WO2020191534A1 - 一种高精度空气显示系统及方法 - Google Patents

一种高精度空气显示系统及方法 Download PDF

Info

Publication number
WO2020191534A1
WO2020191534A1 PCT/CN2019/079303 CN2019079303W WO2020191534A1 WO 2020191534 A1 WO2020191534 A1 WO 2020191534A1 CN 2019079303 W CN2019079303 W CN 2019079303W WO 2020191534 A1 WO2020191534 A1 WO 2020191534A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing film
polarized light
reflective polarizing
image generator
wave plate
Prior art date
Application number
PCT/CN2019/079303
Other languages
English (en)
French (fr)
Inventor
曾宏
陈永新
Original Assignee
深圳盈天下视觉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳盈天下视觉科技有限公司 filed Critical 深圳盈天下视觉科技有限公司
Priority to PCT/CN2019/079303 priority Critical patent/WO2020191534A1/zh
Publication of WO2020191534A1 publication Critical patent/WO2020191534A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising

Definitions

  • the invention relates to the field of aerial imaging, in particular to a high-precision air display system and method.
  • the current aerial imaging is mostly divided into two forms: the first imaging method mainly uses Fresnel lens as the main technology to carry, using the principle of Fresnel condensing light to focus, converge the multi-angle light source of the screen at the same focal point. Cone-shaped divergence, the viewing angle is within the effective angle range, and the aerial imaging of the left and right eyes with the same focus can be received.
  • the resulting image has accuracy, brightness, and flexibility.
  • the second imaging method is to use a retro-reflective film to reflect the multi-angle light source of the screen on a semi-transparent and semi-reflective lens to the retro-reflective film, and the retro-reflective film returns the screen light source almost to the original path
  • half of the returning light source passes through the semi-transparent mirror, and finally according to the core principle of air imaging, the light from the screen converges regularly in the air to present an observable image, but because the screen light source enters the semi-transparent second time
  • the overall brightness is only 25% or less, which causes brightness problems.
  • retro-reflective films are generally used in the field of road traffic safety. The accuracy of re-reflection is not high, which causes each pixel to retroreflect to its respective focal position. Offset occurs, causing blurring of pixels.
  • the present invention provides a high-precision air display system, which can obtain an air imaging picture with high brightness and clear picture.
  • a high-precision air display system including an image generator for emitting linearly polarized light.
  • a reflective type with a linear polarization angle for reflecting the linearly polarized light emitted by the image generator is obliquely arranged above the image generator.
  • Polarizing film, the polarization angle of the linearly polarized light emitted by the image generator and the polarization angle of the reflective polarizing film are perpendicular to each other; one side of the reflective polarizing film is provided for processing the linearly polarized light reflected by the reflective polarizing film Circularly polarized light wave plate and used to retro-reflect the circularly polarized light passing through the wave plate so that the retro-reflected light passes through the wave plate and the reflective polarizing film in turn, and focuses on the other side of the reflective polarizing film.
  • the retroreflective film is provided for processing the linearly polarized light reflected by the reflective polarizing film Circularly polarized light wave plate and used to retro-reflect the circularly
  • the retro-reflected circularly polarized light forms linearly polarized light with the same polarization angle as the reflective polarizing film when passing through the wave plate.
  • the image generator is an OLED screen, an LED screen or a liquid crystal screen.
  • the image generator emits linearly polarized light with a linear polarization angle of 90 degrees
  • the reflective polarizing film has a linear polarization angle of 180 degrees
  • the wave plate is a quarter wave plate
  • the The retroreflective film is a highly retroreflective film.
  • the angle between the wave plate and the image generator is 90°; the angle between the image generator and the reflective polarizing film is 45°; the reflective polarizing film and the wave plate The included angle is 45°.
  • the present invention also provides a high-precision air display method, including the following steps:
  • the image generator emits light with a linear polarization angle to a reflective polarizing film with a polarization angle arranged obliquely above the image generator; the linear polarization angle of the light emitted by the image generator and the reflective polarizing film The linear polarization angle is vertical;
  • the reflective polarizing film reflects the linearly polarized light emitted from the image generator to the wave plate on the side of the reflective polarizing film to form circular polarized light;
  • the image generator in step 1) emits light with a linear polarization angle of 90 degrees, and the linear polarization angle of the reflective polarizing film is 180 degrees;
