WO2020192169A1 - 体外检测装置及其上样机构 - Google Patents

体外检测装置及其上样机构 Download PDF

Info

Publication number
WO2020192169A1
WO2020192169A1 PCT/CN2019/122797 CN2019122797W WO2020192169A1 WO 2020192169 A1 WO2020192169 A1 WO 2020192169A1 CN 2019122797 W CN2019122797 W CN 2019122797W WO 2020192169 A1 WO2020192169 A1 WO 2020192169A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
sample loading
cavity
hole
quantitative
Prior art date
Application number
PCT/CN2019/122797
Other languages
English (en)
French (fr)
Inventor
蒙玄
刘洋
李文美
Original Assignee
广州万孚生物技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州万孚生物技术股份有限公司 filed Critical 广州万孚生物技术股份有限公司
Publication of WO2020192169A1 publication Critical patent/WO2020192169A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00108Test strips, e.g. paper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks

Definitions

  • the present invention relates to the technical field of in vitro detection, in particular to an in vitro detection device and a sample loading mechanism.
  • In Vitro Diagnosis refers to the technology of taking samples (blood, body fluids, tissues, etc.) from the human body for detection and analysis to diagnose diseases.
  • the detection process requires corresponding instruments and reagents, and these instruments and reagents It constitutes an in vitro diagnostic system.
  • In-vitro diagnostic systems are roughly divided into two types: one is represented by the testing center laboratory, which has the characteristics of system modularization and automation, and conducts pipeline inspections on samples, which also has high throughput, high efficiency, and high sensitivity.
  • the entire system also has disadvantages such as high cost, large volume, and professional operation.
  • POCT point-of-care testing
  • a sample loading mechanism of an in vitro detection device is provided with a sample loading unit.
  • the sample loading unit includes a sample loading hole, a sample loading hole, and a quantitative cavity with a rated volume.
  • the quantitative cavity is in communication for adding a sample solution to the quantitative cavity, and the sample loading hole is in communication with the quantitative cavity for loading the quantitative sample solution in the quantitative cavity to the detection Mechanism, the sample loading hole is closed by a water-soluble membrane.
  • the sample loading hole satisfies that after the water-soluble membrane is dissolved, the quantitative sample solution in the quantitative cavity will not automatically flow out of the sample loading hole.
  • the radial dimension of the sample loading hole is between 0.5 mm and 3 mm.
  • the water-soluble film is a water-soluble film that dissolves within 5 seconds to 120 seconds when exposed to water.
  • a plurality of the sample loading units are provided on the sample loading mechanism, and the multiple sample loading units are arranged on the sample loading mechanism around a center of rotation.
  • the sample loading hole of each sample loading unit is arranged farther from the rotation center than the sample loading hole.
  • the sample loading mechanism is a microfluidic chip, and the sample loading unit further includes a sample loading cavity;
  • the sample adding hole is in communication with the sample adding cavity for adding sample solution into the sample adding cavity;
  • the sample adding cavity and the quantitative cavity are connected by a capillary flow channel.
  • the sample loading unit further includes a waste liquid cavity
  • the waste liquid cavity is in communication with the sample addition cavity or the quantitative cavity, and along the flow direction of the sample solution, the waste liquid cavity is located downstream of the quantitative cavity.
  • An in vitro detection device comprising a detection mechanism and the sample loading mechanism described in any one of the above embodiments, the sample inlet of the detection mechanism is opposite to the sample loading hole of the sample loading unit, and the sample inlet is opposite to the The sample loading holes are separated by the water-soluble membrane.
  • the detection mechanism is a detection test paper, and the end of the detection test paper where the sample inlet is located is pasted on the sample loading mechanism.
  • the above-mentioned in vitro detection device and its sample loading mechanism are provided with a sample loading unit including a quantitative cavity with a rated volume, and the sample loading hole of the sample loading unit is closed by a water-soluble membrane, so that the sample loading hole can be opened for a delay, and then the loading After the sample is sampled, the added sample solution can be quantified, without the need to use an additional sample addition device with quantification function to quantify the sample solution.
  • the operation is simple, which is beneficial to improve the detection efficiency and can reduce the loading error of the sample solution. It helps to improve the accuracy of the test results.
  • the sample loading mechanism when the sample loading mechanism has multiple loading units, it can also make full use of the delayed opening function of the water-soluble film that closes the loading hole. In particular, it can be further matched with the structural design of the loading hole to make it fit in the water-soluble film. After being dissolved, the sample solution will not flow out automatically. Subsequent methods such as centrifugation or vibration can realize simultaneous loading of different sample loading units to the detection mechanism, which is beneficial to fully guarantee the time consistency of sample loading of each loading unit.
  • Figure 1 is a schematic diagram of the modular structure design of a sample loading mechanism provided by the present invention
  • FIG. 2 is a schematic diagram of the front structure of the sample loading mechanism of the microfluidic chip in a specific embodiment
  • FIG. 3 is a schematic diagram of the back structure of the sample loading mechanism shown in FIG. 2 and the detection mechanism;
  • Figure 4 is a side view of the sample loading mechanism shown in Figure 2 with the detection mechanism;
  • FIGS 5-1, 5-2, 5-3, and 5-4 are schematic diagrams of the plasma (or serum) separation and quantification process of the whole blood sample by the sample loading mechanism shown in Figure 2,
  • Figure 5-2-1, 5- 3-1 and 5-4-1 are corresponding partial enlarged schematic diagrams;
  • FIGS. 6-1, 6-2 and 6-3 are schematic diagrams of the process of plasma (or serum) dissolving water-soluble membranes into the testing organization;
  • Figure 7 is a schematic diagram of the structure of a dry chemical test paper in a specific example.
  • the present invention provides a sample loading mechanism 1 of an in vitro detection device.
  • the sample loading mechanism 1 is provided with a sample loading unit 2.
  • the sample loading unit 2 includes a sample loading hole 3, a sample loading hole 4, and a quantitative cavity 5 with a rated volume.
