WO2020191555A1 - 电子设备、显示装置及像素结构 - Google Patents

电子设备、显示装置及像素结构 Download PDF

Info

Publication number
WO2020191555A1
WO2020191555A1 PCT/CN2019/079357 CN2019079357W WO2020191555A1 WO 2020191555 A1 WO2020191555 A1 WO 2020191555A1 CN 2019079357 W CN2019079357 W CN 2019079357W WO 2020191555 A1 WO2020191555 A1 WO 2020191555A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic light
display device
camera module
emitting
electronic device
Prior art date
Application number
PCT/CN2019/079357
Other languages
English (en)
French (fr)
Inventor
李华
杨鑫
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/079357 priority Critical patent/WO2020191555A1/zh
Priority to CN201980087440.6A priority patent/CN113287212B/zh
Priority to EP19921086.5A priority patent/EP3907770A4/en
Publication of WO2020191555A1 publication Critical patent/WO2020191555A1/zh
Priority to US17/380,939 priority patent/US20210351242A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • This application relates to the field of electronic technology, in particular to an electronic device, a display device and a pixel structure.
  • the electronic device can use its display screen to display pictures.
  • an opening is provided at the top of the display screen to accommodate the front camera, or the display screen is a special-shaped screen, and the top of the display screen has a groove, and the front camera is set at In the groove, some parts of the display screen, whether it is an opening or a groove, cannot be displayed when displaying images, which affects the display effect.
  • the embodiments of the present application provide an electronic device, a display device, and a pixel structure, which can increase the screen-to-body ratio while obtaining better imaging quality of the camera module.
  • An embodiment of the application provides an electronic device, which includes:
  • a display device the display device includes a plurality of organic light-emitting bodies, each of which has a circular-like structure;
  • the camera module is arranged on the side of the display device away from the display surface, and the camera module collects optical signals through the display device.
  • An embodiment of the present application also provides an electronic device, which includes:
  • the camera module the camera module is arranged on the side of the display device away from the display surface, the display device is multiplexed as the lens of the camera module, and the camera module collects optics through the display device signal.
  • An embodiment of the present application also provides a display device, which includes:
  • a pixel definition layer including a plurality of pixel holes
  • the organic light-emitting layer includes a plurality of organic light-emitting bodies, each of the organic light-emitting bodies is disposed in one of the pixel holes, and each organic light-emitting body has a circular-like structure.
  • An embodiment of the present application also provides a pixel structure, which includes:
  • a pixel definition layer including a plurality of pixel holes
  • the organic light-emitting layer includes a plurality of organic light-emitting bodies, each of the organic light-emitting bodies is disposed in one of the pixel holes, and each organic light-emitting body has a circular-like structure.
  • FIG. 1 is a schematic diagram of the first structure of an electronic device provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a pixel structure of a display device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a partial structure of a pixel structure of a display device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the first structure of a display device provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of cooperation between a display device and a camera module of an electronic device provided by an embodiment of the application.
  • FIG. 6 is another schematic diagram of cooperation between a display device and a camera module of an electronic device provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a second structure of a display device provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a second structure of an electronic device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a pixel definition layer of an electronic device provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a third structure of an electronic device provided by an embodiment of the application.
  • the electronic device 100 includes a housing 120, a display device 140, and a camera module 160.
  • the display device 140 is disposed on the housing 120.
  • the housing 120 may include a back cover (not shown in the figure) and a frame 124.
  • the frame 124 is disposed around the periphery of the back cover, and the display device 140 is disposed in the frame 124.
  • the display device 140 and the back cover can be used as two opposite sides of the electronic device 100.
  • the camera module 160 is disposed between the back cover of the housing 120 and the display device 140.
  • the display device 140 includes a display surface 146, and the camera module 160 is arranged on the side of the display device 140 away from the display surface 146.
  • the camera module 160 collects optical signals through the display device 140, and according to the acquired optical signals Get the image.
  • the camera module 160 may be used as a front camera module of the electronic device 100, and the camera module 160 may obtain images such as a user's selfie through the display device 140.
  • the display device includes a plurality of organic light-emitting bodies 2522, and each organic light-emitting body 2522 has a circular-like structure.
  • the camera module 160 is disposed on a side of the display device 140 away from the display surface, and the camera module 160 collects optical signals through the display device 140.
  • each organic light-emitting body 2522 of the display device 140 in the related art is rectangular, when a light signal passes through a plurality of rectangular organic light-emitting bodies 2522, the microstructure of the light signal will cause diffraction of the light signal.
  • the circular-like structure of the organic light-emitting body 2522 in this embodiment can reduce the diffraction effect, so that the corresponding camera module can obtain high-quality optical signals and obtain high-quality images.
  • the plurality of organic light-emitting bodies 2522 may also be arranged non-periodically. Since the multiple organic light-emitting bodies 2522 of the display device 140 in the related art have a periodic pixel microstructure, when the light signal passes through the multiple organic light-emitting bodies 2522 of the periodic structure, the microstructure of the light signal will cause diffraction of the light signal.
  • the non-periodically arranged organic light-emitting body 2522 of the circular-like structure of this embodiment can reduce the diffraction effect, so that the corresponding camera module 160 can obtain high-quality optical signals and obtain high-quality images.
  • the plurality of organic light-emitting bodies 2522 may include organic light-emitting bodies 2522 of multiple colors, such as a plurality of red organic light-emitting bodies R, a plurality of green organic light-emitting bodies G, and a plurality of blue organic light-emitting bodies B.
  • the red organic light-emitting body R, the green organic light-emitting body G, and the blue organic light-emitting body B need to be arranged in groups.
  • Each group includes a red organic light-emitting body R and a green organic light-emitting body.
  • Organic light-emitting body G and a blue organic light-emitting body B The organic light-emitting bodies 2522 of the same color are not arranged adjacently. It can also be understood that the organic light-emitting bodies 2522 of one color are adjacent to the organic light-emitting bodies 2522 of the other two colors.
  • the non-periodical arrangement of the plurality of organic light-emitting bodies 2522 can be understood as meaning that the organic light-emitting bodies 2522 in two adjacent rows are not aligned in columns, and the organic light-emitting bodies 2522 in two adjacent columns are not aligned in rows.
  • the plurality of organic light-emitting bodies 2522 may be formed to include multiple rows, and the projection of each organic light-emitting body 2522 of a row on an adjacent row is located between two adjacent organic light-emitting bodies 2522 of the adjacent row, which can also be understood as Line staggered setting.
  • the plurality of organic light-emitting bodies 2522 includes the N-th row and the N+1-th row of organic light-emitting bodies 2522, wherein the M-th organic light-emitting body 2522 in the N-th row is the same as the M-1th row in the N+1-th row.
  • the M-th organic light-emitting body 2522 are in a magenta shape, or the M-th organic light-emitting body 2522 in the N-th row is in a magenta-shape with the M-th and M+1-th organic light-emitting bodies 2522 in the N+1-th row.
  • the M-th organic light-emitting body 2522 in the Nth row and the two organic light-emitting bodies 2522 in the N+1th row adjacent to it form a magenta shape.
  • the three organic light-emitting bodies 2522 in the finished font include a red organic light-emitting body R, a green organic light-emitting body G, and a blue organic light-emitting body B.
  • the three organic light-emitting bodies 2522 of the finished glyph are mixed according to the three primary colors to obtain the color to be displayed.
  • each organic light-emitting body 2522 may have a circular-like structure, such as any of a regular hexagon, a regular octagon, a circle, an ellipse, and a rounded rectangle. Among them, any two adjacent sides in a regular hexagon and a regular octagon are arc transitional connections.
  • the organic light-emitting body 2522 with a similar circular structure can effectively reduce the influence of diffraction on the photography of the under-screen camera module.
  • the distance between two adjacent organic light-emitting bodies 2522 ranges from 10 ⁇ m to 30 ⁇ m, and the distance from the center of each organic light-emitting body 2522 to its edge ranges from 25 ⁇ m to 45 ⁇ m.
  • the organic light-emitting body 2522 is circular, and the distance from the center of each organic light-emitting body 2522 to its edge ranges from 25 ⁇ m to 45 ⁇ m, it can be understood that the radius of the organic light-emitting body 2522 ranges from 25 ⁇ m to 45 ⁇ m. If the organic light-emitting body 2522 is a rectangle with rounded corners, and the distance from the center of each organic light-emitting body 2522 to its edge is in the range of 25 micrometers to 45 micrometers, it can be understood as the first from the center of the organic light-emitting body 2522 to its nearest edge.
  • the distance ranges from 25 microns to 40 microns, and the second distance from the center of the organic light-emitting body 2522 to the farthest edge thereof ranges from 35 microns to 45 microns, wherein the first distance is smaller than the second distance.
  • Each organic light-emitting body 2522 has a first size in the first direction, and each organic light-emitting body 2522 has a second size in the second direction. There is a first distance between two adjacent organic light-emitting bodies 2522 in the first direction, and a second distance between two adjacent organic light-emitting bodies 2522 in the second direction. Wherein, the first size may be larger than the first pitch, and the second size may be larger than the second pitch. In this way, the diffraction effect through the plurality of organic light-emitting bodies 2522 can be improved.
  • the figure shows a diagram of three organic light-emitting bodies 2522 in a magenta shape.
  • the fringe structure is a non-periodic structure.
  • the first dimension a long axis
  • the first spacing h1 can be 10 to 30 microns
  • the second dimension b short axis
  • the second spacing h2 can be from 15 microns to 20 microns.
  • the midpoint of the first pitch of the two adjacent organic light-emitting bodies 2522 of one row and the bottom end of the organic light-emitting body 2522 of the previous row are the second pitch h2.
  • the radius of the organic light-emitting body 2522 may be 35 ⁇ m to 45 ⁇ m
  • the distance between two adjacent organic light-emitting bodies 2522 in a row is 10 ⁇ m to 30 ⁇ m
  • the two adjacent rows The pitch of the organic light-emitting bodies 2522 is 10 ⁇ m to 30 ⁇ m.
  • the pitch of the two organic light-emitting bodies 2522 adjacent in rows or columns can be understood as the distance between the two closest points of the two organic light-emitting bodies 2522.
  • the display device includes a pixel definition layer 250 and an organic light emitting layer 252.
  • the pixel defining layer 250 includes a plurality of pixel holes 2502, and the organic light-emitting layer 252 includes a plurality of organic light-emitting bodies 2522, and each organic light-emitting body 2522 is correspondingly disposed in a pixel hole 2502.
  • the shape of the pixel hole 2502 can be adapted to the shape of the organic light-emitting body 2522.
  • the pixel hole 2502 and the organic light-emitting body 2522 are both similar to circular.
  • a circular pixel hole 2502 is provided on the pixel defining layer 250, and an organic light-emitting material is filled in the pixel hole 2502 to form a circular electroluminescent body 2522.
  • the shape of the pixel hole 2502 may be different from the shape of the organic light-emitting body 2522.
  • the shape of the pixel hole 2502 is a regular polygon and the shape of the organic light-emitting body 2522 is a circle.
  • the bottom surface 148 of the display device 140 close to the camera module is a curved surface, and the display device 140 is multiplexed as a lens (such as an encapsulated lens) of the camera module 160.
  • the display device 140 is multiplexed as an encapsulated lens of the camera module 160, that is, as the outermost lens of the camera module 160 for optical signal transmission.
  • the display device can be used as a lens (such as an encapsulated lens) of the lens 162 of the camera module 160.
  • the display device 140 includes a first substrate 220, an anode metal layer 240, a pixel definition layer 250, a common electrode layer 260, and a second substrate 280 that are stacked.
  • the pixel defining layer 250 and the organic light emitting layer 252 are disposed between the anode metal layer 240 and the common electrode layer 260.
  • the anode metal layer 240 and the common electrode layer 260 cooperate to drive the organic light emitting layer 252 so that the organic light emitting layer 252 can display various images.
  • the bottom surface 148 of the first substrate 220 on the side close to the camera module 160 is curved and protrudes toward the camera module 160, and the first substrate 220 is multiplexed as a lens of the camera module 160 such as a package lens.
  • the optical signal passing through the first substrate 220 can be refracted in a larger range.
  • the bottom surface 148 of the first substrate 220 on the side close to the camera module 160 protrudes toward the camera module model 160.
  • the first substrate 220 can be used as a lens of the lens 162 to achieve large aperture and high image quality imaging.
  • the surface of the first substrate 220 facing away from the camera module 160 may be a flat surface.
  • the bottom surface of the display device 140 facing the lens 162 is a curved surface, and can distribute light output more freely according to design requirements, utilize light flux more efficiently, and reduce unnecessary waste and glare. It is also possible to set the focal point of the light signal passing through the display device on the same plane, so that the starting point of incident on other lenses is on the same plane, similar to natural light directly incident on other lenses. It can be understood that the bottom surface of the display device 140 facing the lens 162 is a curved surface. Please refer to FIG.
  • the focal points of the light signal transmitted through the display device 140 are distributed in different positions, not on the same plane, which can also be understood as a light signal After passing through different positions of the display device 140, there is an optical path difference, which affects the imaging quality.
  • a unidirectional light-transmitting film 290 is provided on the surface of the second substrate 280 to prevent the light entering the camera module from being reflected by the display device.
