WO2020192649A1 - 一种数据中心管理系统 - Google Patents
一种数据中心管理系统 Download PDFInfo
- Publication number
- WO2020192649A1 WO2020192649A1 PCT/CN2020/080854 CN2020080854W WO2020192649A1 WO 2020192649 A1 WO2020192649 A1 WO 2020192649A1 CN 2020080854 W CN2020080854 W CN 2020080854W WO 2020192649 A1 WO2020192649 A1 WO 2020192649A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- resource pool
- calculation
- data center
- request
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/18—File system types
- G06F16/182—Distributed file systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/60—Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L61/00—Network arrangements, protocols or services for addressing or naming
- H04L61/50—Address allocation
- H04L61/5007—Internet protocol [IP] addresses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1097—Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/27—Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
- H04L47/827—Aggregation of resource allocation or reservation requests
Definitions
- This application relates to the field of computer technology, for example, to a data center management system.
- DC Data Center
- the application infrastructure built to meet the needs of Internet business and enterprise information services provides customers with large-scale, high-quality, safe and reliable hosting, hosting, network bandwidth rental and related value-added services through high-speed connections to the Internet.
- traditional data centers only perform limited integration on the basis of hardware servers. For example, multiple virtual machines share the performance of a physical server.
- this simple intensification is limited by the resource scale of a single physical server, and it is difficult to achieve real-time and rapid resource redistribution, and it is easy to cause resource idleness and waste.
- This application provides a data center management system that connects multiple computing nodes into a large virtual resource pool to improve computing efficiency, so that the efficiency and scale of resource redistribution are not limited to a single physical server.
- This application discloses a data center management system, including a data center, a cloud platform and an application platform;
- the application platform is set to perform external network access through an application interface layer, and sends a calculation request to the data center;
- the data center includes: a storage resource pool, which is configured to perform distributed storage of files; and a network resource pool, which is configured to send a scheduling request to the cloud platform according to a computing request, so as to perform platform scheduling on the cloud;
- the cloud platform includes: a computing resource pool, configured to perform distributed computing between adjacent processing nodes according to received scheduling requests, and to share files in the storage resource pool or computing resources in the shared database and external sharing Data is called; the shared database is set to collect and store the computing resources and external shared data.
- the application interface layer is configured to receive application service messages, determine a target application service category according to the application service message, and parse out resource consumption information according to the target application service category, wherein the calculation The request includes the target application service category and the resource consumption information.
- the calculation request further includes calculation requirement information; the scheduling request includes the calculation requirement information.
- the network resource pool is set to divide the multiple processing servers in the computing resource pool into IP addresses according to the different application service categories, and determine the required number of processing servers according to the resource consumption information, and compare the target
- the processing servers corresponding to the application service category are allocated the processing servers of the required number of processing servers, and the calculation requirement information in the calculation request is sent to one of the allocated processing servers.
- the calculation requirement information includes information used to determine the required calculation.
- the processing servers are sorted according to IP addresses to form a processing server queue; the network resource pool is set to send the calculation requirement information in the calculation request to the allocated processing server in the following manner A processing server of: sending the calculation requirement information in the calculation request to the processing server with the first IP address among the allocated processing servers.
- the network resource pool is a processing server configured to allocate the required number of processing servers from processing servers corresponding to the target application service category in the following manner: In the server service queue, the processing servers corresponding to the target application service category are sequentially allocated with the required number of processing servers.
- the computing resource pool includes multiple cabinets, each cabinet is provided with multiple groups of processing servers, each processing server is a processing node, and one processing node of the multiple processing nodes is set to receive the calculation The calculation requirement information in the request, and call the file from the storage resource pool according to the calculation requirement information, the processing node sends the calculation requirement information to the next adjacent processing node, so that the calculation is received
- the multiple processing nodes of the demand information perform calculation processing at the same time.
- the network resource pool is further configured to send target indication information to the processing server whose IP address ranks last among the assigned processing servers, and the target indication information is used to indicate that the processing server is receiving In the case of the calculation requirement information, there is no need to send the calculation requirement information to the next adjacent processing node.