  • the sample adding hole 3 is in communication with the quantitative cavity 5 for adding a sample solution into the quantitative cavity 5.
  • the sample loading hole 4 is in communication with the quantitative cavity 5 for loading the quantitative sample solution in the quantitative cavity 5 to the detection mechanism for detection.
  • the sample loading hole 4 is closed by a water-soluble film 6.
  • the sample loading hole 4 satisfies that when the water-soluble membrane 6 is dissolved, the quantitative sample solution in the quantitative cavity 5 will not automatically flow out of the sample loading hole, which is beneficial to ensure the accuracy of sample addition and the subsequent sample loading time. Consistency. Further preferably, the radial dimension of the sample loading hole 4 (the maximum dimension of the hole cross-section, such as a circular hole is its diameter, and the length of a rectangular hole and its diagonal) is between 0.5 mm and 3 mm.
  • the water-soluble film 6 will slowly dissolve when exposed to water.
  • the water-soluble film 6 used in the present invention is a water-soluble film that dissolves within 5 s to 120 s of water, so that sufficient delay time can be reserved for the sample addition process to ensure the accuracy of sample addition quantification.
  • the water-soluble film 6 may be, but is not limited to, a PVA (polyvinyl alcohol) film.
  • a plurality of sample loading units 2 are provided on the sample loading mechanism 1.
  • a plurality of sample loading units 2 are arranged on the sample loading mechanism 1 around a rotation center. After the sample solution is added to the quantitative cavity 5, the sample solution in the quantitative cavity 5 can be completely discharged by centrifugation or the like to ensure the accuracy and consistency of the sample loading volume of each sample loading unit 2.
  • the sample loading hole 4 of each sample loading unit 2 is arranged farther from the center of rotation than the sample loading hole 3, so that during centrifugal loading, the occurrence of backflow of the sample solution to the sample loading hole 3 can be avoided. If the situation occurs, the accuracy of the sample amount is further guaranteed.
  • the sample loading mechanism 1 is preferably a microfluidic chip, and the sample loading unit 2 further includes a sample loading cavity 7.
  • the sample adding hole 3 is in communication with the sample adding cavity 7 for adding a sample solution into the sample adding cavity 7.
  • the sample adding cavity 7 and the quantitative cavity 6 are connected by a capillary channel 8. By setting the capillary flow channel 8, the sample solution added into the sample addition cavity 7 can automatically flow into the quantitative cavity 6 through capillary action to realize the quantification of the sample amount, and the sample solution added to the sample addition cavity 7 It can be slightly excessive to improve the ease of operation.
  • the sample loading unit 2 further includes a waste liquid cavity 9.
  • the waste liquid cavity 9 is in communication with the sample adding cavity 7 or the quantitative cavity 6. Along the flow direction of the sample solution, the waste liquid cavity 9 is located downstream of the quantitative cavity 6.
  • the waste liquid cavity 9 By setting the waste liquid chamber 9 downstream of the quantitative chamber 6, it can be used to accurately determine whether the quantitative chamber 6 is full of sample solution. When the sample solution appears in the waste liquid chamber 9 located downstream, the quantitative determination can be determined.
  • the cavity 6 is filled with sample solution. By providing the waste liquid cavity 9, a clear indication can be provided for the sample addition of the quantitative cavity 5, which is further conducive to improving the convenience of operation.
  • air holes can be opened on the waste liquid cavity 9 to discharge the air in each cavity and pipe in time to ensure the smooth flow of the sample solution.
  • the air hole may be opened on the waste liquid cavity 9 or at the end of the micro flow channel connected to the waste liquid cavity 9 or the like.
  • the present invention also provides an in vitro detection device, which includes the above-mentioned sample loading mechanism 1 and a detection mechanism.
  • the sample inlet of the detection mechanism is opposite to the sample loading hole 4 of the sample loading unit 2, and the sample inlet and the sample loading hole 4 are separated by a water-soluble film 6.
  • the detection mechanism can be, but is not limited to, a detection test paper.
  • the end of the test paper where the sample inlet is located is pasted on the sample loading mechanism 1.
  • the above-mentioned in vitro detection device and its sample loading mechanism 1 are provided with a sample loading unit 2 including a quantitative cavity 5 with a rated volume.
  • the sample loading hole 4 of the sample loading unit 2 is closed by a water-soluble membrane 6, so that the sample loading hole can be extended. After the sample is added, the added sample solution can be quantified. There is no need to use an additional sample addition device with quantification function to quantify the sample solution.
  • the operation is simple, which is beneficial to improve the detection efficiency and can reduce the sample solution.
  • the loading error is helpful to improve the accuracy of the detection result.
  • sample loading mechanism 1 When the sample loading mechanism 1 has multiple sample loading units 2, it can also make full use of the delayed opening function of the water-soluble membrane 6 that closes the sample loading hole 4, especially the structural design of the sample loading hole 4 can be After the water-soluble film 6 is dissolved, the sample solution will not automatically flow out. Subsequent methods such as centrifugation or vibration can realize simultaneous sample loading of different sample loading units 2 to the detection mechanism, which is beneficial to fully guarantee the loading of each sample loading unit 2 Time consistency.
  • the structure of the in vitro detection device and the sample loading mechanism of the present invention will be described in further detail below in conjunction with an embodiment of an in vitro detection device composed of a specific microfluidic chip loading mechanism and a matching detection mechanism.
  • the microfluidic chip corresponds to the sample loading mechanism.
  • the microfluidic chip 10 of an embodiment is provided with a separation and quantification unit 100.
  • the separation and quantification unit 100 includes a sample addition cavity 110, a first micro flow channel 120, a sedimentation cavity 130, a capillary flow channel 140, a second micro flow channel 150 and a quantification cavity 160.
  • the sample adding cavity 110 is used to hold the sample solution to be tested, and is provided with a sample adding hole 111.
  • the sedimentation chamber 130 is used to collect useless objects in the sample to be tested with a relatively high density of solids.