  • the unidirectional light-transmitting film 290 may be disposed on the side of the second substrate 280 facing the first substrate 220, or may be disposed on the side of the second substrate 280 away from the first substrate 220.
  • the unidirectional light-transmitting film 290 can realize the unidirectional transmission of light signals. It is realized that the optical signal can only penetrate from one side of the second substrate 280 to the other side.
  • the optical signal can only enter the display device through the second substrate 280 from the outside of the display device, but cannot enter the display device through the second substrate 280 from the inside of the display device.
  • the unidirectional light-transmitting film 290 may be provided on the surface of the second substrate 280 by coating or the like.
  • the second substrate 280 is also subjected to unidirectional transmission optical processing. It can also be understood that the external light signal can penetrate the display device and enter the camera module, but the light signal inside will not be reflected. In this way, when the display device is displaying normally, the light spot reflected by the optical surface of the lens part of the camera module will be blocked by the unidirectional light-transmitting film 290, and the actual display effect will not be affected. When the camera module is working, the optical signal can freely pass through the transparent display device and enter the camera module for normal optical imaging without affecting the photographing and video effects.
  • the refractive indexes of the light-transmissive layers of the display device are the same. Specifically, the refractive index of the first substrate 220, the anode metal layer 240, the organic light emitting layer 252, the common electrode layer 260, and the second substrate 280 of the display device are approximately the same. It should be noted that because each layer has a variety of optional materials, it is possible that only some of the layers have substantially the same refractive index as required, that is, the first substrate 220, the anode metal layer 240, and the organic light-emitting layer 252 of the display device. The refractive index of at least two items of the common electrode layer 260 and the second substrate 280 are approximately the same. The same refractive index can make the optical path of the light entering the display device at different positions approximately the same, thereby reducing the optical path difference and improving the imaging quality.
  • the display device is composed of a multi-layer structure, and the materials selected for each layer are different, and accordingly, the refractive index of each layer is different; when parallel light enters the functional area through each layer, because the refractive index of each layer material is different, scattering occurs. As a result, the image obtained by the camera module under the screen is blurred. Choosing materials with close refractive index for each layer can weaken this blurring phenomenon and improve the image quality obtained by the camera module under the transparent screen.
  • An anti-reflection film 210 can also be added on the first substrate 220, which can increase the light transmittance of the display device while improving the image definition.
  • the refractive indexes of the light-transmissive layers of the display device are the same. Because each layer has a variety of optional materials, all according to needs can only partially have the same refractive index, that is, the first substrate 220 of the display device, the antireflection film 210, the thin film 230, the planarization layer 244, the pixel
  • the refractive index of at least two of the definition layer 250, the common electrode layer 260, the light extraction material layer 270, the unidirectional light-transmitting film 290, and the second substrate 280 are approximately the same.
  • the light signal transmitted through the display device is more conducive to imaging.
  • the anode metal layer 240 includes a first anode metal layer 242, a planarization layer 244, and a second anode metal layer 246.
  • the first anode metal layer 242 is provided between the planarization layer 244 and the pixel definition layer 250, and the second anode metal layer 246 is provided between the planarization layer 244 and the first substrate 220.
  • the refractive index of each light-transmitting layer of the display device is approximately the same, and it can be understood that the refractive index of the planarization layer and other layers are approximately the same.
  • both the first substrate 220 and the second substrate 280 may be colorless and transparent substrates, specifically materials such as glass and resin may be used.
  • the first substrate 220 and the second substrate 280 may also be flexible substrates, and the display device as a whole is flexible Display device.
  • the display device 140 further includes a thin film transistor 248, which is respectively connected to the first anode metal layer 242, the second anode metal layer 246 and the organic light emitting layer 252, the first anode metal layer 242, the second anode metal layer 246 and the organic light emitting layer 252 is connected to different poles of the thin film transistor 248, respectively.
  • an anti-reflection film 210 is provided on the surface of the first substrate 220.
  • the antireflection film 210 may be disposed on the side of the first substrate 220 facing the second substrate 280, or may be disposed on the side of the first substrate 220 away from the second substrate 280.
  • the anti-reflection film 210 may be plated on the surface of the first substrate 220. The antireflection film 210 can increase the light transmittance of the display device.
  • the display device further includes a thin film 230 disposed between the first substrate 220 and the anode metal layer 240.
  • the thin film 230 may be made of SiNx or SiO2.
  • the display device 140 further includes a light extraction material layer (capping layer, CPL) 270.
  • the light extraction material layer 270 is disposed between the second substrate 280 and the common electrode layer 260.
  • the display device 140 may include the thin film 230 and the light extraction material layer 270, or may not include the thin film 230 and/or the light extraction material layer 270.
  • the display device 140 may include a functional area 132 and a main body area 134.
  • the area of the functional area 132 is smaller than that of the main body area 134, and the light transmittance of the functional area 132 is greater than that of the main body area 134.
  • the camera module 160 is arranged opposite to the functional area 132, and the camera module 160 collects optical signals through the functional area 132.
  • the light transmittance of the functional area 132 can be greater than 60%.
  • the image enhancement algorithm can be used to improve the brightness of the image obtained by the camera module head, thereby improving the quality of the image under the screen, and making it Close to an image that is not captured through the display device.
  • the light transmittance of the functional area 132 is greater than 60% as an illustrative example. In some other embodiments, other values may be selected, such as greater than 50%, 65%, 70%, etc.
  • the bottom surface of the display device 140 on the side close to the lens 162 is curved. It can be understood that the bottom surface can be all curved or partially curved. Considering the correspondence with the functional area 132, when the bottom surface is partially curved At this time, the area of the curved surface is the area of the functional area 132.
  • the functional area 132 is connected to the first drive module 1444
  • the main body area 134 is connected to the second drive module 1442
  • the first drive module 1444 drives the functional area 132 of the display device 240
  • the second drive module 1442 drives the main area of the display device 240 134.
  • the first driving module 1442 and the second driving module 1444 can be driven in cooperation to make the functional area 132 and the main body area 134 display the same image together.
  • the functional area 132 displays a part of the image
  • the main body area 134 displays the remaining part of the image.
  • the first driving module 1444 drives the functional area 132 to close the display, and the second driving module 1442 can continue to drive the main body area 134 to display images or drive the main body area 134 to close the display.
  • the camera module 160 closes the display by closing
  • the displayed functional area 132 obtains external light signals, and obtains images according to the light signals.
  • the pixel definition layer 250 includes a first portion 254 and a second portion 256.
  • the first part 254 corresponds to the functional area
  • the second part 256 corresponds to the main body area.
  • the area of the first portion 254 is smaller than the area of the second portion 256, and the light transmittance of the first portion 254 is greater than the light transmittance of the second portion.
  • the camera module 160 can obtain a light signal through the first part 254 of the display device 140, and form an image according to the light signal.
  • the first portion 254 is located at the end of the pixel definition layer 250.
  • the first part 254 may be located at the top, bottom or side of the pixel definition layer 250.
  • the pixel definition layer 250 is rectangular
  • the second part 256 is a rectangle with a gap
  • the first part 254 is disposed in the gap.
  • the notch may be provided on the top edge or bottom edge or side edge of the second part 256.
  • the first part 254 can also be arranged in the middle of the pixel definition layer 250, or it can be understood that the second part 256 has a through hole penetrating the second part 256 in the thickness direction, and the first part 254 is arranged in the through hole.
  • the camera module 160 is set corresponding to the first part, the camera module 160 can obtain the light signal through the first part 254 of the display device 140, and the light transmittance of the display device 140 corresponding to the first part 254 is greater than the display corresponding to the second part.
  • the distribution density of the organic light-emitting body 2522 corresponding to the first part 254 is smaller, that is, the distribution density of the organic light-emitting body 2522 of the first part 254 is smaller than the distribution density of the organic light-emitting body 2522 corresponding to the second part 256.
  • the distribution density of the organic light-emitting body 2522 corresponding to the first part 254 is smaller, and the distribution density of the opaque thin film transistor 248 corresponding to the organic light-emitting body 2522 is also smaller, thereby improving the transparency of the display device 140 corresponding to the first part. Light rate.
  • the pixel density of the organic light-emitting body 2522 of the first portion 254 is less than the pixel density of the organic light-emitting body 2522 of the second portion 256. It can also be understood that the distribution density of the organic light-emitting body 2522 of the first part 254 is smaller than the respective density of the organic light-emitting body 2522 of the second part 256.
  • each organic light-emitting body 2522 is provided with a thin film transistor 248 corresponding to the thin film transistor 248, which is opaque.
  • the distribution density of the organic light-emitting body 2522 of the first part 254 is smaller, and the distribution density of the corresponding thin film transistor 248 is also smaller. Therefore, the light transmittance of the first portion 254 is greater than the light transmittance of the second portion 256.
  • the electronic device 100 further includes a processor 180, and both the display device 140 and the camera module 160 are electrically connected to the processor 180; when a shooting instruction is received, the processor 180 controls the functional area 132 to turn off the display, and The camera module 160 is controlled to collect images through the functional area 132; when no shooting instruction is received and an image display instruction is received, the processor 180 controls the functional area 132 and the main body area 134 to display images together.
  • the functional area 132 and the main body area 134 are mainly different in the pixel definition layer.
  • the functional area 132 and the main body area 134 may share the same first substrate 220, second substrate 280, and so on.
  • the anode metal layer 240 corresponding to the first part 254 can be made of a material with high light transmission, such as ITO, nano silver, etc.
  • the anode metal layer 240 corresponding to the second part 256 may be made of a material with high light transmission, or a material with low light transmission or opaque.
  • the display device includes a first display panel 1422 and a second display panel 1424.
  • the first display panel 1422 is provided with a notch 110, and the notch 110 penetrates the first display panel 1422 in the thickness direction.
  • a display panel 1422, and the first display panel 1422 is a display panel 142 normally displayed.
  • the second display panel 1424 is disposed in the gap 110, the second display panel 1424 corresponds to the functional area of the display device 240, and the first display panel 1422 corresponds to the main body area of the display device 240.
  • the camera module 160 of the electronic device 100 is disposed between the housing and the second display panel 1424. The camera module 160 obtains the light signal passing through the second display panel 1424, and obtains an image according to the obtained light signal.
  • the first display panel 1422 and the second display panel 1424 are two independent display panels.
  • the first display panel 1422 and the second display panel 1424 are manufactured respectively, and then the second display panel 1424 is placed on the first display panel 1422 Within the gap 110.
  • first display panel 1422 is connected to the second driving module 1442
  • second display panel 1424 is connected to the first driving module 1444
  • first driving module 1444 drives the second display panel 1424
  • second driving module 1442 drives the A display panel 1422
  • the first driving module 1442 and the second driving module 1444 cooperate to drive, so that the first display panel 1422 and the second display panel 1424 can display the same image together. If the first display panel 1422 displays a part of the image, the second display panel 1424 displays the remaining part of the image.
  • the first drive module 1444 drives the second display panel 1424 to turn off the display
  • the second drive module 1442 can continue to drive the first display panel 1422 to display images
  • the camera module closes the displayed second display panel 1424 obtains external light signals and obtains images according to the light signals.
  • the electronic device 100 includes a housing 120, a display device 140, and a camera module 160.
  • the display device 140 is disposed on the housing 120.
  • the housing 120 may include A back cover (not shown in the figure) and a frame 124.
  • the frame 124 is arranged around the periphery of the back cover.
  • the display device 140 is arranged in the frame 124.
  • the display device 140 and the back cover can be used as two opposite sides of the electronic device 100.
  • the camera module 160 is disposed between the back cover of the housing 120 and the display device 140. It can also be understood that the display device 140 includes a display surface 146, and the camera module 160 is arranged on the side of the display device 140 away from the display surface 146.
  • the camera module 160 collects optical signals through the display device 140, and according to the acquired optical signals Get the image.
  • the camera module 160 may be used as a front camera module of the electronic device 100, and the camera module 160 may obtain images such as a user's selfie through the display device 140.
  • the display device 140 is multiplexed as a lens (encapsulated lens) of the camera module 160, and the camera module 160 collects optical signals through the display device 140.
  • the bottom surface 148 of the display device 140 close to the camera module 160 is a curved surface, and the display device 140 is multiplexed as a lens (such as an encapsulated lens) of the camera module 160.
