WO2020191531A1 - 一种航迹规划方法、装置及计算机可读存储介质 - Google Patents

一种航迹规划方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2020191531A1
WO2020191531A1 PCT/CN2019/079295 CN2019079295W WO2020191531A1 WO 2020191531 A1 WO2020191531 A1 WO 2020191531A1 CN 2019079295 W CN2019079295 W CN 2019079295W WO 2020191531 A1 WO2020191531 A1 WO 2020191531A1
Authority
WO
WIPO (PCT)
Prior art keywords
equal
point
track detection
track
circle
Prior art date
Application number
PCT/CN2019/079295
Other languages
English (en)
French (fr)
Inventor
冯伟
刘笑
张艳辉
张晨宁
尹铎
冯亚春
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2019/079295 priority Critical patent/WO2020191531A1/zh
Publication of WO2020191531A1 publication Critical patent/WO2020191531A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Definitions

  • the present invention relates to the technical field of path planning, in particular to a method, device and computer readable storage medium for route planning.
  • the trajectory planning of an aircraft specifically refers to that the aircraft searches for an optimal collision-free path from the starting point to the ending point according to one or more predetermined performance indicators.
  • the A* algorithm and artificial fish school algorithm are usually used in trajectory planning.
  • the A* algorithm randomly searches for expansion nodes in its surrounding nodes, while the artificial fish school algorithm randomly searches for expansion within a certain range. Nodes, the two have a large amount of calculation during the execution of the algorithm, the efficiency of track generation is low, and the generated track has a certain deviation from the actual optimal track.
  • the main purpose of the embodiments of the present invention is to provide a route planning method, device, and computer-readable storage medium, which can at least solve the problem of the efficiency of route generation when the A* algorithm and artificial fish school algorithm are used for route planning in related technologies. Low, and the generated track has a certain deviation from the actual optimal track.
  • the first aspect of the embodiments of the present invention provides a route planning method, which includes:
  • Step A Construct a three-dimensional space environment model based on the physical space of the aircraft during navigation, and determine the starting point and the end point of the trajectory to be planned on the three-dimensional space environment model; the starting point is the initial trajectory planning node;
  • Step C When there is a target track detection point where the f(o) is equal to ⁇ and the d(o) is equal to 0 on the circle, the target track detection point is determined as the end point; When all the track detection points on the circle do not satisfy that the f(o) is equal to ⁇ and the d(o) is equal to 0, determine the newly planned track planning node, and return to execute the step B;
  • Step D After the end point is detected through the circle, the planned route in the three-dimensional space environment model is determined according to the start point, the newly planned route planning node, and the end point.
  • a track planning device which includes:
  • the model building module is used to construct a three-dimensional space environment model based on the physical space of the aircraft when it is sailing, and to determine the starting point and the end point of the trajectory to be planned on the three-dimensional space environment model; the starting point is the initial trajectory planning node;
  • the calculation module is used to take the target point on the circle formed by the track planning node as the center of the circle and the preset path search distance as the radius as the track detection point, and perform f(o) on all the track detection points And calculation of d(o); where o is the identification of the track detection point, the f(o) is the track optimization coefficient, and the f(o) is related to the d(o) and m(o) ,
  • the d(o) is the linear distance between the track detection point and the end point;
  • a planning module configured to determine the target track detection point as the end point when there is a target track detection point with the f(o) equal to ⁇ and the d(o) equal to 0 on the circle; When all the track detection points on the circle do not satisfy that the f(o) is equal to ⁇ and the d(o) is equal to 0, the newly planned track planning node is determined, and the new plan The trajectory planning node of the input to the calculation module so that the calculation module continues to perform its functions;
  • the track determination module is configured to determine the planned track in the three-dimensional space environment model according to the starting point, the newly planned track planning node, and the end point after the end point is detected through the circle.
  • the communication bus is used to implement connection and communication between the processor and the memory
  • the processor is configured to execute one or more programs stored in the memory to implement the steps of any one of the aforementioned route planning methods.
  • a fourth aspect of the embodiments of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores one or more programs, and the one or more programs can be processed by one or more To implement the steps of any of the above-mentioned trajectory planning methods.
  • the physical space of the aircraft is first modeled in three dimensions, and the three-dimensional space environment model is determined to be Plan the start and end points of the trajectory, and use the starting point as the initial trajectory planning node, and then perform the trajectory optimization coefficient f( for the detection points on the circle with the preset path search distance as the radius and the trajectory planning node as the center of the circle o) and the calculation of the distance d(o) from the end point, and then analyze the obstacles between each detection point and the end point based on the calculation results, and then re-plan the trajectory planning node for the next round of path search until the end point is searched.
  • the planned trajectory is determined according to the starting point, the newly planned trajectory planning node and the end point. Based on the implementation of this application, the calculation amount of trajectory planning is effectively reduced, the efficiency of trajectory generation is improved, and the planned trajectory is reduced. The deviation of the actual optimal flight path.
  • FIG. 1 is a schematic diagram of the basic flow of the route planning method provided by the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a plane environment model provided by the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a three-dimensional environment model provided by the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of determining the obstacle coefficient of the track detection point provided by the first embodiment of the present invention.
  • 5a and 5b are schematic diagrams of a trajectory planning provided by the second embodiment
  • Figure 6 is a schematic diagram of another trajectory planning provided by the second embodiment
  • FIG. 7 is a schematic structural diagram of a route planning device provided by a third embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by a fourth embodiment of the present invention.
  • Fig. 1 is a schematic diagram of the basic flow of the route planning method provided in this embodiment.
  • the route planning method proposed in this embodiment includes the following steps:
  • the route planning method in this embodiment is an intelligent optimization algorithm inspired by plant growth characteristics.
  • the algorithm is based on plant behavior and is a typical application of behaviorism in artificial intelligence. Its basic idea is to imitate the phototaxis, auxin distribution and other behaviors of plants to seek the optimal solution in the search space.
  • the aircraft in this embodiment is applicable to any aircraft that can move in three-dimensional space, such as unmanned aerial vehicles, airplanes, and hang gliders.
  • Figures 2 and 3 are schematic diagrams of the environment model provided by this embodiment.
  • Figure 2 is a schematic diagram of a planar environment model
  • Figure 3 is a schematic diagram of a three-dimensional environment.
  • the center is the initial trajectory planning node, and a2, a3 in Figure 3 , A4 is the re-planned trajectory planning node.
  • the space is divided into a hierarchical structure of different levels of space with a path of length r each time, namely the first-level space, the second-level space, and the third-level space. ( Figures 2 and 3 marked 1, 2 and 3)...and so on.
  • Discrete processing of the environmental space but the size of the space division has a direct impact on the size of the environmental information storage and the length of the planning time.
  • the number of stages of the sub-space determines the number of path segments.
  • a reasonable value of r is established by the environmental model. The important link.
  • Step 102 Use the target point on the circle formed by the track planning node as the center of the circle and the preset path search distance as the radius as the track detection point, and perform f(o) and d(o) on all the track detection points.
  • o is the identification of the track detection point
  • f(o) is the track optimization coefficient
  • f(o) is related to d(o) and m(o)
  • m(o) is the obstacle coefficient
  • m(o) ⁇ 0 it means that the path test point passes through obstacles.
  • d(o) is the linear distance between the track detection point and the end point.
  • the aircraft is imitated as a plant sprout tip, and the plant sprout tip can be abstracted into an open self-organizing model with multiple search modes.