  • the wave plate in step 2) is a quarter wave plate,
  • the reflective polarizing film reflects the linearly polarized light emitted from the image generator to the wave plate on the side of the reflective polarizing film to form a 135-degree circular polarized light; step 4) the 135-degree circular return in the original path
  • the polarized light passes through the wave plate to form linearly polarized light of 180 degrees with the same polarization angle as the reflective polarizing film.
  • the distance between the focus imaging position on the other side of the reflective polarizing film and the reflective polarizing film is d1
  • the distance between the reflective polarizing film and the image generator is d2
  • d1 d2.
  • the image generator is an OLED screen, an LED screen or a liquid crystal screen.
  • the beneficial effect of the present invention is: the present invention provides a high-precision air display system, a reflective polarizing film with a polarization angle reflects the polarized light with a linear polarization angle emitted by the image generator to the wave plate Circularly polarized light is formed.
  • the retro-reflective film retroreflects the circularly polarized light to the wave plate.
  • the wave plate converts the retro-reflected circularly polarized light into linearly polarized light with the same polarization angle as the reflective polarizer film.
  • the polarized light passes through the reflective polarizing film to focus to form a high-brightness and clear air imaging picture for the viewer to view, so that the imaging picture is clear, and the visual experience is unprecedented.
  • Figure 1 is a schematic diagram of a high-precision air display system provided by the present invention.
  • Fig. 1 is a preferred embodiment of a high-precision air display system provided by the present invention.
  • the high-precision air display system includes an image generator 10 for emitting linearly polarized light.
  • the reflective polarizing film 20 that reflects polarized light, the polarization angle of the linearly polarized light emitted by the image generator 10 and the polarization angle of the reflective polarizing film 20 are perpendicular to each other; one side of the reflective polarizing film 20 is provided with a reflection type
  • the linearly polarized light reflected by the polarizing film is processed to form a circularly polarized wave plate 30 and used to retroreflect the circularly polarized light passing through the wave plate 30 so that the retro-reflected light passes through the wave plate and the reflective polarizer in turn
  • the retroreflective film 40 is focused on the other side of the reflective polarizing film.
  • the retro-reflected circularly polarized light will form the same linear polarization as the reflective polarizer 20 when passing through the wave plate 30.
  • the image generator 10 emits linearly polarized light with a linear polarization angle
  • the reflective polarizing film 20 reflects the polarized light with the linear polarization angle emitted by the image generator 10 to the wave plate 30, and passes through the belt of the wave plate 30.
  • the linearly polarized light with linear polarization angle changes its polarization properties and becomes circularly polarized light.
  • the circularly polarized light continues to be emitted to the retroreflective film 40.
  • the circularly polarized light Highly regressive retroreflected back to the original path.
  • the retroreflected circularly polarized light passes through the wave plate again, its polarization properties change to linearly polarized light with the same polarization angle as the reflective polarizing film, and continue to follow the original path to the reflective type
  • the polarizing film is retroreflected, because the polarization properties of the light at this time are equal to the reflective polarizing film, a large amount of light passes through, and finally converges to the focus position on the other side of the reflective polarizing film to form a high-brightness and clear air imaging picture for the viewer to view , In this way, the imaged picture is clear, and an unprecedented visual experience is obtained in the visual experience.
  • the angle between the image generator 10 and the reflective polarizing film 20 is ⁇
  • the angle between the reflective polarizing film and the wave plate is ⁇
  • the angle between the wave plate and the image generator 10 is The angle is ⁇ , ⁇ + ⁇ + ⁇ is 180°; as a preferred preferred solution, ⁇ is 90°, and both ⁇ and ⁇ are 45°; as another preferred preferred solution, ⁇ , ⁇ and ⁇ are all 60°.
  • the distance between the focus imaging position on the other side of the reflective polarizing film and the reflective polarizing film is d1
  • the distance between the reflective polarizing film and the image generator is d2
  • d1 d2.
  • the image generator 10 emits linearly polarized light with a linear polarization angle of 90 degrees, and the reflective polarizing film 20 has a linear polarization angle of 180 degrees;
  • the wave plate 30 is a quarter One wave plate, the retroreflective film 40 is a highly retroreflective film; as shown in Figure 1, an image generator 10 with a linear polarization angle of 90° is selected as the imaging light source, and the image generator 10 emits a 90° Linearly polarized light with polarization properties.
