WO2020193822A1 - Method and device for distinguishing biological tissues in a surgical region - Google Patents

Method and device for distinguishing biological tissues in a surgical region Download PDF

Info

Publication number
WO2020193822A1
WO2020193822A1 PCT/ES2019/070212 ES2019070212W WO2020193822A1 WO 2020193822 A1 WO2020193822 A1 WO 2020193822A1 ES 2019070212 W ES2019070212 W ES 2019070212W WO 2020193822 A1 WO2020193822 A1 WO 2020193822A1
Authority
WO
WIPO (PCT)
Prior art keywords
discretization
point
measurement
tissue
operative region
Prior art date
Application number
PCT/ES2019/070212
Other languages
Spanish (es)
French (fr)
Inventor
Juan ARREGUI ALTUNA
Álvaro GARCÍA MARTÍNEZ
Marco JIMÉNEZ RODRÍGUEZ
Javier LAGUARDIA ARRAIZA
Aritz LAZKOZ DEL CAMPO
Noé ORTEGA QUIJANO
Oliver RUBIO ZAMORA
Original Assignee
Deneb Medical, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deneb Medical, S.L. filed Critical Deneb Medical, S.L.
Priority to PCT/ES2019/070212 priority Critical patent/WO2020193822A1/en
Publication of WO2020193822A1 publication Critical patent/WO2020193822A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • A61B2018/00708Power or energy switching the power on or off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • A61B2018/00785Reflected power
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00904Automatic detection of target tissue

Definitions

  • the present invention is a method and a device for distinguishing biological tissues in an operative region in vivo under real clinical conditions where the existence of residues, the deposition of particles in suspension on the operative region, the presence of tissue elements and liquids such as serum, mucosa or blood, and the intervention of other external agents, all of them make it difficult or impede the taking of measures that allow the subsequent distinction of tissues at specific points of the operative region.
  • the difficulty of taking measurements at specific points prevents the distinction of biological tissues both punctually and in areas, and in particular in an operative region.
  • the present invention is characterized by establishing a discretization of the operative region in which a plurality of measurements are carried out, not being necessary that all the points of the discretization comprise measurement values and, for each point, a weighting of values, either of measurement or of parameters determined from the measurement, where the weighting involves neighboring values of the discretization to discriminate the type of tissue in a robust way.
  • the result is a set of weighted values on the points of the
  • the invention determines tissues on which an ablation operation is possible and which is not. Likewise, according to exemplary embodiments, the invention also incorporates a specific process of ablation of the operative region only in those cases where the distinction has determined that it is possible. Also, according to embodiments, the invention contemplates the specific case in which the diameter of the ablation beam is greater than that of the distinction beam.
  • tissue distinction is cutting along a certain trajectory or selective ablation in a region or also along a trajectory.
  • ablation also considers those cases in which material, in this case biological, is destroyed to a certain depth, generating a channel, a cavity or a drop in the surface. Exterior.
  • the laser cutting operation requires a precise identification of the tissue to be cut and, if the laser sweeps the operative region at a fast speed and under real conditions, then the ability to identify the tissue that the cutting tool is finding and / Ablation must be fast and robust enough to ensure that the integrity of those tissues that should not be cut is preserved.
  • Tissue distinction must not only be fast enough but it must also be robust and secure, that is, it must be immune to false or distorted readings produced by the real conditions of the operative region. In these conditions, the use of laboratory devices is not possible since they only carry out specific readings and under very controlled conditions that stop operating in real conditions. As soon as a single measure fails, reliable tissue discrimination in practical application would not be possible.
  • LIBS laser-induced breakdown spectroscopy
  • OCT optical coherence tomography
  • OCE optical coherence elastography, or in English “optical coherence elastography”
  • Brillouin spectroscopy or in English “Brillouin spectroscopy”
  • diffuse optical tomography or in English “diffuse optical tomography”
  • speckle imaging or in English "speckle imaging”
  • thermal imaging or in English “thermal imaging”
  • Raman spectroscopy or in English “Raman spectroscopy” in any of its variants; spectroscopy of
  • fluorescence (or in English “fluorescence spectroscopy”) in any of its variants; terahertz spectroscopy (or in English “Terahertz spectroscopy”) or confocal microscopy (or in English “confocal microscopy”).
  • the present invention overcomes the limitations described by carrying out a
  • the weighting can be carried out even if one or more values are not available either of measurement or of parameters determined from the measurement, in the discretization; in particular at the point where the weighting is being carried out. In this way, the distinction takes advantage of point information
  • a first aspect of the invention is a method of distinguishing biological tissues in an operative region. To carry out the method, it comprises: o) a module for measuring parameters of the biological tissue to measure at least one point in the operative region which comprises:
  • a first optical emitter configured to emit a beam of incident light in operative mode at a point in the operative region
  • a central processing unit comprising a memory for storing at least data structures.
  • the module for measuring biological tissue parameters is a module that carries out measurements at a certain point by emitting a beam of light through the first optical emitter that hits the biological tissue at a point in the operative region and, additionally, carries out the subsequent measurement through the optical sensor on the photons resulting from the interaction of the emission of the light beam from the first optical emitter with the tissue.
  • the module provides the value obtained by the output of its optical sensor.
  • the operative region is a region or domain of biological tissue on which the method is to be carried out, either of distinguishing or combining the distinction and other activities such as cutting.
  • This region is a surface under which biological tissue extends.
  • the central processing unit is responsible for carrying out various actions, for example established by instructions in the form of a computer program, both through the physical entities that carry out the steps of the method and on memory.
  • the central processing unit is configured to at least instantiate data structures and carry out read and write operations on them.
  • the method of distinguishing biological tissues comprises the following stages:
  • each cell is configured to store parameters measured at one of the discretization points of the operative region.
  • the method establishes a discretization on the operative region as well as a data structure, instantiated by the central processing unit, in such a way that each one of the discretization points of the operative region has its corresponding cell in said data structure.
  • a data structure it can be made up of a chained list using pointers, for example a tree structure or a "gtree" structure.
  • pointers for example a tree structure or a "gtree" structure.
  • pointers for example a tree structure or a "gtree" structure.
  • each cell is instantiated in the form of a variable, vector, dynamic list or record, and the pointers establish connections with neighboring cells according to the discretization of the operative region.
  • a record is understood to be a fixed storage structure that can contain several variables that are not necessarily of the same type.
  • more than one value can be stored: the measurement value, a parameter determined from the measurement value, the coordinates of the point of the
  • the method also includes the following stages:
  • vii. determining the tissue for each point of the discretization of the operative region by applying the distinction criterion to the weighted values in step v) in each cell associated with said point.
  • the method performs a measurement on a plurality of them.
  • environmental conditions such as dirt, suspended dust, liquids present on the fabric or emanating from the fabric itself, can prevent or distort one or more measurements . Even under these conditions the method is can carry out.
  • the data structure allows to establish a correspondence between each cell of the data structure and a different point of the discretization of the operative region.
  • the data structure also makes it possible, for a given cell, to identify one or more neighboring cells under a given criterion of neighborhood or closeness to the corresponding points in the operative region.
  • the group of cells that contains a certain cell and the neighbors under that neighborhood criterion will be called a discretization star ("stencil").
  • the method defines a discretization star for each cell and therefore associated with each point of the discretization of the operative region.
  • the method performs a weighting of the discretization star values that are available. If there are values that are not available, the weighting is carried out anyway, only the value that is not available is not taken into account. In the embodiments, the weighted value makes it possible to estimate a value that makes it possible to increase the robustness of the determination of the biological tissue associated with the cell on which the discretization star is defined.
  • tissue distinction criterion as a function of the weighted measurement values makes it possible to determine one or more tissues, for example establishing a tissue discrimination, at each of the points associated with each cell.
  • tissue discrimination is to establish a range of values either in the measurement obtained by the measurement module or on a parameter established as a function of the measurement.
  • the distinction criterion establishes a type of biological tissue if the weighted value is in that range and another type of tissue if the value is outside the range.
  • a specific case of this way of establishing the criterion is that which makes a distinction between fabrics suitable for cutting and fabrics not suitable for cutting.
  • the method determines the tissue for each point of the discretization of the operative region applying the distinction criterion to the weighted values in each cell associated with each point of the discretization.
  • FIG 1 This figure schematically shows a first
  • FIG. 2 This figure shows a schematic representation of a data structure representing a regular and Cartesian discretization of the operative region, with the cells storing certain values according to readings obtained by the measurement module and, certain discretization stars represented on it. data structure.
  • Figures 3A-3F These figures show different examples of discretization stars.
  • Figure 4A This figure schematically shows a second
  • the biological tissue distinguishing system incorporates a cutting module constituting an exemplary embodiment of a cutting system with tissue distinction.
  • Figure 4B This figure shows a variant of the second embodiment where the measurement module and the cutting module comprise common optical elements that allow the laser beams to be coaxial in their final section, striking the tissue in such a way that both beams lasers follow a common path.
  • Figure 5A and 5B Figure 5A shows a discretization of an operative region in whose nodes readings have been carried out by the measurement module.
  • Figure 5B shows an enlargement of a portion of Figure 5A.
  • the figures show by means of small diameter circles, represented with different degrees of gray, the measurement values acquired using the measurement module.
  • the figures also show a plurality of larger diameter circles corresponding to the diameter of the cutting laser applied only at those points where the distinction method has determined that the biological tissue is suitable for cutting.
  • the present invention is a method for distinguishing biological tissues by means of a system for distinguishing tissues according to a second aspect of the invention.
  • Figure 1 shows an example of the tissue distinguishing system that allows tissue distinction in an operative region (R).
  • the operating region (R) is rectangular, where Figure 1 shows this rectangular region according to a perspective view.
  • the operative region (R) has been discretized according to a non-Cartesian regular discretization (D) with nodes formed by 6 neighboring nodes configuring hexagons. This discretization establishes a distribution of points (P) of the operative region (P) according to three main directions, one that is shown vertical in the projection and two that are shown oblique.
  • D non-Cartesian regular discretization
  • the discretization (D) of the operative region (R) establishes a set of nodes where measurements will be carried out and where values will be determined that will allow to establish the distinction of the tissue over the area covered by the operative region (C).
  • the invention allows distinguishing tissues in a sub-region or area from a set of specific measurements even if some of these measurements have failed for some reason such as the existence of contaminants or fluids.
  • Each node of the discretization corresponds to a point (P) of the operative region (R) where a measurement module (2) carries out measurement operations of one or more tissue parameters.
  • Said node is linked to one or more neighboring nodes according to the configuration of the discretization which not only establishes the points or nodes that form the mesh of the discretization but also the interconnection between a node and its neighbors.
  • the connection between the nodes is graphically represented by sections of lines that join the nodes.
  • a central processing unit (1) instantiates a data structure (DS) that allows representing the discretization mesh and at each node of the discretization, instantiating one or more cells ( C) in which to store values.
  • DS data structure
  • the programming paradigm of the central processing unit (1) is object-oriented where the data structure (DS) constitutes part of the definition of an object formed by said data structure (DS) as well as methods that allow you to read and write values or manipulate the data structure (DS) efficiently.
  • a specific way of linking a cell (C) with another neighbor according to an embodiment of the invention is by means of pointers. This mode of interconnection is an efficient way to instantiate unstructured data structures (DS).
  • the cells (C) of the data structure (DS) corresponding to nodes of the discretization mesh (D) represent specific points (P) of the operative region (R) according to the discretization (D).
  • the data structure (DS) is represented schematically by a mesh of smaller dimensions but a replica of the discretization mesh (D) of the operative region (R).
  • the measurement module (2) of parameters of the biological tissue to measure at least one point (P) of the operative region (R) comprises a first optical emitter (2.1).
  • the first optical emitter (2.1) is a laser emitter configured to emit a laser beam that passes through an optical element (4) configured to direct the laser beam to a certain point (P) in the operative region (R) .
  • the central processing unit (1) is in communication with the optical element (4) in such a way that once a cell (C) of the data structure (DS) has been determined, the central processing unit (1) determines the physical coordinates of the point (P) corresponding to said cell (C) and provides a signal to the optical element (4) so that through actuating means it directs the laser beam generated by the first emitter (2.1) to the point (P).
  • the laser beam When the laser beam hits point (P), it generates a plasma plume (F), giving rise to an emission of photons that is captured by an optical sensor (2.2).
  • the optical sensor is a spectrometer (2.2). Since in this embodiment the optical sensor is specifically a spectrometer, the same reference will be used in parentheses.
  • Figure 1 shows the spectrometer (2.2) oriented towards the plasma pen (F) where this orientation can also be established by the central processing unit (1).
  • the reading from the spectrometer (2.2) is provided through an output (2.2.1) and is sent to the central processing unit (1).
  • additional optical elements or components for example to condition the image captured by the spectrometer (2.2) or to conduct the photons emitted up to said spectrometer (2.2) taking into account their position and orientation.
  • One or more parameters provided by the spectrometer (2.2) are the measured amplitudes of the emission spectrum of the plasma plume (F) for one or more wavelength values. Comparison of this spectrum or of a selection of amplitudes in a pre-established set of wavelengths with pre-established values makes it possible to identify the presence of one or more components of biological tissue. This is the case with calcium, which is an indicator, when its value is above a predetermined value, that the biological tissue is bone.
  • the central processing unit (1) stores in the cell (C) that corresponds to the point (P) where the laser beam has been made to strike:
  • a measured value such as the width of the spectrum at a predetermined wavelength
  • the laser beam generated by the first emitter (2.1) is positioned in each of the points (P) of the discretization (D) of the operative region (R);
  • a laser beam is emitted at point (P) causing the emission of a plasma pen (F);
  • spectrometer storing one or more values of those previously identified; For each of the cells (C) of the data structure (DS) a discretization star (S) is defined that contains said cell (C) and one or more cells (C) corresponding to points around the point (P ) associated with said cell (C);
  • tissue distinction criterion is defined based on the weighted measurement values and
  • the tissue is determined for each point of the discretization of the operative region (R) by applying the distinction criterion to the weighted values in each cell (C) associated with said point (P).
  • Figure 2 shows another embodiment where the discretization is regular and Cartesian giving rise to a data structure (DS) that makes use of tables with rows and columns to store values in each of its cells (C).
  • DS data structure
  • C cells
  • Each of the square cells of the data structure (DS) represented in figure 2 represents a cell (C).
