WO2020191774A1 - 侧行参考信号发送方法及相关产品 - Google Patents
侧行参考信号发送方法及相关产品 Download PDFInfo
- Publication number
- WO2020191774A1 WO2020191774A1 PCT/CN2019/080254 CN2019080254W WO2020191774A1 WO 2020191774 A1 WO2020191774 A1 WO 2020191774A1 CN 2019080254 W CN2019080254 W CN 2019080254W WO 2020191774 A1 WO2020191774 A1 WO 2020191774A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference signal
- side line
- line reference
- sending
- information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to the field of communication technology, and in particular to a method for transmitting sideline reference signals and related products.
- the Internet of Vehicles system is a sidelink transmission technology (Sidelink, SL) based on the terminal-to-device (Device to Device, D2D), and the traditional Long Term Evolution (Long Term Evaluation, LTE) system in which the communication data is received through the base station or The sending method is different.
- the Internet of Vehicles system adopts terminal-to-terminal direct communication. In future application scenarios such as automatic driving, users will put forward higher requirements for data interaction between vehicles, such as higher throughput and lower Delay, higher reliability, larger coverage, more flexible resource allocation, etc.
- the embodiments of the present invention provide a method for sending a sideline reference signal and related products, in order to realize the sending of a sideline reference signal.
- an embodiment of the present invention provides a method for sending a sideline reference signal, which is applied to a first terminal, and the method includes:
- an embodiment of the present invention provides a terminal, the terminal is a first terminal, and the first terminal includes a processing unit and a communication unit,
- the processing unit is configured to determine a transmission mode of the first side line reference signal; and configured to transmit the first side line reference signal according to the transmission mode through the communication unit.
- an embodiment of the present invention provides a terminal, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and are configured by The processor executes, and the program includes instructions for executing steps in any method of the first aspect of the embodiments of the present invention.
- an embodiment of the present invention provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program enables a computer to execute the implementation of the present invention For example, some or all of the steps described in any method of the first aspect.
- embodiments of the present invention provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute Part or all of the steps described in any method in the first aspect of the embodiments of the invention.
- the computer program product may be a software installation package.
- the first terminal can determine the sending mode of the first side line reference signal, and then send the first side line reference signal according to the sending mode. Since the transmission mode includes repeated transmission mode, redundant bit filling mode, and transmission in a preset resource pool, this can enable the first terminal to obtain transmission resources and send sideline reference signals when there is no PSSCH data transmission, so as to avoid unavailability Transmission resources or received power jumps due to PSSCH data not being transmitted at the same time, resulting in errors in the received data, are beneficial to improving the accuracy and stability of the first terminal sending the sideline reference signal.
- FIG. 1A is a network architecture diagram of a vehicle networking communication system provided by an embodiment of the present invention.
- 1B is a network architecture diagram of another vehicle networking communication system provided by an embodiment of the present invention.
- FIG. 1C is an example diagram of a CSI-RS that can be sent together with PSSCH according to an embodiment of the present invention
- 2A is a schematic flowchart of a method for sending a sideline reference signal according to an embodiment of the present invention
- 2B is an example diagram of frequency division multiplexing of data of multiple users in a time slot provided by an embodiment of the present invention
- FIG. 2C is an exemplary diagram of transmitting the first side row reference signal in a repeated transmission manner according to an embodiment of the present invention
- 2D is an example diagram of aligning frequency domain resources occupied by PSCCH and CSI-RS by means of padding bits according to an embodiment of the present invention
- 2E is an example diagram of transmitting a first side row reference signal in a manner of filling redundant bits according to an embodiment of the present invention
- FIG. 2F is a diagram of an example of transmitting CSI-RS in a CSI-RS resource pool mode provided by an embodiment of the present invention.
- Fig. 2G is an exemplary diagram of a CSI-RS transmission manner of resource pools of different time domain sizes provided by an embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of a terminal provided by an embodiment of the present invention.
- Fig. 4 is a block diagram of functional units of a terminal provided by an embodiment of the present invention.
- the Internet of Vehicles is a sidelink transmission technology (Sidelink, SL) based on device-to-device communication (D2D). It is different from the way in which communication data is received or sent through a base station in a traditional cellular system.
- the networking system adopts terminal-to-terminal direct communication, which has higher spectrum efficiency and lower transmission delay.
- 3GPP Third Generation Partnership Project
- Rel-14 the Internet of Vehicles technology was standardized, and two transmission modes were defined: Mode A and Mode B.
- Mode A Refer to Figure 1A, the transmission resources of the terminal are allocated by the base station, and the terminal transmits data on the side link according to the resources allocated by the base station; the base station can allocate single transmission resources for the terminal or the terminal Allocate resources for semi-static transmission; the base station allocates side-link transmission resources through Downlink (DL) control signaling.
- DL Downlink
- the terminal adopts sensing and reservation transmission modes.
- the terminal obtains a set of available transmission resources in the resource pool by means of interception, and the terminal randomly selects a resource from the set for data transmission. Because the services in the Internet of Vehicles system have periodic characteristics, the terminal usually adopts a semi-static transmission method, that is, after the terminal selects a transmission resource, it will continue to use the resource in multiple transmission cycles, thereby reducing resource reselection and The probability of resource conflict.
- the terminal will carry the information to reserve resources for the next transmission in the control information of this transmission, so that other terminals can determine whether this resource is reserved and used by the user by detecting the control information of the user, so as to reduce resource conflicts. purpose.
- the terminal can measure the channel and select appropriate transmission parameters based on the measurement results, for example, perform channel measurement based on the Channel State Information Reference Signal (CSI-RS), and select the channel state indicator (Channel Quality Indicator, CQI), Pre-coding Matrix Indicator (PMI), Rank Indicator (RI) and other information are fed back to the sender, and the sender selects the corresponding transmission parameters according to the feedback information, Thereby improving the throughput of the system.
- CSI-RS Channel State Information Reference Signal
- CQI Channel Quality Indicator
- PMI Pre-coding Matrix Indicator
- RI Rank Indicator
- terminal 1 sends a CSI-RS
- terminal 2 obtains channel state information according to the CSI-RS, and selects corresponding transmission parameters according to channel reciprocity.
- Radio Link Monitoring refers to the data transmission between the terminal and the network in the cellular system.
- the connection between the terminal and the network needs to be maintained.
- the network periodically sends reference signals, and the terminal monitors the reference signal.
- the signal judges the quality of the wireless link, so as to judge whether the wireless link is in-sync or out-of-sync. If it is in-sync, the terminal can receive network data, if it is out-of-sync , The terminal cannot receive the network data correctly, and the connection needs to be re-established.
- LTE-V2X since it is mainly aimed at broadcasting services, there is no concept of connection between the terminal and the terminal, and the terminal does not need to perform radio link monitoring.
- NR-V2X due to the need to consider unicast and multicast services, there is a concept of connection between terminals.
- the sender In order to monitor the RLM of the wireless link of the side link, the sender needs to send the sideline reference signal, and the receiver needs to Use the reference signal to measure, determine the state of the link (for example, in-sync or out-of-sync state), and feed back the state to the sending terminal.
- the transmitter needs to send CSI-RS.
- the CSI-RS can be sent together with the PSSCH.
- CSI-RS occupies one time domain symbol, which is the same as PSSCH frequency domain resources, as shown in FIG. 1C.
- this application proposes a method for sending a sideline reference signal to improve the accuracy and stability of the first terminal sending the sideline reference signal.
- FIG. 2A is a method for sending a sideline reference signal according to an embodiment of the present invention, which is applied to a first terminal in an end-to-end communication system (for example, a car networking system), and the method includes:
- Step 201 The first terminal determines a transmission mode of the first side line reference signal
- the first side line reference signal is any one of the following: CSI-RS, side line phase tracking reference signal (Phase Tracking Reference Signal, PT-RS), side line sensing reference signal (Sounding Reference Signal, SRS) Wait.
- CSI-RS side line phase tracking reference signal
- PT-RS Phase Tracking Reference Signal
- SRS Sounding Reference Signal
- the sending mode includes a repeated transmission mode, a redundant bit filling mode, and sending in a preset resource pool.
- the sending mode can enable the first terminal to send the side line reference signal under different conditions.
- Step 202 The first terminal sends the first side line reference signal according to the sending manner.
- the first terminal can determine the sending mode of the first side line reference signal, and then send the first side line reference signal according to the sending mode. Since the transmission mode includes repeated transmission mode, redundant bit filling mode, and transmission in a preset resource pool, this can enable the first terminal to obtain transmission resources and send sideline reference signals when there is no PSSCH data transmission, so as to avoid unavailability Transmission resources or received power jumps due to PSSCH data not being transmitted at the same time, resulting in errors in received data, are beneficial to improve the accuracy and stability of the first terminal to send the sideline reference signal.
