WO2020191940A1 - 多通道无线信号收发设备 - Google Patents
多通道无线信号收发设备 Download PDFInfo
- Publication number
- WO2020191940A1 WO2020191940A1 PCT/CN2019/094172 CN2019094172W WO2020191940A1 WO 2020191940 A1 WO2020191940 A1 WO 2020191940A1 CN 2019094172 W CN2019094172 W CN 2019094172W WO 2020191940 A1 WO2020191940 A1 WO 2020191940A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- signal
- amplifier
- antenna switch
- signal processing
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0404—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
Definitions
- This application relates to the wireless field, in particular to a multi-channel wireless signal transceiving device.
- WIFI is a wireless local area network technology created in the IEEE 802.11 standard, which improves the interoperability between wireless network products based on this standard.
- WIFI is a short-distance wireless technology. It has the advantages of fast transmission speed, low transmission power and no wiring. It can meet the needs of personal and social informatization. In the case of weak signals, the bandwidth can be automatically adjusted to effectively ensure the stability of the network Sex and reliability.
- the coverage of the WIFI signal transmitted by the traditional WIFI signal transmission device is limited, and the user cannot receive the WIFI signal in an area beyond the coverage of the WIFI, which affects the normal use of the user and has low reliability.
- a multi-channel wireless signal transceiving device is provided.
- a multi-channel wireless signal transceiving device includes a three-dimensional antenna device, an antenna switch device, a signal processing device, and a controller.
- the three-dimensional antenna device includes at least two stacked antenna array layers, and the antenna array layers are connected to the An antenna switch device, the antenna switch device is connected to the signal processing device, and the signal processing device is connected to the controller; the number of the antenna switch devices is more than two, and each antenna switch device is connected to a corresponding In the antenna array layer, the number of the signal processing devices is equal to the number of the antenna switch devices, and each of the signal processing devices is connected to the corresponding antenna switch device.
- Figure 1 is a structural diagram of a multi-channel wireless signal transceiving device in an embodiment
- Figure 2 is a structural diagram of a multi-channel wireless signal transceiving device in another embodiment
- FIG. 3 is a structural diagram of a three-dimensional antenna device in an embodiment
- Fig. 4 is a structural diagram of a multi-channel wireless signal transceiving device in another embodiment.
- a multi-channel wireless signal transceiving device includes a three-dimensional antenna device 100, an antenna switch device 200, a signal processing device 300, and a controller 400.
- the three-dimensional antenna device 100 includes at least two The antenna array layer 110 is stacked, the antenna array layer 110 is connected to the antenna switch device 200, the antenna switch device 200 is connected to the signal processing device 300, the signal processing device 300 is connected to the controller 400, the number of antenna switch devices 200 is more than two, The number of antenna switch devices 200 is equal to the number of antenna array layers 110, and each antenna switch device 200 is connected to the corresponding antenna array layer 110, the number of signal processing devices 300 is equal to the number of antenna switch devices 200, and each signal processing device 300 are connected to the corresponding antenna switch device 200.
- the stereo antenna device 100 can sense the electromagnetic signal in the space, and then send it to the antenna switch device 200.
- the antenna switch device 200 transmits the signal to the signal processing device 300 for processing.
- the signal is sent to the controller 400 for demodulation to obtain a WIFI signal, so as to realize the reception of the WIFI signal.
- the controller 400 outputs a low-power weak radio frequency signal and sends it to the signal processing device 300 for processing, and the processed signal is then radiated into the space through the antenna switch device 200 via the stereo antenna device 100 , Realize the sending of WIFI signal.
- the type of the controller 400 is not unique.
- it can be CPLD (Complex Programmable Logic Device), FPGA (Field-Programmable Gate Array, field programmable gate array) or single-chip microcomputer.
- the controller 400 the CPLD has the advantages of flexible programming, high integration, wide application range, and low design and manufacturing cost.
- FPGA has the advantages of low design cost and high working stability.
- the single-chip microcomputer has the advantages of small size, simple structure and high reliability. It can be understood that, in other embodiments, the controller 400 may also use other devices, as long as those skilled in the art think that it can be implemented.
- the signal processing device 300 is mainly used to process the signals flowing through. According to different actual needs, the signal processing device 300 performs signal processing in different ways. Accordingly, the structure of the signal processing device 300 is not unique, for example, when the signal When the processing device 300 includes a filter, the signal can be filtered to filter out noise in the signal. It can be understood that, in other embodiments, the signal processing device 300 may also have other structures, which are determined according to user requirements and have great flexibility.
- the number of signal processing devices 300 is equal to the number of antenna switch devices 200, and each signal processing device 300 is connected to the corresponding antenna switch device 200. In each signal channel, a signal processing device 300 is correspondingly connected to an antenna switch device 200, which can maintain the independence of signal transmission between various channels, avoid signal interference, and each channel can also realize the parallel transmission of signals, which improves The efficiency of signal transmission.
- the antenna switch device 200 can control the on and off between the three-dimensional antenna device 100 and the signal processing device 300.
- the antenna switch device 200 connects the three-dimensional antenna device 100 and the signal processing device 300 , The three-dimensional antenna device 100 and the signal processing device 300 can normally transmit signals.
- the antenna switch device 200 makes the three-dimensional antenna device 100 and the signal processing device 300 non-conducting, a multi-channel wireless signal transceiving device In the standby state.
- the number of antenna switch devices 200 is more than two, and each antenna switch device 200 is respectively connected to the corresponding antenna array layer 110.
- the number of antenna array layers 110 respectively connected to each antenna switch device 200 may be completely the same, may be partially the same, or may be completely different, which can be determined according to actual requirements.
- Each antenna switch device 200 is connected with the corresponding antenna array layer 110 to form a signal transceiver channel, forming a multi-input multi-output radio frequency front end structure.
- the number of antenna array layers connected to each antenna switch device 200 is different from each other. For example, the number of antenna array layers connected to each antenna switch device 200 can be increased sequentially, and the corresponding signal can be selected according to actual needs.
- the transceiver channel works, which improves the operating convenience of multi-channel wireless signal transceiver equipment.
- the three-dimensional antenna device 100 includes at least two stacked antenna array layers 110, which can increase the longitudinal dimension on the basis of the two-dimensional antenna plane array layer, and form beam combination in the radiation direction remotely, so that the three-dimensional antenna device 100 has a higher gain
- the number of antenna array layers 110 is two
- the theoretical gain can be increased by 3dB.
- the gain can be theoretically increased by 5dB.
- the number of antenna array layers 110 is When it is three or more layers, a higher gain can be added, so that the WIFI signal received and sent by the multi-channel wireless signal transceiver device has a longer transmission distance, a larger coverage area, and high reliability.
- the signal processing device 300 includes a first filter 310, a first amplifier 320, and a second amplifier 330.
- the first filter 310 is connected to the antenna switch device 200 and the first amplifier 320.
- the amplifier 320 is connected to the controller 400, the controller 400 is connected to the second amplifier 330, and the second amplifier 330 is connected to the antenna switch device 200.