- the storage resource pool is provided with a file server, and the file server is configured to connect multiple storage devices in a distributed manner, and establish a storage path according to the codes of the multiple storage devices; the file server is set To receive a call request of the computing resource pool.
- the processing node is further configured to send a screening request to the shared database, obtain corresponding computing resources, and send it to the next adjacent processing node.
- Figure 1 is a schematic diagram of the overall structure of a data center management system of this application.
- FIG. 1 is a schematic structural diagram of a data center management system.
- the data center management system provided in this embodiment includes a data center, a cloud platform, and an application platform; the application platform is set to perform externally through an application interface layer. Network access, and send computing requests to the data center; the data center includes: storage resource pool, which is set to store files in a distributed manner; network resource pool, which is set to schedule the cloud platform according to computing requests; cloud platform includes computing resource pool , The computing resource pool includes multiple cabinets, and multiple sets of processing servers are set in the cabinets. The computing resource pool is set to allocate processing servers according to received scheduling requests, and perform distributed computing between adjacent processing nodes, and the storage resource pool File call; shared database, set to collect and store computing resources and external shared data.
- the application interface layer is set to receive application service messages and parse out resource consumption information according to application service categories.
- the application interface layer performs user authentication and management authority authentication during network access.
- the resource consumption information includes the size of the required calculation file content, the complexity of calling the calculation method, and is stored as a log file and sent to the data center.
- Computing requests are divided according to application service categories and given different identifiers.
- the network resource pool divides the multiple processing servers in the computing resource pool into IP addresses according to different application service categories, and sorts them according to the IP addresses of the processing servers after the division. Form a processing server queue.
- the network resource pool determines the number of processing servers required for the current application service category according to the resource consumption information, allocates multiple processing servers in the order of IP addresses, and sends the calculation request to the processing server with the first IP address.
- Each processing server is a processing node.
- One processing node receives a calculation request and calls a file from the storage resource pool. The processing node sends the calculation request to the next adjacent processing node, and multiple processing nodes perform calculation processing at the same time.
- the first processing server after receiving the calculation request, sends the request to the second processing server, the second processing server sends the request to the third processing server, and so on.
- the N processing servers uniformly send the processing results to the network resource pool and feed back to the application platform.
- the storage resource pool is provided with a file server.
- the file server is connected to multiple storage devices in a distributed manner, and a storage path is established according to the encoding of the storage device; the file server receives call requests from the computing resource pool and network resource pool.
- the network resource pool only sends the storage/recall request to the file service of the storage resource pool, and completes the storage and recall of the file in the storage device.
- Distributed connected storage devices are more conducive to fast search and storage of files.
- the computing resource pool sends the call request to the file server.
- the shared database is set to collect and store operation and maintenance knowledge base data and external shared data to establish a huge knowledge base to provide richer value-added services.
- the processing node sends a screening request to the shared database, obtains the corresponding computing resource, and sends it to the adjacent processing node.
- the value-added service refers to providing data services that have been processed in advance, for example, providing data that has been classified according to preset classification information.
- This application builds a cloud platform in the data center, allocates computing resource pools and shared databases, comprehensively improves the computing capabilities of the data center, uses network resource pools to achieve reasonable allocation of computing resource pools, and proposes a new computing server architecture.