  • the sample loading cavity 110 and the sedimentation cavity 130 are in communication with each other through the first micro flow channel 120.
  • the first micro channel 120 communicates with the second micro channel 150 through the capillary channel 140.
  • the second micro flow channel 150 is in communication with the quantitative cavity 160.
  • the quantitative cavity 160 is used to quantify the sample solution to be tested.
  • the microfluidic chip 10 has a center of rotation 18.
  • the precipitation cavity 130 is farther away from the rotation center 18 than the sample loading cavity 110.
  • the capillary flow channel 140 extends from the connection with the first micro flow channel 120 in the direction approaching the rotation center 18 (may be each gradually approaching the rotation center 18, such as but not limited to the radial direction), and then bends away from the rotation center.
  • the direction of 18 (may be a direction gradually away from the rotation center 18, for example, but not limited to a radial direction) extends to connect with the second micro channel 150.
  • the quantitative cavity 160 is farther from the center of rotation than the capillary flow channel 140.
  • the bottom of the end connecting the sample adding cavity 110 and the first micro flow channel 120 is inclined to facilitate the flow of the sample to be tested into the first micro flow channel 120.
  • the size of the first microfluidic channel 120 needs to be able to pass through the useless objects in the sample to be tested. For example, for a whole blood sample, when separating plasma or serum, the first microfluidic channel 120 needs to satisfy Of blood cells can pass through.
  • the first micro flow channel 120 has a branch portion 121 extending in a direction close to the rotation center 18, and the capillary flow channel 140 is connected to the end of the branch portion 121 of the first micro flow channel 120.
  • the separation and quantitative unit 100 further includes a waste liquid cavity 170.
  • the waste liquid chamber 170 is used to collect excess solution to be tested.
  • the waste liquid cavity 170 is in communication with the second micro flow channel 150.
  • the waste liquid cavity 170 is located downstream of the quantitative cavity 160 on the second micro flow channel 150 to receive the excess solution to be tested.
  • the waste liquid cavity 170 is farther away from the rotation center 18 than the capillary channel 140.
  • the sample adding cavity 110 is further provided with a first vent 112.
  • the first vent hole 112 is used for ventilation, which can facilitate the addition of the sample, and avoid the influence of the sample entry due to the increase of the air pressure inside the cavity when the sample is added.
  • a baffle plate 113 is provided in the sample adding cavity 110 between the sample adding hole 111 and the first vent hole 112.
  • the baffle 113 can prevent the sample from reaching one side of the first vent hole 112 after the sample is added, and prevent the sample from flowing out of the first vent hole 112.
  • the sample addition hole 111 and the first vent hole 112 are both arranged on the sample addition cavity 110 close to the rotation center 18, so that when the sample is rotated and centrifuged to make the sample flow to the side of the sample addition cavity 110 far from the rotation center, The sample is placed to flow out from the sample loading hole 111 and the first vent hole 112, so that the sample flows smoothly into the first micro flow channel 120 and the sedimentation cavity 130.
  • the capillary flow channel 140 has a V shape, and its curved part is close to the rotation center 18.
  • the capillary flow channel 140 has a width of 0.1 mm to 0.2 mm and a depth of 0.1 mm to 0.2 mm; or the capillary flow channel 140 has a width of 0.2 mm to 0.5 mm and a depth of 0.2 mm to 0.5 mm.
  • the capillary channel 140 has a width of 0.1mm ⁇ 0.2mm and a depth of 0.1mm ⁇ 0.2mm, the wall of the capillary channel 140 does not need to be surface treated.
  • the capillary channel 140 has a width of 0.2mm ⁇ 0.5mm
  • the flow channel wall of the capillary flow channel 140 is preferably surface-treated with PEG4000. Further preferably, the width of the capillary flow channel 140 is 0.2 mm, and the depth is also 0.2 mm.
  • the PEG4000 surface treatment can be, but is not limited to, adding a 1 wt% PEG4000 solution to the capillary flow channel 140 and forming it after natural drying.
  • the surface treatment of PEG4000 is beneficial to increase the capillary force of the capillary channel 140, and PEG4000 is an inert substance in the reaction system, and generally does not react with samples and detection reagents, and thus does not affect the detection results.
  • the second micro flow channel 150 is provided with a second vent hole 151.
  • the second vent hole 151 is located downstream of the cavity structure (for example, the quantitative cavity 160 and the waste liquid cavity 170) connected to the second micro flow channel 150, and the second vent hole 151 is connected to the second micro flow channel 150
  • the cavity structure is closer to the center of rotation 18.
  • the second vent hole 151 also plays a role of ventilating, facilitating the sample solution to be tested to smoothly flow into the second micro flow channel 150 and finally flow into the quantitative cavity 160 and the waste liquid cavity 170.
  • first vent 112 and the second vent 151 can be selected.
  • the part of the second micro-channel 150 downstream of the cavity structure connected to it is bent and extended in a direction close to the rotation center 18, and the second vent hole 151 is provided at the end of the second micro-channel 150, which can effectively The sample solution is prevented from flowing out from the second vent hole 151.
  • the microfluidic chip 10 includes a chip body 11 and a transparent cover film 12 covering the chip body 11.
  • the chip body 11 and the transparent cover film 12 cooperate to form the cavity structure and the flow channel structure of the separation and quantitative unit 100.
  • the grooves of each cavity structure and flow channel structure are pre-formed on the chip body 11.
  • each hole is opened on the back of the chip body, and subsequently covered and sealed by a transparent cover film 12
  • the front surface of the chip body 11 can be formed to complete the packaging of the cavity structure and the flow channel structure, forming a complete cavity structure and the flow channel structure.
  • the transparent cover film 12 can be, but is not limited to, transparent tape or transparent pressure-sensitive adhesive, etc., which cooperates with the chip body 11 to form the entire microfluidic chip 10, which is simple to assemble and does not require complicated and expensive ultrasonic welding technology. , Can significantly reduce production costs. It can be understood that, in other specific examples, the microfluidic chip 10 may also be formed by welding with a relatively high-cost ultrasonic welding technology, or be integrally formed with a 3D printing technology.
