WO2020189705A1 - Lithium-containing oxide crystal, battery and method for producing lithium-containing oxide crystal - Google Patents

Lithium-containing oxide crystal, battery and method for producing lithium-containing oxide crystal Download PDF

Info

Publication number
WO2020189705A1
WO2020189705A1 PCT/JP2020/011916 JP2020011916W WO2020189705A1 WO 2020189705 A1 WO2020189705 A1 WO 2020189705A1 JP 2020011916 W JP2020011916 W JP 2020011916W WO 2020189705 A1 WO2020189705 A1 WO 2020189705A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
containing oxide
oxide crystal
crystal
cracks
Prior art date
Application number
PCT/JP2020/011916
Other languages
French (fr)
Japanese (ja)
Inventor
悠宗 石田
智紀 有賀
Original Assignee
アダマンド並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アダマンド並木精密宝石株式会社 filed Critical アダマンド並木精密宝石株式会社
Priority to CN202080019417.6A priority Critical patent/CN113544317A/en
Priority to JP2021507388A priority patent/JP7572730B2/en
Publication of WO2020189705A1 publication Critical patent/WO2020189705A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium-containing oxide crystal, a battery, and a method for producing a lithium-containing oxide crystal.
  • lithium-ion batteries have been used for batteries for smartphones and batteries for electric vehicles.
  • an electrolytic solution is used as an electrolyte in which Li (lithium) ions can move.
  • Li (lithium) ions can move.
  • an all-solid-state battery that uses a solid electrolyte instead of an electrolytic solution is being developed.
  • the solid electrolyte used in the all-solid-state lithium-ion battery include sulfide-based and oxide-based lithium-ion crystals.
  • the sulfide-based solid electrolyte is suitable for a battery having high Li ion conductivity and emphasizing energy density.
  • harmful substances hydrogen sulfide (H 2 S)
  • H 2 S hydrogen sulfide
  • the oxide-based solid electrolyte has a problem that the Li ion conductivity is lower than that of the sulfide-based solid electrolyte.
  • an oxide-based solid electrolyte having a conductivity of 10 -3 (S / cm) or more at room temperature is desirable.
  • an oxide-based solid electrolyte exhibiting a conductivity of about 10 -3 (S / cm) for example, lithium-containing oxide crystals such as perovskite type La 0.51 Li 0.34 TiO 2.94 are known ( For example, see Non-Patent Document 1).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium-containing oxide crystal having a large area without cracks, and also to provide a method for producing the lithium-containing oxide crystal. Another object of the present invention is to provide a battery including at least a part of the lithium-containing oxide crystal.
  • the lithium-containing oxide crystal of the present invention is characterized by having no cracks, having a cross section of 0.38 cm 2 or more, and containing oxygen.
  • the lithium-containing oxide crystal of the present invention has a large area without cracks, so that the capacity and conductivity of the all-solid-state battery can be increased.
  • the cross-sectional area is 1.76 cm 2 or more 100 cm 2 or less.
  • it has a dimension in the longitudinal direction, and the dimension in the longitudinal direction is 10 mm or more.
  • the battery of the present invention is characterized in that at least a part of the lithium-containing oxide crystals described in any one of the above is used.
  • the method for producing a lithium-containing oxide crystal of the present invention includes a melted portion forming step of melting at least a part of an oxygen-containing lithium-containing oxide crystal raw material to form a melted portion. It has a growth step of growing and forming lithium-containing oxide crystals from the molten portion, and the dew point of the atmosphere in the growth step is in the range of ⁇ 70 ° C. or higher and ⁇ 35 ° C. or lower, and the lithium-containing oxide crystal is 0.38 cm. It is characterized by having a cross-sectional area of 2 or more.
  • the growth of the lithium-containing oxide crystal having an area of from the molten portion 1.76 cm 2 or more 100 cm 2 or less Form.
  • the dew point is set within the range of ⁇ 65 ° C. or higher and ⁇ 45 ° C. or lower, and the lithium-containing oxide crystal is grown and formed at a dimension in the longitudinal direction of 10 mm or more from the molten portion.
  • the CZ method or the EFG method is used for the growth step.
  • the present invention it is possible to provide a lithium-containing oxide crystal having a large area without cracks and a method for producing the same. Further, it is possible to provide a battery including at least a part of the lithium-containing oxide crystal.
  • the first feature of the present embodiment is that the lithium-containing oxide crystal has no cracks, has a cross section of 0.38 cm 2 or more, and contains oxygen.
  • the second feature is that the cross-sectional area was 1.76 cm 2 or more 100 cm 2 or less.
  • the third feature is that it has a longitudinal dimension, and the longitudinal dimension is 10 mm or more.
  • the fourth feature is that the battery uses at least a part of the lithium-containing oxide crystals described in any one of the above.
  • the fifth feature is that the method for producing a lithium-containing oxide crystal is a melt portion forming step of melting at least a part of an oxygen-containing lithium-containing oxide crystal raw material to form a melt portion, and a lithium-containing oxidation from the melt portion. It has a growth step of growing and forming a physical crystal, the dew point of the atmosphere in the growth step is in the range of -70 ° C or higher and -35 ° C or lower, and the lithium-containing oxide crystal has a cross-sectional area of 0.38 cm 2 or more. That is.
  • the seventh feature is that the dew point is set within the range of -65 ° C or higher and -45 ° C or lower, and lithium-containing oxide crystals are grown and formed in the longitudinal dimension of 10 mm or more from the molten portion.
  • the eighth feature is that the CZ method or the EFG method is used for the growth process.
  • the crack includes oxygen has no 0.38 cm 2 or more cross-sectional area, the general formula Li 7-x-y La 3 Zr 2-x-y Nb x Ta y O It is represented by 12 (0.2 ⁇ x + y ⁇ 1.0, 0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 1.0) and has a cubic garnet-type structure. More preferably, in the range sectional area of 1.76 cm 2 or more 100 cm 2 or less. Further, the lithium-containing oxide crystal has a dimension in the longitudinal direction, and the dimension in the longitudinal direction is preferably 10 mm or more.
  • the lithium-containing oxide crystal has no cracks and has a large area and volume, it is possible to improve productivity, increase the capacity of the all-solid-state battery, and increase the conductivity.
  • the high conductivity means that the conductivity of the solid electrolyte inside the battery is, for example, 0.5 (mS / cm) or more.
