WO2020193170A2 - Système de substitution pour fumeur - Google Patents
Système de substitution pour fumeur Download PDFInfo
- Publication number
- WO2020193170A2 WO2020193170A2 PCT/EP2020/056763 EP2020056763W WO2020193170A2 WO 2020193170 A2 WO2020193170 A2 WO 2020193170A2 EP 2020056763 W EP2020056763 W EP 2020056763W WO 2020193170 A2 WO2020193170 A2 WO 2020193170A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aerosol
- consumable
- puff
- heating element
- smoking substitute
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/57—Temperature control
Definitions
- the present invention relates to a smoking substitute device and particularly, although not exclusively, to a smoking substitute device.
- Conventional combustible smoking articles such as cigarettes, typically comprise a cylindrical rod of tobacco comprising shreds of tobacco which is surrounded by a wrapper, and usually also a cylindrical filter axially aligned in an abutting relationship with the wrapped tobacco rod.
- the filter typically comprises a filtration material which is circumscribed by a plug wrap.
- the wrapped tobacco rod and the filter are joined together by a wrapped band of tipping paper that circumscribes the entire length of the filter and an adjacent portion of the wrapped tobacco rod.
- a conventional cigarette of this type is used by lighting the end opposite to the filter, and burning the tobacco rod. The smoker receives mainstream smoke into their mouth by drawing on the mouth end or filter end of the cigarette.
- Such smoking substitute systems can form part of nicotine replacement therapies aimed at people who wish to stop smoking and overcome a dependence on nicotine.
- Smoking substitute systems include electronic systems that permit a user to simulate the act of smoking by producing an aerosol (also referred to as a“vapour”) that is drawn into the lungs through the mouth (inhaled) and then exhaled.
- aerosol also referred to as a“vapour”
- the inhaled aerosol typically bears nicotine and/or flavourings without, or with fewer of, the odour and health risks associated with traditional smoking.
- smoking substitute systems are intended to provide a substitute for the rituals of smoking, whilst providing the user with a similar experience and satisfaction to those experienced with traditional smoking and with combustible tobacco products.
- Some smoking substitute systems use smoking substitute articles (also referred to as a“consumables”) that are designed to resemble a traditional cigarette and are cylindrical in form with a mouthpiece at one end.
- HT Heated Tobacco
- HNB Heat not burn
- the tobacco may be leaf tobacco or reconstituted tobacco.
- the vapour may contain nicotine and/or flavourings.
- the intention is that the tobacco is heated but not burned, i.e. the tobacco does not undergo combustion.
- a typical HT smoking substitute system may include a device and a consumable.
- the consumable may include the tobacco material.
- the device and consumable may be configured to be physically coupled together.
- heat may be imparted to the tobacco material by a heating element of the device, wherein airflow through the tobacco material causes components in the tobacco material to be released as vapour.
- a vapour may also be formed from a carrier in the tobacco material (this carrier may for example include propylene glycol and/or vegetable glycerine) and additionally volatile compounds released from the tobacco.
- the released vapour may be entrained in the airflow drawn through the tobacco.
- the vapour passes through the consumable (entrained in the airflow) from the location of vaporisation to an outlet of the consumable (e.g. a mouthpiece), the vapour cools and condenses to form an aerosol for inhalation by the user.
- the aerosol will normally contain the volatile compounds.
- HT smoking substitute systems heating as opposed to burning the tobacco material is believed to cause fewer, or smaller quantities, of the more harmful compounds ordinarily produced during smoking. Consequently, the HT approach may reduce the odour and/or health risks that can arise through the burning, combustion and pyrolytic degradation of tobacco.
- the present invention relates to smoking substitute device to change operation by determining puff duration.
- a smoking substitute device comprising: a puff measurement means configured to measure a puff duration associated with a user puff action; and a controller configured to change an operating temperature of a heating element of the smoking substitute device, based on the measured puff duration.
- a smoking substitute device comprising a controller configured to change operating temperature of a heating element based on puff duration associated with a user puff action
- the device provides adaptive heating of the heating element to counteract the effect of the user puff on temperature. This may provide an improved user experience.
- the change of operating temperature includes an increase in operating temperature.
- the change of temperature occurs during the user puff action.
- the change of temperature occurs during a subsequent user puff action.
- the controller changes the operating temperature when the measured puff duration is greater than a predefined threshold duration.
- the controller increases the operating temperature to a predefined elevated temperature.
- the controller increases the operating temperature until the user puff action ends.
- the puff measurement means includes a puff sensor.
- the substitute smoking device is a heat not burn device.
- a method of operating a smoking substitute device comprising: measuring a puff duration associated with a user puff action of the smoking substitute device; and changing an operating temperature of a heating element of the smoking substitute device, based on the measured puff duration.
- the operating temperature is increased when the puff duration is greater than a predefined threshold value.
- the operating temperature is increased to a predefined elevated temperature.
- the operating temperature is increased until the user puff action ends.
- the operating temperature is gradually increases until the user puff action ends.
- a substitute smoking system comprising: a device according to the first aspect or a device operated according to the second aspect; and an aerosol-forming article.
- a method of a system according the third aspect comprising: inserting the aerosol-forming article into the device; and operating the device to heat the aerosol-forming article using a heating element of the device.
- the device may comprise an elongate body.
- An end of the elongate body may be configured for engagement with an aerosol-forming article.
- the body may be configured for engagement with a heated tobacco (HT) consumable (or heat-not-burn (HNB) consumable) or an e-cigarette consumable.
- HT heated tobacco
- HNB heat-not-burn
- the terms“heated tobacco” and“heat-not-burn” are used interchangeably herein to describe a consumable that is of the type that is heated rather than combusted (or are used
- the device may comprise a cavity that is configured for receipt of at least a portion of the consumable (i.e. for engagement with the consumable).
- the aerosol-forming article may be of the type that comprises an aerosol former (e.g. carried by an aerosol-forming substrate).
- the device may comprise a heater for heating the aerosol-forming article.
- the heater may comprise a heating element, which may be in the form of a rod that extends from the body of the device.
- the heating element may extend from the end of the body that is configured for engagement with the aerosolforming article.
- the heater (and thus the heating element) may be rigidly mounted to the body.
- the heating element may be elongate so as to define a longitudinal axis and may, for example, have a transverse profile (i.e. transverse to a longitudinal axis of the heating element) that is substantially circular (i.e. the heating element may be generally cylindrical).