  • the display device 140 is multiplexed as an encapsulated lens of the camera module 160, that is, as the outermost lens of the camera module 160 for optical signal transmission.
  • the display device 140 can be used as a lens (such as an encapsulated lens) of the lens of the camera module 160.
  • the display device 140 includes a first substrate 220, an anode metal layer 240, a pixel definition layer 250, a common electrode layer 260, and a second substrate 280 that are stacked.
  • the pixel defining layer 250 and the organic light emitting layer 252 are disposed between the anode metal layer 240 and the common electrode layer 260.
  • the anode metal layer 240 and the common electrode layer 260 cooperate to drive the organic light emitting layer 252 so that the organic light emitting layer 252 can display various images.
  • the bottom surface 148 of the first substrate 220 close to the camera module 160 is curved and protrudes toward the camera module 160, and the first substrate 220 is multiplexed as a lens (such as a package lens) of the camera module 160.
  • the first substrate 220 is multiplexed as the package lens of the camera module 160, that is, as the outermost lens of the camera module for optical signal transmission.
  • the optical signal passing through the first substrate 220 can be refracted in a larger range.
  • the bottom surface 148 on the side of the first substrate 220 close to the camera module 160 protrudes toward the camera module 160.
  • the first substrate 220 can be used as a lens of the lens 162 to realize a large aperture and high-quality imaging.
  • the surface of the first substrate 220 facing away from the camera module 160 may be a flat surface.
  • the display device 140 has a curved surface facing the lens 162, and can distribute light output more freely according to design requirements, use light flux more efficiently, and reduce unnecessary waste and glare. It is also possible to set the focal point of the light signal transmitted through the display device 140 on the same plane, so that the starting point of incident on other lenses is on the same plane, similar to natural light directly incident on other lenses. Please refer to FIG. 6, in other embodiments of the present application, when both sides of the display device 140 are flat, the focal points of the light signal transmitted through the display device are distributed in different positions and are not on the same plane, which can also be understood as the light signal transmission. There is an optical path difference after passing through different positions of the display device 140, which affects the imaging quality. Wherein, the specific structure of the display device 140 is the same as the electronic device provided in the foregoing embodiment, and will not be repeated here.
  • the display device includes a pixel definition layer 250 and an organic light emitting layer 252.
  • the pixel defining layer 250 includes a plurality of pixel holes 2502, and the organic light-emitting layer 252 includes a plurality of organic light-emitting bodies 2522, and each organic light-emitting body 2522 is correspondingly disposed in a pixel hole 2502.
  • the shape of the pixel hole 2502 can be adapted to the shape of the organic light-emitting body 2522.
  • the organic light emitting bodies 2522 are all round-like.
  • a circular pixel hole 2502 is provided on the pixel defining layer 250, and an organic light-emitting material is filled in the pixel hole 2502 to form a circular electroluminescent body 2522.
  • the shape of the pixel hole 2502 may be different from the shape of the organic light-emitting body 2522.
  • the shape of the pixel hole 2502 is a regular polygon and the shape of the organic light-emitting body 2522 is a circle.
  • a plurality of organic light-emitting bodies 2522 are arranged non-periodically, and each organic light-emitting body 2522 has a circular-like structure.
  • each organic light-emitting body 2522 of the display device in the related art is a matrix, when the light signal passes through a plurality of rectangular organic light-emitting bodies 2522, the microstructure of the light signal will cause diffraction of the light signal.
  • the circular-like structure of the organic light-emitting body 2522 of this embodiment can reduce the diffraction effect and improve the diffraction effect of the light signal transmitted through the display device.
  • the plurality of organic light-emitting bodies 2522 may also be arranged non-periodically. Since the plurality of organic light-emitting bodies 2522 of the display device in the related art have a periodic pixel microstructure, when the light signal passes through the plurality of organic light-emitting bodies 2522 of the periodic structure, the microstructure of the light signal will cause diffraction of the light signal.
  • the non-periodically arranged circular-like structure of the organic light-emitting body 2522 in this embodiment can reduce the diffraction effect, so that the corresponding camera module can obtain high-quality optical signals and obtain high-quality images.
  • the plurality of organic light-emitting bodies 2522 may include organic light-emitting bodies 2522 of multiple colors, such as a plurality of red organic light-emitting bodies R, a plurality of green organic light-emitting bodies G, and a plurality of blue organic light-emitting bodies B.
  • the red organic light-emitting body R, the green organic light-emitting body G, and the blue organic light-emitting body B need to be arranged in groups.
  • Each group includes a red organic light-emitting body R and a green organic light-emitting body.
  • Organic light-emitting body G and a blue organic light-emitting body B The organic light-emitting bodies 2522 of the same color are not arranged adjacently. It can also be understood that the organic light-emitting bodies 2522 of one color are adjacent to the organic light-emitting bodies 2522 of the other two colors.
  • the non-periodical arrangement of the plurality of organic light-emitting bodies 2522 can be understood as meaning that the organic light-emitting bodies 2522 in two adjacent rows are not aligned in columns, and the organic light-emitting bodies 2522 in two adjacent columns are not aligned in rows.
  • the plurality of organic light-emitting bodies 2522 may be formed to include multiple rows, and the projection of each organic light-emitting body 2522 of a row on an adjacent row is located between two adjacent organic light-emitting bodies 2522 of the adjacent row, which can also be understood as Line staggered setting.
  • the plurality of organic light-emitting bodies 2522 includes the N-th row and the N+1-th row of organic light-emitting bodies 2522, wherein the M-th organic light-emitting body 2522 in the N-th row is the same as the M-1th row in the N+1-th row.
  • the M-th organic light-emitting body 2522 are in a magenta shape, or the M-th organic light-emitting body 2522 in the N-th row is in a magenta-shape with the M-th and M+1-th organic light-emitting bodies 2522 in the N+1-th row.
  • the M-th organic light-emitting body 2522 in the Nth row and the two organic light-emitting bodies 2522 in the N+1th row adjacent to it form a magenta shape.
  • the three organic light-emitting bodies 2522 in the finished font include a red organic light-emitting body R, a green organic light-emitting body G, and a blue organic light-emitting body B.
  • the three organic light-emitting bodies 2522 of the finished glyph are mixed according to the three primary colors to obtain the color to be displayed.
  • each organic light-emitting body 2522 may have a circular-like structure, such as any of a regular hexagon, a regular octagon, a circle, an ellipse, and a rounded rectangle. Among them, in one embodiment, any two adjacent sides of a regular hexagon and a regular octagon are connected by a circular arc transition.
  • the organic light-emitting body 2522 with a similar circular structure can effectively reduce the influence of diffraction on the photography of the under-screen camera module.
  • the distance between two adjacent organic light-emitting bodies 2522 ranges from 10 ⁇ m to 30 ⁇ m, and the distance from the center of each organic light-emitting body 2522 to its edge ranges from 25 ⁇ m to 45 ⁇ m.
  • the structure, size and spacing of the organic light-emitting body can adopt the similar structure of the above-mentioned embodiment, and will not be repeated here.
  • the present application also provides a pixel structure. Please continue to refer to FIG. 2.
  • the pixel structure includes a pixel definition layer 250 and an organic light emitting layer 252.
  • the pixel defining layer 250 includes a plurality of pixel holes 2502, and the organic light-emitting layer 252 includes a plurality of organic light-emitting bodies 2522, and each organic light-emitting body 2522 is correspondingly disposed in a pixel hole 2502.
  • the shape of the pixel hole 2502 can be adapted to the shape of the organic light-emitting body 2522. For example, all are round, oval or rounded rectangle.
  • a circular pixel hole 2502 is provided on the pixel defining layer 250, and an organic light-emitting material is filled in the pixel hole 2502 to form an organic light-emitting body 2522.
  • the shape of the pixel hole 2502 may be different from the shape of the organic light-emitting body 2522.
  • the shape of the pixel hole 2502 is a regular polygon and the shape of the organic light-emitting body 2522 is a circle.
  • each organic light-emitting body 2522 has a circular-like structure.
  • each organic light-emitting body 2522 of the display device in the related art is a matrix, when the light signal passes through a plurality of rectangular organic light-emitting bodies 2522, the microstructure of the light signal will cause diffraction of the light signal.
  • the circular-like structure of the organic light-emitting body 2522 of this embodiment can reduce the diffraction effect, so that the corresponding camera module can obtain high-quality optical signals and obtain high-quality images.
  • the plurality of organic light-emitting bodies 2522 may also be arranged non-periodically. Since the plurality of organic light-emitting bodies 2522 of the display device in the related art have a periodic pixel microstructure, when the light signal passes through the plurality of organic light-emitting bodies 2522 of the periodic structure, the microstructure of the light signal will cause diffraction of the light signal.
  • the non-periodically arranged organic light-emitting body 2522 of the circular-like structure of this embodiment can reduce the diffraction effect, so that the corresponding camera module can obtain high-quality optical signals and obtain high-quality images.
  • the plurality of organic light-emitting bodies 2522 may include organic light-emitting bodies 2522 of multiple colors, such as a plurality of red organic light-emitting bodies R, a plurality of green organic light-emitting bodies G, and a plurality of blue organic light-emitting bodies B.
  • the red organic light-emitting body R, the green organic light-emitting body G, and the blue organic light-emitting body B need to be arranged in groups.
  • Each group includes a red organic light-emitting body R and a green organic light-emitting body.
  • Organic light-emitting body G and a blue organic light-emitting body B The organic light-emitting bodies 2522 of the same color are not arranged adjacently. It can also be understood that the organic light-emitting bodies 2522 of one color are adjacent to the organic light-emitting bodies 2522 of the other two colors.
  • the non-periodical arrangement of the plurality of organic light-emitting bodies 2522 can be understood as meaning that the organic light-emitting bodies 2522 in two adjacent rows are not aligned in columns, and the organic light-emitting bodies 2522 in two adjacent columns are not aligned in rows.
  • the plurality of organic light-emitting bodies 2522 may be formed to include multiple rows, and the projection of each organic light-emitting body 2522 of a row on an adjacent row is located between two adjacent organic light-emitting bodies 2522 of the adjacent row, which can also be understood as Line staggered setting.
  • the plurality of organic light-emitting bodies 2522 includes the N-th row and the N+1-th row of organic light-emitting bodies 2522, wherein the M-th organic light-emitting body 2522 in the N-th row is the same as the M-1th row in the N+1-th row.
  • the M-th organic light-emitting body 2522 are in a magenta shape, or the M-th organic light-emitting body 2522 in the N-th row is in a magenta-shape with the M-th and M+1-th organic light-emitting bodies 2522 in the N+1-th row.
  • the M-th organic light-emitting body 2522 in the N-th row and the two organic light-emitting bodies 2522 in the N+1-th row adjacent thereto form a magenta shape.
  • the three organic light-emitting bodies 2522 in the finished font include a red organic light-emitting body R, a green organic light-emitting body G, and a blue organic light-emitting body B.
  • the three organic light-emitting bodies 2522 of the finished font are mixed according to the three primary colors to obtain the color to be displayed.
  • each organic light-emitting body 2522 may have a circular-like structure, such as any of a regular hexagon, a regular octagon, a circle, an ellipse, and a rounded rectangle. Among them, any two adjacent sides of a regular hexagon and a regular octagon are arc transitional connections.
  • the organic light-emitting body 2522 with a similar circular structure can effectively reduce the influence of diffraction on the photography of the under-screen camera module.
  • the distance between two adjacent organic light-emitting bodies 2522 ranges from 10 ⁇ m to 30 ⁇ m, and the distance from the center of each organic light-emitting body 2522 to its edge ranges from 25 ⁇ m to 45 ⁇ m.
  • the organic light-emitting body 2522 is circular, and the distance from the center of each organic light-emitting body 2522 to its edge ranges from 25 ⁇ m to 45 ⁇ m, it can be understood that the radius of the organic light-emitting body 2522 ranges from 25 ⁇ m to 45 ⁇ m. If the organic light-emitting body 2522 is a rectangle with rounded corners, and the distance from the center of each organic light-emitting body 2522 to its edge is in the range of 25 micrometers to 45 micrometers, it can be understood as the first from the center of the organic light-emitting body 2522 to its nearest edge.
  • the distance ranges from 25 microns to 40 microns, and the second distance from the center of the organic light-emitting body 2522 to the farthest edge thereof ranges from 35 microns to 45 microns, wherein the first distance is smaller than the second distance.
  • Each organic light-emitting body 2522 has a first size in the first direction, and each organic light-emitting body 2522 has a second size in the second direction. There is a first distance between two adjacent organic light-emitting bodies 2522 in the first direction, and a second distance between two adjacent organic light-emitting bodies 2522 in the second direction. Wherein, the first size may be larger than the first pitch, and the second size may be larger than the second pitch. In this way, the diffraction effect through the plurality of organic light-emitting bodies 2522 can be improved.
  • FIG. 3 For the convenience of understanding, a figure of three organic light-emitting bodies 2522 in a magenta shape is shown in the figure.
  • the fringe structure is a non-periodic structure.
  • the first dimension a long axis
  • the first spacing h1 can be 10 to 30 microns
  • the second dimension b short axis
  • the second spacing h2 can be from 15 microns to 20 microns.
  • the midpoint of the first pitch of the two adjacent organic light-emitting bodies 2522 of one row and the bottom end of the organic light-emitting body 2522 of the previous row are the second pitch h2.
  • the radius of the organic light-emitting body 2522 may be 35 ⁇ m to 45 ⁇ m
  • the distance between two adjacent organic light-emitting bodies 2522 in a row is 10 ⁇ m to 30 ⁇ m
  • the two adjacent rows The pitch of the organic light-emitting bodies 2522 is 10 ⁇ m to 30 ⁇ m.
  • the pitch of the two organic light-emitting bodies 2522 adjacent in rows or columns can be understood as the distance between the two closest points of the two organic light-emitting bodies 2522.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种电子设备、显示装置及像素结构,电子设备包括显示装置和摄像头模组,显示装置包括多个有机发光体,每一有机发光体为类圆形结构;摄像头模组设置在显示装置远离显示面的一侧,显示装置复用为摄像头模组的镜片,摄像头模组透过显示装置采集光学信号。