  • the crack refers to a crack that can be confirmed with an optical microscope and exceeds 1 mm among the cracks generated in the lithium-containing oxide crystal.
  • the lithium-containing oxide crystal having no cracks it is preferable that there are no cracks in the entire crystal in as-grown immediately after crystal growth, but it also includes a case where a region without cracks is partially formed. Further, the case where cracks are removed by polishing or cutting the surface after crystal growth is also included.
  • the crack-free cross-sectional area means the area of the lithium ion oxide crystal in the direction in which the crack-free region is maximized, but is the cross-sectional area in the plane perpendicular to the crystal growth direction. Is preferable because the crystal quality in the plane can be made uniform.
  • FIG. 1 is a cross-sectional observation photograph showing a lithium-containing oxide crystal and cracks formed in the crystal.
  • the scale shown in the lower part of FIG. 1 is 1 mm
  • the lithium-containing oxide crystal shown in the figure has a disk shape having a diameter of about 7 mm.
  • FIG. 1 when the lithium-containing oxide crystal is cut in a plane perpendicular to the growth direction, it can be seen that a plurality of cracks extend from the outer periphery of the crystal toward the inside.
  • problems such as a decrease in reliability, a decrease in capacity, and a decrease in life may occur when used in an all-solid-state battery, which is not preferable.
  • a lithium-containing oxide crystal having no cracks within a diameter of about 7 mm has a cross section of 0.38 cm 2 or more, and the capacity and conductivity of the all-solid-state battery should be increased. Can be done.
  • various raw materials of lithium-containing oxide crystals are prepared as a raw material preparation step, crushed and mixed at a predetermined ratio to process the raw materials into powder.
  • the method of pulverization and mixing is not limited, and known methods can be used.
  • the powdered raw material is pressure-molded and fired to obtain a raw material sintered body.
  • the methods of pressure molding and firing are not limited, and known methods can be used.
  • a lithium compound, a lanthanum compound, a zirconium compound, a tantalum compound, and a niobium compound can be used as a raw material for the lithium-containing oxide crystal.
  • the lithium compound include Li 2 O and Li 2 CO 3 .
  • the lanthanum compound include La 2 O 3 and La (OH) 3 .
  • the zirconium compound include ZrO 2 , ZrC l4 , La 2 Zr 2 O 7 , Li 2 ZrO 3, and the like.
  • the tantalum compound include Ta 2 O 5 and Ta C l 5 .
  • the niobium compound include Nb 2 O 5 , LiNbO 3 , and LaNbO 4 .
  • the method of the molten portion forming step and the growing step is not limited, and the crystal can be grown by using various known melting methods.
  • the FZ (Floating Zone) method the Bridgeman method, the kiloporous method, and the TSSG (Top Edged Solution).
  • the Growth includes the Growth) method, the LPE (Liquid Phase Epitaxy) method, the CZ (Czochralski) method, and the EFG (Edge-defined Film-fed Growth) method.
  • the CZ method In order to increase the diameter of the lithium-containing oxide crystal, it is preferable to use the CZ method or the EFG method. In the case of a growth method using a crucible, it is preferable to use Ir, which does not react with the raw material melt, as a material for the crucible.
  • the atmosphere used in the growth step is preferably N 2 or Ar, and dry air, and the dew point of the atmosphere is in the range of ⁇ 70 ° C. or higher and ⁇ 35 ° C. or lower.
  • the dew point of the atmosphere means a temperature at which the amount of water vapor contained in the atmosphere becomes the saturated water vapor amount at the same atmospheric pressure.
  • a capacitance type dew point meter online dew point meter TK-100 manufactured by Tekne Corporation was used for measuring the dew point of the atmosphere.
  • the Li content contained in the crystal changes depending on the dew point of the atmosphere in the growth process, and cracks occur.
  • white turbidity and cracks occur in the appearance as the Li content changes, and the characteristics in the crystal vary.
  • the dew point of the atmosphere in the growth process to the range of -70 ° C or higher and -35 ° C or lower, white turbidity and cracks are suppressed and variation in characteristics is suppressed, and a uniform lithium content having a cross section of 0.38 cm 2 or more is contained. Oxide crystals can be obtained.
  • the dew point of the atmosphere in the growth step in the range of -70 ° C. or higher -40 °C less, grown form a lithium-containing oxide crystal having an area of 1.76 cm 2 or more 100 cm 2 or less from the molten portion be able to. Further, by setting the dew point of the atmosphere in the growth step within the range of -65 ° C. or higher and -45 ° C. or lower, the dimension in the longitudinal direction of 10 mm or more from the molten portion (that is, the length in the growth direction of the lithium-containing oxide crystal). ) Can grow and form lithium-containing oxide crystals.
  • Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 which is a lithium-containing oxide crystal was grown by using the FZ method.
  • the amount of Li contained in the raw material was 108% of Li contained in the obtained lithium-containing oxide crystal.
  • air (dry air) at room temperature of 1 atm was flowed at a flow rate of 7 liters per minute, and the dew points of Examples 1 and 2 and Comparative Example 1 were ⁇ 35 ° C., ⁇ 55 ° C., and ⁇ , respectively.
  • the condition was set to 20 ° C.
  • the obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
  • FIG. 2 is a table showing evaluations of Examples 1 and 2 and Comparative Example 1 of lithium-containing oxide crystals grown by the FZ method.
  • the area column in FIG. 2 shows the cross-sectional area in the non-cracked portion, and the length column shows the length in the growth direction of the non-cracked portion having a cross-sectional area of 0.38 cm 2 or more.
  • There is. 3 (a) to 3 (c) are photographs showing the appearance of the lithium-containing oxide crystals of Examples 1 and 2, respectively.
  • the left side in FIGS. 3 (a) to 3 (c) is the start side of crystal growth, and the state of as-grown in which the raw material is melted and grown is shown toward the right side.