  • the current growth point of the plant bud tip is denoted by o, and the corresponding light intensity is denoted as f(o).
  • the photosensitive range of the bud is the photosensitive aperture with the radius of r, and r is the growth speed per unit time, that is, the distance of each movement. The smallest unit, the path segment length in each level of the space ring in the constructed environment modeling space is r, so the value of r must be determined reasonably.
  • the flight path planning node of the aircraft corresponds to the growth point of the bud tip
  • the path search distance corresponds to the photosensitive radius of the bud tip
  • the track optimization coefficient is used for the light intensity of the virtual bud tip.
  • the new planned track planning node is determined based on the current circle, and the way of determining It can include at least one of the following:
  • Method 1 When all the track detection points on the circle are track detection points with f(o) equal to ⁇ and d(o) not equal to 0, increase the path search distance to the new path search distance, and add The current trajectory planning node is determined as the newly planned trajectory planning node.
  • the photosensitive aperture of the bud tip that is, the track optimization coefficient of the track detection points on the circumference in this embodiment, is ⁇ , that is, the m of all track detection points (o)
  • that is, the m of all track detection points (o)
  • the path search range that is, keep the current trajectory planning node unchanged, and only increase the path search distance to expand the obtained circle range.
  • the way of multiplying can be used. For example, if the current path search distance is r, the subsequent path search distances can be located 2r, 3r. Wait.
  • Condition 2 The number of track detection points whose f(o) is not equal to ⁇ and d(o) is not equal to 0 appear on the circle formed by taking the current trajectory planning node as the center and the new path search distance as the radius. most.
  • this embodiment is different from Condition 1, but after the expanded circle passes the obstacle for the first time, it is necessary to continue to expand the path search range, and there are more track detection points to detect whether the expanded circle passes the obstacle. Then, in the process of expanding the path search range to search for obstacles, the radius of the circle with the largest number of track detection points passing by the obstacle is determined as the new path search distance to be increased.
  • all track detection points on the circle include track detection points whose f(o) is not equal to ⁇ and d(o) is not equal to 0, and f(o) is equal to ⁇ and d(o) is not equal to 0
  • determine the track detection point of the track determine the d(o) value of all track inspection points with f(o) equal to ⁇ and d(o) not equal to 0, and select the track inspection point with the smallest d(o) value Determined as the newly planned trajectory planning node.
  • the track detection point closest to the end point is selected from the track detection points that do not pass the obstacle, as Path planning point for subsequent path search.
  • all track detection points on the circle include track detection points where f(o) is not equal to ⁇ and d(o) is not equal to 0, and f(o) is equal to ⁇ and d(o) is not equal to 0
  • the track detection point is based on the formula Calculate the f(o) value of all track detection points with f(o) equal to ⁇ and d(o) not equal to 0, and determine the track detection point with the largest f(o) value as the newly planned track Planning the node.
  • Step 105 After the end point is detected through the circle, the planned track in the three-dimensional space environment model is determined according to the start point, the newly planned track planning node, and the end point.
  • the path formed by the points searched by the algorithm is not necessarily a feasible path that the aircraft can navigate, and further processing and smoothing are needed to make it a practical and feasible path.
  • the second embodiment of the present invention uses several specific examples to describe the route planning method in detail.
  • Figures 5a and 5b are schematic diagrams of a trajectory planning provided by this embodiment.
  • the starting point of the trajectory to be planned is a1
  • the end point is C.
  • First, starting from the starting point, using r Search and select on the radius of the aperture circle. Since no point m(o) ⁇ 0 (f(o) ⁇ ) is found on the circle, it means that the current circle does not pass obstacles. At this time, keep a1 as the center of the circle. Use 2r as the radius to form an aperture and continue the search. When it is found that a part of the aperture is m(o) ⁇ 0, select the track detection point with m(o) 0 and the smallest d(o) from the aperture as the new flight path.
  • the test point with the smallest d(o) is the new trajectory planning node, that is, as shown in Figure 5b, the d(o) at a6 is the smallest, which is the new trajectory planning node.
  • Figure 6 is a schematic diagram of another trajectory planning provided by this embodiment.
  • the starting point of the trajectory to be planned is a1
  • the end point is C.
  • the path search distance is still increased, and the aperture is formed with a larger radius to continue the obstacle
  • the aperture circle no longer passes through obstacles. Therefore, the path search range formed by a circle with a radius of 2r is a suitable range, and m is selected from the circle with a radius of 2r.
  • the path search distance is increased to search for obstacles, and the latter implementation
  • the path search distance will be increased until there are as many track detection points as possible through the obstacle on the formed circle.
  • the track planning device of this embodiment includes:
  • the model construction module 701 is used to construct a three-dimensional space environment model based on the physical space of the aircraft during navigation, and to determine the starting point and end point of the trajectory to be planned on the three-dimensional space environment model; the starting point is the initial trajectory planning node;
  • the planning module 703 is used to determine the target track detection point as the end point when there are target track detection points with f(o) equal to ⁇ and d(o) equal to 0 on the circle; all track detection points on the circle When f(o) is equal to ⁇ and d(o) is equal to 0, the newly planned trajectory planning node is determined, and the newly planned trajectory planning node is input to the calculation module 702 so that the calculation module 702 continues to perform its functions ;
  • the track determination module 704 is used to determine the planned track in the three-dimensional space environment model according to the starting point, the newly planned track planning node, and the ending point after the end point is detected through the circle.
  • the route planning method in this embodiment is an intelligent optimization algorithm inspired by plant growth characteristics.
  • the algorithm is based on plant behavior and is a typical application of behaviorism in artificial intelligence. Its basic idea is to imitate the phototaxis, auxin distribution and other behaviors of plants to seek the optimal solution in the search space.
  • the aircraft is imitated as a plant sprout tip, and the plant sprout tip can be abstracted into an open self-organizing model with multiple search modes.
  • the current growth point of the plant bud tip is denoted by o, and the corresponding light intensity is denoted as f(o).
  • the photosensitive range of the bud is the photosensitive aperture with the radius of r, and r is the growth speed per unit time, that is, the distance of each movement.
  • the flight path planning node of the aircraft corresponds to the growth point of the bud tip
  • the path search distance corresponds to the radius of the photosensitive aperture of the bud tip
  • the trajectory optimization coefficient is used for the light intensity of the virtual bud tip.
  • the new plan is determined based on the current circle Trajectory planning node, and continue to be input to the calculation module 702 to continue the relevant calculations.
  • the planning module 703 is specifically configured to perform at least one of the following: all track detection points on the circle are tracks with f(o) equal to ⁇ and d(o) not equal to 0 When detecting points, increase the path search distance to the new path search distance, and determine the current trajectory planning node as the newly planned trajectory planning node; include f(o) in all track detection points on the circle When the track detection points are not equal to ⁇ and d(o) is not equal to 0, and f(o) is equal to ⁇ and d(o) is not equal to 0, it is determined that all f(o) is equal to ⁇ and d( o) The d(o) value of the track detection point that is not equal to 0, and the track detection point with the smallest d(o) value is determined as the newly planned track planning node; all the tracks on the circle are detected When the points include track detection points where f(o) is not equal to ⁇ and d(o) is not equal to 0, and track detection points
  • the new path search distance satisfies the following conditions: on the circle formed with the current trajectory planning node as the center and the new path search distance as the radius, f(o ) Is not equal to ⁇ and d(o) is not equal to 0; or, on the circle formed by using the current trajectory planning node as the center and the new path search distance as the radius, f(o) does not appear
  • the number of track detection points equal to ⁇ and d(o) not equal to 0 is the largest.
