WO2020192177A1 - 土壤地下水联动处理装置及其处理方法 - Google Patents

土壤地下水联动处理装置及其处理方法 Download PDF

Info

Publication number
WO2020192177A1
WO2020192177A1 PCT/CN2019/123512 CN2019123512W WO2020192177A1 WO 2020192177 A1 WO2020192177 A1 WO 2020192177A1 CN 2019123512 W CN2019123512 W CN 2019123512W WO 2020192177 A1 WO2020192177 A1 WO 2020192177A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
well
extraction
hot air
oxidant
Prior art date
Application number
PCT/CN2019/123512
Other languages
English (en)
French (fr)
Inventor
侯德义
曹潇元
李广贺
张旭
张芳
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2020192177A1 publication Critical patent/WO2020192177A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/002Reclamation of contaminated soil involving in-situ ground water treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/005Extraction of vapours or gases using vacuum or venting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/06Reclamation of contaminated soil thermally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ

Definitions

  • This application relates to the field of groundwater pollution restoration, and in particular to a soil and groundwater linkage treatment device and a treatment method thereof.
  • a soil and groundwater linkage treatment device is arranged in the soil of an area to be repaired, and the soil and groundwater linkage treatment device includes:
  • the injection structure is arranged in the injection well of the area to be repaired;
  • the injection structure includes a hot air injection assembly, an oxidant injection assembly, and a microbubble injection assembly partially arranged in the injection well, and the hot air injection assembly is used to Hot air is injected into the injection well, the oxidant injection component is used to inject oxidant into the injection well, and the microbubble injection component is used to inject microbubbles into the injection well;
  • the extraction structure includes an extraction well partially disposed in the area to be repaired, and a liquid phase extraction component partially disposed in the extraction well.
  • a gas phase extraction component, the liquid phase extraction component is used to extract the gas flow in the extraction well, and the liquid phase extraction component is used to extract the groundwater of the extraction well;
  • control structure the control structure is respectively connected with the liquid phase extraction component and the gas phase extraction component, and controls the liquid phase extraction component and the gas phase extraction component to perform extraction operations, and the control The structure controls the liquid phase extraction component to extract groundwater in a pulse manner, and the control structure is also connected to the hot air injection component, the oxidizer injection component, and the microbubble injection component, respectively.
  • the hot air injection assembly includes a power source, a hot air compressor connected to the power source, a hot air injection pipe connected to the hot air compressor, a hot air injection sub-well, and a hot air compressor.
  • the hot air injection screen is partially extended into the injection well, the hot air injection screen is arranged at the end of the hot air injection sub-well, and the hot air injection tube extends into the hot air injection well. Air injection into the sub-well;
  • the power source controls the hot air compressor to generate hot air, injects the hot air injection sub-well through the hot air injection pipe, and delivers it to the injection well through the hot air injection screen.
  • the peripheral side of the hot air injection screen is filled with gravel, the peripheral side of the hot air injection sub-well and the bottom of the hot air injection screen are filled with cement Grouting filling
  • the circumferential side of the hot air injection screen is also filled with bentonite, the bentonite is separately arranged on the upper layer and the lower layer of the gravel, and the thickness of the bentonite is 20 cm to 30 cm;
  • the length of the hot air injection screen is 0.5 m to 1 m, and the bottom of the hot air injection screen is located 0.5 m to 1 m above the ground water surface.
  • the hot air compressor is set on the ground of the area to be repaired, and is connected to the hot air injection pipe at 90°;
  • the top of the hot air injection sub-well protrudes 0.05m ⁇ 0.1m from the ground of the area to be repaired;
  • the hot air injection assembly further includes a hot air sealing cover, and the hot air sealing cover is arranged in the hot air injection sub-well.
  • the oxidizer injection assembly includes an oxidizer tank, an oxidizer injection pipe connected to the oxidizer tank, an oxidizer injection sub-well, and an oxidizer injection screen, and the oxidizer injection sub-well partially extends into the injection well ,
  • the oxidant injection screen is arranged at the end of the oxidant injection sub-well, and the oxidant injection pipe extends into the oxidant injection sub-well;
  • the oxidant in the oxidant tank is injected into the oxidant injection sub-well through the oxidant injection pipe, and is delivered to the injection well through the oxidant injection screen.
  • the peripheral side of the oxidant injection screen is filled with gravel, and the peripheral side of the oxidant injection sub-well and the bottom of the oxidant injection screen are filled with cement grouting;
  • the peripheral side of the oxidant injection screen is also filled with bentonite, the bentonite is separately arranged on the upper layer and the lower layer of the gravel, and the thickness of the bentonite is 20 cm-30 cm;
  • the length of the oxidant injection screen is 0.5 m to 1 m, and the oxidant injection screen extends 1 m to 2 m below the ground water surface.
  • the oxidant tank is set on the ground of the area to be repaired, and is connected to the oxidant injection pipe at 90°;
  • the top of the oxidant injection sub-well protrudes 0.05m ⁇ 0.1m from the ground of the area to be repaired;
  • the oxidant injection assembly further includes a hot oxidant sealing cover, and the oxidant sealing cover is arranged in the oxidant injection sub-well.
  • the injection microbubble assembly includes a blower, an injection air pipe connected to the blower, a microbubble generator connected to the injection air pipe, a microbubble injection sub-well, and a microbubble injection screen.
  • the micro bubble injection sub-well partially extends into the injection well
  • the micro bubble injection screen is arranged at the end of the micro bubble injection sub well
  • the micro bubble generator is located at the bottom of the micro bubble injection sub well , And inject the microbubbles into the screen;
  • the air bubble generated by the blower is injected into the micro bubble generator through the injection air pipe, the micro bubble generator generates micro bubbles in the micro bubble injection sub-well, and the micro bubble injection screen is transported to the micro bubble generator The injection well.
  • the peripheral side of the microbubble injection screen is filled with gravel, and the peripheral side of the microbubble injection sub-well is filled with cement grouting;
  • the peripheral side of the microbubble injection screen is also filled with bentonite, the bentonite is provided on the upper layer of the gravel, and the thickness of the bentonite is 20 cm to 30 cm;
  • the length of the microbubble injection screen is 0.5m-1m, and the microbubble injection screen extends into the bottom of the injection well.
  • the blower is set on the ground of the area to be repaired, and is connected to the microbubble injection pipe at 90°;
  • the top of the microbubble injection sub-well protrudes from the ground of the area to be repaired by 0.05m to 0.1m;
  • the microbubble injection assembly further includes a thermal microbubble sealing cover, and the microbubble sealing cover is arranged in the microbubble injection sub-well.
  • the gas-phase extraction assembly includes an air extraction pump and an air extraction pipe, the air extraction pump is set on the ground of the area to be repaired, and the air extraction pipe is connected to the air extraction pump and extends into the An extraction well, the bottom of the extraction well is provided with an extraction screen, and the top of the extraction screen is located at the interface between the groundwater and the soil;
  • the bottom of the suction pipe has an oblique cut, and the inclination angle of the oblique cut is 45°-60°;
  • the air extraction pipe is located between the ground and the ground water surface of the area to be repaired, and the distance between the bottom of the air extraction pipe and the ground of the area to be repaired is 0.5 m to 1 m.
  • the liquid phase extraction assembly includes a water pump and a water pump, the water pump is arranged on the ground of the area to be repaired, and the water pump is connected to the water pump and extends into the The extraction well, the end of the pumping pipe has a pump head;
  • the pump head is vertically arranged in the extraction well, and is located 5m-6m below the ground water surface in the extraction well.
  • the top of the extraction well protrudes from the ground of the area to be repaired by 0.05 m to 0.1 m;
  • the extraction structure further includes an extraction sealing cover, and the extraction sealing cover is arranged on the extraction well;
  • the suction pipe and the water pump are connected at 90°, and the suction pipe and the air pump are connected at 90°.
  • control structure includes a controller, a control switch, a data converter, and a level gauge
  • the level gauge is located 10m-15m below the groundwater level in the extraction well, and is used to detect changes in the groundwater level in the extraction well;
  • the data converter is connected to the controller and the level gauge, and the water level change data detected by the level gauge is transmitted to the controller through the data converter;
  • the control switch is arranged on the water pumping pipe and is connected to the controller, and the controller controls the on and off of the control switch according to the change of the groundwater level;
  • the gas phase extraction component further includes a gas pressure gauge
  • the liquid phase extraction component further includes a liquid pressure gauge and a flow meter
  • the gas-phase pressure gauge is arranged on the gas extraction pipe and is used to measure the gas-phase pressure change during the gas-phase extraction process;
  • the liquid pressure gauge is arranged on the water pumping pipe and is used to measure the pressure change of the liquid phase during the liquid phase extraction process;
  • the range between the gas phase extraction pressure gauge and the liquid phase extraction pressure gauge at least satisfies the extraction influence radius, and the extraction influence radius ranges from 5m to 15m;
  • the flow meter is arranged on the pumping pipe and is used to measure the flow rate in the liquid phase extraction process, and the range of the flow meter is 0.1 m 3 /h to 10 m 3 /h.
  • the soil and groundwater linkage treatment device further includes an anti-seepage member, which is covered on the ground of the area to be repaired.
  • the The anti-permeation member is used to prevent material exchange between above and below the ground in the area to be repaired.
  • the number of the injection structure and the extraction structure are both multiple, and the multiple injection structures and the multiple extraction structures are arranged in rows and/or columns and are adjacent to each other. There is one extraction structure between two injection structures in, and there is one injection structure between two adjacent extraction structures;
  • the predetermined distance between the adjacent extraction structure and the injection structure is equal, and the predetermined distance ranges from 5 m to 20 m.
  • a soil and groundwater linkage treatment method is applied to a soil and groundwater linkage treatment device.
  • the treatment method includes the following steps:
  • the control structure controls the hot air injection component to inject hot air into the injection well, the oxidant injection component to inject oxidant into the injection well, and the microbubble injection component to inject microbubbles into the injection well;
  • the control structure controls the liquid phase extraction component to extract groundwater in a pulse mode
  • the control structure controls the gas extraction of the gas phase extraction component.
  • the step of controlling the liquid phase extraction component by the control structure to extract groundwater in a pulse manner includes:
  • the soil and groundwater linkage treatment device and its treatment method of the present application adopt the hot air injection component, the oxidizer injection component and the microbubble injection component of the injection structure to perform in-situ repair of pollutants in the area to be repaired, and extract the liquid phase of the structure.
  • the extraction component and the gas-phase extraction component extract the airflow and groundwater in the area to be repaired, so as to maximize the extraction of volatile organic pollutants in the groundwater and soil.
  • the use of a control structure to control the liquid phase extraction component in a pulse manner can reduce the moisture content in the soil, so that the volatile organic pollutants are extracted in the gas phase, and promote the migration of the volatile organic pollutants from the groundwater to the soil layer. Effectively solve the problems of low suction efficiency and high cost existing in the current multi-phase extraction, so as to improve the extraction efficiency, reduce energy consumption, save extraction costs to the greatest extent, and improve repair efficiency.
  • FIG. 1 is a schematic structural diagram of a soil and groundwater linkage treatment device according to an embodiment of the application installed in the area to be treated;
  • FIG 2 is a schematic diagram of the extraction process after hot air is injected into the soil and groundwater linkage treatment device shown in Figure 1;
  • FIG. 3 is a schematic diagram of the extraction process after microbubbles are injected into the soil and groundwater linkage treatment device shown in FIG. 1;
  • Figure 4 is a processing flow chart of the soil and groundwater linkage treatment device shown in Figure 1;
  • FIG. 5 is a schematic diagram of the layout of the injection structure and the extraction structure in the soil and groundwater linkage treatment device shown in FIG. 1.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • connection connection
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • this application provides a soil and groundwater linkage treatment device.
  • the soil and groundwater linkage treatment device is arranged in the soil in the area to be restored, and is used for in-situ extraction and restoration of the soil in the area to be restored.
  • the area to be repaired here refers to an area where pollutants exist in the soil and groundwater, and the pollutants include but are not limited to organic volatile pollutants.
  • the soil and groundwater linkage treatment device of the present application can perform in-situ remediation of the pollutants in the area to be rehabilitated, while reducing the moisture content in the soil, so that the volatile organic pollutants are extracted in the gas phase, and promoting the volatile organic pollutants from groundwater to soil Migration in layers can improve extraction efficiency, reduce energy consumption, save extraction costs to the greatest extent, and improve repair efficiency.
  • the soil and groundwater linkage treatment device includes an injection structure and an extraction structure.
  • the injection structure is arranged in the injection well in the area to be repaired.