- the heating element may have a transverse profile that is rectangular (i.e. the heater may be a“blade heater”).
- the heating element may alternatively be in the shape of a tube (i.e. the heater may be a“tube heater”).
- the heating element may take other forms (e.g. the heating element may have an elliptical transverse profile).
- the shape and/or size (e.g. diameter) of the transverse profile of the heating element may be generally consistent for the entire length (or substantially the entire length) of the heating element.
- the heating element may be between 15 mm and 25 mm long, e.g. between 18 mm and 20 mm long, e.g. around 19 mm long.
- the heating element may have a diameter of between 1 .5 mm and 2.5 mm, e.g. a diameter between 2 mm and 2.3 mm, e.g. a diameter of around 2.15 mm.
- the heating element may be formed of ceramic.
- the heating element may comprise a core (e.g. a ceramic core) comprising AI203.
- the core of the heating element may have a diameter of 1 .8 mm to 2.1 mm, e.g. between 1 .9 mm and 2 mm.
- the heating element may comprise an outer layer (e.g. an outer ceramic layer) comprising AI203.
- the thickness of the outer layer may be between 160 pm and 220 pm, e.g. between 170 pm and 190 pm, e.g. around 180 pm.
- the heating element may comprise a heating track, which may extend longitudinally along the heating element.
- the heating track may be sandwiched between the outer layer and the core of the heating element.
- the heating track may comprise tungsten and/or rhenium.
- the heating track may have a thickness of around 20 pm.
- the heating element may be located in the cavity (of the device), and may extend (e.g. along a longitudinal axis) from an internal base of the cavity towards an opening of the cavity.
- the length of the heating element i.e. along the longitudinal axis of the heater
- the heating element may be less than the depth of the cavity.
- the heating element may extend for only a portion of the length of the cavity. That is, the heating element may not extend through (or beyond) the opening of the cavity.
- the heating element may be configured for insertion into an aerosol-forming article (e.g. a HT consumable) when an aerosol-forming article is received in the cavity.
- a distal end (i.e. distal from a base of the heating element where it is mounted to the device) of the heating element may comprise a tapered portion, which may facilitate insertion of the heating element into the aerosol-forming article.
- the heating element may fully penetrate an aerosol-forming article when the aerosol-forming article is received in the cavity. That is, the entire length, or substantially the entire length, of the heating element may be received in the aerosol-forming article.
- the heating element may have a length that is less than, or substantially the same as, an axial length of an aerosol-forming substrate forming part of an aerosol-forming article (e.g. a HT consumable).
- an aerosol-forming substrate forming part of an aerosol-forming article (e.g. a HT consumable).
- the heating element may only penetrate the aerosol-forming substrate, rather than other components of the aerosol-forming article.
- the heating element may penetrate the aerosol-forming substrate for substantially the entire axial length of the aerosol forming-substrate of the aerosol-forming article.
- heat may be transferred from (e.g. an outer circumferential surface of) the heating element to the surrounding aerosol-forming substrate, when penetrated by the heating element. That is, heat may be transferred radially outwardly (in the case of a cylindrical heating element) or e.g. radially inwardly (in the case of a tube heater).
- the heating element of the tube heater may surround at least a portion of the cavity.
- the heating element may surround a portion of the aerosol-forming article (i.e. so as to heat that portion of the aerosol-forming article).
- the heating element may surround an aerosol forming substrate of the aerosol-forming article. That is, when an aerosol-forming article is engaged with the device, the aerosol forming substrate of the aerosol-forming article may be located adjacent an inner surface of the (tubular) heating element. When the heating element is activated, heat may be transferred radially inwardly from the inner surface of the heating element to heat the aerosol forming substrate.
- the cavity may comprise a (e.g. circumferential) wall (or walls) and the (tubular) heating element may extend around at least a portion of the wall(s).
- the wall may be located between the inner surface of the heating element and an outer surface of the aerosol-forming article.
- the wall (or walls) of the cavity may be formed from a thermally conductive material (e.g. a metal) to allow heat conduction from the heating element to the aerosol-forming article.
- heat may be conducted from the heating element, through the cavity wall (or walls), to the aerosol-forming substrate of an aerosolforming article received in the cavity.
- the heater may form part of an aerosol-forming article for use with the device.
- the device may not comprise a heater.
- the aerosol-forming article may comprise a heater.
- Such arrangements may, for example, be suited to e-cigarette systems in which the aerosolforming article comprises a tank containing an aerosol former (e.g. in liquid form).
- the device may comprise means for connecting the device the heater of an aerosol-forming article engaged with the device.
- the device may comprise one or more device connectors for (e.g. electrically) connecting the device to a corresponding heater connector of the aerosol-forming article.
- the connectors may be in the form of electrically conductive elements (e.g. plates) that contact when the aerosol-forming article is engaged with the device.
- the device may comprise a cap disposed at the end of the body that is configured for engagement with an aerosol-forming article.
- the cap may at least partially enclose the heating element.
- the cap may be moveable between an open position in which access is provided to the heating element, and a closed position in which the cap at least partially encloses the heating element.
- the cap may be slideably engaged with the body of the device, and may be slideable between the open and closed positions.
- the cap may define at least a portion of the cavity of the device. That is, the cavity may be fully defined by the cap, or each of the cap and body may define a portion of the cavity. Where the cap fully defines the cavity, the cap may comprise an aperture for receipt of the heating element into the cavity (when the cap is in the closed position).
- the cap may comprise an opening to the cavity. The opening may be configured for receipt of at least a portion of an aerosol-forming article. That is, an aerosolforming article may be inserted through the opening and into the cavity (so as to be engaged with the device).
- the cap may be configured such that when an aerosol-forming article is engaged with the device (e.g. received in the cavity), only a portion of the aerosol-forming article is received in the cavity. That is, a portion of the aerosol-forming article (not received in the cavity) may protrude from (i.e. extend beyond) the opening.
- This (protruding) portion of the aerosol-forming article may be a terminal (e.g. mouth) end of the aerosol-forming article, which may be received in a user’s mouth for the purpose of inhaling aerosol formed by the device.
- the device may comprise a power source or may be connectable to a power source (e.g. a power source separate to the device).
