧指令を算出する。そして、DSP44は、算出した電圧指令を、システムバス49を介して、演算回路46に送る。演算回路46は、実施の形態1-3と同様に、ゲート信号を生成し、出力IF47に送る。 Further, when the determination result acquired from the failure determination unit 25a indicates that the power conversion device 2a has a failure, the calculation unit 22a generates a gate signal for stopping the power conversion device 2a. Specifically, when the discrimination result acquired from the fault discrimination circuit 51 indicates that the power conversion device 2a has a fault, the DSP 44 gradually receives voltage commands for the U phase, the V phase, and the W phase. The voltage commands for each of the U phase, V phase, and W phase are calculated so as to decrease. Then, the DSP 44 sends the calculated voltage command to the arithmetic circuit 46 via the system bus 49. The arithmetic circuit 46 generates a gate signal and sends it to the output IF 47, as in the first embodiment.
 また故障判別部25aから取得した判別結果が、電力変換装置2aの故障が生じていないことを示していて、かつ、第1通信部21aが第1通信部21bから取得した判別結果が、電力変換装置2bが故障していることを示している場合、演算部22aは、電力変換装置2aの出力を増大させるゲート信号を生成する。具体的には、制御指令が、力行指令に応じた目標値を出力するように電力変換装置2の稼動を指示する場合、DSP44は、運転指令に応じて磁束電流指令Id*とトルク電流指令Iq*とを生成する。そして、故障判別回路51から取得した判別結果が、電力変換装置2aの故障が生じていないことを示し、かつ、UDP/IPコア42cから取得した判別結果が、電力変換装置2bの故障が生じていることを示す場合、DSP44は、電力変換装置2aの出力電力を大きくするように、磁束電流指令Id*とトルク電流指令Iq*とを調節する。そして、DSP44は、励磁電流Idを調節した磁束電流指令Id*に近づけ、トルク電流Iqを調節したトルク電流指令Iq*に近づけるように、電圧指令Vd*,Vq*を算出する。DSP44は、算出した電圧指令Vd*,Vq*を、システムバス49を介して、演算回路46に送る。演算回路46は、実施の形態1-3と同様に、ゲート信号を生成し、出力IF47に送る。 Further, the discrimination result acquired from the failure discrimination unit 25a indicates that the failure of the power conversion device 2a has not occurred, and the discrimination result acquired by the first communication unit 21a from the first communication unit 21b is the power conversion. When indicating that the device 2b is out of order, the arithmetic unit 22a generates a gate signal that increases the output of the power conversion device 2a. Specifically, when the control command instructs the operation of the power conversion device 2 so as to output the target value according to the power running command, the DSP 44 sets the magnetic flux current command Id * and the torque current command Iq according to the operation command. * And generate. Then, the discrimination result acquired from the failure discrimination circuit 51 indicates that the failure of the power conversion device 2a has not occurred, and the discrimination result obtained from the UDP / IP core 42c causes the failure of the power conversion device 2b. When indicating that, the DSP 44 adjusts the magnetic flux current command Id * and the torque current command Iq * so as to increase the output power of the power conversion device 2a. Then, the DSP44 calculates the voltage commands Vd * and Vq * so as to approach the magnetic flux current command Id * in which the exciting current Id is adjusted and the torque current command Iq * in which the torque current Iq is adjusted. The DSP 44 sends the calculated voltage commands Vd * and Vq * to the arithmetic circuit 46 via the system bus 49. The arithmetic circuit 46 generates a gate signal and sends it to the output IF 47, as in the first embodiment.
 以上説明したとおり、実施の形態4に係る制御システム1によれば、制御装置20aの第1通信部21aと制御装置20bの第1通信部21bとは、判別結果を互いに送受信する。このため、電力変換装置2a,2bの一方の故障が生じた場合、電力変換装置2a,2bの他方の出力を増大することが可能となる。これにより、電力変換装置2a,2bが搭載されている鉄道車両の推進力が低減することを抑制することが可能となる。 As described above, according to the control system 1 according to the fourth embodiment, the first communication unit 21a of the control device 20a and the first communication unit 21b of the control device 20b transmit and receive the discrimination result to each other. Therefore, when one of the power conversion devices 2a and 2b fails, the output of the other of the power conversion devices 2a and 2b can be increased. As a result, it is possible to suppress a decrease in the propulsive force of the railway vehicle on which the power conversion devices 2a and 2b are mounted.