  • Example 1 As shown in FIGS. 2 and 3, in Example 1, a region having a diameter of 7 mm and a cross section of 0.38 cm 2 was present at 10 mm, and no crack was generated in the region. Further, in Example 2, a region having a diameter of 7 mm and a cross section of 0.38 cm 2 existed in an area of 40 mm, and no crack was generated in the region. On the other hand, in Comparative Example 1, there were cracks on the entire surface of the lithium-containing oxide crystal, and there was no region not containing the cracks. Therefore, when the dew point is larger than ⁇ 35 ° C., it can be seen that a lithium-containing oxide crystal having a cross section of 0.38 cm 2 or more and without cracks cannot be obtained. (Examples 3 to 6 and Comparative Example 2)
  • Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 which is a lithium-containing oxide crystal
  • the amount of Li contained in the raw material was 108% of Li contained in the obtained lithium-containing oxide crystal.
  • the atmosphere during the growth process was such that 1 atm of air (dry air) was flowed at a flow rate of 7 liters per minute at room temperature, and the dew points of Examples 3 to 6 and Comparative Example 2 were ⁇ 40 ° C., ⁇ 43 ° C., and ⁇ , respectively.
  • the conditions were set at 48 ° C., ⁇ 62 ° C., and ⁇ 68 ° C.
  • the obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
  • FIG. 4 is a table showing external photographs of lithium-containing oxide crystals of Examples 3 to 6 and Comparative Example 2 grown by using the FZ method under different dew point conditions.
  • a dew point of ⁇ 40 ° C. is Example 3
  • a dew point of ⁇ 43 ° C. is Example 4
  • a dew point of ⁇ 48 ° C. is Example 5
  • a dew point of ⁇ 62 ° C. is Example 6
  • a dew point of ⁇ 68 ° C. is Comparative Example 2.
  • a region having a cross section of 0.38 cm 2 existed, and no crack was generated in the region.
  • Example 3 white turbidity was partially generated due to lack of Li, and the cross section was 0.38 cm 2 or more and the crack-free region was less than 10 mm. Further, also in Example 4, the cross section was 0.38 cm 2 or more and the region without cracks was less than 10 mm. Therefore, it can be seen that by setting the dew point within the range of ⁇ 65 ° C. or higher and ⁇ 45 ° C. or lower, a region having a cross section of 0.38 cm 2 or more and no cracks can be formed with a size of 10 mm or more. (Examples 7 to 10)
  • Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 and Li 6.5 La 3 Zr 1.5 which are lithium-containing oxide crystals, are used.
  • Nb 0.25 Ta 0.25 O 12 was grown.
  • N 2 at 1 atm at room temperature was flowed at a flow rate of 2 to 4 liters per minute, and the dew points of Examples 7 to 10 were ⁇ 40 ° C., ⁇ 65 ° C., ⁇ 66 ° C., and ⁇ 69, respectively.
  • the condition was set to °C.
  • Ir material was used for the crucible.
  • the obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
  • FIG. 5 is a table showing the evaluation of Examples 7 to 10 of the lithium-containing oxide crystals grown by the CZ method.
  • the area column in FIG. 5 shows the cross-sectional area in the non-cracked portion, and the length column shows the length in the growth direction of the non-cracked portion having a cross-sectional area of 0.38 cm 2 or more.
  • Examples 7, 8 and 10 have Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12
  • Example 9 has Li 6.5 La 3 Zr 1.5 Nb 0.25 containing Ta. It is Ta 0.25 O 12 .
  • 6 (a) to 6 (d) are photographs showing the appearance of the lithium-containing oxide crystals of Examples 7 to 10, respectively.
  • the left side in FIGS. 6 (a) to 6 (d) is the start side of crystal growth, and the state of as-grown in which the raw material is melted and grown is shown toward the right side.
  • Example 7 a crack-free region having a diameter of 18 mm and a cross section of 2.76 cm 2 was formed in the initial stage of growth, and cracks were formed when the cross section was 0.38 cm 2 or more. There was also a portion of 11 mm in which was not generated. Further, in Example 8, a crack-free region having a diameter of 15 mm and a cross section of 1.77 cm 2 was formed, and a portion having a cross section of 0.38 cm 2 or more and no cracks was also present at 38 mm.
  • Example 9 a crack-free region having a diameter of 9.6 mm and a cross section of 0.72 cm 2 was formed, and there was a portion having a cross section of 0.38 cm 2 or more and no cracks of 27 mm. .. Further, in Example 10, although cracks were partially generated, a crack-free region having a diameter of 16 mm and a cross section of 2.0 cm 2 was formed, and cracks were not generated when the cross section was 0.38 cm 2 or more. The part was also present at 24 mm.
  • the lithium-containing oxide crack no cross-sectional area has an area of 1.76 cm 2 or more 100 cm 2 or less crystals are obtained .. (Example 11)
  • Example 11 a lithium-containing oxide crystal, Li 6.8 La 3 Zr 1.8 Nb 0.2 O 12, was grown using the CZ method.
  • the atmosphere during the growth process was set to a dew point of ⁇ 65 ° C. by flowing N 2 at room temperature at a flow rate of 2 to 4 liters per minute. Ir material was used for the crucible.
  • the obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
  • FIG. 7 is a photograph showing the appearance of the lithium-containing oxide crystal of Example 11.
  • the right side in FIG. 7 is the start side of crystal growth, and the state of as-grown in which the raw materials are melted and grown is shown toward the left side.
  • a crack-free region is formed with a diameter of 9.5 mm and a cross section of 0.70 cm 2 , and a portion having a cross section of 0.38 cm 2 or more and no cracks. Also existed in the longitudinal dimension (length in the growth direction) of 30 mm.
  • Example 12 a lithium-containing oxide crystal, Li 6.0 La 3 Zr 1.0 Nb 1.0 O 12, was grown using the CZ method.
  • the amount of Li contained in the raw material was 110% of Li contained in the obtained lithium-containing oxide crystal.
  • N 2 at 1 atm at room temperature was flowed at a flow rate of 4 liters per minute, and the dew point was set to ⁇ 62 ° C.
  • Ir material was used for the crucible.
  • the obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
  • FIG. 8 is a photograph showing the appearance of the lithium-containing oxide crystal of Example 12.
  • the left side in FIG. 8 is the start side of crystal growth, and the state of as-grown in which the raw materials are melted and grown is shown toward the right side.
  • Example 12 As shown in FIG. 8, in Example 12, a region having a diameter of 7 mm and a cross section of 0.38 cm 2 was present at 11 mm, and no crack was generated in the region. (Example 13)
  • Example 13 a lithium-containing oxide crystal, Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12, was grown using the CZ method.