  • the 135° circularly polarized light passes through the quarter wave plate again to generate polarization properties Change to 180° linearly polarized light, and continue to retro-reflect to the reflective polarizing film according to the original path, because the polarization property of the 180° linearly polarized light at this time is equal to that of the reflective polarizing film, and the 180° linearly polarized light After a large number of passes, it finally converges to the focal position in the air.
  • the distance between this position and the reflective polarizing film is almost equal to the distance between the light source emission of the image generator and the reflective polarizing film.
  • the cone shape converges to the focal position and then the cone shape scatters out, and the emission range covers the binocular eyes of the person at the observation angle. Because the left and right eyes of the binocular eyes capture the light from the same image generator but different light paths at the focal position. , Binocular human eyes see the image formed by the image generator from this focal position, achieving the effect of aerial imaging.
  • a quarter wave plate is an anisotropic crystal sheet with a certain thickness that can convert plane polarized light into circularly polarized light, or vice versa.
  • its vibration direction is at an angle ⁇ ( ⁇ 0) with the optical axis of the wafer.
  • the incident light vibration is decomposed into two vibrations that are perpendicular to the optical axis (o vibration) and parallel to the optical axis (e vibration). These components correspond to the ordinary light (o light) and extraordinary light (e light) in the wafer.
  • the ordinary light (o light) and extraordinary light (e light) in the wafer travel in the same direction, and the ordinary light (o light) and The phase difference between extraordinary light (e light) is equal to ⁇ /2 or its odd multiples.
  • Such a wafer is called a quarter wave plate or a quarter wave plate.
  • the quarter wave plate is attached to the retroreflective film and integrated.
  • Polarized light passes through the quarter-wave plate, and the polarization properties of the light are changed: linearly polarized light passes through the quarter-wave plate and is converted into circularly polarized light; circularly polarized light passes through the quarter-wave plate and is converted into linear Type polarized light; meanwhile, the polarization angle is deflected by 45 degrees every time it passes.
  • the image generator 10 is an OLED screen, an LED screen, a liquid crystal screen or other image generators with specific linear polarization properties on the surface.
  • the present invention also provides a high-precision air display method, including the following steps:
  • the image generator 10 emits light with a linear polarization angle to the reflective polarizing film 20 with a polarization angle arranged obliquely above the image generator 10; the linear polarization angle of the light emitted by the image generator 10 is the same as The linear polarization angle of the reflective polarizing film is vertical;
  • the reflective polarizing film 20 reflects the linearly polarized light emitted by the image generator 10 to the wave plate 30 on the side of the reflective polarizing film to form circular polarized light;
  • step 1) the image generator emits light with a linear polarization angle of 90 degrees, and the linear polarization angle of the reflective polarizing film is 180 degrees;
  • the wave plate in step 2) is a quarter wave plate, and the reflection
  • the polarizing film reflects the linearly polarized light emitted by the image generator to the wave plate on the side of the reflective polarizing film to form a circular polarized light of 135 degrees.
  • Step 4) The 135-degree circularly polarized light returned from the original path passes through the wave plate again to form a 180-degree linearly polarized light with the same polarization angle as the reflective polarizing film.
  • the image generator 10 is preferably an OLED screen, an LED screen or a liquid crystal screen.
  • the distance between the focus imaging position on the other side of the reflective polarizing film and the reflective polarizing film is d1
  • the distance between the reflective polarizing film and the image generator is d2
  • d1 d2.
  • the technical solution of the present invention can fully and effectively achieve the above-mentioned purpose of the invention, and the structure and functional principles of the present invention have been fully verified in the embodiments, and can achieve the expected effect and purpose without departing from the original Under the premise of the principle and essence of the invention, various changes or modifications can be made to the embodiments of the invention. Therefore, the present invention includes all replacements within the scope mentioned in the scope of the patent application, and any equivalent changes made within the scope of the patent application of the present invention fall within the scope of the patent application in this case.