- the computing task sharing of adjacent processing nodes in the computing resource pool eliminates the traditional cloud computing master control server. It does not need the master control server to send tasks to multiple processing nodes to complete the computing power sharing of multiple processing nodes, realizing automatic calculation
- the resource function saves computing resources and improves computing efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Computer And Data Communications (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本申请公开了一种数据中心管理系统,包括:数据中心、云平台和应用平台。应用平台设置为通过应用接口层进行外部网络接入,并向数据中心发送计算请求。数据中心包括:存储资源池,设置为对文件的分布式存储;网络资源池,设置为根据计算请求发送调度请求至所述云平台,以对云平台进行调度。云平台包括:计算资源池,设置为根据接收到的调度请求在相邻处理节点间进行分布式计算,以及对存储资源池的文件或者共享数据库中的计算资源以及外部共享数据进行调用;共享数据库,设置为收集、存储计算资源以及外部共享数据。
Description
本申请要求在2019年03月27日提交中国专利局、申请号为201910240601.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及计算机技术领域,例如涉及一种数据中心管理系统。
随着互联网业务规模的飞速发展和规模逐渐扩大,数据业务内容越来越丰富,用户量逐渐增大,产生出数据中心(Data Center,DC)技术以满足互联网业务和企事业信息服务需求,即为满足互联网业务和企事业信息服务需求而建设的应用基础设施,通过与互联网的高速连接,向客户提供大规模、高质量、安全可靠的主机托管、主机租赁、网络带宽租用及相关增值服务。但是传统数据中心,只是在硬件服务器的基础进行有限的整合,例如多台虚拟机共享一台实体服务器性能。但这种简单的集约化受限于单台实体服务器的资源规模,并且难以做到实时、快速的资源再分配,且容易造成资源闲置和浪费。
发明内容
本申请提供一种数据中心管理系统,将多台计算节点连接成一个大型的虚拟资源池来提高计算效率,使资源再分配的效率和规模不受限于单台实体服务器。
本申请公开了一种数据中心管理系统,包括数据中心、云平台和应用平台;
所述应用平台设置为通过应用接口层进行外部网络接入,并向所述数据中心发送计算请求;
所述数据中心包括:存储资源池,设置为对文件进行分布式存储;网络资源池,设置为根据计算请求发送调度请求至所述云平台,以对所述云进行平台调度;
所述云平台包括:计算资源池,设置为根据接收到的调度请求在相邻处理节点间进行分布式计算,以及对所述存储资源池的文件或者所述共享数据库中的计算资源以及外部共享数据进行调用;所述共享数据库,设置为收集、存储所述计算资源以及外部共享数据。
在一实施例中,所述应用接口层设置为接收应用服务消息,并根据所述应 用服务消息确定目标应用服务类别,以及根据所述目标应用服务类别解析出资源消耗信息,其中,所述计算请求包括所述目标应用服务类别和所述资源消耗信息。
在一实施例中,所述计算请求还包括计算需求信息;所述调度请求包括所述计算需求信息。所述网络资源池是设置为根据所述不同的应用服务类别将计算资源池中的多个处理服务器进行IP地址划分,根据所述资源消耗信息确定所需的处理服务器数量,从与所述目标应用服务类别对应的处理服务器中分配所述所需的处理服务器数量的处理服务器,并将所述计算请求中的计算需求信息发送至所分配的处理服务器中的一个处理服务器。
在一实施例中,计算需求信息包括用于确定所需的计算的信息。
在一实施例中,所述处理服务器根据IP地址进行排序,形成处理服务器队列;所述网络资源池是设置为通过如下方式将所述计算请求中的计算需求信息发送至所分配的处理服务器中的一个处理服务器:将所述计算请求中的计算需求信息发送至所分配的处理服务器中IP地址排在第一位的处理服务器。
在一实施例中,所述网络资源池是设置为通过如下方式从与所述目标应用服务类别对应的处理服务器中分配所述所需的处理服务器数量的处理服务器:按照IP地址从所述处理器服务队列中与所述目标应用服务类别对应的处理服务器中顺序分配所述所需的处理服务器数量的处理服务器。
在一实施例中,所述计算资源池包括多个机柜,每个机柜内设置多组处理服务器,每一个处理服务器为一个处理节点,多个处理节点中的一个处理节点设置为接收所述计算请求中的计算需求信息,并根据所述计算需求信息从所述存储资源池调用文件,所述处理节点将所述计算需求信息发送至相邻的下一处理节点,以使接收到所述计算需求信息的多个所述处理节点同时进行计算处理。
在一实施例中,所述网络资源池还设置为:将目标指示信息发送至所分配的处理服务器中IP地址排在最后一位的处理服务器,所述目标指示信息用于指示处理服务器在接收到所述计算需求信息的情况下,无需将所述计算需求信息发送至相邻的下一处理节点。
在一实施例中,所述存储资源池设置有一个文件服务器,所述文件服务器设置为分布式连接多个存储设备,并根据所述多个存储设备的编码建立存储路径;所述文件服务器设置为接收所述计算资源池的调用请求。