Description

电子设备、显示装置及像素结构 技术领域
本申请涉及电子技术领域,特别涉及一种电子设备、显示装置及像素结构。
背景技术
随着通信技术的发展,诸如智能手机等电子设备越来越普及。在电子设备的使用过程中,电子设备可以采用其显示屏显示画面。
相关技术中,为了得到更大的屏占比,在显示屏的顶部位置设置开孔以容纳前置摄像头,或者显示屏为异形屏,异形屏的显示屏顶部具有凹槽,前置摄像头设置于该凹槽内,无论是开孔还是设置凹槽的显示屏在显示图像时都有部分无法显示,影响显示效果。
发明内容
本申请实施例提供一种电子设备、显示装置及像素结构,可以提高屏占比的同时摄像头模组获取较好的成像质量。
本申请实施例提供一种电子设备,其包括:
显示装置,所述显示装置包括多个有机发光体,每一有机发光体为类圆形结构;
摄像头模组,所述摄像头模组设置在所述显示装置远离显示面的一侧,所述摄像头模组透过所述显示装置采集光学信号。
本申请实施例还提供一种电子设备,其包括:
显示装置;
摄像头模组,所述摄像头模组设置在所述显示装置远离显示面的一侧,所述显示装置复用为所述摄像头模组的镜片,所述摄像头模组透过所述显示装置采集光学信号。
本申请实施例还提供一种显示装置,其包括:
像素定义层,所述像素定义层包括多个像素孔;
有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,每一有机发光体为类圆形结构。
本申请实施例还提供一种像素结构,其包括:
像素定义层,所述像素定义层包括多个像素孔;
有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,每一有机发光体为类圆形结构。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子设备的第一种结构示意图。
图2为本申请实施例提供的显示装置的像素结构的结构示意图。
图3为本申请实施例提供的显示装置的像素结构的局部结构示意图。
图4为本申请实施例提供的显示装置的第一种结构示意图。
图5为本申请实施例提供的电子设备的显示装置和摄像头模组配合示意图。
图6为本申请实施例提供的电子设备的显示装置和摄像头模组另一配合示意图。
图7为本申请实施例提供的显示装置的第二种结构示意图。
图8为本申请实施例提供的电子设备的第二种结构示意图。
图9为本申请实施例提供的电子设备的像素定义层的结构示意图。
图10为本申请实施例提供的电子设备的第三种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请的保护范围。
请参阅图1,电子设备100包括壳体120、显示装置140和摄像头模组160,显示装置140设置在壳体120上,壳体120可以包括后盖(图中未示出)和边框124,边框124围绕后盖的周缘设置,显示装置140设置于边框124内,显示装置140和后盖可以作为电子设备100的相对的两面。摄像头模组160设置在壳体120的后盖和显示装置140之间。也可以理解为,显示装置140包括显示面146,摄像头模组设160置在显示装置140远离显示面146的一侧,摄像头模组160透过显示装置140采集光学信号,并根据获取的光学信号得到图像。
在一些实施例中,摄像头模组160可以作为电子设备100的前置摄像头模组,摄像头模组160可以透过显示装置140获取用户的自拍照等图像。
请参考图2,并结合图1,显示装置包括多个有机发光体2522,每一有机发光体2522为类圆形结构。摄像头模组160设置在显示装置140远离显示面的一侧,摄像头模组160透过显示装置140采集光学信号。
由于相关技术中的显示装置140的每一有机发光体2522为矩形,当光信号通过矩形的多个有机发光体2522时,其微结构会使光信号发生衍射现象。本实 施例的类圆形结构的有机发光体2522可以减小衍射效应,使得其对应的摄像头模组能获取到高质量的光学信号,以及获取高质量的图像。
其中,多个有机发光体2522还可以呈非周期性排布。由于相关技术中的显示装置140的多个有机发光体2522存在周期性像素微结构,当光信号通过周期性结构的多个有机发光体2522时,其微结构会使光信号发生衍射现象。本实施例的非周期性排布的类圆形结构的有机发光体2522可以减小衍射效应,使得其对应的摄像头模组160能获取到高质量的光学信号,以及获取高质量的图像。
在一些实施例中,多个有机发光体2522可以包括多种颜色的有机发光体2522,如包括多个红色有机发光体R、多个绿色有机发光体G和多个蓝色有机发光体B。为了让三种颜色的有机发光体2522合成颜色,需要将红色有机发光体R、绿色有机发光体G和蓝色有机发光体B按组设置,每组均包括一个红色有机发光体R、一个绿色有机发光体G和一个蓝色有机发光体B。同一种颜色的有机发光体2522不相邻设置,也可以理解为,其中一种颜色的有机发光体2522相邻的为其他两种颜色的有机发光体2522。
多个有机发光体2522呈非周期性排布可以理解为,相邻两行的有机发光体2522没有列对齐,相邻两列的有机发光体2522没有行对齐。多个有机发光体2522可以形成包括多行,其中一行的每一个有机发光体2522在相邻一行的投影均位于该相邻一行的相邻的两个有机发光体2522之间,也可以理解为行交错设置。例如,多个有机发光体2522包括第N行和第N+1行有机发光体2522,其中,第N行中的第M个有机发光体2522,与第N+1行中第M-1个和第M个有机发光体2522呈品字形,或者第N行中的第M个有机发光体2522,与第N+1行中第M个和第M+1个有机发光体2522呈品字形。也可以理解为,第N行的第M个有机发光体2522、以及与其相邻的第N+1行中两个有机发光体2522形成品字形。其中,成品字形的三个有机发光体2522包括一个红色有机发光体R、一个绿色有机发光体G和一个蓝色有机发光体B。成品字形的三个有机发光体2522正好根据三原色进行混色,从而得到需要显示的颜色。
需要说明的是,每一个有机发光体2522可以为类圆形结构,如正六边形、正八边形、圆形、椭圆形、圆角矩形等形状中的任意一种。其中,正六边形、正八边形中任意相邻的两条边之间为圆弧过渡连接。类圆形结构的有机发光体2522能有效地降低衍射对屏下摄像头模组拍照造成的影响。
在一些实施例中,相邻两个有机发光体2522之间的间距范围为10微米至30微米,每一有机发光体2522的中心至其边缘的距离范围为25微米至45微米。
有机发光体2522若为圆形,每一个每一有机发光体2522的中心至其边缘的 距离范围为25微米至45微米可以理解为有机发光体2522的半径范围为25微米至45微米。若有机发光体2522若为圆角矩形,每一个每一有机发光体2522的中心至其边缘的距离范围为25微米至45微米可以理解为有机发光体2522的中心至其最近的边缘的第一距离的范围为25微米至40微米,有机发光体2522的中心至其最远的边缘的第二距离的范围为35微米至45微米,其中,第一距离小于第二距离。
每一个有机发光体2522在第一方向上具有第一尺寸,每一个有机发光体2522在第二方向上具有第二尺寸。在第一方向上相邻两个有机发光体2522之间具有第一间距,在第二方向上相邻的两个有机发光体2522之间具有第二间距。其中,第一尺寸可以大于第一间距,第二尺寸可以大于第二间距。如此可以改善透过多个有机发光体2522的衍射效应。
例如,请结合图3,为方便理解,图中示出了一个品字形三个有机发光体2522的示图。品字形结构为非周期性结构。其中,有机发光体2522为椭圆形结构时,第一尺寸a(长轴)可以为70微米至90微米,第一间距h1可以为10微米至30微米,第二尺寸b(短轴)可以为50微米至80微米,第二间距h2可以为15微米至20微米。其中,因为相邻两行的有机发光体2522错位设置,其中一行相邻的两个有机发光体2522的第一间距的中点与上一行有机发光体2522的底端为第二间距h2。
又例如,有机发光体2522为圆形结构时,有机发光体2522半径可以为35微米至45微米,行相邻的两个有机发光体2522的间距为10微米至30微米,列相邻的两个有机发光体2522的间距为10微米至30微米,其中,行相邻或列相邻的两个有机发光体2522的间距可以理解为两个有机发光体2522的最近的两个点的距离。
请参阅图4,在一些实施例中,显示装置包括像素定义层250和有机发光层252。像素定义层250包括多个像素孔2502,有机发光层252包括多个有机发光体2522,每一个有机发光体2522对应设置于一个像素孔2502内。其中,像素孔2502的形状可以和有机发光体2522的形状相适配。如,像素孔2502和有机发光体2522均为类圆形。例如,在像素定义层250上设置圆形的像素孔2502,在像素孔内2502填充有机发光材料形成有圆形的机发光体2522。在其他一些实施例中,像素孔2502的形状可以和有机发光体2522的形状不同,如像素孔2502的形状为正多边形,有机发光体2522的形状为圆形。
请参阅图5,显示装置140的靠近摄像头模组一侧的底面148为曲面,显示装置140复用为摄像头模组160的镜片(如封装镜片)。在一实施方式中,所述显示装置140复用为摄像头模组160的封装镜片,也即作为摄像头模组160的最 外侧的镜片进行光学信号的传输。显示装置可以作为摄像头模组160的镜头162的镜片(如封装镜片)。
具体的,请结合图4,显示装置140包括层叠设置的第一基板220、阳极金属层240、像素定义层250、公共电极层260和第二基板280。像素定义层250和有机发光层252设置在阳极金属层240和公共电极层260之间。阳极金属层240、公共电极层260配合驱动有机发光层252,以使有机发光层252显示各种图像。
其中,第一基板220靠近摄像头模组160一侧的底面148为曲面并朝摄像头模组160方向凸出,第一基板220复用为摄像头模组160的镜片如封装镜片。可以让透过第一基板220的光信号进行更大范围的折射。第一基板220靠近摄像头模组160一侧的底面148向摄像头模组模型160方向凸出,第一基板220可以作为镜头162的一块镜片,可以实现大光圈,高像质成像。其中,第一基板220的背离摄像头模组160的一面可以为平面。显示装置140朝向镜头162一侧的底面为曲面,并且可以根据设计要求更自由地分配光输出,更高效地利用光通量,减少不必要的浪费和眩光。还可以将透过显示装置的光信号的焦点设置在同一平面,使入射到其他镜片的起点在同一平面,类似自然光直接入射到其他镜片。可以理解的,所述显示装置140朝向镜头162一侧的底面为曲面。请参阅图6,在本申请的其他实施例中,显示装置140的两侧都为平面时,光信号透过显示装置140的焦点分布在不同位置,没有处于同一平面,也可以理解为光信号透过显示装置140不同位置后已经有了光程差,从而影响成像质量。