Abstract

一种高精度空气显示系统,包括用于发射线性偏振光的图像发生器(10),图像发生器(10)的上方倾斜设有具有线性偏振角度的用于对图像发生器(10)发射过来的线性偏振光进行反射的反射式偏光膜(20),图像发生器(10)发出的线性偏振光的偏振角度与反射式偏光膜(20)的偏振角度互相垂直。高精度空气显示系统中具有偏振角度的反射式偏光膜(20)将图像发生器(10)发出带有线性偏振角度的偏振光反射至波片(30)形成圆型偏振光,逆反射膜(40)将圆型偏振光逆反射至波片(30),波片(30)再将逆反射回的圆型偏振光形成与反射式偏光膜(20)的偏振角度相同的线性偏振光,反射回的线性偏振光穿过反射式偏光膜(20)聚焦形成供观看者查看的高亮度和画面清晰的空气成像画面,观看者在视觉体验上得到前所未有的视觉体验。

Description

一种高精度空气显示系统及方法 技术领域
本发明涉及空中成像领域,特别是一种高精度空气显示系统及方法。
背景技术
现在的空中成像多分为两种形式:第一种成像方式主要采用菲涅尔透镜为主要技术承载,利用菲涅尔聚光成焦的原理,将屏幕的多角度光源,在同一焦点上汇聚,并以圆锥型发散,观看视角在有效角度范围内,可接收到分别为左右眼的并同一焦点的空中成像,但由于菲涅尔透镜自身的结构缘故,所成的像存在精度、亮度、可视范围等问题;第二种成像方式是采用逆反射膜片,将屏幕的多角度光源,在一片半透半反射镜片上反射,至逆反射膜,逆反射膜再将屏幕光源几乎原路径返回,此时,返回光源的一半穿过半透半反射镜,最终依据空气成像的核心原理,屏幕的光在空中按照规律汇聚,呈现一个可被观察的像,但由于屏幕光源在二次进入半透半反射镜时,总体亮度只剩下25%以下,导致亮度问题,而一般逆反射膜一般用于道路交通安全领域,对于再归反射的精度要求不高,导致各个像素回射到各自焦点位置发生偏移,从而导致像素模糊。
发明概述
技术问题
问题的解决方案
技术解决方案
针对现有的成像模糊,亮度和精度低的问题,本发明提供了一种高精度空气显示系统,可获得一个亮度高和画面清晰的空气成像画面。
本发明采用的技术方案为:
一种高精度空气显示系统,包括用于发射线性偏振光的图像发生器,图像发生器的上方倾斜设有具有线性偏振角度的用于对图像发生器发射过来的线性偏振光进行反射的反射式偏光膜,图像发生器发出的线性偏振光的偏振角度与反射式偏光膜的偏振角度互相垂直;反射式偏光膜的一侧设有用于对经过反射式偏 光膜反射过来的线性偏振光进行处理形成圆型偏振光的波片以及用于对经过波片的圆型偏振光进行逆反射使得逆反射回的光线依次穿过波片和反射式偏光膜并在反射式偏光膜的另一侧聚焦成像的逆反射膜。
优选地,逆反射回的圆型偏振光在经过波片时形成与反射式偏光膜偏振角度相同的线性偏振光。
优选地,所述反射偏光膜另一侧聚焦成像位置与反射偏光膜的距离为dl,所述反射偏光膜与图像发生器的间距为d2,d1=d2。
优选地,所述图像发生器为OLED屏、LED屏或液晶屏。
优选地,所述图像发生器发出带有线性偏振角度为90度的线性偏振光,所述反射式偏光膜的线性偏振角度为180度;所述波片为四分之一波片,所述逆反射膜为高回归性逆反射膜。
优选地,所述波片与所述图像发生器的夹角为90°;所述图像发生器与所述反射式偏光膜的夹角为45°;所述反射式偏光膜与所述波片的夹角为45°。
本发明还提供一种高精度空气显示方法,包括以下步骤:
1)所述图像发生器发出带有线性偏振角度的光线发射至处于图像发生器上方倾斜设置的具有偏振角度的反射式偏光膜;所述图像发生器发出光线的线性偏振角度与反射式偏光膜的线性偏振角度垂直;
2)所述反射式偏光膜将图像发生器发射过来的线性偏振光进行反射至处于反射式偏光膜一侧的波片,形成圆形型偏振光;
3)穿过波片的圆型偏振光继续发射至逆反射膜,逆反射膜将圆型偏振光原路返回;