在一实施例中,所述处理节点还设置为向所述共享数据库发送筛选请求,获取相应计算资源,并发送至相邻的下一处理节点。
为了说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本申请一种数据中心管理系统的整体结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
由于传统的数据中心都不具备云平台功能,其远远不如云计算那样跨实体服务器,甚至跨数据中心的大规模有效整合,限制了提供增值服务的能力。
因此,如何提供一种具有自动计算资源功能的基于云平台的数据中心管理系统是本领域技术人员亟待解决的技术问题。
参见附图1,图1为一种数据中心管理系统的结构示意图,该实施例提供的一种数据中心管理系统,包括数据中心、云平台和应用平台;应用平台设置为通过应用接口层进行外部网络接入,并向数据中心发送计算请求;数据中心包括:存储资源池,设置为对文件进行分布式存储;网络资源池,设置为根据计算请求对云平台的调度;云平台包括计算资源池,计算资源池包括多个机柜,机柜内设置多组处理服务器,计算资源池设置为根据接收到的调度请求分配处理服务器,并在相邻处理节点间进行分布式计算,以及对存储资源池的文件调用;共享数据库,设置为收集和存储计算资源以及外部共享数据。
应用接口层设置为接收应用服务消息,并根据应用服务类别解析出资源消耗信息。应用接口层在进行网络接入时,进行用户认证和管理权限认证。资源消耗信息包括所需计算文件内容大小、调用计算方法的复杂程度,并存储成日志文件一同发送至数据中心。
计算请求按照应用服务类别进行划分,并赋予不同标识符,网络资源池根据不同的应用服务类别将计算资源池中的多个处理服务器进行IP地址划分,划分后按照处理服务器的IP地址进行排序,形成处理服务器队列。网络资源池根据资源消耗信息确定当前应用服务类别所需的处理服务器数量,按照IP地址顺序分配多个处理服务器,并将计算请求发送至IP地址排在第一位的处理服务器。
每一个处理服务器为一个处理节点,其中一个处理节点接收计算请求,并且向存储资源池调用文件,处理节点将计算请求发送至相邻的下一处理节点,多个处理节点同时进行计算处理。
作为其中一个实施例,第一处理服务器接收到计算请求后将请求发送至第二处理服务器,第二处理服务器发送至第三处理服务器,以此类推。计算完成后,N个处理服务器统一将处理结果发送至网络资源池,并反馈给应用平台。
存储资源池设置有一个文件服务器,文件服务器分布式连接多个存储设备,并根据存储设备的编码建立存储路径;文件服务器接收计算资源池和网络资源池的调用请求。
作为其中一个实施例,若应用平台发送存储/调用文件请求,则网络资源池仅向存储资源池的文件服务发送存储/调用请求,并完成文件在存储设备的存储和调用。分布式连接的存储设备,更有利于文件的快速查找和存储。
作为另一个实施例,若应用平台发送计算请求,需要调用文件进行计算,则计算资源池向文件服务器发送调用请求。
共享数据库设置为收集和存储运维知识库数据以及外部共享数据,建立一个庞大的知识库,以提供更丰富的增值服务。处理节点向共享数据库发送筛选请求,获取相应计算资源,并发送至相邻的处理节点。
在一实施例中,增值服务是指提供已提前处理好的数据服务,例如提供已根据预设分类信息分类好的数据。
本申请在数据中心构建云平台,分配计算资源池和共享数据库,全面提升数据中心的计算能力,利用网络资源池实现对计算资源池的合理分配,并且提出了一种新型的计算服务器架构,通过计算资源池内的相邻处理节点的计算任务分享,取消了传统云计算的总控服务器,无需总控服务器对多个处理节点进行任务发送即可完成多处理节点的计算能力共享,实现了自动计算资源功能,节省了计算资源,并提高了计算效率。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、 物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
Claims (9)
- 一种数据中心管理系统,包括:数据中心、云平台和应用平台;所述应用平台设置为通过应用接口层进行外部网络接入,并向所述数据中心发送计算请求;所述数据中心包括:存储资源池,设置为对文件进行分布式存储;网络资源池,设置为根据所述计算请求发送调度请求至所述云平台,以对所述云平台进行调度;所述云平台包括:计算资源池,设置为根据接收到的调度请求在相邻处理节点间进行分布式计算,以及对所述存储资源池的文件或者所述共享数据库中的计算资源以及外部共享数据进行调用;所述共享数据库,设置为收集、存储所述计算资源以及外部共享数据。
- 根据权利要求1所述的数据中心管理系统,其中,所述应用接口层设置为接收应用服务消息,并根据所述应用服务消息确定目标应用服务类别,以及根据所述目标应用服务类别解析出资源消耗信息,其中,所述计算请求包括所述目标应用服务类别和所述资源消耗信息。
- 根据权利要求2所述的数据中心管理系统,其中,所述计算请求还包括计算需求信息;所述调度请求包括所述计算需求信息;所述网络资源池是设置为根据不同的应用服务类别将所述计算资源池中的多个处理服务器进行网际互连协议IP地址划分,根据所述资源消耗信息确定所需的处理服务器数量,从与所述目标应用服务类别对应的处理服务器中分配所述所需的处理服务器数量的处理服务器,并将所述计算请求中的计算需求信息发送至所分配的处理服务器中的一个处理服务器。
- 根据权利要求3所述的数据中心管理系统,其中,所述多个处理服务器根据IP地址进行排序,形成处理服务器队列;所述网络资源池是设置为通过如下方式将所述计算请求中的计算需求信息发送至所分配的处理服务器中的一个处理服务器:将所述计算请求中的计算需求信息发送至所分配的处理服务器中IP地址排在第一位的处理服务器。