  • the planning module 703 is specifically configured to Determine the d(o) value of each track detection point with f(o) equal to ⁇ and d(o) not equal to 0; among them, the coordinates of the track detection point are expressed as o(x o ,y o ,z o ), and the coordinates of the end point are expressed as C(x c ,y c ,z c ).
  • the planning module 703 is also used to ray each track detection point toward the end point, and divide the obstacle into two parts by the ray; respectively calculate the farthest of the two parts relative to the ray
  • the track determination module 704 is specifically configured to connect the starting point, the newly planned track planning node, and the end point into a polyline; and smooth the polyline to obtain the plan in the three-dimensional environment model. track.
  • trajectory planning method in the foregoing embodiment can be implemented based on the trajectory planning device provided in this embodiment, and those of ordinary skill in the art can clearly understand that for the convenience and conciseness of the description, this embodiment
  • trajectory planning device when planning the trajectory of the aircraft, first perform three-dimensional modeling of the physical space of the aircraft while it is sailing, and determine the start and end points of the trajectory to be planned in the three-dimensional space environment model, and Take the starting point as the initial trajectory planning node, and then perform the trajectory optimization coefficient f(o) and the distance d( from the end point) to the detection points on the circle with the preset path search distance as the radius and the trajectory planning node as the center.
  • the planned trajectory is determined by the trajectory planning node and end point. Based on the implementation of this application, the calculation amount of trajectory planning is effectively reduced, the efficiency of trajectory generation is improved, and the deviation between the planned trajectory and the actual optimal trajectory is reduced.
  • This embodiment provides an electronic device. As shown in FIG. 8, it includes a processor 801, a memory 802, and a communication bus 803.
  • the communication bus 803 is used to implement connection and communication between the processor 801 and the memory 802; processing
  • the device 801 is configured to execute one or more computer programs stored in the memory 802 to implement at least one step in the route planning method of the foregoing embodiment.
  • This embodiment also provides a computer-readable storage medium, which is included in any method or technology for storing information (such as computer-readable instructions, data structures, computer program modules, or other data). Volatile or non-volatile, removable or non-removable media.
  • Computer readable storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory, read-only memory), EEPROM (Electrically Erasable Programmable read only memory, charged Erasable Programmable Read-Only Memory) ), flash memory or other storage technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, Or any other medium that can be used to store desired information and can be accessed by a computer.
  • the computer-readable storage medium in this embodiment may be used to store one or more computer programs, and the stored one or more computer programs may be executed by a processor to implement at least one step of the route planning method of the foregoing embodiment.
  • This embodiment also provides a computer program, which can be distributed on a computer-readable medium and executed by a computable device to implement at least one step of the route planning method of the foregoing embodiment; and in some cases Next, at least one of the steps shown or described can be performed in a different order from that described in the foregoing embodiment.