- the power source may be electrically connectable to the heater. In that respect, altering (e.g. toggling) the electrical connection of the power source to the heater may affect a state of the heater. For example, toggling the electrical connection of the power source to the heater may toggle the heater between an on state and an off state.
- the power source may be a power store.
- the power source may be a battery or rechargeable battery (e.g. a lithium ion battery).
- the device may comprise an input connection (e.g. a USB port, Micro USB port, USB-C port, etc.).
- the input connection may be configured for connection to an external source of electrical power, such as a mains electrical supply outlet.
- the input connection may, in some cases, be used as a substitute for an internal power source (e.g. battery or rechargeable battery). That is, the input connection may be electrically connectable to the heater (for providing power to the heater).
- the input connection may form at least part of the power source of the device.
- the input connection may be used to charge and recharge the power source.
- the device may comprise a user interface (Ul).
- the Ul may include input means to receive operative commands from the user.
- the input means of the Ul may allow the user to control at least one aspect of the operation of the device.
- the input means may comprise a power button to switch the device between an on state and an off state.
- the Ul may additionally or alternatively comprise output means to convey information to the user.
- the output means may comprise a light to indicate a condition of the device (and/or the aerosol-forming article) to the user.
- the condition of the device (and/or aerosol-forming article) indicated to the user may comprise a condition indicative of the operation of the heater.
- the condition may comprise whether the heater is in an off state or an on state.
- the Ul unit may comprise at least one of a button, a display, a touchscreen, a switch, a light, and the like.
- the output means may comprise one or more (e.g. two, three, four, etc.) light-emitting diodes (“LEDs”) that may be located on the body of the device.
- the device may further comprise a puff sensor (e.g. airflow sensor), which form part of the input means of the Ul.
- the puff sensor may be configured to detect a user drawing on an end (i.e. a terminal (mouth) end) of the aerosol-forming article.
- the puff sensor may, for example, be a pressure sensor or a microphone.
- the puff sensor may be configured to produce a signal indicative of a puff state.
- the signal may be indicative of the user drawing (an aerosol from the aerosol-forming article) such that it is e.g. in the form of a binary signal.
- the puff sensor may be configured to measure puff duration of a user puff action.
- the signal may be indicative of such puff duration.
- the signal may be indicative of a characteristic of the draw (e.g. a flow rate of the draw, length of time of the draw, etc).
- the device may comprise a controller, or may be connectable to a controller that may be configured to control at least one function of the device.
- the controller may comprise a microcontroller that may e.g. be mounted on a printed circuit board (PCB).
- the controller may also comprise a memory, e.g. nonvolatile memory.
- the memory may include instructions, which, when implemented, may cause the controller to perform certain tasks or steps of a method. Where the device comprises an input connection, the controller may be connected to the input connection.
- the controller may be configured to control the operation of the heater (and e.g. the heating element).
- the controller may be configured to control vaporisation of an aerosol forming part of an aerosol-forming article engaged with the device.
- the controller may be configured to control the voltage applied by power source to the heater.
- the controller may be configured to toggle between applying a full output voltage (of the power source) to the heater and applying no voltage to the heater.
- the control unit may implement a more complex heater control protocol.
- the device may further comprise a voltage regulator to regulate the output voltage supplied by the power source to form a regulated voltage.
- the regulated voltage may subsequently be applied to the heater.
- the controller may be operatively connected to one or more components of the Ul.
- the controller may be configured to receive command signals from an input means of the Ul.
- the controller may be configured to control the heater in response to the command signals.
- the controller may be configured to receive“on” and“off command signals from the Ul and, in response, may control the heater so as to be in a corresponding on or off state.
- the controller may be configured to send output signals to a component of the Ul.
- the Ul may be configured to convey information to a user, via an output means, in response to such output signals (received from the controller).
- the LEDs may be operatively connected to the controller.
- the controller may configured to control the illumination of the LEDs (e.g. in response to an output signal).
- the controller may be configured to control the illumination of the LEDs according to (e.g. an on or off) state of the heater.
- the controller may be operatively connected to the sensor.
- the controller may be configured to receive a signal from the sensor (e.g. indicative of a condition of the device and/or engaged aerosol-forming article).
- the controller may be configured to control the heater, or an aspect of the output means, based on the signal from the sensor.
- the controller may be operatively connected to the puff sensor to receive the signal from the puff sensor.
- the controller may be configured to receive the puff duration measured by the puff sensor. The controller may therefore be able to change an operating temperature of the heating element based on the puff.
- the device may comprise a wireless interface configured to communicate wirelessly (e.g. via Bluetooth (e.g. a Bluetooth low-energy connection) or WiFi) with an external device.
- the input connection may be configured for wired connection to an external device so as to provide communication between the device and the external device.
- the external device may be a mobile device.
- the external device may be a smart phone, tablet, smart watch, or smart car.
- An application e.g. app
- the application may facilitate communication between the device and the external device via the wired or wireless connection.
- the wireless or wired interface may be configured to transfer signals between the external device and the controller of the device.
- the controller may control an aspect of the device in response to a signal received from an external device.
- an external device may respond to a signal received from the device (e.g. from the controller of the device).
- a system comprising a device according to the first aspect and an aerosol-forming article.
- the aerosol-forming article may comprise an aerosol-forming substrate at an upstream end of the aerosol-forming article.
- the article may be in the form of a smoking substitute article, e.g. heated tobacco (HT) consumable (also known as a heat-not-burn (HNB) consumable).
- HT heated tobacco
- HNB heat-not-burn
- the terms’’upstream” and“downstream” are intended to refer to the flow direction of the vapour/aerosol i.e. with the downstream end of the article/consumable being the mouth end or outlet where the aerosol exits the consumable for inhalation by the user.
- the upstream end of the vapour/aerosol i.e. with the downstream end of the article/consumable being the mouth end or outlet where the aerosol exits the consumable for inhalation by the user.
- the article/consumable is the opposing end to the downstream end.
- the aerosol-forming substrate is capable of being heated to release at least one volatile compound that can form an aerosol.
- the aerosol-forming substrate may be located at the upstream end of the article/consumable.
- the aerosol-forming substrate comprises at least one volatile compound that is intended to be vaporised/aerosolised and that may provide the user with a recreational and/or medicinal effect when inhaled.