- the filter can filter the signal, and the amplifier can amplify the signal. The use of the filter and amplifier can improve the quality of the WIFI signal, and can also improve the reliability of WIFI signal transmission.
- the types of the first amplifier 320 and the second amplifier 330 are not unique.
- the first amplifier 320 is a power amplifier and the second amplifier 330 is a low-noise amplifier.
- control The low-power weak radio frequency signal output by the device 400 is sent to the power amplifier for power amplification, so that the output signal has enough power to meet the needs of subsequent data processing, and the amplified signal is sent to the first filter 310 for filtering processing.
- the latter signal is then radiated into the space via the three-dimensional antenna device 100 through the antenna switch device 200 to realize the transmission of WIFI signals.
- the stereo antenna device 100 can sense the electromagnetic signal in the space and then send it to the antenna switch device 200.
- the antenna switch device 200 transmits the signal to the low noise amplifier for amplification, and the amplified signal is sent to the controller 400 for decoding. After tuning, the WIFI signal is obtained to realize the reception of WIFI signal.
- the first amplifier 320 and the second amplifier 330 may also be other types of amplifiers, as long as those skilled in the art think they can be implemented.
- the type of the first filter 310 is not unique. For example, a band-pass filter can be used. The band-pass filter can filter out chaotic signals, so that useful signals in a specific frequency band can be smoothly transmitted in the channel.
- the bandpass filter can be a dedicated bandpass filter that has been designed with stable performance, or it can be a printed bandpass filter with a simple structure and low manufacturing cost. It can be understood that, in other embodiments, the first filter 310 may also be other types of filters, as long as those skilled in the art think that it can be implemented.
- the signal processing device 300 further includes a second filter 340, the second filter 340 is connected to the first amplifier 320, and the controller 400 is connected to the second filter 340. Providing the second filter 340 between the first amplifier 320 and the controller 400 can filter out the clutter contained in the signal amplified by the first amplifier 320 and improve the signal quality.
- the type of the second filter 340 is not unique, for example, it may be a low-pass filter, which is connected to the first amplifier 320, and can filter out high-order harmonics caused by the power amplifier, such as the second harmonic. Wave, third harmonic or even higher order harmonics, reduce the impact of higher harmonics on signal transmission. It can be understood that, in other embodiments, the second filter 340 may also be other types of filters, as long as those skilled in the art think that it can be implemented.
- the number of antenna switch devices 200 is N
- the first antenna switch device 200 is connected to two antenna array layers 110
- the second antenna switch device 200 is connected to three antenna array layers 110, and so on
- the Nth antenna switch device 200 is connected to N+1 antenna array layers 110.
- the antenna switch device 200 is sequentially connected to the first filter 310, the first amplifier 320, the second filter 340, and the controller 400.
- the antenna switch device 200 is also connected to the controller 400 through the second amplifier 330 to form a signal receiving channel.
- the antenna switch device 200 is also connected to the controller 400 through the second amplifier 330 to form a signal receiving channel.
- each antenna switch device 200 is also connected to the controller 400 through the second amplifier 330 to form a signal receiving channel.
- the gain effect of each antenna switch device 200 is also different. Specifically, the greater the number of antenna array layers 110, the higher the gain. In actual use, the corresponding number of antenna array layers can be adjusted and put into use according to the needs of signal strength and coverage, which is conducive to the rational use of resources and improves the reliability of the use of multi-channel wireless signal transceiver equipment.
- the antenna switch device 200 includes a signal receiving circuit, a signal sending circuit, and a switch.
- the switch is connected to the antenna array layer 110, connected to the second amplifier 330 through the signal receiving circuit, and connected to the first filter through the signal sending circuit. ⁇ 310.
- the antenna switch device 200 can switch the working state of the antenna array, which is convenient for controlling the antenna array.
- the switch in the antenna switch device 200 is connected to the antenna array.
- the antenna switch device 200 controls the antenna array to be in the transmitting state.
- the antenna switch The device 200 controls the antenna array to be in a receiving state.
- the switch is in an open circuit state, the antenna array does not work and the device is in a shutdown state.
- the switch is connected to the controller 400, and the working state of the antenna array is switched according to the control signal sent by the controller 400.
- the switch can also be manually controlled, and the user can manually switch the antenna array according to his own needs. The working status of transmitting, receiving or stopping.
- the antenna array layer 110 includes a substrate 112 and an antenna array disposed on the substrate 112, and the antenna array is connected to a wireless switch device.
- the layered arrangement of multiple antenna array layers 110 can make the three-dimensional antenna device 100 form a vertical beam, thereby increasing the overall antenna gain.
- the configuration of the three-dimensional structure can effectively improve the space utilization efficiency, enrich the configuration of the three-dimensional antenna device 100, and reduce the cost.
- the substrate 112 is a carrier of the antenna array, which facilitates the installation of the antenna array and can also protect the antenna array to a certain extent.
- the distance L between the antenna array layers 110 is not unique. For example, it can be greater than or equal to 0.5 ⁇ , where ⁇ is the wavelength of the center frequency of the antenna array. Setting a certain distance L between the antenna array layers 110 can reduce the antenna array layers 110. The mutual influence of the signals between the three-dimensional antenna device 100 improves the working performance.
- the size of the substrate 112 is the same. Since each substrate 112 is arranged in layers, the use of substrates 112 of the same size can reduce the difficulty of installation. Furthermore, the number of antenna arrays arranged on each substrate 112 can also be equal, so that each antenna layer can realize WIFI The workload of signal sending and receiving is basically balanced, and the complexity of signal processing can also be reduced. It can be understood that in other embodiments, the size of each substrate 112 or the number of antenna arrays provided on each substrate 112 may also be different, which can be adjusted according to actual requirements. Further, the shape of the substrate 112 is not unique.
- the substrate 112 can be rectangular, which facilitates the arrangement of the antenna array in different arrangements, and also facilitates the disassembly or reorganization of the substrate 112 during the pre-installation or post-processing. Adapt to the different needs of different occasions, easy to use and high reliability.
- the antenna array is a dual-polarized planar array.
- the dual-polarization planar array includes several dual-polarization oscillators. Specifically, the arrangement of the dual-polarization oscillators is not unique.
- the dual-polarization array can be presented as a linear array along the X-axis and Y-axis directions on the substrate 112. The arrangement of the polarization plane array ensures that the vibrators with different polarization directions are overlapped together to ensure sufficient isolation, save installation space, and further reduce the size of the three-dimensional antenna device 100.
- the dual-polarized vibrators can also be arranged on the substrate 112 in other arrangements, which can be determined according to specific requirements.
- the antenna array layer 110 includes a substrate 112 and an antenna element disposed on the substrate 112.