  • the multiple separation and quantitative units 100 are arranged around the same rotation center 18.
  • multiple quantification units 100 single detection of multiple samples and multiple detections of single sample can be realized, with good consistency and high integration, which significantly improves the throughput of single detection.
  • the microfluidic chip 10 is in the shape of a disc, a plurality of separate quantitative units 100 are evenly distributed on the microfluidic chip 10, and the microfluidic chip 10 has a rotating mounting part 180 in the middle.
  • the center of the rotating mounting portion 180 is the center of rotation 18.
  • the rotating mounting part 180 may be various types of clamping slots or clamping posts.
  • the microfluidic chip 10 of this embodiment is provided with a sample loading cavity 110, a precipitation cavity 130, and a quantitative cavity 160.
  • the sample to be tested can be added to the sample loading cavity 110 through the sample hole 111, and the sample can be separated by centrifugation.
  • the solid precipitate is separated from the liquid to obtain the test solution containing the target substance.
  • the test solution in the sample loading cavity 110 and the first micro flow channel 120 can drive the liquid to flow through the capillary force of the capillary channel 140, and finally form a siphon
  • the action and the external centrifugal action flow into the quantification cavity 160 to realize the quantification of the solution to be tested.
  • the microfluidic chip 10 of this embodiment has a relatively simple structure, is easy to manufacture and shape, and can be widely promoted and used.
  • this embodiment also provides an in vitro detection device, which includes the aforementioned microfluidic chip 10 and a detection mechanism 20.
  • the detection mechanism 20 is used to detect the sample in the quantitative cavity 160 of the microfluidic chip 10.
  • the detection mechanism 20 is external.
  • the quantitative cavity 160 has a sample loading hole 161, and the sample loading hole 161 is covered with a water-soluble film 162.
  • the sample inlet 21 of the detection mechanism 20 is connected to the sample loading hole 161 and is separated by a water-soluble film 162.
  • the detection mechanism 20 is a dry chemical test paper.
  • the dry chemical test paper 20 includes a supporting layer 22 and a reaction indicating layer 23 and a diffusion layer 24 stacked on the supporting layer 22 in sequence.
  • the reaction indicator layer 23 contains a reaction reagent and an indicator reagent that can react with the target substance in the sample to be tested.
  • the reaction indicating layer 23 may be one layer or multiple layers.
  • the reaction indicating layer 23 includes two layers of an indicating layer 231 and a reagent layer 232, and the indicating layer 231 is close to the supporting layer 22.
  • the reagent layer 232 is close to the diffusion layer 24, and contains a reaction reagent capable of reacting with the target substance; in addition, the reagent contained in the indicator layer 232 and the reagent layer 232 can also be exchanged or appropriately mixed.
  • the diffusion layer 24 faces the water-soluble film 162 through the injection port 21.
  • microfluidic chip 10 is provided with a mounting groove around the sample loading hole.
  • the detection mechanism 20 is embedded in the installation groove.
  • the in vitro detection device has a detection mechanism 20, which can directly detect the quantified sample solution to be tested in the quantification cavity 160, with simple operation and high detection efficiency.
  • a detection mechanism 20 which can directly detect the quantified sample solution to be tested in the quantification cavity 160, with simple operation and high detection efficiency.
  • the specific test process of the in vitro test device using dry chemical test paper can refer to the following:
  • the liquid level exceeds the inlet end 140a of the capillary channel 140 , Without exceeding the curved part 140b of the capillary flow channel 140;
  • the microfluidic chip 10 stops rotating, under the capillary force of the capillary flow channel 140 the serum or plasma crosses the curved part 140b and reaches the end 140c of the capillary flow channel 140 , Since the point at the end 140c is lower than the height of the liquid level in the sample loading cavity 110 (which is farther from the rotation center 18 than the liquid level in the sample loading cavity 110), a siphon effect can be formed;
  • the microfluidic chip 10 When the capillary channel 140 is filled with serum or plasma, the microfluidic chip 10 is controlled to rotate again, because the end 140c is farther from the center of rotation 18 than the liquid level in the sample cavity 110, as shown in Figures 5-3-1 and 5- As shown in 4-1, under the action of siphoning and centrifugal force, serum or plasma enters the quantitative cavity 160 through the second microchannel 150.
  • the sample solution to be tested is completed Quantitatively, the excess serum or plasma enters the back section of the second micro-channel 150 or the waste liquid cavity 170; preferably, the instrument will determine whether there is in the back section of the second micro-channel 150 or the waste liquid cavity 170.
  • the liquid judges whether the quantitative cavity 160 is full of liquid. When it is detected that there is liquid in the back section of the second microfluidic channel 150 or the waste liquid cavity 170, it can be determined that the quantitative cavity 160 is full of liquid. Whether the cavity 160 is full of liquid;
  • the liquid generally does not flow into the detection mechanism (dry chemical test paper) 20 due to its own weight.
  • the microfluidic chip 10 needs to be controlled to rotate. It can rotate at a low speed of 1800rpm ⁇ 2000rpm to make the quantitative chamber
  • the quantitative sample solution in 160 enters the sample inlet 21 of the detection mechanism 20;
  • the sample solution is sequentially diffused through the diffusion layer 24 to the reaction indicator layer 23 for color reaction.
  • the depth of the color can reflect the concentration of the test substance.
  • the signal can be collected through the detection hole 25 of the detection mechanism, and finally converted into the concentration data of the test substance. .
  • the in vitro detection device of this embodiment can solve the problem of low sensitivity and stability of dry chemical test paper whole blood, and has the advantages of high detection throughput and low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种体外检测装置及其上样机构(1),该体外检测装置的上样机构(1)上设有上样单元(2),上样单元(2)包括加样孔(111)、上样孔(161)和具有额定容积的定量腔体(160),加样孔(111)与定量腔体(160)连通以用于向定量腔体(160)中加入样本溶液,上样孔(161)与定量腔体(160)连通以用于将定量腔体(160)中定量的样本溶液上样至检测机构(20),上样孔(161)由水溶性膜(6)封闭。通过设置包括具有额定容积的定量腔体(160)的上样单元(2),上样单元(2)的上样孔(161)由水溶性膜(6)封闭,这样上样孔(161)可以延时打开,进而在加样后,可以对加入的样本溶液进行定量,无需使用额外的具有定量功能的加样器具对样本溶液进行定量,操作简便,有利于提高检测效率,并可以减少样本溶液的上样量误差,有利于提高检测结果的准确性。