  • N 2 at 1 atm at room temperature was flowed at a flow rate of 4 liters per minute, and the dew point was set to ⁇ 69 ° C.
  • Ir material was used for the crucible.
  • the obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
  • FIG. 9 is a photograph showing the appearance of the lithium-containing oxide crystal of Example 13.
  • the left side in FIG. 9 is the start side of crystal growth, and the state of as-grown in which the raw materials are melted and grown is shown toward the right side.
  • Example 13 As shown in FIG. 9, in Example 13, a region having a diameter of 7 mm and a cross section of 0.38 cm 2 was present at 12 mm, and no crack was generated in the region.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

[Problem] To provide: a lithium-containing oxide crystal which is free from cracks, while having a large area; a battery which uses this lithium-containing oxide crystal; and a method for producing this lithium-containing oxide crystal. [Solution] The present invention comprises a molten part formation step wherein at least some of the starting material of the lithium-containing oxide crystal, said starting material containing oxygen, is melted so as to form a molten part, and a growth step wherein a lithium-containing oxide crystal is grown form the molten part; the dew point of the atmosphere of the growth step is within the range of from -70°C to -35°C; and the lithium-containing oxide crystal is free from cracks, while having a cross-sectional area of 0.38 cm2 or more.

Description

リチウム含有酸化物結晶、電池およびリチウム含有酸化物結晶の製造方法Lithium-containing oxide crystals, batteries and methods for producing lithium-containing oxide crystals
 本発明は、リチウム含有酸化物結晶、電池およびリチウム含有酸化物結晶の製造方法に関する。 The present invention relates to a lithium-containing oxide crystal, a battery, and a method for producing a lithium-containing oxide crystal.
 従来から、スマートフォン向けのバッテリーや電気自動車向けのバッテリー等にリチウムイオン電池が採用されている。従来のリチウムイオン電池では、Li(リチウム)イオンが移動可能な電解質として電解液を用いていた。しかし、電解液を用いたリチウムイオン電池では、さらなる高容量化、高電圧化、高エネルギー密度化、及び急速充電性能を図ることが困難になってきている。そこで、これらの各種要求を満たすリチウムイオン電池として、電解液の代わりに固体電解質を用いる全固体電池の開発が進められている。全固体のリチウムイオン電池に用いられる固体電解質としては、硫化物系及び酸化物系のリチウムイオン結晶が挙げられる。 Conventionally, lithium-ion batteries have been used for batteries for smartphones and batteries for electric vehicles. In the conventional lithium ion battery, an electrolytic solution is used as an electrolyte in which Li (lithium) ions can move. However, in a lithium ion battery using an electrolytic solution, it has become difficult to further increase the capacity, increase the voltage, increase the energy density, and achieve quick charging performance. Therefore, as a lithium ion battery that meets these various requirements, an all-solid-state battery that uses a solid electrolyte instead of an electrolytic solution is being developed. Examples of the solid electrolyte used in the all-solid-state lithium-ion battery include sulfide-based and oxide-based lithium-ion crystals.
 硫化物系固体電解質は、Liイオン伝導度が高くエネルギー密度を重視した電池に適している。しかし固体電解質の結晶構造が高温により壊れた場合、有害物質(硫化水素(HS))が放出されるという課題がある。そこで有害な物質が放出されず、より安全性と安定性が求められる用途向けに、酸化物系固体電解質の開発が進められている。 The sulfide-based solid electrolyte is suitable for a battery having high Li ion conductivity and emphasizing energy density. However, if the crystal structure of the solid electrolyte is broken by the high temperature, there is a problem that harmful substances (hydrogen sulfide (H 2 S)) is released. Therefore, the development of oxide-based solid electrolytes is underway for applications that do not release harmful substances and require greater safety and stability.
 一方で酸化物系固体電解質は、硫化物系固体電解質と比べてLiイオン伝導度が低いという課題がある。バルク型全固体電池へ応用する為には、室温に於ける導電率で10-3(S/cm)以上を示す酸化物系固体電解質が望ましい。10-3(S/cm)程度の導電率を示す酸化物系固体電解質として、例えばペロブスカイト型のLa0.51Li0.34TiO2.94等のリチウム含有酸化物結晶が知られている(例えば、非特許文献1参照)。 On the other hand, the oxide-based solid electrolyte has a problem that the Li ion conductivity is lower than that of the sulfide-based solid electrolyte. In order to apply it to a bulk type all-solid-state battery, an oxide-based solid electrolyte having a conductivity of 10 -3 (S / cm) or more at room temperature is desirable. As an oxide-based solid electrolyte exhibiting a conductivity of about 10 -3 (S / cm), for example, lithium-containing oxide crystals such as perovskite type La 0.51 Li 0.34 TiO 2.94 are known ( For example, see Non-Patent Document 1).
 しかしリチウム含有酸化物結晶では、FZ(Floating Zone)法、CZ(Czochralski)法、及びEFG(Edge-defined Film-fed Growth)法等を用いて成長させた結晶に、クラックが発生するという問題があった。詳述すると、リチウム含有酸化物結晶原料の少なくとも一部を溶融して溶融部を形成し、溶融部からリチウム含有酸化物結晶を成長形成させた際に、結晶成長方向において溶融部の粘性の変化が発生すると共に、成長途中で急激に溶融部のメルトが切れて(FZ法では垂れて)、結晶にクラックが生じてしまう。 However, in the lithium-containing oxide crystal, there is a problem that cracks occur in the crystal grown by using the FZ (Floating Zone) method, the CZ (Czochralski) method, the EFG (Edge-defined Film-fed Growth) method, or the like. there were. More specifically, when at least a part of the lithium-containing oxide crystal raw material is melted to form a molten portion and the lithium-containing oxide crystal is grown and formed from the molten portion, the viscosity of the molten portion changes in the crystal growth direction. At the same time, the melt of the molten part is suddenly cut off during the growth (dripping in the FZ method), and cracks occur in the crystal.
 リチウム含有酸化物結晶では、成長形成させる結晶の外形寸法を大きくする程クラックが生じやすく、歩留まり低下を招いていた。これにより、クラックが無く結晶品質の良好な大型のリチウム含有酸化物結晶を、歩留まり良く製造することは困難であった。 In the lithium-containing oxide crystal, the larger the external dimension of the crystal to be grown and formed, the more easily cracks are likely to occur, resulting in a decrease in yield. As a result, it has been difficult to produce a large-sized lithium-containing oxide crystal having no cracks and having good crystal quality with good yield.