- the three-dimensional antenna device 100 includes at least two stacked antenna array layers 110. Therefore, the antenna elements are arranged in three directions along the X axis, the Y axis, and the Z axis. Layout to form a three-dimensional array antenna structure, so that the three-dimensional antenna device 100 can form a vertical beam, thereby increasing the overall gain of the three-dimensional antenna device 100. At the same time, the configuration of the three-dimensional structure can effectively improve the space utilization efficiency and enrich the three-dimensional antenna device 100. Configure to reduce costs.
- the substrate 112 is a metal substrate 112.
- the metal substrate 112 has high mechanical strength. Using the metal substrate 112 as the carrier of the antenna array can improve the protection of the antenna array, and the metal substrate 112 has the advantages of corrosion resistance, good heat dissipation, and good processing performance. The processing difficulty is small and the production cost is small. It can effectively extend the service life of the three-dimensional antenna device 100. It can be understood that in other embodiments, the substrate 112 may also be a substrate 112 made of other materials, as long as those skilled in the art deem it achievable.
- connection member 114 is further included, and each substrate 112 is connected by the connection member 114.
- the connection of the substrate 112 through the connector 114 can play a good role in fixing the substrate 112.
- the connection of the substrate 112 through the connector 114 can facilitate the connection of the substrate 112. Installation and disassembly are easy to use.
- the position of the connecting member 114 on the substrate 112 is not unique. For example, it can be arranged at the center of the substrate 112 for a good fixing effect, or it can be arranged on other positions of the substrate 112, which can be adjusted according to actual needs. .
- the various substrates 112 may also be connected in other ways, such as bonding, which is simple to operate and low in cost.
- the number of connecting members 114 is at least two.
- the number of the connecting members 114 is not unique.
- the two connecting members 114 can be respectively arranged at both ends of a diagonal line of the substrate 112, which is beneficial to the stability of the substrate 112.
- the number of connecting pieces 114 is three, the three connecting pieces 114 can be arranged in a triangular shape to better fix each substrate 112.
- the number of connecting pieces 114 is four, the four connecting pieces 114 114 can be respectively arranged at the four corners of the substrate 112 to ensure the firmness of the connection between the substrates 112.
- the number of the connecting member 114 may also be one, as long as those skilled in the art think that the purpose of connecting each substrate 112 can be achieved.
- the material of the connector 114 is not unique.
- a resin connector 114 can be used. The resin can be melted after being heated, which is easy to shape and has a lower cost. The resin connector 114 can reduce the use cost of multi-channel wireless signal transceiver equipment. .
- the antenna switch is connected to the antenna array, the filter is connected to the antenna switch and the power amplifier, the power amplifier is connected to the chip, the chip is connected to the low noise amplifier, and the low noise amplifier is connected to the antenna switch.
- the array can increase the overall gain of the antenna, and use the high gain characteristics of the stereo array antenna to solve the current problem of short WIFI transmission distance.
- the device can achieve large-scale coverage of WIFI signals.