4)原路返回的圆型偏振光再次穿过波片形成与反射式偏光膜偏振角度相同的线性偏振光;
5)穿过波片返回的线性偏振光穿过反射式偏光膜在反射式偏光膜另一侧聚焦成像。
优选地,步骤1)中图像发生器发出带有90度线性偏振角度的光线,所述反射式偏光膜的线性偏振角度为180度;步骤2)中的波片为四分之一波片,所述反射式偏光膜将图像发生器发射过来的线性偏振光进行反射至处于反射式偏光膜 一侧的波片形成135度的圆形型偏振光;步骤4)中原路返回的135度圆型偏振光穿过波片形成与反射式偏光膜偏振角度相同的180度线性偏振光。
优选地,所述反射式偏光膜另一侧聚焦成像位置与反射式偏光膜的距离为d1,所述反射式偏光膜与图像发生器的间距为d2,d1=d2。
优选地,所述图像发生器为OLED屏、LED屏或液晶屏。
发明的有益效果
有益效果
与现有技术相比,本发明的有益效果在于:本发明提供一种高精度空气显示系统,具有偏振角度的反射式偏光膜将图像发生器发出带有线性偏振角度的偏振光反射至波片形成圆型偏振光,逆反射膜将圆型偏振光逆反射至波片,波片将逆反射回的圆型偏振光形成与反射式偏光膜的偏振角度相同的线性偏振光,反射回的线性偏振光穿过反射式偏光膜聚焦形成供观看者查看的高亮度和画面清晰的空气成像画面,这样成像画面清晰,在视觉体验上得到前所未有的视觉体验。
对附图的简要说明
附图说明
图1,为本发明提供的一种高精度空气显示系统的示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
根据附图对本发明提供的优选实施方式做具体说明。
图1,为本发明提供的一种高精度空气显示系统的优选实施方式。如图1所示,该高精度空气显示系统包括用于发射线性偏振光的图像发生器10,图像发生器10的上方倾斜设有具有线性偏振角度的用于对图像发生器10发射过来的线性偏振光进行反射的反射式偏光膜20,图像发生器10发出的线性偏振光的偏振角度与反射式偏光膜20的偏振角度互相垂直;反射式偏光膜20的一侧设有用于对经过反射式偏光膜反射过来的线性偏振光进行处理形成圆型偏振光的波片30以及用于对经过波片30的圆型偏振光进行逆反射使得逆反射回的光线依次穿过波片和 反射式偏光膜并在反射式偏光膜另一侧聚焦成像的逆反射膜40,值得注意的是,逆反射回的圆型偏振光在经过波片30时形成与反射式偏光膜20偏振角度相同的线性偏振光,这样在图像发生器10发射出具有线性偏振角度的线性偏振光,反射式偏光膜20将图像发生器10发出带有线性偏振角度的偏振光反射至波片30,经过波片30的带有线性偏振角度的线性偏振光发生偏振属性变化,变为圆型偏振光,圆型偏振光继续发射至逆反射膜40处,由于逆反射膜40的高精密微棱镜结构,将圆型偏振光高回归性的逆反射回原路径,逆反射回的圆型偏振光再次经过波片时发生偏振属性变化变为与反射式偏光膜偏振角度相同的线性偏振光,并继续按原路径向反射式偏光膜回射,由于此时光的偏振属性与反射式偏光膜相等,光大量通过,最终汇聚到反射式偏光膜另一侧的焦点位置形成供观看者查看的高亮度和画面清晰的空气成像画面,这样成像画面清晰,在视觉体验上得到前所未有的视觉体验。
所述图像发生器10与所述反射式偏光膜20的夹角为α,所述反射式偏光膜与所述波片的夹角为β,所述波片与所述图像发生器10的夹角为γ,α+β+γ为180°;作为一种较佳优选方案,γ为90°,α和β都为45°;作为另一种较佳优选方案,α、β和γ都为60°。
所述反射偏光膜另一侧聚焦成像位置与反射偏光膜的距离为d1,所述反射偏光膜与图像发生器的间距为d2,d1=d2。