 また制御装置20a,20bを高速シリアル回線8で接続するため、制御装置20a,20bがパラレル回線で接続される場合よりも、配線が少なくなり、配線作業の工数を低減することが可能となる。高速シリアル回線8が、例えば、IEEE802.3uの規格に準拠した伝送線から構成される場合、高速シリアル回線8を介して長距離、例えば、100mの伝送が可能となる。このため、制御装置20aから遠く離隔した位置に制御装置20bを配置することが可能となるため、制御装置20aの位置に対して制御装置20bの配置位置の自由度が高くなる。 Further, since the control devices 20a and 20b are connected by the high-speed serial line 8, the wiring is reduced as compared with the case where the control devices 20a and 20b are connected by the parallel line, and the man-hours of the wiring work can be reduced. When the high-speed serial line 8 is composed of, for example, a transmission line conforming to the standard of IEEE802.3u, long-distance transmission, for example, 100 m is possible via the high-speed serial line 8. Therefore, since the control device 20b can be arranged at a position far away from the control device 20a, the degree of freedom of the arrangement position of the control device 20b is increased with respect to the position of the control device 20a.
 本発明は、上述の実施の形態の例に限られない。上述の実施の形態の内、複数の実施の形態を任意に組み合わすことが可能である。一例として、実施の形態3に係る制御システム1が有する高速シリアル回線5a,5bをそれぞれ二重化してもよい。 The present invention is not limited to the example of the above-described embodiment. Among the above-described embodiments, a plurality of embodiments can be arbitrarily combined. As an example, the high-speed serial lines 5a and 5b included in the control system 1 according to the third embodiment may be duplicated, respectively.
 制御システム1の回路構成は、上述の例に限られない。一例として、CPU31の処理をDSPで実現してもよい。また他の一例として、DSP44が行うU相、V相、W相のそれぞれの電圧指令の生成を、演算回路46で行ってもよい。 The circuit configuration of the control system 1 is not limited to the above example. As an example, the processing of the CPU 31 may be realized by the DSP. Further, as another example, the calculation circuit 46 may generate the voltage commands for each of the U phase, V phase, and W phase performed by the DSP 44.
 電力変換装置2,2a,2bに電力を供給する電源は任意である。一例として、電源は、内燃機関に駆動されることで発電する発電機、鉄道車両に搭載された蓄電装置等を含む。 The power supply that supplies power to the power converters 2, 2a and 2b is arbitrary. As an example, the power source includes a generator that generates electricity by being driven by an internal combustion engine, a power storage device mounted on a railway vehicle, and the like.
 電力変換装置2,2a,2bは、VVVFコンバータに限られず、スイッチング素子を有する電力変換装置であれば、任意である。一例として、電力変換装置2,2a,2bは、静止形インバータ、コンバータ等から構成されてもよい。また電力変換装置2,2a,2bが電力を供給する負荷は、電動機3,3a,3bに限られず、電力によって稼動する機器であれば、任意である。一例として、電力変換装置2,2a,2bは、エアコン、照明機器等の車載機器に電力を供給してもよい。 The power conversion devices 2, 2a and 2b are not limited to VVVF converters, and are optional as long as they are power conversion devices having a switching element. As an example, the power conversion devices 2, 2a, 2b may be composed of a static inverter, a converter, or the like. The load supplied by the power converters 2, 2a, 2b is not limited to the electric motors 3, 3a, 3b, and is arbitrary as long as it is a device operated by electric power. As an example, the power conversion devices 2, 2a, 2b may supply electric power to in-vehicle devices such as air conditioners and lighting devices.