- the method further includes: the first terminal determining a transmission resource used to send the first side line reference signal;
- the sending, by the first terminal, the first side line reference signal according to the sending mode includes: the first terminal sending the first side line reference signal through the transmission resource according to the sending mode.
- the transmission resources include at least one of the following resources: time domain resources, frequency domain resources, code domain resources, and space domain resources.
- the first terminal may determine the transmission resource used to send the first side line reference signal before, after or at the same time as determining the sending mode, which is not uniquely limited here.
- the first terminal only needs to determine the transmission resource and mode of the sideline reference signal, and the first sideline reference signal can be sent in various situations.
- the determining, by the first terminal, the sending mode of the first side line reference signal includes: the first terminal determining that the sending mode of the first side line reference signal is a repeated transmission mode.
- FIG. 2B shows that the data of multiple users in the time slot can be frequency division multiplexed (Frequency Division Multiplexing, FDM).
- FDM Frequency Division Multiplexing
- the figure shows that the first terminal (UE1) and the second terminal (UE2) use different frequency domain resources.
- Send side row data where the first terminal has PSSCH data, so CSI-RS and PSSCH can be sent together in this time slot.
- the second terminal there is no side row data to be sent.
- the repeated transmission method can be used, that is, the CSI-RS is repeatedly transmitted, and the CSI-RS is repeatedly transmitted in the time slot.
- a time slot includes 14 orthogonal frequency divisions. Multiplexing OFDM symbols, where the first two symbols are used for PSCCH transmission, the last symbol is used for GP (Guard period), and the remaining symbols can be used for repeated transmission of CSI-RS.
- the first terminal repeatedly transmits CSI-RS to keep the user's transmit power in one time slot (except for GP symbols) unchanged, so it will not cause the receive power to jump at the receiving end, and multiple repetitions
- the CSI-RS can improve the reliability and accuracy of the measurement.
- the CSI-RS in the time slot can be transmitted using different beams.
- the first CSI-RS is transmitted using beam 1
- the second CSI-RS is transmitted using beam 2, and so on.
- the first side row reference signal is repeatedly sent in one time slot, and the time domain symbol occupied is more than one.
- the first side row reference signal and the physical side row shared channel PSSCH are sent in one time slot, and there is no side row data to be sent in the one time slot, the first side The line reference signal is repeatedly sent on multiple time domain symbols in the one time slot.
- the length of the frequency domain resource of the first side row reference signal and the frequency domain resource of the physical side row control channel PSCCH are different, and the method further includes: the first terminal uses padding bits Align the frequency domain resources of the first side row reference signal with the frequency domain resources of the PSCCH.
- the first side line reference signal is a CSI-RS
- the CSI-R and PSCCH have different frequency domain lengths, as shown in FIG. 2D
- filling bits (such as filling randomly generated bits, redundant Bits, etc.) align the frequency domain resources occupied by PSCCH and CSI-RS.
- the received power jumps are avoided to affect the accuracy of data reception, and the measurement reliability and accuracy are improved.
- the method further includes: the first terminal sending first indication information, where the first indication information is used to indicate that the first side row reference signal is repeatedly sent in one time slot.
- the first indication information is carried in at least one of the following ways:
- the information field in the SCI is set to be carried by a special value
- the information bit in the SCI carries 1 bit of indication information to carry the first indication information.
- the information bits of the SCI need to be processed by scrambling codes, and different scrambling code sequences are used to indicate whether the first side row reference signal is repeatedly sent in a time slot, for example, the first scrambling code sequence is used to hide It contains the first indication information to indicate that the first side row reference signal is repeatedly sent in one time slot, and the second scrambling code sequence is used to indicate one time of the first side row reference signal in one time slot. Send on the domain symbol.
- the SCI carries hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) process ID information, new data indicator (NDI), modulation and coding strategy (Modulation and Coding Scheme, MCS), Time domain resource indication information, frequency domain resource indication information, etc., by setting at least one of the information fields to a special value, are used to implicitly carry the first indication information to indicate that the first side row reference signal is in a time slot Repeat within.
- the 5-bit MCS information field in the SCI is set to 11111 and the NDI information field is set to 1, which means that the first side line reference signal is repeatedly sent in one time slot.
- the first indication information is implicitly carried by using a specific transmission resource to transmit the PSCCH to instruct the first side row reference signal to be repeatedly sent in one time slot.
- the transmission resources include at least one of time domain resources, frequency domain resources, code domain resources, and space domain resources.
- the first time-frequency resource is used to transmit the PSCCH to instruct the first side line reference signal to be repeatedly sent in one time slot.
- the determining, by the first terminal, the sending mode of the first side line reference signal includes: the first terminal determining that the sending mode of the first side line reference signal is a redundant bit filling mode.
- the CSI-RS and the PSSCH can be sent together in one time slot, avoiding the power jump caused by only sending the CSI-RS, and improving the reliability and accuracy of the measurement.
- the first side row reference signal and the PSSCH are sent in one time slot, and there is no side row data to be sent in the one time slot, and redundant bits are filled in the PSSCH.
- the PSSCH can be filled with redundant bits so that the terminal transmits the PSSCH and the CSI-RS in one time slot, and the transmission power in the time slot is the same.
- the CSI-RS and the PSSCH can be sent together in one time slot, avoiding the power jump caused by only sending the CSI-RS.
- the method further includes: the first terminal sending second indication information, where the second indication information is used to indicate that the PSSCH carries the redundant bits.
- the second indication information is carried in at least one of the following ways:
- the information field in the SCI is set to be carried by a special value
- the information bit in the SCI carries 1 bit to carry the second indication information.
- the information bits of the SCI need to undergo scrambling code processing, and different scrambling code sequences are used to indicate whether the data carried in the PSSCH is useful data or redundant bits.
- the HARQ process ID information, NDI (New data indicator), MCS, time domain resource indication information, frequency domain resource indication information, etc. are carried in the SCI, and at least one of the information fields is set to a special value. , Used to indicate that the PSSCH corresponding to the PSCCH is a redundant bit.
- the 5-bit MCS information field in the SCI is set to 11111 and the NDI information field is set to 1, which means that the first side line reference signal is repeatedly sent in one time slot.
- the second indication information is implicitly carried by using a specific transmission resource to transmit the PSCCH to indicate that the PSSCH corresponding to the PSCCH is a redundant bit.
- the transmission resources include at least one of time domain resources, frequency domain resources, code domain resources, and space domain resources. If the PSSCH carries useful data, the first time-frequency resource is used to transmit the PSCCH, and if the PSSCH carries redundant bits, the second time-frequency resource is used to transmit the PSCCH.
- the receiving end can determine the content carried by the corresponding PSSCH by detecting the time-frequency resources of the PSCCH.
- a higher layer when a higher layer generates a data packet, it carries indication information in the MAC CE.
- the indication information is used to indicate that the data in the PSSCH is redundant information, and the receiving end can discard the data packet according to the indication information.
- the PSCCH corresponding to the first side row reference signal is used to indicate at least one of the following information of the transmission resource for transmitting the first side row reference signal:
- Time domain symbol information of the first side line reference signal in the time slot
- the size of the frequency domain resource of the first side line reference signal is the size of the frequency domain resource of the first side line reference signal.
- the first terminal determining the sending mode of the first side line reference signal includes: the first terminal determining that the sending mode of the first side line reference signal is sending in a preset resource pool .
- the CSI-RS and PSSCH are transmitted together in one subframe or time slot, and the CSI-RS resource is indicated by PSCCH. Therefore, one time is required to transmit CSI-RS (and its corresponding PSCCH).
- the resource utilization rate is low.
- a resource pool for sending CSI-RS can be configured, and multiple users select resources for sending in the resource pool.
- the first terminal can select resources in the resource pool to transmit the first side line reference signal without sending it with PSCCH or PSSCH, which improves resource utilization.
- the first side line reference signal can be sent periodically.
- the determining, by the first terminal, the transmission resource used to send the first sideline reference signal includes: the first terminal selects from the preset resource pool by any one of the following methods The transmission resource is used to send the first side line reference signal: interception or random selection.
- the first terminal can select resources by means of listening, and determine which resources are by detecting the CSI-RS of the previous period If it has been reserved, a resource is selected from the remaining unreserved resources to transmit the CSI-RS; or, the terminal randomly selects a transmission resource from the CSI-RS resource pool for transmission.