  • Each of the cells contains a circle with the area filled in differently according to the type of tissue that has been distinguished, specifically a value corresponding to bone has been represented in black, a white area to a different tissue of bone and with the grated area those points where the measure is not available.
  • Circles with a cross are also represented to identify points in the region (R) of the operative region that correspond to a cell that has been canceled due to having taken a number of measurements greater than a certain pre-established value (for example, to avoid having to measure that cell from now on or in order to avoid damaging the tissue excessively with the measurement laser beam in those cases in which the energy or power of the same is high), and gray circles are also represented to identify those cells that correspond to incorrect measurements for example due to the presence of contaminants on the operative region (R).
  • the upper part of the data structure (DS) shows how there is a portion that corresponds to bone.
  • a dashed line shows the actual bone region and how it affects the measurement taken at points near the border between the bone region and the non-bone region. Outside the bone region the greater part of the values corresponds to tissue that is not bone.
  • the same figure shows cells (C) that are grated because the measurement has not been able to discriminate the type of tissue.
  • the presence of particles or contaminating substances in this embodiment has caused bone measurements at some points outside the region where there is bone because the measurement is not correct due to said factors.
  • the entire area represented by the data structure (DS) has been scanned by the laser beam of the measurement module (2) in such a way that there are cells (C) that correspond to points of the tissue that have received a laser emission several times.
  • the laser beam used by the measurement module (2) is of much less intensity than the laser used in cutting or ablation, in this example of embodiment the generation of a plasma pen (F) implies that the tissue suffers a small damage that is cumulative.
  • canceling cell (C) if the number is greater than a pre-established value .
  • the condition of being canceled or blocked is a value that is stored in the same cell (C) in such a way that the measurement module (2) does not carry out the action of measuring when said cell (C) is canceled. or blocked.
  • cell (C) may no longer have this cancellation or blocking condition since the tissue conditions have changed and measurements can be carried out on said point again.
  • S Four discretization stars (S) have been represented on the same data structure (DS), three of them inside and one in the upper right corner.
  • Each discretization star (S) includes a cell (C) on which a weighted value is to be determined and one or more neighboring cells (C).
  • all the discretization stars (S) have the cell (C) on which a weighted value is to be determined and the four closest neighboring cells (C), which correspond to the north, south, east coordinates. and west (up, down, to the right and left).
  • the star (S) below contains five cells, all of which contain a value (measured value, parameter calculated from the measured value, or a combination of them) that identifies that the tissue is not bone.
  • the weighting of these five cells (C) determines that the cell on which the discretization star (S) is located is not bone.
  • the method allows to determine a weight of the three values and infer a value for the cell (C) on which the star has been located (in this case the cell located in the center of the discretization star (S)) that is correct, the tissue is not bone.
  • the next cell (C) of interest is the one with a discretization star (S) now located three cells (C) further to the right and two rows higher.
  • This discretization star (S) involves four cells (C) with values that identify a non-bone tissue and one value that identifies a value as bone.
  • the weighting in this exemplary embodiment establishes that the cell (C) on which the discretization star (S) is located is non-bone even though one of the weighted cells has bone. However, it is possible to determine other values through this weighting and one of them is an uncertainty parameter. In this specific case, the proximity of bone would increase the uncertainty value.
  • the last discretization star (S) shown in this data structure is the one in the upper right corner where the star (S) extends only to the neighbors that are available.
  • each cell has a value v tj where the indices i and j identify the row and the column respectively (for a regular structure Cartesian).
  • the weighted value v t j is determined by assigning weights ⁇ to each cell of the discretization star (S) such that 1 such that
  • An example of embodiment of the invention carries out an adjustment of the weights giving more value to the weights that correspond to the cell (C) on which the discretization star (S) is located and reduces the value as the farther away the rest of cells (C) of the discretization star.
  • the problem is solved by proceeding as follows: if the discrimination result establishes that it is not feasible to carry out an ablation operation at one or more points (P) of the operative region (R), said result of the discrimination is stored not only in the corresponding cell (C) of the data structure (DS) for each point (P) but also in one or more cells (C) of its discretization star (S)
  • the time at which the measurement has been performed at a point in the operative region (R) is stored in the corresponding cell (C) of the data structure (DS), and the weighting of step v ) also takes in
  • the age of the measure is taken into account, assigning each element of the discretization cell a weight inversely proportional to its age, so that the most recently measured points are given more importance and the weight of the measures with greater obsolescence is reduced.
  • the central processing unit (1) provides at least two variables in each of the cells (C) for each node of the discretization, the table shown in Figure 2 corresponds to the values v tj measured by the measurement module (2) and stored in the first variable.
  • Applying a discretization star (S) in each cell (C) determines the weighted value v tj that is stored in the second variable and that is the value with which it is determined, according to a pre-established criterion based on the weighted values, which tissue corresponds to each cell (C).
  • Figures 3A to 3F show six different discretization stars (S).
  • Figure 3A shows a discretization star (S) in which the weighted values are set with the upper, lower, right and left neighbors ⁇ N, S, E, W ⁇ .
  • Figure 3B further includes the closest diagonal values ⁇ N, S, E, W, NE, SE, NW, SW ⁇ .
  • Figure 3C only includes the top three cells and the bottom three cells.
  • Figure 4C in addition to the cells (C) of the star (S) of Figure 3C, includes two more distant cells on the right and on the left.
  • This discretization star (S) has a directionality that can be justified by the type of fabric and is applicable for example when there is information about said directionality.
  • Figure 3E shows a square-shaped discretization star (S) with five cells in width and height, leaving the central cell as a reference cell (C), that is, the cell on which the weighting is being carried out.
  • Figure 3F represents a star (S) as represented in figure 3E where the four corner cells have been eliminated because they are the most distant in such a way that the perimeter cells (C) of the discretizing star (S) have a distance radius a the nearest central reference cell (C).
  • Any of the six discretization stars (S) identify the reference cell (C) around which the neighboring cells (C) are established because it is doubly grated and therefore darker.
  • Figure 4A shows an exemplary embodiment of the cutting system comprising the components of the distinguishing system described with the aid of Figure 1 as well as other additional components. The description carried out making use of Figure 1 is valid for this Figure 4A.
  • the cutting system further comprises a cutting module (3) that includes a second laser emitter (3.1) with ablation capacity configured to impinge by means of a laser beam at a point (P) of the operative region (R).
  • a cutting module (3) that includes a second laser emitter (3.1) with ablation capacity configured to impinge by means of a laser beam at a point (P) of the operative region (R).
  • the tissue distinction is carried out at the points (P) of the discretization where the tissue has been distinguished between the tissues on which an ablation operation can be carried out .
  • figure 4A shows the ablation laser beam emitted by the second laser emitter (3.1) at the same point (P) where the laser beam of the first laser emitter (2.1) hits, the points where one and the other hit can be different.
  • the first laser emitter (2.1) establishes an initial scan to distinguish the tissue in the entire operative region (R) before the second laser emitter (3.1) acts since the weighting requires the previous average in a around the point where the ablation is performed.
  • Figure 4B shows a variant of the embodiment shown in figure 4A where the measurement module (2) and the cutting module (3) share optical elements or components (4) so that the final section of the laser beam of the first emitter (2.1) of the measurement module (2) and the final section of the laser beam of the second emitter (3.1) of the cutting module (3) are coaxial when leaving said elements or optical components (4).
  • This configuration allows a path to be followed along the operative region (R) by alternating the emission of the laser beam emitted by the first laser emitter (2.1) and the emission of the laser beam emitted by the second laser emitter (3.1) in such a way that both affect the same points of the trajectory.
  • Figure 5A shows an operative region (R) discretized by rows with nodes with different spacing giving rise to an unstructured and strongly directional discretization according to the horizontal direction following the orientation of the figure.
  • a small diameter circle is represented in gray or black.
  • tissue distinction criterion has been described considering two types of tissue, one that admits cutting or ablation and one that does not allow cutting.
  • One way of establishing this criterion applicable to any of the examples described is to establish a first sub-range of measurement values for at least one weighted parameter that corresponds to values of the parameter for which it is considered to be a tissue for which no it is feasible to carry out an ablation operation.
  • For the Parameter values outside the sub-range are considered to be a tissue for which it is feasible to carry out the ablation operation.
  • the result of the discrimination that establishes whether it is feasible to carry out an ablation operation on the tissue obtained at one or more points (P) of the operative region (R) is stored in the data structure (DS).
  • a specific way of storing the values stored in the cells (C) of the data structure (DS) is through binary variables where these variables take a first binary value if the result of the discrimination establishes that it is feasible to carry out an operation ablation or a second binary value in any other case.
  • step vii) of distinguishing the fabric additionally comprises the
  • the cutting system comprises the elements of the tissue discrimination system and a cutting module (3) comprising a second laser emitter (3.1) with ablation capacity configured to impinge by means of a laser beam on a point (P) of the operative region (R).
  • a cutting module (3) comprising a second laser emitter (3.1) with ablation capacity configured to impinge by means of a laser beam on a point (P) of the operative region (R).
  • the system provides a signal to the cutting module to emit a laser beam through the second laser emitter (3.1) at the candidate point (P) of the operative region (R).
  • This signal according to a preferred example is provided by the central processing unit (1).
  • the cutting laser generated by the second laser emitter (3.1) has a larger diameter (D2) compared to the diameter (DI) of the first laser emitter (2.1) used by the measuring module (2).
  • This larger diameter (D2) is represented in Figure 5A, enlarged in Figure 5B, by a circle around the central point where the ablation laser beam emitted by the second laser emitter (3.1) is impinged.
  • D2 Having a larger diameter (D2) implies that a safe ablation operation requires that it be necessary to have more information than the specific information provided by a measurement such as that provided by a laser beam of much smaller
  • ID that of the first laser emitter (3.1).
  • Figure 5B shows in greater detail how the second laser emitter (3.1) imposes the laser beam in places where the region of influence reaches tissues identified as tissues on which the ablation can be carried out, being able to reach one or more neighboring points when these correspond to tissue on which the ablation must not be carried out if they are sufficiently far apart or depending on the degree of certainty.
  • the second laser emitter (3.1) is applied sequentially on points of the operative region (R) where the tissue has been classified as suitable for carrying out the ablation. where these points are close enough so that the region of greater diameter (D2) of the laser beam of this second laser emitter (3.1) has overlap.
  • the same tissue point can be in the area of influence of up to 4 or 5 laser beams of the second laser emitter (3.1). This region will therefore receive energy from the laser beam of the second laser emitter (3.1) for a plurality of times before carrying out a new measurement by the measurement module (2).
  • the degree of overlap is an adjustable parameter in the system.
  • steps iii) to vii) are carried out at one or more points (P) of the discretization (D) affected by the ablation action (s), thus updating the value of the cells ( C) that determine the tissue under the criterion of tissue distinction.
  • the ablation operation modifies the tissue conditions and, the taking of more measurements
  • the measurement module (2) it allows to keep updated the data structure (DS) where the types of tissue are represented avoiding applying the laser of the second laser emitter (3.1) in regions that should not be cut.
  • the cutting laser emitted by the laser beam of the second laser emitter (3.1) can also have an influence on regions outside its diameter (D2), for example by thermal effects propagating in neighboring regions.
  • This accumulated damage can be identified in the data structure (DS) for example by counting the number of emissions of the cutting laser beam emitted by the second laser emitter (3.1).
  • a measurement is carried out at one or more points (P) of the discretization (D) at which preset that they would be affected by the cutting laser in an emission of a laser beam applied at the point (P) of the operative region (R) corresponding to the candidate cell (C).
  • the measurement module (2) although it does not emit a cutting laser beam, can also cause little damage to the surface. This is the case with a laser beam that generates a plasma pen (F). Although no cutting operations are carried out in a certain region, the accumulated application of the laser beam emitted by the measurement module (2) can generate excessive accumulated damage. According to an example of embodiment of the invention applicable to other described embodiments carries out a count of the times that a measurement laser beam emitted by the measurement module (2) is applied at the same point, inhibiting subsequent measurements by the measurement module (2) once a preset maximum number has been reached thereby limiting the accumulated damage.
  • the ablation in the operative region (R) is carried out along a pre-established path.
  • the ablation is established over an area, configuring a path that covers said area.
  • Figures 5A and 5B cover the area by means of a trajectory that consecutively sweeps through horizontal rows the entire operating region (R).
  • the sequence of candidate cells (C) that determine the trajectory is established based on the dimensions of the discretization star (S) in such a way that the cells (C ) candidate trajectory have overlapping discretization stars (S).
  • the trajectory does not have to be such that it connects points (P) of the discretization, but the points closest to said trajectory are identifiable.
  • the imposition of the level of overlap guarantees greater continuity in the path traced by the cutting laser and also a greater degree of security when acting on tissue classified as suitable for cutting.
  • the overlap is between 20% and 80% and more preferably between 30% and 70%.
  • the overlap is between 40% and 60%.
  • the object of this invention is the system that comprises the set of elements that allow the distinction of fabrics according to any of the examples described where the central processing unit (1) is configured to provide signals that govern the elements of said system to carry carry out any of the described discrimination method embodiments.
  • Another object of this invention is the system that comprises the set of elements that allow the distinction of tissues and their ablation or cutting according to any of the examples described where the central processing unit (1) is configured to provide signals that govern the elements of said system to carry out any of the exemplary embodiments of the method that combines discrimination and cutting or ablation described.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Electromagnetism (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention relates to a method and a device for distinguishing biological tissues in a surgical region in vivo, under real clinical conditions, where there are residues, suspended particles deposited on the surgical region, tissue elements or liquids, and other external agents, all of which complicate or prevent the taking of measurements that allow the subsequent distinction of tissue at specific points of the tissue. The difficulty of taking measures at specific points prevents the distinction of biological tissues in regions, and in particular in a surgical region. The invention is characterised in that it establishes a discretisation of the surgical region in which a plurality of measurements is taken, it not being necessary for all points of the discretisation to comprise measurement values. A value weighting is carried out for each point, either of a measurement or of specific parameters determined according to the measurement, the weighting using neighbouring values of the discretisation so as to be able to differentiate the tissue type.