 また電力変換装置2a,2bは互いに独立した負荷に電力を供給してもよいし、電力変換装置2aが電力変換装置2bに電力を供給し、電力変換装置2bが電力変換装置2aから供給された電力を、例えば三相交流電力に変換し、電動機3bに供給してもよい。一例として、電力変換装置2aをコンバータで構成し、電力変換装置2bをインバータで構成してもよい。この場合、実施の形態4に係る制御システム1において、電力変換装置2bの故障が生じた場合に、制御装置20aは、電力変換装置2aを停止してもよい。同様に、電力変換装置2aの故障が生じた場合に、制御装置20bは、電力変換装置2bを停止してもよい。具体的には、第1通信部21aが取得した故障判別部25bの判別結果が、電力変換装置2bの故障が生じていることを示す場合に、演算部22aは、電力変換装置2aを停止させるゲート信号を生成すればよい。同様に、第1通信部21bが取得した故障判別部25aの判別結果が、電力変換装置2aの故障が生じていることを示す場合に、演算部22bは、電力変換装置2bを停止させるゲート信号を生成すればよい。 Further, the power conversion devices 2a and 2b may supply power to loads independent of each other, the power conversion device 2a supplies power to the power conversion device 2b, and the power conversion device 2b is supplied from the power conversion device 2a. The electric power may be converted into, for example, three-phase AC electric power and supplied to the electric motor 3b. As an example, the power conversion device 2a may be configured by a converter, and the power conversion device 2b may be configured by an inverter. In this case, in the control system 1 according to the fourth embodiment, the control device 20a may stop the power conversion device 2a when the power conversion device 2b fails. Similarly, when the power conversion device 2a fails, the control device 20b may stop the power conversion device 2b. Specifically, when the determination result of the failure determination unit 25b acquired by the first communication unit 21a indicates that the power conversion device 2b has a failure, the calculation unit 22a stops the power conversion device 2a. A gate signal may be generated. Similarly, when the determination result of the failure determination unit 25a acquired by the first communication unit 21b indicates that the power conversion device 2a has a failure, the calculation unit 22b causes the gate signal to stop the power conversion device 2b. Should be generated.
 制御装置20a,20bは、パラレル回線で接続されてもよい。
 センサ4,4a,4bは、電力変換装置2,2a,2bが出力する各相の電流に限られず、電力変換装置2,2a,2bが出力する直流電流、電力変換装置2,2a,2bの出力端子間の電圧、各相の電圧等を測定してもよい。
The control devices 20a and 20b may be connected by a parallel line.
The sensors 4, 4a, 4b are not limited to the currents of the respective phases output by the power conversion devices 2, 2a, 2b, but are the direct currents output by the power conversion devices 2, 2a, 2b, and the power conversion devices 2, 2a, 2b. The voltage between the output terminals, the voltage of each phase, and the like may be measured.
 故障判別部25a,25bの判別方法は、上述の例に限られず、電力変換装置2a,2bの故障が生じたことを検知できる方法であれば、任意である。一例として、故障判別部25aは、電力変換装置2aが出力する各相の電圧の測定値の振幅が閾値電圧以上であるか否かを判別してもよい。この場合、各相の電圧の測定値の振幅が閾値電圧以上である場合、電力変換装置2aの故障が生じているとみなすことができる。 The method for discriminating the failure discriminating units 25a and 25b is not limited to the above example, and is arbitrary as long as it can detect that a failure has occurred in the power conversion devices 2a and 2b. As an example, the failure determination unit 25a may determine whether or not the amplitude of the measured value of the voltage of each phase output by the power conversion device 2a is equal to or greater than the threshold voltage. In this case, when the amplitude of the measured value of the voltage of each phase is equal to or larger than the threshold voltage, it can be considered that the power conversion device 2a has failed.