- Suitable chemical and/or physiologically active volatile compounds include the group consisting of: nicotine, cocaine, caffeine, opiates and opoids, cathine and cathinone, kavalactones, mysticin, beta-carboline alkaloids, salvinorin A together with any combinations, functional equivalents to, and/or synthetic alternatives of the foregoing.
- the aerosol-forming substrate may comprise plant material.
- the plant material may comprise least one plant material selected from the list including Amaranthus dubius, Arctostaphylos uva-ursi
- the plant material may be tobacco. Any type of tobacco may be used. This includes, but is not limited to, flue-cured tobacco, burley tobacco, Maryland Tobacco, dark-air cured tobacco, oriental tobacco, dark-fired tobacco, perique tobacco and rustica tobacco. This also includes blends of the above mentioned tobaccos.
- the tobacco may comprise one or more of leaf tobacco, stem tobacco, tobacco powder, tobacco dust, tobacco derivatives, expanded tobacco, homogenised tobacco, shredded tobacco, extruded tobacco, cut rag tobacco and/or reconstituted tobacco (e.g. slurry recon or paper recon).
- the aerosol-forming substrate may comprise a gathered sheet of homogenised (e.g. paper/slurry recon) tobacco or gathered shreds/strips formed from such a sheet.
- homogenised e.g. paper/slurry recon
- the aerosol-forming substrate may comprise one or more additives selected from humectants, flavourants, fillers, aqueous/non-aqueous solvents and binders.
- the flavourant may be provided in solid or liquid form. It may include menthol, liquorice, chocolate, fruit flavour (including e.g. citrus, cherry etc.), vanilla, spice (e.g. ginger, cinnamon) and tobacco flavour.
- the flavourant may be evenly dispersed throughout the aerosol-forming substrate or may be provided in isolated locations and/or varying concentrations throughout the aerosol-forming substrate.
- the aerosol-forming substrate may be formed in a substantially cylindrical shape such that the article/consumable resembles a conventional cigarette. It may have a diameter of between 5 and 10mm e.g. between 6 and 9mm or 6 and 8mm e.g. around 7 mm. It may have an axial length of between 10 and 15mm e.g. between 1 1 and 14mm such as around 12 or 13mm.
- the article/consumable may comprise at least one filter element. There may be a terminal filter element at the downstream/mouth end of the article/consumable.
- the or at least one of the filter element(s) may be comprised of cellulose acetate or polypropylene tow.
- the at least one filter element e.g. the terminal filter element
- the at least one filter element may be comprised of activated charcoal.
- the at least one filter element (e.g. the terminal element) may be comprised of paper.
- the or each filter element may be at least partly (e.g. entirely) circumscribed with a plug wrap e.g. a paper plug wrap.
- the terminal filter element (at the downstream end of the article/consumable) may be joined to the upstream elements forming the article/consumable by a circumscribing tipping layer e.g. a tipping paper layer.
- the tipping paper may have an axial length longer than the axial length of the terminal filter element such that the tipping paper completely circumscribes the terminal filter element plus the wrapping layer surrounding any adjacent upstream element.
- the article/consumable may comprise an aerosol-cooling element which is adapted to cool the aerosol generated from the aerosol-forming substrate (by heat exchange) before being inhaled by the user.
- the article/consumable may comprise a spacer element that defines a space or cavity between the aerosol-forming substrate and the downstream end of the consumable.
- the spacer element may comprise a cardboard tube.
- the spacer element may be circumscribed by the (paper) wrapping layer.
- the system may be in the form of an e-cigarette system (i.e. rather than a heated tobacco system as described above).
- the consumable may be in the form of an e-cigarette consumable.
- the e-cigarette system may be configured such that the consumable can be received and retained in the cavity of the device (i.e. so as to be engaged with the device).
- the consumable may be retained by way of e.g. an interference fit, screwing one onto (or onto) the other, a bayonet fitting, or by way of a snap engagement mechanism.
- the consumable may comprise a tank, which may define a reservoir for the storage of an aerosol former.
- the aerosol former may be in the form of an e-liquid (stored in the reservoir).
- the consumable may be a“single-use” consumable. That is, upon exhausting the e-liquid in the tank, the intention may be that the user disposes of the entire consumable.
- the e-liquid may be the only part of the system that is truly“single-use”.
- the tank may be refillable with e- liquid or another component of the system (internal to the device or external to the device e.g. a refillable cartomizer) may define a reservoir for the e-liquid.
- the consumable may comprise a heater (i.e. instead of the heater forming part of the device) configured to heat and vaporise the e-liquid.
- the consumable may comprise a porous wick that conveys e-liquid from the tank to a heating element of the heater.
- the heating element may be a heating filament that is wound (e.g. helically) around at least a portion of the porous wick, such that when the heating element is heated (e.g. by the action of electrical current passing through the heating element), heat may be transferred from the heating element to the e-liquid conveyed by the wick. This transfer of heat may vaporise the e-liquid and the resultant vapour may be entrained in an airflow passing through the consumable.
- the consumable may further comprise one or more heater connectors for connecting the heater (of the consumable) to the device.
- the heater connectors may be in the form of electrically conductive element or contacts (e.g. metal plates) and may be disposed on an in-use device-facing surface of the consumable.
- the heater connectors may be electrically connected to the heater of the consumable, such that electricity supplied via the heater connectors may pass to the heater.
- a voltage applied across the heater connectors may generally correspond to a voltage applied across the heating element of the heater.
- the heater connectors may be arranged such that they contact corresponding device connectors of the device when the consumable is engaged with the device.
- the device connectors may be connected (e.g. electrically) to a power source (e.g. battery) of the device.
- a power source e.g. battery
- electricity may be supplied from the power source to the heating element, via in-contact heater and device connectors.
- the heater forming part of the consumable may operate (and interact with e.g. a controller) as otherwise described above with respect to a heater forming part of the device.
- a method of using the system according to the third aspect comprising inserting the aerosol-forming article into the device; and heating the article using the heater of the device.
- the method may comprise inserting the article into a cavity within a body of the device and penetrating the article with the heating element of the device upon insertion of the article.
- the invention includes the combination of the aspects and preferred features described except where such a combination is clearly impermissible or expressly avoided.