Description

MÉTODO Y DISPOSITIVO DE DISTINCIÓN DE TEJIDOS BIOLÓGICOS METHOD AND DEVICE FOR DISTINCTION OF BIOLOGICAL TISSUES
EN UNA REGIÓN OPERATORIA IN AN OPERATORY REGION
DESCRIPCIÓN DESCRIPTION
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención es un método y un dispositivo de distinción de tejidos biológicos en una región operatoria in vivo en condiciones clínicas reales donde la existencia de residuos, el depósito de partículas en suspensión sobre la región operatoria, la presencia de elementos tisulares y de líquidos como suero, mucosa o sangre, y la intervención de otros agentes externos, todo ellos dificultan o impiden la toma de medidas que permiten la posterior distinción de tejidos en puntos específicos de la región operatoria. The present invention is a method and a device for distinguishing biological tissues in an operative region in vivo under real clinical conditions where the existence of residues, the deposition of particles in suspension on the operative region, the presence of tissue elements and liquids such as serum, mucosa or blood, and the intervention of other external agents, all of them make it difficult or impede the taking of measures that allow the subsequent distinction of tissues at specific points of the operative region.
La dificultad de tomar medidas en puntos específicos impide la distinción de tejidos biológicos tanto puntualmente como en áreas, y en particular en una región operatoria. The difficulty of taking measurements at specific points prevents the distinction of biological tissues both punctually and in areas, and in particular in an operative region.
La presente invención se caracteriza por establecer una discretización de la región operatoria en la que se lleva a cabo una pluralidad de medidas, no siendo necesario que todos los puntos de la discretización comprendan valores de medida y, para cada punto, se lleva a cabo una ponderación de valores, o bien de medida o bien de parámetros determinados a partir de la medida, donde la ponderación involucra valores vecinos de la discretización para discriminar el tipo de tejido de forma robusta. The present invention is characterized by establishing a discretization of the operative region in which a plurality of measurements are carried out, not being necessary that all the points of the discretization comprise measurement values and, for each point, a weighting of values, either of measurement or of parameters determined from the measurement, where the weighting involves neighboring values of the discretization to discriminate the type of tissue in a robust way.
El resultado es un conjunto de valores ponderados sobre los puntos de la The result is a set of weighted values on the points of the
discretización que permiten establecer una distinción de tejidos diferenciando áreas de tejidos distintos en la región operatoria. discretization that allows establishing a distinction of tissues differentiating areas of different tissues in the operative region.
De forma específica, la invención determina tejidos sobre los que es posible llevar a cabo una operación de ablación y los que no. Igualmente, según ejemplos de realización, la invención también incorpora un proceso específico de ablación de la región operatoria solo en aquellos casos donde la distinción ha determinado que es posible. Asimismo, según ejemplos de realización, la invención contempla el caso específico en que el diámetro del haz de ablación es mayor que el del haz de distinción. ANTECEDENTES DE LA INVENCIÓN Specifically, the invention determines tissues on which an ablation operation is possible and which is not. Likewise, according to exemplary embodiments, the invention also incorporates a specific process of ablation of the operative region only in those cases where the distinction has determined that it is possible. Also, according to embodiments, the invention contemplates the specific case in which the diameter of the ablation beam is greater than that of the distinction beam. BACKGROUND OF THE INVENTION
Existen técnicas de distinción de tejidos biológicos que en condiciones de laboratorio llevan a cabo una identificación puntual. There are techniques for distinguishing biological tissues that under laboratory conditions carry out punctual identification.
La aparición de contaminantes, la existencia de residuos, el depósito de partículas en suspensión sobre la región operatoria, la presencia de elementos tisulares o extrínsecos tales como sangre, grasa, mucosa o suero, o la existencia de otros líquidos y agentes externos dificultan la medida o provocan que ésta no se produzca o que se vea seriamente limitada, lo que reduce la calidad o la robustez de la distinción y por lo tanto hace que no sea aplicable a condiciones reales. The appearance of contaminants, the existence of residues, the deposit of suspended particles on the operative region, the presence of tissue or extrinsic elements such as blood, fat, mucosa or serum, or the existence of other liquids and external agents make the measurement difficult. or they cause it not to occur or to be seriously limited, which reduces the quality or robustness of the distinction and therefore makes it not applicable to real conditions.
Estas condiciones puntuales hacen necesario establecer estrictas medidas de control del entorno e impiden por ejemplo su uso en regiones operatorias reales donde la distinción se ha de establecer no sobre un punto sino sobre un área y en condiciones reales que dificultan la distinción y que están muy alejadas de un entorno controlado de laboratorio en el que idealmente desaparecen los factores mencionados anteriormente. These specific conditions make it necessary to establish strict environmental control measures and prevent, for example, their use in real operating regions where the distinction has to be established not on a point but on an area and in real conditions that make it difficult to distinguish and that are very far away. of a controlled laboratory environment in which the factors mentioned above ideally disappear.
Una de las aplicaciones de mayor interés en la distinción de tejidos es la de corte a lo largo de una determinada trayectoria o la ablación selectiva en una región o también a lo largo de una trayectoria. Si bien un corte se puede llevar a cabo mediante ablación láser, con el término ablación se consideran también aquellos casos en los que se destruye material, en este caso biológico, hasta una cierta profundidad generando un canal, una cavidad o un descenso en la superficie exterior. One of the most interesting applications in tissue distinction is cutting along a certain trajectory or selective ablation in a region or also along a trajectory. Although a cut can be carried out by laser ablation, the term ablation also considers those cases in which material, in this case biological, is destroyed to a certain depth, generating a channel, a cavity or a drop in the surface. Exterior.
Específicamente la operación de corte con láser requiere de una identificación precisa del tejido a cortar y, si el láser barre la región operatoria a una velocidad rápida y en condiciones reales entonces la capacidad de identificar el tejido que se va encontrando la herramienta de corte y/o ablación debe ser lo suficientemente rápida y robusta como para asegurar que se preserva la integridad de aquellos tejidos que no deben ser cortados. Specifically, the laser cutting operation requires a precise identification of the tissue to be cut and, if the laser sweeps the operative region at a fast speed and under real conditions, then the ability to identify the tissue that the cutting tool is finding and / Ablation must be fast and robust enough to ensure that the integrity of those tissues that should not be cut is preserved.
La distinción de tejido no solo debe ser lo suficientemente rápida sino que también debe ser robusta y segura, esto es, debe ser inmune a lecturas falsas o distorsionadas producidas por las condiciones reales de la región operatoria. En estas condiciones no es posible el uso de dispositivos de laboratorio ya que estos solo llevan a cabo lecturas puntuales y en condiciones muy controladas que dejan de operar en condiciones reales. En cuanto una sola de las medidas falla no sería posible la discriminación fiable de tejidos en una aplicación práctica. Tissue distinction must not only be fast enough but it must also be robust and secure, that is, it must be immune to false or distorted readings produced by the real conditions of the operative region. In these conditions, the use of laboratory devices is not possible since they only carry out specific readings and under very controlled conditions that stop operating in real conditions. As soon as a single measure fails, reliable tissue discrimination in practical application would not be possible.
En particular se conoce la detección mediante LIBS (espectroscopia de plasma inducido por láser, o en inglés "laser-induced breakdown spectroscopy") como uno de los métodos puntuales que permiten en condiciones de laboratorio discriminar tejidos en un punto. In particular, detection by LIBS (laser-induced breakdown spectroscopy) is known as one of the point methods that allow, under laboratory conditions, to discriminate tissues at one point.
Alternativamente, existen otros métodos ópticos que permiten distinguir tejidos puntualmente, identificando solo como ejemplos técnicas tales como OCT (tomografía de coherencia óptica, o en inglés "optical coherence tomography"); OCE (elastografía de coherencia óptica, o en inglés "optical coherence elastography"); espectroscopia de Brillouin (o en inglés "Brillouin spectroscopy"); tomografía óptica difusa (o en inglés "diffuse optical tomography"); imagen de moteado (o en inglés "speckle imaging"); imagen térmica (o en inglés "thermal imaging"); espectroscopia de Raman (o en inglés "Raman spectroscopy") en cualquiera de sus variantes; espectroscopia de Alternatively, there are other optical methods that make it possible to distinguish tissues punctually, identifying only technical examples such as OCT (optical coherence tomography, or in English "optical coherence tomography"); OCE (optical coherence elastography, or in English "optical coherence elastography"); Brillouin spectroscopy (or in English "Brillouin spectroscopy"); diffuse optical tomography (or in English "diffuse optical tomography"); speckle imaging (or in English "speckle imaging"); thermal imaging (or in English "thermal imaging"); Raman spectroscopy (or in English "Raman spectroscopy") in any of its variants; spectroscopy of
fluorescencia (o en inglés "fluorescence spectroscopy") en cualquiera de sus variantes; espectroscopia de teraherzios (o en inglés "Terahertz spectroscopy") o microscopía confocal (o en inglés "confocal microscopy"). fluorescence (or in English "fluorescence spectroscopy") in any of its variants; terahertz spectroscopy (or in English "Terahertz spectroscopy") or confocal microscopy (or in English "confocal microscopy").
La presente invención supera las limitaciones descritas llevando a cabo una The present invention overcomes the limitations described by carrying out a
discretización de la región operatoria sobre la que se lleva a cabo primero una pluralidad de medidas y, para cada punto, se lleva a cabo una ponderación de valores, o bien de medida o bien de parámetros determinados a partir de la medida, donde la ponderación involucra valores vecinos de la discretización para poder discriminar el tipo de tejido. discretization of the operative region on which a plurality of measurements are first carried out and, for each point, a weighting of values is carried out, either of measurement or of parameters determined from the measurement, where the weighting It involves neighboring values of the discretization in order to discriminate the type of tissue.
De esta forma, la ponderación se puede llevar a cabo aunque no haya disponibles uno o más valores o bien de medida o bien de parámetros determinados a partir de la medida, en la discretización; en particular en el punto donde se está llevado a cabo la ponderación. De esta forma, la distinción aprovecha información de puntos In this way, the weighting can be carried out even if one or more values are not available either of measurement or of parameters determined from the measurement, in the discretization; in particular at the point where the weighting is being carried out. In this way, the distinction takes advantage of point information
colindantes mitigando o eliminando totalmente los factores limitantes arriba descritos. DESCRIPCIÓN DE LA INVENCIÓN neighboring areas mitigating or totally eliminating the limiting factors described above. DESCRIPTION OF THE INVENTION
Un primer aspecto de la invención es un método de distinción de tejidos biológicos en una región operatoria. Para llevar a cabo el método, éste comprende: o) un módulo de medida de parámetros del tejido biológico para medir en al menos un punto de la región operatoria gue comprende: A first aspect of the invention is a method of distinguishing biological tissues in an operative region. To carry out the method, it comprises: o) a module for measuring parameters of the biological tissue to measure at least one point in the operative region which comprises:
o un primer emisor óptico configurado para emitir un haz de luz incidente en modo operativo en un punto de la región operatoria; or a first optical emitter configured to emit a beam of incident light in operative mode at a point in the operative region;
o un sensor óptico gue comprende una salida para proveer de una medida, configurado para gue en modo operativo lleve a cabo una lectura de los fotones resultantes de la interacción de la emisión del haz de luz del primer emisor óptico al incidir sobre un punto de la región operatoria y envíe la medida a través de la salida; b) una unidad central de proceso gue comprende una memoria para almacenar al menos estructuras de datos. or an optical sensor that comprises an output to provide a measurement, configured so that in operating mode it carries out a reading of the photons resulting from the interaction of the emission of the light beam from the first optical emitter when incident on a point of the operative region and send the measurement through the outlet; b) a central processing unit comprising a memory for storing at least data structures.
Estas entidades físicas permiten llevar a cabo el método de distinción de tejidos biológicos conforme a la invención en una región operatoria preestablecida. These physical entities make it possible to carry out the method of distinguishing biological tissues according to the invention in a pre-established operative region.
El módulo de medida de parámetros del tejido biológico es un módulo que lleva a cabo medidas en un punto determinado emitiendo un haz de luz mediante el primer emisor óptico que incide en el tejido biológico en un punto de la región operatoria y, adicionalmente lleva a cabo la posterior medida a través del sensor óptico sobre los fotones resultantes de la interacción de la emisión del haz de luz del primer emisor óptico con el tejido. El módulo provee el valor obtenido por la salida de su sensor óptico. The module for measuring biological tissue parameters is a module that carries out measurements at a certain point by emitting a beam of light through the first optical emitter that hits the biological tissue at a point in the operative region and, additionally, carries out the subsequent measurement through the optical sensor on the photons resulting from the interaction of the emission of the light beam from the first optical emitter with the tissue. The module provides the value obtained by the output of its optical sensor.
La región operatoria es una región o dominio de tejido biológico sobre la que se va a llevar a cabo el método, o bien de distinción o bien combinando la distinción y otras actividades tales como el corte. Esta región es una superficie bajo la cual se extiende el tejido biológico. The operative region is a region or domain of biological tissue on which the method is to be carried out, either of distinguishing or combining the distinction and other activities such as cutting. This region is a surface under which biological tissue extends.
La presencia de vasos sanguíneos, nervios, hueso y otros tipos de tejido biológico y componentes tisulares que están por debajo de esta superficie o emergen en dicha superficie dan lugar a un tejido biológico de estructura compleja en la que es necesaria la distinción del tejido biológico, específicamente en el área que corresponde a la región de interés, la región operatoria. The presence of blood vessels, nerves, bone and other types of biological tissue and tissue components that are below this surface or emerge on said surface give rise to a biological tissue of complex structure in which it is necessary the distinction of biological tissue, specifically in the area that corresponds to the region of interest, the operative region.
La unidad central de proceso es la encargada de llevar a cabo diversas acciones, por ejemplo establecidas mediante instrucciones en forma de programa de ordenador, tanto mediante las entidades físicas que llevan a cabo las etapas del método como sobre la memoria. En particular la unidad central de proceso está configurada para al menos instanciar estructuras de datos y llevar a cabo operaciones de escritura y lectura sobre las mismas. The central processing unit is responsible for carrying out various actions, for example established by instructions in the form of a computer program, both through the physical entities that carry out the steps of the method and on memory. In particular, the central processing unit is configured to at least instantiate data structures and carry out read and write operations on them.
El método de distinción de tejidos biológicos comprende las siguientes etapas: The method of distinguishing biological tissues comprises the following stages:
i. establecer una discretización de puntos de la región operatoria; i. establish a discretization of points in the operative region;
/Y. instanciar mediante la unidad central de proceso una estructura de datos /Y. instantiate a data structure via the central processing unit
compuesta por celdas donde cada celda está configurada para almacenar parámetros medidos en uno de los puntos de la discretización de la región operatoria. composed of cells where each cell is configured to store parameters measured at one of the discretization points of the operative region.
El método establece una discretización sobre la región operatoria así como una estructura de datos, instanciada mediante la unidad central de proceso, de tal modo que cada uno de los puntos de la discretización de la región operatoria tiene su correspondiente celda en dicha estructura de datos. The method establishes a discretization on the operative region as well as a data structure, instantiated by the central processing unit, in such a way that each one of the discretization points of the operative region has its corresponding cell in said data structure.
Como ejemplo específico de estructura de datos, ésta puede estar constituida por una lista encadenada haciendo uso de punteros, por ejemplo una estructura en árbol o una estructura "gtree" . Tienen especial interés aquellas estructuras de datos formadas por registros y punteros en los que cada celda está instanciada en forma de variable, vector, lista dinámica o registro y, los punteros establecen conexiones con las celdas vecinas de acuerdo a la discretización de la región operatoria. As a specific example of a data structure, it can be made up of a chained list using pointers, for example a tree structure or a "gtree" structure. Of particular interest are those data structures formed by records and pointers in which each cell is instantiated in the form of a variable, vector, dynamic list or record, and the pointers establish connections with neighboring cells according to the discretization of the operative region.
Se entiende por registro una estructura fija de almacenamiento que puede contener varias variables que no son necesariamente del mismo tipo. A record is understood to be a fixed storage structure that can contain several variables that are not necessarily of the same type.