请参阅图7,在一些实施例中,第二基板280表面设置有单向透光膜290,以防止进入摄像头模组的光线经显示装置反射而出。具体的,单向透光膜290可以设置在第二基板280朝向第一基板220一侧,也可以设置在第二基板280背离第一基板220一侧。单向透光膜290可以实现光信号的单向透过。实现光信号只能从第二基板280一侧穿透到另一侧。例如,光信号只能从显示装置外透过第二基板280进入显示装置内,而不能从显示装置内透过第二基板280进入显示装置外。单向透光膜290可以通过涂镀等方式设置在第二基板280表面。
为了隐藏摄像头模组,真正实现全面屏,除了将显示装置做成透明显示外,还对第二基板280进行了单向透过光学处理。也可以理解为,外界光信号可以穿透显示装置进入到摄像头模组,但里面光信号是不会反射出来。如此,在显示装置正常显示时,摄像头模组的镜头部分的光学表面所反射的光斑会被单向透光膜290所阻挡,并不会影响实际的显示效果。而摄像头模组工作时,光信号又可以自由的通过透明的显示装置,进入到摄像头模组里面进行正常的光学成像,不会影响拍照和摄像效果。
在一些实施例中,显示装置透光的各层的折射率相同。具体的,显示装置的第一基板220、阳极金属层240、有机发光层252、公共电极层260和第二基板280的折射率大致相同。需要说明的是,因为各层都有多种可选的材料,所有根据需要可以仅其中部分层的折射率大致相同,即,显示装置的第一基板220、阳极金属层240、有机发光层252、公共电极层260和第二基板280的至少两项的折射率大致相同。折射率相同可以使得不同位置进入显示装置的光线的光程大致相同,从而减小光程差,提升成像质量。
显示装置由多层结构构成,每层所选材料不同,相应地,每层材料的折射率不同;当平行光入射功能区穿过各层时,由于各层材料的折射率不同会发生散射,其结果是屏下摄像头模组获取到的图像存在模糊现象。各层选择折射率较接近的材料,可以削弱这种模糊现象,提高透明屏下摄像头模组获取的图像质量。还可以在第一基板220上增加增透膜210,可以在提升图像清晰度的同时还能增加显示装置的透光率。
在一些实施例中,显示装置透光的各层的折射率相同。因为各层都有多种可选的材料,所有根据需要可以仅其中部分层的折射率大致相同,即,显示装置的第一基板220、增透膜210、薄膜230、平坦化层244、像素定义层250、公共电极层260、光提取材料层270、单向透光膜290和第二基板280的至少两项的折射率大致相同。使透过显示装置的光信号更利于成像。
其中,阳极金属层240包括第一阳极金属层242、平坦化层244和第二阳极金属层246。第一阳极金属层242设置在平坦化层244和像素定义层250之间,第二阳极金属层246设置在平坦化层244和第一基板220之间。显示装置透光的各层的折射率大致相同可以理解为平坦化层与其他层的折射率大致相同。
其中,第一基板220和第二基板280均可以为无色透明的基板,具体可以采用玻璃、树脂等材料,第一基板220和第二基板280还可以为柔性基板,并且显示装置整体为柔性显示装置。
显示装置140还包括薄膜晶体管248,薄膜晶体管248分别连接第一阳极金属层242、第二阳极金属层246和有机发光层252,第一阳极金属层242、第二阳极金属层246和有机发光层252分别连接薄膜晶体管248的不同极。
在一些实施例中,第一基板220表面设置有增透膜210。具体的,增透膜210可以设置在第一基板220朝向第二基板280一侧,也可以设置在第一基板220背离第二基板280一侧。其中,增透膜210可以镀设在第一基板220的表面上。增透膜210可以提高显示装置的透光率。
在一些实施例中,显示装置还包括薄膜230,薄膜230设置在第一基板220 和阳极金属层240之间。薄膜230可以采用SiNx或SiO2制成。
在一些实施例中,显示装置140还包括光提取材料层(capping layer,CPL)270。光提取材料层270设置在第二基板280和公共电极层260之间。
需要说明的是,显示装置140可以包括薄膜230和光提取材料层270,也可以不包括薄膜230和/或光提取材料层270。
在一些实施例中,请参阅图8,显示装置140可以包括功能区132和主体区134,功能区132的面积小于主体区134的面积,功能区132的透光率大于主体区134的透光率,摄像头模组160与功能区132相对设置,摄像头模组160透过功能区132采集光学信号。例如,功能区132的透光率可以大于60%,当透光率>60%时,可以用图像增强算法来提升摄像模组头获取到图像的亮度,从而提高屏下成像的质量,使其接近没有透过显示装置获取的图像。需要说明的是,功能区132的透光率大于60%为示例性举例,在其他一些实施例中,可以选取其他的数值,如大于50%、65%、70%等。所述显示装置140靠近镜头162一侧的底面为曲面可以理解为,所述底面可以全部为曲面,也可以是局部为曲面,考虑到与功能区132的对应性,当所述底面局部为曲面时,所述曲面的面积即为所述功能区132的面积。
其中,功能区132与第一驱动模块1444连接,主体区134与第二驱动模块1442连接,第一驱动模块1444驱动显示装置240的功能区132,第二驱动模块1442驱动显示装置240的主体区134。其中,第一驱动模块1442和第二驱动模块1444可以配合驱动,使功能区132和主体区134共同显示同一图像。如功能区132显示图像的一部分,主体区134显示图像剩下的部分。当摄像头模组160需要获取图像时,第一驱动模块1444驱动功能区132关闭显示,第二驱动模块1442可以继续驱动主体区134显示图像也可以驱动主体区134关闭显示,摄像头模组160通过关闭显示的功能区132获取外界的光信号,并根据光信号得到图像。
请参阅图9,并结合图7和图8,在一些实施例中,像素定义层250包括第一部分254和第二部分256。第一部分254对应功能区,第二部分256对应主体区。第一部分254的面积小于第二部分256的面积,第一部分254的透光率大于第二部分的透光率。摄像头模组160可以获取透过显示装置140第一部分254获取光信号,并根据光信号形成图像。
在一些实施例中,第一部分254位于像素定义层250的端部。具体的,第一部分254可以位于像素定义层250的顶端或底端或侧边,如像素定义层250为矩形,第二部分256为具有一个缺口的矩形,第一部分254设置在该缺口内,该缺口可以设置在第二部分256的顶边或底边或侧边。当然,第一部分254也可以设置在像素定义层250的中间,也可以理解为第二部分256具有一个厚 度方向贯穿第二部分256的通孔,第一部分254设置在该通孔内。
对应的,摄像头模组160对应第一部分设置,摄像头模组160可以获取透过显示装置140的第一部分254获取光信号,对应第一部分254的显示装置140的透光率大于对应第二部分的显示装置12的透光率。具体的,对应第一部分254的有机发光体2522的分布密度更小,即第一部分254的有机发光体2522的分布密度小于对应第二部分256的有机发光体2522的分布密度。第一部分254对应的有机发光体2522的分布密度更小,与有机发光体2522一一对应的不透光的薄膜晶体管248的分布密度也更小,从而提高了第一部分对应的显示装置140的透光率。
在一些实施例中,第一部分254的有机发光体2522的像素密度小于第二部分256的有机发光体2522的像素密度。也可以理解为,第一部分254的有机发光体2522的分布密度小于第二部分256的有机发光体2522的分别密度。具体的,第一部分254相邻的两个像素孔2502的间距大于第二部分256相邻的两个像素孔2502的间距,像素定义层250的透光率大于有机发光体2522的透光率,第一部分254的有机发光层252的占比更小,从而使第一部分254的透光率大于第二部分256的透光率。另外,每一个有机发光体2522对应设置一个薄膜晶体管248,薄膜晶体管248是不透光的,第一部分254的有机发光体2522的分布密度更小,对应的薄膜晶体管248的分布密度也更小,从而使第一部分254的透光率大于第二部分256的透光率。
在一些实施例中,电子设备100还包括处理器180,显示装置140和摄像头模组160均与处理器180电性连接;当接收到拍摄指令时,处理器180控制功能区132关闭显示,并控制摄像头模组160透过功能区132采集图像;当未接收到拍摄指令,且接收到显示图像指令时,处理器180控制功能区132和主体区134共同显示图像。
在一些实施例中,功能区132和主体区134主要在像素定义层不同。功能区132和主体区134可以共用同一块第一基板220、第二基板280等。
需要说明的是,第一部分254对应的阳极金属层240可以用高透光的材料制成,如ITO、纳米银等。第二部分256对应的阳极金属层240可以用高透光的材料制成,也可以用低透光或不透光的材料制成。
在一些实施例中,请参阅图10,显示装置包括第一显示面板1422和第二显示面板1424,第一显示面板1422设置有缺口110,缺口110在第一显示面板1422的厚度方向上贯穿第一显示面板1422,第一显示面板1422为正常显示的显示面板142。第二显示面板1424设置在缺口110内,第二显示面板1424对应显示装置240的功能区,第一显示面板1422对应显示装置240的主体区。 电子设备100的摄像头模组160设置在壳体和第二显示面板1424之间,摄像头模组160获取透过第二显示面板1424的光信号,并根据获取的光信号得到图像。
第一显示面板1422和第二显示面板1424为两个独立的显示面板,先分别制造好第一显示面板1422和第二显示面板1424,然后再将第二显示面板1424放置在第一显示面板1422的缺口110内。
需要说明的是,第一显示面板1422与第二驱动模块1442连接,第二显示面板1424与第一驱动模块1444连接,第一驱动模块1444驱动第二显示面板1424,第二驱动模块1442驱动第一显示面板1422,第一驱动模块1442和第二驱动模块1444配合驱动,使第一显示面板1422和第二显示面板1424共同显示同一图像。如第一显示面板1422显示图像的一部分,第二显示面板1424显示图像剩下的部分。当摄像头模组需要获取图像时,第一驱动模块1444驱动第二显示面板1424关闭显示,第二驱动模块1442可以继续驱动第一显示面板1422显示图像,摄像头模组通过关闭显示的第二显示面板1424获取外界的光信号,并根据光信号得到图像。
本申请还提供一种电子设备,请继续参阅图1和图5,电子设备100包括壳体120、显示装置140和摄像头模组160,显示装置140设置在壳体120上,壳体120可以包括后盖(图中未示出)和边框124,边框124围绕后盖的周缘设置,显示装置140设置于边框124内,显示装置140和后盖可以作为电子设备100的相对的两面。摄像头模组160设置在壳体120的后盖和显示装置140之间。也可以理解为,显示装置140包括显示面146,摄像头模组设160置在显示装置140远离显示面146的一侧,摄像头模组160透过显示装置140采集光学信号,并根据获取的光学信号得到图像。在一些实施例中,摄像头模组160可以作为电子设备100的前置摄像头模组,摄像头模组160可以透过显示装置140获取用户的自拍照等图像。
显示装置140复用为摄像头模组160的镜片(封装镜片),摄像头模组160透过显示装置140采集光学信号。