- the transmission resources include at least one of the following resources: time domain resources, frequency domain resources, code domain resources, and space domain resources.
- time domain resources For example, if the generation of the CSI-RS sequence is related to the identification information of the terminal, the CSI-RS sequence generated by different terminals is different, and different terminals can select the same time-frequency resource for transmission, and distinguish by means of code division.
- the method further includes: the first terminal acquiring configuration information of the preset resource pool, where the configuration information includes at least one of the following information:
- the time domain position of the resource pool The time domain position of the resource pool, the number of time domain symbols occupied by the first side row reference signal in each time slot, the period of the resource pool, the frequency domain starting position of the resource pool, the The frequency domain resource size of the first side row reference signal, and the frequency domain unit size of the frequency domain resource.
- the preset resource pool may be pre-configured by protocol or network configured.
- the frequency domain unit may be PRB, RBG (resource block group), subband, and so on.
- the preset resource pool is less than 3 time-domain symbols in the time domain, and the first side line reference signal is sent in a comb-like form.
- the first side line reference signal is CSI-RS.
- CSI-RS usually occupies one time domain symbol, as shown in Figure 2G(a).
- Automatic gain control (AGC) symbols are required before CSI-RS, and guard period (GP) symbols are required after CSI-RS, as shown in Figure 2G (b), if CSI-RS resources are configured
- AGC Automatic gain control
- GP guard period
- the CSI-RS is sent in a comb form, that is, one CSI-RS signal is sent every N subcarriers, and N is a positive integer.
- FIG. 3 is a schematic structural diagram of a terminal 300 (the first terminal described above) according to an embodiment of the present invention.
- the terminal 300 includes a processor 310, a memory 320, a communication interface 330, and one or more programs 321.
- the one or more programs 321 are stored in the memory 320 and are configured to be executed by the processor 310.
- the one or more programs 321 include instructions for performing the following steps;
- Determining a sending mode of the first side line reference signal Determining a sending mode of the first side line reference signal; and for sending the first side line reference signal according to the sending mode.
- the first terminal can determine the sending mode of the first side line reference signal, and then send the first side line reference signal according to the sending mode. Since the transmission mode includes repeated transmission mode, redundant bit filling mode, and transmission in a preset resource pool, this can enable the first terminal to obtain transmission resources and send sideline reference signals when there is no PSSCH data transmission, so as to avoid unavailability Transmission resources or received power jumps due to PSSCH data not being transmitted at the same time, resulting in errors in the received data, are beneficial to improving the accuracy and stability of the first terminal sending the sideline reference signal.
- the program further includes instructions for performing the following operations: determining a transmission resource used to send the first side line reference signal;
- the instructions in the program are specifically used to perform the following operations: sending the first side line reference signal through the transmission resource according to the sending mode signal.
- the instructions in the program are specifically used to perform the following operations: determining that the sending mode of the first side line reference signal is repeated transmission the way.
- the first side row reference signal is repeatedly sent in one time slot, and the time domain symbol occupied is more than one.
- the first side row reference signal and the physical side row shared channel PSSCH are sent in one time slot, and there is no side row data to be sent in the one time slot, the first side The line reference signal is repeatedly sent on multiple time domain symbols in the one time slot.
- the length of the frequency domain resource of the first side row reference signal and the frequency domain resource of the physical side row control channel PSCCH are different, and the program further includes instructions for performing the following operations: The way makes the frequency domain resources of the first side row reference signal and the frequency domain resources of the PSCCH aligned.
- the program further includes instructions for performing the following operations: sending first instruction information, where the first instruction information is used to instruct the first side row reference signal to be repeatedly sent in a time slot .
- the instructions in the program are specifically used to perform the following operations: determining that the sending mode of the first side line reference signal is filling redundancy. More bits way.
- the first side row reference signal and the PSSCH are sent in one time slot, and there is no side row data to be sent in the one time slot, and redundant bits are filled in the PSSCH.
- the program further includes instructions for performing the following operations: sending second indication information, where the second indication information is used to indicate that the PSSCH carries the redundant bits.
- the first indication information or the second indication information is carried in at least one of the following ways:
- the information field in the SCI is set to be carried by a special value
- the PSCCH corresponding to the first side line reference signal is used to indicate at least one of the following information of the transmission resource for transmitting the first side line reference signal:
- Time domain symbol information of the first side line reference signal in the time slot
- the size of the frequency domain resource of the first side line reference signal is the size of the frequency domain resource of the first side line reference signal.
- the instructions in the program are specifically used to perform the following operations: determining that the sending mode of the first side line reference signal is in advance Set to send in the resource pool.
- the instructions in the program are specifically used to perform the following operations: selecting the preset by any of the following methods It is assumed that the transmission resources in the resource pool are used to send the first side line reference signal: interception or random selection.
- the transmission resources include at least one of the following resources: time domain resources, frequency domain resources, code domain resources, and space domain resources.
- the program further includes instructions for performing the following operations: obtaining configuration information of the preset resource pool, where the configuration information includes at least one of the following information:
- the time domain position of the resource pool The time domain position of the resource pool, the number of time domain symbols occupied by the first side row reference signal in each time slot, the period of the resource pool, the frequency domain starting position of the resource pool, the The frequency domain resource size of the first side row reference signal, and the frequency domain unit size of the frequency domain resource.
- the preset resource pool is less than 3 time-domain symbols in the time domain, and the first side line reference signal is sent in a comb-like form.
- the terminal includes hardware structures and/or software modules corresponding to each function.
- the present invention can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the present invention.
- the terminal may be divided into functional units according to the foregoing method examples.
- each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
- the above-mentioned integrated unit can be realized in the form of hardware or software program module. It should be noted that the division of units in the embodiment of the present invention is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
- FIG. 4 shows a block diagram of a possible functional unit composition of the terminal (also referred to as the first terminal) involved in the foregoing embodiment.
- the terminal 400 includes a processing unit 402 and a communication unit 403.
- the processing unit 402 is used to control and manage the actions of the terminal.
- the processing unit 402 is used to support the terminal to perform steps 201 and 202 in FIG. 2A and/or other processes used in the technology described herein.
- the communication unit 403 is used to support communication between the terminal and other devices.
- the terminal may also include a storage unit 401 for storing program codes and data of the terminal.
- the processing unit 402 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit). Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of the present invention.
- the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
- the communication unit 403 may be a communication interface, a transceiver, a transceiver circuit, etc., and the storage unit 401 may be a memory.
- the processing unit 402 is used to determine the sending mode of the first side line reference signal; and used to send the first side line reference signal according to the sending mode through the communication unit 403.
- the first terminal can determine the sending mode of the first side line reference signal, and then send the first side line reference signal according to the sending mode. Since the transmission mode includes repeated transmission mode, redundant bit filling mode, and transmission in a preset resource pool, this can enable the first terminal to obtain transmission resources and send sideline reference signals when there is no PSSCH data transmission, so as to avoid unavailability Transmission resources or received power jumps due to PSSCH data not being transmitted at the same time, resulting in errors in received data, are beneficial to improve the accuracy and stability of the first terminal to send the sideline reference signal.
- the processing unit 402 is further configured to: determine a transmission resource for sending the first side line reference signal;
- the processing unit 402 is specifically configured to send the first side row reference signal through the transmission resource according to the sending mode.
- the processing unit 402 is specifically configured to determine that the sending mode of the first side line reference signal is a repeated transmission mode.
- the first side row reference signal is repeatedly sent in one time slot, and the time domain symbol occupied is more than one.
- the first side row reference signal and the physical side row shared channel PSSCH are sent in one time slot, and there is no side row data to be sent in the one time slot, the first side The line reference signal is repeatedly sent on multiple time domain symbols in the one time slot.
- the length of the frequency domain resource of the first side row reference signal and the frequency domain resource of the physical side row control channel PSCCH are different, and the processing unit 402 is further configured to: The frequency domain resource of the first side line reference signal is aligned with the frequency domain resource of the PSCCH.
- the processing unit 402 is further configured to send first indication information, where the first indication information is used to indicate that the first side row reference signal is repeatedly sent in one time slot.
- the processing unit 402 is specifically configured to determine that the transmission mode of the first side line reference signal is a redundant bit filling mode.
- the first side row reference signal and the PSSCH are sent in one time slot, and there is no side row data to be sent in the one time slot, and redundant bits are filled in the PSSCH.
- the processing unit 402 is further configured to send second indication information, where the second indication information is used to indicate that the PSSCH carries the redundant bits.