Description

体外检测装置及其上样机构 技术领域
本发明涉及体外检测技术领域,尤其是涉及一种体外检测装置及其上样机构。
背景技术
体外诊断(In Vitro Diagnosis,IVD)是指从人体中取出样本(血液、体液、组织等)进行检测分析从而对疾病进行诊断的技术,检测过程中需要相应的仪器和试剂,而这些仪器和试剂就组成了体外诊断系统。体外诊断系统大致分为两种:一种是以检测中心实验室为代表,它具有系统模块化、自动化的特点,对样本进行流水线式的检验,从而也具有高通量、高效率、高敏感度的优势,但是整套系统也存在费用昂贵、所占体积大、需要专业人员操作等缺陷,它主要应用于大型医院;另外一种是以即时检测(point-of-care testing,POCT)为代表,它的系统具有集成化、小型化的特点,可随时随地进行样本检验,从而也具有价格实惠、操作简单、结果报告及时的优势。然而,传统的一些体外检测装置需要借助额外的加样器具进行样本的定量,特别是对于具有多个上样单元的体外检测装置,各上样单元难以控制同时上样,上样一致性差,对于一些需要控制同时上样的检测场合,难以满足检测需求。
发明内容
基于此,有必要提供一种能够对样本进行定量,且能够控制各不同上样单元同时上样的体外检测装置及其上样机构。
一种体外检测装置的上样机构,所述上样机构上设有上样单元,所述上样单元包括加样孔、上样孔和具有额定容积的定量腔体,所述加样孔与所述定量腔体连通以用于向所述定量腔体中加入样本溶液,所述上样孔与所述定量腔体 连通以用于将所述定量腔体中定量的样本溶液上样至检测机构,所述上样孔由水溶性膜封闭。
在其中一个实施例中,所述上样孔满足当所述水溶性膜溶解后,所述定量腔体内定量的样本溶液不会自所述上样孔自动流出。
在其中一个实施例中,所述上样孔的径向尺寸在0.5mm~3mm之间。
在其中一个实施例中,所述水溶性膜为遇水5s~120s内溶解的水溶性膜。
在其中一个实施例中,所述上样机构上设有多个所述上样单元,多个所述上样单元在所述上样机构上围绕一旋转中心设置。
在其中一个实施例中,在所述上样机构上,各所述上样单元的所述上样孔较之所述加样孔远离所述旋转中心设置。
在其中一个实施例中,所述上样机构为微流控芯片,所述上样单元还包括加样腔体;
所述加样孔与所述加样腔体连通以用于向所述加样腔体内加入样本溶液;
所述加样腔体与所述定量腔体之间由毛细流道连通。
在其中一个实施例中,所述上样单元还包括废液腔体;
所述废液腔体与所述加样腔体或所述定量腔体连通,沿样本溶液的流动方向,所述废液腔体位于所述定量腔体的下游。
一种体外检测装置,包括检测机构和上述任一实施例所述的上样机构,所述检测机构的进样口与所述上样单元的上样孔相对,所述进样口与所述上样孔之间由所述水溶性膜隔开。
在其中一个实施例中,所述检测机构为检测试纸,所述检测试纸的进样口所在端粘贴在所述上样机构上。
上述体外检测装置及其上样机构,通过设置包括具有额定容积的定量腔体的上样单元,上样单元的上样孔由水溶性膜封闭,这样上样孔可以延时打开,进而在加样后,可以对加入的样本溶液进行定量,无需使用额外的具有定量功能的加样器具对样本溶液进行定量,操作简便,有利于提高检测效率,并可以 减少样本溶液的上样量误差,有利于提高检测结果的准确性。
进一步,当上样机构具有多个上样单元时,还可以充分利用封闭上样孔的水溶性膜的延时打开功能,特别是可以进一步配合上样孔的结构设计,使之在水溶性膜被溶解后样本溶液也不会自动流出,后续通过离心或振动等手段就可以实现不同上样单元对检测机构的同时上样,有利于充分保证各上样单元上样的时间一致性。
附图说明
图1为本发明提供的一种上样机构的模块化结构设计示意图;
图2为一具体实施例中微流控芯片的上样机构的正面结构示意图;
图3为图2所示上样机构配合检测机构的背面结构示意图;
图4为图2所示上样机构配合检测机构的侧视图;
图5-1、5-2、5-3和5-4为图2所示上样机构对全血样本进行血浆(或血清)分离、定量的过程示意图,图5-2-1、5-3-1和5-4-1为相应的局部放大示意图;
图6-1、6-2和6-3为血浆(或血清)溶解水溶性膜进入检测机构的过程示意图;
图7为一具体示例中干化学试纸的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”、“连通”另一个元件,它可以是直接连接或连通到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,本发明提供了一种体外检测装置的上样机构1。该上样机构1上设有上样单元2。上样单元2包括加样孔3、上样孔4和具有额定容积的定量腔体5。加样孔3与定量腔体5连通以用于向定量腔体5中加入样本溶液。上样孔4与定量腔体5连通以用于将定量腔体5中定量的样本溶液上样至检测机构以供检测。上样孔4由水溶性膜6封闭。
优选地,上样孔4满足当水溶性膜6溶解后,定量腔体5内定量的样本溶液不会自上样孔自动流出,这样有利于保证加样定量的准确性和后续上样时间上的一致性。进一步优选地,上样孔4的径向尺寸(孔横截面的最大尺寸,如圆孔即其直径,又如矩形孔及其对角线的长度)在0.5mm~3mm之间。
水溶性膜6遇水即会慢慢溶解。优选地,本发明所用的水溶性膜6为遇水5s~120s内溶解的水溶性膜,这样可以给加样过程保留充足的延时时间,保证加样定量的准确性。水溶性膜6可以是但不限于为PVA(聚乙烯醇)膜。
优选地,上样机构1上设有多个上样单元2。多个上样单元2在上样机构1上围绕一旋转中心设置。当样本溶液加入到定量腔体5中之后,可以通过离心等方式将定量腔体5内的样本溶液完全排出,以保证各上样单元2的上样量的准确性和一致性。
优选地,在上样机构1上,各上样单元2的上样孔4较之加样孔3远离旋转中心设置,这样在离心上样时,可以避免发生样本溶液回流至加样孔3的情况发生,进一步保证上样量的准确性。
上样机构1优选为微流控芯片,上样单元2还包括加样腔体7。加样孔3与加样腔体7连通以用于向加样腔体7内加入样本溶液。加样腔体7与定量腔体6之间由毛细流道8连通。通过设置毛细流道8,可以将加入至加样腔体7内的样 本溶液通过毛细作用自动流至定量腔体6中实现加样量的定量,而加入至加样腔体7内的样本溶液可以稍过量一些,可以提高操作的简便性。
优选地,上样单元2还包括废液腔体9。废液腔体9与加样腔体7或定量腔体6连通。沿样本溶液的流动方向,废液腔体9位于定量腔体6的下游。通过在定量腔体6的下游设置废液腔体9,可以用于准确判断定量腔体6中是否装满样本溶液,当位于下游的废液腔体9中出现样本溶液时,即可判定定量腔体6中已装满样本溶液。通过设置废液腔体9,可以为定量腔体5的加样提供明确的指示,进一步有利于提高操作的便利性。
进一步优选地,还可以在废液腔体9上开设气孔,以及时将各腔体和管道内的空气排出,保证样本溶液顺利流动。气孔可以开设在废液腔体9上,也可以开设在于废液腔体9连通的微流道的末端等位置。
本发明还提供了一种体外检测装置,其包括上述上样机构1和检测机构。检测机构的进样口与上样单元2的上样孔4相对,进样口与上样孔4之间由水溶性膜6隔开。