具体的,显示装置140的靠近摄像头模组160一侧的底面148为曲面,显示装置140复用为摄像头模组160的镜片(如封装镜片)。一实施方式中,所述显示装置140复用为摄像头模组160的封装镜片,也即作为摄像头模组160的最外侧的镜片进行光学信号的传输。显示装置140可以作为摄像头模组160的镜头的镜片(如封装镜片)。
具体的,显示装置140包括层叠设置的第一基板220、阳极金属层240、像素定义层250、公共电极层260和第二基板280。像素定义层250和有机发光层252 设置在阳极金属层240和公共电极层260之间。阳极金属层240、公共电极层260配合驱动有机发光层252,以使有机发光层252显示各种图像。
其中,第一基板220靠近摄像头模组160一侧的底面148为曲面并朝摄像头模组160方向凸出,第一基板220复用为摄像头模组160的镜片(如封装镜片)。一实施方式中,所述第一基板220复用为摄像头模组160的封装镜片,也即作为摄像头模组的最外侧的镜片进行光学信号的传输。可以让透过第一基板220的光信号进行更大范围的折射。第一基板220靠近摄像头模组160一侧的底面148向摄像头模组160方向凸出,第一基板220可以作为镜头162的一块镜片,可以实现大光圈,高像质成像。其中,第一基板220的背离摄像头模组160的一面可以为平面。显示装置140朝向镜头162一侧为曲面,并且可以根据设计要求更自由地分配光输出,更高效地利用光通量,减少不必要的浪费和眩光。还可以将透过显示装置140的光信号的焦点设置在同一平面,使入射到其他镜片的起点在同一平面,类似自然光直接入射到其他镜片。请参阅图6,在本申请的其他实施例中,显示装置140的两侧都为平面时,光信号透过显示装置的焦点分布在不同位置,没有处于同一平面,也可以理解为光信号透过显示装置140不同位置后已经有了光程差,从而影响成像质量。其中,关于显示装置140具体结构部分与前述实施例提供的电子设备相同,在此不再赘述。
本申请还提供一种显示装置,请继续参阅图4,显示装置包括像素定义层250和有机发光层252。像素定义层250包括多个像素孔2502,有机发光层252包括多个有机发光体2522,每一个有机发光体2522对应设置于一个像素孔2502内。其中,像素孔2502的形状可以和有机发光体2522的形状相适配。如,有机发光体2522均为类圆形。例如,在像素定义层250上设置圆形的像素孔2502,在像素孔内2502填充有机发光材料形成有圆形的机发光体2522。在其他一些实施例中,像素孔2502的形状可以和有机发光体2522的形状不同,如像素孔2502的形状为正多边形,有机发光体2522的形状为圆形。其中,多个有机发光体2522呈非周期性排布,每一有机发光体2522为类圆形结构。
由于相关技术中的显示装置的每一有机发光体2522为矩阵,当光信号通过矩形的多个有机发光体2522时,其微结构会使光信号发生衍射现象。本实施例的类圆形结构的有机发光体2522可以减小衍射效应,改善透过显示装置的光信号的衍射效应。
其中,多个有机发光体2522还可以呈非周期性排布。由于相关技术中的显示装置的多个有机发光体2522存在周期性像素微结构,当光信号通过周期性结构的多个有机发光体2522时,其微结构会使光信号发生衍射现象。本实施例的非周期性排布的类圆形结构的有机发光体2522可以减小衍射效应,使得其对应 的摄像头模组能获取到高质量的光学信号,以及获取高质量的图像。
在一些实施例中,多个有机发光体2522可以包括多种颜色的有机发光体2522,如包括多个红色有机发光体R、多个绿色有机发光体G和多个蓝色有机发光体B。为了让三种颜色的有机发光体2522合成颜色,需要将红色有机发光体R、绿色有机发光体G和蓝色有机发光体B按组设置,每组均包括一个红色有机发光体R、一个绿色有机发光体G和一个蓝色有机发光体B。同一种颜色的有机发光体2522不相邻设置,也可以理解为,其中一种颜色的有机发光体2522相邻的为其他两种颜色的有机发光体2522。
多个有机发光体2522呈非周期性排布可以理解为,相邻两行的有机发光体2522没有列对齐,相邻两列的有机发光体2522没有行对齐。多个有机发光体2522可以形成包括多行,其中一行的每一个有机发光体2522在相邻一行的投影均位于该相邻一行的相邻的两个有机发光体2522之间,也可以理解为行交错设置。例如,多个有机发光体2522包括第N行和第N+1行有机发光体2522,其中,第N行中的第M个有机发光体2522,与第N+1行中第M-1个和第M个有机发光体2522呈品字形,或者第N行中的第M个有机发光体2522,与第N+1行中第M个和第M+1个有机发光体2522呈品字形。也可以理解为,第N行的第M个有机发光体2522、以及与其相邻的第N+1行中两个有机发光体2522形成品字形。其中,成品字形的三个有机发光体2522包括一个红色有机发光体R、一个绿色有机发光体G和一个蓝色有机发光体B。成品字形的三个有机发光体2522正好根据三原色进行混色,从而得到需要显示的颜色。
需要说明的是,每一个有机发光体2522可以为类圆形结构,如正六边形、正八边形、圆形、椭圆形、圆角矩形等形状中的任意一种。其中,一实施方式中,正六边形、正八边形中任意相邻的两条边之间为圆弧过渡连接。类圆形结构的有机发光体2522能有效地降低衍射对屏下摄像头模组拍照造成的影响。
在一些实施例中,相邻两个有机发光体2522之间的间距范围为10微米至30微米,每一有机发光体2522的中心至其边缘的距离范围为25微米至45微米。有机发光体的结构、大小和间距可采用上述实施例类似的结构,在此不再赘述。
本申请还提供一种像素结构,请继续参阅图2,像素结构包括像素定义层250和有机发光层252。像素定义层250包括多个像素孔2502,有机发光层252包括多个有机发光体2522,每一个有机发光体2522对应设置于一个像素孔2502内。其中,像素孔2502的形状可以和有机发光体2522的形状相适配。如,均为圆形、椭圆形或圆角矩形。例如,在像素定义层250上设置圆形的像素孔2502,在像素孔内2502填充有机发光材料形成有机发光体2522。
在其他一些实施例中,像素孔2502的形状可以和有机发光体2522的形状不同,如像素孔2502的形状为正多边形,有机发光体2522的形状为圆形。
其中,每一有机发光体2522为类圆形结构。
由于相关技术中的显示装置的每一有机发光体2522为矩阵,当光信号通过矩形的多个有机发光体2522时,其微结构会使光信号发生衍射现象。本实施例的类圆形结构的有机发光体2522可以减小衍射效应,使得其对应的摄像头模组能获取到高质量的光学信号,以及获取高质量的图像。
其中,多个有机发光体2522还可以呈非周期性排布。由于相关技术中的显示装置的多个有机发光体2522存在周期性像素微结构,当光信号通过周期性结构的多个有机发光体2522时,其微结构会使光信号发生衍射现象。本实施例的非周期性排布的类圆形结构的有机发光体2522可以减小衍射效应,使得其对应的摄像头模组能获取到高质量的光学信号,以及获取高质量的图像。
在一些实施例中,多个有机发光体2522可以包括多种颜色的有机发光体2522,如包括多个红色有机发光体R、多个绿色有机发光体G和多个蓝色有机发光体B。为了让三种颜色的有机发光体2522合成颜色,需要将红色有机发光体R、绿色有机发光体G和蓝色有机发光体B按组设置,每组均包括一个红色有机发光体R、一个绿色有机发光体G和一个蓝色有机发光体B。同一种颜色的有机发光体2522不相邻设置,也可以理解为,其中一种颜色的有机发光体2522相邻的为其他两种颜色的有机发光体2522。
多个有机发光体2522呈非周期性排布可以理解为,相邻两行的有机发光体2522没有列对齐,相邻两列的有机发光体2522没有行对齐。多个有机发光体2522可以形成包括多行,其中一行的每一个有机发光体2522在相邻一行的投影均位于该相邻一行的相邻的两个有机发光体2522之间,也可以理解为行交错设置。例如,多个有机发光体2522包括第N行和第N+1行有机发光体2522,其中,第N行中的第M个有机发光体2522,与第N+1行中第M-1个和第M个有机发光体2522呈品字形,或者第N行中的第M个有机发光体2522,与第N+1行中第M个和第M+1个有机发光体2522呈品字形。也可以理解为,第N行的第M个有机发光体2522、以及与其相邻的第N+1行中两个有机发光体2522形成品字形。其中,成品字形的三个有机发光体2522包括一个红色有机发光体R、一个绿色有机发光体G和一个蓝色有机发光体B。成品字形的三个有机发光体2522正好根据三原色进行混色,从而得到需要显示的颜色。
需要说明的是,每一个有机发光体2522可以为类圆形结构,如正六边形、正八边形、圆形、椭圆形、圆角矩形等形状中的任意一种。其中,正六边形、 正八边形中任意相邻的两条边之间为圆弧过渡连接。类圆形结构的有机发光体2522能有效地降低衍射对屏下摄像头模组拍照造成的影响。
在一些实施例中,相邻两个有机发光体2522之间的间距范围为10微米至30微米,每一有机发光体2522的中心至其边缘的距离范围为25微米至45微米。
有机发光体2522若为圆形,每一个每一有机发光体2522的中心至其边缘的距离范围为25微米至45微米可以理解为有机发光体2522的半径范围为25微米至45微米。若有机发光体2522若为圆角矩形,每一个每一有机发光体2522的中心至其边缘的距离范围为25微米至45微米可以理解为有机发光体2522的中心至其最近的边缘的第一距离的范围为25微米至40微米,有机发光体2522的中心至其最远的边缘的第二距离的范围为35微米至45微米,其中,第一距离小于第二距离。
每一个有机发光体2522在第一方向上具有第一尺寸,每一个有机发光体2522在第二方向上具有第二尺寸。在第一方向上相邻两个有机发光体2522之间具有第一间距,在第二方向上相邻的两个有机发光体2522之间具有第二间距。其中,第一尺寸可以大于第一间距,第二尺寸可以大于第二间距。如此可以改善透过多个有机发光体2522的衍射效应。
例如,请参阅图3,为方便理解,图中示出了一个品字形三个有机发光体2522的示图。品字形结构为非周期性结构。其中,有机发光体2522为椭圆形结构时,第一尺寸a(长轴)可以为70微米至90微米,第一间距h1可以为10微米至30微米,第二尺寸b(短轴)可以为50微米至80微米,第二间距h2可以为15微米至20微米。其中,因为相邻两行的有机发光体2522错位设置,其中一行相邻的两个有机发光体2522的第一间距的中点与上一行有机发光体2522的底端为第二间距h2。
又例如,有机发光体2522为圆形结构时,有机发光体2522半径可以为35微米至45微米,行相邻的两个有机发光体2522的间距为10微米至30微米,列相邻的两个有机发光体2522的间距为10微米至30微米,其中,行相邻或列相邻的两个有机发光体2522的间距可以理解为两个有机发光体2522的最近的两个点的距离。
以上对本申请实施例所提供的电子设备、显示装置及像素结构进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (24)