En los casos específicos en los que la discretización sigue un patrón regular, las listas y tablas son especialmente eficientes. In specific cases where discretization follows a regular pattern, lists and tables are especially efficient.
Cuando se describan ejemplos de realización de la invención, en un mismo punto de la discretización se puede almacenar más de un valor: el valor de medida, un parámetro determinado a partir del valor de medida, las coordenadas del punto de la When exemplary embodiments of the invention are described, at the same point in the discretization, more than one value can be stored: the measurement value, a parameter determined from the measurement value, the coordinates of the point of the
discretización en la región operatoria, y otros adicionales tales como la incertidumbre de la medida, el número de veces que se ha llevado a cabo la medida, etc. discretization in the operative region, and other additional ones such as the uncertainty of the measurement, the number of times the measurement has been carried out, etc.
En un ejemplo preferido es posible implementar estructuras de datos que almacenen en cada celda todos los valores necesarios asociados al punto de la discretización que corresponde a la celda, no obstante, también es posible replicar la estructura de datos tantas veces como valores sea necesario almacenar si los requerimientos en tiempo de ejecución así lo aconsejan. Todos estos modos específicos de implementación se consideran equivalentes respecto al uso de la expresión "una estructura de datos". In a preferred example, it is possible to implement data structures that store in each cell all the necessary values associated with the point of discretization that corresponds to the cell, however, it is also possible to replicate the data structure as many times as values need to be stored if runtime requirements advise it. All these specific modes of implementation are considered equivalent with respect to the use of the expression "a data structure".
Una vez establecida la discretización y la instanciación de la estructura de datos, el método también comprende las siguientes etapas: Once the discretization and instantiation of the data structure has been established, the method also includes the following stages:
//7. para una pluralidad de celdas de la estructura de datos llevar a cabo una // 7. for a plurality of cells in the data structure carry out a
medida por medio del módulo de medida en el punto de la región operatoria correspondiente a dicha celda y almacenar en la celda o bien la medida o bien un parámetro calculado a partir de la medida; measured by means of the measurement module at the point of the operative region corresponding to said cell and storing in the cell either the measurement or a parameter calculated from the measurement;
¡v. para cada una de las celdas de la estructura de datos definir una estrella de discretización que contiene dicha celda y una o más celdas correspondientes a puntos del entorno del punto asociado a la dicha celda; ¡V. for each of the cells of the data structure defining a discretization star that contains said cell and one or more cells corresponding to points around the point associated with said cell;
v. para cada una de las celdas de la estructura de datos llevar a cabo una v. for each of the cells of the data structure carry out a
ponderación de los valores almacenados y disponibles en las celdas de su estrella de discretización; weighting of the values stored and available in the cells of your discretization star;
vi. definir un criterio de distinción de tejido en función de los valores de medida ponderada y; saw. define a tissue distinction criterion based on the weighted measurement values and;
vii. determinar el tejido para cada punto de la discretización de la región operatoria aplicando el criterio de distinción a los valores ponderados en la etapa v) en cada celda asociada a dicho punto. vii. determining the tissue for each point of the discretization of the operative region by applying the distinction criterion to the weighted values in step v) in each cell associated with said point.
De entre todos los puntos de la discretización, el método lleva a cabo una medida en una pluralidad de ellos. Si bien lo ideal es llevar a cabo la medida en todos los puntos de la discretización, las condiciones ambientales tales como la suciedad, polvo en suspensión, líquidos presentes sobre el tejido o que emanen del mismo tejido, pueden impedir o distorsionar una o más medidas. Incluso en estas condiciones el método se puede llevar a cabo. Out of all the discretization points, the method performs a measurement on a plurality of them. Although the ideal is to carry out the measurement at all points of the discretization, environmental conditions such as dirt, suspended dust, liquids present on the fabric or emanating from the fabric itself, can prevent or distort one or more measurements . Even under these conditions the method is can carry out.
La estructura de datos permite establecer una correspondencia entre cada celda de la estructura de datos y un punto distinto de la discretización de la región operatoria. La estructura de datos también permite, para una celda determinada, identificar una o más celdas vecinas bajo un determinado criterio de vecindad o cercanía de los puntos correspondientes de la región operatoria. El grupo de celdas que contiene una determinada celda y las vecinas bajo ese criterio de vecindad se denominará estrella de discretización (en inglés "stencil"). The data structure allows to establish a correspondence between each cell of the data structure and a different point of the discretization of the operative region. The data structure also makes it possible, for a given cell, to identify one or more neighboring cells under a given criterion of neighborhood or closeness to the corresponding points in the operative region. The group of cells that contains a certain cell and the neighbors under that neighborhood criterion will be called a discretization star ("stencil").
El método define una estrella de discretización para cada celda y por lo tanto asociada a cada punto de la discretización de la región operatoria. The method defines a discretization star for each cell and therefore associated with each point of the discretization of the operative region.
El método lleva a cabo una ponderación de los valores de la estrella de discretización que están disponibles. Si hay valores que no están disponibles la ponderación se lleva a cabo igualmente, solo que el valor que no está disponible no se tiene en cuenta. En los ejemplos de realización, el valor ponderado hace posible estimar un valor que permite aumentar la robustez de la determinación del tejido biológico asociado a la celda sobre la que está definida la estrella de discretización. The method performs a weighting of the discretization star values that are available. If there are values that are not available, the weighting is carried out anyway, only the value that is not available is not taken into account. In the embodiments, the weighted value makes it possible to estimate a value that makes it possible to increase the robustness of the determination of the biological tissue associated with the cell on which the discretization star is defined.
La definición de un criterio de distinción de tejido en función de los valores de medida ponderada permite determinar uno o más tejidos, por ejemplo estableciendo una discriminación del tejido, en cada uno de los puntos asociados a cada celda. De entre los criterios preferidos en los ejemplos de realización, se encuentra el establecer un rango de valores o bien en la medida obtenida por el módulo de medida o bien sobre un parámetro establecido en función de la medida. El criterio de distinción establece un tipo de tejido biológico si el valor ponderado se encuentra en dicho rango y otro tipo de tejido si el valor se encuentra fuera del rango. Un caso específico de este modo de establecer el criterio es el que establece una distinción entre tejidos aptos para el corte y tejidos no aptos para el corte. The definition of a tissue distinction criterion as a function of the weighted measurement values makes it possible to determine one or more tissues, for example establishing a tissue discrimination, at each of the points associated with each cell. Among the preferred criteria in the embodiments, is to establish a range of values either in the measurement obtained by the measurement module or on a parameter established as a function of the measurement. The distinction criterion establishes a type of biological tissue if the weighted value is in that range and another type of tissue if the value is outside the range. A specific case of this way of establishing the criterion is that which makes a distinction between fabrics suitable for cutting and fabrics not suitable for cutting.
Otros criterios más complejos según otros ejemplos de realización hacen uso de varios rangos disjuntos, estableciendo una correspondencia entre el rango donde se encuentra el valor ponderado y un tipo de tejido biológico. Other more complex criteria according to other embodiments make use of several disjoint ranges, establishing a correspondence between the range where the weighted value is found and a type of biological tissue.
Finalmente, el método determina el tejido para cada punto de la discretización de la región operatoria aplicando el criterio de distinción a los valores ponderados en cada celda asociada a cada punto de la discretización. Finally, the method determines the tissue for each point of the discretization of the operative region applying the distinction criterion to the weighted values in each cell associated with each point of the discretization.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Estas y otras características y ventajas de la invención, se pondrán más claramente de manifiesto a partir de la descripción detallada que sigue de una forma preferida de realización, dada únicamente a título de ejemplo ilustrativo y no limitativo, con referencia a las figuras que se acompañan. These and other characteristics and advantages of the invention will become more clearly apparent from the detailed description that follows of a preferred embodiment, given solely by way of illustrative and non-limiting example, with reference to the accompanying figures. .
Figura 1 En esta figura se muestra de forma esquemática un primer Figure 1 This figure schematically shows a first
ejemplo de realización de un sistema de distinción de tejidos biológicos. Figura 2 En esta figura se muestra una representación esquemática de una estructura de datos representando una discretización regular y cartesiana de la región operatoria, con las celdas almacenando determinados valores según lecturas obtenidas por el módulo de medida y, ciertas estrellas de discretización representadas sobre la misma estructura de datos. example of realization of a biological tissue distinction system. Figure 2 This figure shows a schematic representation of a data structure representing a regular and Cartesian discretization of the operative region, with the cells storing certain values according to readings obtained by the measurement module and, certain discretization stars represented on it. data structure.
Figuras 3A-3F En estas figuras se muestran distintos ejemplos de estrellas de discretización. Figura 4A En esta figura se muestra de forma esquemática un segundo Figures 3A-3F These figures show different examples of discretization stars. Figure 4A This figure schematically shows a second
ejemplo de realización donde el sistema de distinción de tejidos biológicos incorpora un módulo de corte constituyendo un ejemplo de realización de un sistema de corte con distinción de tejidos. exemplary embodiment where the biological tissue distinguishing system incorporates a cutting module constituting an exemplary embodiment of a cutting system with tissue distinction.
Figura 4B En esta figura se muestra una variante del segundo ejemplo de realización donde el módulo de medida y el módulo de corte comprenden elementos ópticos comunes que permiten que los haces láser sean coaxiales en su tramo final incidiendo sobre el tejido de tal modo que ambos haces láser siguen una trayectoria común. Figura 5A y 5B La figura 5A muestra una discretización de una región operatoria en cuyos nodos se han llevado a cabo lecturas mediante el módulo de medida. La figura 5B muestra una ampliación de una porción de la figura 5A. Las figuras muestran mediante círculos de pequeño diámetro, representados con distintos grados de gris, los valores de medida adquiridos mediante el módulo de medida. Las figuras también muestran una pluralidad de círculos de mayor diámetro que corresponden al diámetro del láser de corte aplicado solo en aquellos puntos donde el método de distinción ha determinado que el tejido biológico es apto para el corte. Figure 4B This figure shows a variant of the second embodiment where the measurement module and the cutting module comprise common optical elements that allow the laser beams to be coaxial in their final section, striking the tissue in such a way that both beams lasers follow a common path. Figure 5A and 5B Figure 5A shows a discretization of an operative region in whose nodes readings have been carried out by the measurement module. Figure 5B shows an enlargement of a portion of Figure 5A. The figures show by means of small diameter circles, represented with different degrees of gray, the measurement values acquired using the measurement module. The figures also show a plurality of larger diameter circles corresponding to the diameter of the cutting laser applied only at those points where the distinction method has determined that the biological tissue is suitable for cutting.
EXPOSICIÓN DETALLADA DE LA INVENCIÓN La presente invención, de acuerdo al primer aspecto inventivo, es un método de distinción de tejidos biológicos mediante un sistema de distinción de tejidos conforme a un segundo aspecto de la invención. DETAILED DISCLOSURE OF THE INVENTION The present invention, according to the first inventive aspect, is a method for distinguishing biological tissues by means of a system for distinguishing tissues according to a second aspect of the invention.
La figura 1 muestra un ejemplo del sistema de distinción de tejidos que permite la distinción del tejido en una región (R) operatoria. En este ejemplo de realización la región (R) operatoria es rectangular, donde la figura 1 muestra esta región rectangular según una vista en perspectiva. La región (R) operatoria ha sido discretizada según una discretización (D) regular no cartesiana con nodos formados por 6 nodos vecinos configurando hexágonos. Esta discretización establece una distribución de puntos (P) de la región (P) operatoria según tres direcciones principales, una que se muestra vertical en la proyección y dos que se muestran oblicuas. Figure 1 shows an example of the tissue distinguishing system that allows tissue distinction in an operative region (R). In this exemplary embodiment, the operating region (R) is rectangular, where Figure 1 shows this rectangular region according to a perspective view. The operative region (R) has been discretized according to a non-Cartesian regular discretization (D) with nodes formed by 6 neighboring nodes configuring hexagons. This discretization establishes a distribution of points (P) of the operative region (P) according to three main directions, one that is shown vertical in the projection and two that are shown oblique.
Otras formas de discretización más complejas son las no regulares que dan lugar a mallas no estructuradas y que requieren de estructuras de datos también más complicadas de manipular. No obstante, una ventaja del uso de estas mallas no estructuradas es que permiten concentrar nodos en aquellos lugares donde es más necesario establecer un mayor número de medidas. Other more complex forms of discretization are the non-regular ones that give rise to unstructured meshes and that require data structures that are also more complicated to manipulate. However, an advantage of the use of these unstructured meshes is that they allow to concentrate nodes in those places where it is most necessary to establish a greater number of measurements.
La discretización (D) de la región (R) operatoria establece un conjunto de nodos donde se llevarán a cabo medidas y donde se determinarán valores que permitirán establecer la distinción del tejido sobre el área que cubre la región (C) operatoria. La invención permite distinguir tejidos en una sub-región o área a partir de un conjunto de medidas puntuales incluso aunque algunas de esas medidas hayan fallado por algún motivo como la existencia de elementos contaminantes o de fluidos. The discretization (D) of the operative region (R) establishes a set of nodes where measurements will be carried out and where values will be determined that will allow to establish the distinction of the tissue over the area covered by the operative region (C). The invention allows distinguishing tissues in a sub-region or area from a set of specific measurements even if some of these measurements have failed for some reason such as the existence of contaminants or fluids.
Cada nodo de la discretización corresponde a un punto (P) de la región (R) operatoria donde un módulo de medida (2) lleva a cabo operaciones de medidas de uno o más parámetros del tejido. Dicho nodo está vinculado a uno o más nodos vecinos según la configuración de la discretización la cual no solo establece los puntos o nodos que forman la malla de la discretización sino la interconexión entre un nodo y sus vecinos. En esta figura la conexión entre los nodos se representa gráficamente mediante tramos de rectas que unen los nodos. Each node of the discretization corresponds to a point (P) of the operative region (R) where a measurement module (2) carries out measurement operations of one or more tissue parameters. Said node is linked to one or more neighboring nodes according to the configuration of the discretization which not only establishes the points or nodes that form the mesh of the discretization but also the interconnection between a node and its neighbors. In this figure the connection between the nodes is graphically represented by sections of lines that join the nodes.
Una vez establecida la discretización de la región (R) operatoria, una unidad central de proceso (1) instancia una estructura de datos (DS) que permite representar la malla de discretización y en cada nodo de la discretización, instanciar una o más celdas (C) en las que almacenar valores. Once the discretization of the operative region (R) has been established, a central processing unit (1) instantiates a data structure (DS) that allows representing the discretization mesh and at each node of the discretization, instantiating one or more cells ( C) in which to store values.
En un ejemplo de realización el paradigma de programación de la unidad central de proceso (1) es orientado al objeto donde la estructura de datos (DS) constituye parte de la definición de un objeto formado por dicha estructura de datos (DS) así como de los métodos que permiten leer y escribir valores o manipular la estructura de datos (DS) de forma eficiente. In an exemplary embodiment, the programming paradigm of the central processing unit (1) is object-oriented where the data structure (DS) constitutes part of the definition of an object formed by said data structure (DS) as well as methods that allow you to read and write values or manipulate the data structure (DS) efficiently.
Un modo específico de vincular una celda (C) con otra vecina según un modo de realización de la invención es mediante punteros. Este modo de interconexión es un modo eficiente de instanciar estructuras de datos (DS) no estructurados. A specific way of linking a cell (C) with another neighbor according to an embodiment of the invention is by means of pointers. This mode of interconnection is an efficient way to instantiate unstructured data structures (DS).