- Figure 1 A is a schematic of a smoking substitute system
- Figure 1 B is a schematic of a variation of the smoking substitute system of Figure 1 A;
- Figure 2A is a front view of a first embodiment of a smoking substitute system with the consumable engaged with the device;
- Figure 2B is a front view of the first embodiment of the smoking substitute system with the consumable disengaged from the device;
- Figure 2C is a section view of the consumable of the first embodiment of the smoking substitute system
- Figure 2D is a detailed view of an end of the device of the first embodiment of the smoking substitute system
- Figure 2E is a section view of the first embodiment of the substitute smoking system
- Figure 3A is a front view of a second embodiment of a smoking substitute system with the consumable engaged with the device.
- Figure 3B is a front view of a second embodiment of the smoking substitute system with the consumable disengaged from the device.
- FIG. 1A is a schematic providing a general overview of a smoking substitute system 100.
- the system 100 includes a substitute smoking device 101 and an aerosol-forming article in the form of a consumable 102, which comprises an aerosol former 103.
- the system is configured to vaporise the aerosol former by heating the aerosol former 103 (so as to form a vapour/aerosol for inhalation by a user).
- the heater 104 forms part of the consumable 102 and is configured to heat the aerosol former 103. Heat from the heater 104 vaporises the aerosol former 103 to produce a vapour. The vapour subsequently condenses to form an aerosol, which is ultimately inhaled by the user.
- the system 100 further comprises a power source 105 that forms part of the device 101.
- the power source 105 may be external to (but connectable to) the device 101.
- the power source 105 is electrically connectable to the heater 104 such that it is able to supply power to the heater
- control of the electrical connection of the power source 105 to the heater 104 provides control of the state of the heater 104.
- 105 may be a power store, for example a battery or rechargeable battery (e.g. a lithium ion battery).
- a battery or rechargeable battery e.g. a lithium ion battery
- the system 100 further comprises an I/O module comprising a connector 106 (e.g. in the form of a USB port, Micro USB port, USB-C port, etc.).
- the connector 106 is configured for connection to an external source of electrical power, e.g. a mains electrical supply outlet.
- the connector 106 may be used in substitution for the power source 105. That is the connector 106 may be electrically connectable to the heater 104 so as to supply electricity to the heater 104.
- the device may not include a power source, and the power source of the system may instead comprise the connector 106 and an external source of electrical power (to which the connector 106 provides electrical connection).
- the connector 106 may be used to charge and recharge the power source 105 where the power source 104 includes a rechargeable battery.
- the system 100 also comprises a user interface (Ul) 107.
- the Ul 107 may include input means to receive commands from a user.
- the input means of the Ul 107 allows the user to control at least one aspect of the operation of the system 100.
- the input means may, for example, be in the form of a button, touchscreen, switch, microphone, etc.
- the Ul 107 also comprises output means to convey information to the user.
- the output means may, for example, comprise lights (e.g. LEDs), a display screen, speaker, vibration generator, etc.
- the system 100 further comprises a controller 108 that is configured to control at least one function of the device 101 .
- the controller 108 is a component of the device 101 , but in other embodiments may be separate from (but connectable to) the device 101 .
- the controller 108 is configured to control the operation of the heater 104 and, for example, may be configured to control the voltage applied from the power source 105 to the heater 104.
- the controller 108 may be configured to toggle the supply of power to the heater 105 between an on state, in which the full output voltage of the power source 105 is applied to the heater 104, and an off state, in which the no voltage is applied to the heater 104.
- the system 100 may also comprise a voltage regulator to regulate the output voltage from the power source 105 to form a regulated voltage.
- the regulated voltage may then be applied to the heater 104.
- the controller 108 In addition to being connected to the heater 104, the controller 108 is operatively connected to the Ul 107. Thus, the controller 108 may receive an input signal from the input means of the Ul 107.
- the controller 108 may transmit output signals to the Ul 107.
- the output means of the Ul 107 may convey information, based on the output signals, to a user.
- Figure 1 B is a schematic showing a variation of the system 100 of Figure 1A.
- the heater 104 forms part of the consumable 102, rather than the device 101 .
- the heater 104 is electrically connectable to the power source 105, for example, when the consumable 102 is engaged with the device 101 .
- the systems 100, 100’ of Figures 1A and 1 B may be implemented as one of two broad categories of system, each in accordance with the present invention: a heated tobacco (HT) system or an e-cigarette system.
- HT heated tobacco
- e-cigarette e-cigarette
- FIGS. 2A and 2B illustrate a heated-tobacco (HT) smoking substitute system 200.
- the system is a heated-tobacco (HT) smoking substitute system 200.
- System 200 is an example of the systems 100, 100’ described in relation to Figures 1A or 1 B.
- System 200 includes an HT device 201 and an HT consumable 202.
- the description of Figures 1A and 1 B above is applicable to the system 200 of Figures 2A and 2B, and will thus not be repeated.
- the device 201 and the consumable 202 are configured such that the consumable 202 can be engaged with the device 201 .
- Figure 2A shows the device 201 and the consumable 202 in an engaged state
- Figure 2B shows the device 201 and the consumable 202 in a disengaged state.
- the device 201 comprises a body 209 and cap 210.
- the cap 209 is engaged at an end of the body 209.
- the cap 210 is moveable relative to the body 209.
- the cap 210 is slideable and can slide along a longitudinal axis of the body 209.
- the device 201 comprises an output means (forming part of the Ul of the device 201) in the form of a plurality of light-emitting diodes (LEDs) 21 1 arranged linearly along the longitudinal axis of the device
- a button 212 is also arranged on an outer surface of the body 209 of the device 201 and is axially spaced (i.e. along the longitudinal axis) from the plurality of LEDs 21 1 .
- FIG. 2C shows a detailed section view of the consumable of 202 of the system 200.
- the consumable 202 generally resembles a cigarette.
- the consumable 202 has a generally cylindrical form with a diameter of 7 mm and an axial length of 70 mm.
- the consumable 202 comprises an aerosol forming substrate 213, a terminal filter element 214, an upstream filter element 215 and a spacer element 216.
- the consumable may further comprise a cooling element.
- a cooling element may exchange heat with vapour that is formed by the aerosol-forming substrate 213 in order to cool the vapour so as to facilitate condensation of the vapour.
- the aerosol-forming substrate 213 is substantially cylindrical and is located at an upstream end 217 of the consumable 202, and comprises the aerosol former of the system 200.
- the aerosol forming substrate 213 is configured to be heated by the device 201 to release a vapour.
- the released vapour is subsequently entrained in an airflow flowing through the aerosol-forming substrate 213.