  1. 一种电子设备,其中,包括:
    显示装置,所述显示装置包括多个有机发光体,每一有机发光体为类圆形结构;
    摄像头模组,所述摄像头模组设置在所述显示装置远离显示面的一侧,所述摄像头模组透过所述显示装置采集光学信号。
  2. 如权利要求1所述的电子设备,其中,所述显示装置的靠近所述摄像头模组一侧的底面为曲面,所述显示装置复用为所述摄像头模组的镜片。
  3. 如权利要求1所述的电子设备,其中,所述显示装置还包括层叠设置的第一基板、阳极金属层、公共电极层和第二基板;
    所述多个有机发光体设置在所述阳极金属层和所述公共电极层之间,所述第一基板靠近所述摄像头模组一侧为曲面并朝所述摄像头模组方向凸出,所述第一基板复用为所述摄像头模组的镜片。
  4. 如权利要求3所述的电子设备,其中,所述第一基板表面设置有增透膜。
  5. 如权利要求3所述的电子设备,其中,所述第二基板表面设置有单向透光膜,以防止进入摄像头模组的光线经所述显示装置反射而出。
  6. 如权利要求3所述的电子设备,其中,所述第一基板、所述阳极金属层、所述有机发光体、所述公共电极层和所述第二基板的折射率相同。
  7. 如权利要求1至6任一项所述的电子设备,其中,所述多个有机发光体呈非周期性排布,相邻两个所述有机发光体之间的间距范围为10微米至30微米,每一所述有机发光体的中心至其边缘的距离范围为25微米至45微米。
  8. 如权利要求1至6任一项所述的电子设备,其中,所述显示装置包括功能区和主体区,所述功能区的透光率大于所述主体区的透光率,所述摄像头模组透过所述功能区采集光学信号。
  9. 如权利要求1至6任一项所述的电子设备,其中,所述电子设备还包括处理器,所述显示装置和所述摄像头模组均与所述处理器电性连接;
    接收到拍摄指令时,所述处理器控制所述功能区关闭显示,并控制所述摄像头模组透过所述功能区采集图像;
    当未接收到拍摄指令,且接收到显示图像指令时,所述处理器控制所述功能区和所述主体区共同显示图像。
  10. 一种电子设备,其中,包括:
    显示装置;
    摄像头模组,所述摄像头模组设置在所述显示装置远离显示面的一侧,所 述显示装置复用为所述摄像头模组的镜片,所述摄像头模组透过所述显示装置采集光学信号。
  11. 如权利要求10所述的电子设备,其中,所述显示装置的靠近所述摄像头模组一侧的底面为曲面。
  12. 如权利要求10所述的电子设备,其中,所述显示装置包括:
    像素定义层,所述像素定义层包括多个像素孔;
    有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,所述多个有机发光体呈非周期性排布,每一有机发光体为类圆形结构。
  13. 如权利要求12所述的电子设备,其中,所述多个有机发光体呈非周期性排布,相邻两个所述有机发光体之间的间距范围为10微米至30微米,每一有机发光体的中心至其边缘的距离范围为25微米至45微米。
  14. 如权利要求12所述的电子设备,其中,所述显示装置还包括层叠设置的第一基板、阳极金属层、公共电极层和第二基板;
    所述像素定义层设置在所述阳极金属层和所述公共电极层之间,所述第一基板靠近所述摄像头模组一侧的底面为曲面并朝所述摄像头模组方向凸出。
  15. 如权利要求14所述的电子设备,其中,所述第一基板表面设置有增透膜。
  16. 如权利要求14所述的电子设备,其中,所述第二基板表面设置有单向透光膜,以防止进入摄像头模组的光线经所述显示装置反射而出。
  17. 如权利要求14所述的电子设备,其中,所述第一基板、所述阳极金属层、所述像素定义层、所述公共电极层和所述第二基板的折射率相同。
  18. 如权利要求10至17任一项所述的电子设备,其中,所述显示装置包括功能区和主体区,所述功能区的透光率大于所述主体区的透光率,所述摄像头模组透过所述功能区采集光学信号。
  19. 如权利要求10至17任一项所述的电子设备,其中,所述电子设备还包括处理器,所述显示装置和所述摄像头模组均与所述处理器电性连接;
    接收到拍摄指令时,所述处理器控制所述功能区关闭显示,并控制所述摄像头模组透过所述功能区采集图像;
    当未接收到拍摄指令,且接收到显示图像指令时,所述处理器控制所述功能区和所述主体区共同显示图像。
  20. 一种显示装置,其中,包括:
    像素定义层,所述像素定义层包括多个像素孔;
    有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光 体设置于一个所述像素孔内,每一有机发光体为类圆形结构。
  21. 如权利要求20所述的显示装置,其中,所述多个有机发光体呈非周期性排布,相邻两个所述有机发光体之间的间距范围为10微米至30微米,每一有机发光体的中心至其边缘的距离范围为25微米至25微米。
  22. 如权利要求20所述的显示装置,其中,所述显示装置包括功能区和主体区,所述功能区的透光率大于所述主体区的透光率,所述呈非周期性排布的多个有机发光体对应位于所述功能区。
  23. 一种像素结构,其中,包括:
    像素定义层,所述像素定义层包括多个像素孔;
    有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,每一有机发光体为类圆形结构。
  24. 如权利要求23所述的像素结构,其中,所述多个有机发光体呈非周期性排布,相邻两个所述有机发光体之间的间距范围为10微米至30微米,每一有机发光体的中心至其边缘的距离范围为25微米至45微米。
PCT/CN2019/079357 2019-03-22 2019-03-22 电子设备、显示装置及像素结构 WO2020191555A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/079357 WO2020191555A1 (zh) 2019-03-22 2019-03-22 电子设备、显示装置及像素结构
CN201980087440.6A CN113287212B (zh) 2019-03-22 2019-03-22 电子设备、显示装置及像素结构
EP19921086.5A EP3907770A4 (en) 2019-03-22 2019-03-22 ELECTRONIC DEVICE, DISPLAY DEVICE AND PIXEL STRUCTURE
US17/380,939 US20210351242A1 (en) 2019-03-22 2021-07-20 Electronic Device and Display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079357 WO2020191555A1 (zh) 2019-03-22 2019-03-22 电子设备、显示装置及像素结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/380,939 Continuation US20210351242A1 (en) 2019-03-22 2021-07-20 Electronic Device and Display