  • This embodiment also provides a computer program product, including a computer-readable device, and the computer-readable device stores the computer program as shown above.
  • the computer-readable device in this embodiment may include the computer-readable storage medium as shown above.
  • communication media usually contain computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. Therefore, the present invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种航迹规划方法、装置及计算机可读存储介质,在对飞行器进行航迹规划时,先对飞行器航行时的物理空间进行三维建模,在三维空间环境模型中确定待规划航迹的起点和终点,并将起点作为初始的航迹规划节点,然后对以预设路径搜索距离为半径、航迹规划节点为圆心的圆周上的检测点,进行航迹优化系数f(o)和离终点的距离d(o)的计算,再基于计算结果分析各检测点与终点之间的障碍物情况,然后重新规划航迹规划节点进行下一轮路径搜索,直至搜索到终点,最后再根据起点、新规划的航迹规划节点及终点确定出规划航迹,该方案有效降低了航迹规划计算量,提升了航迹生成效率,并降低了规划航迹的偏差。

Description

一种航迹规划方法、装置及计算机可读存储介质 技术领域
本发明涉及路径规划技术领域,尤其涉及一种航迹规划方法、装置及计算机可读存储介质。
背景技术
为了使飞行器在动态环境中自主完成任务,飞行器的航迹规划是一个非要重要的部分。随着飞行器应用的场景的不断拓展,飞行器的航迹规划的研究价值也不断提高。
飞行器的航迹规划具体是指飞行器按照预先设定的一项或多项性能指标,搜索出一条从起始点到终止点的最优无碰撞路径。目前在进行航迹规划时,通常采用的是A*算法和人工鱼群算法,其中,A*算法随机在其周边节点中搜索扩展节点,而人工鱼群算法则是在一定范围内随机搜索扩展节点,两者在算法的执行过程中的计算量较大,航迹生成的效率较低,且所生成的航迹与实际最优的航迹存在一定偏差。
技术问题
本发明实施例的主要目的在于提供一种航迹规划方法、装置及计算机可读存储介质,至少能够解决相关技术中采用A*算法和人工鱼群算法进行航迹规划时,航迹生成的效率较低,且所生成的航迹与实际最优的航迹存在一定偏差的问题。
技术解决方案
为实现上述目的,本发明实施例第一方面提供了一种航迹规划方法,该方法包括:
步骤A、基于飞行器航行时的物理空间构建三维空间环境模型,并在所述三维空间环境模型上确定待规划航迹的起点和终点;所述起点为初始的航迹规划节点;
步骤B、将以航迹规划节点作为圆心、预设的路径搜索距离作为半径所形成的圆周上的目标点作为航迹检测点,并对所有所述航迹检测点进行f(o)及d(o)的计算;其中,o为航迹检测点的标识,所述f(o)为航迹优化系数,所述f(o)关联于所述d(o)及m(o),所述m(o)为障碍系数,所述m(o)=0时,表征所述路径测试点未经过障碍物,所述m(o)≠0时,表征所述路径测试点经过障碍物,所述d(o)为所述航迹检测点与所述终点之间的直线距离;
步骤C、在所述圆周上存在所述f(o)等于∞且所述d(o)等于0的目标航迹检测点时,将所述目标航迹检测点确定为所述终点;在所述圆周上的所有所述航迹检测点均不满足所述f(o)等于∞且所述d(o)等于0时,确定新规划的航迹规划节点,并返回执行所述步骤B;
步骤D、在通过所述圆周检测到所述终点之后,根据所述起点、所述新规划的航迹规划节点以及所述终点确定所述三维空间环境模型中的规划航迹。
为实现上述目的,本发明实施例第二方面提供了一种航迹规划装置,该装置包括:
模型构建模块,用于基于飞行器航行时的物理空间构建三维空间环境模型,并在所述三维空间环境模型上确定待规划航迹的起点和终点;所述起点为初始的航迹规划节点;
计算模块,用于将以航迹规划节点作为圆心、预设的路径搜索距离作为半径所形成的圆周上的目标点作为航迹检测点,并对所有所述航迹检测点进行f(o)及d(o)的计算;其中,o为航迹检测点的标识,所述f(o)为航迹优化系数,所述f(o)关联于所述d(o)及m(o),所述m(o)为障碍系数,所述m(o)=0时,表征所述路径测试点未经过障碍物,所述m(o)≠0时,表征所述路径测试点经过障碍物,所述d(o)为所述航迹检测点与所述终点之间的直线距离;
规划模块,用于在所述圆周上存在所述f(o)等于∞且所述d(o)等于0的目标航迹检测 点时,将所述目标航迹检测点确定为所述终点;在所述圆周上的所有所述航迹检测点均不满足所述f(o)等于∞且所述d(o)等于0时,确定新规划的航迹规划节点,并将所述新规划的航迹规划节点输入至所述计算模块以使所述计算模块继续执行其功能;
航迹确定模块,用于在通过所述圆周检测到所述终点之后,根据所述起点、所述新规划的航迹规划节点以及所述终点确定所述三维空间环境模型中的规划航迹。
为实现上述目的,本发明实施例第三方面提供了一种电子装置,该电子装置包括:处理器、存储器和通信总线;
所述通信总线用于实现所述处理器和存储器之间的连接通信;
所述处理器用于执行所述存储器中存储的一个或者多个程序,以实现上述任意一种航迹规划方法的步骤。
为实现上述目的,本发明实施例第四方面提供了一种计算机可读存储介质,该计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现上述任意一种航迹规划方法的步骤。
有益效果
根据本发明实施例提供的航迹规划方法、装置及计算机可读存储介质,在对飞行器进行航迹规划时,先对飞行器航行时的物理空间进行三维建模,在三维空间环境模型中确定待规划航迹的起点和终点,并将起点作为初始的航迹规划节点,然后对以预设路径搜索距离为半径、航迹规划节点为圆心的圆周上的检测点,进行航迹优化系数f(o)和离终点的距离d(o)的计算,再基于计算结果分析各检测点与终点之间的障碍物情况,然后重新规划航迹规划节点进行下一轮路径搜索,直至搜索到终点,最后再根据起点、新规划的航迹规划节点及终点确定出规划航迹,基于本申请方案的实施,有效降低了航迹规划计算量,提升了航迹生成效率,并降低了规划航迹与实际最优航迹的偏差。
本发明其他特征和相应的效果在说明书的后面部分进行阐述说明,且应当理解,至少部分效果从本发明说明书中的记载变的显而易见。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施例提供的航迹规划方法的基本流程示意图;
图2为本发明第一实施例提供的平面环境模型的示意图;
图3为本发明第一实施例提供的立体环境模型的示意图;
图4为本发明第一实施例提供的确定航迹检测点的障碍系数的示意图;
图5a和5b为第二实施例提供的一种航迹规划示意图;
图6为第二实施例提供的另一种航迹规划示意图;
图7为本发明第三实施例提供的航迹规划装置的结构示意图;
图8为本发明第四实施例提供的电子装置的结构示意图。
本发明的实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在 没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
第一实施例:
为了解决相关技术中采用A*算法和人工鱼群算法进行航迹规划时,航迹生成的效率较低,且所生成的航迹与实际最优的航迹存在一定偏差的技术问题,本实施例提出了一种航迹规划方法,如图1所示为本实施例提供的航迹规划方法的基本流程示意图,本实施例提出的航迹规划方法包括以下的步骤:
步骤101、基于飞行器航行时的物理空间构建三维空间环境模型,并在三维空间环境模型上确定待规划航迹的起点和终点;起点为初始的航迹规划节点。
具体的,本实施例中的航迹规划方法,是受植物生长特性启发而提出的一种智能优化算法,该算法基于植物行为,是人工智能中行为主义的一种典型应用。它的基本思想是模仿植物的趋光性、生长素分布等行为在搜索空间中寻求最优解。应当理解的是,本实施例中的飞行器应用于任何可在三维空间内运动的飞行器,例如无人机、飞机及滑翔翼等。