- 根据权利要求4所述的数据中心管理系统,其中,所述网络资源池是设置为通过如下方式从与所述目标应用服务类别对应的处理服务器中分配所述所需的处理服务器数量的处理服务器:按照IP地址从所述处理器服务队列中与所述目标应用服务类别对应的处理服务器中顺序分配所述所需的处理服务器数量的处理服务器。
- 根据权利要求5所述的数据中心管理系统,其中,所述计算资源池包括 多个机柜,每个机柜内设置多组处理服务器,每一个处理服务器为一个处理节点,多个处理节点中的一个处理节点设置为接收所述计算请求中的计算需求信息,并根据所述计算需求信息从所述存储资源池调用文件,所述处理节点设置为在接收到所述计算需求信息的情况下,将所述计算需求信息发送至相邻的下一处理节点,以使接收到所述计算需求信息的多个所述处理节点同时进行计算处理。
- 根据权利要求6所述的数据中心管理系统,其中,所述网络资源池还设置为:将目标指示信息发送至所分配的处理服务器中IP地址排在最后一位的处理服务器,所述目标指示信息用于指示处理服务器在接收到所述计算需求信息的情况下,无需将所述计算需求信息发送至相邻的下一处理节点。
- 根据权利要求1所述的数据中心管理系统,其中,所述存储资源池设置有一个文件服务器,所述文件服务器设置为分布式连接多个存储设备,并根据所述多个存储设备的编码建立存储路径;所述文件服务器设置为接收所述计算资源池的调用请求。
- 根据权利要求6或7所述的数据中心管理系统,其中,所述处理节点还设置为向所述共享数据库发送筛选请求,获取相应计算资源,并发送至相邻的下一处理节点。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/283,537 US11431827B2 (en) | 2019-03-27 | 2020-03-24 | Data center management system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910240601.2A CN110071965B (zh) | 2019-03-27 | 2019-03-27 | 一种基于云平台的数据中心管理系统 |
CN201910240601.2 | 2019-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020192649A1 true WO2020192649A1 (zh) | 2020-10-01 |
Family
ID=67366702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/080854 WO2020192649A1 (zh) | 2019-03-27 | 2020-03-24 | 一种数据中心管理系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11431827B2 (zh) |
CN (1) | CN110071965B (zh) |
WO (1) | WO2020192649A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117291554A (zh) * | 2023-09-27 | 2023-12-26 | 国网江苏省电力有限公司信息通信分公司 | 一种电力行业的云网协同运营方法与系统 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110071965B (zh) | 2019-03-27 | 2022-05-31 | 上海德衡数据科技有限公司 | 一种基于云平台的数据中心管理系统 |
CN111752726B (zh) * | 2020-06-25 | 2023-07-14 | 武汉众邦银行股份有限公司 | 一种多系统之间数据快速交叉共享方法 |
CN112637822B (zh) * | 2020-12-26 | 2023-01-20 | 北京工业大学 | 一种基于区块链的蜂窝网络安全交易平台 |
CN112929297B (zh) * | 2021-01-21 | 2023-12-29 | 北京小米移动软件有限公司 | 一种资源分配方法、资源分配装置及存储介质 |
CN114003313B (zh) * | 2021-10-31 | 2023-12-22 | 济南浪潮数据技术有限公司 | 一种集群管理方法、系统、存储介质及设备 |
CN118550503A (zh) * | 2024-07-26 | 2024-08-27 | 之江实验室 | 随机数处理方法、装置、计算机设备以及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102891896A (zh) * | 2012-10-18 | 2013-01-23 | 江苏物联网研究发展中心 | 用于物联网海量存储的云计算基础架构系统 |
CN103491158A (zh) * | 2013-09-18 | 2014-01-01 | 万达信息股份有限公司 | 一种就近计算的云计算架构 |
US20150067679A1 (en) * | 2013-08-28 | 2015-03-05 | Connectloud, Inc. | Method and apparatus for software defined cloud workflow recovery |