作为一种实施方式,所述图像发生器10发出带有线性偏振角度为90度的线性偏振光,所述反射式偏光膜20的线性偏振角度为180度;所述波片30为四分之一波片,所述逆反射膜40为高回归性逆反射膜;如图1所示,选用带有90°线性偏振角度的图像发生器10作为成像光源,图像发生器10发出带有90°偏振属性的线性偏振光,当带有90°偏振属性的线性偏振光发射至带180°线偏振角度的反射式偏光膜时,由于偏振属性互相垂直,带有90°偏振属性的线性偏振光被大量的反射至四分之一波片处,经过四分之一波片的光发生偏振属性变化,变为135°的圆型偏振光并继续发射至高回归性逆反射膜,由于高回归性逆反射膜的高精密微棱镜结构,将135°的圆型偏振光高回归性的逆反射回原路径,此时,135°的圆型偏振光光再一次经过四分之一波片发生偏振属性变化,变为180°线性偏振光,并继续 按原路径向反射式偏光膜回射,由于此时的180°线性偏振光的偏振属性与反射型偏光膜的偏振属性相等,180°线性偏振光大量的通过,最终汇聚到空中的焦点位置,该位置与反射型偏光膜距离几乎相等于图像发生器的光源发射处与反射型偏光膜的距离,由于图像发生器显示的画面经过上述结构后,锥型汇聚到焦点位置后锥型发散射出,射出范围覆盖观察角上人的双目人眼,由于双目人眼左右眼球分别捕捉到该焦点位置来源于相同图像发生器但不同光路径的光,双目人眼从该焦点位置看到图像发生器所成的像,达到空中成像的效果。
值得注意的是,四分之一波片为一定厚度的能将平面偏振光转化成圆偏振光,或反之将圆偏振光转化成平面偏振光的一种各向异性的晶体薄片。当光法向入射透过晶片时,其振动方向与晶片光轴夹θ角(θ≠0),入射的光振动分解成垂直于光轴(o振动)和平行于光轴(e振动)两个分量,它们对应晶片中的寻常光(o光)和非常光(e光),晶片中的寻常光(o光)和非常光(e光)沿同一方向传播,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍,这样的晶片称为四分之一波片或1/4波片。
本申请中,四分之一波片贴合在逆反射膜上,合为一体。偏振光经过四分之一波片,光的偏振属性发生更改:线性偏振光经过四分之一波片,转换为圆型偏振光;圆型偏振光经过四分之一波片,转换为线型偏振光;同时偏振角度在每经过一次发生偏转45度。
优选,所述图像发生器10为OLED屏、LED屏、液晶屏或其它表面带有特定的线性偏振属性的图像发生器。
本发明还提供一种高精度空气显示方法,包括以下步骤:
1)所述图像发生器10发出带有线性偏振角度的光线发射至处于图像发生器10上方倾斜设置的具有偏振角度的反射式偏光膜20;所述图像发生器10发出光线的线性偏振角度与反射式偏光膜的线性偏振角度垂直;
2)所述反射式偏光膜20将图像发生器10发射过来的线性偏振光进行反射至处于反射式偏光膜一侧的波片30,形成圆形型偏振光;
3)穿过波片的圆型偏振光继续发射至逆反射膜40,逆反射膜40将圆型偏振光原路返回;
4)原路返回的圆型偏振光再次穿过波片30形成与反射式偏光膜40偏振角度相同的线性偏振光;
5)穿过波片返回的线性偏振光穿过反射式偏光膜20在反射式偏光膜另一侧聚焦成像。
步骤1)中图像发生器发出带有90度线性偏振角度的光线,所述反射式偏光膜的线性偏振角度为180度;步骤2)中的波片为四分之一波片,所述反射式偏光膜将图像发生器发射过来的线性偏振光进行反射至处于反射式偏光膜一侧的波片形成135度的圆形型偏振光。步骤4)中原路返回的135度圆型偏振光再次穿过波片形成与反射式偏光膜偏振角度相同的180度线性偏振光。所述图像发生器10优选为OLED屏、LED屏或液晶屏。
值得注意的是,所述反射式偏光膜另一侧聚焦成像位置与反射式偏光膜的距离为d1,所述反射式偏光膜与图像发生器的间距为d2,d1=d2。
综上所述,本发明的技术方案可以充分有效的实现上述发明目的,且本发明的结构及功能原理都已经在实施例中得到充分的验证,能达到预期的功效及目的,在不背离本发明的原理和实质的前提下,可以对发明的实施例做出多种变更或修改。因此,本发明包括一切在专利申请范围中所提到范围内的所有替换内容,任何在本发明申请专利范围内所作的等效变化,皆属本案申请的专利范围之内。