应当说明的是,飞行器是在物理空间中进行运动,为了实现航迹规划,本实施例中首先需要对飞行器航行时的三维物理空间进行环境建模得到抽象空间,环境建模是航迹规划的重要环节,目的是建立一个便于计算机进行航迹规划所使用的三维空间环境模型,即将实际的(需要规划航迹的)物理空间抽象成算法能够处理的抽象空间,实现相互间的映射。在实际应用中,可以根据预设的处理算法以及需要规划航迹的物理空间来生成三维物理空间模型,这里的处理算法包括但不限于可视图法、切线图法、Voronoi图法、拓扑法、栅格法等。
如图2和3所示分别为本实施例提供的环境模型示意图,其中图2为平面环境模型示意图,图3为立体环境示意图,中心为初始的航迹规划节点,图3中的a2、a3、a4则为重新规划的航迹规划节点,从初始点开始,每次以长度为r的路径将空间划分为不同层次空间的分级式结构,分别为一级空间、二级空间、三级空间(如图2和3中所标记的1、2和3)…依次类推。对环境空间进行离散处理,但空间划分的大小对环境信息存储量的大小及规划时间的长短有着直接的影响,分空间的级数决定了路径段个数,合理确定r的值是环境模型建立中重要环节。
步骤102、将以航迹规划节点作为圆心、预设的路径搜索距离作为半径所形成的圆周上的目标点作为航迹检测点,并对所有航迹检测点进行f(o)及d(o)的计算;其中,o为航迹检测点的标识,f(o)为航迹优化系数,f(o)关联于d(o)及m(o),m(o)为障碍系数,m(o)=0时,表征路径测试点未经过障碍物,m(o)≠0时,表征路径测试点经过障碍物,d(o)为航迹检测点与终点之间的直线距离。
具体的,本实施例中将飞行器模仿为植物芽尖,而植物芽尖可以抽象成具有多种搜索模式的开放自组织模型。植物芽尖的当前生长点用o表示,其对应的光照强度表示为f(o),芽的感光范围是以r为半径的感光光圈,r为单位时间内的生长速度即每次移动距离的最小单位,以构建的环境建模空间中的每级空间圆环中的路径段长度为r,因此要合理确定r的值。基于此,本实施例中将飞行器的航迹规划节点对应为芽尖的生长点,路径搜索距离对应为芽尖的感光半径,航迹优化系数用于虚拟芽尖的光照强度。应当理解的是,圆周上的航迹检测点的m(o)等于0时,f(o)取∞,用于表征航迹检测点未经过障碍物,反之则表征航迹检测点经过障碍物。
步骤103、在圆周上存在f(o)等于∞且d(o)等于0的目标航迹检测点时,将目标航迹检测点确定为终点,进入步骤105;
步骤104、在圆周上的所有航迹检测点均不满足f(o)等于∞且d(o)等于0时,确定新规划的航迹规划节点,返回执行步骤102;
在本实施例中,在圆周上的所有航迹检测点均不满足f(o)等于∞以及d(o)等于0时,基于当前圆周来确定新规划的航迹规划节点,其确定的方式可以包括以下至少之一:
方式一,在圆周上的所有航迹检测点均为f(o)等于∞且d(o)不等于0的航迹检测点时,将路径搜索距离增大到新的路径搜索距离,并将当前的航迹规划节点确定为新规划的航迹规划节点。
具体的,在将飞行器模仿成芽尖生长时,芽尖的感光光圈也即本实施例中的圆周上的航迹检测点的航迹优化系数都为∞,也即所有航迹检测点的m(o)均等于0时,扩大路径搜索范围,也即将当前的航迹规划节点保持不变,仅对路径搜索距离进行增加,以使所得到的圆周的范围扩大。在本实施例的一种实施方式中,在对路径搜索距离进行增加时,可以采用成倍增加的方式,例如若当前的路径搜索距离为r,则可以将随后的路径搜索距离定位2r、3r等。
另外,在本实施例一种可选的实施方式中,在对路径搜索距离进行增大可扩大路径搜索范围时,新的路径搜索距离满足以下两种条件任意之一:
条件一,以当前的航迹规划节点作为圆心、新的路径搜索距离作为半径所形成的圆周上,开始出现f(o)不等于∞且d(o)不等于0的航迹检测点。
具体的,在此前的路径搜索范围下,圆周上的所有航迹检测点均不经过障碍物,在对路径搜索范围进行扩大时,仅需保证所扩大的圆周初次经过障碍物即可。
条件二,以当前的航迹规划节点作为圆心、新的路径搜索距离作为半径所形成的圆周上,出现的f(o)不等于∞且d(o)不等于0的航迹检测点的数量最多。
具体的,本实施方式不同于条件一,而是在所扩大的圆周初次经过障碍物之后,还需要继续扩大路径搜索范围,检测所继续扩大的圆周是否经过障碍物的航迹检测点更多,然后将扩大路径搜索范围遍寻障碍物的过程中,经过障碍物的航迹检测点数量最多的圆周的半径确定为所需增大至的新的路径搜索距离。
方式二,在圆周上的所有航迹检测点中包括f(o)不等于∞且d(o)不等于0的航迹检测点,以及f(o)等于∞且d(o)不等于0的航迹检测点时,确定所有f(o)等于∞且d(o)不等于0的航迹检测点的d(o)取值,并将d(o)取值最小的航迹检测点确定为新规划的航迹规划节点。
具体的,本实施例中若圆周上的部分点经过障碍物,而另外的部分点不经过障碍物,则从不经过障碍物的航迹检测点中选取距离终点最近的航迹检测点,作为后续进行路径搜索的路径规划点。
在本实施例一种可选的实施方式中,d(o)取值的具体确定方式为:根据公式
Figure PCTCN2019079295-appb-000001
分别确定各f(o)等于∞且d(o)不等于0的航迹检测点的d(o)取值;其中,航迹检测点的坐标表示为o(x o,y o,z o),终点的坐标表示为C(x c,y c,z c)。
方式三,在圆周上的所有航迹检测点中包括f(o)不等于∞且d(o)不等于0的航迹检测点,以及f(o)等于∞且d(o)不等于0的航迹检测点时,基于公式
Figure PCTCN2019079295-appb-000002
计算所有f(o)等于∞且d(o)不等于0的航迹检测点的f(o)取值,并将f(o)取值最大的航迹检测点确定为新规划的航迹规划节点。
在本实施例一种可选的实施方式中,基于公式f(o)=1/m(o)+1/d(o)计算所有航迹检测点的f(o)取值包括:分别对各航迹检测点向终点作射线,通过射线将障碍物分为两部分;分别计算两部分上相对于射线的最远点至射线的距离,并将所计算出的距离中的最小值确定为m(o)取值;根据公式
Figure PCTCN2019079295-appb-000003
分别确定各航迹检测点的d(o)取值;其中,航迹检测点的坐标表示为o(x o,y o,z o),终点的坐标表示为C(x c,y c,z c);并将m(o)取值以及d(o)取值代入公式f(o)=1/m(o)+1/d(o)计算所有航迹检测点的f(o)取值。
具体的,假设当前需要计算的航迹检测点为o,则该航迹检测点至终点的距离d(o)表示 当前航迹检测点o(x o,y o,z o)到终点C(x c,y c,z c)的距离估计值,计算公式为:
Figure PCTCN2019079295-appb-000004
如图4所示为本实施例提供的确定航迹检测点的障碍系数的示意图,由航迹检测点o向终点C作射线H,射线H将虚拟空间上o到C点的区域一分为二(分为如图4所示的区域p和区域q),在两个区域p域和q域内,分别计算障碍物在两个区域相对于射线H的最远点到射线H的距离h1和h2,选取距离较短的值作为该航迹检测点的障碍系数m(o),即m(o)=min(h1,h2)。根据上述所计算得到的d(o)和m(o)代入公式f(o)=1/m(o)+1/d(o)即可求得f(o)。
步骤105、在通过圆周检测到终点之后,根据起点、新规划的航迹规划节点以及终点确定三维空间环境模型中的规划航迹。
具体的,通过算法搜索出的点组成的路径并不一定是一条飞行器可以航行的可行路径,需作进一步处理与平滑使其成为一条实际可行的路径。
在本实施例一种可选的实施方式中,根据起点、新规划的航迹规划节点以及终点确定三维空间环境模型中的规划航迹包括:将起点、新规划的航迹规划节点以及终点连接成为一条折线;并对折线进行平滑处理而得到三维空间环境模型中的规划航迹。
根据本发明实施例提供的航迹规划方法,在对飞行器进行航迹规划时,先对飞行器航行时的物理空间进行三维建模,在三维空间环境模型中确定待规划航迹的起点和终点,并将起点作为初始的航迹规划节点,然后对以预设路径搜索距离为半径、航迹规划节点为圆心的圆周上的检测点,进行航迹优化系数f(o)和离终点的距离d(o)的计算,再基于计算结果分析各检测点与终点之间的障碍物情况,然后重新规划航迹规划节点进行下一轮路径搜索,直至搜索到终点,最后再根据起点、新规划的航迹规划节点及终点确定出规划航迹,基于本申请方案的实施,有效降低了航迹规划计算量,提升了航迹生成效率,并降低了规划航迹与实际最优航迹的偏差。
第二实施例:
为了更加直观的理解本发明实施例中的航迹规划方法,本发明实施例二以几个具体的示例对航迹规划方法进行详细说明。