US20160357443A1 (en) * | 2015-06-05 | 2016-12-08 | University Of Florida Research Foundation, Incorporated | Method and apparatus for big data cloud storage resource management |
CN108491271A (zh) * | 2018-03-28 | 2018-09-04 | 湖南东方华龙信息科技有限公司 | 动态管理云端虚拟化ca配置资源的方法 |
CN110071965A (zh) * | 2019-03-27 | 2019-07-30 | 上海德衡数据科技有限公司 | 一种基于云平台的数据中心管理系统 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102104631B (zh) * | 2011-02-28 | 2014-06-04 | 南京邮电大学 | 一种基于云端计算技术的知识系统中的服务质量保障方法 |
JP6094487B2 (ja) * | 2011-09-27 | 2017-03-15 | 日本電気株式会社 | 情報システム、管理装置、データ処理方法、データ構造、プログラム、および記録媒体 |
CN103036927A (zh) * | 2011-09-29 | 2013-04-10 | 中国电信股份有限公司 | 智能交通控制方法、装置与系统 |
US8972578B2 (en) * | 2011-12-16 | 2015-03-03 | Microsoft Corporation | Master data management system for monitoring cloud computing |
US9215067B2 (en) * | 2013-04-05 | 2015-12-15 | International Business Machines Corporation | Achieving storage efficiency in presence of end-to-end encryption using downstream decrypters |
US10832224B2 (en) * | 2015-05-06 | 2020-11-10 | Vmware, Inc. | Calendar based management of information technology (IT) tasks |
CN105321346A (zh) * | 2015-09-18 | 2016-02-10 | 成都融创智谷科技有限公司 | 运用云计算基础资源池来控制城市智能交通的方法 |
CN105809606A (zh) * | 2016-03-08 | 2016-07-27 | 贵州省邮电规划设计院有限公司 | 大数据应用平台系统 |
CN106095582B (zh) * | 2016-06-17 | 2019-04-16 | 四川新环佳科技发展有限公司 | 云平台的任务执行方法 |
CN106126323B (zh) * | 2016-06-17 | 2019-11-22 | 广州商品清算中心股份有限公司 | 基于云平台的实时任务调度方法 |
CN108037993B (zh) * | 2017-11-07 | 2020-08-04 | 大国创新智能科技(东莞)有限公司 | 基于大数据和深度学习神经网络的云计算调度方法及系统 |
CN107959588A (zh) * | 2017-12-07 | 2018-04-24 | 郑州云海信息技术有限公司 | 数据中心的云资源管理方法、云资源管理平台和管理系统 |
US10713092B2 (en) * | 2018-01-02 | 2020-07-14 | Jpmorgan Chase Bank, N.A. | Dynamic resource management of a pool of resources for multi-tenant applications based on sample exceution, query type or jobs |
CN108287749A (zh) * | 2018-01-11 | 2018-07-17 | 郑州云海信息技术有限公司 | 一种数据中心综合管理系统云资源调度方法 |
-
2019
- 2019-03-27 CN CN201910240601.2A patent/CN110071965B/zh active Active
-
2020
- 2020-03-24 US US17/283,537 patent/US11431827B2/en active Active
- 2020-03-24 WO PCT/CN2020/080854 patent/WO2020192649A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102891896A (zh) * | 2012-10-18 | 2013-01-23 | 江苏物联网研究发展中心 | 用于物联网海量存储的云计算基础架构系统 |
US20150067679A1 (en) * | 2013-08-28 | 2015-03-05 | Connectloud, Inc. | Method and apparatus for software defined cloud workflow recovery |
CN103491158A (zh) * | 2013-09-18 | 2014-01-01 | 万达信息股份有限公司 | 一种就近计算的云计算架构 |