Cuando la malla es estructurada, es posible hacer uso de tablas o listas dinámicas que incrementan la eficiencia de acceso a memoria a la hora de hacer operaciones que afecta a la totalidad de los nodos. When the mesh is structured, it is possible to make use of tables or dynamic lists that increase the efficiency of memory access when performing operations that affect all the nodes.
Las celdas (C) de la estructura de datos (DS) correspondientes a nodos de la malla de discretización (D) representan puntos (P) específicos de la región (R) operatoria conforme a la discretización (D). The cells (C) of the data structure (DS) corresponding to nodes of the discretization mesh (D) represent specific points (P) of the operative region (R) according to the discretization (D).
En la figura 1 se representa la estructura de datos (DS) esquemáticamente mediante una malla de menores dimensiones pero réplica de la malla de discretización (D) de la región (R) operatoria. In figure 1 the data structure (DS) is represented schematically by a mesh of smaller dimensions but a replica of the discretization mesh (D) of the operative region (R).
Las discretizaciones de más fácil implementación son las regulares, y específicamente las cartesianas, dado que una tabla o un conjunto de vectores o listas encadenadas permiten representar las filas o columnas de dicha discretización. The easiest to implement discretizations are the regular ones, and specifically the Cartesian ones, since a table or a set of vectors or chained lists allow the rows or columns of said discretization to be represented.
La relación entre la discretización (D) de la región (R) operatoria y la estructura de datos (DS) se identifica gráficamente mediante una doble flecha gruesa. The relationship between the discretization (D) of the operative region (R) and the data structure (DS) is graphically identified by a thick double arrow.
Según este ejemplo de realización el módulo de medida (2) de parámetros del tejido biológico para medir al menos un punto (P) de la región (R) operatoria comprende un primer emisor (2.1) óptico. En este ejemplo de realización el primer emisor (2.1) óptico es un emisor láser configurado para emitir un haz láser que atraviesa un elemento óptico (4) configurado para dirigir el haz láser a un punto (P) determinado de la región (R) operatoria. According to this exemplary embodiment, the measurement module (2) of parameters of the biological tissue to measure at least one point (P) of the operative region (R) comprises a first optical emitter (2.1). In this exemplary embodiment, the first optical emitter (2.1) is a laser emitter configured to emit a laser beam that passes through an optical element (4) configured to direct the laser beam to a certain point (P) in the operative region (R) .
En este ejemplo de realización, la unidad central de proceso (1) está en comunicación con el elemento óptico (4) de tal forma que una vez determinada una celda (C) de la estructura de datos (DS), la unidad central de proceso (1) determina las coordenadas físicas del punto (P) correspondiente a dicha celda (C) y provee de una señal al elemento óptico (4) para que a través de unos medios actuadores oriente el haz láser generado por el primer emisor (2.1) al punto (P). In this exemplary embodiment, the central processing unit (1) is in communication with the optical element (4) in such a way that once a cell (C) of the data structure (DS) has been determined, the central processing unit (1) determines the physical coordinates of the point (P) corresponding to said cell (C) and provides a signal to the optical element (4) so that through actuating means it directs the laser beam generated by the first emitter (2.1) to the point (P).
El haz láser, al incidir en el punto (P), genera una pluma de plasma (F) dando lugar a una emisión de fotones que es capturada por un sensor óptico (2.2). En este ejemplo de realización el sensor óptico es un espectrómetro (2.2). Dado que en este ejemplo de realización el sensor óptico es específicamente un espectrómetro se utilizará la misma referencia entre paréntesis. When the laser beam hits point (P), it generates a plasma plume (F), giving rise to an emission of photons that is captured by an optical sensor (2.2). In this embodiment, the optical sensor is a spectrometer (2.2). Since in this embodiment the optical sensor is specifically a spectrometer, the same reference will be used in parentheses.
En la figura 1 se muestra el espectrómetro (2.2) orientado hacia la pluma de plasma (F) donde esta orientación puede estar igualmente establecida por la unidad central de proceso (1). La lectura del espectrómetro (2.2) es provista a través de una salida (2.2.1) y es enviada a la unidad central de proceso (1). Según otros ejemplos de realización es posible incluir elementos o componentes ópticos adicionales por ejemplo para acondicionar la imagen capturada por el espectrómetro (2.2) o para conducir los fotones emitidos hasta dicho espectrómetro (2.2) teniendo en cuenta su posición y orientación. Figure 1 shows the spectrometer (2.2) oriented towards the plasma pen (F) where this orientation can also be established by the central processing unit (1). The reading from the spectrometer (2.2) is provided through an output (2.2.1) and is sent to the central processing unit (1). According to other embodiments it is possible to include additional optical elements or components, for example to condition the image captured by the spectrometer (2.2) or to conduct the photons emitted up to said spectrometer (2.2) taking into account their position and orientation.
Uno o más parámetros provistos por el espectrómetro (2.2) son las amplitudes medidas del espectro de emisión de la pluma de plasma (F) para uno o más valores de longitud de onda. La comparación de este espectro o de una selección de amplitudes en un conjunto preestablecido de longitudes de onda con valores preestablecidos permite identificar la presencia de uno o más componentes del tejido biológico. Este es el caso del calcio que es un indicador, cuando su valor está por encima de un valor predeterminado, de que el tejido biológico es hueso. One or more parameters provided by the spectrometer (2.2) are the measured amplitudes of the emission spectrum of the plasma plume (F) for one or more wavelength values. Comparison of this spectrum or of a selection of amplitudes in a pre-established set of wavelengths with pre-established values makes it possible to identify the presence of one or more components of biological tissue. This is the case with calcium, which is an indicator, when its value is above a predetermined value, that the biological tissue is bone.
Según distintos ejemplos de realización, la unidad central de proceso (1) almacena en la celda (C) que corresponde al punto (P) donde se ha hecho incidir el haz láser: According to different embodiments, the central processing unit (1) stores in the cell (C) that corresponds to the point (P) where the laser beam has been made to strike:
un valor medido tal como la amplitud del espectro en una longitud de onda predeterminada; a measured value such as the width of the spectrum at a predetermined wavelength;
una pluralidad de amplitudes del espectro en longitudes de onda a plurality of spectrum amplitudes at wavelengths
predeterminadas; default;
una pluralidad de relaciones entre las amplitudes del espectro en longitudes de onda predeterminadas y las amplitudes del espectro en otras longitudes de onda predeterminadas; a plurality of relationships between the amplitudes of the spectrum at predetermined wavelengths and the amplitudes of the spectrum at other predetermined wavelengths;
una función representante del espectro medido por el espectrómetro (2.2); un valor representativo de una propiedad del tejido biológico al comparar cualquiera de los valores anteriores con valores de referencia o; a representative function of the spectrum measured by the spectrometer (2.2); a representative value of a property of the biological tissue when comparing any of the above values with reference values or;
un valor representativo de un tejido establecido en función de los valores anteriores o; a representative value of a fabric established based on the previous values or;
una combinación de los valores anteriores. a combination of the above values.
El sistema según este ejemplo de realización establece una secuencia de barrido según la cual: The system according to this exemplary embodiment establishes a scanning sequence according to which:
se va posicionando el haz láser generado por el primer emisor (2.1) en cada uno de los puntos (P) de la discretización (D) de la región (R) operatoria; the laser beam generated by the first emitter (2.1) is positioned in each of the points (P) of the discretization (D) of the operative region (R);
se emite un haz láser en el punto (P) causando la emisión de una pluma de plasma (F); a laser beam is emitted at point (P) causing the emission of a plasma pen (F);
se lleva a cabo la lectura de la pluma de plasma (F) mediante el the reading of the plasma pen (F) is carried out by means of the
espectrómetro (2.2) almacenando uno o más valores de los anteriormente identificados; para cada una de las celdas (C) de la estructura de datos (DS) se define una estrella (S) de discretización que contiene dicha celda (C) y una o más celdas (C) correspondientes a puntos del entorno del punto (P) asociado a la dicha celda (C); spectrometer (2.2) storing one or more values of those previously identified; For each of the cells (C) of the data structure (DS) a discretization star (S) is defined that contains said cell (C) and one or more cells (C) corresponding to points around the point (P ) associated with said cell (C);
para cada una de las celdas (C) de la estructura de datos (DS) se lleva a cabo una ponderación de los valores almacenados y disponibles en las celdas (C) de su estrella (S) de discretización; for each of the cells (C) of the data structure (DS) a weighting of the values stored and available in the cells (C) of their discretization star (S) is carried out;
se define un criterio de distinción de tejido en función de los valores de medida ponderada y; a tissue distinction criterion is defined based on the weighted measurement values and;
se determina el tejido para cada punto de la discretización de la región (R) operatoria aplicando el criterio de distinción a los valores ponderados en cada celda (C) asociada a dicho punto (P). The tissue is determined for each point of the discretization of the operative region (R) by applying the distinction criterion to the weighted values in each cell (C) associated with said point (P).
La figura 2 muestra otro ejemplo de realización donde la discretización es regular y cartesiana dando lugar a una estructura de datos (DS) que hace uso de tablas con filas y columnas para almacenar valores en cada una de sus celdas (C). Cada una de las casillas cuadradas de la estructura de datos (DS) representada en la figura 2 representa una celda (C). Figure 2 shows another embodiment where the discretization is regular and Cartesian giving rise to a data structure (DS) that makes use of tables with rows and columns to store values in each of its cells (C). Each of the square cells of the data structure (DS) represented in figure 2 represents a cell (C).
Cada una de las celdas contiene un círculo con el área rellenada de distinta forma según el tipo de tejido que se ha distinguido, específicamente se ha representado en negro un valor que corresponde a hueso, un área blanca a un tejido distinto de hueso y con el área rallada aquellos puntos en los que la medida no está disponible. También se representan círculos con un aspa para identificar puntos de la región (R) de la región operatoria que corresponden a una celda que se ha anulado por haber llevado un número de medidas superior a cierto valor preestablecido (por ejemplo para no tener que medir esa celda en adelante o con el fin de evitar dañar el tejido en exceso con el haz láser de medida en aquellos casos en los que la energía o la potencia del mismo sea elevada), y también se representan círculos en gris para identificar aquellas celdas que corresponden a medidas incorrectas por ejemplo debido a la presencia de contaminantes sobre la región (R) operatoria. Each of the cells contains a circle with the area filled in differently according to the type of tissue that has been distinguished, specifically a value corresponding to bone has been represented in black, a white area to a different tissue of bone and with the grated area those points where the measure is not available. Circles with a cross are also represented to identify points in the region (R) of the operative region that correspond to a cell that has been canceled due to having taken a number of measurements greater than a certain pre-established value (for example, to avoid having to measure that cell from now on or in order to avoid damaging the tissue excessively with the measurement laser beam in those cases in which the energy or power of the same is high), and gray circles are also represented to identify those cells that correspond to incorrect measurements for example due to the presence of contaminants on the operative region (R).
La parte superior de la estructura de datos (DS) muestra cómo hay una porción que corresponde a hueso. Mediante una línea discontinua se muestra la región real de hueso y cómo afecta a la medida tomada en puntos próximos a la frontera entre la región de hueso y la región que no es hueso. Fuera de la región de hueso la mayor parte de los valores corresponde a tejido que no es hueso. En la misma figura se muestran celdas (C) que están ralladas porque la medida no ha podido discriminar el tipo de tejido. The upper part of the data structure (DS) shows how there is a portion that corresponds to bone. A dashed line shows the actual bone region and how it affects the measurement taken at points near the border between the bone region and the non-bone region. Outside the bone region the greater part of the values corresponds to tissue that is not bone. The same figure shows cells (C) that are grated because the measurement has not been able to discriminate the type of tissue.
La presencia de partículas o sustancias contaminantes ha provocado en este ejemplo de realización medidas de hueso en algunos puntos fuera de la región donde hay hueso debido a que la medida no es correcta debido a dichos factores. The presence of particles or contaminating substances in this embodiment has caused bone measurements at some points outside the region where there is bone because the measurement is not correct due to said factors.
En este ejemplo de realización la totalidad del área representada por la estructura de datos (DS) ha sido barrida por el haz láser del módulo de medida (2) de tal modo que hay celdas (C) que corresponden a puntos del tejido que han recibido varias veces una emisión láser. Aunque el haz láser utilizado por el módulo de medida (2) es de mucha menos intensidad que el láser utilizado en el corte o ablación, en este ejemplo de realización la generación de una pluma de plasma (F) supone que el tejido sufre un pequeño daño que es acumulativo. Para evitar un daño excesivo, en este ejemplo de realización, para cada celda (C) se lleva a cabo un recuento de las veces que se ha llevado a cabo una medida anulando la celda (C) si el número es superior a un valor preestablecido. En este caso la condición de estar anuladas o bloqueadas es un valor que se almacena en la misma celda (C) de tal modo que el módulo de medida (2) no lleva a cabo la acción de medir cuando dicha celda (C) está anulada o bloqueada. In this embodiment, the entire area represented by the data structure (DS) has been scanned by the laser beam of the measurement module (2) in such a way that there are cells (C) that correspond to points of the tissue that have received a laser emission several times. Although the laser beam used by the measurement module (2) is of much less intensity than the laser used in cutting or ablation, in this example of embodiment the generation of a plasma pen (F) implies that the tissue suffers a small damage that is cumulative. To avoid excessive damage, in this exemplary embodiment, for each cell (C) a count of the times a measurement has been carried out is carried out, canceling cell (C) if the number is greater than a pre-established value . In this case, the condition of being canceled or blocked is a value that is stored in the same cell (C) in such a way that the measurement module (2) does not carry out the action of measuring when said cell (C) is canceled. or blocked.
Aunque el método encuentre una celda (C) anulada o bloqueada, esta condición se limita al módulo de medida (2) de modo que se podría determinar que en el punto de la región (R) operatoria que corresponde a dicha celda (C) se lleve a cabo una acción de corte. En este caso la celda (C) puede dejar de tener esta condición de anulación o bloqueo ya que las condiciones del tejido han cambiado y se puede volver a llevar a cabo medidas sobre dicho punto. Although the method finds a cell (C) canceled or blocked, this condition is limited to the measurement module (2) so that it could be determined that at the point of the operative region (R) that corresponds to said cell (C) carry out a cut action. In this case, cell (C) may no longer have this cancellation or blocking condition since the tissue conditions have changed and measurements can be carried out on said point again.
Sobre la misma estructura de datos (DS) se han representado cuatro estrellas (S) de discretización, tres de ellas en el interior y una en la esquina derecha superior. Four discretization stars (S) have been represented on the same data structure (DS), three of them inside and one in the upper right corner.
Cada estrella (S) de discretización incluye una celda (C) sobre la que se quiere determinar un valor ponderado y, una o más celdas (C) vecinas. En este ejemplo de realización todas las estrellas (S) de discretización tienen la celda (C) sobre la que se quiere determinar un valor ponderado y las cuatro celdas (C) vecinas más cercanas, las que corresponden a las coordenadas norte, sur, este y oeste (arriba, abajo, a la derecha y a la izquierda). Each discretization star (S) includes a cell (C) on which a weighted value is to be determined and one or more neighboring cells (C). In this embodiment, all the discretization stars (S) have the cell (C) on which a weighted value is to be determined and the four closest neighboring cells (C), which correspond to the north, south, east coordinates. and west (up, down, to the right and left).
La estrella (S) situada más abajo contiene cinco celdas y todas ellas contienen un valor (valor medido, parámetro calculado a partir del valor medido o, una combinación de ellos) que identifica que el tejido no es hueso. La ponderación de estas cinco celdas (C) determina que la celda sobre la que se sitúa la estrella (S) de discretización no es hueso. The star (S) below contains five cells, all of which contain a value (measured value, parameter calculated from the measured value, or a combination of them) that identifies that the tissue is not bone. The weighting of these five cells (C) determines that the cell on which the discretization star (S) is located is not bone.
Dos columnas a la derecha y dos filas por encima de esta estrella (S) se encuentra otra estrella (S) de discretización (S) en donde la celda (C) que hay más la izquierda de la celda (C) central de referencia de la estrella (S) de discretización no tiene un valor disponible de distinción. Además, la celda (C) sobre la que se sitúa la estrella (S) de discretización (S) tiene un valor que corresponde a una medida que identifica hueso debido a la presencia de una partícula contaminante. No obstante, dado que están disponibles los valores del resto del entorno con valores correctos de medida, el valor que está por encima, el que está a la derecha y el valor que está por debajo, el método permite determinar una ponderación de los tres valores e inferir un valor para la celda (C) sobre la que se ha situado la estrella (en este caso la celda situada en el centro de la estrella (S) de discretización) que es correcto, el tejido no es hueso. Two columns to the right and two rows above this star (S) is another star (S) of discretization (S) where the cell (C) that is further to the left of the central reference cell (C) of the discretization star (S) has no distinguishing value available. Furthermore, the cell (C) on which the discretization star (S) is located (S) has a value that corresponds to a measure that identifies bone due to the presence of a contaminating particle. However, since the values of the rest of the environment are available with correct measurement values, the value that is above, that is to the right and the value that is below, the method allows to determine a weight of the three values and infer a value for the cell (C) on which the star has been located (in this case the cell located in the center of the discretization star (S)) that is correct, the tissue is not bone.