如图5a和5b为本实施例提供的一种航迹规划示意图,在本实施例的一种实施方式中,待规划航迹的起点为a1,终点为C,首先,从起点开始,以r为半径的光圈圆周上进行搜索选取,由于在圆周上没有寻到m(o)≠0(f(o)≠∞)的点,说明当前圆周没有经过障碍物,此时则保持a1为圆心,以2r为半径形成光圈继续进行搜索,当发现光圈上有一部分为m(o)≠0,则从光圈上选取m(o)=0且d(o)最小的航迹检测点为新的航迹规划节点,即如图5a所示,在该半径为2r的圆周上,a2和o a均为m(o)=0的测试点,且都是d(o)相对较小的点,则比较两者的d(o)大小,选取较小者也即a2为新的航迹规划节点。
然后,以a2为新的航迹规划节点,从以r为半径的光圈圆周上继续进行搜寻,光圈上仍有障碍物(即m(o)≠0),则仍然选取m(o)=0且d(o)最小的航迹检测点为新的航迹规划节点,即如图5a所示,因为a3是光圈上最靠近目标点C的点,则a3处的d(o)最小,而进一步将a3作为新的航迹规划节点。
进一步地,以a3为新的航迹规划节点,从以r为半径的光圈圆周上继续进行搜寻,光圈上仍有障碍物(即m(o)≠0),则仍然选取m(o)=0且d(o)最小的测试点为新的a点,即如图5a所示,a4处的d(o)最小,作为新的航迹规划节点。
再进一步地,以a4为新的航迹规划节点,从以r为半径的光圈圆周上继续进行搜寻,光圈上大部分的航迹检测点m(o)≠0(光圈圆周上朝向目标点C那侧的航迹检测点经过障碍物),从这些航迹检测点o向C作方向为
Figure PCTCN2019079295-appb-000005
的射线h,h将航迹检测点到C点的区域一分为二, 在两个区域p域和q域内,分别计算障碍物最远点到射线h的距离,选取距离最短的值作为m(o),即m(o)=min(h1,h2),每个测试点o均能得到m(o),此时计算每个航迹检测点的航迹优化系数,根据公式f(o)=1/m(o)+1/d(o)选取航迹优化系数最大的点作为新的航迹规划节点,例如图5a所示,比较航迹检测点o 1和o 2处的光照强度,o 2处的f(o)更大,也就成为新的航迹规划节点a5。
进而,以a5为新的航迹规划节点,从以r为半径的光圈圆周上继续进行搜寻,光圈上仍有障碍物(即m(o)≠0),则仍然选取m(o)=0且d(o)最小的测试点为新的航迹规划节点,即如图5b所示,a6处的d(o)最小,为新的航迹规划节点。
再以a6为新的航迹规划节点,从以r为半径的光圈圆周上继续进行搜寻,光圈上没有障碍物,航迹检测点均为m(o)=0,成倍增加光圈半径,当以半径fr的光圈搜索时,发现m(o)=0且d(o)无限接近于0的航迹检测点,则到达C点,结束搜寻,此时a1、a2、a3、a4、a5、a6及C之间所连成的折线即为规划航迹,具体请参阅图5b。
如图6为本实施例提供的另一种航迹规划示意图,在本实施例的另一种实施方式中,待规划航迹的起点为a1,终点为C,首先,从起点开始,以r为半径的光圈圆周上进行搜索选取,由于在圆周上没有寻到m(o)≠0(f(o)≠∞)的点,说明当前圆周没有经过障碍物,此时则保持a1为圆心,以2r为半径形成光圈继续进行搜索,当发现光圈上有一部分为m(o)≠0,也即发现障碍物,但是此时仍然继续增大路径搜索距离,以更大半径形成光圈继续进行障碍物遍寻,然而在以3r为半径搜索时,光圈圆周不再经过障碍物,由此,半径为2r的圆周所形成的路径搜索范围为合适范围,从而从半径为2r的光圈圆周上选取m(o)=0且d(o)最小的航迹检测点为新的航迹规划节点,即如图6所示,在该半径为2r的圆周上,a2和o a均为m(o)=0的测试点,且都是d(o)相对较小的点,则比较两者的d(o)大小,选取较小者也即a2为新的航迹规划节点。
然后,以a2为新的航迹规划节点,从以r为半径的光圈圆周上继续进行搜寻,在分别以r、2r为半径遍寻障碍物的过程中,发现另一个障碍物,扩大光圈范围,直至遍寻完障碍物,从而在3r为半径的光圈上寻得m(o)=0且d(o)最小的点,即为a3点。
进一步地,以a3点作为新的航迹规划节点,在以r为半径的光圈圆周上进行搜索选取,光圈上没有障碍物,所有航迹检测点均为m(o)=0,则成倍增加光圈半径,当以半径fr的光圈搜索时,发现m(o)=0且d(o)无限接近于0的测试点o,则行进到o结束,到达C点,结束搜寻,此时a1、a2、a3及C之间所连成的折线即为规划航迹,具体请参阅图6。
在上述两种实施方式中,前一实施方式中仅有在圆周上的所有航迹检测点的m(o)均为0时,才会增大路径搜索距离进行障碍物的搜索,而后一实施方式中,在搜索到障碍物之后仍会增大路径搜索距离,直至所形成的圆周上经过障碍物的航迹检测点尽量多。应当说明的是,前一实施方式中所计算出的航迹长度长于后一实施方式,但是在算法执行过程中,算法复杂度相对较低,其计算速度则相对较快,算法耗时大大缩短,适用于飞行器动态飞行过程中的实时航迹规划,也即适用于未知、复杂环境中,且对飞行具有较高实时性要求的场景;而后一实施方式提前遍寻,然后分析环境,用时长,路径最优,适用于探测能力强、周围环境信息简单、较固定且对实时性没有很高要求的飞行器。
第三实施例:
为了解决相关技术中采用A*算法和人工鱼群算法进行航迹规划时,航迹生成的效率较低,且所生成的航迹与实际最优的航迹存在一定偏差的技术问题,本实施例示出了一种航迹规划装置,具体请参见图7,本实施例的航迹规划装置包括:
模型构建模块701,用于基于飞行器航行时的物理空间构建三维空间环境模型,并在三维空间环境模型上确定待规划航迹的起点和终点;起点为初始的航迹规划节点;
计算模块702,用于将以航迹规划节点作为圆心、预设的路径搜索距离作为半径所形成的圆周上的目标点作为航迹检测点,并对所有航迹检测点进行f(o)及d(o)的计算;其中,o为航迹检测点的标识,f(o)为航迹优化系数,f(o)关联于d(o)及m(o),m(o)为障碍系数,m(o)=0时,表征路径测试点未经过障碍物,m(o)≠0时,表征路径测试点经过障碍物,d(o)为航迹检测点与终点之间的直线距离;
规划模块703,用于在圆周上存在f(o)等于∞以及d(o)等于0的目标航迹检测点时,将目标航迹检测点确定为终点;在圆周上的所有航迹检测点均不满足f(o)等于∞以及d(o)等于0时,确定新规划的航迹规划节点,并将新规划的航迹规划节点输入至计算模块702以使计算模块702继续执行其功能;
航迹确定模块704,用于在通过圆周检测到终点之后,根据起点、新规划的航迹规划节点以及终点确定三维空间环境模型中的规划航迹。
具体的,本实施例中的航迹规划方法,是受植物生长特性启发而提出的一种智能优化算法,该算法基于植物行为,是人工智能中行为主义的一种典型应用。它的基本思想是模仿植物的趋光性、生长素分布等行为在搜索空间中寻求最优解。本实施例中将飞行器模仿为植物芽尖,而植物芽尖可以抽象成具有多种搜索模式的开放自组织模型。植物芽尖的当前生长点用o表示,其对应的光照强度表示为f(o),芽的感光范围是以r为半径的感光光圈,r为单位时间内的生长速度即每次移动距离的最小单位。基于此,本实施例中将飞行器的航迹规划节点对应为芽尖的生长点,路径搜索距离对应为芽尖的感光光圈的半径,航迹优化系数用于虚拟芽尖的光照强度。应当理解的是,圆周上的航迹检测点的m(o)等于0时,f(o)取∞,用于表征航迹检测点未经过障碍物,反之则表征航迹检测点经过障碍物。
并且,在本实施例中,在本实施例中,在圆周上的所有航迹检测点均不满足f(o)等于∞以及d(o)等于0时,则基于当前圆周来确定新规划的航迹规划节点,并继续输入至计算模块702继续执行相关计算。
在本实施例的一些实施方式中,规划模块703具体用于执行以下至少之一:在圆周上的所有航迹检测点均为f(o)等于∞以及d(o)不等于0的航迹检测点时,将路径搜索距离增大到新的路径搜索距离,并将当前的航迹规划节点确定为新规划的航迹规划节点;在圆周上的所有航迹检测点中包括f(o)不等于∞以及d(o)不等于0的航迹检测点,和f(o)等于∞以及d(o)不等于0的航迹检测点时,确定所有f(o)等于∞且d(o)不等于0的航迹检测点的d(o)取值,并将d(o)取值最小的航迹检测点确定为新规划的航迹规划节点;在圆周上的所有航迹检测点中包括f(o)不等于∞且d(o)不等于0的航迹检测点,以及f(o)等于∞且d(o)不等于0的航迹检测点时,基于公式f(o)=1/m(o)+1/d(o)计算所有f(o)等于∞且d(o)不等于0的航迹检测点的f(o)取值,并将f(o)取值最大的航迹检测点确定为新规划的航迹规划节点。
进一步地,在本实施例的一些实施方式中,新的路径搜索距离满足以下条件:以当前的航迹规划节点作为圆心、新的路径搜索距离作为半径所形成的圆周上,开始出现f(o)不等于∞以及d(o)不等于0的航迹检测点;或,以当前的航迹规划节点作为圆心、新的路径搜索距离作为半径所形成的圆周上,出现的f(o)不等于∞以及d(o)不等于0的航迹检测点的数量最多。
在本实施例的一些实施方式中,规划模块703具体用于根据公式