  • the extraction structure is partially arranged in the area to be repaired, and there is a preset distance between the extraction structure and the injection structure. It is understandable that when the soil and groundwater in the area to be treated are repaired in situ, it is usually necessary to dig a deep pit in the area to be treated, that is, an injection well. In this way, the injection structure can inject gas and reagents for in-situ repair into the injection well in the area to be treated, and the extraction structure can extract the gas and liquid from the injection well to achieve the restoration of soil and groundwater in the area to be repaired.
  • the injection structure includes a hot air injection component, an oxidizer injection component, and a microbubble injection component partially set in the injection well.
  • the hot air injection component is used to inject hot air into the injection well
  • the oxidant injection component is used to inject oxidant into the injection well and microbubbles.
  • the component is used to inject microbubbles into the injection well.
  • the extraction structure includes extraction wells partly arranged in the area to be repaired, and liquid-phase extraction components and gas-phase extraction components partly arranged in the extraction wells.
  • the liquid-phase extraction components are used to extract the gas flow in the extraction well.
  • the extraction component is used to extract groundwater from the extraction well.
  • the control structure is respectively connected with the liquid phase extraction component and the gas phase extraction component, and controls the liquid phase extraction component and the gas phase extraction component to perform extraction operations, and the control structure controls the liquid phase extraction component to extract groundwater in a pulse mode, and controls
  • the structure is also respectively connected with the hot air injection component, the oxidant injection component and the microbubble injection component.
  • the control structure controls the hot air injection component to inject hot air into the injection well, and the oxidant injection component to inject oxidant into the injection well.
  • hot air will penetrate into the soil around the injection well, and the oxidant will penetrate into the soil and groundwater around the injection well, thereby changing the temperature of the soil layer and groundwater and increasing the oxygen content in the soil layer, promoting gas and liquid phases
  • the volatilization effect and biodegradability of pollutants in the medium, and at the same time, the pollutants can be removed in situ to a certain extent.
  • the control structure controls the injection microbubble component to inject microbubbles into the injection well, and the microbubbles will penetrate into the soil around the injection well.
  • the movement of microbubbles in the contaminated groundwater can be used to promote the mass transfer of pollutants from the groundwater to the soil.
  • the control structure controls the liquid phase extraction component to extract the liquid in the extraction well as groundwater, and the gas phase extraction component to extract the gas in the extraction well.
  • the liquid phase extraction component extracts the groundwater
  • the level of the groundwater in the soil will drop, reducing the moisture content in the soil layer.
  • the volatile organic pollutants will be transferred from the groundwater to the soil, and finally be extracted by gas phase extraction. Extraction office. This can improve the extraction efficiency.
  • the use of liquid phase extraction components and gas phase extraction components can directly extract volatile organic pollutants in two different forms, gas phase and liquid phase, and significantly reduce the subsequent processing load.
  • a control structure is used to control the extraction operation of the liquid phase extraction component, and the liquid phase extraction component is controlled to extract groundwater in a pulse mode.
  • the control structure controls the liquid phase extraction component to extract groundwater
  • the control structure controls the liquid phase extraction component to stop the extraction operation.
  • the control structure controls the liquid phase extraction component to perform the extraction operation.
  • the control structure can judge whether the pumping work is going on according to the height of the groundwater level, and realize pulse pumping.
  • the moisture content in the soil can be reduced, and the transfer of volatile organic pollutants from groundwater to the soil can be greatly promoted, and finally carried out in the way of gas phase extraction, which can significantly improve extraction efficiency and reduce labor costs.
  • the soil and groundwater linkage treatment device of the present application maximizes the extraction of organic pollutants in the soil and groundwater by coupling multiple remediation techniques in the soil and groundwater. It solves the problems of low suction efficiency and high cost in the current multi-phase extraction, optimizes the process of extracting volatile organic pollutants in soil and groundwater, reduces energy consumption and labor costs, and significantly improves repair efficiency. At the same time, after the liquid phase extraction component for pulse extraction is combined with the gas phase extraction component, it can also save the labor cost of extraction to the greatest extent, improve extraction efficiency, and facilitate the popularization and application of soil and groundwater linkage treatment devices.
  • the hot air injection assembly includes a power source 1, a hot air compressor connected to the power source 1, a hot air injection pipe 23 connected to the hot air compressor 2, a hot air injection sub-well 17, and hot air
  • the injection screen, the hot air injection sub-well 17 partially extends into the injection well, the hot air injection screen is arranged at the end of the hot air injection sub-well 17 and the hot air injection pipe 23 extends into the hot air injection sub-well 17.
  • the power source 1 controls the hot air compressor 2 to generate hot air, injects the hot air injection sub-well 17 through the hot air injection pipe 23, and delivers it to the injection well through the hot air injection screen.
  • One end of the hot air injection pipe 23 is connected to the hot air compressor 2, and the other end extends into the hot air injection sub-well 17.
  • the top of the hot air injection sub-well 17 exposes the injection well, and the rest is located in the injection well.
  • the hot air compressor 2 injects hot air into the hot air injection sub-well 17 through the hot air injection pipe 23, and the hot air is injected through the hot air
  • the screen pipe penetrates into the surrounding soil to inject hot air into the soil layer.
  • the peripheral side of the hot air injection screen is filled with gravel 16, the peripheral side of the hot air injection sub-well 17 and the bottom of the hot air injection screen are filled with cement grouting 5.
  • the peripheral side of the hot air injection screen is also filled with bentonite 15, which is arranged in the upper layer and the lower layer of the gravel 16, and the thickness of the bentonite 15 is 20 cm-30 cm. That is to say, the vicinity of the hot air injection screen is mainly surrounded by gravel 16, the upper and lower gravel 16 are respectively filled with bentonite 15 with a thickness of about 20 to 30 cm, and the rest is filled with cement grouting 5.
  • Such a hot air injection assembly facilitates the smooth progress of the hot air injection work.
  • the length of the hot air injection screen is 0.5m ⁇ 1m, and the bottom of the hot air injection screen is 0.5m ⁇ 1m above the groundwater level 6.
  • the hot air injection screen has sieve holes for the penetration of hot air. It is understandable that the length of the hot air injection screen is determined by the parameters of the hydrogeological conditions of the area to be repaired and the amount of hot air injected. Moreover, the depth of the hot air injection into the sub-well 17 is determined according to the hydrogeological conditions of the area to be repaired. It is understandable that the hot air injection sub-well 17 may be an integral structure with the hot air injection screen. Illustratively, the hot air injection sub-well 17 has a screen hole communicating with the outside on the periphery of the end. Of course, in other embodiments of the present application, the hot air injection screen can also be installed separately from the hot air injection sub-well 17 and reliably fixed to the end of the hot air injection sub-well 17.
  • the hot air compressor 2 is installed on the ground of the area to be repaired, and is connected to the hot air injection pipe 23 at 90°. This is conducive to the stable and smooth output of hot air from the hot air compressor 2.
  • the top of the hot air injection subwell 17 protrudes from the ground of the area to be repaired by 0.05m ⁇ 0.1m.
  • the hot air injection assembly further includes a hot air sealing cover, and the hot air sealing cover is arranged in the hot air injection subwell 17. In this way, the tightness of the hot air injection sub-well 17 can be ensured, the hot air in the hot air injection sub-well 17 can be prevented from leaking, and the volatile organic pollutants can be prevented from flowing out of the hot air injection sub-well 17 at the same time.
  • the temperature in the soil layer can be increased, and to a certain extent, the volatilization of volatile organic pollutants in the soil pores can be promoted.
  • the temperature in the soil is controlled between 20 and 37°C, which is beneficial to the biodegradation effect of volatile organic pollutants in the soil.
  • the oxidant injection component includes an oxidant tank 4, an oxidant injection pipe 24 connected to the oxidant tank 4, an oxidant injection sub-well 19, and an oxidant injection screen.
  • the oxidant injection sub-well 19 partially extends into the injection well, and the oxidant injection screen
  • the pipe is arranged at the end of the oxidant injection sub-well 19, and the oxidant injection pipe 24 extends into the oxidant injection sub-well 19.
  • the oxidant in the oxidant tank 4 is injected into the oxidant injection sub-well 19 through the oxidant injection pipe 24, and is delivered to the injection well through the oxidant injection screen.
  • the oxidant injection pipe is made of UPVC (Unplasticized Polyvinyl Chloride).
  • An oxidant is stored in the oxidant tank 4, such as a Fenton reagent.
  • the oxidant stored in the oxidant tank 4 can satisfy the total amount of pollutants within a radius of about 10m to 20m around the injection well.
  • One end of the oxidant injection pipe 24 is connected to the oxidant tank 4, and the other end extends into the oxidant injection sub-well 19.
  • the top of the oxidant injection sub-well 19 exposes the injection well, and the rest is located in the injection well.
  • the oxidant in the oxidant tank 4 is injected into the oxidant injection sub-well 19 through the oxidant injection pipe 24, and the oxidant penetrates into the surrounding soil through the oxidant injection screen to realize the transfer into the soil layer. Inject oxidizer.
  • the peripheral side of the oxidant injection screen is filled with gravel 16, and the peripheral side of the oxidant injection sub-well 19 and the bottom of the oxidant injection screen are filled with cement grouting 5.
  • the peripheral side of the oxidant injection screen is also filled with bentonite 15.
  • the bentonite 15 is arranged in the upper layer and the lower layer of the gravel 16, and the thickness of the bentonite 15 is 20 cm-30 cm. That is to say, the vicinity of the oxidant injection screen is mainly surrounded by gravel 16, the upper and lower gravel 16 is respectively filled with bentonite 15 with a thickness of about 20-30 cm, and the rest is filled with cement grouting 5.
  • Such an oxidant injection assembly facilitates the smooth progress of the oxidant injection work.
  • the length of the oxidant injection screen is 0.5m ⁇ 1m, and the oxidant injection screen extends 1m ⁇ 2m below the groundwater level 6.
  • the oxidant injection screen is provided with sieve holes to realize the permeation of the oxidant. It is understandable that the length of the oxidant injection screen is determined by the parameters of the hydrogeological conditions of the area to be repaired and the amount of oxidant injected. Moreover, the depth of the oxidant injection sub-well 19 is determined according to the hydrogeological conditions of the area to be repaired. It can be understood that the oxidant injection sub-well 19 may be an integral structure with the oxidant injection screen. Illustratively, the oxidant injection sub-well 19 has a sieve hole connected to the outside on the peripheral side of the end. Of course, in other embodiments of the present application, the oxidant injection screen can also be arranged separately from the oxidant injection sub-well 19 and be reliably fixed to the end of the oxidant injection sub-well 19.
  • the oxidant tank 4 is set on the ground of the area to be repaired and is connected to the oxidant injection pipe 24 at a 90° angle. This is beneficial to the stable and smooth output of the oxidant from the oxidant tank 4.
  • the top of the oxidant injection sub-well 19 protrudes from the ground of the area to be repaired by 0.05 m to 0.1 m.
  • the oxidant injection assembly also includes a hot oxidant sealing cover, and the oxidant sealing cover is arranged in the oxidant injection sub-well 19.
  • the tightness of the oxidant injection sub-well 19 can be ensured, the oxidant in the oxidant injection sub-well 19 can be prevented from leaking, and the volatile organic pollutants can also be prevented from flowing out of the oxidant injection sub-well 19.
  • the Fenton system By injecting an oxidant in the shallow layer of the saturated zone of the soil to be treated, the Fenton system is used to oxidize the volatile organic pollutants in the shallow groundwater in situ, causing it to generate a lot of heat during the chemical reaction, and promoting organic pollution in the shallow groundwater The volatilization of substances.
  • the volatile organic pollutants that reach the soil layer are injected into the hot air to drive the volatile organic pollutants in the soil pores to be extracted in the gas phase, so as to achieve in-situ remediation of the volatile organic pollutants in the soil and groundwater.
  • the microbubble injection assembly includes a blower 3, an injection air pipe connected to the blower 3, a microbubble generator connected to the injection air pipe, a microbubble injection sub-well 18, and a microbubble injection screen.
  • the sub well 18 partially extends into the injection well, the micro bubble injection screen is arranged at the end of the micro bubble injection sub well 18, and the micro bubble generator is located at the bottom of the micro bubble injection sub well 18 and corresponds to the micro bubble injection screen.
  • the air bubbles generated by the blower 3 are injected into the microbubble generator through the injection air pipe, and the microbubble generator generates microbubbles in the microbubble injection sub-well 18, and the microbubbles are injected into the screen and transported to the injection well.
  • the blower 3 is used to generate wind.
  • One end of the injection air pipe is connected to the blower 3, and the other end extends into the micro bubble injection sub-well 18 and is connected to the micro bubble generator.
  • microbubbles can be generated in the microbubble injection sub-well 18.
  • the microbubbles in the microbubble injection sub-well 18 penetrate into the surrounding soil through the microbubble injection screen, so as to inject the microbubbles into the soil layer.