- the three-dimensional antenna device 100 when receiving WIFI signals, can sense the electromagnetic signal in the space and then send it to the antenna switch device 200.
- the antenna switch device 200 transmits the signal to the signal processing device 300 for processing.
- the signal is sent to the controller 400 for demodulation to obtain the WIFI signal to realize the reception of the WIFI signal.
- the controller 400 outputs a low-power weak RF signal processing device 300 for processing, and the processed signal passes through
- the antenna switch device 200 radiates into the space via the three-dimensional antenna device 100 to realize the transmission of WIFI signals.
- the device uses a three-dimensional antenna device 100 to transmit and receive WIFI signals.
- the three-dimensional antenna device 100 includes at least two stacked antenna array layers 110 that can form a vertical beam, thereby increasing the overall gain of the antenna and enabling the multi-channel wireless signal transmission and reception.
- the WIFI signal received and sent by the equipment has a longer transmission distance and a larger coverage area, and the three-dimensional antenna device includes more than two antenna array layers stacked on top of each other.
- the number of antenna switch devices is more than two, and the corresponding antenna arrays are respectively connected Layer, the number of signal processing devices is equal to the number of antenna switch devices, and the corresponding antenna switch devices are respectively connected to form a multi-input multi-output signal transceiver channel, which improves the reliability of the use of multi-channel wireless signal transceiver equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
一种多通道无线信号收发设备,包括立体天线装置(100)、天线开关装置(200)、信号处理装置(300)和控制器(400),立体天线装置(100)包括至少两个层迭设置的天线阵列层(110),天线阵列层(110)连接天线开关装置(200),天线开关装置(200)连接信号处理装置(300),信号处理装置(300)连接控制器(400),天线开关装置(200)的数量为两个以上,且各天线开关装置(200)分别连接对应的天线阵列层(110),信号处理装置(300)的数量与天线开关装置(200)的数量相等,且各信号处理装置(300)均连接对应的天线开关装置(200)。
Description
[根据细则91更正 24.10.2019]
本申请要求于2019年3月28日提交中国专利局,申请号为201920409549.4,申请名称为“多通道无线信号收发设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2019年3月28日提交中国专利局,申请号为201920409549.4,申请名称为“多通道无线信号收发设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
[根据细则91更正 24.10.2019]
本申请涉及无线领域,特别是涉及一种多通道无线信号收发设备。
本申请涉及无线领域,特别是涉及一种多通道无线信号收发设备。
WIFI是创建于IEEE 802.11标准的无线局域网技术,改善了基于该标准的无线网络产品之间的互操作性。WIFI属于短距离的无线技术,具有传输速度快、发射功率小且无需布线等优点,可以满足个人和社会信息化的需求,在信号较弱的情况下,带宽可自动调整,有效保证网络的稳定性和可靠性。
传统的WIFI信号传输装置传输的WIFI信号的覆盖范围有限,用户在超出WIFI的覆盖范围之外的区域无法接收到WIFI信号,影响用户的正常使用,可靠性低。
发明内容
[根据细则91更正 24.10.2019]
根据本申请公开的各种实施例,提供一种多通道无线信号收发设备。
根据本申请公开的各种实施例,提供一种多通道无线信号收发设备。
[根据细则91更正 24.10.2019]
一种多通道无线信号收发设备,包括立体天线装置、天线开关装置、信号处理装置和控制器,所述立体天线装置包括至少两个层迭设置的天线阵列层,所述天线阵列层连接所述天线开关装置,所述天线开关装置连接所述信号处理装置,所述信号处理装置连接所述控制器;所述天线开关装置的数量为两个以上,且各所述天线开关装置分别连接对应的天线阵列层,所述信号处理装置的数量与所述天线开关装置的数量相等,且各所述信号处理装置均 连接对应的天线开关装置。
一种多通道无线信号收发设备,包括立体天线装置、天线开关装置、信号处理装置和控制器,所述立体天线装置包括至少两个层迭设置的天线阵列层,所述天线阵列层连接所述天线开关装置,所述天线开关装置连接所述信号处理装置,所述信号处理装置连接所述控制器;所述天线开关装置的数量为两个以上,且各所述天线开关装置分别连接对应的天线阵列层,所述信号处理装置的数量与所述天线开关装置的数量相等,且各所述信号处理装置均 连接对应的天线开关装置。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
[根据细则91更正 24.10.2019]
图1为一个实施例中多通道无线信号收发设备的结构图;
图1为一个实施例中多通道无线信号收发设备的结构图;
[根据细则91更正 24.10.2019]
图2为另一个实施例中多通道无线信号收发设备的结构图;
图2为另一个实施例中多通道无线信号收发设备的结构图;
图3为一个实施例中立体天线装置的结构图;
[根据细则91更正 24.10.2019]
图4为又一个实施例中多通道无线信号收发设备的结构图。
图4为又一个实施例中多通道无线信号收发设备的结构图。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
[根据细则91更正 24.10.2019]
在一个实施例中,请参见图1,提供一种多通道无线信号收发设备,该设备包括立体天线装置100、天线开关装置200、信号处理装置300和控制器400,立体天线装置100包括至少两个层迭设置的天线阵列层110,天线阵列层110连接天线开关装置200,天线开关装置200连接信号处理装置300,信号处理装置300连接控制器400,天线开关装置200的数量为两个以上,天线开关装置200的数量与天线阵列层110的数量相等,且各天线开关装置200分别连接对应的天线阵列层110,信号处理装置300的数量与天线开关装置200的数量相等,且各信号处理装置300均连接对应的天线开关装置200。多 通道无线信号收发设备接收WIFI信号时,立体天线装置100可以感应到空间中的电磁信号,然后发送至天线开关装置200,天线开关装置200将信号传输至信号处理装置300进行处理,处理后的信号发送至控制器400进行解调后得到WIFI信号,实现WIFI信号的接收。多通道无线信号收发设备发送WIFI信号时,控制器400输出小功率的微弱的射频信号发送至信号处理装置300进行处理,处理后的信号再通过天线开关装置200经由立体天线装置100辐射至空间中,实现WIFI信号的发送。