- the first indication information or the second indication information is carried in at least one of the following ways:
- the information field in the SCI is set to be carried by a special value
- the PSCCH corresponding to the first side line reference signal is used to indicate at least one of the following information of the transmission resource for transmitting the first side line reference signal:
- Time domain symbol information of the first side line reference signal in the time slot
- the size of the frequency domain resource of the first side line reference signal is the size of the frequency domain resource of the first side line reference signal.
- the processing unit 402 is specifically configured to: determine that the sending mode of the first side line reference signal is in the preset resource pool send.
- the processing unit 402 is specifically configured to: select the preset resource pool in any of the following ways
- the transmission resource is used to send the first side line reference signal: interception or random selection.
- the transmission resources include at least one of the following resources: time domain resources, frequency domain resources, code domain resources, and space domain resources.
- the processing unit 402 is further configured to obtain configuration information of the preset resource pool, where the configuration information includes at least one of the following information:
- the time domain position of the resource pool The time domain position of the resource pool, the number of time domain symbols occupied by the first side row reference signal in each time slot, the period of the resource pool, the frequency domain starting position of the resource pool, the The frequency domain resource size of the first side row reference signal, and the frequency domain unit size of the frequency domain resource.
- the preset resource pool is less than 3 time-domain symbols in the time domain, and the first side line reference signal is sent in a comb-like form.
- the terminal involved in the embodiment of the present invention may be the terminal shown in FIG. 3.
- the embodiment of the present invention also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the terminal in the above method embodiment Some or all of the steps described.
- the embodiment of the present invention also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes a computer to execute the network in the above method embodiment Part or all of the steps described by the side device.
- An embodiment of the present invention also provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute the method embodiments described above Part or all of the steps described in the terminal.
- the computer program product may be a software installation package.
- the steps of the method or algorithm described in the embodiments of the present invention may be implemented in a hardware manner, or may be implemented in a manner that a processor executes software instructions.
- Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), and erasable programmable read-only memory ( Erasable Programmable ROM (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
- An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
- the storage medium may also be an integral part of the processor.
- the processor and the storage medium may be located in the ASIC.
- the ASIC may be located in an access network device, a target network device, or a core network device.
- the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
- the functions described in the embodiments of the present invention may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- software it can be implemented in the form of a computer program product in whole or in part.
- the computer program product includes one or more computer instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
- the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server, or data center via wired (for example, coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.).
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
- the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a Digital Video Disc (DVD)), or a semiconductor medium (for example, a Solid State Disk (SSD)) )Wait.
- a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
- an optical medium for example, a Digital Video Disc (DVD)
- DVD Digital Video Disc
- SSD Solid State Disk
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例公开了侧行参考信号发送方法及相关产品,包括:应用于第一终端;所述方法包括:确定第一侧行参考信号的发送方式;按照所述发送方式发送所述第一侧行参考信号。本发明实施例实现了在不同情况下侧行参考信号的发送。
Description
本发明涉及通信技术领域,尤其涉及一种侧行参考信号发送方法及相关产品。
车联网系统是基于终端到终端(Device to Device,D2D)的一种侧行链路传输技术(Sidelink,SL),与传统的长期演进(Long Term Evaluation,LTE)系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,未来在自动驾驶等应用场景中,用户对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
发明内容
本发明的实施例提供一种侧行参考信号发送方法及相关产品,以期实现侧行参考信号的发送。