- the airflow is produced by the action of the user drawing on a downstream 218 (i.e. terminal or mouth end) of the consumable 202.
- the aerosol forming substrate 213 comprises tobacco material that may, for example, include any suitable parts of the tobacco plant (e.g. leaves, stems, roots, bark, seeds and flowers).
- the tobacco may comprise one or more of leaf tobacco, stem tobacco, tobacco powder, tobacco dust, tobacco derivatives, expanded tobacco, homogenised tobacco, shredded tobacco, extruded tobacco, cut rag tobacco and/or reconstituted tobacco (e.g. slurry recon or paper recon).
- the aerosol-forming substrate 213 may comprise a gathered sheet of homogenised (e.g.
- the aerosol forming substrate 213 comprises at least one volatile compound that is intended to be vaporised/aerosolised and that may provide the user with a recreational and/or medicinal effect when inhaled.
- the aerosol-forming substrate 213 may further comprise one or more additives.
- additives may be in the form of humectants (e.g. propylene glycol and/or vegetable glycerine), flavourants, fillers, aqueous/non-aqueous solvents and/or binders.
- the terminal filter element 214 is also substantially cylindrical, and is located downstream of the aerosol forming substrate 213 at the downstream end 218 of the consumable 202.
- the terminal filter element 214 is in the form of a hollow bore filter element having a bore 219 (e.g. for airflow) formed therethrough. The diameter of the bore 219 is 2 mm.
- the terminal filter element 214 is formed of a porous (e.g. monoacetate) filter material.
- the downstream end 218 of the consumable 202 i.e. where the terminal filter 214 is located
- Airflow is drawn from the upstream end 217, thorough the components of the consumable 202, and out of the downstream end 218.
- the airflow is driven by the user drawing on the downstream end 218 (i.e. the mouthpiece portion) of the consumable 202.
- the upstream filter element 215 is located axially adjacent to the aerosol-forming substrate 213, between the aerosol-forming substrate 213 and the terminal filter element 214. Like the terminal filter 214, the upstream filter element 215 is in the form of a hollow bore filter element, such that it has a bore 220 extending axially therethrough. In this way, the upstream filter 215 may act as an airflow restrictor.
- the upstream filter element 215 is formed of a porous (e.g. monoacetate) filter material.
- the bore 220 of the upstream filter element 214 has a larger diameter (3 mm) than the terminal filter element 214.
- the spacer 216 is in the form of a cardboard tube, which defines a cavity or chamber between the upstream filter element 215 and the terminal filter element 214.
- the spacer 216 acts to allow both cooling and mixing of the vapour/aerosol from the aerosol-forming substrate 213.
- the spacer has an external diameter of 7 mm and an axial length of 14mm.
- the aerosol-forming substrate 213, upstream filter 215 and spacer 216 are circumscribed by a paper wrapping layer.
- the terminal filter 214 is circumscribed by a tipping layer that also circumscribes a portion of the paper wrapping layer (so as to connect the terminal filter 214 to the remaining components of the consumable 202).
- the upstream filter 215 and terminal filter 214 are circumscribed by further wrapping layers in the form of plug wraps.
- FIG. 2D illustrates a detailed view of the end of the device 201 that is configured to engage with the consumable 202.
- the cap 210 of the device 201 includes an opening 221 to an internal cavity 222 (more apparent from Figure 2D) defined by the cap 210.
- the opening 221 and the cavity 222 are formed so as to receive at least a portion of the consumable 202.
- a portion of the consumable 202 is received through the opening 221 and into the cavity 222.
- the downstream end 218 of the consumable 202 protrudes from the opening 221 and thus also protrudes from the device 201.
- the opening 221 includes laterally disposed notches 226. When a consumable 202 is received in the opening 221 , these notches 226 remain open and could, for example, be used for retaining a cover in order to cover the end of the device 201.
- Figure 2E shows a cross section through a central longitudinal plane through the device 201 .
- the device 201 is shown with the consumable 202 engaged therewith.
- the device 201 comprises a heater 204 comprising heating element 223.
- the heater 204 forms part of the body 209 of the device 201 and is rigidly mounted to the body 209.
- the heater 204 is a rod heater with a heating element 223 having a circular transverse profile.
- the heater may be in the form of a blade heater (e.g. heating element with a rectangular transverse profile) or a tube heater (e.g. heating element with a tubular form).
- the heating element 223 of the heater 204 projects from an internal base of the cavity 222 along a longitudinal axis towards the opening 221. As is apparent from the figure, the length (i.e. along the longitudinal axis) of the heating element is less than a depth of the cavity 222. In this way, the heating element 223 does not protrude from or extend beyond the opening 221.
- the heating element 223 penetrates the aerosol-forming substrate 213 of the consumable 202.
- the heating element 223 extends for nearly the entire axial length of the aerosol-forming substrate 213 when inserted therein.
- the heater 204 is activated, heat is transferred radially from an outer circumferential surface the heating element 223 to the aerosol-forming substrate 213.
- the device 201 further comprises an electronics cavity 224.
- a power source in the form of a rechargeable battery 205 (a lithium ion battery), is located in electronics cavity 224.
- the device 201 includes a connector (i.e. forming part of an IO module of the device 201) in the form of a USB port 206.
- the connector may alternatively be, for example, a micro-USB port or a USB-C port for examples.
- the USB port 206 may be used to recharge the rechargeable battery 205.
- the device 201 includes a controller (not shown) located in the electronics cavity 224.
- the controller comprises a microcontroller mounted on a printed circuit board (PCB).
- PCB printed circuit board
- the USB port 206 is also connected to the controller 208 (i.e. connected to the PCB and microcontroller).
- the controller 208 is configured to control at least one function of the device 201 .
- the controller 208 is configured to control the operation of the heater 204.
- Such control of the operation of the heater 204 may be accomplished by the controller toggling the electrical connection of the rechargeable battery 205 to the heater 204.
- the controller 208 is configured to control the heater 204 in response to a user depressing the button 212. Depressing the button 212 may cause the controller to allow a voltage (from the rechargeable battery 205) to be applied to the heater 204 (so as to cause the heating element 223 to be heated).
- the controller is also configured to control the LEDs 211 in response to (e.g. a detected) a condition of the device 201 or the consumable 202.
- the controller may control the LEDs to indicate whether the device 201 is in an on state or an off state (e.g. one or more of the LEDs may be illuminated by the controller when the device is in an on state).