在一个实施例中,请参见图1,提供一种多通道无线信号收发设备,该设备包括立体天线装置100、天线开关装置200、信号处理装置300和控制器400,立体天线装置100包括至少两个层迭设置的天线阵列层110,天线阵列层110连接天线开关装置200,天线开关装置200连接信号处理装置300,信号处理装置300连接控制器400,天线开关装置200的数量为两个以上,天线开关装置200的数量与天线阵列层110的数量相等,且各天线开关装置200分别连接对应的天线阵列层110,信号处理装置300的数量与天线开关装置200的数量相等,且各信号处理装置300均连接对应的天线开关装置200。多 通道无线信号收发设备接收WIFI信号时,立体天线装置100可以感应到空间中的电磁信号,然后发送至天线开关装置200,天线开关装置200将信号传输至信号处理装置300进行处理,处理后的信号发送至控制器400进行解调后得到WIFI信号,实现WIFI信号的接收。多通道无线信号收发设备发送WIFI信号时,控制器400输出小功率的微弱的射频信号发送至信号处理装置300进行处理,处理后的信号再通过天线开关装置200经由立体天线装置100辐射至空间中,实现WIFI信号的发送。
具体地,控制器400的类型并不是唯一的,例如可以为CPLD(Complex Programmable Logic Device,复杂可程序设计逻辑器件)、FPGA(Field-Programmable Gate Array,现场可程序设计门阵列)或单片机。CPLD作为控制器400具有程序设计灵活、集成度高、适用范围宽和设计制造成本低等优点。FPGA作为控制器400具有设计成本低,工作稳定性高等优点。单片机作为具有体积小、结构简单、可靠性高的优点。可以理解,在其他实施例中,控制器400也可以采用其他器件,只要本领域技术人员认为可以实现即可。
[根据细则91更正 24.10.2019]
信号处理装置300主要用于对流经的信号进行处理,根据实际需求的不同,信号处理装置300进行信号处理的方式也不一样,相应地,信号处理装置300的结构并不是唯一的,例如当信号处理装置300包括滤波器时,可对信号进行滤波处理,滤除信号中的噪音。可以理解,在其他实施例中,信号处理装置300也可以是其他的结构,根据用户需求决定,灵活性大。信号处理装置300的数量与天线开关装置200的数量相等,且各信号处理装置300均连接对应的天线开关装置200。在每一个信号通道中,一个信号处理装置300对应连接一个天线开关装置200,可保持各个通道之间信号传输的独立性,避免信号的相互干扰,且各通道还能实现信号的并行传输,提高信号传输的效率。
信号处理装置300主要用于对流经的信号进行处理,根据实际需求的不同,信号处理装置300进行信号处理的方式也不一样,相应地,信号处理装置300的结构并不是唯一的,例如当信号处理装置300包括滤波器时,可对信号进行滤波处理,滤除信号中的噪音。可以理解,在其他实施例中,信号处理装置300也可以是其他的结构,根据用户需求决定,灵活性大。信号处理装置300的数量与天线开关装置200的数量相等,且各信号处理装置300均连接对应的天线开关装置200。在每一个信号通道中,一个信号处理装置300对应连接一个天线开关装置200,可保持各个通道之间信号传输的独立性,避免信号的相互干扰,且各通道还能实现信号的并行传输,提高信号传输的效率。
[根据细则91更正 24.10.2019]
天线开关装置200可以对立体天线装置100与信号处理装置300之间的通断进行控制,当需要多通道无线信号收发设备工作时,天线开关装置200使立体天线装置100与信号处理装置300导通,立体天线装置100与信号处 理装置300之间可以正常传输信号,当天线开关装置200断开时,天线开关装置200使立体天线装置100与信号处理装置300不导通,多通道无线信号收发设备处于待机状态。天线开关装置200的数量为两个以上,且各天线开关装置200分别连接对应的天线阵列层110。进一步地,各天线开关装置200分别连接的天线阵列层110的数量可完全相同,可部分相同,也可完全不同,可根据实际需求决定。每一个天线开关装置200与对应的天线阵列层110连接构成一个信号收发通道,形成多输入多输出的射频前端结构。在一个实施例中,各天线开关装置200分别连接的天线阵列层的数量互不相同,例如,各天线开关装置200连接的天线阵列层的数量可以是依次递增,可根据实际需求选择对应的信号收发通道工作,提高了多通道无线信号收发设备的操作便利性。
天线开关装置200可以对立体天线装置100与信号处理装置300之间的通断进行控制,当需要多通道无线信号收发设备工作时,天线开关装置200使立体天线装置100与信号处理装置300导通,立体天线装置100与信号处 理装置300之间可以正常传输信号,当天线开关装置200断开时,天线开关装置200使立体天线装置100与信号处理装置300不导通,多通道无线信号收发设备处于待机状态。天线开关装置200的数量为两个以上,且各天线开关装置200分别连接对应的天线阵列层110。进一步地,各天线开关装置200分别连接的天线阵列层110的数量可完全相同,可部分相同,也可完全不同,可根据实际需求决定。每一个天线开关装置200与对应的天线阵列层110连接构成一个信号收发通道,形成多输入多输出的射频前端结构。在一个实施例中,各天线开关装置200分别连接的天线阵列层的数量互不相同,例如,各天线开关装置200连接的天线阵列层的数量可以是依次递增,可根据实际需求选择对应的信号收发通道工作,提高了多通道无线信号收发设备的操作便利性。
[根据细则91更正 24.10.2019]
立体天线装置100包括至少两个层迭设置的天线阵列层110,可以在二维天线平面数组层的基础上增加纵向维度,在辐射方向远程形成波束合成,使立体天线装置100拥有更高的增益,例如,当天线阵列层110的数量为两层时,理论上可增加3dB的增益,当天线阵列层110的数量为三层时,理论上可增加5dB的增益,当天线数组层110的数量为三层以上时,可增加更高的增益,从而使该多通道无线信号收发设备接收和发送的WIFI信号传输距离更远,覆盖范围更大,可靠性高。
立体天线装置100包括至少两个层迭设置的天线阵列层110,可以在二维天线平面数组层的基础上增加纵向维度,在辐射方向远程形成波束合成,使立体天线装置100拥有更高的增益,例如,当天线阵列层110的数量为两层时,理论上可增加3dB的增益,当天线阵列层110的数量为三层时,理论上可增加5dB的增益,当天线数组层110的数量为三层以上时,可增加更高的增益,从而使该多通道无线信号收发设备接收和发送的WIFI信号传输距离更远,覆盖范围更大,可靠性高。
在一个实施例中,请参见图2,信号处理装置300包括第一滤波器310、第一放大器320和第二放大器330,第一滤波器310连接天线开关装置200和第一放大器320,第一放大器320连接控制器400,控制器400连接第二放大器330,第二放大器330连接天线开关装置200。滤波器可以对信号进行滤波处理,放大器可以将信号进行放大,滤波器和放大器的使用可以提高WIFI信号的质量,也可以提高WIFI信号传输的可靠性。
[根据细则91更正 24.10.2019]
具体地,第一放大器320和第二放大器330的类型并不是唯一的,例如,在本实施例中,第一放大器320为功率放大器,第二放大器330为低噪声放大器,发送WIFI信号时,控制器400输出小功率的微弱的射频信号发送至功 率放大器进行功率放大,使输出的信号有足够大的功率满足后续数据处理的需求,放大后的信号发送至第一滤波器310进行滤波处理,滤波后的信号再通过天线开关装置200经由立体天线装置100辐射至空间中,实现WIFI信号的发送。接收WIFI信号时,立体天线装置100可以感应到空间中的电磁信号然后发送至天线开关装置200,天线开关装置200将信号传输至低噪声放大器进行放大,放大后的信号发送至控制器400进行解调后得到WIFI信号,实现WIFI信号的接收。可以理解,在其他实施例中,第一放大器320和第二放大器330也可以为其他类型的放大器,只要本领域技术人员认为可以实现即可。此外,第一滤波器310的类型也不是唯一的,例如可采用带通滤波器,带通滤波器可以滤除杂乱信号,使特定频段的有用信号可以顺利在通道中传输。带通滤波器的实现方法有多种,例如可以为已经设计好的专用带通滤波器,性能稳定,或者也可以为印制带通滤波器,其结构简单,制造成本低。可以理解,在其他实施例中,第一滤波器310也可以为其他类型的滤波器,只要本领域技术人员认为可以实现即可。