Claims (10)

  1. 一种高精度空气显示系统,其特征在于,包括用于发射线性偏振光的图像发生器,图像发生器的上方倾斜设有具有线性偏振角度的用于对图像发生器发射过来的线性偏振光进行反射的反射式偏光膜,图像发生器发出的线性偏振光的偏振角度与反射式偏光膜的偏振角度互相垂直;反射式偏光膜的一侧设有用于对经过反射式偏光膜反射过来的线性偏振光进行处理形成圆型偏振光的波片以及用于对经过波片的圆型偏振光进行逆反射使得逆反射回的光线依次穿过波片和反射式偏光膜并在反射式偏光膜的另一侧聚焦成像的逆反射膜。
  2. 根据权利要求1所述的高精度空气显示系统,其特征在于:逆反射回的圆型偏振光在经过波片时形成与反射式偏光膜偏振角度相同的线性偏振光。
  3. 根据权利要求2所述的高精度空气显示系统,其特征在于:所述反射偏光膜另一侧聚焦成像位置与反射偏光膜的距离为d1,所述反射偏光膜与图像发生器的间距为d2,d1=d2。
  4. 根据权利要求2所述的高精度空气显示系统,其特征在于:所述图像发生器为OLED屏、LED屏或液晶屏。
  5. 根据权利要求2所述的高精度空气显示系统,其特征在于:所述图像发生器发出带有线性偏振角度为90度的线性偏振光,所述反射式偏光膜的线性偏振角度为180度;所述波片为四分之一波片,所述逆反射膜为高回归性逆反射膜。
  6. 根据权利要求2所述的高精度空气显示系统,其特征在于:所述波片与所述图像发生器的夹角为90°;所述图像发生器与所述反射式偏光膜的夹角为45°;所述反射式偏光膜与所述波片的夹角为45°。
  7. 一种高精度空气显示方法,其特征在于,包括以下步骤:
    1)所述图像发生器发出带有线性偏振角度的光线发射至处于图像 发生器上方倾斜设置的具有偏振角度的反射式偏光膜;所述图像发生器发出光线的线性偏振角度与反射式偏光膜的线性偏振角度垂直;
    2)所述反射式偏光膜将图像发生器发射过来的线性偏振光进行反射至处于反射式偏光膜一侧的波片,形成圆形型偏振光;
    3)穿过波片的圆型偏振光继续发射至逆反射膜,逆反射膜将圆型偏振光原路返回;
    4)原路返回的圆型偏振光再次穿过波片形成与反射式偏光膜偏振角度相同的线性偏振光;
    5)穿过波片返回的线性偏振光穿过反射式偏光膜在反射式偏光膜另一侧聚焦成像。
  8. 根据权利要求7所述的高精度空气显示方法,其特征在于:步骤1)中图像发生器发出带有90度线性偏振角度的光线,所述反射式偏光膜的线性偏振角度为180度;步骤2)中的波片为四分之一波片,所述反射式偏光膜将图像发生器发射过来的线性偏振光进行反射至处于反射式偏光膜一侧的波片形成135度的圆形型偏振光;步骤4)中原路返回的135度圆型偏振光穿过波片形成与反射式偏光膜偏振角度相同的180度线性偏振光。
  9. 根据权利要求7所述的高精度空气显示方法,其特征在于:所述反射式偏光膜另一侧聚焦成像位置与反射式偏光膜的距离为d1,所述反射式偏光膜与图像发生器的间距为d2,d1=d2。
  10. 根据权利要求7所述的高精度空气显示方法,其特征在于:所述图像发生器为OLED屏、LED屏或液晶屏。
PCT/CN2019/079303 2019-03-22 2019-03-22 一种高精度空气显示系统及方法 WO2020191534A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079303 WO2020191534A1 (zh) 2019-03-22 2019-03-22 一种高精度空气显示系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079303 WO2020191534A1 (zh) 2019-03-22 2019-03-22 一种高精度空气显示系统及方法