 本発明は上記課題に鑑みてなされたものであり、クラックが無く大面積を有するリチウム含有酸化物結晶の提供を目的とするとともに、そのリチウム含有酸化物結晶の製造方法の提供も目的とする。さらに、そのリチウム含有酸化物結晶の少なくとも一部を備える電池の提供も目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium-containing oxide crystal having a large area without cracks, and also to provide a method for producing the lithium-containing oxide crystal. Another object of the present invention is to provide a battery including at least a part of the lithium-containing oxide crystal.
 上記課題を解決するために、本発明のリチウム含有酸化物結晶は、クラックが無く、0.38cm以上の断面積を有し、酸素を含むことを特徴とする。 In order to solve the above problems, the lithium-containing oxide crystal of the present invention is characterized by having no cracks, having a cross section of 0.38 cm 2 or more, and containing oxygen.
 このような本発明のリチウム含有酸化物結晶では、クラックが無い大面積を有することで、全固体電池の高容量化と高導電率化を図ることが可能となる。 The lithium-containing oxide crystal of the present invention has a large area without cracks, so that the capacity and conductivity of the all-solid-state battery can be increased.
 また本発明の一態様では、前記断面積が1.76cm以上100cm以下である。 In the aspect of the present invention, the cross-sectional area is 1.76 cm 2 or more 100 cm 2 or less.
 また本発明の一態様では、長手方向の寸法を有し、前記長手方向の寸法が10mm以上である。 Further, in one aspect of the present invention, it has a dimension in the longitudinal direction, and the dimension in the longitudinal direction is 10 mm or more.
 また上記課題を解決するために、本発明の電池は、上記何れか一つに記載のリチウム含有酸化物結晶の少なくとも一部を用いることを特徴とする。 Further, in order to solve the above-mentioned problems, the battery of the present invention is characterized in that at least a part of the lithium-containing oxide crystals described in any one of the above is used.
 また上記課題を解決するために、本発明のリチウム含有酸化物結晶の製造方法は、酸素を含むリチウム含有酸化物結晶原料の少なくとも一部を溶融して溶融部を形成する溶融部形成工程と、前記溶融部からリチウム含有酸化物結晶を成長形成する成長工程を有し、前記成長工程における雰囲気の露点は-70℃以上-35℃以下の範囲であり、前記リチウム含有酸化物結晶は0.38cm以上の断面積を有することを特徴とする。 Further, in order to solve the above problems, the method for producing a lithium-containing oxide crystal of the present invention includes a melted portion forming step of melting at least a part of an oxygen-containing lithium-containing oxide crystal raw material to form a melted portion. It has a growth step of growing and forming lithium-containing oxide crystals from the molten portion, and the dew point of the atmosphere in the growth step is in the range of −70 ° C. or higher and −35 ° C. or lower, and the lithium-containing oxide crystal is 0.38 cm. It is characterized by having a cross-sectional area of 2 or more.
 また本発明の一態様では、前記露点を-70℃以上-40℃以下の範囲内に設定し、前記溶融部から1.76cm以上100cm以下の面積を有する前記リチウム含有酸化物結晶を成長形成する。 In the aspect of the present invention, by setting the dew point in the range of -70 ° C. or higher -40 ℃ less, the growth of the lithium-containing oxide crystal having an area of from the molten portion 1.76 cm 2 or more 100 cm 2 or less Form.
 また本発明の一態様では、前記露点を-65℃以上-45℃以下の範囲内に設定し、前記溶融部から10mm以上の長手方向の寸法で前記リチウム含有酸化物結晶を成長形成する。 Further, in one aspect of the present invention, the dew point is set within the range of −65 ° C. or higher and −45 ° C. or lower, and the lithium-containing oxide crystal is grown and formed at a dimension in the longitudinal direction of 10 mm or more from the molten portion.
 また本発明の一態様では、前記成長工程は、CZ法又はEFG法を用いる。 Further, in one aspect of the present invention, the CZ method or the EFG method is used for the growth step.
 本発明によれば、クラックが無く大面積を有するリチウム含有酸化物結晶およびその製造方法を提供することができる。また、そのリチウム含有酸化物結晶の少なくとも一部を備える電池を提供することができる。 According to the present invention, it is possible to provide a lithium-containing oxide crystal having a large area without cracks and a method for producing the same. Further, it is possible to provide a battery including at least a part of the lithium-containing oxide crystal.
リチウム含有酸化物結晶に生じたクラックを示す断面観察写真である。It is a cross-sectional observation photograph which shows the crack which occurred in the lithium-containing oxide crystal. FZ法を用いて成長したリチウム含有酸化物結晶の実施例1,2および比較例についての評価を示す表である。It is a table which shows the evaluation about Examples 1 and 2 and the comparative example of the lithium-containing oxide crystal grown by the FZ method. (a)~(c)は、それぞれ実施例1,2および比較例1のリチウム含有酸化物結晶の外観を示す写真である。(A) to (c) are photographs showing the appearance of lithium-containing oxide crystals of Examples 1 and 2, respectively, and Comparative Example 1. 露点条件を変えてFZ法を用いて成長した実施例3~6および比較例2のリチウム含有酸化物結晶の外観写真を示す表である。It is a table which shows the appearance photograph of the lithium-containing oxide crystal of Examples 3-6 and Comparative Example 2 which grew by using the FZ method under the dew point condition. CZ法を用いて成長したリチウム含有酸化物結晶の実施例7~10についての評価を示す表である。It is a table which shows the evaluation about Examples 7-10 of the lithium-containing oxide crystal grown by the CZ method. (a)~(d)は、それぞれ実施例7~10のリチウム含有酸化物結晶の外観を示す写真である。(A) to (d) are photographs showing the appearance of the lithium-containing oxide crystals of Examples 7 to 10, respectively. 実施例11のリチウム含有酸化物結晶の外観を示す写真である。It is a photograph which shows the appearance of the lithium-containing oxide crystal of Example 11. 実施例12のリチウム含有酸化物結晶の外観を示す写真である。It is a photograph which shows the appearance of the lithium-containing oxide crystal of Example 12. 実施例13のリチウム含有酸化物結晶の外観を示す写真である。It is a photograph which shows the appearance of the lithium-containing oxide crystal of Example 13.