La siguiente celda (C) de interés es la que tiene una estrella (S) de discretización ahora situada tres celdas (C) más a la derecha y dos filas más arriba. Esta estrella (S) de discretización involucra cuatro celdas (C) con valores que identifican un tejido no hueso y un valor que identifica un valor como hueso. La ponderación en este ejemplo de realización establece que la celda (C) sobre la que se sitúa la estrella (S) de discretización es no hueso aunque una de las celdas ponderadas tenga hueso. No obstante, es posible determinar otros valores a través de esta ponderación y una de ellas es un parámetro de incertidumbre. En este caso específico, la proximidad de hueso incrementaría el valor de incertidumbre. The next cell (C) of interest is the one with a discretization star (S) now located three cells (C) further to the right and two rows higher. This discretization star (S) involves four cells (C) with values that identify a non-bone tissue and one value that identifies a value as bone. The weighting in this exemplary embodiment establishes that the cell (C) on which the discretization star (S) is located is non-bone even though one of the weighted cells has bone. However, it is possible to determine other values through this weighting and one of them is an uncertainty parameter. In this specific case, the proximity of bone would increase the uncertainty value.
La última estrella (S) de discretización mostrada en esta estructura de datos es la que se sitúa en la esquina superior derecha donde la estrella (S) se extiende únicamente a los vecinos que están disponibles. En un ejemplo de realización, cada celda tiene un valor vtj donde los índices i y j identifican la fila y la columna respectivamente (para una estructura regular cartesiana). El valor ponderado vtj está determinado asignando pesos ¿ a cada celda de la estrella (S) de discretización tal que
Figure imgf000018_0001
1 de tal modo que
Figure imgf000018_0002
The last discretization star (S) shown in this data structure is the one in the upper right corner where the star (S) extends only to the neighbors that are available. In an example embodiment, each cell has a value v tj where the indices i and j identify the row and the column respectively (for a regular structure Cartesian). The weighted value v t j is determined by assigning weights ¿to each cell of the discretization star (S) such that
Figure imgf000018_0001
1 such that
Figure imgf000018_0002
donde toma el valor 1 si el valor vtj está disponible (celdas representadas gráficamente en blanco) o 0 si el valor vtj no está disponible (celdas representadas gráficamente con un rallado). where it takes the value 1 if the value v t j is available (cells graphed in white) or 0 if the value v t j is not available (cells graphed with a hatch).
Según otro ejemplo de realización, los pesos se determinan en cada celda de forma específica teniendo en cuenta los valores de
Figure imgf000018_0004
donde ahora la condición
Figure imgf000018_0003
= 1 se sustituye por
Figure imgf000018_0005
1. Esto es, la suma de los pesos debe ser la unidad pero teniendo en cuenta solo las celdas involucradas en la ponderación porque sus valores están disponibles.
According to another embodiment, the weights are determined in each cell in a specific way taking into account the values of
Figure imgf000018_0004
where now the condition
Figure imgf000018_0003
= 1 is replaced by
Figure imgf000018_0005
1. That is, the sum of the weights must be the unit but taking into account only the cells involved in the weighting because their values are available.
Cualquier modo de llevar a cabo la valoración ponderada en una celda (C) que resulte matemáticamente equivalente a las representaciones dadas por una y otra ecuación del sumatorio se considerará como una o más etapas equivalentes a la etapa v). Any way to carry out the weighted valuation in a cell (C) that is mathematically equivalent to the representations given by both equations of the summation will be considered as one or more stages equivalent to stage v).
Un ejemplo de realización de la invención lleva a cabo un ajuste de los pesos dando más valor a los pesos que corresponden a la celda (C) sobre la que se sitúa la estrella (S) de discretización y reduce el valor conforme más alejadas están el resto de celdas (C) de la estrella de discretización. An example of embodiment of the invention carries out an adjustment of the weights giving more value to the weights that correspond to the cell (C) on which the discretization star (S) is located and reduces the value as the farther away the rest of cells (C) of the discretization star.
Una vez obtenidos los valores medidos o parámetros establecidos a partir de la medida, éstos según un ejemplo preferido son almacenados en la celda (C) correspondiente al punto donde se ha llevado a cabo la medida. No obstante, existen casos en los que el volumen de plasma en la región (R) operatoria distorsiona las medidas y tiende a sobreestimar las áreas de hueso en detrimento de las que no son hueso. Este problema, y otros donde se producen cuando hay una sobreestimación de uno de los tejidos objeto de distinción, se resuelve almacenando el valor que no es sobreestimado no solo en la celda (C) que le corresponde sino en una o más celdas de su estrella (S) de discretización. Once the measured values or parameters established from the measurement have been obtained, these according to a preferred example are stored in cell (C) corresponding to the point where the measurement has been carried out. However, there are cases in which the plasma volume in the operative region (R) distorts the measurements and tends to overestimate the bone areas to the detriment of the non-bone ones. This problem, and others where they occur when there is an overestimation of one of the tissues object of distinction, is solved by storing the value that is not overestimated not only in the cell (C) that corresponds to it but in one or more cells of its star (S) of discretization.
Como caso específico, cuando la distinción es entre hueso o no hueso, el método se ha observado que tiende a sobreestimar las áreas de hueso en detrimento de las de no hueso. En este caso, el problema se resuelve procediendo del siguiente modo: si el resultado de la discriminación establece que no es viable llevar a cabo una operación de ablación en uno o más puntos (P) de la región (R) operatoria, dicho resultado de la discriminación se almacena no solamente en la celda (C) correspondiente de la estructura de datos (DS) para cada punto (P) sino también en una o más celdas (C) de su estrella (S) de discretización As a specific case, when the distinction is between bone and non-bone, the method has been observed to tend to overestimate bone areas to the detriment of non-bone areas. bone. In this case, the problem is solved by proceeding as follows: if the discrimination result establishes that it is not feasible to carry out an ablation operation at one or more points (P) of the operative region (R), said result of the discrimination is stored not only in the corresponding cell (C) of the data structure (DS) for each point (P) but also in one or more cells (C) of its discretization star (S)
En otro ejemplo de realización, el instante en que ha sido realizada la medida en un punto de la región (R) operatoria es almacenado en la celda (C) correspondiente de la estructura de datos (DS), y la ponderación de la etapa v) también toma en In another embodiment, the time at which the measurement has been performed at a point in the operative region (R) is stored in the corresponding cell (C) of the data structure (DS), and the weighting of step v ) also takes in
consideración la antigüedad de la medida, asignando a cada elemento de la celda de discretización un peso inversamente proporcional a su antigüedad, de modo que se da más importancia a los puntos medidos más recientemente y se disminuye el peso de las medidas con mayor obsolescencia. The age of the measure is taken into account, assigning each element of the discretization cell a weight inversely proportional to its age, so that the most recently measured points are given more importance and the weight of the measures with greater obsolescence is reduced.
En un ejemplo de realización, la unidad central de proceso (1) provee al menos de dos variables en cada una de las celdas (C) para cada nodo de la discretización, la tabla que se muestra en la figura 2 corresponde a los valores vtj medidos por el módulo de medida (2) y se almacenan en la primera variable. Aplicando una estrella (S) de discretización en cada celda (C) se determina el valor ponderado vtj que se almacena en la segunda variable y que es el valor con el que se determina, según un criterio preestablecido en función de los valores ponderados, qué tejido corresponde a cada celda (C). In an exemplary embodiment, the central processing unit (1) provides at least two variables in each of the cells (C) for each node of the discretization, the table shown in Figure 2 corresponds to the values v tj measured by the measurement module (2) and stored in the first variable. Applying a discretization star (S) in each cell (C) determines the weighted value v tj that is stored in the second variable and that is the value with which it is determined, according to a pre-established criterion based on the weighted values, which tissue corresponds to each cell (C).
Las figuras 3A a 3F muestran seis estrellas (S) de discretización distintas. La figura 3A muestra una estrella (S) de discretización en la que los valores ponderados se establecen con los vecinos superior, inferior, derecho e izquierdo {N, S, E, W}. La figura 3B incluye además los valores diagonales más próximos {N, S, E, W, NE, SE, NW, SW}.Figures 3A to 3F show six different discretization stars (S). Figure 3A shows a discretization star (S) in which the weighted values are set with the upper, lower, right and left neighbors {N, S, E, W}. Figure 3B further includes the closest diagonal values {N, S, E, W, NE, SE, NW, SW}.
La figura 3C solo incluye las tres celdas superiores y las tres celdas inferiores. La figura 4C, además de las celdas (C) de la estrella (S) de la figura 3C incluye dos celdas más distantes a la derecha y a la izquierda. Esta estrella (S) de discretización tiene una direccionalidad que puede estar justificada por el tipo de tejido y es aplicable por ejemplo cuando se tiene información sobre dicha direccionalidad. La figura 3E muestra una estrella (S) de discretización de configuración cuadrada con cinco celdas de anchura y altura dejando la celda central como celda (C) de referencia, esto es, la celda sobre la que se está llevando a cabo la ponderación. La figura 3F representa una estrella (S) como la representada en la figura 3E donde las cuatro celdas de las esquinas se han eliminado porque son las más distantes de tal modo que las celdas (C) perimetrales de la estrella (S) de discretización tienen un radio de distancia a la celda (C) central de referencia más próximo. Figure 3C only includes the top three cells and the bottom three cells. Figure 4C, in addition to the cells (C) of the star (S) of Figure 3C, includes two more distant cells on the right and on the left. This discretization star (S) has a directionality that can be justified by the type of fabric and is applicable for example when there is information about said directionality. Figure 3E shows a square-shaped discretization star (S) with five cells in width and height, leaving the central cell as a reference cell (C), that is, the cell on which the weighting is being carried out. Figure 3F represents a star (S) as represented in figure 3E where the four corner cells have been eliminated because they are the most distant in such a way that the perimeter cells (C) of the discretizing star (S) have a distance radius a the nearest central reference cell (C).
Cualquiera de las seis estrellas (S) de discretización identifican la celda (C) de referencia en torno a la cual se establecen las celdas (C) vecinas porque se muestra doblemente rallada y por lo tanto más oscura. Any of the six discretization stars (S) identify the reference cell (C) around which the neighboring cells (C) are established because it is doubly grated and therefore darker.
La figura 4A muestra un ejemplo de realización del sistema de corte que comprende los componentes del sistema de distinción descritos con ayuda de la figura 1 así como otros componentes adicionales. La descripción llevada a cabo haciendo uso de la figura 1 es válida para esta figura 4A. Figure 4A shows an exemplary embodiment of the cutting system comprising the components of the distinguishing system described with the aid of Figure 1 as well as other additional components. The description carried out making use of Figure 1 is valid for this Figure 4A.
El sistema de corte comprende adicionalmente un módulo de corte (3) que incluye un segundo emisor láser (3.1) con capacidad de ablación configurado para incidir mediante un haz láser en un punto (P) de la región (R) operatoria. The cutting system further comprises a cutting module (3) that includes a second laser emitter (3.1) with ablation capacity configured to impinge by means of a laser beam at a point (P) of the operative region (R).
Mediante los componentes que permiten configurar el sistema de distinción de tejido se lleva a cabo la distinción del tejido en los puntos (P) de la discretización donde el tejido se ha distinguido entre los tejidos sobre los que se puede llevar a cabo una operación de ablación. By means of the components that allow to configure the tissue distinction system, the tissue distinction is carried out at the points (P) of the discretization where the tissue has been distinguished between the tissues on which an ablation operation can be carried out .
Si bien en la figura 4A se muestra el haz láser de ablación emitido por el segundo emisor láser (3.1) en el mismo punto (P) donde incide el haz láser del primer emisor (2.1) láser, los puntos donde incide uno y otro pueden ser distintos. Es más, el primer emisor láser (2.1) establece un barrido inicial para distinguir el tejido en la totalidad de la región (R) operatoria antes de que el segundo emisor láser (3.1) actúe dado que la ponderación requiere de la media previa en un entorno del punto donde se lleva a cabo la ablación. Although figure 4A shows the ablation laser beam emitted by the second laser emitter (3.1) at the same point (P) where the laser beam of the first laser emitter (2.1) hits, the points where one and the other hit can be different. Moreover, the first laser emitter (2.1) establishes an initial scan to distinguish the tissue in the entire operative region (R) before the second laser emitter (3.1) acts since the weighting requires the previous average in a around the point where the ablation is performed.
La figura 4B muestra una variante del ejemplo de realización mostrado en la figura 4A donde el módulo de medida (2) y el módulo de corte (3) comparten elementos o componentes ópticos (4) de forma que el tramo final del haz láser del primer emisor (2.1) del módulo de medida (2) y el tramo final del haz láser del segundo emisor (3.1) del módulo de corte (3) son coaxiales al salir de los dichos elementos o componentes ópticos (4). Esta configuración permite seguir una trayectoria a lo largo de la región (R) operatoria alternando la emisión del haz láser emitido por el primer emisor (2.1) láser y la emisión del haz láser emitido por el segundo emisor (3.1) láser de tal modo que ambos inciden sobre los mismos puntos de la trayectoria. Figure 4B shows a variant of the embodiment shown in figure 4A where the measurement module (2) and the cutting module (3) share optical elements or components (4) so that the final section of the laser beam of the first emitter (2.1) of the measurement module (2) and the final section of the laser beam of the second emitter (3.1) of the cutting module (3) are coaxial when leaving said elements or optical components (4). This configuration allows a path to be followed along the operative region (R) by alternating the emission of the laser beam emitted by the first laser emitter (2.1) and the emission of the laser beam emitted by the second laser emitter (3.1) in such a way that both affect the same points of the trajectory.
La figura 5A muestra una región (R) operatoria discretizada por filas con nodos con diferente distancia dando lugar a una discretización no estructurada y fuertemente direccionalizada según la dirección horizontal siguiendo la orientación de la figura. Figure 5A shows an operative region (R) discretized by rows with nodes with different spacing giving rise to an unstructured and strongly directional discretization according to the horizontal direction following the orientation of the figure.
En cada punto de la discretización se representa un círculo de pequeño diámetro en gris o en negro. Cuanto más cercano al negro, el círculo representa tejido que no admite el corte. Esto es, ahora son los círculos claros los que indican regiones en las que sí se lleva a cabo el corte o ablación. Este es el caso en que se quiere llevar a cabo una ablación de hueso dejando intacto cualquier tejido que no es hueso. Eso evita por ejemplo dañar nervios y vasos sanguíneos próximos al hueso. At each point of the discretization a small diameter circle is represented in gray or black. The closer to black, the circle represents tissue that does not support cutting. That is, now it is the clear circles that indicate regions in which the cut or ablation is carried out. This is the case in which you want to carry out a bone ablation leaving any non-bone tissue intact. This avoids, for example, damaging nerves and blood vessels near the bone.
Tras una primera operación de distinción se tiene un conjunto puntos con valores obtenidos mediante el módulo de medida (2). Tras la obtención de valores de medida se ha llevado a cabo una etapa de ponderación de tal modo que puntos en los que la medida no ha sido posible obtenerla se tiene un valor ponderado que permite igualmente llevar a cabo una distinción del tejido. Incluso de este modo, existen regiones donde el número de celdas (C) en los que no ha sido posible obtener una medida es muy elevado y la ponderación tampoco es posible porque tanto el punto asociado a una celda (C) como el resto de celdas (C) de la estrella (S) de discretización no están disponibles. After a first distinguishing operation, there is a set of points with values obtained by the measurement module (2). After obtaining the measurement values, a weighting step has been carried out in such a way that points at which the measurement has not been possible to obtain it, a weighted value is obtained that also makes it possible to carry out a distinction of the fabric. Even in this way, there are regions where the number of cells (C) in which it has not been possible to obtain a measurement is very high and the weighting is not possible either because both the point associated with a cell (C) and the rest of cells (C) star (S) discretization are not available.
Según un ejemplo de realización aplicable a todos los ejemplos anteriores, establece un criterio en el que se determina cuántos valores disponibles en la estrella de discretización permiten el cálculo del valor ponderado. According to an exemplary embodiment applicable to all the previous examples, it establishes a criterion in which it is determined how many available values in the discretization star allow the calculation of the weighted value.