具体地,第一放大器320和第二放大器330的类型并不是唯一的,例如,在本实施例中,第一放大器320为功率放大器,第二放大器330为低噪声放大器,发送WIFI信号时,控制器400输出小功率的微弱的射频信号发送至功 率放大器进行功率放大,使输出的信号有足够大的功率满足后续数据处理的需求,放大后的信号发送至第一滤波器310进行滤波处理,滤波后的信号再通过天线开关装置200经由立体天线装置100辐射至空间中,实现WIFI信号的发送。接收WIFI信号时,立体天线装置100可以感应到空间中的电磁信号然后发送至天线开关装置200,天线开关装置200将信号传输至低噪声放大器进行放大,放大后的信号发送至控制器400进行解调后得到WIFI信号,实现WIFI信号的接收。可以理解,在其他实施例中,第一放大器320和第二放大器330也可以为其他类型的放大器,只要本领域技术人员认为可以实现即可。此外,第一滤波器310的类型也不是唯一的,例如可采用带通滤波器,带通滤波器可以滤除杂乱信号,使特定频段的有用信号可以顺利在通道中传输。带通滤波器的实现方法有多种,例如可以为已经设计好的专用带通滤波器,性能稳定,或者也可以为印制带通滤波器,其结构简单,制造成本低。可以理解,在其他实施例中,第一滤波器310也可以为其他类型的滤波器,只要本领域技术人员认为可以实现即可。
在一个实施例中,请参见图2,信号处理装置300还包括第二滤波器340,第二滤波器340连接第一放大器320,控制器400连接第二滤波器340。在第一放大器320和控制器400之间设置第二滤波器340可以过滤掉由第一放大器320进行放大后的信号中包含的杂波,提高信号质量。
具体地,第二滤波器340的类型并不是唯一的,例如可以为低通滤波器,低通滤波器与第一放大器320连接,可以滤除由于功放引起的高次谐波,如二次谐波,三次谐波甚至更高次数的谐波,减小高次谐波对信号传输造成影响。可以理解,在其他实施例中,第二滤波器340也可以为其他类型的滤波器,只要本领域技术人员认为可以实现即可。
[根据细则91更正 24.10.2019]
在此实施例中,以各天线开关装置200连接的天线阵列层100的数量依次递增为例,天线开关装置200的数量为N个,第一个天线开关装置200连接两个天线阵列层110,第二个天线开关装置200连接三个天线阵列层110,依次类推,第N个天线开关装置200则连接N+1个天线阵列层110。以第一 个天线开关装置200为例,两个天线阵列层110与天线开关装置200连接,天线开关装置200依次连接第一滤波器310、第一放大器320、第二滤波器340和控制器400,形成信号发射通道,天线开关装置200还通过第二放大器330连接控制器400,形成信号接收通道。通过将每个天线开关装置200均独立配置一套信号处理装置300,形成多路信号发射通道和信号接收通道,可实现多波束配置,进而可拓展多通道无线信号收发设备的应用范围。由于每个天线开关装置200连接的天线阵列层110的数量不同,使得每一个天线开关装置200的增益效果也并不相同,具体为天线阵列层110的数量越多,增益越高。实际使用时,可根据信号强度和覆盖范围等需求调整对应数量的天线阵列层投入使用,有利于合理利用资源,提高多通道无线信号收发设备的使用可靠性。
在此实施例中,以各天线开关装置200连接的天线阵列层100的数量依次递增为例,天线开关装置200的数量为N个,第一个天线开关装置200连接两个天线阵列层110,第二个天线开关装置200连接三个天线阵列层110,依次类推,第N个天线开关装置200则连接N+1个天线阵列层110。以第一 个天线开关装置200为例,两个天线阵列层110与天线开关装置200连接,天线开关装置200依次连接第一滤波器310、第一放大器320、第二滤波器340和控制器400,形成信号发射通道,天线开关装置200还通过第二放大器330连接控制器400,形成信号接收通道。通过将每个天线开关装置200均独立配置一套信号处理装置300,形成多路信号发射通道和信号接收通道,可实现多波束配置,进而可拓展多通道无线信号收发设备的应用范围。由于每个天线开关装置200连接的天线阵列层110的数量不同,使得每一个天线开关装置200的增益效果也并不相同,具体为天线阵列层110的数量越多,增益越高。实际使用时,可根据信号强度和覆盖范围等需求调整对应数量的天线阵列层投入使用,有利于合理利用资源,提高多通道无线信号收发设备的使用可靠性。
[根据细则91更正 24.10.2019]
在一个实施例中,天线开关装置200包括信号接收电路、信号发送电路和切换开关,切换开关连接天线阵列层110,并通过信号接收电路连接第二放大器330,以及通过信号发送电路连接第一滤波器310。天线开关装置200可以切换天线阵列的工作状态,便于对天线阵列进行控制。
在一个实施例中,天线开关装置200包括信号接收电路、信号发送电路和切换开关,切换开关连接天线阵列层110,并通过信号接收电路连接第二放大器330,以及通过信号发送电路连接第一滤波器310。天线开关装置200可以切换天线阵列的工作状态,便于对天线阵列进行控制。
[根据细则91更正 24.10.2019]
具体地,天线开关装置200中的切换开关连接天线阵列,当切换开关与信号发射电路导通时,天线开关装置200控制天线阵列处于发射状态,当切换开关与信号接收电路导通时,天线开关装置200控制天线阵列处于接收状态,当切换开关处于开路状态时,天线阵列不工作,该装置处于停机状态。切换开关连接控制器400,根据控制器400发送的控制信号进行天线阵列的发射、接收或停机的工作状态的切换,或者,切换开关也可以采用手动控制,由使用者根据自身需求手动切换天线阵列的发射、接收或停机的工作状态。
具体地,天线开关装置200中的切换开关连接天线阵列,当切换开关与信号发射电路导通时,天线开关装置200控制天线阵列处于发射状态,当切换开关与信号接收电路导通时,天线开关装置200控制天线阵列处于接收状态,当切换开关处于开路状态时,天线阵列不工作,该装置处于停机状态。切换开关连接控制器400,根据控制器400发送的控制信号进行天线阵列的发射、接收或停机的工作状态的切换,或者,切换开关也可以采用手动控制,由使用者根据自身需求手动切换天线阵列的发射、接收或停机的工作状态。
[根据细则91更正 24.10.2019]
在一个实施例中,请参见图3,天线阵列层110包括基板112和设置于基板112的天线阵列,天线阵列连接无线开关装置。多个天线阵列层110层迭设置,可以使立体天线装置100形成垂直面波束,进而提高天线整体增益,同时立体结构的配置可有效提升空间利用效率,丰富立体天线装置 100的配置,降低成本。
在一个实施例中,请参见图3,天线阵列层110包括基板112和设置于基板112的天线阵列,天线阵列连接无线开关装置。多个天线阵列层110层迭设置,可以使立体天线装置100形成垂直面波束,进而提高天线整体增益,同时立体结构的配置可有效提升空间利用效率,丰富立体天线装置 100的配置,降低成本。
[根据细则91更正 24.10.2019]
具体地,基板112是天线阵列的承载体,便于天线阵列的设置,还能对天线阵列起到一定的保护作用。天线阵列层110之间的间距L并不是唯一的,例如可以大于或等于0.5λ,其中λ为天线阵列中心频率的波长,将天线阵列层110之间设置一定的间距L可以减少天线阵列层110之间信号的相互影响,从而提高立体天线装置100的工作性能。
具体地,基板112是天线阵列的承载体,便于天线阵列的设置,还能对天线阵列起到一定的保护作用。天线阵列层110之间的间距L并不是唯一的,例如可以大于或等于0.5λ,其中λ为天线阵列中心频率的波长,将天线阵列层110之间设置一定的间距L可以减少天线阵列层110之间信号的相互影响,从而提高立体天线装置100的工作性能。
[根据细则91更正 24.10.2019]
在一个实施例中,基板112的尺寸相同。由于各个基板112是层迭设置的,采用尺寸相同的基板112可以减小安装时的难度,进一步地,设置于每个基板112上的天线阵列的数量也可以相等,使每个天线层实现WIFI信号收发的工作量基本均衡,还能降低信号处理的复杂度。可以理解,在其他实施例中,各个基板112的尺寸或各个基板112上设置的天线阵列的数量也可以不相同,具体可根据实际的需求调整。进一步地,基板112的形状也不是唯一的,例如基板112可以采用矩形,便于天线阵列按不同的排布方式设置,也便于在前期安装或后期处理时对基板112进行拆分或重组等,以适应不用场合的不同需求,使用便捷,可靠性高。
在一个实施例中,基板112的尺寸相同。由于各个基板112是层迭设置的,采用尺寸相同的基板112可以减小安装时的难度,进一步地,设置于每个基板112上的天线阵列的数量也可以相等,使每个天线层实现WIFI信号收发的工作量基本均衡,还能降低信号处理的复杂度。可以理解,在其他实施例中,各个基板112的尺寸或各个基板112上设置的天线阵列的数量也可以不相同,具体可根据实际的需求调整。进一步地,基板112的形状也不是唯一的,例如基板112可以采用矩形,便于天线阵列按不同的排布方式设置,也便于在前期安装或后期处理时对基板112进行拆分或重组等,以适应不用场合的不同需求,使用便捷,可靠性高。