检测机构可以是但不限于为检测试纸。优选地,检测试纸的进样口所在端粘贴在上样机构1上。
上述体外检测装置及其上样机构1,通过设置包括具有额定容积的定量腔体5的上样单元2,上样单元2的上样孔4由水溶性膜6封闭,这样上样孔可以延时打开,进而在加样后,可以对加入的样本溶液进行定量,无需使用额外的具有定量功能的加样器具对样本溶液进行定量,操作简便,有利于提高检测效率,并可以减少样本溶液的上样量误差,有利于提高检测结果的准确性。
当上样机构1具有多个上样单元2时,还可以充分利用封闭上样孔4的水溶性膜6的延时打开功能,特别是可以进一步配合上样孔4的结构设计,使之在水溶性膜6被溶解后样本溶液也不会自动流出,后续通过离心或振动等手段就可以实现不同上样单元2对检测机构的同时上样,有利于充分保证各上样单元2上样的时间一致性。
以下结合一具体微流控芯片的上样机构及与其相配合的检测机构构成的体外检测装置实施例对本发明的体外检测装置及其上样机构的结构作进一步详细的说明。以下实施例中,微流控芯片即对应上样机构。
请结合图2和图3,一实施例的微流控芯片10上设有分离定量单元100。分离定量单元100包括加样腔体110、第一微流道120、沉淀腔体130、毛细流道140、第二微流道150和定量腔体160。加样腔体110用于盛放待测样本溶液,其设有加样孔111。沉淀腔体130用于收集固体等密度较大的待测样本中的无用物。加样腔体110与沉淀腔体130通过第一微流道120连通。第一微流道120通过毛细流道140与第二微流道150连通。第二微流道150与定量腔体160连通。定量腔体160用于定量待测样本溶液。
在本实施例中,微流控芯片10具有旋转中心18。沉淀腔体130较加样腔体110远离该旋转中心18。毛细流道140自与第一微流道120连接后向靠近旋转中心18的方向(可以是各逐渐靠近旋转中心18的方向,例如可以是但不限于径向)延伸并弯曲后向远离旋转中心18的方向(可以是各逐渐远离旋转中心18的方向,例如可以是但不限于径向)延伸以与第二微流道150连接。定量腔体160较毛细流道140远离旋转中心。
在图示的具体示例中,加样腔体110与第一微流道120连接的一端的底部倾斜设置,以便于待测样本流至第一微流道120中。
第一微流道120的尺寸需满足能够使待测样本中的密度较大的无用物通过,例如对于全血样本,在分离血浆或血清时,第一微流道120需要满足使全血中的血细胞能够通过。在图示的具体示例中,第一微流道120具有向靠近旋转中心18的方向延伸的分支部121,毛细流道140与第一微流道120的该分支部121的末端连接。
优选地,该分离定量单元100还包括废液腔体170。废液腔体170用于收集多余的待测溶液。废液腔体170与第二微流道150连通。废液腔体170在第二微流道150上位于定量腔体160的下游,以接收多余的待测溶液。废液腔体170 较毛细流道140远离旋转中心18。当废液腔体170中有待测溶液出现时,说明位于其上游的定量腔体160中已装满待测溶液,从而定量腔体160可以实现对待测溶液的定量。
优选地,加样腔体110还设有第一透气孔112。第一透气孔112用于透气,这样可以便于样本的加入,避免因加样时造成腔体内部气压上升而影响样本进入。
优选地,加样腔体110内在加样孔111与第一透气孔112之间设有阻流板113。阻流板113在样本加入后可以起到阻挡样本到达第一透气孔112的一侧,防止样本从第一透气孔112流出。
优选地,加样孔111及第一透气孔112在加样腔体110上均靠近旋转中心18设置,这样在转动离心使样本向加样腔体110的远离旋转中心的一侧流动时,可放置样本从加样孔111和第一透气孔112流出,使样本顺利流至第一微流道120和沉淀腔体130中。
毛细流道140呈V字形状,其弯曲部分靠近于旋转中心18。优选地,毛细流道140的宽度为0.1mm~0.2mm,深度为0.1mm~0.2mm;或者毛细流道140的宽度为0.2mm~0.5mm,深度为0.2mm~0.5mm。当毛细流道140的宽度为0.1mm~0.2mm,深度为0.1mm~0.2mm时,毛细流道140的流道壁无需进行表面处理,当毛细流道140的宽度为0.2mm~0.5mm,深度为0.2mm~0.5mm时,毛细流道140的流道壁优选经PEG4000表面处理。进一步优选地,毛细流道140的宽度为0.2mm,深度也为0.2mm。毛细流道140在样本溶液进入后,使样本溶液可以借由毛细作用流动至其另一端,并最终在第一微流道120与第二微流道150之间形成虹吸作用。
所述PEG4000表面处理可以是但不限于将1wt%的PEG4000溶液加入到毛细流道140中,自然干燥后形成。PEG4000表面处理有利于增加毛细流道140的毛细作用力,并且PEG4000在反应体系中属于惰性物质,一般不会与样本和检测试剂等起反应,因而不会影响检测结果。
优选地,第二微流道150上设有第二透气孔151。第二透气孔151位于第二微流道150上连接的腔体结构(例如定量腔体160和废液腔体170)的下游,且第二透气孔151相对于第二微流道150上连接的腔体结构更靠近于旋转中心18。第二透气孔151也起到透气的作用,便于待测样本溶液顺利流入第二微流道150,并最终流至定量腔体160和废液腔体170中。
可理解,在其他具体示例中,第一透气孔112和第二透气孔151可以择一,例如可以只有第一透气孔112,也可以只有第二透气孔151,其中,第二透气孔151为择一之优选。
进一步,第二微流道150上位于其连接的腔体结构的下游的部分向靠近旋转中心18的方向弯折延伸,第二透气孔151设于第二微流道150的末端,这样可以有效防止样本溶液从第二透气孔151流出。
优选地,请参图4,微流控芯片10包括芯片本体11和覆盖在芯片本体11上的透明盖膜12。芯片本体11与透明盖膜12配合形成分离定量单元100的各腔体结构和流道结构。具体地,各腔体结构和流道结构的沟槽等均预形成在芯片本体11上,如图3所示,各孔均开口在芯片本体的背面,后续通过透明盖膜12覆盖并密封在芯片本体11的正面即可形成完成对腔体结构和流道结构的封装,形成完整的腔体结构和流道结构。
透明盖膜12可以是但不限于透明胶带或者透明压敏胶等,其与芯片本体11配合构成整个微流控芯片10,装配简单,无需使用复杂、昂贵的超声焊接技术,直接粘接即可,可以显著降低制作成本。可理解,在其他具体示例中,微流控芯片10也可以采用成本较高的超声焊接技术焊接形成,或者采用3D打印技术一体成型。
优选地,分离定量单元100有多个,多个分离定量单元100围绕同一旋转中心18设置。通过设置多个定量单元100可以实现多样本单项检测,也可以实现单样本多项检测,一致性好,集成度高,显著提高了单次检测的通量。
优选地,例如在图示的具体示例中,微流控芯片10呈圆盘状,多个分离定 量单元100均匀分布在微流控芯片10上,微流控芯片10的中部具有旋转安装部180,旋转安装部180的中心即旋转中心18。旋转安装部180可以是各类卡槽或者卡柱等结构。