Publications (1)

Publication Number Publication Date
WO2020191555A1 true WO2020191555A1 (zh) 2020-10-01

Family

ID=72610407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079357 WO2020191555A1 (zh) 2019-03-22 2019-03-22 电子设备、显示装置及像素结构

Country Status (4)

Country Link
US (1) US20210351242A1 (zh)
EP (1) EP3907770A4 (zh)
CN (1) CN113287212B (zh)
WO (1) WO2020191555A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220181407A1 (en) * 2019-03-28 2022-06-09 Ningbo Sunny Opotech Co., Ltd Under-display camera assembly and corresponding terminal device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115223453B (zh) * 2022-08-04 2023-09-26 武汉天马微电子有限公司 一种阵列基板、显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180295222A1 (en) * 2017-04-06 2018-10-11 Samsung Electronics Co., Ltd. Electronic device including housing having at least one through hole
TW201839977A (zh) * 2017-09-30 2018-11-01 昆山國顯光電有限公司 顯示屏、顯示屏驅動方法及其顯示裝置
CN208384293U (zh) * 2018-05-23 2019-01-15 Oppo广东移动通信有限公司 显示屏及具有其的电子装置
CN208622778U (zh) * 2018-08-06 2019-03-19 云谷(固安)科技有限公司 显示面板、显示屏及显示终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4886162B2 (ja) * 2003-06-18 2012-02-29 キヤノン株式会社 撮像装置付き表示装置
JP2008257086A (ja) * 2007-04-09 2008-10-23 Sony Corp 表示装置、表示装置の製造方法および電子機器
JP4943518B2 (ja) * 2010-01-14 2012-05-30 シャープ株式会社 撮像レンズ、撮像モジュール、および、携帯情報機器
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置
KR102572966B1 (ko) * 2016-11-30 2023-09-01 엘지디스플레이 주식회사 광학식 이미지 인식 센서 내장형 평판 표시장치
CN108681703B (zh) * 2018-05-14 2022-05-31 京东方科技集团股份有限公司 用于指纹识别的装置、模组、设备及系统
CN208384467U (zh) * 2018-06-04 2019-01-15 Oppo广东移动通信有限公司 电子装置
CN208622782U (zh) * 2018-08-06 2019-03-19 云谷(固安)科技有限公司 透明显示面板、显示屏及显示终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180295222A1 (en) * 2017-04-06 2018-10-11 Samsung Electronics Co., Ltd. Electronic device including housing having at least one through hole
TW201839977A (zh) * 2017-09-30 2018-11-01 昆山國顯光電有限公司 顯示屏、顯示屏驅動方法及其顯示裝置
CN208384293U (zh) * 2018-05-23 2019-01-15 Oppo广东移动通信有限公司 显示屏及具有其的电子装置
CN208622778U (zh) * 2018-08-06 2019-03-19 云谷(固安)科技有限公司 显示面板、显示屏及显示终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3907770A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220181407A1 (en) * 2019-03-28 2022-06-09 Ningbo Sunny Opotech Co., Ltd Under-display camera assembly and corresponding terminal device
US11678554B2 (en) * 2019-03-28 2023-06-13 Ningbo Sunny Opotech Co., Ltd Under-display camera assembly and corresponding terminal device

Also Published As

Publication number Publication date
EP3907770A1 (en) 2021-11-10
US20210351242A1 (en) 2021-11-11
CN113287212B (zh) 2023-04-04
CN113287212A (zh) 2021-08-20
EP3907770A4 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2020253002A1 (zh) 显示屏及显示装置
CN105280111B (zh) 透明显示器
US20220415981A1 (en) Array substrate and manufacturing method thereof, display panel and display device
WO2021136409A1 (zh) 显示屏及电子装置
CN111726502B (zh) 电子设备及显示装置
WO2020133755A1 (zh) 一种显示面板
US11768551B2 (en) Array substrate and display device
WO2020007125A1 (zh) 屏幕组件及电子装置
WO2022077725A1 (zh) 一种微型发光二极管灯板、背光模组及其制备方法
US20180224698A1 (en) Color filter substrate, display panel and display device
US10151948B2 (en) Display apparatus
US11056081B2 (en) Display panel and display device
CN110012136A (zh) 显示装置、显示屏及终端设备
WO2021184324A1 (zh) 显示装置及其显示方法
CN112640121B (zh) 显示面板、显示屏及电子设备
US20210351242A1 (en) Electronic Device and Display
US11011588B2 (en) Display device
WO2021169580A1 (zh) 一种显示装置及其驱动方法
US20210294007A1 (en) Color film substrate, manufacturing method of the same, display panel and display device
WO2021082856A1 (zh) 显示装置和电子设备
CN112928146A (zh) 显示面板及显示装置
CN112415805B (zh) 彩膜基板、显示面板及显示装置
CN106501992A (zh) 一种彩膜基板和显示面板
WO2017206543A1 (zh) 显示装置及其驱动方法
CN111787137A (zh) 显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019921086

Country of ref document: EP

Effective date: 20210802

NENP Non-entry into the national phase

Ref country code: DE