  • the peripheral side of the microbubble injection screen is filled with gravel 16, and the peripheral side of the microbubble injection sub-well 18 is filled with cement grouting 5.
  • the peripheral side of the microbubble injection screen is also filled with bentonite 15, which is arranged on the upper layer of gravel 16, and the thickness of bentonite 15 is 20 cm to 30 cm.
  • the vicinity of the microbubble injection screen is mainly surrounded by gravel material 16, and the gravel material 16 is filled with bentonite 15 with a thickness of about 20 cm to 30 cm.
  • Such a microbubble injection assembly is beneficial to the smooth progress of the work of injecting microbubbles.
  • the length of the microbubble injection screen is 0.5m-1m, and the microbubble injection screen extends into the bottom of the injection well. In other words, the microbubble injection screen is located at the deepest part of the soil in the area to be repaired.
  • the micro-bubble injection sieve has sieve holes for the penetration of micro-bubbles. It is understandable that the length of the microbubble injection screen is determined by the parameters of the hydrogeological conditions of the area to be repaired and the amount of microbubbles injected. Moreover, the depth of microbubbles injected into the sub-well 18 is determined according to the hydrogeological conditions of the area to be repaired. It is understandable that the microbubble injection sub-well 18 may be an integral structure with the microbubble injection screen.
  • the microbubble injection sub-well 18 has a sieve hole connected to the outside on the periphery of the end.
  • the microbubble injection screen can also be installed separately from the microbubble injection sub-well 18 and reliably fixed to the end of the microbubble injection sub-well 18.
  • the blower 3 is set on the ground of the area to be repaired, and is connected to the microbubble injection pipe at 90°. This is conducive to the stable and smooth output of the blower 3.
  • the top of the microbubble injection sub-well 18 protrudes from the ground of the area to be repaired by 0.05 m to 0.1 m.
  • the microbubble injecting component further includes a thermal microbubble sealing cover, and the microbubble sealing cover is arranged in the microbubble injection sub-well 18.
  • the airtightness of the microbubble injection sub-well 18 can be ensured, the microbubbles in the microbubble injection sub-well 18 can be prevented from leaking, and volatile organic pollutants can be prevented from flowing out of the microbubble injection sub-well 18 at the same time.
  • the organic pollutants in the deeper part of the groundwater are absorbed on the surface of the microbubbles.
  • the microbubbles rise slowly, they reach the upper part of the saturated zone or the unsaturated zone.
  • the interphase mass transfer it is transferred from the deep part of the groundwater to the shallow part and the soil layer to promote the rapid movement of pollutants into the shallow groundwater, and finally extracted in the form of gas phase.
  • the gas-phase extraction assembly includes an air extraction pump 8 and an air extraction pipe 22.
  • the air extraction pump 8 is set on the ground of the area to be repaired.
  • the air extraction pipe 22 is connected to the air extraction pump 8 and extends into the extraction well.
  • the bottom of the extraction well is provided with an extraction screen, which is located at the interface between the groundwater surface 6 and the soil.
  • the bottom of the suction pipe 22 has an oblique incision, and the inclination angle of the oblique incision is 45°-60°.
  • the air extraction pipe 22 is located between the ground of the area to be repaired and the ground water surface 6, and the distance between the bottom of the air extraction pipe 22 and the ground of the area to be repaired is 0.5 m to 1 m.
  • the extraction screen has screen holes, and the length of the extraction screen is based on the parameters of the hydrogeological conditions of the area to be repaired.
  • the vicinity of the extraction screen is mainly surrounded by gravel material 16, which is filled with bentonite 15 with a thickness of about 20-30 cm, and the rest is filled with cement grouting 5. It is understandable that the top of the gravel 16 should be higher than the ground water surface 6, so that hot air can enter the extraction screen.
  • the diameter of the suction pipe 22 is determined according to the hydrogeological conditions of the area to be repaired.
  • the extraction well may be an integral structure with the extraction screen.
  • the periphery of the end of the extraction well has screen holes communicating with the outside.
  • the extraction screen can also be installed separately from the extraction well and reliably fixed at the end of the extraction well.
  • the gas in the soil can enter the extraction well through the extraction screen, and enter the extraction pipe 22 through the extraction well, and then enter the post-processing device through the branch pipe connected with the extraction pipe 22.
  • the gas with volatile organic pollutants is processed by a post-processing device.
  • the liquid phase extraction component includes a pump 12 and a pumping pipe 25.
  • the pump 12 is installed on the ground of the area to be repaired.
  • the pumping pipe 25 is connected to the pump 12 and extends into the extraction well.
  • the pumping pipe 25 The end has a pump head 20.
  • the pump head 20 is vertically arranged in the extraction well, and is located 5m-6m below the groundwater level 6 in the extraction well.
  • One end of the pumping pipe 25 extends vertically into the extraction well and is located 5m-6m below the ground water surface 6, and the other end of the pumping pipe 25 is connected to the pump 12 horizontally.
  • the diameter of the pumping pipe 25 is determined according to the hydrogeological conditions of the area to be repaired, and is about 1 cm to 2 cm.
  • the water in the soil can enter the extraction well, and enter the pumping pipe 25 through the extraction well, and then enter the post-processing device through the branch pipe connected with the pumping pipe 25, and pass the post-processing
  • the device treats water bodies with volatile organic pollutants.
  • the suction pipe 22 and the water suction pipe 25 are both made of UPVC.
  • the top of the extraction well protrudes from the ground of the area to be repaired by 0.05 m to 0.1 m.
  • the extraction structure also includes an extraction sealing cover, and the extraction sealing cover is arranged in the extraction well. This prevents volatile organic pollutants from escaping from the extraction well.
  • the suction pipe 25 and the suction pump 12 are connected at 90°, and the suction pipe 22 and the suction pump 8 are connected at 90°. This is conducive to the stable and smooth output of liquid from the pumping pipe 25 and the stable and smooth output of gas from the pumping pipe 22.
  • the control structure includes a controller, a control switch 11, a data converter 13, and a level gauge 21.
  • the level gauge 21 is located 10m-15m below the groundwater level 6 in the extraction well, and is used to detect changes in the groundwater level in the extraction well.
  • the data converter 13 is connected to the controller and the level gauge 21, and the water level change data detected by the level gauge 21 is transmitted to the controller through the data converter 13.
  • the control switch 11 is arranged in the pumping pipe 25 and connected to the controller, and the controller controls the on and off of the control switch 11 according to the change of the groundwater level.
  • the controller is a PLC controller.
  • the control switch 11 is used to control the on and off of the pumping pipe 25.
  • the controller is electrically connected with the data converter 13 and the control switch 11 respectively.
  • the level gauge 21 is electrically connected to the data converter 13.
  • the control structure controls the liquid phase extraction component to perform pulse extraction, turn on the controller and turn on the control switch 11 to start the liquid phase extraction component.
  • the groundwater level 6 continues to drop.
  • the liquid level fluctuates within t 1
  • it does not exceed ⁇ h it can be judged that the groundwater surface 6 is stable.
  • the control switch 11 is closed, and the liquid phase extraction component stops working. At this time, the water level of the groundwater surface 6 gradually recovers.
  • t 1 is the liquid level stability judgment time
  • ⁇ h is the liquid level stability judgment height
  • t 2 is the pumping time after stability
  • t 3 is the water level recovery time.
  • the controller Through the intelligent judgment of the controller, it is judged whether the pumping work is going on according to the change of the water level of the groundwater surface 6, and the pulse pumping is realized.
  • the pump 12 When the pump 12 pumps water, it will cause the water level of the groundwater surface 6 to drop, which will reduce the moisture content at the junction of the groundwater and the soil, so as to reduce the moisture content in the soil layer and transfer the volatile organic pollutants from the groundwater to the soil. In this way, more volatile organic pollutants are exposed to the pores of the soil, and finally carried out by gas phase extraction, which improves extraction efficiency and reduces labor costs.
  • the pulse extraction method can greatly reduce the wastewater treatment cost after extraction and optimize the extraction strategy.
  • the use of a controller can significantly reduce labor costs, which is conducive to the widespread use of soil and groundwater linkage treatment devices.
  • the gas phase extraction component further includes a gas phase pressure gauge 7, and the liquid phase extraction component further includes a liquid phase pressure gauge 10 and a flow meter 9.
  • the gas pressure gauge 7 is arranged in the gas extraction pipe 22 and is used to measure the pressure change of the gas phase during the gas extraction process.
  • the liquid pressure gauge 10 is arranged in the pumping pipe 25 and is used to measure the change of the liquid phase pressure during the liquid phase extraction process.
  • the range between the gas phase extraction pressure gauge and the liquid phase extraction pressure gauge at least meets the extraction influence radius, and the extraction influence radius ranges from 5m to 15m.
  • the flow meter 9 is installed in the pumping pipe 25 and is used to measure the flow rate in the liquid phase extraction process.
  • the measuring range of the flow meter 9 is 0.1 m 3 /h to 10 m 3 /h.
  • the soil and groundwater linkage treatment device further includes an anti-seepage member 14 covering the ground of the area to be repaired.
  • the anti-seepage member 14 is used to prevent the area to be repaired.
  • the anti-permeable member 14 may be an anti-permeable film or an anti-permeable coating.
  • Extraction structure there is an injection structure between two adjacent extraction structures.
  • the layout of the injection structure and the extraction structure is shown in FIG. 5, which can achieve effective repair of the area to be repaired and improve the repair efficiency.
  • the predetermined distance between the adjacent extraction structure and the injection structure is equal, and the predetermined distance ranges from 5 m to 20 m. It is understandable that the preset distance between the injection structure and the extraction structure is determined according to the hydrogeological conditions of the area to be repaired.
  • the soil and groundwater linkage treatment device of the present application works, hot air is injected into the soil layer to promote the volatilization of volatile organic pollutants in the soil pores and the degradation of the organic pollutants by aerobic organisms; inject into the shallow soil aquifer Oxidant, which reacts with volatile organic pollutants in situ, and the heat generated promotes the migration of organic matter in shallow groundwater to the soil; microbubbles are injected into the deep aquifer of soil to accumulate volatile organic pollutants in deep groundwater On the surface of the microbubbles, as the microbubbles slowly rise to the interface between the soil and the groundwater, it promotes the mass transfer between the phases.
  • the impulse pumping method is used to optimize the repair cost and extraction strategy in the extraction process, significantly reduce labor costs and significantly improve extraction efficiency.
  • this application also provides a soil and groundwater linkage treatment method, which is applied to a soil and groundwater linkage treatment device, and the treatment method includes the following steps:
  • the control structure controls the hot air injection component to inject hot air into the injection well, the oxidizer injection component to inject oxidant into the injection well, and the microbubble injection component to inject microbubbles into the injection well;
  • the control structure controls the liquid phase extraction component to extract groundwater in a pulse mode
  • the control structure controls the gas extraction of the gas phase extraction component.
  • the control structure controls the hot air injection component to inject hot air into the injection well, and the oxidant injection component to inject oxidant into the injection well.
  • hot air will penetrate into the soil around the injection well, and the oxidant will penetrate into the soil and groundwater around the injection well, thereby changing the temperature of the soil layer and groundwater and increasing the oxygen content in the soil layer, promoting gas and liquid phases
  • the volatilization effect and biodegradability of pollutants in the medium, and at the same time, the pollutants can be removed in situ to a certain extent.
  • the control structure controls the injection microbubble component to inject microbubbles into the injection well, and the microbubbles will penetrate into the soil around the injection well.
  • the movement of microbubbles in the contaminated groundwater can be used to promote the mass transfer of pollutants from the groundwater to the soil.
  • the control structure controls the liquid phase extraction component to extract the liquid in the extraction well as groundwater, and the gas phase extraction component to extract the gas in the extraction well. After the liquid phase extraction component extracts the groundwater, the level of the groundwater in the soil will drop, reducing the moisture content in the soil layer. In this way, the volatile organic pollutants will be transferred from the groundwater to the soil, and finally be extracted by gas phase extraction. Extraction office. This can improve the extraction efficiency.
  • the use of liquid-phase extraction components and gas-phase extraction components can directly extract volatile organic pollutants in two different forms, gas phase and liquid phase, and significantly reduce the subsequent processing load.
  • the step of controlling the liquid phase extraction component to extract groundwater in a pulse manner by the control structure includes:
  • control structure controls the liquid phase extraction component to extract groundwater
  • the control structure controls the liquid phase extraction component to stop the extraction operation.
  • the control structure controls the liquid phase extraction component to perform the extraction operation.
  • the control structure can judge whether the pumping work is going on according to the height of the groundwater level, and realize pulse pumping.
  • the moisture content in the soil can be reduced, and the transfer of volatile organic pollutants from groundwater to the soil can be greatly promoted, and finally carried out in the way of gas phase extraction, which can significantly improve extraction efficiency and reduce labor costs.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