 制御装置20,20a,20bの制御対象は、電力変換装置2,2a,2bに限られず、鉄道車両に搭載される電子機器であれば、任意である。一例として、制御装置20,20a,20bは、推進制御装置、電源装置等を制御してもよい。 The control target of the control devices 20, 20a, 20b is not limited to the power conversion devices 2, 2a, 2b, and is arbitrary as long as it is an electronic device mounted on a railway vehicle. As an example, the control devices 20, 20a, 20b may control the propulsion control device, the power supply device, and the like.
 上述の実施の形態では、指令装置10が1つのCPU31を備える構成を示したが、複数のCPU31が連携して上述の機能を実行してもよい。同様に、複数のDSP44が連携して上述の機能を実行してもよい。また指令装置10は複数のメモリ32を備えてもよいし、制御装置20,20a,20bはそれぞれ、複数のメモリ45を備えてもよい。その他、上記のハードウェア構成は一例であり、任意に変更および修正が可能である。 In the above-described embodiment, the command device 10 is provided with one CPU 31, but a plurality of CPUs 31 may cooperate to execute the above-mentioned functions. Similarly, a plurality of DSPs 44 may cooperate to perform the above-mentioned functions. Further, the command device 10 may include a plurality of memories 32, and the control devices 20, 20a, and 20b may each include a plurality of memories 45. In addition, the above hardware configuration is an example, and can be changed and modified arbitrarily.
 制御システム1は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。たとえば、上述の動作を実行するためのコンピュータプログラムを、コンピュータが読み取り可能な記録媒体(フレキシブルディスク、CD-ROM(Compact Disc Read-Only Memory)、DVD-ROM(Digital Versatile Disc Read-Only Memory)など)に格納して配布し、上記コンピュータプログラムをコンピュータにインストールすることにより、上述の処理を実行する制御システム1を構成してもよい。また、通信ネットワーク上のサーバ装置が有する記憶装置に上記コンピュータプログラムを格納しておき、通常のコンピュータシステムがダウンロードすることで制御システム1を構成してもよい。 The control system 1 can be realized by using a normal computer system without relying on a dedicated system. For example, a computer program for executing the above operation can be a computer-readable recording medium (flexible disk, CD-ROM (Compact Disc Read-Only Memory), DVD-ROM (Digital Versatile Disc Read-Only Memory), etc. ), The computer program may be installed in the computer to configure the control system 1 for executing the above-mentioned processing. Further, the control system 1 may be configured by storing the computer program in a storage device of the server device on the communication network and downloading it by a normal computer system.
 また、制御システム1の機能を、OS(Operating System)とアプリケーションプログラムの分担、またはOSとアプリケーションプログラムとの協働により実現する場合などには、アプリケーションプログラム部分のみを記録媒体や記憶装置に格納してもよい。 Further, when the function of the control system 1 is realized by sharing the OS (Operating System) and the application program, or by coordinating the OS and the application program, only the application program part is stored in the recording medium or the storage device. You may.
 また、搬送波にコンピュータプログラムを重畳し、通信ネットワークを介して配信することも可能である。たとえば、通信ネットワーク上の掲示板(BBS:Bulletin Board System)に上記コンピュータプログラムを掲示し、通信ネットワークを介して上記コンピュータプログラムを配信してもよい。そして、このコンピュータプログラムを起動し、OSの制御下で、他のアプリケーションプログラムと同様に実行することにより、上述の処理を実行してもよい。 It is also possible to superimpose a computer program on a carrier wave and distribute it via a communication network. For example, the computer program may be posted on a bulletin board system (BBS: Bulletin Board System) on the communication network, and the computer program may be distributed via the communication network. Then, the above-mentioned processing may be executed by starting this computer program and executing it in the same manner as other application programs under the control of the OS.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention enables various embodiments and modifications without departing from the broad spirit and scope of the present invention. Moreover, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated by the scope of claims, not by the embodiment. Then, various modifications made within the scope of the claims and the equivalent meaning of the invention are considered to be within the scope of the present invention.