[根据细则91更正 24.10.2019]
在一个实施例中,天线阵列为双极化平面数组。双极化平面数组包括若干个双极化振子,具体地,双极化振子的排列方式并不是唯一的,例如可以在基板112上沿着X轴方向和Y轴方向均呈现为直线数组,双极化平面数组的设置使得不同极化方向的振子即使交迭在一起也可保证有足够的隔离度,节约安装空间,可进一步减小立体天线装置100的尺寸。可以理解,在其他实施例中,双极化振子也可以按其他的排布方式设置于基板112上,可根据具体需求决定。天线阵列层110包括基板112和设置于基板112的天线振子,立体天线装置100包括至少两个层迭设置的天线阵列层110,因此天线振子沿着X轴、Y轴和Z轴三个方向上进行布局,形成一个三维的立体数组天线结构,使得立体天线装置100可形成垂直面波束,进而提高立体天线装置100整体增益,同时立体结构的配置可有效提升空间利用效率,丰富立体天线装置100的配置,降低成本。
在一个实施例中,天线阵列为双极化平面数组。双极化平面数组包括若干个双极化振子,具体地,双极化振子的排列方式并不是唯一的,例如可以在基板112上沿着X轴方向和Y轴方向均呈现为直线数组,双极化平面数组的设置使得不同极化方向的振子即使交迭在一起也可保证有足够的隔离度,节约安装空间,可进一步减小立体天线装置100的尺寸。可以理解,在其他实施例中,双极化振子也可以按其他的排布方式设置于基板112上,可根据具体需求决定。天线阵列层110包括基板112和设置于基板112的天线振子,立体天线装置100包括至少两个层迭设置的天线阵列层110,因此天线振子沿着X轴、Y轴和Z轴三个方向上进行布局,形成一个三维的立体数组天线结构,使得立体天线装置100可形成垂直面波束,进而提高立体天线装置100整体增益,同时立体结构的配置可有效提升空间利用效率,丰富立体天线装置100的配置,降低成本。
[根据细则91更正 24.10.2019]
在一个实施例中,基板112为金属基板112。金属基板112机械强度高,将金属基板112作为天线阵列的承载体可以提高对天线阵列的保护作用,且金属基板112具有耐腐蚀、散热性好、加工性能好等优点,加工难度小,制作成本低,还能有效延长立体天线装置100的使用寿命。可以理解,在其他实施例中,基板112也可以为其他材料制成的基板112,只要本领域技术人员认为可以实现即可。
在一个实施例中,基板112为金属基板112。金属基板112机械强度高,将金属基板112作为天线阵列的承载体可以提高对天线阵列的保护作用,且金属基板112具有耐腐蚀、散热性好、加工性能好等优点,加工难度小,制作成本低,还能有效延长立体天线装置100的使用寿命。可以理解,在其他实施例中,基板112也可以为其他材料制成的基板112,只要本领域技术人员认为可以实现即可。
在一个实施例中,请参见图3,还包括连接件114,各个基板112通过连接件114连接。基板112通过连接件114连接可以对各个基板112起到良好的固定作用,此外,当连接件114与基板112之间为活动连接的关系时,各个基板112通过连接件114连接可以便于基板112的安装与拆分,使用便捷。具体地,连接件114在基板112上的位置并不是唯一的,例如可以设置于基板112的中心处,起到良好的固定作用,也可以设置于基板112的其他位置,具体可根据实际需求调整。可以理解,在其他实施例中,各个基板112也可以采用其他方式进行连接,例如粘接等,其操作简单,成本低。
[根据细则91更正 24.10.2019]
在一个实施例中,连接件114的数量为至少两个。连接件114的数量并不是唯一的,例如当连接件114的数量为两个时,两个连接件114可分别设置于基板112的一条对角线的两端,有利于基板112的稳定,当连接件114的数量为三个时,可将三个连接件114按三角形的形状布局设置,使各个基板112之间更好地固定,当连接件114的数量为四个时,四个连接件114可分别设置于基板112的四角,确保各个基板112之间连接的牢固性。可以理解,在其他实施例中,连接件114的数量也可以为1个,只要本领域技术人员认为可以实现连接各个基板112的目的即可。连接件114的材料也不是唯一的,例如可以采用树脂连接件114,树脂受热后可融化,便于塑形,且其成本较低,采用树脂连接件114可以降低多通道无线信号收发设备的使用成本。
在一个实施例中,连接件114的数量为至少两个。连接件114的数量并不是唯一的,例如当连接件114的数量为两个时,两个连接件114可分别设置于基板112的一条对角线的两端,有利于基板112的稳定,当连接件114的数量为三个时,可将三个连接件114按三角形的形状布局设置,使各个基板112之间更好地固定,当连接件114的数量为四个时,四个连接件114可分别设置于基板112的四角,确保各个基板112之间连接的牢固性。可以理解,在其他实施例中,连接件114的数量也可以为1个,只要本领域技术人员认为可以实现连接各个基板112的目的即可。连接件114的材料也不是唯一的,例如可以采用树脂连接件114,树脂受热后可融化,便于塑形,且其成本较低,采用树脂连接件114可以降低多通道无线信号收发设备的使用成本。
[根据细则91更正 24.10.2019]
为了更好地理解上述实施例,以下结合一个具体的实施例进行详细的解释说明。在一个实施例中,请参见图4, 代表一个双极化平面天线阵列, 天线开关连接天线阵列,滤波器连接天线开关和功率放大器,功率放大器连接芯片,芯片连接低噪声放大器,低噪声放大器连接天线开关,该装置通过多层天线振子立体组阵,可以提高天线整体增益,利用立体数组天线高增益的特点,解决目前WIFI传输距离近的问题,由该装置可以实现WIFI信号的大范围覆盖。
为了更好地理解上述实施例,以下结合一个具体的实施例进行详细的解释说明。在一个实施例中,请参见图4, 代表一个双极化平面天线阵列, 天线开关连接天线阵列,滤波器连接天线开关和功率放大器,功率放大器连接芯片,芯片连接低噪声放大器,低噪声放大器连接天线开关,该装置通过多层天线振子立体组阵,可以提高天线整体增益,利用立体数组天线高增益的特点,解决目前WIFI传输距离近的问题,由该装置可以实现WIFI信号的大范围覆盖。
[根据细则91更正 24.10.2019]
上述多通道无线信号收发设备,接收WIFI信号时,立体天线装置100可以感应到空间中的电磁信号然后发送至天线开关装置200,天线开关装置200将信号传输至信号处理装置300进行处理,处理后的信号发送至控制器400进行解调后得到WIFI信号,实现WIFI信号的接收,发送WIFI信号时,控制器400输出小功率的微弱的射频信号信号处理装置300进行处理,处理后的信号再通过天线开关装置200经由立体天线装置100辐射至空间中,实现WIFI信号的发送。该装置采用立体天线装置100进行WIFI信号的收发,立体天线装置100包括至少两个层迭设置的天线阵列层110,可形成垂直面波束,进而提高了天线整体增益,使该多通道无线信号收发设备接收和发送的WIFI信号传输距离更远,覆盖范围更大,且立体天线装置包括两个以上层迭设置的天线阵列层,天线开关装置的数量为两个以上,且分别连接对应的天线阵列层,信号处理装置的数量与天线开关装置的数量相等,且分别连接对应的天线开关装置,可以形成多输入多输出的信号收发通道,提高了多通道无线信号收发设备的使用可靠性。
上述多通道无线信号收发设备,接收WIFI信号时,立体天线装置100可以感应到空间中的电磁信号然后发送至天线开关装置200,天线开关装置200将信号传输至信号处理装置300进行处理,处理后的信号发送至控制器400进行解调后得到WIFI信号,实现WIFI信号的接收,发送WIFI信号时,控制器400输出小功率的微弱的射频信号信号处理装置300进行处理,处理后的信号再通过天线开关装置200经由立体天线装置100辐射至空间中,实现WIFI信号的发送。该装置采用立体天线装置100进行WIFI信号的收发,立体天线装置100包括至少两个层迭设置的天线阵列层110,可形成垂直面波束,进而提高了天线整体增益,使该多通道无线信号收发设备接收和发送的WIFI信号传输距离更远,覆盖范围更大,且立体天线装置包括两个以上层迭设置的天线阵列层,天线开关装置的数量为两个以上,且分别连接对应的天线阵列层,信号处理装置的数量与天线开关装置的数量相等,且分别连接对应的天线开关装置,可以形成多输入多输出的信号收发通道,提高了多通道无线信号收发设备的使用可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (13)
- [根据细则91更正 24.10.2019]