一种土壤地下水联动处理装置及其处理方法,土壤地下水联动处理装置包括:注入结构,设置于待修复区的注入井中,包括注入热空气组件、注入氧化剂组件以及注入微气泡组件;抽提结构,与注入结构之间存在预设间距,包括部分设置于待修复区的抽提井以及部分设置于抽提井的液相抽提组件与气相抽提组件;控制结构,分别与液相抽提组件以及气相抽提组件连接,并控制液相抽提组件与气相抽提组件进行抽提操作。

Description

土壤地下水联动处理装置及其处理方法
相关申请
本申请要求2019年03月26日申请的,申请号为2019102333308,名称为“土壤地下水联动处理装置及其处理方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及地下水污染修复领域,特别是涉及一种土壤地下水联动处理装置及其处理方法。
背景技术
土壤地下水污染问题已经严重地影响了社会发展。通常采用土壤地下水原位修复对土壤地下水污染处进行处理。
目前,在土壤原位修复方面的技术已经相对成熟,但对于土壤地下水的联合原位修复仍然较少。因此,采取合理的土壤地下水原位修复技术,以此尽量降低由于土壤、地下水污染引起的健康威胁和安全隐患迫在眉睫。土壤地下水原位修复过程是一个复杂、缓慢且具有多方面局限的工程,多相抽提是当前原位修复工程中效果较好的一种方式。
传统的多相抽提是利用清洁空气或清洁水反复冲刷污染区域的原理进行修复,该技术通过同时抽取地下污染区域的土壤气体、地下水和浮油层到地面进行相分离和处理,以控制和修复土壤与地下水中有机污染。然而,当前的多相抽提设备处理目标相对单一,在抽提效率以及节能环保方面上仍有待提高,并且,抽提流量和抽提效率之间的最优效能没有考虑进来,不利于长期的原位修复,且消耗大量人工成本。
发明内容
基于此,有必要针对目前采用多相抽提存在的抽吸效率低、成本高的问题,提供一种能够提高抽提效率、降低成本的土壤地下水联动处理装置及其处理方法。
上述目的通过下述技术方案实现:
一种土壤地下水联动处理装置,设置于待修复区的土壤中,所述土壤地下水联动处理装置包括:
注入结构,设置于所述待修复区的注入井中;所述注入结构包括部分设置于所述注入井的注入热空气组件、注入氧化剂组件以及注入微气泡组件,所述注入热空气组件用于向 所述注入井注入热空气,所述注入氧化剂组件用于向所述注入井注入氧化剂,所述注入微气泡组件用于向所述注入井注入微气泡;
抽提结构,与所述注入结构之间存在预设间距;所述抽提结构包括部分设置于所述待修复区的抽提井以及部分设置于所述抽提井的液相抽提组件与气相抽提组件,所述液相抽提组件用于抽提所述抽提井中的气流,所述液相抽提组件用于抽取所述抽提井的地下水;以及
控制结构,所述控制结构分别与所述液相抽提组件以及所述气相抽提组件连接,并控制所述液相抽提组件与所述气相抽提组件进行抽提操作,且所述控制结构控制所述液相抽提组件以脉冲方式抽提地下水,所述控制结构还分别与所述注入热空气组件、注入氧化剂组件以及注入微气泡组件连接。
在其中一个实施例中,所述注入热空气组件包括动力源、与所述动力源连接的热空压机、与所述热空压机连接的热空气注入管、热空气注入子井以及热空气注入筛管,所述热空气注入子井部分伸入所述注入井,所述热空气注入筛管设置于所述热空气注入子井的末端,所述热空气注入管伸入所述热空气注入子井;
所述动力源控制所述热空压机产生热空气,经所述热空气注入管注入所述热空气注入子井,并经所述热空气注入筛管输送至所述注入井。
在其中一个实施例中,在所述注入井中,所述热空气注入筛管的周侧由砾料填充,所述热空气注入子井的周侧以及所述热空气注入筛管的底部由水泥灌浆填充;
所述热空气注入筛管的周侧还填充膨润土,所述膨润土分设于所述砾料的上层与下层,且所述膨润土的厚度为20cm~30cm;
所述热空气注入筛管的长度为0.5m~1m,所述热空气注入筛管的底部位于地下水面以上0.5m~1m。
在其中一个实施例中,所述热空压机设置于所述待修复区的地面,并与所述热空气注入管之间呈90°连接;
所述热空气注入子井的顶部凸出所述待修复区的地面0.05m~0.1m;
所述注入热空气组件还包括热空气密封盖,所述热空气密封盖盖设于所述热空气注入子井。
在其中一个实施例中,所述注入氧化剂组件包括氧化剂罐、与所述氧化剂罐连接的氧化剂注入管、氧化剂注入子井以及氧化剂注入筛管,所述氧化剂注入子井部分伸入所述注入井,所述氧化剂注入筛管设置于所述氧化剂注入子井的末端,所述氧化剂注入管伸入所述氧化剂注入子井;
所述氧化剂罐中的氧化剂经所述氧化剂注入管注入所述氧化剂注入子井,并经所述氧化剂注入筛管输送至所述注入井。
在其中一个实施例中,在所述注入井中,所述氧化剂注入筛管的周侧由砾料填充,所述氧化剂注入子井的周侧以及所述氧化剂注入筛管的底部由水泥灌浆填充;
所述氧化剂注入筛管的周侧还填充膨润土,所述膨润土分设于所述砾料的上层与下层,且所述膨润土的厚度为20cm~30cm;
所述氧化剂注入筛管的长度为0.5m~1m,所述氧化剂注入筛管伸入地下水面以下1m~2m。
在其中一个实施例中,所述氧化剂罐设置于所述待修复区的地面,并与所述氧化剂注入管之间呈90°连接;
所述氧化剂注入子井的顶部凸出所述待修复区的地面0.05m~0.1m;
所述注入氧化剂组件还包括热氧化剂密封盖,所述氧化剂密封盖盖设于所述氧化剂注入子井。
在其中一个实施例中,所述注入微气泡组件包括鼓风机、与所述鼓风机连接的注入风管、与所述注入风管连接的微气泡发生器、微气泡注入子井以及微气泡注入筛管,所述微气泡注入子井部分伸入所述注入井,所述微气泡注入筛管设置于所述微气泡注入子井的末端,所述微气泡发生器位于所述微气泡注入子井底部,并对应所述微气泡注入筛管;
所述鼓风机产生的风泡经所述注入风管注入所述微气泡发生器,所述微气泡发生器在所述微气泡注入子井中产生微气泡,并所述微气泡注入筛管输送至所述注入井。
在其中一个实施例中,在所述注入井中,所述微气泡注入筛管的周侧由砾料填充,所述微气泡注入子井的周侧由水泥灌浆填充;
所述微气泡注入筛管的周侧还填充膨润土,所述膨润土设于所述砾料的上层,且所述膨润土的厚度为20cm~30cm;
所述微气泡注入筛管的长度为0.5m~1m,所述微气泡注入筛管伸入所述注入井的底部。
在其中一个实施例中,所述鼓风机设置于所述待修复区的地面,并与所述微气泡注入管之间呈90°连接;
所述微气泡注入子井的顶部凸出所述待修复区的地面0.05m~0.1m;
所述注入微气泡组件还包括热微气泡密封盖,所述微气泡密封盖盖设于所述微气泡注入子井。
在其中一个实施例中,所述气相抽提组件包括抽气泵以及抽气管,所述抽气泵设置于所述待修复区的地面,所述抽气管与所述抽气泵连接,并伸入所述抽提井,所述抽提井的 底部具有抽提筛管,所述抽提筛管的顶部位于地下水与土壤的分界面;
所述抽气管的底部具有斜切口,所述斜切口的倾斜角度为45°~60°;
所述抽气管位于所述待修复区的地面与地下水面之间,且所述抽气管的底部距离所述待修复区的地面的距离为0.5m~1m。
在其中一个实施例中,所述液相抽提组件包括抽水泵以及抽水管,所述抽水泵设置于所述待修复区的地面,所述抽水管与所述抽水泵连接,并伸入所述抽提井,所述抽水管的端部具有抽水泵头;
所述抽水泵头竖直设置于所述抽提井,并位于所述抽提井内地下水面以下5m~6m。
在其中一个实施例中,所述抽提井的顶部凸出所述待修复区的地面0.05m~0.1m;
所述抽提结构还包括抽提密封盖,所述抽提密封盖盖设于所述抽提井;
所述抽水管与所述抽水泵之间呈90°连接,所述抽气管与所述抽气泵之间呈90°连接。
在其中一个实施例中,所述控制结构包括控制器、控制开关、数据转化器以及液位计;
所述液位计位于所述抽提井内地下水面以下10m~15m,用于检测所述抽提井内地下水的水位变化;
所述数据转化器连接所述控制器与所述液位计,所述液位计检测的水位变化数据通过所述数据转化器传输给所述控制器;
所述控制开关设置于所述抽水管,并与所述控制器连接,所述控制器根据所述地下水的水位变化控制所述控制开关的通断;
在其中一个实施例中,所述气相抽提组件还包括气相压力计,液相抽提组件还包括液相压力计以及流量计;
所述气相压力计设置于所述抽气管,用于测量气相抽提过程中的气相压力变化情况;
所述液相压力计设置于所述抽水管,用于测量液相抽提过程中的液相压力变化情况;
所述气相抽提压力计与所述液相抽提压力计之间的量程范围至少满足抽提影响半径,且所述抽提影响半径的范围为5m~15m;
所述流量计设置于所述抽水管,用于测量液相抽提过程中的流量,所述流量计的量程范围为0.1m 3/h~10m 3/h。
在其中一个实施例中,所述土壤地下水联动处理装置还包括防渗透件,所述防渗透件盖设于所述待修复区的地面,所述注入结构与所述抽提结构工作时,所述防渗透件用于防止所述待修复区的地面以上与地面以下进行物质交换。
在其中一个实施例中,所述注入结构与所述抽提结构的数量均为多个,多个所述注入 结构与多个所述抽提结构成行和/或成列排布,且相邻的两个注入结构之间存在一个所述抽提结构,相邻的两个所述抽提结构之间存在一个所述注入结构;
相邻的所述抽提结构与所述注入结构之间的所述预设距离相等,且所述预设间距的范围为5m~20m。
一种土壤地下水联动处理方法,应用于土壤地下水联动处理装置中,所述处理方法包括如下步骤:
控制结构控制注入热空气组件向注入井注入热空气,控制注入氧化剂组件向所述注入井注入氧化剂,控制注入微气泡组件向所述注入井注入微气泡;
所述控制结构控制液相抽提组件以脉冲方式抽提地下水;
所述控制结构控制气相抽提组件抽气。
在其中一个实施例中,所述控制结构控制液相抽提组件以脉冲方式抽提地下水的步骤包括:
开启控制器与控制开关,所述液相抽提组件工作;
待所述地下水液面稳定,所述液相抽提组件抽提第一预设时间后,关闭控制开关;
待所述地下水液面上升至预设高度后,重复执行上述步骤。
采用上述技术方案后,本申请至少具有如下技术效果:
本申请的土壤地下水联动处理装置及其处理方法,采用注入结构的注入热空气组件、注入氧化剂组件以及注入微气泡组件可以对待修复区的污染物进行原位修复,并通过抽提结构的液相抽提组件与气相抽提组件对待修复区的气流以及地下水进行抽提,实现将地下水与土壤中的挥发性有机污染物最大化抽提出来。并且,采用控制结构以脉冲方式控制液相抽提组件可以降低土壤中的含水率,使得挥发性有机污染物以气相方式抽提,促进挥发性有机污染物从地下水到土壤层中的迁移。有效的解决目前采用多相抽提存在的抽吸效率低、成本高的问题,以提高抽提效率、降低能耗,最大程度节约抽提成本,提高修复效率。