第一方面,本发明实施例提供一种侧行参考信号发送方法,应用于第一终端,所述方法包括:
确定第一侧行参考信号的发送方式;
按照所述发送方式发送所述第一侧行参考信号。
第二方面,本发明实施例提供一种终端,所述终端为第一终端,所述第一终端包括处理单元和通信单元,
所述处理单元,用于确定第一侧行参考信号的发送方式;以及用于通过所述通信单元按照所述发送方式发送所述第一侧行参考信号。
第三方面,本发明实施例提供一种终端,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本发明实施例第一方面任一方法中的步骤的指令。
第四方面,本发明实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本发明实施例第一方面任一方法中所描述的部分或全部步骤。
第五方面,本发明实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本发明实施例第一方面任一方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
可以看出,本发明实施例中,第一终端可以确定第一侧行参考信号的发送方式,然后按照所述发送方式发送所述第一侧行参考信号。由于该发送方式包括重复传输方式、填充冗余比特方式、在预设资源池中发送,如此可以使得第一终端在没有PSSCH数据发送时也可以获得传输资源并发送侧行参考信号,避免无法获得传输资源或者因未同时传输PSSCH数据而造成接收功率跳变从而导致接收的数据发生错误的情况发生,有利于提高第一终端发送侧行参考信号的准确度和稳定性。
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1A是本发明实施例提供的一种车联网通信系统的网络架构图;
图1B是本发明实施例提供的另一种车联网通信系统的网络架构图;
图1C是本发明实施例提供的一种CSI-RS可以和PSSCH一起发送的示例图;
图2A是本发明实施例提供的一种侧行参考信号发送方法的流程示意图;
图2B是本发明实施例提供的一种在一个时隙内多个用户的数据的频分复用的示例图;
图2C是本发明实施例提供的一种采用重复传输方式发送第一侧行参考信号的示例图;
图2D是本发明实施例提供的一种采用填充比特的方式对齐PSCCH和CSI-RS占据的频域资源的示例图;
图2E是本发明实施例提供的一种采用填充冗余比特方式发送第一侧行参考信号的示例图;
图2F是本发明实施例提供的一种采用CSI-RS资源池方式发送CSI-RS的示例图;
图2G是本发明实施例提供的一种不同时域大小资源池的CSI-RS的发送方式的示例图。
图3是本发明实施例提供的一种终端的结构示意图;
图4是本发明实施例提供的一种终端的功能单元组成框图。
下面将结合附图对本发明实施例中的技术方案进行描述。
车联网是基于设备到设备通信(Device-to-Device,D2D)的一种侧行链路传输技术(Sidelink,SL),与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,具有更高的频谱效率以及更低的传输时延。在第三代合作伙伴计划(Third Generation Partner Project,3GPP)版本14(Rel-14)中对车联网技术进行了标准化,定义了两种传输模式:模式A和模式B。
模式A:请参阅图1A,终端的传输资源是由基站分配的,终端根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源;基站通过下行(Downlink,DL)控制信令分配侧行链路传输资源。
模式B:请参阅图1B,终端采用侦听(sensing)和预留(reservation)的传输方式。终端在资源池中通过侦听的方式获取可用的传输资源集合,终端从该集合中随机选取一个资源进行数据的传输。由于车联网系统中的业务具有周期性特征,因此终端通常采用半静态传输的方式,即终端选取一个传输资源后,就会在多个传输周期中持续的使用该资源,从而降低资源重选以及资源冲突的概率。终端会在本次传输的控制信息中携带预留下次传输资源的信息,从而使得其他终端可以通过检测该用户的控制信息判断这块资源是否被该用户预留和使用,达到降低资源冲突的目的。
在新空口-车辆到其他设备(New Radio-Vehicle to Everything,NR-V2X)中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。为了提高系统的吞吐量,终端可以对信道进行测量,根据测量结果选取合适的传输参数,例如,根据信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)进行信道测量,选取信道状态指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Pre-coding Matrix Indicator,PMI)、秩指示(Rank Indicator,RI)等信息并反馈到发送端,发送端根据该反馈信息选取相应的传输参数,从而提高系统的吞吐量。或者终端1发送CSI-RS,终端2根据该CSI-RS获取信道状态信息,并且根据信道互易性选取相应的传输参数。
无线链路监听(Radio Link Monitoring,RLM)是指在蜂窝系统中,终端和网络之间进行数据传输,需要保持终端和网络之间的连接,网络周期性的发送参考信号,终端通过 监听该参考信号判断无线链路质量,从而判断无线链路是同步(in-sync)还是异步(out-of-sync)状态,如果是in-sync,终端可以接收网络的数据,如果是out-of-sync,终端不能正确接收网络的数据,需要重新建立连接。
在LTE-V2X中,由于主要针对的是广播业务,终端与终端之间没有连接的概念,终端不需要进行无线链路监听。在NR-V2X,由于需要考虑单播和组播业务,终端之间存在连接的概念,为了进行侧行链路的无线链路监听RLM,发送端需要发送侧行参考信号,接收端对该侧行参考信号进行测量,判断链路的状态(例如是in-sync或者out-of-sync状态),并且将该状态反馈给发送端终端。
因此,在NR-V2X中,为了接收端进行测量,发送端需要发送CSI-RS。当发送端有物理侧行共享数据(Physical Sidelink Shared Channel,PSSCH)发送时,CSI-RS可以和PSSCH一起发送。例如,CSI-RS占据一个时域符号,和PSSCH频域资源相同,如图1C所示。
但是,当发送端没有PSSCH数据发送时,如何发送CSI-RS是需要解决的问题。
针对上述问题,本申请提出一种侧行参考信号发送方法,以提高第一终端发送侧行参考信号的准确度和稳定性。下面进行具体说明。
请参阅图2A,图2A是本发明实施例提供的一种侧行参考信号发送方法,应用于端到端的通信系统(例如:车联网系统)中的第一终端,该方法包括:
步骤201,所述第一终端确定第一侧行参考信号的发送方式;
其中,所述第一侧行参考信号以下任意一种:CSI-RS、侧行相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS)、侧行侦听参考信号(Sound ing Reference Signal,SRS)等。
其中,所述发送方式包括重复传输方式、填充冗余比特方式、在预设资源池中发送,该发送方式能够使得第一终端在不同情况下发送侧行参考信号。
步骤202,所述第一终端按照所述发送方式发送所述第一侧行参考信号。
可以看出,本发明实施例中,第一终端可以确定第一侧行参考信号的发送方式,然后按照所述发送方式发送所述第一侧行参考信号。由于该发送方式包括重复传输方式、填充冗余比特方式、在预设资源池中发送,如此可以使得第一终端在没有PSSCH数据发送时也可以获得传输资源并发送侧行参考信号,避免无法获得传输资源或者因未同时传输PSSCH数据而造成接收功率跳变从而导致接收的数据发生错误的情况发生,有利于提高第一终端发送侧行参考信号的准确度和稳定性。
在一个可能的示例中,所述方法还包括:所述第一终端确定用于发送所述第一侧行参考信号的传输资源;
所述第一终端按照所述发送方式发送所述第一侧行参考信号,包括:所述第一终端按照所述发送方式通过所述传输资源发送所述第一侧行参考信号。
其中,所述传输资源包括以下至少一种资源:时域资源、频域资源、码域资源、空域资源。
具体实现中,所述第一终端可以在确定发送方式之前或者之后或者同时,确定用于发送所述第一侧行参考信号的传输资源,此处不做唯一限定。
可见,第一终端仅需要确定侧行参考信号的传输资源和方式,即可在各类情况下实现发送第一侧行参考信号。
在一个可能的示例中,所述第一终端确定第一侧行参考信号的发送方式,包括:所述第一终端确定所述第一侧行参考信号的发送方式为重复传输方式。
其中,在一个待发送CSI-RS的时隙,如果没有待发送的侧行数据,单独发送一个符号的CSI-RS会导致在该时隙内功率的跳变,如图2B所示,在一个时隙内多个用户的数据是可 以频分复用(Frequency Division Multiplexing,FDM)的,图中给出了第一终端(UE1)和第二终端(UE2)两个用户使用不同的频域资源发送侧行数据,其中第一终端有PSSCH数据,因此在该时隙内CSI-RS和PSSCH可以一起发送,对于第二终端,没有待发送的侧行数据,在该时隙内,如果只发送CSI-RS和其对应的PSCCH,则在后面的多个时域符号内没有数据发送,在该时隙内的前三个时域符号,UE1和UE2都有侧行信号发送,但是在第四个时域符号,只有UE1发送侧行信号,因此在接收端会导致接收功率的跳变,接收端需要重新做AGC(自动增益控制,Automatic Gain Control).会导致终端接收UE1的数据发生错误,降低检测性能。
如图2C所示,此时可采用重复发送方式,即重复发送CSI-RS的方式,将CSI-RS在该时隙内重复多次进行发送,图中一个时隙包括14个正交频分复用OFDM符号,其中前面两个符号用于传输PSCCH,最后一个符号用于GP(Guard period保护间隔),其余的符号可以重复传输CSI-RS。
可见,本示例中,第一终端通过重复发送CSI-RS使得用户在一个时隙内(除了GP符号)的发送功率保持不变,因此不会导致接收端接收功率发生跳变,且多个重复的CSI-RS可以提高测量的可靠性和准确性。
此外,在该时隙中的CSI-RS可以使用不同的波束进行传输。例如,第一个CSI-RS使用波束1发送,第二个CSI-RS使用波束2发送,以此类推。
在本可能的示例中,所述第一侧行参考信号在一个时隙内重复发送,且占据的时域符号大于1个。
在本可能的示例中,所述第一侧行参考信号和物理侧行共享信道PSSCH在一个时隙内发送,且在所述一个时隙内没有待发送的侧行数据,所述第一侧行参考信号在所述一个时隙内的多个时域符号上重复发送。
在本可能的示例中,所述第一侧行参考信号的频域资源和物理侧行控制信道PSCCH的频域资源的长度不同,所述方法还包括:所述第一终端通过填充比特的方式使得所述第一侧行参考信号的频域资源和所述PSCCH的频域资源对齐。
举例来说,假设第一侧行参考信号为CSI-RS,且该CSI-R与PSCCH的频域长度不同,则如图2D所示,可以通过填充比特(例如填充随机生成的比特、冗余比特等方式)把PSCCH和CSI-RS占据的频域资源对齐。
本示例中,通过补齐PSCCH和CSI-RS占据的频域资源,避免接收功率发生跳变影响数据接收的准确度,提高测量的可靠性和准确性。