Publications (1)

Publication Number Publication Date
WO2020191534A1 true WO2020191534A1 (zh) 2020-10-01

Family

ID=72610393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079303 WO2020191534A1 (zh) 2019-03-22 2019-03-22 一种高精度空气显示系统及方法

Country Status (1)

Country Link
WO (1) WO2020191534A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098522A (zh) * 2009-10-28 2011-06-15 精工爱普生株式会社 回复反射的光漫射显示系统
JP2011253128A (ja) * 2010-06-03 2011-12-15 Nippon Seiki Co Ltd 結像装置
CN106154550A (zh) * 2015-04-02 2016-11-23 尚立光电股份有限公司 头戴式显示装置
CN107111149A (zh) * 2014-12-01 2017-08-29 Sn合伙合同会社 空中像显示装置
CN108469671A (zh) * 2018-06-29 2018-08-31 深圳盈天下视觉科技有限公司 一种360度成像系统
CN109752859A (zh) * 2019-03-22 2019-05-14 深圳盈天下视觉科技有限公司 一种高精度空气显示系统及方法
CN209624913U (zh) * 2019-03-22 2019-11-12 深圳盈天下视觉科技有限公司 一种高精度空气显示系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098522A (zh) * 2009-10-28 2011-06-15 精工爱普生株式会社 回复反射的光漫射显示系统
JP2011253128A (ja) * 2010-06-03 2011-12-15 Nippon Seiki Co Ltd 結像装置
CN107111149A (zh) * 2014-12-01 2017-08-29 Sn合伙合同会社 空中像显示装置
CN106154550A (zh) * 2015-04-02 2016-11-23 尚立光电股份有限公司 头戴式显示装置
CN108469671A (zh) * 2018-06-29 2018-08-31 深圳盈天下视觉科技有限公司 一种360度成像系统
CN109752859A (zh) * 2019-03-22 2019-05-14 深圳盈天下视觉科技有限公司 一种高精度空气显示系统及方法
CN209624913U (zh) * 2019-03-22 2019-11-12 深圳盈天下视觉科技有限公司 一种高精度空气显示系统

Similar Documents

Publication Publication Date Title
CN112654902B (zh) 具有空间变化相移器光学器件的头戴式显示器(hmd)
US8786686B1 (en) Head mounted display eyepiece with integrated depth sensing
US11314097B2 (en) Optical system
US10423057B2 (en) Projection apparatus, projection system and spectacle-type display apparatus
KR20180043072A (ko) 렌즈 유닛 및 이를 포함하는 투시형 디스플레이 장치
US20020159150A1 (en) Wide-angle collimating optical device
US20190086788A1 (en) Polarization modulator for stereoscopic projection with high light efficiency and polarization beam splitting prism assembly thereof
CN107065181B (zh) 虚拟现实设备的光学系统
CN108983423A (zh) 一种双目显示系统及车载抬头显示系统
CN209265082U (zh) 虚拟显示设备
TWI497116B (zh) 立體影像顯示裝置及立體影像顯示方法
CN210109474U (zh) 一种增加可视化范围的空中成像系统
KR101524933B1 (ko) 증강현실 구현을 위한 광학시스템장치 및 헤드마운트 디스플레이장치
CN109752859A (zh) 一种高精度空气显示系统及方法
CN114371557B (zh) 一种vr光学系统
JP2012118193A (ja) 結像装置
WO2020252700A1 (zh) 一种增加可视范围的空中成像系统及空中成像方法
CN209624913U (zh) 一种高精度空气显示系统
US10845614B2 (en) Near-eye display device
WO2020191534A1 (zh) 一种高精度空气显示系统及方法
CN115145097B (zh) 一种两片式3d投影系统及其成像方法
CN111458963A (zh) 一种前投式2d/3d混合投影显示装置
CN108828774A (zh) 虚拟现实显示设备
CN109541816A (zh) 一种隐身装置
US20220350154A1 (en) Polarization optimized heads-up display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920937

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19920937

Country of ref document: EP

Kind code of ref document: A1