 本実施の形態の第一の特徴は、リチウム含有酸化物結晶はクラックが無く、0.38cm以上の断面積を有し、酸素を含むとしたことである。 The first feature of the present embodiment is that the lithium-containing oxide crystal has no cracks, has a cross section of 0.38 cm 2 or more, and contains oxygen.
 この構成に依れば、クラックが無い大面積を有することで、全固体電池の高容量化と高導電率化を図ることが可能となる。 According to this configuration, it is possible to increase the capacity and conductivity of the all-solid-state battery by having a large area without cracks.
 第二の特徴は、断面積が1.76cm以上100cm以下としたことである。 The second feature is that the cross-sectional area was 1.76 cm 2 or more 100 cm 2 or less.
 この構成に依れば、より大型のリチウム含有酸化物結晶を形成し、さらなる全固体電池の高容量化と高導電率化を図ることが可能となる。 According to this configuration, it is possible to form a larger lithium-containing oxide crystal and further increase the capacity and conductivity of the all-solid-state battery.
 第三の特徴は、長手方向の寸法を有し、長手方向の寸法が10mm以上としたことである。 The third feature is that it has a longitudinal dimension, and the longitudinal dimension is 10 mm or more.
 この構成に依れば、リチウム含有酸化物結晶の体積を増加させて、生産性の向上やさらなる全固体電池の高容量化と高導電率化を図ることが可能となる。 According to this configuration, it is possible to increase the volume of the lithium-containing oxide crystal to improve productivity, further increase the capacity of the all-solid-state battery, and increase the conductivity.
 第四の特徴は、上記何れか一つに記載のリチウム含有酸化物結晶の少なくとも一部を用いる電池としたことである。 The fourth feature is that the battery uses at least a part of the lithium-containing oxide crystals described in any one of the above.
 この構成に依れば、大型のリチウム含有酸化物結晶を用いることで、例えば0.5(mS/cm)以上の高導電率で高容量な全固体電池を実現できる。 According to this configuration, by using a large lithium-containing oxide crystal, it is possible to realize an all-solid-state battery having a high conductivity of 0.5 (mS / cm) or more and a high capacity.
 第五の特徴は、リチウム含有酸化物結晶の製造方法は、酸素を含むリチウム含有酸化物結晶原料の少なくとも一部を溶融して溶融部を形成する溶融部形成工程と、溶融部からリチウム含有酸化物結晶を成長形成する成長工程を有し、成長工程における雰囲気の露点は-70℃以上-35℃以下の範囲であり、リチウム含有酸化物結晶は0.38cm以上の断面積を有するとしたことである。 The fifth feature is that the method for producing a lithium-containing oxide crystal is a melt portion forming step of melting at least a part of an oxygen-containing lithium-containing oxide crystal raw material to form a melt portion, and a lithium-containing oxidation from the melt portion. It has a growth step of growing and forming a physical crystal, the dew point of the atmosphere in the growth step is in the range of -70 ° C or higher and -35 ° C or lower, and the lithium-containing oxide crystal has a cross-sectional area of 0.38 cm 2 or more. That is.
 この構成に依れば、酸素を含むリチウム含有酸化物結晶を、クラックが無く、少なくとも0.38cm以上の面積を有する大型に実現可能となる。さらに、得られたリチウム含有酸化物結晶を電池に使用することにより、高容量の電池を容易に形成することが可能となる。 According to this configuration, it is possible to realize a large-sized lithium-containing oxide crystal containing oxygen without cracks and having an area of at least 0.38 cm 2 or more. Further, by using the obtained lithium-containing oxide crystal in the battery, it becomes possible to easily form a high-capacity battery.
 第六の特徴は、露点を-70℃以上-40℃以下の範囲内に設定し、溶融部から1.76cm以上100cm以下の面積を有するリチウム含有酸化物結晶を成長形成するとしたことである。 Sixth aspect, by setting the dew point in the range of -70 ° C. or higher -40 ℃ below were to grow forming a lithium-containing oxide crystal having an area of 1.76 cm 2 or more 100 cm 2 or less from the molten portion is there.
 この構成に依れば、より大型のリチウム含有酸化物結晶を形成し、さらなる全固体電池の高容量化と高導電率化を図ることが可能となる。 According to this configuration, it is possible to form a larger lithium-containing oxide crystal and further increase the capacity and conductivity of the all-solid-state battery.
 第七の特徴は、露点を-65℃以上-45℃以下の範囲内に設定し、溶融部から10mm以上の長手方向の寸法でリチウム含有酸化物結晶を成長形成するとしたことである。 The seventh feature is that the dew point is set within the range of -65 ° C or higher and -45 ° C or lower, and lithium-containing oxide crystals are grown and formed in the longitudinal dimension of 10 mm or more from the molten portion.
 この構成に依れば、リチウム含有酸化物結晶の体積を増加させて、生産性の向上やさらなる全固体電池の高容量化と高導電率化を図ることが可能となる。 According to this configuration, it is possible to increase the volume of the lithium-containing oxide crystal to improve productivity, further increase the capacity of the all-solid-state battery, and increase the conductivity.
 第八の特徴は、成長工程は、CZ法又はEFG法を用いるとしたことである。 The eighth feature is that the CZ method or the EFG method is used for the growth process.
 この構成に依れば、リチウム含有酸化物結晶の大口径化を図ることができ、さらなる全固体電池の高容量化と高導電率化を図ることが可能となる。 According to this configuration, it is possible to increase the diameter of the lithium-containing oxide crystal, and further increase the capacity and conductivity of the all-solid-state battery.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate.