本实施例的微流控芯片10中设有加样腔体110、沉淀腔体130和定量腔体160,通过加样孔111可以向加样腔体110中加入待测样本,通过离心分离可以将固体沉淀物与液体分离,得到含有目标物质的待测溶液,加样腔体110与第一微流道120中的待测溶液可以经毛细流道140的毛细力驱动液体流动,最后形成虹吸作用和外界离心作用流至定量腔体160中实现对待测溶液的定量。本实施例的微流控芯片10结构相对简单,易于制作成型,可广泛推广使用。
请参图3、4、图6-1、6-2和6-3,本实施例还提供了一种体外检测装置,其包括上述微流控芯片10和检测机构20。检测机构20用于检测微流控芯片10的定量腔体160内的样本。
在图示的具体示例中,检测机构20外置。具体地,定量腔体160具有上样孔161,上样孔161上覆盖有水溶性膜162。检测机构20的进样口21与上样孔161对接且由水溶性膜162隔开。
在一个具体示例中,检测机构20为干化学试纸。如图7所示,该干化学试纸20包括支撑层22和在支撑层22上依次层叠设置的反应指示层23和扩散层24。反应指示层23中含有能够与待测样本中目标物质反应的反应试剂和指示试剂。反应指示层23可以是一层,也可以是多层,例如在图7所示的具体示例中,该反应指示层23包括指示层231和试剂层232两层,指示层231靠近于支撑层22,其中含有显色指示试剂,试剂层232靠近于扩散层24,其中含有能够与目标物质反应的反应试剂;此外,指示层232与试剂层232中所含的试剂也可以对换或适当混合。扩散层24通过进样口21面向于水溶性膜162。
更进一步,微流控芯片10围绕上样孔设有安装槽。检测机构20镶嵌在安装槽中。
该体外检测装置具有检测机构20,可以直接对定量腔体160中定量的待测 样本溶液进行检测,操作简单,检测效率高。以全血样本上样检测为例,使用干化学试纸的体外检测装置的具体检测过程可参考如下:
请参图5-1、5-2、5-3和5-4,将一定量的全血通过加样孔111加入至加样腔体110中,依次可以加入六人份不同的样本;
加完样本后,将体外检测装置的旋转安装部180安装于配套的旋转离心仪器中,开启仪器转动,全血在离心力的作用下,红细胞等沉淀在沉淀腔体130中,血清或血浆分离至沉淀腔体130的上部、第二微流道120以及加样腔体110中;
微流控芯片10在转动时,血清或血浆只是部分填充在毛细流道140中,如图5-2-1和5-3-1所示,其液位超过毛细流道140的入口端140a,而不超过毛细流道140的弯曲部位140b;当微流控芯片10停止转动时,在毛细流道140的毛细力作用下,血清或血浆越过弯曲部位140b,到达毛细流道140的末端140c,由于末端140c的点低于加样腔体110中的液位高度(较加样腔体110中的液位远离旋转中心18),因而可以形成虹吸作用;
当毛细流道140中填充满血清或血浆后,控制微流控芯片10再次旋转,由于末端140c较加样腔体110中的液位远离旋转中心18,如图5-3-1和5-4-1所示,在虹吸作用和离心力的作用下,血清或血浆通过第二微流道150进入定量腔体160,当定量腔体160中充满血清或血浆后,即完成对待测样本溶液的定量,多余的血清或血浆进入第二微流道150的后段或者进入废液腔体170中;优选地,仪器会根据第二微流道150的后段或者废液腔体170中是否有液体判断定量腔体160是否充满液体,当检测到第二微流道150的后段或者废液腔体170中有液体时,即可确定定量腔体160充满液体,否则报警提醒需要再次检测定量腔体160是否充满液体;
从血清或血浆充满毛细流道140时开启转动至定量腔体160中充满液体,一般在10s内即可完成,当定量腔体160中充满液体时,控制微流控芯片10停止转动,静置,液体会暂时封闭在定量腔体160中,随着时间推移,液体会逐 渐将上样孔161处覆盖的水溶性膜162溶解,该溶解过程大约需要1min,如图6-1、6-2和6-3所示;
当水溶性膜162溶解掉之后,液体一般不会因为自重而流入检测机构(干化学试纸)20,需要控制转动微流控芯片10,可以在低速1800rpm~2000rpm的速度下转动,使定量腔体160中定量的样本溶液进入检测机构20的进样口21;
样本溶液依次经扩散层24扩散至反应指示层23进行显色反应,显色的深浅可反映出检测物的浓度,通过检测机构的检测孔25可进行信号采集,最后转化为检测物的浓度数据。本实施例的体外检测装置可以解决干化学试纸全血灵敏度和稳定性低的问题,具有检测通量高、成本低等优点。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种体外检测装置的上样机构,其特征在于,所述上样机构上设有上样单元,所述上样单元包括加样孔、上样孔和具有额定容积的定量腔体,所述加样孔与所述定量腔体连通以用于向所述定量腔体中加入样本溶液,所述上样孔与所述定量腔体连通以用于将所述定量腔体中定量的样本溶液上样至检测机构,所述上样孔由水溶性膜封闭。
  2. 如权利要求1所述的体外检测装置的上样机构,其特征在于,所述上样孔满足当所述水溶性膜溶解后,所述定量腔体内定量的样本溶液不会自所述上样孔自动流出。
  3. 如权利要求2所述的体外检测装置的上样机构,其特征在于,所述上样孔的径向尺寸在0.5mm~3mm之间。
  4. 如权利要求1所述的体外检测装置的上样机构,其特征在于,所述水溶性膜为遇水5s~120s内溶解的水溶性膜。
  5. 如权利要求1~4中任一项所述的体外检测装置的上样机构,其特征在于,所述上样机构上设有多个所述上样单元,多个所述上样单元在所述上样机构上围绕一旋转中心设置。
  6. 如权利要求5所述的体外检测装置的上样机构,其特征在于,在所述上样机构上,各所述上样单元的所述上样孔较之所述加样孔远离所述旋转中心设置。
  7. 如权利要求1~4及6中任一项所述的体外检测装置的上样机构,其特征在于,所述上样机构为微流控芯片,所述上样单元还包括加样腔体;
    所述加样孔与所述加样腔体连通以用于向所述加样腔体内加入样本溶液;
    所述加样腔体与所述定量腔体之间由毛细流道连通。
  8. 如权利要求7所述的体外检测装置的上样机构,其特征在于,所述上样单元还包括废液腔体;
    所述废液腔体与所述加样腔体或所述定量腔体连通,沿样本溶液的流动方 向,所述废液腔体位于所述定量腔体的下游。
  9. 一种体外检测装置,其特征在于,包括检测机构和如权利要求1~8中任一项所述的上样机构,所述检测机构的进样口与所述上样单元的上样孔相对,所述进样口与所述上样孔之间由所述水溶性膜隔开。
  10. 如权利要求9所述的体外检测装置,其特征在于,所述检测机构为检测试纸,所述检测试纸的进样口所在端粘贴在所述上样机构上。
PCT/CN2019/122797 2019-03-27 2019-12-03 体外检测装置及其上样机构 WO2020192169A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201920399948 2019-03-27
CN201920399948.7 2019-03-27
CN201910801439.7A CN110508337B (zh) 2019-03-27 2019-08-28 体外检测装置及其上样机构
CN201910801439.7 2019-08-28