在本可能的示例中,所述方法还包括:所述第一终端发送第一指示信息,所述第一指示信息用于指示所述第一侧行参考信号在一个时隙内重复发送。
本示例中,所述第一指示信息通过以下方式中的至少一种承载:
通过侧行链路控制信息SCI中的信息比特承载;
通过所述SCI信息比特的扰码序列承载;
通过所述SCI中信息域设置为特殊值承载;
通过在媒体接入控制控制单元MAC CE中承载
通过所述PSCCH的传输资源承载。
举例来说,在SCI的信息比特携带1比特指示信息来承载所述第一指示信息。
又举例来说,SCI的信息比特需要经过加扰码处理,不同的扰码序列用于指示所述第一侧行参考信号是否在一个时隙内重复发送,如第一扰码序列用于隐含承载所述第一指示信息以指示所述第一侧行参考信号在一个时隙内重复发送,第二扰码序列用于指示所述第一侧行参考信号在一个时隙内的一个时域符号上发送。
又举例来说,在SCI中携带混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程ID信息、新数据指示(New data indicator,NDI)、调制与编码策略(Modulation and Coding Scheme,MCS)、时域资源指示信息、频域资源指示信息等,通过对其中至少一个信息域设置为特殊值,用于隐含承载所述第一指示信息以指示所述第一侧行参考信号在一个时隙内重复发送。例如,SCI中的5比特的MCS信息域设置为11111,同时NDI信息域设置为1,即可表示所述第一侧行参考信号在一个时隙内重复发送。
又举例来说,通过使用特定的传输资源传输PSCCH来隐含承载所述第一指示信息以指示所述第一侧行参考信号在一个时隙内重复发送。其中,所述传输资源包括时域资源、频域资源、码域资源和空域资源中的至少一种。如使用第一时频资源传输PSCCH来指示所述第一侧行参考信号在一个时隙内重复发送。
在一个可能的示例中,所述第一终端确定第一侧行参考信号的发送方式,包括:所述第一终端确定所述第一侧行参考信号的发送方式为填充冗余比特方式。
本示例中,通过在PSSCH中填充冗余比特,使得CSI-RS可以和PSSCH在一个时隙内一起发送,避免只发送CSI-RS导致的功率跳变,提高测量的可靠性和准确性。
在本可能的示例中,所述第一侧行参考信号和PSSCH在一个时隙内发送,且在所述一个时隙内没有待发送的侧行数据,所述PSSCH中填充冗余比特。
假设所述第一侧行参考信号为CSI-RS,若没有待传输的侧行数据,则可以发送填充冗余比特的PSSCH,并且在该时隙内发送CSI-RS。如图2E所示,可以通过对PSSCH填充冗余比特的方式使得终端在一个时隙内发送PSSCH和CSI-RS,并且在该时隙内的发送功率一致。
通过在PSSCH中填充冗余比特,使得CSI-RS可以和PSSCH在一个时隙内一起发送,避免只发送CSI-RS导致的功率跳变。
在本可能的示例中,所述方法还包括:所述第一终端发送第二指示信息,所述第二指示信息用于指示所述PSSCH承载所述冗余比特。
本示例中,所述第二指示信息通过以下方式中的至少一种承载:
通过侧行链路控制信息SCI中的信息比特承载;
通过所述SCI信息比特的扰码序列承载;
通过所述SCI中信息域设置为特殊值承载;
通过在媒体接入控制控制单元MAC CE中承载
通过所述PSCCH的传输资源承载。
举例来说,在SCI的信息比特携带1比特承载所述第二指示信息。
又举例来说,SCI的信息比特需要经过加扰码处理,不同的扰码序列用于指示PSSCH中携带的数据是有用数据还是冗余比特。
又举例来说,在SCI中携带HARQ进程ID信息、NDI(New data indicator新数据指示)、MCS、时域资源指示信息、频域资源指示信息等,通过对其中至少一个信息域设置为特殊值,用于表示该PSCCH对应的PSSCH为冗余比特。例如,SCI中的5比特的MCS信息域设置为11111,同时NDI信息域设置为1,即可表示所述第一侧行参考信号在一个时隙内重复发送。
又举例来说,通过使用特定的传输资源传输PSCCH来隐含承载所述第二指示信息以指示所述PSCCH对应的PSSCH为冗余比特。其中,所述传输资源包括时域资源、频域资源、码域资源和空域资源中的至少一种。如果PSSCH携带的是有用数据,使用第一时频资源传输PSCCH,如果PSSCH携带的是冗余比特,使用第二时频资源传输PSCCH。接收端可以通过检测PSCCH的时频资源确定其对应的PSSCH携带的内容。
又举例来说,高层在生成数据包时,在MAC CE中携带指示信息,该指示信息用于指示该PSSCH中的数据是冗余信息,接收端可以根据该指示信息丢弃该数据包。
在一个可能的示例中,所述第一侧行参考信号对应的PSCCH用于指示传输所述第一侧行参考信号的传输资源的以下至少一种信息:
所述第一侧行参考信号所在的时隙信息;
所述第一侧行参考信号在时隙中的时域符号信息;
所述第一侧行参考信号占据的时域符号的个数信息;
所述第一侧行参考信号的周期信息;
下一次发送所述第一侧行参考信号的时域信息;
所述第一侧行参考信号的频域资源的起始位置;
所述第一侧行参考信号的频域资源的大小。
在一个可能的示例中,所述第一终端确定第一侧行参考信号的发送方式,包括:所述第一终端确定所述第一侧行参考信号的发送方式为在预设资源池中发送。
在上面的实施例中,是通过CSI-RS和PSSCH在一个子帧或时隙内一起发送,并且通过PSCCH指示CSI-RS的资源,因此发送CSI-RS(及其对应的PSCCH)需要一个时隙的资源,资源利用率低。为了提高资源利用率,如图2F所示,可以配置发送CSI-RS的资源池,多个用户在该资源池中选取资源进行发送。
本示例中,通过配置CSI-RS资源池,使得第一终端可以在该资源池中选取资源进行第一侧行参考信号的传输,不需要和PSCCH或PSSCH一起发送,提高资源利用率,另外,可以实现周期性的发送第一侧行参考信号。
在本可能的示例中,所述第一终端确定用于发送所述第一侧行参考信号的传输资源,包括:所述第一终端通过以下任意一种方式选取所述预设资源池中的传输资源以用于发送所述第一侧行参考信号:侦听或者随机选取。
例如,假设第一侧行参考信号是CSI-RS,如果CSI-RS是周期性发送的,则第一终端可以通过侦听的方式选取资源,通过检测前一个周期的CSI-RS,判断哪些资源已经被预留,从剩余的没有被预留的资源中选取一个资源传输CSI-RS;或者,终端在CSI-RS资源池中随机选取一个传输资源进行发送。
其中,所述传输资源包括以下至少一种资源:时域资源、频域资源、码域资源、空域资源。例如,如果CSI-RS序列的生成是和终端的标识信息有关,则不同的终端生成的CSI-RS序列不同,不同的终端可以选取相同的时频资源进行传输,通过码分的方式进行区分。
在本可能的示例中,所述方法还包括:所述第一终端获取所述预设资源池的配置信息,所述配置信息包括以下信息中的至少一种:
所述资源池的时域位置、所述第一侧行参考信号在每个时隙占据的时域符号个数、所述资源池的周期、所述资源池的频域起始位置、所述第一侧行参考信号的频域资源大小、所述频域资源的频域单元大小。
其中,所述预设资源池可以是协议预配置、网络配置的。所述频域单元可以是PRB、RBG(资源块组)、子带等。
在本可能的示例中,所述预设资源池在时域上小于3个时域符号,所述第一侧行参考信号采用梳状形式进行发送。
例如,假设第一侧行参考信号为CSI-RS,在时隙的最后1、2或3个时域符号,通常CSI-RS占据一个时域符号,如图2G的(a)所示,在CSI-RS之前需要自动增益控制(Automatic Gain Control,AGC)符号,在CSI-RS之后需要保护间隔(Guard period,GP)符号,如图2G的(b)所示,如果配置的CSI-RS资源池在时域上小于3个时域符号,则CSI-RS采用梳状形式进行发送,即每N个子载波发送一个CSI-RS信号,N为正整数。
与上述图2A所示的实施例一致的,请参阅图3,图3是本发明实施例提供的一种终端300(如上所述的第一终端)的结构示意图,如图所示,所述终端300包括处理器310、存储器320、通信接口330以及一个或多个程序321,其中,所述一个或多个程序321被存储在上述存储器320中,并且被配置由上述处理器310执行,所述一个或多个程序321包括用于执行以下步骤的指令;
确定第一侧行参考信号的发送方式;以及用于按照所述发送方式发送所述第一侧行参考信号。
可以看出,本发明实施例中,第一终端可以确定第一侧行参考信号的发送方式,然后按照所述发送方式发送所述第一侧行参考信号。由于该发送方式包括重复传输方式、填充冗余比特方式、在预设资源池中发送,如此可以使得第一终端在没有PSSCH数据发送时也可以获得传输资源并发送侧行参考信号,避免无法获得传输资源或者因未同时传输PSSCH数据而造成接收功率跳变从而导致接收的数据发生错误的情况发生,有利于提高第一终端发送侧行参考信号的准确度和稳定性。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:确定用于发送所述第一侧行参考信号的传输资源;
在所述按照所述发送方式发送所述第一侧行参考信号方面,所述程序中的指令具体用于执行以下操作:按照所述发送方式通过所述传输资源发送所述第一侧行参考信号。
在一个可能的示例中,在所述确定第一侧行参考信号的发送方式方面,所述程序中的指令具体用于执行以下操作:确定所述第一侧行参考信号的发送方式为重复传输方式。
在一个可能的示例中,所述第一侧行参考信号在一个时隙内重复发送,且占据的时域符号大于1个。
在一个可能的示例中,所述第一侧行参考信号和物理侧行共享信道PSSCH在一个时隙内发送,且在所述一个时隙内没有待发送的侧行数据,所述第一侧行参考信号在所述一个时隙内的多个时域符号上重复发送。
在一个可能的示例中,所述第一侧行参考信号的频域资源和物理侧行控制信道PSCCH的频域资源的长度不同,所述程序还包括用于执行以下操作的指令:通过填充比特的方式使得所述第一侧行参考信号的频域资源和所述PSCCH的频域资源对齐。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:发送第一指示信息,所述第一指示信息用于指示所述第一侧行参考信号在一个时隙内重复发送。
在一个可能的示例中,在所述确定第一侧行参考信号的发送方式方面,所述程序中的指令具体用于执行以下操作:确定所述第一侧行参考信号的发送方式为填充冗余比特方式。
在一个可能的示例中,所述第一侧行参考信号和PSSCH在一个时隙内发送,且在所述一个时隙内没有待发送的侧行数据,所述PSSCH中填充冗余比特。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:发送第二指示信息,所述第二指示信息用于指示所述PSSCH承载所述冗余比特。
在一个可能的示例中,所述第一指示信息或所述第二指示信息通过以下方式中的至少一种承载:
通过侧行链路控制信息SCI中的信息比特承载;
通过所述SCI信息比特的扰码序列承载;
通过所述SCI中信息域设置为特殊值承载;
通过在媒体接入控制控制单元MAC CE中承载
通过所述PSCCH的传输资源承载。
在一个可能的示例中,所述第一侧行参考信号对应的PSCCH用于指示传输所述第一侧 行参考信号的传输资源的以下至少一种信息:
所述第一侧行参考信号所在的时隙信息;
所述第一侧行参考信号在时隙中的时域符号信息;
所述第一侧行参考信号占据的时域符号的个数信息;
所述第一侧行参考信号的周期信息;
下一次发送所述第一侧行参考信号的时域信息;
所述第一侧行参考信号的频域资源的起始位置;