 1 制御システム、2,2a,2b 電力変換装置、3,3a,3b 電動機、4,4a,4b センサ、5,5a,5b,8 高速シリアル回線、6,6a,6b 第1パラレル回線、7,7a,7b 第2パラレル回線、10 指令装置、11 指令生成部、12 指令送信部、20,20a,20b 制御装置、21,21a,21b 第1通信部、22,22a,22b 演算部、23,23a,23b 第2通信部、24,24a,24b 測定値取得部、25a,25b 故障判別部、31 CPU、32,45 メモリ、33,48 入力IF、34,41 FPGA、35,35a,35b,42,42a,42b,42c UDP/IPコア、36,36a,36b,43,43a,43b,43c PHYチップ、37,49 システムバス、38,50 切替部、44 DSP、46 演算回路、47 出力IF、51 故障判別回路。 1 Control system, 2,2a, 2b power converter, 3,3a, 3b electric motor, 4,4a, 4b sensor, 5,5a, 5b, 8 high-speed serial line, 6,6a, 6b first parallel line, 7, 7a, 7b 2nd parallel line, 10 command device, 11 command generator, 12 command transmitter, 20, 20a, 20b control device, 21,21a, 21b first communication unit, 22, 22a, 22b calculation unit, 23, 23a, 23b 2nd communication unit, 24, 24a, 24b measurement value acquisition unit, 25a, 25b failure determination unit, 31 CPU, 32,45 memory, 33,48 input IF, 34,41 FPGA, 35,35a, 35b, 42, 42a, 42b, 42c UDP / IP core, 36, 36a, 36b, 43, 43a, 43b, 43c PHY chip, 37, 49 system bus, 38, 50 switching unit, 44 DSP, 46 arithmetic circuit, 47 output IF , 51 Failure determination circuit.

Claims (11)

  1.  電力変換装置の運転または停止の指示を含む制御指令を受信する第1通信部と、
     前記第1通信部が受信した前記制御指令に応じて、前記電力変換装置を制御する信号を生成する演算部と、
     前記信号を前記電力変換装置に送信する第2通信部と、
     を備え、
     前記電力変換装置に隣接して配置される、
     制御装置。
    The first communication unit that receives a control command including an instruction to start or stop the power converter, and
    A calculation unit that generates a signal for controlling the power conversion device in response to the control command received by the first communication unit.
    A second communication unit that transmits the signal to the power converter, and
    With
    Arranged adjacent to the power converter,
    Control device.
  2.  前記電力変換装置の出力端子から出力される電流を測定するセンサから前記電流の測定値を取得する測定値取得部をさらに備え、
     前記演算部は、前記第1通信部が受信した前記制御指令と前記測定値取得部が取得した前記電流の測定値とに応じて、前記信号を生成する、
     請求項1に記載の制御装置。
    Further, a measurement value acquisition unit for acquiring a measurement value of the current from a sensor for measuring the current output from the output terminal of the power conversion device is provided.
    The calculation unit generates the signal according to the control command received by the first communication unit and the measured value of the current acquired by the measured value acquisition unit.
    The control device according to claim 1.
  3.  前記測定値取得部と前記センサとは、第1パラレル回線を介して接続される、
     請求項2に記載の制御装置。
    The measured value acquisition unit and the sensor are connected via a first parallel line.
    The control device according to claim 2.
  4.  前記第1通信部には高速シリアル回線が接続され、
     前記第1通信部は、前記高速シリアル回線を介して、前記制御指令を受信する、
     請求項1から3のいずれか1項に記載の制御装置。
    A high-speed serial line is connected to the first communication unit.
    The first communication unit receives the control command via the high-speed serial line.
    The control device according to any one of claims 1 to 3.
  5.  前記第1通信部には、複数の前記高速シリアル回線が接続され、
     前記第1通信部は、前記複数の高速シリアル回線のいずれかを用いて前記制御指令を受信し、
     前記制御指令の受信に用いた前記高速シリアル回線の故障が生じているか否かを判別する判別部をさらに備え、
     前記判別部で前記制御指令の受信に用いた前記高速シリアル回線の故障が生じていると判別された場合、前記第1通信部は、前記複数の高速シリアル回線の内、他の高速シリアル回線を用いて制御指令を受信する、
     請求項4に記載の制御装置。
    A plurality of the high-speed serial lines are connected to the first communication unit.