Figure PCTCN2019079295-appb-000006
分别确定各f(o)等于∞且d(o)不等于0的航迹检测点的d(o)取值;其中,航迹检测点的坐标表示为o(x o,y o,z o),终点的坐标表示为C(x c,y c,z c)。
在本实施例的另一些实施方式中,规划模块703还用于分别对各航迹检测点向终点作射线,通过射线将障碍物分为两部分;分别计算两部分上相对于射线的最远点至射线的距离,并将所计算出的距离中的最小值确定为m(o)取值;根据公式
Figure PCTCN2019079295-appb-000007
分别确定各航迹检测点的d(o)取值;其中,航迹检测点的坐标表示为o(x o,y o,z o),终点的坐标表示为C(x c,y c,z c);并将m(o)取值以及d(o)取值代入公式f(o)=1/m(o)+1/d(o)计算所有航迹检测点的f(o)取值。
在本实施例的一些实施方式中,航迹确定模块704具体用于将起点、新规划的航迹规划节点以及终点连接成为一条折线;并对折线进行平滑处理而得到三维空间环境模型中的规划航迹。
应当说明的是,前述实施例中的航迹规划方法均可基于本实施例提供的航迹规划装置实现,所属领域的普通技术人员可以清楚的了解到,为描述的方便和简洁,本实施例中所描述的航迹规划装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
采用本实施例提供的航迹规划装置,在对飞行器进行航迹规划时,先对飞行器航行时的物理空间进行三维建模,在三维空间环境模型中确定待规划航迹的起点和终点,并将起点作为初始的航迹规划节点,然后对以预设路径搜索距离为半径、航迹规划节点为圆心的圆周上的检测点,进行航迹优化系数f(o)和离终点的距离d(o)的计算,再基于计算结果分析各检测点与终点之间的障碍物情况,然后重新规划航迹规划节点进行下一轮路径搜索,直至搜索到终点,最后再根据起点、新规划的航迹规划节点及终点确定出规划航迹,基于本申请方案的实施,有效降低了航迹规划计算量,提升了航迹生成效率,并降低了规划航迹与实际最优航迹的偏差。
第四实施例:
本实施例提供了一种电子装置,参见图8所示,其包括处理器801、存储器802及通信总线803,其中:通信总线803用于实现处理器801和存储器802之间的连接通信;处理器801用于执行存储器802中存储的一个或者多个计算机程序,以实现前述实施例的航迹规划方法中的至少一个步骤。
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例中的计算机可读存储介质可用于存储一个或者多个计算机程序,其存储的一个或者多个计算机程序可被处理器执行,以实现前述实施例的航迹规划方法的至少一个步骤。
本实施例还提供了一种计算机程序,该计算机程序可以分布在计算机可读介质上,由可计算装置来执行,以实现前述实施例的航迹规划方法的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功 能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本发明不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种航迹规划方法,其特征在于,包括:
    步骤A、基于飞行器航行时的物理空间构建三维空间环境模型,并在所述三维空间环境模型上确定待规划航迹的起点和终点;所述起点为初始的航迹规划节点;
    步骤B、将以航迹规划节点作为圆心、预设的路径搜索距离作为半径所形成的圆周上的目标点作为航迹检测点,并对所有所述航迹检测点进行f(o)及d(o)的计算;其中,o为航迹检测点的标识,所述f(o)为航迹优化系数,所述f(o)关联于所述d(o)及m(o),所述m(o)为障碍系数,所述m(o)=0时,表征所述路径测试点未经过障碍物,所述m(o)≠0时,表征所述路径测试点经过障碍物,所述d(o)为所述航迹检测点与所述终点之间的直线距离;
    步骤C、在所述圆周上存在所述f(o)等于∞且所述d(o)等于0的目标航迹检测点时,将所述目标航迹检测点确定为所述终点;在所述圆周上的所有所述航迹检测点均不满足所述f(o)等于∞且所述d(o)等于0时,确定新规划的航迹规划节点,并返回执行所述步骤B;
    步骤D、在通过所述圆周检测到所述终点之后,根据所述起点、所述新规划的航迹规划节点以及所述终点确定所述三维空间环境模型中的规划航迹。
  2. 如权利要求1所述的航迹规划方法,其特征在于,所述在所述圆周上的所有所述航迹检测点均不满足所述f(o)等于∞且所述d(o)等于0时,确定新规划的航迹规划节点包括以下至少之一:
    在所述圆周上的所有所述航迹检测点均为所述f(o)等于∞且所述d(o)不等于0的航迹检测点时,将所述路径搜索距离增大到新的路径搜索距离,并将当前的航迹规划节点确定为新规划的航迹规划节点;
    在所述圆周上的所有所述航迹检测点中包括所述f(o)不等于∞且所述d(o)不等于0的航迹检测点,以及f(o)等于∞且所述d(o)不等于0的航迹检测点时,确定所有所述f(o)等于∞且所述d(o)不等于0的航迹检测点的d(o)取值,并将所述d(o)取值最小的航迹检测点确定为新规划的航迹规划节点。
  3. 如权利要求2所述的航迹规划方法,其特征在于,所述新的路径搜索距离满足以下条件:
    以所述当前的航迹规划节点作为圆心、所述新的路径搜索距离作为半径所形成的圆周上,开始出现f(o)不等于∞且所述d(o)不等于0的航迹检测点;
    或,以所述当前的航迹规划节点作为圆心、所述新的路径搜索距离作为半径所形成的圆周上,出现的f(o)不等于∞且所述d(o)不等于0的航迹检测点的数量最多。
  4. 如权利要求2所述的航迹规划方法,其特征在于,所述确定所有所述f(o)等于∞且所述d(o)不等于0的航迹检测点的d(o)取值包括:
    根据公式
    Figure PCTCN2019079295-appb-100001
    分别确定各所述f(o)等于∞且所述d(o)不等于0的航迹检测点的d(o)取值;其中,所述航迹 检测点的坐标表示为o(x o,y o,z o),所述终点的坐标表示为C(x c,y c,z c)。
  5. 如权利要求1所述的航迹规划方法,其特征在于,所述根据所述起点、所述新规划的航迹规划节点以及所述终点确定所述三维空间环境模型中的规划航迹包括:
    将所述起点、所述新规划的航迹规划节点以及所述终点连接成为一条折线;
    并对所述折线进行平滑处理而得到所述三维空间环境模型中的规划航迹。
  6. 一种航迹规划装置,其特征在于,包括:
    模型构建模块,用于基于飞行器航行时的物理空间构建三维空间环境模型,并在所述三维空间环境模型上确定待规划航迹的起点和终点;所述起点为初始的航迹规划节点;
    计算模块,用于将以航迹规划节点作为圆心、预设的路径搜索距离作为半径所形成的圆周上的目标点作为航迹检测点,并对所有所述航迹检测点进行f(o)及d(o)的计算;其中,o为航迹检测点的标识,所述f(o)为航迹优化系数,所述f(o)关联于所述d(o)及m(o),所述m(o)为障碍系数,所述m(o)=0时,表征所述路径测试点未经过障碍物,所述m(o)≠0时,表征所述路径测试点经过障碍物,所述d(o)为所述航迹检测点与所述终点之间的直线距离;
    规划模块,用于在所述圆周上存在所述f(o)等于∞且所述d(o)等于0的目标航迹检测点时,将所述目标航迹检测点确定为所述终点;在所述圆周上的所有所述航迹检测点均不满足所述f(o)等于∞且所 述d(o)等于0时,确定新规划的航迹规划节点,并将所述新规划的航迹规划节点输入至所述计算模块以使所述计算模块继续执行其功能;
    航迹确定模块,用于在通过所述圆周检测到所述终点之后,根据所述起点、所述新规划的航迹规划节点以及所述终点确定所述三维空间环境模型中的规划航迹。
  7. 如权利要求6所述的航迹规划装置,其特征在于,所述规划模块具体用于执行以下至少之一:
    在所述圆周上的所有所述航迹检测点均为所述f(o)等于∞且所述d(o)不等于0的航迹检测点时,将所述路径搜索距离增大到新的路径搜索距离,并将所述当前的航迹规划节点确定为新规划的航迹规划节点;
    在所述圆周上的所有所述航迹检测点中包括所述f(o)不等于∞且所述d(o)不等于0的航迹检测点,以及f(o)等于∞且述d(o)不等于0的航迹检测点时,确定所有所述f(o)等于∞且所述d(o)不等于0的航迹检测点的d(o)取值,并将所述d(o)取值最小的航迹检测点确定为新规划的航迹规划节点。
  8. 如权利要求7所述的航迹规划装置,其特征在于,新的路径搜索距离满足以下条件:
    以所述当前的航迹规划节点作为圆心、所述新的路径搜索距离作为半径所形成的圆周上,开始出现f(o)不等于∞且所述d(o)不等于0的航迹检测点;
    或,以所述当前的航迹规划节点作为圆心、所述新的路径搜索距离作为半径所形成的圆周上,出现的f(o)不等于∞且所述d(o)不等于0的航迹检测点的数量最多。
  9. 一种电子装置,其特征在于,包括:处理器、存储器和通信总线;
    所述通信总线用于实现所述处理器和存储器之间的连接通信;
    所述处理器用于执行所述存储器中存储的一个或者多个程序,以实现如权利要求1至5中任意一项所述的航迹规划方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至5中任意一项所述的航迹规划方法的步骤。
PCT/CN2019/079295 2019-03-22 2019-03-22 一种航迹规划方法、装置及计算机可读存储介质 WO2020191531A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079295 WO2020191531A1 (zh) 2019-03-22 2019-03-22 一种航迹规划方法、装置及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079295 WO2020191531A1 (zh) 2019-03-22 2019-03-22 一种航迹规划方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020191531A1 true WO2020191531A1 (zh) 2020-10-01

Family

ID=72610392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079295 WO2020191531A1 (zh) 2019-03-22 2019-03-22 一种航迹规划方法、装置及计算机可读存储介质

Country Status (1)

Country Link
WO (1) WO2020191531A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125764A (zh) * 2016-08-03 2016-11-16 西北工业大学 基于a*搜索的无人机路径动态规划方法
CN106774425A (zh) * 2017-03-13 2017-05-31 南昌航空大学 一种无人机飞行导航的方法及系统
US20170323570A1 (en) * 2016-05-03 2017-11-09 Rockwell Collins, Inc. Digital Map Enabled Boundary Search Pattern
CN107392388A (zh) * 2017-07-31 2017-11-24 南昌航空大学 一种采用改进人工鱼群算法规划无人机三维航迹的方法
US20180017975A1 (en) * 2016-07-15 2018-01-18 Subaru Corporation Flight path setting apparatus, flight path setting method, and computer readable medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170323570A1 (en) * 2016-05-03 2017-11-09 Rockwell Collins, Inc. Digital Map Enabled Boundary Search Pattern
US20180017975A1 (en) * 2016-07-15 2018-01-18 Subaru Corporation Flight path setting apparatus, flight path setting method, and computer readable medium
CN106125764A (zh) * 2016-08-03 2016-11-16 西北工业大学 基于a*搜索的无人机路径动态规划方法
CN106774425A (zh) * 2017-03-13 2017-05-31 南昌航空大学 一种无人机飞行导航的方法及系统
CN107392388A (zh) * 2017-07-31 2017-11-24 南昌航空大学 一种采用改进人工鱼群算法规划无人机三维航迹的方法

Similar Documents

Publication Publication Date Title
CN110031007B (zh) 一种航迹规划方法、装置及计算机可读存储介质
CN109509210B (zh) 障碍物跟踪方法和装置
US20220057803A1 (en) Apparatus, method and article to facilitate motion planning in an environment having dynamic objects
CN110045731B (zh) 一种路径规划方法、电子装置及计算机可读存储介质
CN112444263B (zh) 全局路径规划方法及装置
Tsardoulias et al. Critical rays scan match SLAM
CN110926477A (zh) 一种无人机航路规划及避障方法
CN108268042A (zh) 一种基于改进可视图构造的路径规划算法
CN112947591A (zh) 基于改进蚁群算法的路径规划方法、装置、介质及无人机
CN114764249A (zh) 实时避障路径规划方法、系统、设备及介质
WO2020191531A1 (zh) 一种航迹规划方法、装置及计算机可读存储介质
CN110749325B (zh) 航迹规划方法和装置
CN116448134B (zh) 基于风险场与不确定分析的车辆路径规划方法及装置
CN110849385A (zh) 基于双层启发搜索共轭梯度下降的轨迹规划方法及系统
Seo et al. Predicting dynamic computational workload of a self-driving car
CN113432618A (zh) 轨迹生成方法、装置、计算设备及计算机可读存储介质
Chen et al. Real-time efficient trajectory planning for quadrotor based on hard constraints
Sadhu et al. Safe and fast path planning in cluttered environment using contiguous free-space partitioning
KR102613162B1 (ko) 3d 점군 데이터의 어노테이션 방법 및 이를 실행하기 위하여 기록매체에 기록된 컴퓨터 프로그램
Liu et al. Deep Reinforcement Learning-Based Driving Policy at Intersections Utilizing Lane Graph Networks
CN116674562B (zh) 车辆控制方法、装置、计算机设备及存储介质
CN116578121B (zh) 基于约束采样的扩展随机树的生成方法及轨迹规划方法
Dolinskaya et al. Parameter-free sampled fictitious play for solving deterministic dynamic programming problems
Feng et al. Research on the application of ant colony algorithm in underwater path planning
Yu et al. Robot Path Planning Using an Improved Ant Colony System Based on Key Nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921665

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19921665

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19921665

Country of ref document: EP

Kind code of ref document: A1