所述第一侧行参考信号的频域资源的大小。
在一个可能的示例中,在所述确定第一侧行参考信号的发送方式方面,所述程序中的指令具体用于执行以下操作:确定所述第一侧行参考信号的发送方式为在预设资源池中发送。
在一个可能的示例中,在所述确定用于发送所述第一侧行参考信号的传输资源方面,所述程序中的指令具体用于执行以下操作:通过以下任意一种方式选取所述预设资源池中的传输资源以用于发送所述第一侧行参考信号:侦听或者随机选取。
在一个可能的示例中,所述传输资源包括以下至少一种资源:时域资源、频域资源、码域资源、空域资源。
在一个可能的示例中,所述程序还包括用于执行以下操作的指令:获取所述预设资源池的配置信息,所述配置信息包括以下信息中的至少一种:
所述资源池的时域位置、所述第一侧行参考信号在每个时隙占据的时域符号个数、所述资源池的周期、所述资源池的频域起始位置、所述第一侧行参考信号的频域资源大小、所述频域资源的频域单元大小。
在一个可能的示例中,所述预设资源池在时域上小于3个时域符号,所述第一侧行参考信号采用梳状形式进行发送。
上述主要从各个网元之间交互的角度对本发明实施例的方案进行了介绍。可以理解的是,终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图4示出了上述实施例中所涉及的终端(又称为第一终端)的一种可能的功能单元组成框图。终端400包括:处理单元402和通信单元403。处理单元402用于对终端的动作进行控制管理,例如,处理单元402用于支持终端执行图2A中的步骤201、202和/或用于本文所描述的技术的其它过程。通信单元403用于支持终端与其他设备的通信。终端还可以包括存储单元401,用于存储终端的程序代码和数据。
其中,处理单元402可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元403可以是通信接口、收发器、收发电路等,存储单元401可以是存储器。
其中,所述处理单元402用于确定第一侧行参考信号的发送方式;以及用于通过所述通信单元403按照所述发送方式发送所述第一侧行参考信号。
可以看出,本发明实施例中,第一终端可以确定第一侧行参考信号的发送方式,然后按照所述发送方式发送所述第一侧行参考信号。由于该发送方式包括重复传输方式、填充冗余比特方式、在预设资源池中发送,如此可以使得第一终端在没有PSSCH数据发送时也可以获得传输资源并发送侧行参考信号,避免无法获得传输资源或者因未同时传输PSSCH数据而造成接收功率跳变从而导致接收的数据发生错误的情况发生,有利于提高第一终端发送侧行参考信号的准确度和稳定性。
在一个可能的示例中,所述处理单元402还用于:确定用于发送所述第一侧行参考信号的传输资源;
在所述按照所述发送方式发送所述第一侧行参考信号方面,所述处理单元402具体用于:按照所述发送方式通过所述传输资源发送所述第一侧行参考信号。
在一个可能的示例中,在所述确定第一侧行参考信号的发送方式方面,所述处理单元402具体用于:确定所述第一侧行参考信号的发送方式为重复传输方式。
在一个可能的示例中,所述第一侧行参考信号在一个时隙内重复发送,且占据的时域符号大于1个。
在一个可能的示例中,所述第一侧行参考信号和物理侧行共享信道PSSCH在一个时隙内发送,且在所述一个时隙内没有待发送的侧行数据,所述第一侧行参考信号在所述一个时隙内的多个时域符号上重复发送。
在一个可能的示例中,所述第一侧行参考信号的频域资源和物理侧行控制信道PSCCH的频域资源的长度不同,所述处理单元402还用于:通过填充比特的方式使得所述第一侧行参考信号的频域资源和所述PSCCH的频域资源对齐。
在一个可能的示例中,所述处理单元402还用于:发送第一指示信息,所述第一指示信息用于指示所述第一侧行参考信号在一个时隙内重复发送。
在一个可能的示例中,在所述确定第一侧行参考信号的发送方式方面,所述处理单元402具体用于:确定所述第一侧行参考信号的发送方式为填充冗余比特方式。
在一个可能的示例中,所述第一侧行参考信号和PSSCH在一个时隙内发送,且在所述一个时隙内没有待发送的侧行数据,所述PSSCH中填充冗余比特。
在一个可能的示例中,所述处理单元402还用于:发送第二指示信息,所述第二指示信息用于指示所述PSSCH承载所述冗余比特。
在一个可能的示例中,所述第一指示信息或所述第二指示信息通过以下方式中的至少一种承载:
通过侧行链路控制信息SCI中的信息比特承载;
通过所述SCI信息比特的扰码序列承载;
通过所述SCI中信息域设置为特殊值承载;
通过在媒体接入控制控制单元MAC CE中承载
通过所述PSCCH的传输资源承载。
在一个可能的示例中,所述第一侧行参考信号对应的PSCCH用于指示传输所述第一侧 行参考信号的传输资源的以下至少一种信息:
所述第一侧行参考信号所在的时隙信息;
所述第一侧行参考信号在时隙中的时域符号信息;
所述第一侧行参考信号占据的时域符号的个数信息;
所述第一侧行参考信号的周期信息;
下一次发送所述第一侧行参考信号的时域信息;
所述第一侧行参考信号的频域资源的起始位置;
所述第一侧行参考信号的频域资源的大小。
在一个可能的示例中,在所述确定第一侧行参考信号的发送方式方面,所述处理单元402具体用于:确定所述第一侧行参考信号的发送方式为在预设资源池中发送。
在一个可能的示例中,在所述确定用于发送所述第一侧行参考信号的传输资源方面,所述处理单元402具体用于:通过以下任意一种方式选取所述预设资源池中的传输资源以用于发送所述第一侧行参考信号:侦听或者随机选取。
在一个可能的示例中,所述传输资源包括以下至少一种资源:时域资源、频域资源、码域资源、空域资源。
在一个可能的示例中,所述处理单元402还用于:获取所述预设资源池的配置信息,所述配置信息包括以下信息中的至少一种:
所述资源池的时域位置、所述第一侧行参考信号在每个时隙占据的时域符号个数、所述资源池的周期、所述资源池的频域起始位置、所述第一侧行参考信号的频域资源大小、所述频域资源的频域单元大小。
在一个可能的示例中,所述预设资源池在时域上小于3个时域符号,所述第一侧行参考信号采用梳状形式进行发送。
当处理单元402为处理器,通信单元403为通信接口,存储单元401为存储器时,本发明实施例所涉及的终端可以为图3所示的终端。
本发明实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中终端所描述的部分或全部步骤。
本发明实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中网络侧设备所描述的部分或全部步骤。
本发明实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中终端所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本发明实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。
Claims (20)
- 一种侧行参考信号发送方法,其特征在于,应用于第一终端;所述方法包括:确定第一侧行参考信号的发送方式;按照所述发送方式发送所述第一侧行参考信号。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:确定用于发送所述第一侧行参考信号的传输资源;所述按照所述发送方式发送所述第一侧行参考信号,包括:按照所述发送方式通过所述传输资源发送所述第一侧行参考信号。
- 根据权利要求1或2所述的方法,其特征在于,所述确定第一侧行参考信号的发送方式,包括:确定所述第一侧行参考信号的发送方式为重复传输方式。
- 根据权利要求3所述的方法,其特征在于,所述第一侧行参考信号在一个时隙内重复发送,且占据的时域符号大于1个。
- 根据权利要求3所述的方法,其特征在于,所述第一侧行参考信号和物理侧行共享信道PSSCH在一个时隙内发送,且在所述一个时隙内没有待发送的侧行数据,所述第一侧行参考信号在所述一个时隙内的多个时域符号上重复发送。
- 根据权利要求3所述的方法,其特征在于,所述第一侧行参考信号的频域资源和物理侧行控制信道PSCCH的频域资源的长度不同,所述方法还包括:通过填充比特的方式使得所述第一侧行参考信号的频域资源和所述PSCCH的频域资源对齐。
- 根据权利要求4-6任一项所述的方法,其特征在于,所述方法还包括:发送第一指示信息,所述第一指示信息用于指示所述第一侧行参考信号在一个时隙内重复发送。
- 根据权利要求1或2所述的方法,其特征在于,所述确定第一侧行参考信号的发送方式,包括:确定所述第一侧行参考信号的发送方式为填充冗余比特方式。
- 根据权利要求8所述的方法,其特征在于,所述第一侧行参考信号和PSSCH在一个时隙内发送,且在所述一个时隙内没有待发送的侧行数据,所述PSSCH中填充冗余比特。
- 根据权利要求9所述的方法,其特征在于,所述方法还包括:发送第二指示信息,所述第二指示信息用于指示所述PSSCH承载所述冗余比特。
- 根据权利要求7或10所述的方法,其特征在于,所述第一指示信息或所述第二指示信息通过以下方式中的至少一种承载:通过侧行链路控制信息SCI中的信息比特承载;通过所述SCI信息比特的扰码序列承载;通过所述SCI中信息域设置为特殊值承载;通过在媒体接入控制控制单元MAC CE中承载通过所述PSCCH的传输资源承载。
- 根据权利要求1-11任一项所述的方法,其特征在于,所述第一侧行参考信号对应的PSCCH用于指示传输所述第一侧行参考信号的传输资源的以下至少一种信息:所述第一侧行参考信号所在的时隙信息;所述第一侧行参考信号在时隙中的时域符号信息;所述第一侧行参考信号占据的时域符号的个数信息;所述第一侧行参考信号的周期信息;下一次发送所述第一侧行参考信号的时域信息;所述第一侧行参考信号的频域资源的起始位置;所述第一侧行参考信号的频域资源的大小。
- 根据权利要求1或2所述的方法,其特征在于,所述确定第一侧行参考信号的发送方式,包括:确定所述第一侧行参考信号的发送方式为在预设资源池中发送。
- 根据权利要求13所述的方法,其特征在于,所述确定用于发送所述第一侧行参考信号的传输资源,包括:通过以下任意一种方式选取所述预设资源池中的传输资源以用于发送所述第一侧行参考信号:侦听或者随机选取。
- 根据权利要求13或14所述的方法,其特征在于,所述传输资源包括以下至少一种资源:时域资源、频域资源、码域资源、空域资源。
- 根据权利要求13-15任一项所述的方法,其特征在于,所述方法还包括:获取所述预设资源池的配置信息,所述配置信息包括以下信息中的至少一种:所述资源池的时域位置、所述第一侧行参考信号在每个时隙占据的时域符号个数、所述资源池的周期、所述资源池的频域起始位置、所述第一侧行参考信号的频域资源大小、所述频域资源的频域单元大小。
- 根据权利要求13-16任一项所述的方法,其特征在于,所述预设资源池在时域上小于3个时域符号,所述第一侧行参考信号采用梳状形式进行发送。
- 一种终端,其特征在于,所述终端为第一终端,所述第一终端包括处理单元和通信单元,所述处理单元,用于确定第一侧行参考信号的发送方式;以及用于通过所述通信单元按照所述发送方式发送所述第一侧行参考信号。
- 一种终端,其特征在于,所述终端为第一终端,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-17任一项所述的方法中的步骤的指令。