 本実施形態のリチウム含有酸化物結晶は、酸素を含みクラックが無く0.38cm以上の断面積を有し、一般式Li7-x-yLaZr2-x-yNbTa12(0.2≦x+y≦1.0、0≦x≦1.0、0≦y≦1.0)で表され、立方晶系のガーネット型構造を有している。より好ましくは、断面積が1.76cm以上100cm以下の範囲である。またリチウム含有酸化物結晶は、長手方向の寸法を有し、長手方向の寸法が10mm以上であることが好ましい。リチウム含有酸化物結晶にクラックが無く大きな面積と体積を有することで、生産性の向上や全固体電池の高容量化と高導電率化を図ることが可能となる。ここで高導電率とは、電池内部の固体電解質の伝導率が、例えば0.5(mS/cm)以上である。 Lithium-containing oxide crystal of the present embodiment, the crack includes oxygen has no 0.38 cm 2 or more cross-sectional area, the general formula Li 7-x-y La 3 Zr 2-x-y Nb x Ta y O It is represented by 12 (0.2 ≦ x + y ≦ 1.0, 0 ≦ x ≦ 1.0, 0 ≦ y ≦ 1.0) and has a cubic garnet-type structure. More preferably, in the range sectional area of 1.76 cm 2 or more 100 cm 2 or less. Further, the lithium-containing oxide crystal has a dimension in the longitudinal direction, and the dimension in the longitudinal direction is preferably 10 mm or more. Since the lithium-containing oxide crystal has no cracks and has a large area and volume, it is possible to improve productivity, increase the capacity of the all-solid-state battery, and increase the conductivity. Here, the high conductivity means that the conductivity of the solid electrolyte inside the battery is, for example, 0.5 (mS / cm) or more.
 本実施形態においてクラックとは、リチウム含有酸化物結晶に発生する割れのうち、光学顕微鏡で確認可能であり1mmを超える割れを指す。また、クラックが無いリチウム含有酸化物結晶としては、結晶成長直後のas-grownで結晶全体にクラックが存在しないことが好ましいが、部分的にクラックが無い領域が形成されている場合も含む。さらに、結晶成長後に表面を研磨または切断することでクラックを除去した場合も含む。また、クラックが無い断面積とは、リチウムイオン酸化物結晶のうち、クラックの含まれていない領域が最大となる方向の面積を意味するが、結晶成長方向に垂直な面における断面積であることが面内における結晶品質の均一化を図ることができるため好ましい。 In the present embodiment, the crack refers to a crack that can be confirmed with an optical microscope and exceeds 1 mm among the cracks generated in the lithium-containing oxide crystal. Further, as the lithium-containing oxide crystal having no cracks, it is preferable that there are no cracks in the entire crystal in as-grown immediately after crystal growth, but it also includes a case where a region without cracks is partially formed. Further, the case where cracks are removed by polishing or cutting the surface after crystal growth is also included. The crack-free cross-sectional area means the area of the lithium ion oxide crystal in the direction in which the crack-free region is maximized, but is the cross-sectional area in the plane perpendicular to the crystal growth direction. Is preferable because the crystal quality in the plane can be made uniform.
 図1は、リチウム含有酸化物結晶と結晶に生じたクラックを示す断面観察写真である。ここで、図1の下方に示された目盛りは1mmであり、図中に示したリチウム含有酸化物結晶は直径が7mm程度の円盤状である。図1に示したように、リチウム含有酸化物結晶を成長方向に垂直な面で切断すると、結晶の外周から内部に向かって複数のクラックが伸びていることがわかる。このように、リチウム含有酸化物結晶にクラックが含まれていると、全固体電池に用いた場合に信頼性の低下や容量の低下、寿命の低下などの不具合が生じるおそれがあるため好ましくない。それに対して、直径が7mm程度の範囲内にクラックが無いリチウム含有酸化物結晶では、0.38cm以上の断面積を有しており全固体電池の高容量化と高導電率化を図ることができる。 FIG. 1 is a cross-sectional observation photograph showing a lithium-containing oxide crystal and cracks formed in the crystal. Here, the scale shown in the lower part of FIG. 1 is 1 mm, and the lithium-containing oxide crystal shown in the figure has a disk shape having a diameter of about 7 mm. As shown in FIG. 1, when the lithium-containing oxide crystal is cut in a plane perpendicular to the growth direction, it can be seen that a plurality of cracks extend from the outer periphery of the crystal toward the inside. As described above, if the lithium-containing oxide crystal contains cracks, problems such as a decrease in reliability, a decrease in capacity, and a decrease in life may occur when used in an all-solid-state battery, which is not preferable. On the other hand, a lithium-containing oxide crystal having no cracks within a diameter of about 7 mm has a cross section of 0.38 cm 2 or more, and the capacity and conductivity of the all-solid-state battery should be increased. Can be done.
 はじめに、本実施形態のリチウム含有酸化物結晶の製造方法は、原料準備工程としてリチウム含有酸化物結晶の各種原料を準備し、粉砕したうえ所定比率で混合して原料を粉末状に加工する。粉砕および混合の方法は限定されず、公知の方法を用いることができる。その後に、成形工程で粉末状の原料を加圧成形して焼成し、原料焼結体を得る。加圧成形および焼成の方法が限定されず、公知の方法を用いることができる。 First, in the method for producing lithium-containing oxide crystals of the present embodiment, various raw materials of lithium-containing oxide crystals are prepared as a raw material preparation step, crushed and mixed at a predetermined ratio to process the raw materials into powder. The method of pulverization and mixing is not limited, and known methods can be used. After that, in the molding step, the powdered raw material is pressure-molded and fired to obtain a raw material sintered body. The methods of pressure molding and firing are not limited, and known methods can be used.
 リチウム含有酸化物結晶の原料としては、リチウム化合物、ランタン化合物、ジルコニウム化合物、タンタル化合物、ニオブ化合物を用いることができる。リチウム化合物としては、例えばLiOやLiCOなどが挙げられる。ランタン化合物としては、例えばLaやLa(OH)などが挙げられる。ジルコニウム化合物としては、例えばZrO、ZrCl4、LaZr、LiZrOなどが挙げられる。タンタル化合物としては、例えばTaやTaCl5などが挙げられる。ニオブ化合物としては、例えばNb、LiNbO、LaNbOなどが挙げられる。 As a raw material for the lithium-containing oxide crystal, a lithium compound, a lanthanum compound, a zirconium compound, a tantalum compound, and a niobium compound can be used. Examples of the lithium compound include Li 2 O and Li 2 CO 3 . Examples of the lanthanum compound include La 2 O 3 and La (OH) 3 . Examples of the zirconium compound include ZrO 2 , ZrC l4 , La 2 Zr 2 O 7 , Li 2 ZrO 3, and the like. Examples of the tantalum compound include Ta 2 O 5 and Ta C l 5 . Examples of the niobium compound include Nb 2 O 5 , LiNbO 3 , and LaNbO 4 .