附图说明
图1为本申请一实施例的土壤地下水联动处理装置设置于待处理区的结构示意图;
图2为图1所示的土壤地下水联动处理装置注入热空气后的抽提过程示意图;
图3为图1所示的土壤地下水联动处理装置注入微气泡后的抽提过程示意图;
图4为图1所示的土壤地下水联动处理装置的处理流程图;
图5为图1所示的土壤地下水联动处理装置中注入结构与抽提结构的布局示意图。
其中:
1-动力源;2-热空压机;3-鼓风机;4-氧化剂罐;5-水泥灌浆;6-地下水面;7-气相压力计;8-抽气泵;9-流量计;10-液相压力计;11-控制开关;12-抽水泵;13-数据转化器;14-防渗透件;15-膨润土;16-砾料;17-热空气注入子井;18-微气泡注入子井;19-氧化剂注入子井;20-抽水泵头;21-液位计;22-抽气管;23-热空气注入管;24-氧化剂注入管;25-抽水管。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请的土壤地下水联动处理装置及其处理方法进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
参见图1至图4,本申请提供一种土壤地下水联动处理装置。该土壤地下水联动处理装置设置于待修复区的土壤中,用于对待修复区的土壤进行原位抽提修复。可以理解的,这里的待修复区是指土壤地下水存在污染物的区域,并且,污染物包括但不限于有机挥发性污染物。本申请的土壤地下水联动处理装置可以对待修复区的污染物进行原位修复,同时降低土壤中的含水率,使得挥发性有机污染物以气相方式抽提,促进挥发性有机污染物从地下水到土壤层中的迁移,可以提高抽提效率、降低能耗,最大程度节约抽提成本,提高修复效率。
在一实施例中,土壤地下水联动处理装置包括注入结构和抽提结构。注入结构设置于待修复区的注入井中。抽提结构部分设置于待修复区中,并与注入结构之间存在预设间距。 可以理解的,对待处理区的土壤与地下水进行原位修复时,通常需要在待处理区内挖一个深坑,即为注入井。这样,注入结构能够向待处理区的注入井注入用于实现原位修复的气体以及试剂等,抽提结构能够抽取注入井中的气体与液体,实现待修复区的土壤与地下水的修复。
注入结构包括部分设置于注入井的注入热空气组件、注入氧化剂组件以及注入微气泡组件,注入热空气组件用于向注入井注入热空气,注入氧化剂组件用于向注入井注入氧化剂,注入微气泡组件用于向注入井注入微气泡。抽提结构包括部分设置于待修复区的抽提井以及部分设置于抽提井的液相抽提组件与气相抽提组件,液相抽提组件用于抽提抽提井中的气流,液相抽提组件用于抽取抽提井的地下水。控制结构分别与液相抽提组件以及气相抽提组件连接,并控制液相抽提组件与气相抽提组件进行抽提操作,且控制结构控制液相抽提组件以脉冲方式抽提地下水,控制结构还分别与注入热空气组件、注入氧化剂组件以及注入微气泡组件连接。
控制结构控制注入热空气组件向注入井内注入热空气,控制注入氧化剂组件向注入井内注入氧化剂。这样,热空气会渗透到注入井周围的土壤中,氧化剂会渗透到注入井周围的土壤以及地下水中,从而改变土壤层以及地下水中的温度并增加土壤层中的氧气含量,促进气相以及液相中污染物的挥发效果以及生物降解能力,同时可在一定程度上对污染物进行原位去除。同时,控制结构控制注入微气泡组件向注入井内注入微气泡,微气泡会渗透到注入井周围的土壤中。此时,可以利用微气泡在污染地下水中的运动促进地下水中污染物到土壤的相间传质作用。
控制结构控制液相抽提组件抽提抽提井中的液体即为地下水,控制气相抽提组件抽提抽提井中的气体。液相抽提组件抽提地下水后,土壤中地下水的液位会下降,降低土壤层中的含水率,这样,挥发性有机污染物会从地下水中转移到土壤中,最终以气相抽提方式被抽提处。这样可以提高抽提效率。采用液相抽提组件与气相抽提组件可以直接将挥发性有机污染物以气相和液相两种不同形式分别抽提出来,显著降低后续处理负荷。
同时,采用控制结构控制液相抽提组件的抽提操作,控制液相抽提组件以脉冲方式抽提地下水。也就是说,控制结构控制液相抽提组件抽提地下水的过程中,当地下水的液位高度下降预定高度后,控制结构控制液相抽提组件停止抽提操作。当地下水的液位高度恢复到预定高度后,控制结构控制液相抽提组件进行抽提操作。这样,控制结构可以根据地下水的液位高度判断抽水工作是否进行,实现脉冲式抽水。这样,可以减小土壤中的含水率,极大促进使挥发性有机污染物从地下水中转移到土壤中,最终以气相抽提的方式进行,能够显著提高抽提效率,降低人工成本。
本申请的土壤地下水联动处理装置从分子动力学、热力学及水化学角度出发,通过耦合土壤地下水中的多种修复技术方法,将土壤和地下水中的有机污染物最大化的抽提出来,有效的解决目前采用多相抽提存在的抽吸效率低、成本高的问题,优化了抽提土壤地下水中挥发性有机污染物的过程,降低了能耗以及人工成本,显著提高了修复效率。同时,以脉冲方式抽提的液相抽提组件配合气相抽提组件后,还可以最大限度节约抽提的人工成本,提高抽提效率,有利于土壤地下水联动处理装置的普及应用。
在一实施例中,注入热空气组件包括动力源1、与动力源1连接的热空压机2、与热空压机2连接的热空气注入管23、热空气注入子井17以及热空气注入筛管,热空气注入子井17部分伸入注入井,热空气注入筛管设置于热空气注入子井17的末端,热空气注入管23伸入热空气注入子井17。动力源1控制热空压机2产生热空气,经热空气注入管23注入热空气注入子井17,并经热空气注入筛管输送至注入井。
热空气注入管23的一端与热空压机2连接,另一端伸入热空气注入子井17中,热空气注入子井17的顶部露出注入井,其余部分位于注入井中。这样,注入热空气组件注入热空气时,以动力源1为动力,由热空压机2经过热空气注入管23向热空气注入子井17中注入热空气,并且,热空气通过热空气注入筛管渗入到周围的土壤中,实现向土壤层中注入热空气。
在一实施例中,在注入井中,热空气注入筛管的周侧由砾料16填充,热空气注入子井17的周侧以及热空气注入筛管的底部由水泥灌浆5填充。热空气注入筛管的周侧还填充膨润土15,膨润土15分设于砾料16的上层与下层,且膨润土15的厚度为20cm~30cm。也就是说,热空气注入筛管附近主要由砾料16包围,砾料16上下分别填充厚度约20cm~30cm的膨润土15,其余部分填充水泥灌浆5。这样的热空气注入组件有利于注入热空气工作工作顺利进行。
热空气注入筛管的长度为0.5m~1m,热空气注入筛管的底部位于地下水面6以上0.5m~1m。热空气注入筛管上具有筛孔,用于实现热空气的渗透。可以理解的,热空气注入筛管的长度依据待修复区水文地质条件的参数以及热空气的注入量决定。而且,热空气注入子井17的深度根据待修复区的水文地质条件决定。可以理解的,热空气注入子井17可以与热空气注入筛管为一体结构,示例性地,热空气注入子井17的末端周侧具有与外界连通的筛孔。当然,在本申请的其他实施方式中,热空气注入筛管也可与热空气注入子井17分体设置,并可靠固定于热空气注入子井17的末端。
在一实施例中,热空压机2设置于待修复区的地面,并与热空气注入管23之间呈90°连接。这样有利于热空压机2稳定和顺畅的输出热空气。热空气注入子井17的顶部凸出 待修复区的地面0.05m~0.1m。注入热空气组件还包括热空气密封盖,热空气密封盖盖设于热空气注入子井17。这样可以保证热空气注入子井17的密封性,避免热空气注入子井17中的热空气外泄,同时还可避免挥发性有机污染物从热空气注入子井17流出。
通过在待修复区的土壤非饱和带注入热空气,可提高土壤层中的温度,在一定程度上促进了土壤孔隙中的挥发性有机污染物挥发。此外,通过适当向土壤层中增加一些热量,使土壤中的温度控制在20~37℃之间,有利于土壤中对挥发性有机污染物的生物降解效果。
在一实施例中,注入氧化剂组件包括氧化剂罐4、与氧化剂罐4连接的氧化剂注入管24、氧化剂注入子井19以及氧化剂注入筛管,氧化剂注入子井19部分伸入注入井,氧化剂注入筛管设置于氧化剂注入子井19的末端,氧化剂注入管24伸入氧化剂注入子井19。氧化剂罐4中的氧化剂经氧化剂注入管24注入氧化剂注入子井19,并经氧化剂注入筛管输送至注入井。示例性地,注入氧化剂管由UPVC(Unplasticized Polyvinyl Chloride,硬聚氯乙烯)制成。
氧化剂罐4内存储有氧化剂,如存储Fenton(芬顿)试剂。氧化剂罐4中存储的氧化剂可以满足注入井周围半径约为10m~20m内的污染物的总量。氧化剂注入管24的一端与氧化剂罐4连接,另一端伸入氧化剂注入子井19中,氧化剂注入子井19的顶部露出注入井,其余部分位于注入井中。这样,注入氧化剂组件注入氧化剂时,氧化剂罐4中的氧化剂经过氧化剂注入管24向氧化剂注入子井19中注入氧化剂,并且,氧化剂通过氧化剂注入筛管渗入到周围的土壤中,实现向土壤层中注入氧化剂。
在一实施例中,在注入井中,氧化剂注入筛管的周侧由砾料16填充,氧化剂注入子井19的周侧以及氧化剂注入筛管的底部由水泥灌浆5填充。氧化剂注入筛管的周侧还填充膨润土15,膨润土15分设于砾料16的上层与下层,且膨润土15的厚度为20cm~30cm。也就是说,氧化剂注入筛管附近主要由砾料16包围,砾料16上下分别填充厚度约20~30cm的膨润土15,其余部分填充水泥灌浆5。这样的氧化剂注入组件有利于注入氧化剂工作工作顺利进行。
氧化剂注入筛管的长度为0.5m~1m,氧化剂注入筛管伸入地下水面6以下1m~2m。氧化剂注入筛管上具有筛孔,用于实现氧化剂的渗透。可以理解的,氧化剂注入筛管的长度依据待修复区水文地质条件的参数以及氧化剂的注入量决定。而且,氧化剂注入子井19的深度根据待修复区的水文地质条件决定。可以理解的,氧化剂注入子井19可以与氧化剂注入筛管为一体结构,示例性地,氧化剂注入子井19的末端周侧具有与外界连通的筛孔。当然,在本申请的其他实施方式中,氧化剂注入筛管也可与氧化剂注入子井19分体设置,并可靠固定于氧化剂注入子井19的末端。
在一实施例中,氧化剂罐4设置于待修复区的地面,并与氧化剂注入管24之间呈90°连接。这样有利于氧化剂罐4稳定和顺畅的输出氧化剂。氧化剂注入子井19的顶部凸出待修复区的地面0.05m~0.1m。注入氧化剂组件还包括热氧化剂密封盖,氧化剂密封盖盖设于氧化剂注入子井19。这样可以保证氧化剂注入子井19的密封性,避免氧化剂注入子井19中的氧化剂外泄,同时还可避免挥发性有机污染物从氧化剂注入子井19流出。