Hasta ahora el criterio de distinción de tejido se ha descrito considerando dos tipos de tejido, aquel que admite el corte o ablación y el que no admite el corte. Un modo de establecer este criterio aplicable a cualquiera de los ejemplos descritos consiste en establecer para al menos un parámetro ponderado un primer sub-rango de valores de medida que corresponde a valores del parámetro para los cuales se considera que es un tejido para el que no es viable llevar a cabo una operación de ablación. Para los valores del parámetro fuera del sub-rango se considera que es un tejido para el que sí es viable llevar a cabo la operación de ablación. Until now, the tissue distinction criterion has been described considering two types of tissue, one that admits cutting or ablation and one that does not allow cutting. One way of establishing this criterion applicable to any of the examples described is to establish a first sub-range of measurement values for at least one weighted parameter that corresponds to values of the parameter for which it is considered to be a tissue for which no it is feasible to carry out an ablation operation. For the Parameter values outside the sub-range are considered to be a tissue for which it is feasible to carry out the ablation operation.
Otros criterios más específicos establecen un conjunto de sub-rangos disjuntos; esto es, no teniendo solapamiento y cubriendo la totalidad de los valores que puede tomar el valor ponderado que se utilizará para aplicar el criterio. Para cada uno de los sub rangos se establece una correspondencia con un tipo de tejido de modo que, para cada valor ponderado de una determinada celda (C), se identifica el sub-rango en el que se encuentra dicho valor y así el tipo de tejido que le corresponde. Other more specific criteria establish a set of disjoint sub-ranges; that is, having no overlap and covering all the values that the weighted value that will be used to apply the criterion can take. For each of the sub-ranges a correspondence is established with a type of tissue so that, for each weighted value of a certain cell (C), the sub-range in which said value is found is identified and thus the type of tissue that corresponds to it.
Según otro ejemplo de realización también aplicable a cualquiera de los ejemplos descritos el resultado de la discriminación que establece si es viable llevar a cabo una operación de ablación en el tejido obtenida en uno o más puntos (P) de la región (R) operatoria se almacena en la estructura de datos (DS). Un modo específico de almacenamiento de los valores almacenados en las celdas (C) de la estructura de datos (DS) es mediante variables binarias donde estas variables toman un primer valor binario si el resultado de la discriminación establece que es viable llevar a cabo una operación de ablación o un segundo valor binario en cualquier otro caso. According to another embodiment, also applicable to any of the examples described, the result of the discrimination that establishes whether it is feasible to carry out an ablation operation on the tissue obtained at one or more points (P) of the operative region (R) is stored in the data structure (DS). A specific way of storing the values stored in the cells (C) of the data structure (DS) is through binary variables where these variables take a first binary value if the result of the discrimination establishes that it is feasible to carry out an operation ablation or a second binary value in any other case.
Según otro ejemplo de realización también aplicable a cualquiera de los ejemplos descritos la etapa vii) de distinción del tejido adicionalmente comprende la According to another embodiment example also applicable to any of the examples described, step vii) of distinguishing the fabric additionally comprises the
determinación de un parámetro indicativo del grado de pureza de dicho tejido, o dicho de otro modo, un parámetro indicativo del grado de seguridad en la decisión como consecuencia de la claridad con la que es posible establecer el criterio de decisión a partir de la medida. Determination of a parameter indicative of the degree of purity of said fabric, or in other words, a parameter indicative of the degree of security in the decision as a consequence of the clarity with which it is possible to establish the decision criterion from the measurement.
Tal y como se ha indicado anteriormente, el sistema de corte comprende los elementos del sistema de discriminación de tejido y un módulo de corte (3) que comprende un segundo emisor láser (3.1) con capacidad de ablación configurado para incidir mediante un haz láser en un punto (P) de la región (R) operatoria. As previously indicated, the cutting system comprises the elements of the tissue discrimination system and a cutting module (3) comprising a second laser emitter (3.1) with ablation capacity configured to impinge by means of a laser beam on a point (P) of the operative region (R).
Adicionalmente, para uno o más puntos (P) candidatos correspondientes a la discretización (D) de la región (R) de operación, si el tejido no está clasificado como tejido no viable para llevar a cabo la operación de ablación, el sistema provee una señal al módulo de corte para que emita un haz láser mediante el segundo emisor láser (3.1) en el punto (P) candidato de la región (R) operatoria. Esta señal según un ejemplo preferido está provisto por la unidad central de proceso (1). En este ejemplo de realización descrito con ayuda de las figuras 5A y 5B, el láser de corte generado por segundo emisor láser (3.1) tiene un mayor diámetro (D2) comparado con el diámetro (DI) del primer emisor (2.1) láser utilizado por el módulo de medida (2). Este mayor diámetro (D2) se representa en la figura 5A, ampliado en la figura 5B, mediante un círculo en torno al punto central donde se hace incidir el haz láser de ablación emitido por el segundo emisor láser (3.1). Additionally, for one or more candidate points (P) corresponding to the discretization (D) of the operating region (R), if the tissue is not classified as non-viable tissue to carry out the ablation operation, the system provides a signal to the cutting module to emit a laser beam through the second laser emitter (3.1) at the candidate point (P) of the operative region (R). This signal according to a preferred example is provided by the central processing unit (1). In this embodiment described with the aid of Figures 5A and 5B, the cutting laser generated by the second laser emitter (3.1) has a larger diameter (D2) compared to the diameter (DI) of the first laser emitter (2.1) used by the measuring module (2). This larger diameter (D2) is represented in Figure 5A, enlarged in Figure 5B, by a circle around the central point where the ablation laser beam emitted by the second laser emitter (3.1) is impinged.
El tener un mayor diámetro (D2) implica que una operación de ablación segura requiere que sea necesario disponer de más información que la información puntual que provee una medida como la que provee un haz láser de mucho menor Having a larger diameter (D2) implies that a safe ablation operation requires that it be necessary to have more information than the specific information provided by a measurement such as that provided by a laser beam of much smaller
diámetro (DI), el del primer emisor láser (3.1). Según la invención, la distinción de tejidos biológicos permite proveer de información del tejido en una región en torno al punto donde se hace incidir el haz láser emitido por el segundo emisor láser (3.1). diameter (ID), that of the first laser emitter (3.1). According to the invention, the distinction of biological tissues makes it possible to provide information on the tissue in a region around the point where the laser beam emitted by the second laser emitter (3.1) is impinged.
La figura 5B muestra con mayor detalle cómo el segundo emisor láser (3.1) hace incidir el haz láser en lugares donde la región de influencia alcanza tejidos identificados como tejidos sobre los que se puede llevar a cabo la ablación pudiendo alcanzar uno o más puntos vecinos cuando éstos corresponden a tejido sobre el que no se ha de llevar a cabo la ablación si éstos están suficientemente alejados o dependiendo del grado de certidumbre. Figure 5B shows in greater detail how the second laser emitter (3.1) imposes the laser beam in places where the region of influence reaches tissues identified as tissues on which the ablation can be carried out, being able to reach one or more neighboring points when these correspond to tissue on which the ablation must not be carried out if they are sufficiently far apart or depending on the degree of certainty.
En la misma figura 5A y 5B se observa cómo en el método llevado a cabo, el segundo emisor láser (3.1) se aplica secuencialmente sobre puntos de la región (R) operatoria donde el tejido ha sido clasificado como apto para llevar a cabo la ablación donde estos puntos están suficientemente próximos como para que la región de diámetro mayor (D2) del haz láser de este segundo emisor láser (3.1) tenga solapamiento. En este ejemplo específico, un mismo punto del tejido puede estar en el área de influencia de hasta 4 o 5 haces láser del segundo emisor láser (3.1). Esta región por lo tanto recibirá energía del haz láser del segundo emisor láser (3.1) durante una pluralidad de veces antes de llevar a cabo una nueva medida mediante el módulo de medida (2). El grado de solapamiento es un parámetro ajustable en el sistema. In the same figure 5A and 5B it is observed how in the method carried out, the second laser emitter (3.1) is applied sequentially on points of the operative region (R) where the tissue has been classified as suitable for carrying out the ablation. where these points are close enough so that the region of greater diameter (D2) of the laser beam of this second laser emitter (3.1) has overlap. In this specific example, the same tissue point can be in the area of influence of up to 4 or 5 laser beams of the second laser emitter (3.1). This region will therefore receive energy from the laser beam of the second laser emitter (3.1) for a plurality of times before carrying out a new measurement by the measurement module (2). The degree of overlap is an adjustable parameter in the system.
Para evitar llevar a cabo operaciones de corte sobre tejido que no debe ser cortado, en un ejemplo de realización aplicable a cualquiera de los ejemplos descritos, tras una o más acciones de ablación sobre la región (R) operatoria mediante la emisión con el segundo emisor láser (3.1) se llevan a cabo las etapas iii) a vii) en uno o más puntos (P) de la discretización (D) afectados por la o las acciones de ablación, actualizando de este modo el valor de las celdas (C) que determinan el tejido bajo el criterio de distinción de tejido. In order to avoid carrying out cutting operations on tissue that should not be cut, in an embodiment applicable to any of the examples described, after one or more ablation actions on the operative region (R) by means of emission with the second laser emitter (3.1), steps iii) to vii) are carried out at one or more points (P) of the discretization (D) affected by the ablation action (s), thus updating the value of the cells ( C) that determine the tissue under the criterion of tissue distinction.
Respecto a la actualización de los valores de medida adquiridos por el módulo de medida (2) y almacenados en cada una de las celdas (C), se ha descrito que la operación de ablación modifica las condiciones del tejido y, la toma de más medidas mediante el módulo de medida (2) permite mantener actualizada la estructura de datos (DS) donde se representan los tipos de tejido evitando aplicar el láser del segundo emisor láser (3.1) en regiones que no deben ser cortadas. Regarding the updating of the measurement values acquired by the measurement module (2) and stored in each of the cells (C), it has been described that the ablation operation modifies the tissue conditions and, the taking of more measurements By means of the measurement module (2) it allows to keep updated the data structure (DS) where the types of tissue are represented avoiding applying the laser of the second laser emitter (3.1) in regions that should not be cut.
No obstante, hay más situaciones que pueden justificar una mayor toma de medidas mediante el módulo de medida (2) como es la generación de residuos durante la operación de corte o la aparición de líquidos que pueden modificar las condiciones del tejido. However, there are more situations that can justify taking more measurements using the measurement module (2), such as the generation of residues during the cutting operation or the appearance of liquids that can modify the conditions of the fabric.
Igualmente, el láser de corte emitido por el haz láser del segundo emisor láser (3.1) también puede tener una influencia sobre regiones fuera de su diámetro (D2) por ejemplo por efectos térmicos que se propagan en regiones próximas. Similarly, the cutting laser emitted by the laser beam of the second laser emitter (3.1) can also have an influence on regions outside its diameter (D2), for example by thermal effects propagating in neighboring regions.
Este daño acumulado puede estar identificado en la estructura de datos (DS) por ejemplo contabilizando el número de emisiones del haz láser de corte emitidos por el segundo emisor láser (3.1). This accumulated damage can be identified in the data structure (DS) for example by counting the number of emissions of the cutting laser beam emitted by the second laser emitter (3.1).
Según un ejemplo de realización aplicable cualquiera de los ejemplos descritos, antes de emitir un haz láser mediante el segundo emisor láser (3.1) se lleva a cabo una medida en uno o más puntos (P) de la discretización (D) en los que se preestablece que se verían afectados por el láser de corte en una emisión de un haz láser aplicada en el punto (P) de la región (R) operatoria que corresponde a la celda (C) candidato. According to an exemplary embodiment applicable to any of the examples described, before emitting a laser beam by means of the second laser emitter (3.1) a measurement is carried out at one or more points (P) of the discretization (D) at which preset that they would be affected by the cutting laser in an emission of a laser beam applied at the point (P) of the operative region (R) corresponding to the candidate cell (C).
El módulo de medida (2), si bien no emite un haz láser de corte, también puede generar un pequeño daño en la superficie. Éste es el caso de un haz láser que genera una pluma de plasma (F). Aunque no se lleven a cabo operaciones de corte en una determinada región, la aplicación acumulada del haz láser emitido por el módulo de medida (2) puede llegar a generar un daño acumulado excesivo. Según un ejemplo de realización de la invención aplicable a otros ejemplos de realización descritos lleva a cabo un recuento de las veces que se aplica un haz láser de medida emitido por el módulo de medida (2) en un mismo punto, inhibiendo posteriores medidas por parte del módulo de medida (2) una vez alcanzado un número máximo preestablecido limitando de este modo el daño acumulado. The measurement module (2), although it does not emit a cutting laser beam, can also cause little damage to the surface. This is the case with a laser beam that generates a plasma pen (F). Although no cutting operations are carried out in a certain region, the accumulated application of the laser beam emitted by the measurement module (2) can generate excessive accumulated damage. According to an example of embodiment of the invention applicable to other described embodiments carries out a count of the times that a measurement laser beam emitted by the measurement module (2) is applied at the same point, inhibiting subsequent measurements by the measurement module (2) once a preset maximum number has been reached thereby limiting the accumulated damage.
Según un ejemplo de realización la ablación en la región (R) operatoria se lleva a cabo a lo largo de una trayectoria pre-establecida. Según un caso específico la ablación se establece sobre un área configurando una trayectoria que cubre dicha área. Por ejemplo las figuras 5A y 5B cubren el área mediante una trayectoria que va barriendo consecutivamente por filas horizontales la totalidad de la región (R) operatoria. According to an exemplary embodiment, the ablation in the operative region (R) is carried out along a pre-established path. According to a specific case, the ablation is established over an area, configuring a path that covers said area. For example, Figures 5A and 5B cover the area by means of a trajectory that consecutively sweeps through horizontal rows the entire operating region (R).
En la implementación del método de corte o ablación haciendo uso de una trayectoria, la secuencia de celdas (C) candidato que determinan la trayectoria se establece en función de las dimensiones de la estrella (S) de discretización de tal modo que las celdas (C) candidato de la trayectoria tienen estrellas (S) de discretización con solapamiento. La trayectoria no tiene porqué ser tal que conecta puntos (P) de la discretización pero sí que son identificables aquellos puntos más próximos a dicha trayectoria. La imposición del nivel de solapamiento garantiza una mayor continuidad en la trayectoria trazada por el láser de corte y un mayor grado también de seguridad de estar actuando sobre tejido clasificado como apto para el corte. Según el ejemplo preferido el solapamiento es entre el 20% y el 80% y más preferentemente entre el 30% y el 70%. Según un ejemplo específico, el solapamiento es entre el 40% y el 60%. In the implementation of the cutting or ablation method using a trajectory, the sequence of candidate cells (C) that determine the trajectory is established based on the dimensions of the discretization star (S) in such a way that the cells (C ) candidate trajectory have overlapping discretization stars (S). The trajectory does not have to be such that it connects points (P) of the discretization, but the points closest to said trajectory are identifiable. The imposition of the level of overlap guarantees greater continuity in the path traced by the cutting laser and also a greater degree of security when acting on tissue classified as suitable for cutting. According to the preferred example the overlap is between 20% and 80% and more preferably between 30% and 70%. According to a specific example, the overlap is between 40% and 60%.
Es objeto de esta invención el sistema que comprende el conjunto de elementos que permiten la distinción de tejidos según cualquiera de los ejemplos descritos donde la unidad central de proceso (1) está configurada para proveer de señales que gobiernan a los elementos de dicho sistema para llevar a cabo cualquiera de los ejemplos de realización del método de discriminación descritos. The object of this invention is the system that comprises the set of elements that allow the distinction of fabrics according to any of the examples described where the central processing unit (1) is configured to provide signals that govern the elements of said system to carry carry out any of the described discrimination method embodiments.
Es también objeto de esta invención el sistema que comprende el conjunto de elementos que permiten la distinción de tejidos y su ablación o corte según cualquiera de los ejemplos descritos donde la unidad central de proceso (1) está configurada para proveer de señales que gobiernan a los elementos de dicho sistema para llevar a cabo cualquiera de los ejemplos de realización del método que combina la discriminación y el corte o ablación descritos. Another object of this invention is the system that comprises the set of elements that allow the distinction of tissues and their ablation or cutting according to any of the examples described where the central processing unit (1) is configured to provide signals that govern the elements of said system to carry out any of the exemplary embodiments of the method that combines discrimination and cutting or ablation described.