一种多通道无线信号收发设备,包括立体天线装置、天线开关装置、信号处理装置和控制器;所述立体天线装置包括至少两个层迭设置的天线阵列层,所述天线阵列层连接所述天线开关装置,所述天线开关装置连接所述信号处理装置,所述信号处理装置连接所述控制器;所述天线开关装置的数量为两个以上,且各所述天线开关装置分别连接对应的天线阵列层,所述信号处理装置的数量与所述天线开关装置的数量相等,且各所述信号处理装置均连接对应的天线开关装置。 - 根据权利要求1所述的装置,其中,所述信号处理装置包括第一滤波器、第一放大器和第二放大器,所述第一滤波器连接所述天线开关装置和所述第一放大器,所述第一放大器连接所述控制器,所述控制器连接所述第二放大器,所述第二放大器连接所述天线开关装置。
- 根据权利要求2所述的装置,其中,所述第一放大器为功率放大器,所述第二放大器为低噪声放大器。
- [根据细则91更正 24.10.2019]
根据权利要求2所述的装置,其中,所述天线开关装置包括信号接收电路、信号发送电路和切换开关,所述切换开关连接所述天线阵列层,并通过所述信号接收电路连接所述第二放大器,以及通过所述信号发送电路连接所述第一滤波器。 - 根据权利要求2所述的装置,其中,所述信号处理装置还包括第二滤波器,所述第二滤波器连接所述第一放大器,所述控制器连接所述第二滤波器。
- 根据权利要求5所述的装置,其中,所述第二滤波器为低通滤波器。
- [根据细则91更正 24.10.2019]
根据权利要求1所述的装置,其中,所述天线阵列层包括基板和设置于所述基板的天线阵列,所述天线阵列连接所述无线开关装置。 - 根据权利要求7所述的装置,其中,所述基板的尺寸相同。
- [根据细则91更正 24.10.2019]
根据权利要求7所述的装置,其中,所述天线阵列为双极化平面数组。 - 根据权利要求7所述的装置,其中,所述基板为金属基板。
- 根据权利要求7所述的装置,其中,所述基板为矩形基板。
- 根据权利要求7所述的装置,其中,还包括连接件,各个所述基板通过所述连接件连接。
- 根据权利要求12所述的装置,其中,所述连接件的数量为至少两个。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920409549.4 | 2019-03-28 | ||
CN201920409549.4U CN209593433U (zh) | 2019-03-28 | 2019-03-28 | 多通道无线信号收发设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020191940A1 true WO2020191940A1 (zh) | 2020-10-01 |
Family
ID=68375240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/094172 WO2020191940A1 (zh) | 2019-03-28 | 2019-07-01 | 多通道无线信号收发设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN209593433U (zh) |
WO (1) | WO2020191940A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113314830A (zh) * | 2020-02-07 | 2021-08-27 | 深圳市威富通讯技术有限公司 | 多通道无线信号收发设备 |
CN113555670A (zh) * | 2020-04-01 | 2021-10-26 | 深圳市威富通讯技术有限公司 | 多通道无线信号收发设备 |
CN113497336A (zh) * | 2020-04-07 | 2021-10-12 | 深圳市威富通讯技术有限公司 | 多通道无线信号收发设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090102740A1 (en) * | 2006-06-21 | 2009-04-23 | Broadcom Corporation | Power recovery circuit based on partial standing waves |
CN106712800A (zh) * | 2017-01-20 | 2017-05-24 | 广东欧珀移动通信有限公司 | Wifi天线组件和终端设备 |
CN108604914A (zh) * | 2016-01-27 | 2018-09-28 | 斯塔里有限公司 | 高频无线接入网络 |
CN208570926U (zh) * | 2018-08-03 | 2019-03-01 | 广州安的电子科技有限公司 | 天线组件及天线识别系统 |
-
2019
- 2019-03-28 CN CN201920409549.4U patent/CN209593433U/zh active Active
- 2019-07-01 WO PCT/CN2019/094172 patent/WO2020191940A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090102740A1 (en) * | 2006-06-21 | 2009-04-23 | Broadcom Corporation | Power recovery circuit based on partial standing waves |
CN108604914A (zh) * | 2016-01-27 | 2018-09-28 | 斯塔里有限公司 | 高频无线接入网络 |
CN106712800A (zh) * | 2017-01-20 | 2017-05-24 | 广东欧珀移动通信有限公司 | Wifi天线组件和终端设备 |
CN208570926U (zh) * | 2018-08-03 | 2019-03-01 | 广州安的电子科技有限公司 | 天线组件及天线识别系统 |
Also Published As
Publication number | Publication date |
---|---|
CN209593433U (zh) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210120557U (zh) | 立体结构的多通道无线信号收发设备 | |
WO2020191940A1 (zh) | 多通道无线信号收发设备 | |
CN210120549U (zh) | 立体结构多通道wifi信号收发装置 | |
CN211789464U (zh) | 多通道无线信号收发设备 | |
WO2020191941A1 (zh) | 无线信号收发设备 | |
CN211789463U (zh) | 多通道无线信号收发设备 | |
CN210120558U (zh) | 立体式布局的wifi信号收发装置 | |
CN211789479U (zh) | 多通道无线信号收发设备 | |
CN211789481U (zh) | 多通道无线信号收发设备 | |
CN211455956U (zh) | 多通道无线信号收发设备 | |
CN212257664U (zh) | 多通道倒八木wifi收发装置 | |
CN211789469U (zh) | 多通道新型wifi收发装置 | |
CN211789466U (zh) | 多通道无线信号收发设备 | |
CN211789482U (zh) | 多通道无线信号收发设备 | |
CN211789478U (zh) | 多通道无线信号收发设备 | |
WO2020191942A1 (zh) | Wifi信号收发装置 | |
CN211789465U (zh) | 多通道无线信号收发设备 | |
CN211789468U (zh) | 多通道加强型wifi收发装置 | |
CN211789471U (zh) | 多通道高增益wifi收发装置 | |
CN211789472U (zh) | 新型wifi收发装置 | |
CN209249671U (zh) | 一种多输入多输出天线及系统 | |
CN103730719B (zh) | 一种基于印刷电路板的小尺寸高隔离三单元多输入多输出天线 | |
WO2020191943A1 (zh) | 多通道wifi信号收发装置 | |
CN211789477U (zh) | 无线信号收发设备 | |
CN210120552U (zh) | 立体式布局的无线信号收发设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19921403 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19921403 Country of ref document: EP Kind code of ref document: A1 |