- the device 201 comprises a further input means (i.e. in addition to the button 212) in the form of a puff measurement means.
- the puff measurement means is a puff sensor 225.
- the puff sensor 225 is configured to detect a user drawing (i.e. inhaling) at the downstream end 218 of the consumable 202.
- the puff sensor 225 may, for example, be in the form of a pressure sensor, flowmeter or a microphone.
- the puff sensor 225 is operatively connected to the controller 208 in the electronics cavity 224, such that a signal from the puff sensor 225, indicative of a puff state (i.e. drawing or not drawing), forms an input to the controller 208 (and can thus be responded to by the controller 208).
- the puff sensor 225 may be configured to measure a puff duration associated with a user puff action. In some embodiments, the puff sensor measures a puff duration when the device is in an activated ON state. During the ON period of the device 201 the heater of the device is heated to a baseline operating temperature (e.g. a baseline target temperature of between 250 and 350 degrees Celsius). The ON period is the period at which the device 201 is switched ON by the user and the heater is activated. The user puff action is act of the user drawing at the downstream end 218 of the consumable 202.
- the puff sensor 225 may be configured to determine the puff duration by tracking inhaling of the user. For example, start and end of the inhalation may be detected and timed to measure the puff duration. The timing may be performed by the controller or by the puff sensor 225.
- an input from the puff sensor 225 to the controller may be the puff duration.
- the controller may use the puff duration to change the baseline operating temperature of the heating element 223 of the device 201.
- the controller may be configured to control the power source of the device 201 to control the operating temperature of the heating element 223.
- the controller may compare the puff duration with a predefined threshold value.
- the predefined threshold value may be 2 seconds.
- the predefined threshold is an average puff duration of the user. For example, if the puff duration measured for a user puff action exceeds the threshold of 2 seconds, the controller determines the puff duration to be greater than the predefined threshold value, i.e., the user is drawing the consumable for a longer duration than the threshold duration. The act of drawing air through the consumable and adjacent the heater may cause cooling of the heater and the consumable. Without the change in temperature of the present invention, Total Particulate Matter (TPM) of the device 201 may decrease and impair the smoking experience of the user.
- TPM Total Particulate Matter
- the controller when the puff duration is measured to be greater than the predefined threshold value, the controller may be configured to increase the operating temperature of the heating element 223.
- the operating temperature is increased either during the puff being measured, or during a subsequent puff.
- the TPM of the device 201 may be increased, providing an improved smoking experience to the user.
- the device 201 may be configured to adaptively heat the heating element 223, aiding in an intuitive and smart smoking device.
- the controller may increase the operating temperature to a predefined elevated temperature above the baseline operating temperature.
- baseline operating temperature may be 250 degrees Celsius and the predefined elevated temperature may be 280 degrees Celsius.
- the controller may increase the operating temperature of the heating element 223 from 250 to 28° degrees Celsius.
- the predefined temperature may be selected to be any temperature at which the consumable 202 is heated to form aerosol, without burning the consumable 202.
- the controller may be configured to increase the operating temperature until the user puff action ends. By which, undesired heating of the heating element 223 may be eliminated.
- the puff sensor 225 may be configured to detect the end of the puff action.
- the controller is configured to change the operating back to the baseline temperature at the completion of the user puff.
- the controller may be configured to gradually increase the operating temperature of the heating element 223 until the user puff action ends.
- the operating temperature is increased to a limit such that the consumable 202 is not burnt but is only heated to form the aerosol. By this, even with the increase of the temperature, the consumable 202 is made sure to be not burnt in the device.
- Figures 3A and 3B illustrate an e-cigarette smoking substitute system 300.
- the system 300 is an example of the systems 100, 100’ of Figures 1A and 1 B and comprises an e-cigarette device 301 and an e-cigarette consumable 302.
- the description of Figures 1 A and 1 B above is applicable to the system of Figures 3A and 3B, and will not be repeated.
- the device 301 and the consumable 302 are configured such that the consumable 302 can be engaged with the device 301 .
- Figure 3A shows the device 301 and the consumable 302 in an engaged state
- Figure 3B shows the device 301 and the consumable 302 in a disengaged state.
- a portion of the consumable 302 is received in a cavity 322 of the device 301 .
- the consumable 302 is retained in the device 301 via an interference fit (although in other embodiments, the device and consumable could be engaged by screwing one onto (or onto) the other, through a bayonet fitting, or by way of a snap engagement mechanism).
- the consumable 302 includes a tank 327.
- the tank 327 defines a reservoir for the storage of an aerosol-former, which in this embodiment, is in the form of e-liquid.
- the consumable 302 is a“single-use” consumable. That is, upon exhausting the e-liquid in the tank 327, the intention is that the user disposes of the whole consumable 302.
- the e-liquid i.e. aerosol former
- the tank may be refillable with e-liquid or the e-liquid may be stored in a non-consumable component of the system.
- the e-liquid may be stored in a tank located in the device or stored in another component that is itself not single-use (e.g. a refillable cartomizer).
- a heater 304 is located in the consumable 302 and is configured to heat and vaporise the e-liquid (stored in the tank 327).
- the heater 304 comprises a porous wick and a resistive heating element.
- the porous wick conveys e-liquid from the tank 327 to the heating element.
- the heating element is a heating filament that is helically wound around a portion of the porous wick, such that when the heating element is heated (e.g. by the action of electrical current passing through the heating element), heat is transferred from the heating element to the e-liquid conveyed by the wick.
- This transfer of heat vaporises the e-liquid and the resultant vapour is entrained in an airflow passing through the consumable 302 (i.e. driven by a user drawing on a downstream end 318 of the consumable 302). Between the vaporisation point at the coil and the downstream end 318 (i.e. the mouth end), the vapour condenses into an aerosol, and is subsequently inhaled by the user.
- the device 301 comprises a power source in the form of a rechargeable battery (not shown) and a connector in the form of a USB port (not shown).
- the device 302 further comprises controller (also not shown).
- the rechargeable battery, connector and controller are similar (and operate in a similar manner) to the corresponding components of the embodiment described above with respect to Figure 1 A to 1 E.
- the consumable 302 includes a pair of heater electrical contacts 328 disposed on a device-facing end surface of the consumable 302.