Claims

REI VINDICACIONES REI VINDICATIONS
1.- Un método de distinción de tejidos biológicos en una región operatoria que comprende: 1.- A method of distinguishing biological tissues in an operative region that comprises:
a) un módulo de medida (2) de parámetros del tejido biológico para medir en al menos un punto (P) de la región (R) operatoria que comprende: a) a measurement module (2) of parameters of the biological tissue to measure at least one point (P) of the operative region (R) comprising:
o un primer emisor (2.1) óptico configurado para emitir un haz de luz or a first optical emitter (2.1) configured to emit a beam of light
incidente en modo operativo en un punto (P) de la región (R) operatoria; o un sensor óptico (2.2) que comprende una salida (2.2.1) para proveer de una medida, configurado para que en modo operativo lleve a cabo una lectura de los fotones (F) resultantes de la interacción de la emisión del haz de luz del primer emisor óptico al incidir sobre un punto (P) de la región (R) operatoria y envíe la medida a través de la salida (2.2.1); incident in operational mode at a point (P) in the operational region (R); or an optical sensor (2.2) that comprises an output (2.2.1) to provide a measurement, configured so that in operating mode it carries out a reading of the photons (F) resulting from the interaction of the emission of the light beam of the first optical emitter when it hits a point (P) in the operative region (R) and sends the measurement through the output (2.2.1);
b) una unidad central de proceso (1) que comprende una memoria (1.1) para b) a central processing unit (1) comprising a memory (1.1) for
almacenar al menos estructuras de datos (DS); store at least data structures (DS);
donde el método de distinción de tejidos biológicos comprende las siguientes etapas: i. establecer una discretización (D) de puntos de la región (R) operatoria; where the method of distinguishing biological tissues comprises the following stages: i. establishing a discretization (D) of points of the operative region (R);
ii. instanciar mediante la unidad central de proceso (1) una estructura de ii. instantiate through the central processing unit (1) a structure of
datos (DS) compuesta por celdas (C) donde cada celda (C) está configurada para almacenar parámetros medidos en uno de los puntos (P) de la discretización de la región (R) operatoria; data (DS) composed of cells (C) where each cell (C) is configured to store parameters measured at one of the points (P) of the discretization of the operative region (R);
iii. para una pluralidad de celdas (C) de la estructura de datos (DS) llevar a cabo una medida por medio del módulo de medida (2) en el punto de la región (R) operatoria correspondiente a dicha celda (C) y almacenar en la celda (C) o bien la medida o bien un parámetro calculado a partir de la medida; iii. for a plurality of cells (C) of the data structure (DS) carry out a measurement by means of the measurement module (2) at the point of the operative region (R) corresponding to said cell (C) and store in cell (C) either the measure or a parameter calculated from the measure;
iv. para cada una de las celdas (C) de la estructura de datos (DS) definir una iv. for each of the cells (C) of the data structure (DS) define a
estrella (S) de discretización que contiene dicha celda (C) y una o más celdas (C) correspondientes a puntos del entorno del punto (P) asociado a la dicha celda (C); discretization star (S) containing said cell (C) and one or more cells (C) corresponding to points around the point (P) associated with said cell (C);
v. para cada una de las celdas (C) de la estructura de datos (DS) llevar a cabo una ponderación de los valores almacenados y disponibles en las celdas (C) de su estrella (S) de discretización; v. for each of the cells (C) of the data structure (DS) carrying out a weighting of the values stored and available in the cells (C) of its discretization star (S);
vi. definir un criterio de distinción de tejido en función de los valores de medida ponderada y; saw. define a tissue distinction criterion based on the weighted measurement values and;
vii. determinar el tejido para cada punto de la discretización de la región (R) vii. determine the tissue for each point of the discretization of the region (R)
operatoria aplicando el criterio de distinción a los valores ponderados en la etapa v) en cada celda (C) asociada a dicho punto (P). operating by applying the distinction criterion to the weighted values in the step v) in each cell (C) associated with said point (P).
2.- Método según la reivindicación 1, donde el sensor óptico (2.2) es un 2.- Method according to claim 1, wherein the optical sensor (2.2) is a
espectrómetro. spectrometer.
3.- Método según la reivindicación 2, donde: 3.- Method according to claim 2, where:
el primer emisor óptico (2.1) es un primer emisor láser y, the first optical emitter (2.1) is a first laser emitter and,
el espectrómetro (2.2) está configurado para: the spectrometer (2.2) is configured to:
o llevar a cabo en modo operativo una lectura de la pluma de plasma (F) generada por el primer emisor láser (2.1) al ser disparado sobre un punto (P) de la región (R) operatoria y or carry out in operational mode a reading of the plasma pen (F) generated by the first laser emitter (2.1) when it is fired on a point (P) of the operative region (R) and
o enviar el espectro a través de la salida (2.2.1). or send the spectrum through the output (2.2.1).
4.- Método según cualquiera de las reivindicaciones anteriores, donde la 4.- Method according to any of the preceding claims, wherein the
discretización (D) es una discretización regular y estructurada. discretization (D) is a regular and structured discretization.
5.- Método según la reivindicación 4, donde la discretización (D) corresponde a una malla hexagonal. 5. Method according to claim 4, where the discretization (D) corresponds to a hexagonal mesh.
6.- Método según la reivindicación 4, donde la discretización (D) corresponde a una malla cartesiana. 6. Method according to claim 4, where the discretization (D) corresponds to a Cartesian mesh.
7.- Método según cualquiera de las reivindicaciones anteriores, donde adicionalmente, los valores ponderados en un punto de la región (R) operatoria son almacenados en la celda (C) correspondiente de la estructura de datos (DS). 7. Method according to any of the preceding claims, wherein additionally, the weighted values at a point in the operating region (R) are stored in the corresponding cell (C) of the data structure (DS).
8.- Método según cualquiera de las reivindicaciones anteriores, donde adicionalmente, el instante en que ha sido realizada la medida en un punto de la región (R) operatoria es almacenado en la celda (C) correspondiente de la estructura de datos (DS), y la ponderación de la etapa v) lleva a cabo adicionalmente una ponderación que asigna a cada elemento de la celda de discretización un peso inversamente proporcional a su antigüedad, de modo que se da más importancia a los puntos medidos más 8.- Method according to any of the preceding claims, wherein additionally, the instant in which the measurement has been performed at a point in the operative region (R) is stored in the corresponding cell (C) of the data structure (DS) , and the weighting of step v) additionally carries out a weighting that assigns to each element of the discretization cell a weight inversely proportional to its age, so that more importance is given to the most measured points.
recientemente y se disminuye el peso de las medidas con mayor obsolescencia. recently, and the weight of the most obsolete measures has decreased.
9.- Método según cualquiera de las reivindicaciones anteriores, donde el criterio de distinción de tejido establece para al menos un parámetro ponderado un primer sub- rango de valores de medida que corresponde a valores del parámetro para los cuales se considera que es un tejido para el que no es viable llevar a cabo una operación de ablación. 9.- Method according to any of the preceding claims, wherein the tissue distinction criterion establishes for at least one weighted parameter a first sub- range of measurement values corresponding to parameter values for which it is considered to be a tissue for which it is not feasible to carry out an ablation operation.
10.- Método según la reivindicación anterior, donde adicionalmente se almacena en la estructura de datos (DS) el resultado de la discriminación que establece si es viable llevar a cabo una operación de ablación en el tejido obtenido en uno o más puntos (P) de la región (R) operatoria. 10.- Method according to the preceding claim, where additionally the result of the discrimination that establishes whether it is feasible to carry out an ablation operation on the tissue obtained at one or more points (P) is stored in the data structure (DS) of the (R) operative region.
11.- Método según cualquiera de las reivindicaciones anteriores, donde el resultado de la medida o un parámetro determinado a partir de dicha medida se almacena no solamente en la celda (C) correspondiente de la estructura de datos (DS) para cada punto (P) donde se ha llevado a cabo la medida sino también en una o más celdas (C) de su estrella (S) de discretización. 11.- Method according to any of the preceding claims, where the result of the measurement or a parameter determined from said measurement is stored not only in the corresponding cell (C) of the data structure (DS) for each point (P ) where the measurement has been carried out but also in one or more cells (C) of its discretization star (S).
12.- Método según la reivindicación 10 u 11, donde si el resultado de la discriminación establece que no es viable llevar a cabo una operación de ablación en uno o más puntos (P) de la región (R) operatoria, dicho resultado de la discriminación se almacena no solamente en la celda (C) correspondiente de la estructura de datos (DS) para cada punto (P) donde se ha llevado a cabo la discriminación sino también en una o más celdas (C) de su estrella (S) de discretización. 12.- Method according to claim 10 or 11, where if the result of the discrimination establishes that it is not feasible to carry out an ablation operation in one or more points (P) of the operative region (R), said result of the Discrimination is stored not only in the corresponding cell (C) of the data structure (DS) for each point (P) where the discrimination has been carried out but also in one or more cells (C) of its star (S) discretization.
13.- Método según las reivindicaciones anteriores, donde la etapa vii) de distinción del tejido adicionalmente comprende la determinación de un parámetro indicativo del grado de pureza de dicho tejido. 13. Method according to the preceding claims, wherein step vii) of distinguishing the tissue additionally comprises determining a parameter indicative of the degree of purity of said tissue.
14.- Método según cualquiera de las reivindicaciones anteriores, donde los valores almacenados en las celdas (C) de la estructura de datos (DS) son binarios, tomando un primer valor binario si el resultado de la discriminación establece que es viable llevar a cabo una operación de ablación o un segundo valor binario en cualquier otro caso. 14.- Method according to any of the preceding claims, where the values stored in the cells (C) of the data structure (DS) are binary, taking a first binary value if the result of the discrimination establishes that it is feasible to carry out an ablation operation or a second binary value in any other case.
15.- Método según cualquiera de las reivindicaciones anteriores, donde la pluralidad de la etapa iii) corresponde a la totalidad de las celdas (C) de la estructura de datos (DS). 15. Method according to any of the preceding claims, wherein the plurality of step iii) corresponds to all the cells (C) of the data structure (DS).
16.- Método según cualquiera de las reivindicaciones anteriores, donde la estrella (S) de discretización (D) está formada por un conjunto de celdas (C) en configuración cartesiana y que forman una configuración rectangular con la celda (C) central la celda candidato. 16. Method according to any of the preceding claims, where the star (S) of discretization (D) is formed by a set of cells (C) in Cartesian configuration and that form a rectangular configuration with the central cell (C) the candidate cell.
17.- Método según la reivindicación anterior, donde las celdas (C) en configuración cartesiana están distribuidas en filas y en columnas y; donde el número de filas de celdas de la estrella (S) de discretización, el número columnas de la estrella (S) de discretización o ambas es impar. 17. Method according to the preceding claim, wherein the cells (C) in Cartesian configuration are distributed in rows and columns and; where the number of rows of cells of the discretization star (S), the number of columns of the discretization star (S), or both is odd.
18.- Método según cualquiera de las reivindicaciones anteriores, donde el sistema compuesto por los elementos a) y b), adicionalmente comprende: 18. Method according to any of the preceding claims, wherein the system composed of elements a) and b), additionally comprises:
c) un módulo de corte (3) que comprende un segundo emisor láser (3.1) con c) a cutting module (3) comprising a second laser emitter (3.1) with
capacidad de ablación configurado para incidir mediante un haz láser en un punto (P) de la región (R) operatoria y, ablation capacity configured to strike a laser beam at a point (P) in the operative region (R) and,
donde para uno o más puntos (P) candidatos correspondientes a la discretización (D) de la región (R) de operación, si el tejido no está clasificado como tejido no viable para llevar a cabo la operación de ablación, se provee una señal al módulo de corte para que emita un haz láser mediante el segundo emisor láser (3.1) en el punto (P) candidato de la región (R) operatoria. where for one or more candidate points (P) corresponding to the discretization (D) of the operation region (R), if the tissue is not classified as non-viable tissue to carry out the ablation operation, a signal is provided to the cutting module to emit a laser beam through the second laser emitter (3.1) at the candidate point (P) of the operative region (R).
19.- Método según la reivindicación anterior, donde los haces del primer emisor láser (2.1) y del segundo emisor láser (3.1) son coaxiales al menos en el último tramo antes de incidir en la región (R) operatoria. 19. Method according to the preceding claim, wherein the beams of the first laser emitter (2.1) and of the second laser emitter (3.1) are coaxial at least in the last section before striking the operative region (R).
20.- Método según la reivindicación 18 o 19, donde el diámetro (D2) del haz láser en un punto (P) de la región (R) operatoria del segundo emisor láser (3.1) empleado para ablación es mayor en dicho punto que el diámetro (DI) del primer haz de luz empleado para medir. 20. Method according to claim 18 or 19, wherein the diameter (D2) of the laser beam at a point (P) of the operative region (R) of the second laser emitter (3.1) used for ablation is greater at said point than the diameter (ID) of the first light beam used to measure.
21.- Método según cualquiera de las reivindicaciones 18 a 20, donde tras una o más acciones de ablación sobre la región (R) operatoria mediante la emisión con el segundo láser (3.1) se llevan a cabo las etapas iii) a vii) en uno o más puntos (P) de la discretización (D) afectados por la o las acciones de ablación. 21.- Method according to any of claims 18 to 20, wherein after one or more ablation actions on the operative region (R) by means of the emission with the second laser (3.1), steps iii) to vii) are carried out in one or more points (P) of the discretization (D) affected by the ablation action (s).
22.- Método según cualquiera de las reivindicaciones 18 a 21, donde la ablación en la región (R) operatoria se lleva a cabo a lo largo de una trayectoria pre-establecida. 22.- Method according to any of claims 18 to 21, wherein the ablation in the operative region (R) is carried out along a pre-established path.
23.- Método la reivindicación anterior, donde la ablación se establece sobre un área configurando una trayectoria que cubre dicha área. 23.- Method of the preceding claim, where the ablation is established over an area by configuring a path that covers said area.
24.- Método según la reivindicación 22 o 23, donde la secuencia de celdas (C) candidato que determinan la trayectoria se establece en función de las dimensiones de la estrella (S) de discretización de tal modo que las celdas (C) candidato de la trayectoria tienen estrellas (S) de discretización con solapamiento. 24.- Method according to claim 22 or 23, where the sequence of candidate cells (C) that determine the trajectory is established as a function of the dimensions of the discretization star (S) in such a way that the candidate cells (C) of the trajectory have overlapping discretization stars (S).
25.- Método según la reivindicación anterior, donde el solapamiento es entre el 20% y el 80%. 25.- Method according to the preceding claim, where the overlap is between 20% and 80%.
26.- Método según cualquiera de las reivindicaciones 18 a 25, donde antes de emitir un haz láser mediante el segundo emisor láser (3.1) se lleva a cabo una medida en uno o más puntos (P) de la discretización (D) en los que se preestablece que se verían afectados por el láser de corte en una emisión de un haz láser aplicada en el punto (P) de la región (R) operatoria que corresponde a la celda (C) candidato. 26.- Method according to any of claims 18 to 25, wherein before emitting a laser beam by means of the second laser emitter (3.1) a measurement is carried out at one or more points (P) of the discretization (D) in the It is preset that they would be affected by the cutting laser in an emission of a laser beam applied at the point (P) of the operative region (R) that corresponds to the candidate cell (C).
27.- Método según cualquiera de las reivindicaciones 18 a 26, donde para cada celda (C) la unidad central de proceso (1) lleva a cabo un recuento de las medidas llevadas a cabo en dicha celda (C). 27. Method according to any of claims 18 to 26, wherein for each cell (C) the central processing unit (1) carries out a count of the measurements carried out in said cell (C).
28.- Método según la reivindicación anterior, donde aquellas celdas (C) 28.- Method according to the preceding claim, where those cells (C)
correspondientes a puntos (P) de la región (R) operatoria para las cuales se ha realizado un determinado número de lecturas con un resultado según el cual se considera que es un tejido para el que no es viable llevar a cabo una operación de ablación, aunque no se haya llevado a cabo una emisión láser con el segundo láser (3.1), se bloquean impidiendo llevar a cabo posteriores lecturas mediante el módulo de medida (2) en tales puntos. corresponding to points (P) of the operative region (R) for which a certain number of readings have been performed with a result according to which it is considered to be a tissue for which it is not feasible to carry out an ablation operation, Even if a laser emission has not been carried out with the second laser (3.1), they are blocked, preventing further readings by the measurement module (2) at such points.
29.- Un sistema de distinción de tejidos que comprende 29.- A system for distinguishing fabrics that includes
a) un módulo de medida (2) de parámetros del tejido biológico para medir en al menos un punto (2) de la región (R) operatoria que comprende: a) a measurement module (2) of biological tissue parameters to measure in at least one point (2) of the operative region (R) comprising:
o un primer emisor óptico (2.1) configurado para emitir un haz de luz or a first optical emitter (2.1) configured to emit a beam of light
incidente en modo operativo en un punto (P) de la región (R) operatoria; o un sensor óptico (2.2) que comprende una salida (2.2.1) para proveer de una medida, configurado para que en modo operativo lleve a cabo una lectura de los fotones (F) resultantes de la interacción de la emisión del primer emisor óptico (2.1) al incidir sobre un punto (P) de la región (R) operatoria y envíe la medida a través de la salida (2.2.1); incident in operational mode at a point (P) in the operational region (R); or an optical sensor (2.2) that includes an output (2.2.1) to provide a measurement, configured so that in operational mode it carries out a reading of the photons (F) resulting from the interaction of the emission of the first optical emitter (2.1) when incident on a point (P) of the operative region (R) and send the measurement through the output (2.2.1);
b) una unidad central de proceso (1) que comprende una memoria (1.1) para b) a central processing unit (1) comprising a memory (1.1) for
almacenar al menos estructuras de datos (DS); store at least data structures (DS);
donde la unidad central de proceso (1) está configurada para llevar a cabo un control de los elementos a)-b) y que, en modo operativo, lleven a cabo un método según cualquiera de las etapas 1 a 17. where the central processing unit (1) is configured to carry out a control of the elements a) -b) and that, in operational mode, carry out a method according to any of the steps 1 to 17.
30. Un sistema de corte que comprende 30. A cutting system comprising
a) un módulo de medida (2) de parámetros del tejido biológico para medir en al menos un punto (2) de la región (R) operatoria que comprende: a) a measurement module (2) of biological tissue parameters to measure in at least one point (2) of the operative region (R) comprising:
o un primer emisor óptico (2.1) configurado para emitir un haz de luz or a first optical emitter (2.1) configured to emit a beam of light
incidente en modo operativo en un punto (P) de la región (R) operatoria; o un sensor óptico (2.2) que comprende una salida (2.2.1) para proveer de una medida, configurado para que en modo operativo lleve a cabo una lectura de los fotones (F) resultantes de la interacción de la emisión del primer emisor óptico (2.1) al incidir sobre un punto (P) de la región (R) operatoria y envíe la medida a través de la salida (2.2.1); incident in operational mode at a point (P) in the operational region (R); or an optical sensor (2.2) that includes an output (2.2.1) to provide a measurement, configured so that in operating mode it carries out a reading of the photons (F) resulting from the interaction of the emission of the first optical emitter (2.1) when impacting on a point (P) of the operative region (R) and sending the measurement through the output (2.2.1);
b) una unidad central de proceso (1) que comprende una memoria (1.1) para b) a central processing unit (1) comprising a memory (1.1) for
almacenar al menos estructuras de datos (DS); store at least data structures (DS);
c) un módulo de corte (3) que comprende un segundo emisor láser (3.1) con c) a cutting module (3) comprising a second laser emitter (3.1) with
capacidad de ablación configurado para incidir mediante un haz láser en un punto (P) de la región (R) operatoria. ablation capacity configured to strike a laser beam at a point (P) in the operative region (R).
donde la unidad central de proceso (1) está configurada para llevar a cabo un control de los elementos a)-c) y que, en modo operativo, lleven a cabo un método según cualquiera de las etapas 1 a 28. where the central processing unit (1) is configured to carry out a control of the elements a) -c) and that, in operational mode, carry out a method according to any of the steps 1 to 28.
PCT/ES2019/070212 2019-03-28 2019-03-28 Method and device for distinguishing biological tissues in a surgical region WO2020193822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070212 WO2020193822A1 (en) 2019-03-28 2019-03-28 Method and device for distinguishing biological tissues in a surgical region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070212 WO2020193822A1 (en) 2019-03-28 2019-03-28 Method and device for distinguishing biological tissues in a surgical region

Publications (1)

Publication Number Publication Date
WO2020193822A1 true WO2020193822A1 (en) 2020-10-01

Family

ID=66690398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070212 WO2020193822A1 (en) 2019-03-28 2019-03-28 Method and device for distinguishing biological tissues in a surgical region

Country Status (1)

Country Link
WO (1) WO2020193822A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049403A1 (en) * 2015-09-22 2017-03-30 University Health Network System and method for optimized mass spectrometry analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049403A1 (en) * 2015-09-22 2017-03-30 University Health Network System and method for optimized mass spectrometry analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAZARI MILAD ET AL: "Cellular-level mass spectrometry imaging using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) by oversampling", ANALYTICAL AND BIOANALYTICAL CHEMISTRY, SPRINGER, DE, vol. 407, no. 8, 9 December 2014 (2014-12-09), pages 2265 - 2271, XP035467713, ISSN: 1618-2642, [retrieved on 20141209], DOI: 10.1007/S00216-014-8376-5 *

Similar Documents

Publication Publication Date Title
JP6231148B2 (en) Exposure control using digital radiation detectors
CN103391747B (en) Space engraving in 3D data acquisition
ES2969279T3 (en) OCT image processing
ES2905279T3 (en) Non-contact egg identification system to determine the viability of eggs, and associated procedure
JP2019509474A (en) 3D imaging based on LIDAR with overlapping illumination in the far field
ES2966846T3 (en) Parameters for use in particle discrimination
ES2702725T3 (en) Ophthalmic image formation system with automatic detection of retinal characteristics
CN103338692A (en) System and method of scan controlled illumination of structures within an eye
ES2854729T3 (en) Method and system for the detection of self-expanding endoprosthesis, or stent, absorbable intravascular
ES2715561T3 (en) Surface treatment apparatus
BR112015018748B1 (en) container inspection
HUT65808A (en) A method for testing quality of an ophthalmic lens
JP2005509469A (en) Range expansion system, spatial filter and related method for high quality Hartman-Shack images
JPWO2018185807A1 (en) Distance information processing apparatus, distance information processing method, and distance information processing program
CN109557550A (en) Three-dimensional solid-state laser radar apparatus and system
JP6614796B2 (en) Ground surface moisture information acquisition method, ground surface moisture information acquisition device, and program
EP1188070B1 (en) Device for detecting and locating a radioactive source emitting gamma rays, use of same
WO2020193822A1 (en) Method and device for distinguishing biological tissues in a surgical region
JP6772150B2 (en) Devices and methods for measuring the activity of active ingredients against nematodes and other organisms in underwater tests
CN113164285A (en) Method and device for determining the minimum value of the laser energy required for bubble formation
ES2967662T3 (en) Procedure and system for emitting and receiving laser pulses
CN208481360U (en) Medical image system and multi-mode imaging system
JP2011169845A (en) Sorting method of surveying data, sorting device of surveying data and recording medium containing recorded surveying data
ES2608701T3 (en) Integrated gradient search with local imaging in laser surgical system
US11653830B2 (en) Multi-view ophthalmic diagnostic systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19728099

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19728099

Country of ref document: EP

Kind code of ref document: A1