Publications (1)

Publication Number Publication Date
WO2020192169A1 true WO2020192169A1 (zh) 2020-10-01

Family

ID=68628708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122797 WO2020192169A1 (zh) 2019-03-27 2019-12-03 体外检测装置及其上样机构

Country Status (2)

Country Link
CN (1) CN110508337B (zh)
WO (1) WO2020192169A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110508337B (zh) * 2019-03-27 2022-08-30 广州万孚生物技术股份有限公司 体外检测装置及其上样机构
CN113663747A (zh) * 2021-07-30 2021-11-19 浙大城市学院 一种高动态范围的多重数字pcr芯片及其制备方法
CN116237102A (zh) * 2023-05-11 2023-06-09 杭州博日科技股份有限公司 一种微流控芯片

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108447A1 (en) * 1997-09-16 2003-06-12 Masayuki Yokoi Blood test container and blood test method
CN202369443U (zh) * 2011-10-20 2012-08-08 河海大学 厌、缺和好氧sbr反应器
CN104360091A (zh) * 2014-11-21 2015-02-18 博奥生物集团有限公司 一种芯片、使用方法及用途
CN107058063A (zh) * 2017-06-12 2017-08-18 博奥生物集团有限公司 一种基于微流控芯片的用于多重核酸扩增产物荧光检测的方法
CN207786626U (zh) * 2018-01-11 2018-08-31 郑州大学 一种用于阴道炎多联检的离心式微流控芯片
CN208104419U (zh) * 2017-12-29 2018-11-16 苏州绘真生物科技有限公司 检测人类病毒核酸的微流控芯片及检测系统
CN208266181U (zh) * 2018-01-23 2018-12-21 上海速创诊断产品有限公司 一种用于恒温微流控芯片的核酸分析装置
CN110508337A (zh) * 2019-03-27 2019-11-29 广州万孚生物技术股份有限公司 体外检测装置及其上样机构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004014908U1 (de) * 2004-07-15 2005-03-17 Levin Felix Universell einsetzbare Testvorrichtungen zur schnellen Analyse von Flüssigkeiten
US8097450B2 (en) * 2006-08-02 2012-01-17 Samsung Electronics Co., Ltd. Thin film chemical analysis apparatus and analysis method using the same
WO2008134462A1 (en) * 2007-04-25 2008-11-06 3M Innovative Properties Company Supported reagents, methods, and devices
CN101850231B (zh) * 2009-07-03 2012-08-29 中国科学院上海微系统与信息技术研究所 一种微流体反应器、使用方法及其应用
CN103464230B (zh) * 2013-09-25 2015-02-18 中国科学院长春光学精密机械与物理研究所 离心式全血分析微流控芯片、制备方法及其应用方法
CN103486091B (zh) * 2013-09-25 2016-08-17 中国科学院长春光学精密机械与物理研究所 离心式微流控芯片的虹吸阀及其应用方法
CN105848783B (zh) * 2013-09-30 2017-12-01 卡皮坦内尔公司 微流体装置、使用和方法
TWI550274B (zh) * 2014-08-20 2016-09-21 紹興普施康生物科技有限公司 微流體檢驗裝置及其運作方法
CN104793004A (zh) * 2015-04-24 2015-07-22 杭州霆科生物科技有限公司 一种预存储反应试剂的农药残留检测微流控芯片
CN105728070A (zh) * 2015-12-17 2016-07-06 广州万孚生物技术股份有限公司 一种用于微流控芯片的载体
CN206229376U (zh) * 2016-01-22 2017-06-09 上海快灵生物科技有限公司 一种离心式多通道微流体芯片
CN107051305B (zh) * 2017-06-26 2023-03-03 浙江普施康生物科技有限公司 微流控血凝检测装置及方法
CN108872558B (zh) * 2018-04-26 2020-03-31 烟台芥子生物技术有限公司 利用可溶解膜进行化学反应的方法及包括可溶解膜的检测试剂盒
CN108704677B (zh) * 2018-04-27 2024-05-28 广州万孚生物技术股份有限公司 一种微流控芯片及含其的分析仪器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108447A1 (en) * 1997-09-16 2003-06-12 Masayuki Yokoi Blood test container and blood test method
CN202369443U (zh) * 2011-10-20 2012-08-08 河海大学 厌、缺和好氧sbr反应器
CN104360091A (zh) * 2014-11-21 2015-02-18 博奥生物集团有限公司 一种芯片、使用方法及用途
CN107058063A (zh) * 2017-06-12 2017-08-18 博奥生物集团有限公司 一种基于微流控芯片的用于多重核酸扩增产物荧光检测的方法
CN208104419U (zh) * 2017-12-29 2018-11-16 苏州绘真生物科技有限公司 检测人类病毒核酸的微流控芯片及检测系统
CN207786626U (zh) * 2018-01-11 2018-08-31 郑州大学 一种用于阴道炎多联检的离心式微流控芯片
CN208266181U (zh) * 2018-01-23 2018-12-21 上海速创诊断产品有限公司 一种用于恒温微流控芯片的核酸分析装置
CN110508337A (zh) * 2019-03-27 2019-11-29 广州万孚生物技术股份有限公司 体外检测装置及其上样机构

Also Published As

Publication number Publication date
CN110508337A (zh) 2019-11-29
CN110508337B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2020192168A1 (zh) 微流控芯片及含有该微流控芯片的体外检测装置
WO2021036074A1 (zh) 微流控芯片及包含该微流控芯片的体外检测装置
WO2020192169A1 (zh) 体外检测装置及其上样机构
CN210787394U (zh) 微流控芯片及包含该微流控芯片的体外检测装置
WO2021243882A1 (zh) 微流控芯片及体外检测装置
TWI550274B (zh) 微流體檢驗裝置及其運作方法
JP3361097B2 (ja) 分析用ローターのための試薬容器
WO2011093602A2 (en) Centrifugal micro-fluidic device and method for detecting analytes from liquid specimen
WO2018184382A1 (zh) 用于全血样品分离检测的微流控芯片及其检测方法
JP2008524605A (ja) 診断アッセイのためのカートリッジ
JP4368383B2 (ja) 固液分離構造体
CN103827324A (zh) 用于检测分析物的装置和方法
CN110975951A (zh) 微流控芯片及体外检测装置
JP2006058093A (ja) 血液分析装置
KR102103784B1 (ko) 원심력 기반 무전원 입자 농축장치 및 입자 농축방법
CN112756018A (zh) 微流控芯片及体外检测系统
US20080227208A1 (en) Devices and Methods for Detection of Occult Blood
CN211865062U (zh) 微流控芯片及体外检测系统
WO2021077590A1 (zh) 微流控芯片及体外检测装置
CN114453037B (zh) 均相测试微流控芯片及检测系统
CN210787395U (zh) 一种微流控芯片及含有该微流控芯片的体外检测装置
US20240183758A1 (en) Devices and methods for sample analysis with serial dilution
CN108795692A (zh) 稀有细胞捕获系统及其应用
KR102063865B1 (ko) 원심력 기반 혈소판 분리 및 검진 장치
CN211865061U (zh) 微流控芯片及体外检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920787

Country of ref document: EP

Kind code of ref document: A1