    The first communication unit receives the control command using any one of the plurality of high-speed serial lines, and receives the control command.
    Further provided with a discriminating unit for determining whether or not the high-speed serial line used for receiving the control command has a failure.
    When the discriminating unit determines that the high-speed serial line used for receiving the control command has failed, the first communication unit uses the other high-speed serial line among the plurality of high-speed serial lines. Use to receive control commands,
    The control device according to claim 4.
  6.  前記第2通信部と前記電力変換装置とは第2パラレル回線によって接続され、
     前記第2通信部は、前記第2パラレル回線を介して、前記信号を前記電力変換装置に送信する、
     請求項1から5のいずれか1項に記載の制御装置。
    The second communication unit and the power conversion device are connected by a second parallel line.
    The second communication unit transmits the signal to the power conversion device via the second parallel line.
    The control device according to any one of claims 1 to 5.
  7.  前記第1通信部は、イーサネット規格のMAC(Media Access Control:媒体アクセス制御)層、IP(Internet Protocol:インターネットプロトコル)層およびUDP(User Datagram Protocol:ユーザデータグラムプロトコル)層の通信を行うUDP/IPコアと、物理層の通信を行うPHY(Physical layer:物理層)チップと、を有し、
     UDP/IPコアは、FPGA(Field Programmable Gate Array)に実装される、
     請求項1から6のいずれか1項に記載の制御装置。
    The first communication unit communicates with the MAC (Media Access Control) layer, IP (Internet Protocol) layer, and UDP (User Datagram Protocol) layer of the Ethernet standard. It has an IP core and a PHY (Physical layer) chip that communicates with the physical layer.
    UDP / IP core is implemented in FPGA (Field Programmable Gate Array).
    The control device according to any one of claims 1 to 6.
  8.  請求項1から7のいずれか1項に記載の制御装置と、
     前記制御指令を生成し、前記制御装置に前記制御指令を送信する指令装置と、
     を備える制御システム。
    The control device according to any one of claims 1 to 7.
    A command device that generates the control command and transmits the control command to the control device,
    Control system with.
  9.  前記制御装置と、前記指令装置とを接続する高速シリアル回線をさらに備える、
     請求項8に記載の制御システム。
    A high-speed serial line connecting the control device and the command device is further provided.
    The control system according to claim 8.
  10.  複数の前記制御装置と、
     それぞれが対応する前記制御装置と、前記指令装置とを接続する互いに独立した複数の前記高速シリアル回線と、
     を備える請求項8または9に記載の制御システム。
    With the plurality of the control devices
    A plurality of independent high-speed serial lines connecting the control device and the command device, each of which corresponds to the control device.
    The control system according to claim 8 or 9.
  11.  前記複数の制御装置はそれぞれ、前記制御装置が前記信号を送信する前記電力変換装置の故障が生じているか否かを判別する故障判別部をさらに備え、
     前記複数の制御装置の前記第1通信部は、前記故障判別部の判別結果を互いに送受信する、
     請求項10に記載の制御システム。
    Each of the plurality of control devices further includes a failure determination unit for determining whether or not a failure has occurred in the power conversion device to which the control device transmits the signal.
    The first communication unit of the plurality of control devices transmits and receives the determination result of the failure determination unit to and from each other.
    The control system according to claim 10.