通过在待处理区土壤的饱和带浅层注入氧化剂,使用Fenton体系原位氧化浅层地下水中的挥发性有机污染物,使其在化学反应过程中产生大量的热,促进浅层地下水中有机污染物的挥发。同时,到达土壤层中的挥发性有机污染物通过注入热空气的形式,驱使土壤孔隙中的挥发性有机污染物以气相形式被抽提出来,实现土壤地下水中挥发性有机污染物的原位修复。
在一实施例中,注入微气泡组件包括鼓风机3、与鼓风机3连接的注入风管、与注入风管连接的微气泡发生器、微气泡注入子井18以及微气泡注入筛管,微气泡注入子井18部分伸入注入井,微气泡注入筛管设置于微气泡注入子井18的末端,微气泡发生器位于微气泡注入子井18底部,并对应微气泡注入筛管。鼓风机3产生的风泡经注入风管注入微气泡发生器,微气泡发生器在微气泡注入子井18中产生微气泡,并微气泡注入筛管输送至注入井。
鼓风机3用于产生风,注入风管的一端与鼓风机3连接,另一端伸入微气泡注入子井18中,并与微气泡发生器连接。这样,鼓风机3产生的气流通过注入风管注入微气泡发生器后,可以在微气泡注入子井18中产生微气泡。并且,微气泡注入子井18中的微气泡通过微气泡注入筛管渗入到周围的土壤中,实现向土壤层中注入微气泡。
在一实施例中,在注入井中,微气泡注入筛管的周侧由砾料16填充,微气泡注入子井18的周侧由水泥灌浆5填充。微气泡注入筛管的周侧还填充膨润土15,膨润土15设于砾料16的上层,且膨润土15的厚度为20cm~30cm。也就是说,微气泡注入筛管附近主要由砾料16包围,砾料16上填充厚度约20cm~30cm的膨润土15。这样的微气泡注入组件有利于注入微气泡工作工作顺利进行。
微气泡注入筛管的长度为0.5m~1m,微气泡注入筛管伸入注入井的底部。也就是说,微气泡注入筛管位于待修复区的土壤的最深处。微气泡注入筛管上具有筛孔,用于实现微气泡的渗透。可以理解的,微气泡注入筛管的长度依据待修复区水文地质条件的参数以及微气泡的注入量决定。而且,微气泡注入子井18的深度根据待修复区的水文地质条件决定。可以理解的,微气泡注入子井18可以与微气泡注入筛管为一体结构,示例性地,微气泡注入子井18的末端周侧具有与外界连通的筛孔。当然,在本申请的其他实施方式中, 微气泡注入筛管也可与微气泡注入子井18分体设置,并可靠固定于微气泡注入子井18的末端。
在一实施例中,鼓风机3设置于待修复区的地面,并与微气泡注入管之间呈90°连接。这样有利于鼓风机3稳定和顺畅的输出风。微气泡注入子井18的顶部凸出待修复区的地面0.05m~0.1m。注入微气泡组件还包括热微气泡密封盖,微气泡密封盖盖设于微气泡注入子井18。这样可以保证微气泡注入子井18的密封性,避免微气泡注入子井18中的微气泡外泄,同时还可避免挥发性有机污染物从微气泡注入子井18流出。
通过在待处理区土壤的饱和带底部目标修复最深层位注入微气泡,使地下水较深处的有机污染物吸附在微气泡表面,随着微气泡的缓慢上升,到达饱和带上部或者非饱和带与饱和带之间的交汇处,从而通过相间传质作用,从地下水深部转移到浅部以及土壤层中,达到促进污染物快速移动到浅层地下水中的效果,最终以气相的形式抽提。
在一实施例中,气相抽提组件包括抽气泵8以及抽气管22,抽气泵8设置于待修复区的地面,抽气管22与抽气泵8连接,并伸入抽提井。抽提井的底部具有抽提筛管,抽提筛管位于地下水面6与土壤的分界面。抽气管22的底部具有斜切口,斜切口的倾斜角度为45°~60°。抽气管22位于待修复区的地面与地下水面6之间,且抽气管22的底部距离待修复区的地面的距离为0.5m~1m。
抽气管22的一端垂直伸入抽提井,并对应抽提筛管,抽气管22的另一端与抽气泵8水平连接。抽提筛管具有筛孔,抽提筛管的长度依据待修复区水文地质条件的参数。抽提筛管附近主要由砾料16包围,砾料16上填充厚度约20~30cm的膨润土15,其余部分填充水泥灌浆5。可以理解的,砾料16的顶部应高于地下水面6,以便于热空气能够进入抽提筛管。可选的,抽气管22的直径依据待修复区水文地质条件决定。可以理解的,抽提井可以与抽提筛管为一体结构,示例性地,抽提井的末端周侧具有与外界连通的筛孔。当然,在本申请的其他实施方式中,抽提筛管也可与抽提井分体设置,并可靠固定于抽提井的末端。
气相抽提组件抽提时,土壤中的气体可以通过抽提筛管进入抽提井,并经抽提井进入到抽气管22中,然后经过与抽气管22连接的支管进入后置处理装置,通过后置处理装置对具有挥发性有机污染物的气体进行处理。
在一实施例中,液相抽提组件包括抽水泵12以及抽水管25,抽水泵12设置于待修复区的地面,抽水管25与抽水泵12连接,并伸入抽提井,抽水管25的端部具有抽水泵头20。抽水泵头20竖直设置于抽提井,并位于抽提井内地下水面6以下5m~6m。
抽水管25的一端垂直伸入抽提井,并位于地下水面6以下5m~6m,抽水管25的另一 端与抽水泵12水平连接。可选的,抽水管25的直径依据待修复区水文地质条件决定,约为1cm~2cm。液相抽提组件抽提时,土壤中的水体可以进入抽提井,并经抽提井进入到抽水管25中,然后经过与抽水管25连接的支管进入后置处理装置,通过后置处理装置对具有挥发性有机污染物的水体进行处理。示例性地,抽气管22与抽水管25均由UPVC制成。
在一实施例中,抽提井的顶部凸出待修复区的地面0.05m~0.1m。抽提结构还包括抽提密封盖,抽提密封盖盖设于抽提井。这样可以避免挥发性有机污染物从抽提井逸出。抽水管25与抽水泵12之间呈90°连接,抽气管22与抽气泵8之间呈90°连接。这样有利于抽水管25稳定和顺畅的输出液体,有利于抽气管22稳定和顺畅的输出气体。
在一实施例中,控制结构包括控制器、控制开关11、数据转化器13以及液位计21。液位计21位于抽提井内地下水面6以下10m~15m,用于检测抽提井内地下水的水位变化。数据转化器13连接控制器与液位计21,液位计21检测的水位变化数据通过数据转化器13传输给控制器。控制开关11设置于抽水管25,并与控制器连接,控制器根据地下水的水位变化控制控制开关11的通断。
示例性地,控制器为PLC控制器。控制开关11用于控制抽水管25的通断。控制器分别与数据转化器13以及控制开关11电连接。液位计21与数据转化器13电连接。可选地,液位计21与抽水泵头20之间存在一定的间距,以防止相互干扰。
控制结构控制液相抽提组件进行脉冲抽提时,开启控制器,打开控制开关11,使液相抽提组件开始运行,此时地下水面6不断下降,当液面在t 1时间内波动范围不超过Δh时,即可判断地下水面6稳定。地下水稳定后,液相抽提组件继续工作t 2时间,控制开关11关闭,液相抽提组件停止工作,这时地下水面6的水位逐渐恢复。在经过t 3时间后,地下水面6的水位恢复到一定程度,再次开启控制开关11,使液相抽提组件继续工作,此后继续判断是否稳定,实现液相抽提组件进行间歇式抽水。其中,t 1为液位稳定判断时间;Δh为液位稳定判定高度;t 2为稳定后的抽水时间;t 3为水位恢复时间。
通过控制器智能判断,依据地下水面6的水位高度的变化判断抽水工作是否进行,实现脉冲式抽水。抽水泵12抽水时会导致地下水面6的水位下降,促使原本地下水与土壤交接处的位置含水率降低,从而达到减小土壤层中的含水率,使挥发性有机污染物从地下水中转移到土壤中,使更多挥发性有机污染物暴露在土壤孔隙中,最终以气相抽提的方式进行,提高抽提效率,降低人工成本。同时,脉冲式的抽提方式可以大大降低抽提后的污水处理成本,优化抽提策略。并且,使用控制器可显著降低人工成本,有利于土壤地下水联动处理装置的广泛普及。
在一实施例中,气相抽提组件还包括气相压力计7,液相抽提组件还包括液相压力计 10以及流量计9。气相压力计7设置于抽气管22,用于测量气相抽提过程中的气相压力变化情况。液相压力计10设置于抽水管25,用于测量液相抽提过程中的液相压力变化情况。气相抽提压力计与液相抽提压力计之间的量程范围至少满足抽提影响半径,且抽提影响半径的范围为5m~15m。流量计9设置于抽水管25,用于测量液相抽提过程中的流量,流量计9的量程范围为0.1m 3/h~10m 3/h。
在一实施例中,土壤地下水联动处理装置还包括防渗透件14,防渗透件14盖设于待修复区的地面,注入结构与抽提结构工作时,防渗透件14用于防止待修复区的地面以上与地面以下进行物质交换。示例性地,防渗透件14可以为防渗透薄膜,也可以为防渗透涂层。
在一实施例中,注入结构与抽提结构的数量均为多个,多个注入结构与多个抽提结构成行和/或成列排布,且相邻的两个注入结构之间存在一个抽提结构,相邻的两个抽提结构之间存在一个注入结构。示例性地,注入结构与抽提结构的布局如图5所示,这样可以实现待修复区的有效修复,提高修复效率。相邻的抽提结构与注入结构之间的预设距离相等,且预设间距的范围为5m~20m。可以理解的,注入结构与抽提结构之间的预设间距依据待修复区水文地质条件决定。
本申请的土壤地下水联动处理装置工作时,在土壤层中注入热空气,促进土壤孔隙中挥发性有机污染物的挥发以及好氧生物对该有机污染物的降解;在土壤浅层含水层中注入氧化剂,使其与挥发性有机污染物原位反应,产生的热促进浅层地下水中有机物向土壤中的迁移;在土壤深层含水层中注入微气泡,使深部地下水中的挥发性有机污染物聚集在微气泡的表面,并随着微气泡缓慢上升到土壤与地下水的交界面,促进相间传质作用。同时,采用脉冲式的抽水方式,优化了抽提过程中的修复成本以及抽提策略,显著降低了人工成本,显著提高抽提效率。
参见图1至图4,本申请还提供一种土壤地下水联动处理方法,应用于土壤地下水联动处理装置中,处理方法包括如下步骤:
控制结构控制注入热空气组件向注入井注入热空气,控制注入氧化剂组件向注入井注入氧化剂,控制注入微气泡组件向注入井注入微气泡;
控制结构控制液相抽提组件以脉冲方式抽提地下水;
控制结构控制气相抽提组件抽气。
本申请的土壤地下水联动处理装置工作时,控制结构控制注入热空气组件向注入井内注入热空气,控制注入氧化剂组件向注入井内注入氧化剂。这样,热空气会渗透到注入井周围的土壤中,氧化剂会渗透到注入井周围的土壤以及地下水中,从而改变土壤层以及地 下水中的温度并增加土壤层中的氧气含量,促进气相以及液相中污染物的挥发效果以及生物降解能力,同时可在一定程度上对污染物进行原位去除。同时,控制结构控制注入微气泡组件向注入井内注入微气泡,微气泡会渗透到注入井周围的土壤中。此时,可以利用微气泡在污染地下水中的运动促进地下水中污染物到土壤的相间传质作用。