- the heater electrical contacts 328 are electrically connected to the heater 304 in the consumable 302, such that a voltage applied across the heater electrical contacts 302 generally corresponds to a voltage applied across the resistive heating element of the heater 304.
- the heater electrical contacts 328 are brought into electrical contact with corresponding device electrical contacts (not shown) on the device 301 .
- the device electrical contacts are electrically connected (directly or indirectly) to the rechargeable battery.
- the controller may thus be configured to control the voltage applied across the device electrical contacts from the rechargeable battery. By controlling the voltage applied across the device electrical contacts, the voltage applied to the heater 304 is correspondingly controlled.
- the device 302 includes an output means (forming part of the Ul of the system 300) in the form of a single light-emitting diode (“LED”) 31 1 .
- the LED 31 1 is operatively connected to the controller, such that controller can control the illumination of the LED 31 1 .
- the controller is configured to illuminate the LED when then the heater 304 is active.
- the device 301 also includes an input means in the form of a puff sensor (not shown).
- the puff sensor is the same as that described above with respect to the embodiment shown in Figure 2A to 2E.
Landscapes
- Catching Or Destruction (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
L'invention concerne un dispositif de substitution pour fumeur et un procédé de fonctionnement d'un dispositif de substitution pour fumeur. Le dispositif comprend un moyen de mesure de bouffée configuré pour mesurer une durée de bouffée associée à une action de bouffée d'utilisateur. Le dispositif comprend un dispositif de commande configuré pour modifier une température de fonctionnement d'un élément chauffant du dispositif de substitution pour fumeur, sur la base de la durée de bouffée mesurée.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20715690.2A EP3941250A2 (fr) | 2019-03-22 | 2020-03-13 | Système de substitution pour fumeur |
US17/479,939 US20220095692A1 (en) | 2019-03-22 | 2021-09-20 | Smoking Substitute System |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19020143.4A EP3711513A1 (fr) | 2019-03-22 | 2019-03-22 | Système de substitution du tabac |
EP19020143.4 | 2019-03-22 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2020/056821 Continuation WO2020193203A1 (fr) | 2019-03-22 | 2020-03-13 | Système de substitution à l'acte de fumer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2020/056791 Continuation WO2020193188A1 (fr) | 2019-03-22 | 2020-03-13 | Système de substitution à l'acte de fumer |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2020193170A2 true WO2020193170A2 (fr) | 2020-10-01 |
WO2020193170A3 WO2020193170A3 (fr) | 2020-11-05 |
Family
ID=65954995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2020/056763 WO2020193170A2 (fr) | 2019-03-22 | 2020-03-13 | Système de substitution pour fumeur |
Country Status (2)
Country | Link |
---|---|
EP (2) | EP3711513A1 (fr) |
WO (1) | WO2020193170A2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4167783A4 (fr) * | 2021-08-27 | 2023-10-11 | KT & G Corporation | Dispositif générant un aérosol et son procédé de commande |
US11789476B2 (en) | 2021-01-18 | 2023-10-17 | Altria Client Services Llc | Heat-not-burn (HNB) aerosol-generating devices including intra-draw heater control, and methods of controlling a heater |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014066730A1 (fr) * | 2012-10-25 | 2014-05-01 | Lbs Imports, Llc. | Cigarette électronique |
WO2015107552A1 (fr) * | 2014-01-17 | 2015-07-23 | Godfrey Phillips India Limited | Dispositif et procédé pour vaporiser une matière liquide |
MX2016012118A (es) * | 2014-03-19 | 2017-01-19 | Philip Morris Products Sa | Dispositivos generadores de aerosol que incorporan una mecha y un elemento de calentamiento entrecruzados. |
KR102588862B1 (ko) * | 2014-12-11 | 2023-10-13 | 필립모리스 프로덕츠 에스.에이. | 흡입 거동에 기반한 사용자 인식이 있는 흡입 장치 |
-
2019
- 2019-03-22 EP EP19020143.4A patent/EP3711513A1/fr not_active Ceased
-
2020
- 2020-03-13 WO PCT/EP2020/056763 patent/WO2020193170A2/fr active Application Filing
- 2020-03-13 EP EP20715690.2A patent/EP3941250A2/fr active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11789476B2 (en) | 2021-01-18 | 2023-10-17 | Altria Client Services Llc | Heat-not-burn (HNB) aerosol-generating devices including intra-draw heater control, and methods of controlling a heater |
EP4167783A4 (fr) * | 2021-08-27 | 2023-10-11 | KT & G Corporation | Dispositif générant un aérosol et son procédé de commande |
Also Published As
Publication number | Publication date |
---|---|
EP3711513A1 (fr) | 2020-09-23 |
EP3941250A2 (fr) | 2022-01-26 |
WO2020193170A3 (fr) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3711530A1 (fr) | Système de substitution du tabac | |
EP3711550A1 (fr) | Système de substitution du tabac | |
EP3711569A1 (fr) | Système de substitution du tabac | |
EP3711552B1 (fr) | Système de substitution du tabac | |
WO2020193170A2 (fr) | Système de substitution pour fumeur | |
WO2021028561A1 (fr) | Système de substitution pour fumeur | |
WO2020193172A1 (fr) | Système de substitution au tabac | |
EP3941247A1 (fr) | Système de substitution à l'acte de fumer | |
WO2020193191A1 (fr) | Système de substitution pour fumeur | |
WO2020193193A1 (fr) | Système de substitution au tabagisme | |
EP3711524A1 (fr) | Système de substitution du tabac | |
EP3711527A1 (fr) | Système de substitution du tabac | |
EP3711535A1 (fr) | Système de substitution du tabac | |
EP3711518A1 (fr) | Système de substitution du tabac | |
WO2020193221A1 (fr) | Système de substitution pour fumeurs | |
EP3711540A1 (fr) | Système de substitution du tabac | |
EP3711558A1 (fr) | Système de substitution du tabac | |
WO2020193224A1 (fr) | Appareil de chauffage pour système de substitution pour fumeur | |
EP3711520A1 (fr) | Système de substitution du tabac | |
WO2020193219A1 (fr) | Système de substitution pour fumeurs | |
EP3711559A1 (fr) | Système de substitution du tabac | |
EP3711517A1 (fr) | Système de substitution du tabac | |
WO2020193205A1 (fr) | Système de substitution pour fumeurs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20715690 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020715690 Country of ref document: EP |