PCT/JP2019/013548 2019-03-28 2019-03-28 Control device and control system WO2020194649A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/013548 WO2020194649A1 (en) 2019-03-28 2019-03-28 Control device and control system
JP2021508588A JP7237145B2 (en) 2019-03-28 2019-03-28 Controllers and control systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013548 WO2020194649A1 (en) 2019-03-28 2019-03-28 Control device and control system

Publications (1)

Publication Number Publication Date
WO2020194649A1 true WO2020194649A1 (en) 2020-10-01

Family

ID=72610199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013548 WO2020194649A1 (en) 2019-03-28 2019-03-28 Control device and control system

Country Status (2)

Country Link
JP (1) JP7237145B2 (en)
WO (1) WO2020194649A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168104A (en) * 1991-12-12 1993-07-02 Toshiba Corp Controller for electric vehicle
JPH06351105A (en) * 1993-06-04 1994-12-22 Toshiba Corp Apparatus and method for controlling electric railcar
JPH1141943A (en) * 1997-07-15 1999-02-12 Hitachi Ltd Inverter controller
JP2003243016A (en) * 2002-02-13 2003-08-29 Ebara Ballard Corp Fuel cell power generating system
JP2017225210A (en) * 2016-06-13 2017-12-21 株式会社明電舎 Δς type ad converter
JP2018050172A (en) * 2016-09-21 2018-03-29 富士通株式会社 Information processing unit, arithmetic processing unit, and control method of information processing unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3674328B2 (en) * 1998-09-03 2005-07-20 日産自動車株式会社 Electric vehicle battery pack controller
DE102004025924A1 (en) * 2004-05-27 2005-12-22 Siemens Ag Solar inverter and photovoltaic system with several solar inverters
JP4488824B2 (en) * 2004-07-29 2010-06-23 株式会社日立製作所 Power converter
JP6158099B2 (en) * 2014-01-07 2017-07-05 株式会社日立製作所 Power converter and control method thereof
EP3591830A4 (en) * 2017-03-03 2020-03-04 Mitsubishi Electric Corporation Power conversion device and communication method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168104A (en) * 1991-12-12 1993-07-02 Toshiba Corp Controller for electric vehicle
JPH06351105A (en) * 1993-06-04 1994-12-22 Toshiba Corp Apparatus and method for controlling electric railcar
JPH1141943A (en) * 1997-07-15 1999-02-12 Hitachi Ltd Inverter controller
JP2003243016A (en) * 2002-02-13 2003-08-29 Ebara Ballard Corp Fuel cell power generating system
JP2017225210A (en) * 2016-06-13 2017-12-21 株式会社明電舎 Δς type ad converter
JP2018050172A (en) * 2016-09-21 2018-03-29 富士通株式会社 Information processing unit, arithmetic processing unit, and control method of information processing unit

Also Published As

Publication number Publication date
JPWO2020194649A1 (en) 2021-12-09
JP7237145B2 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
JP4774975B2 (en) Electric motor control device
CN105938158B (en) Reliable current sensing for inverter controlled electric machines
JP5928438B2 (en) AC motor control device
CN102237837A (en) Power drive control device and power device
US9172322B2 (en) Control apparatus for AC motor
US9692345B2 (en) Motor drive device
US20160375793A1 (en) Software-defined vehicular powertrain and method of operation
US9374022B2 (en) Control apparatus and control method for voltage conversion apparatus
CN101534084A (en) Redundant DC bus discharge for an electric motor system
US11285992B2 (en) Rotating electric machine control device
CN108621862B (en) Electric drive control system, electric vehicle and electric drive control method
WO2020194649A1 (en) Control device and control system
CN113329925A (en) Torque vector distribution system for in-wheel motor driving system
JP3538665B2 (en) Control device for vehicle power converter
WO2021192141A1 (en) Power conversion device
JP2003023800A (en) Motor controller and method of motor control
JP2003348706A (en) Device for controlling power converter for vehicle
WO2011162328A1 (en) Motor braking apparatus and method of controlling motor
JP6287566B2 (en) AC motor control device
JP5566629B2 (en) Control device for vehicle power converter
EP4195492A1 (en) Motor control system and motor control method
JP2015033188A (en) Drive system for induction motor
JP5412930B2 (en) Rotating electrical machine control system
JP7202997B2 (en) Rotating motor system
JP2004135500A (en) Control device of electric power converter for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921432

Country of ref document: EP

Kind code of ref document: A1