- 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-17任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980071287.8A CN113228546B (zh) | 2019-03-28 | 2019-03-28 | 侧行参考信号发送方法及相关产品 |
PCT/CN2019/080254 WO2020191774A1 (zh) | 2019-03-28 | 2019-03-28 | 侧行参考信号发送方法及相关产品 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/080254 WO2020191774A1 (zh) | 2019-03-28 | 2019-03-28 | 侧行参考信号发送方法及相关产品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020191774A1 true WO2020191774A1 (zh) | 2020-10-01 |
Family
ID=72609618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/080254 WO2020191774A1 (zh) | 2019-03-28 | 2019-03-28 | 侧行参考信号发送方法及相关产品 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113228546B (zh) |
WO (1) | WO2020191774A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023198030A1 (zh) * | 2022-04-12 | 2023-10-19 | 中兴通讯股份有限公司 | 参考信号传输方法、电子设备和存储介质 |
WO2024164125A1 (zh) * | 2023-02-06 | 2024-08-15 | 北京小米移动软件有限公司 | 参考信号的传输方法及装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023131212A1 (zh) * | 2022-01-07 | 2023-07-13 | 华为技术有限公司 | 一种侧行链路通信方法及装置 |
WO2024103231A1 (zh) * | 2022-11-14 | 2024-05-23 | Oppo广东移动通信有限公司 | Sl prs的发送方法、接收方法、装置、介质及产品 |
WO2024152252A1 (zh) * | 2023-01-18 | 2024-07-25 | 北京小米移动软件有限公司 | 一种基于侧链路的通信方法、装置及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108667580A (zh) * | 2017-03-31 | 2018-10-16 | 华为技术有限公司 | 一种参考信号发送方法、终端设备和接入网设备 |
CN109257810A (zh) * | 2017-07-12 | 2019-01-22 | 华为技术有限公司 | 一种功率控制方法和终端设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109391418B (zh) * | 2017-08-11 | 2021-10-29 | 中国移动通信有限公司研究院 | 信息传输方法、装置、相关设备及计算机可读存储介质 |
-
2019
- 2019-03-28 WO PCT/CN2019/080254 patent/WO2020191774A1/zh active Application Filing
- 2019-03-28 CN CN201980071287.8A patent/CN113228546B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108667580A (zh) * | 2017-03-31 | 2018-10-16 | 华为技术有限公司 | 一种参考信号发送方法、终端设备和接入网设备 |
CN109257810A (zh) * | 2017-07-12 | 2019-01-22 | 华为技术有限公司 | 一种功率控制方法和终端设备 |
Non-Patent Citations (3)
Title |
---|
NTT DOCOMO, INC.: "Sidelink physical layer structures", 3GPP TSG RAN WG1 MEETING #94BIS R1-1811333, 12 October 2018 (2018-10-12), XP051518736, DOI: 20191128162236A * |
QUALCOMM INC.: "Considerations on Physical Layer aspects of NR V2X", 3GPP TSG RAN WG1 MEETING #94BIS R1-1811261, 12 October 2018 (2018-10-12), XP051518664, DOI: 20191128162047A * |
QUALCOMM INC.: "Considerations on Physical Layer aspects of NR V2X", 3GPP TSG RAN WG1 MEETING #94BIS R1-1811261, 12 October 2018 (2018-10-12), XP051518664, DOI: 20191128162347A * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023198030A1 (zh) * | 2022-04-12 | 2023-10-19 | 中兴通讯股份有限公司 | 参考信号传输方法、电子设备和存储介质 |
WO2024164125A1 (zh) * | 2023-02-06 | 2024-08-15 | 北京小米移动软件有限公司 | 参考信号的传输方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113228546B (zh) | 2022-10-28 |
CN113228546A (zh) | 2021-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11463204B2 (en) | Method and apparatus for sidelink transmission in a wireless communication system | |
US11444729B2 (en) | Transmitting feedback for data transmission through a sidelink | |
JP7246396B2 (ja) | データ伝送方法及び装置、コンピュータ記憶媒体 | |
US20210243841A1 (en) | Terminal, base station, system, and feedback method | |
WO2020191774A1 (zh) | 侧行参考信号发送方法及相关产品 | |
US11671982B2 (en) | Method, apparatus, and system for allocating resources in wireless communication system | |
US10674368B2 (en) | Method and apparatus for communication using licensed band and unlicensed band | |
US11297640B2 (en) | Method and apparatus for transmitting/receiving control information in wireless communication system | |
JP7412437B2 (ja) | 情報伝送方法、端末デバイス及びネットワークデバイス | |
KR102322416B1 (ko) | 반복 전송을 위한 방법 및 단말 디바이스 | |
US11540254B2 (en) | Apparatus and method for allocating resources in wireless communication system | |
KR20180113497A (ko) | 서비스 전송 방법 및 장치 | |
WO2014110907A1 (zh) | 控制信道传输、传输处理方法及装置、网络侧设备、终端 | |
US11140698B2 (en) | Data transmission method and Terminal | |
JP7411687B2 (ja) | 伝送モード決定方法及び装置 | |
US12004213B2 (en) | Method and apparatus for adjusting contention window in wireless communication system | |
WO2019140700A1 (zh) | 一种数据传输方法及装置、计算机存储介质 | |
US12082218B2 (en) | Methods and apparatuses for handling configured and dynamic downlink transmissions in a wireless communication network | |
US20240305419A1 (en) | Transport block size determination and code block segmentation for multi-slot transport block transmission | |
CN118199831A (zh) | 资源指示方法、装置和终端 | |
CN111527785A (zh) | 一种信息反馈方法及装置、计算机存储介质 | |
JP2023520688A (ja) | サイドリンク伝送方法及び装置 | |
KR20200036726A (ko) | 무선 통신 시스템에서 사용자 구분을 위한 제어정보 전송 방법 및 장치 | |
WO2021164603A1 (zh) | 辅链路控制信息的资源指示方法与装置、终端设备 | |
US20240357610A1 (en) | Methods and Apparatuses for Handling Configured and Dynamic Downlink Transmissions in a Wireless Communication Network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19920724 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19920724 Country of ref document: EP Kind code of ref document: A1 |