在注入结构工作的同时,抽提结构也工作。控制结构控制液相抽提组件抽提抽提井中的液体即为地下水,控制气相抽提组件抽提抽提井中的气体。液相抽提组件抽提地下水后,土壤中地下水的液位会下降,降低土壤层中的含水率,这样,挥发性有机污染物会从地下水中转移到土壤中,最终以气相抽提方式被抽提处。这样可以提高抽提效率。采用液相抽提组件与气相抽提组件可以直接将挥发性有机污染物以气相和液相两种不同形式分别抽提出来,显著降低后续处理负荷。
在一实施例中,控制结构控制液相抽提组件以脉冲方式抽提地下水的步骤包括:
开启控制器与控制开关11,液相抽提组件工作;
待地下水液面稳定,液相抽提组件抽提第一预设时间后,关闭控制开关11;
待地下水液面上升至预设高度后,重复执行上述步骤。
控制结构控制液相抽提组件抽提地下水的过程中,当地下水的液位高度下降预定高度后,控制结构控制液相抽提组件停止抽提操作。当地下水的液位高度恢复到预定高度后,控制结构控制液相抽提组件进行抽提操作。这样,控制结构可以根据地下水的液位高度判断抽水工作是否进行,实现脉冲式抽水。这样,可以减小土壤中的含水率,极大促进使挥发性有机污染物从地下水中转移到土壤中,最终以气相抽提的方式进行,能够显著提高抽提效率,降低人工成本。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书的记载范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种土壤地下水联动处理装置,其特征在于,设置于待修复区的土壤中,所述土壤地下水联动处理装置包括:
    注入结构,设置于所述待修复区的注入井中;所述注入结构包括部分设置于所述注入井的注入热空气组件、注入氧化剂组件以及注入微气泡组件,所述注入热空气组件用于向所述注入井注入热空气,所述注入氧化剂组件用于向所述注入井注入氧化剂,所述注入微气泡组件用于向所述注入井注入微气泡;
    抽提结构,与所述注入结构之间存在预设间距;所述抽提结构包括部分设置于所述待修复区的抽提井以及部分设置于所述抽提井的液相抽提组件与气相抽提组件,所述液相抽提组件用于抽提所述抽提井中的气流,所述液相抽提组件用于抽取所述抽提井的地下水;以及
    控制结构,所述控制结构分别与所述液相抽提组件以及所述气相抽提组件连接,并控制所述液相抽提组件与所述气相抽提组件进行抽提操作,且所述控制结构控制所述液相抽提组件以脉冲方式抽提地下水,所述控制结构还分别与所述注入热空气组件、注入氧化剂组件以及注入微气泡组件连接。
  2. 根据权利要求1所述的土壤地下水联动处理装置,其特征在于,所述注入热空气组件包括动力源、与所述动力源连接的热空压机、与所述热空压机连接的热空气注入管、热空气注入子井以及热空气注入筛管,所述热空气注入子井部分伸入所述注入井,所述热空气注入筛管设置于所述热空气注入子井的末端,所述热空气注入管伸入所述热空气注入子井;
    所述动力源控制所述热空压机产生热空气,经所述热空气注入管注入所述热空气注入子井,并经所述热空气注入筛管输送至所述注入井;
    所述热空气注入筛管的周侧由砾料填充,所述热空气注入子井的周侧以及所述热空气注入筛管的底部由水泥灌浆填充;
    所述热空气注入筛管的周侧还填充膨润土,所述膨润土分设于所述砾料的上层与下层,且所述膨润土的厚度为20cm~30cm;
    所述热空气注入筛管的长度为0.5m~1m,所述热空气注入筛管的底部位于地下水面以上0.5m~1m;
    所述热空压机设置于所述待修复区的地面,并与所述热空气注入管之间呈90°连接;
    所述热空气注入子井的顶部凸出所述待修复区的地面0.05m~0.1m;
    所述注入热空气组件还包括热空气密封盖,所述热空气密封盖盖设于所述热空气注入子井。
  3. 根据权利要求1所述的土壤地下水联动处理装置,其特征在于,所述注入氧化剂组件包括氧化剂罐、与所述氧化剂罐连接的氧化剂注入管、氧化剂注入子井以及氧化剂注入筛管,所述氧化剂注入子井部分伸入所述注入井,所述氧化剂注入筛管设置于所述氧化剂注入子井的末端,所述氧化剂注入管伸入所述氧化剂注入子井;
    所述氧化剂罐中的氧化剂经所述氧化剂注入管注入所述氧化剂注入子井,并经所述氧化剂注入筛管输送至所述注入井;
    所述氧化剂注入筛管的周侧由砾料填充,所述氧化剂注入子井的周侧以及所述氧化剂注入筛管的底部由水泥灌浆填充;
    所述氧化剂注入筛管的周侧还填充膨润土,所述膨润土分设于所述砾料的上层与下层,且所述膨润土的厚度为20cm~30cm;
    所述氧化剂注入筛管的长度为0.5m~1m,所述氧化剂注入筛管伸入地下水面以下1m~2m;
    所述氧化剂罐设置于所述待修复区的地面,并与所述氧化剂注入管之间呈90°连接;
    所述氧化剂注入子井的顶部凸出所述待修复区的地面0.05m~0.1m;
    所述注入氧化剂组件还包括热氧化剂密封盖,所述氧化剂密封盖盖设于所述氧化剂注入子井。
  4. 根据权利要求1所述的土壤地下水联动处理装置,其特征在于,所述注入微气泡组件包括鼓风机、与所述鼓风机连接的注入风管、与所述注入风管连接的微气泡发生器、微气泡注入子井以及微气泡注入筛管,所述微气泡注入子井部分伸入所述注入井,所述微气泡注入筛管设置于所述微气泡注入子井的末端,所述微气泡发生器位于所述微气泡注入子井底部,并对应所述微气泡注入筛管;
    所述鼓风机产生的风泡经所述注入风管注入所述微气泡发生器,所述微气泡发生器在所述微气泡注入子井中产生微气泡,并经过所述微气泡注入筛管输送至所述注入井;
    所述微气泡注入筛管的周侧由砾料填充,所述微气泡注入井的周侧由水泥灌浆填充;
    所述微气泡注入筛管的周侧还填充膨润土,所述膨润土设于所述砾料的上层,且所述膨润土的厚度为20cm~30cm;
    所述微气泡注入筛管的长度为0.5m~1m,所述微气泡注入筛管伸入所述注入井的底部;
    所述鼓风机设置于所述待修复区的地面,并与所述微气泡注入管之间呈90°连接;
    所述微气泡注入子井的顶部凸出所述待修复区的地面0.05m~0.1m;
    所述注入微气泡组件还包括热微气泡密封盖,所述微气泡密封盖盖设于所述微气泡注入子井。
  5. 根据权利要求1所述的土壤地下水联动处理装置,其特征在于,所述气相抽提组件包括抽气泵以及抽气管,所述抽气泵设置于所述待修复区的地面,所述抽气管与所述抽气泵连接,并伸入所述抽提井,所述抽提井的底部具有抽提筛管,所述抽提筛管的顶部位于地下水与土壤的分界面;
    所述抽气管的底部具有斜切口,所述斜切口的倾斜角度为45°~60°;
    所述抽气管位于所述待修复区的地面与地下水面之间,且所述抽气管的底部距离所述待修复区的地面的距离为0.5m~1m;
    所述液相抽提组件包括抽水泵以及抽水管,所述抽水泵设置于所述待修复区的地面,所述抽水管与所述抽水泵连接,并伸入所述抽提井,所述抽水管的端部具有抽水泵头;
    所述抽水泵头竖直设置于所述抽提井,并位于所述抽提井内地下水面以下5m~6m;
    所述抽提井的顶部凸出所述待修复区的地面0.05m~0.1m;
    所述抽提结构还包括抽提密封盖,所述抽提密封盖盖设于所述抽提井;
    所述抽水管与所述抽水泵之间呈90°连接,所述抽气管与所述抽气泵之间呈90°连接。
  6. 根据权利要求1所述的土壤地下水联动处理装置,其特征在于,所述控制结构包括控制器、控制开关、数据转化器以及液位计;
    所述液位计位于所述抽提井内地下水面以下10m~15m,用于检测所述抽提井内地下水的水位变化;
    所述数据转化器连接所述控制器与所述液位计,所述液位计检测的水位变化数据通过所述数据转化器传输给所述控制器;
    所述控制开关设置于所述抽水管,并与所述控制器连接,所述控制器根据所述地下水的水位变化控制所述控制开关的通断;
    所述气相抽提组件还包括气相压力计,液相抽提组件还包括液相压力计以及流量计;
    所述气相压力计设置于所述抽气管,用于测量气相抽提过程中的气相压力变化情况;
    所述液相压力计设置于所述抽水管,用于测量液相抽提过程中的液相压力变化情况;
    所述气相抽提压力计与所述液相抽提压力计之间的量程范围至少满足抽提影响半径,且所述抽提影响半径的范围为5m~15m;
    所述流量计设置于所述抽水管,用于测量液相抽提过程中的流量,所述流量计的量程 范围为0.1m3/h~10m3/h。
  7. 根据权利要求1至6任一项所述的土壤地下水联动处理装置,其特征在于,所述土壤地下水联动处理装置还包括防渗透件,所述防渗透件盖设于所述待修复区的地面,所述注入结构与所述抽提结构工作时,所述防渗透件用于防止所述待修复区的地面以上与地面以下进行物质交换。
  8. 根据权利要求1至6任一项所述的土壤地下水联动处理装置,其特征在于,所述注入结构与所述抽提结构的数量均为多个,多个所述注入结构与多个所述抽提结构成行和/或成列排布,且相邻的两个注入结构之间存在一个所述抽提结构,相邻的两个所述抽提结构之间存在一个所述注入结构;
    相邻的所述抽提结构与所述注入结构之间的所述预设距离相等,且所述预设间距的范围为5m~20m。
  9. 一种土壤地下水联动处理方法,其特征在于,应用于土壤地下水联动处理装置中,所述处理方法包括如下步骤:
    控制结构控制注入热空气组件向注入井注入热空气,控制注入氧化剂组件向所述注入井注入氧化剂,控制注入微气泡组件向所述注入井注入微气泡;
    所述控制结构控制液相抽提组件以脉冲方式抽提地下水;
    所述控制结构控制气相抽提组件抽气;
    所述控制结构控制液相抽提组件以脉冲方式抽提地下水的步骤包括:
    开启控制器与控制开关,所述液相抽提组件工作;
    待所述地下水液面稳定,所述液相抽提组件抽提第一预设时间后,关闭控制开关;
    待所述地下水液面上升至预设高度后,重复执行上述步骤。
PCT/CN2019/123512 2019-03-26 2019-12-06 土壤地下水联动处理装置及其处理方法 WO2020192177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910233330.8 2019-03-26
CN201910233330.8A CN110090856A (zh) 2019-03-26 2019-03-26 土壤地下水联动处理装置及其处理方法