US20160357443A1 (en) * | 2015-06-05 | 2016-12-08 | University Of Florida Research Foundation, Incorporated | Method and apparatus for big data cloud storage resource management |
CN108491271A (zh) * | 2018-03-28 | 2018-09-04 | 湖南东方华龙信息科技有限公司 | 动态管理云端虚拟化ca配置资源的方法 |
CN110071965A (zh) * | 2019-03-27 | 2019-07-30 | 上海德衡数据科技有限公司 | 一种基于云平台的数据中心管理系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117291554A (zh) * | 2023-09-27 | 2023-12-26 | 国网江苏省电力有限公司信息通信分公司 | 一种电力行业的云网协同运营方法与系统 |
CN117291554B (zh) * | 2023-09-27 | 2024-05-03 | 国网江苏省电力有限公司信息通信分公司 | 一种电力行业的云网协同运营方法与系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110071965A (zh) | 2019-07-30 |
CN110071965B (zh) | 2022-05-31 |
US11431827B2 (en) | 2022-08-30 |
US20210392198A1 (en) | 2021-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020192649A1 (zh) | 一种数据中心管理系统 | |
CN107241281B (zh) | 一种数据处理方法及其装置 | |
CN111752965B (zh) | 一种基于微服务的实时数据库数据交互方法和系统 | |
CN107545338B (zh) | 业务数据处理方法及业务数据处理系统 | |
US20190196875A1 (en) | Method, system and computer program product for processing computing task | |
CN108776934A (zh) | 分布式数据计算方法、装置、计算机设备及可读存储介质 | |
CN111913784B (zh) | 任务调度方法及装置、网元、存储介质 | |
US11947534B2 (en) | Connection pools for parallel processing applications accessing distributed databases | |
WO2022111313A1 (zh) | 一种请求处理方法及微服务系统 | |
WO2016197628A1 (zh) | 终端会议负载均衡方法、装置及系统 | |
US10761869B2 (en) | Cloud platform construction method and cloud platform storing image files in storage backend cluster according to image file type | |
CN111597033A (zh) | 一种任务调度方法和装置 | |
US20230300086A1 (en) | On-demand resource capacity in a serverless function-as-a-service infrastructure | |
CN111427670A (zh) | 任务调度方法和系统 | |
US8458702B1 (en) | Method for implementing user space up-calls on java virtual machine before/after garbage collection | |
US20110131288A1 (en) | Load-Balancing In Replication Engine of Directory Server | |
CN111158909A (zh) | 集群资源分配处理方法、装置、设备及存储介质 | |
CN117149445A (zh) | 一种跨集群负载均衡方法及装置、设备及存储介质 | |
CN111258760A (zh) | 一种平台管理方法、系统、装置及存储介质 | |
CN103220363A (zh) | 基于云计算的分布式网络培训资源管理系统及调度方法 | |
CN111400301A (zh) | 一种数据查询方法、装置及设备 | |
WO2016000303A1 (zh) | 一种资源分配方法、系统及计算机存储介质 | |
CN114745377B (zh) | 边缘云集群服务系统及实现方法 | |
CN111131367B (zh) | 一种分布式接入服务处理方法及装置 | |
EP3993366B1 (en) | Network load balancer, request message distribution method, program product and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20777478 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20777478 Country of ref document: EP Kind code of ref document: A1 |