Publications (1)

Publication Number Publication Date
WO2020192177A1 true WO2020192177A1 (zh) 2020-10-01

Family

ID=67443070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123512 WO2020192177A1 (zh) 2019-03-26 2019-12-06 土壤地下水联动处理装置及其处理方法

Country Status (3)

Country Link
US (1) US11033941B2 (zh)
CN (1) CN110090856A (zh)
WO (1) WO2020192177A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112974493A (zh) * 2021-02-04 2021-06-18 广东载德环艺科技有限公司 一种土壤修复装置及其修复方法
CN114577532A (zh) * 2022-01-18 2022-06-03 江苏众川生态环境有限公司 一种多相抽提监测取样多功能修复井系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3539682A4 (en) * 2016-11-08 2020-05-27 Takenaka Corporation METHOD FOR GROUND REMOVAL UNDER THE EARTH
CN110090856A (zh) * 2019-03-26 2019-08-06 清华大学 土壤地下水联动处理装置及其处理方法
CN110665949A (zh) * 2019-10-12 2020-01-10 上海康恒环境修复有限公司 一种原位抽提井
CN110711767A (zh) * 2019-10-17 2020-01-21 中科鼎实环境工程有限公司 空气注入暨生物强化修复注入井
CN111744943B (zh) * 2020-06-18 2021-09-10 湖南恒凯环保科技投资有限公司 一种大口径药剂注入井及其有机物污染地下水原位修复设备及工艺
CN112142160A (zh) * 2020-09-07 2020-12-29 南京万德斯环保科技股份有限公司 受lnapl污染地下水的as/mpe联用修复系统及方法
CN112775168B (zh) * 2020-12-08 2022-03-18 河海大学 一种原位分段筛孔井修复地下水的系统和方法
CN112845569B (zh) * 2020-12-31 2022-06-28 杭州科运环境技术有限公司 一种过硫酸盐法土壤持久性有机污染物原位修复方法
CN113087043B (zh) * 2021-04-25 2022-06-21 清华大学 受lnapl污染地下水的修复装置及修复方法
CN113414234A (zh) * 2021-06-21 2021-09-21 上海格林曼环境技术有限公司 用原位低耗组合接力修复装置修复土壤地下水污染的方法
CN113732033B (zh) * 2021-09-06 2022-05-13 煜环环境科技有限公司 一种注入井原位修复系统及方法
CN114309039B (zh) * 2021-12-30 2022-12-02 北京建工环境修复股份有限公司 一种土壤修复系统和土壤修复方法
CN116641687B (zh) * 2023-05-31 2024-01-26 贵阳学院 利用二氧化碳驱动地下水流动的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040039061A (ko) * 2002-10-30 2004-05-10 정승우 알콜류와 공기의 혼합류를 이용한 토양 및 지하수의 액상오염물질 제거장치 및 이를 이용한 오염물질 제거방법
CN203715452U (zh) * 2014-02-14 2014-07-16 北京鼎实环境工程有限公司 一种用于去除地下水中挥发性有机物的循环井系统
CN106734153A (zh) * 2017-01-18 2017-05-31 北京高能时代环境技术股份有限公司 针对污染土壤以热传导方式进行的原位热脱附处理系统及方法
CN206731803U (zh) * 2017-05-19 2017-12-12 上海守安高达土壤处理技术有限公司 污染场地原位复合式热解吸修复系统
CN206936009U (zh) * 2017-07-05 2018-01-30 中海石油环保服务(天津)有限公司 一种土壤与地下水强化原位化学氧化修复装置
CN110090856A (zh) * 2019-03-26 2019-08-06 清华大学 土壤地下水联动处理装置及其处理方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855775A (en) * 1995-05-05 1999-01-05 Kerfoot; William B. Microporous diffusion apparatus
CA2271844C (en) * 1996-11-15 2007-02-20 K-V Associates, Inc. Groundwater remediation with microporous diffusor
US6210073B1 (en) * 1998-11-30 2001-04-03 Amsted Industries Incorporated Multi-level fluid transfer apparatus, system and process
US6158924A (en) * 1999-04-20 2000-12-12 Athens; Nick Soil and groundwater decontamination system with vacuum extraction
US20030207440A1 (en) * 2001-03-23 2003-11-06 Smith Keith L. Decontamination of soil and groundwater
US6733207B2 (en) * 2002-03-14 2004-05-11 Thomas R. Liebert, Jr. Environmental remediation system and method
US7666316B2 (en) * 2004-07-20 2010-02-23 Thinkvillage-Kerfoot, Llc Permanganate-coated ozone for groundwater and soil treatment with in-situ oxidation
US7175770B2 (en) * 2003-03-17 2007-02-13 Groundwater And Environmental Services, Inc. Methods and systems for groundwater remediation
US7004678B2 (en) * 2003-05-15 2006-02-28 Board Of Regents, The University Of Texas System Soil remediation with heated soil
US8771507B2 (en) * 2003-12-24 2014-07-08 Thinkvillage-Kerfoot, Llc Directional microporous diffuser and directional sparging
US7326002B2 (en) * 2005-03-07 2008-02-05 Kerfoot William B Sparge broadcasting in fracture rock
US7670085B2 (en) * 2005-11-28 2010-03-02 Vista Engineering Technologies Llc In situ immobilization of subsurface contamination
US20110293492A1 (en) * 2008-04-14 2011-12-01 Gustafson Douglas C In situ process and method for ground water remediation and recovery of minerals and hydrocarbons
CN102671932B (zh) * 2012-02-17 2013-09-18 北京建工环境修复有限责任公司 用于污染土壤深层搅拌-热空气注入的原位修复系统及方法
CN102583712B (zh) * 2012-02-21 2014-06-04 清华大学 用微纳米气泡对污染地下水强化原位修复的方法及系统
US20150231674A1 (en) * 2014-02-17 2015-08-20 Mark T. Ellis Soil remediation system
CN108114970A (zh) * 2017-12-21 2018-06-05 永清环保股份有限公司 一种污染土壤原位热脱附修复系统及方法
CN209866954U (zh) * 2019-03-26 2019-12-31 清华大学 土壤地下水联动处理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040039061A (ko) * 2002-10-30 2004-05-10 정승우 알콜류와 공기의 혼합류를 이용한 토양 및 지하수의 액상오염물질 제거장치 및 이를 이용한 오염물질 제거방법
CN203715452U (zh) * 2014-02-14 2014-07-16 北京鼎实环境工程有限公司 一种用于去除地下水中挥发性有机物的循环井系统
CN106734153A (zh) * 2017-01-18 2017-05-31 北京高能时代环境技术股份有限公司 针对污染土壤以热传导方式进行的原位热脱附处理系统及方法
CN206731803U (zh) * 2017-05-19 2017-12-12 上海守安高达土壤处理技术有限公司 污染场地原位复合式热解吸修复系统
CN206936009U (zh) * 2017-07-05 2018-01-30 中海石油环保服务(天津)有限公司 一种土壤与地下水强化原位化学氧化修复装置
CN110090856A (zh) * 2019-03-26 2019-08-06 清华大学 土壤地下水联动处理装置及其处理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112974493A (zh) * 2021-02-04 2021-06-18 广东载德环艺科技有限公司 一种土壤修复装置及其修复方法
CN114577532A (zh) * 2022-01-18 2022-06-03 江苏众川生态环境有限公司 一种多相抽提监测取样多功能修复井系统
CN114577532B (zh) * 2022-01-18 2024-03-26 江苏众川生态环境有限公司 一种多相抽提监测取样多功能修复井系统

Also Published As

Publication number Publication date
US20200306808A1 (en) 2020-10-01
US11033941B2 (en) 2021-06-15
CN110090856A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2020192177A1 (zh) 土壤地下水联动处理装置及其处理方法
CN105964678B (zh) 土壤及地下水原位注入——高压旋喷注射原位修复系统及方法
WO2017219790A1 (zh) 一种土壤及地下水原位化学氧化高压注射优化修复方法
CN107159697B (zh) 一种有机污染土壤和地下水修复方法及药剂
US9718103B2 (en) Devices and methods for soil remediation
CN106734167A (zh) 一种有机污染场地强化修复系统及工艺
WO2021042463A1 (zh) 复合有机污染场地原位热注入系统及工艺
CN109127689B (zh) 一种有机污染场地原位氧化与循环井组合修复系统
CN102671932B (zh) 用于污染土壤深层搅拌-热空气注入的原位修复系统及方法
CN106914482A (zh) 污染土壤和地下水的原位修复系统
CN105731628A (zh) 用于地下水氯代烃污染的原位化学氧化修复系统及方法
CN205762951U (zh) 土壤及地下水原位注入——高压旋喷注射原位修复系统
CN106077078B (zh) 一种石油污染土壤的修复方法及修复机构
CN112570437A (zh) 一种原位热传导耦合电渗井点降水修复有机污染场地的系统和方法
CN213591395U (zh) 基于热强化的化学氧化土壤修复装置
CN108372201A (zh) 一种有机污染场地原位高压旋喷加药氧化修复方法
CN112142160A (zh) 受lnapl污染地下水的as/mpe联用修复系统及方法
CN209866954U (zh) 土壤地下水联动处理装置
CN113182335A (zh) 抽提驱动原位氧化修复系统
CN113020243A (zh) 一种低渗透污染土的高压劈裂挤压掺粉助渗原位修复方法
CN107662989A (zh) 一种受重金属和有机物污染的地下水修复系统
CN112028222A (zh) 一种地下水修复系统及其方法
CN114273411B (zh) 一种用于有机污染场地的联合修复系统以及修复方法
CN114101305A (zh) 有机污染场地原位低温强化化学氧化修复系统及方法
CN213357050U (zh) 一种地下水修复系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921514

Country of ref document: EP

Kind code of ref document: A1