 次に、溶融部形成工程で原料焼結体の少なくとも一部を溶融して溶融部を形成し、成長工程で溶融部を冷却してリチウム含有酸化物結晶を成長させる。溶融部形成工程および成長工程の方法は限定されず、公知の各種溶融法を用いて結晶成長することができ、例えばFZ(Floating Zone)法、ブリッジマン法、キロポーラス法、TSSG(Top Seeded Solution Growth)法、LPE(Liquid Phase Epitaxy)法、CZ(Czochralski)法、EFG(Edge-defined Film-fed Growth)法が挙げられる。リチウム含有酸化物結晶の大口径化を図るためには、CZ法又はEFG法を用いることが好ましい。坩堝を用いる成長方法の場合には、原料メルトと反応しないIrを坩堝の材料として用いることが好ましい。 Next, at least a part of the raw material sintered body is melted to form a melted portion in the melted portion forming step, and the melted portion is cooled in the growth step to grow a lithium-containing oxide crystal. The method of the molten portion forming step and the growing step is not limited, and the crystal can be grown by using various known melting methods. For example, the FZ (Floating Zone) method, the Bridgeman method, the kiloporous method, and the TSSG (Top Edged Solution). Examples include the Growth) method, the LPE (Liquid Phase Epitaxy) method, the CZ (Czochralski) method, and the EFG (Edge-defined Film-fed Growth) method. In order to increase the diameter of the lithium-containing oxide crystal, it is preferable to use the CZ method or the EFG method. In the case of a growth method using a crucible, it is preferable to use Ir, which does not react with the raw material melt, as a material for the crucible.
 成長工程において用いる雰囲気はNまたはAr、ドライエアーが好適であり、雰囲気の露点を-70℃以上-35℃以下の範囲とする。本実施形態において雰囲気の露点とは、雰囲気中に含まれる水蒸気量が同気圧における飽和水蒸気量となる温度のことを意味する。なお、本実施形態及び後述する実施例と比較例において、雰囲気の露点測定には静電容量式の露点計(株式会社テクネ計測製 オンライン露点計TK-100)を用いた。 The atmosphere used in the growth step is preferably N 2 or Ar, and dry air, and the dew point of the atmosphere is in the range of −70 ° C. or higher and −35 ° C. or lower. In the present embodiment, the dew point of the atmosphere means a temperature at which the amount of water vapor contained in the atmosphere becomes the saturated water vapor amount at the same atmospheric pressure. In this embodiment and the examples and comparative examples described later, a capacitance type dew point meter (online dew point meter TK-100 manufactured by Tekne Corporation) was used for measuring the dew point of the atmosphere.
 本出願人は、成長工程における雰囲気の露点によって、結晶に含まれるLi含有量が変化し、クラックが発生することを見出した。リチウム含有酸化物結晶では、Li含有量の変化に伴い外観に白濁やクラックが発生し、結晶内における特性のばらつきが生じてしまう。成長工程における雰囲気の露点を-70℃以上-35℃以下の範囲とすることで、白濁やクラックを抑制して特性のばらつきを抑制して0.38cm以上の断面積を有する均一なリチウム含有酸化物結晶を得ることができる。 The applicant has found that the Li content contained in the crystal changes depending on the dew point of the atmosphere in the growth process, and cracks occur. In the lithium-containing oxide crystal, white turbidity and cracks occur in the appearance as the Li content changes, and the characteristics in the crystal vary. By setting the dew point of the atmosphere in the growth process to the range of -70 ° C or higher and -35 ° C or lower, white turbidity and cracks are suppressed and variation in characteristics is suppressed, and a uniform lithium content having a cross section of 0.38 cm 2 or more is contained. Oxide crystals can be obtained.
 また、成長工程における雰囲気の露点を-70℃以上-40℃以下の範囲内に設定することで、溶融部から1.76cm以上100cm以下の面積を有するリチウム含有酸化物結晶を成長形成することができる。さらに、成長工程における雰囲気の露点を-65℃以上-45℃以下の範囲内に設定することで、溶融部から10mm以上の長手方向の寸法(即ち、リチウム含有酸化物結晶の成長方向における長さ)でリチウム含有酸化物結晶を成長形成することができる。 Further, by setting the dew point of the atmosphere in the growth step in the range of -70 ° C. or higher -40 ℃ less, grown form a lithium-containing oxide crystal having an area of 1.76 cm 2 or more 100 cm 2 or less from the molten portion be able to. Further, by setting the dew point of the atmosphere in the growth step within the range of -65 ° C. or higher and -45 ° C. or lower, the dimension in the longitudinal direction of 10 mm or more from the molten portion (that is, the length in the growth direction of the lithium-containing oxide crystal). ) Can grow and form lithium-containing oxide crystals.
 以下に本発明に係る実施例を説明するが、本発明は以下の実施例のみに限定されない。
(実施例1,2および比較例1)
Examples of the present invention will be described below, but the present invention is not limited to the following examples.
(Examples 1 and 2 and Comparative Example 1)
 まず、実施例1,2および比較例1として、FZ法を用いて、リチウム含有酸化物結晶であるLi6.5LaZr1.5Nb0.512を成長させた。原料に含まれるLiの量は、得られるリチウム含有酸化物結晶に含まれるLiの108%とした。成長工程中の雰囲気は、室温で1気圧の空気(ドライエアー)を毎分7リットルの流量で流し、実施例1,2および比較例1は、それぞれ露点が-35℃、-55℃、-20℃の条件に設定した。得られたリチウム含有酸化物結晶について、光学顕微鏡を用いて外観検査を行った。 First, as Examples 1 and 2 and Comparative Example 1, Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 which is a lithium-containing oxide crystal was grown by using the FZ method. The amount of Li contained in the raw material was 108% of Li contained in the obtained lithium-containing oxide crystal. In the atmosphere during the growth process, air (dry air) at room temperature of 1 atm was flowed at a flow rate of 7 liters per minute, and the dew points of Examples 1 and 2 and Comparative Example 1 were −35 ° C., −55 ° C., and −, respectively. The condition was set to 20 ° C. The obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
 図2は、FZ法を用いて成長したリチウム含有酸化物結晶の実施例1,2および比較例1についての評価を示す表である。図2中の面積の欄は、クラックが生じていない部分における断面積を示し、長さの欄は断面積が0.38cm以上でクラックが生じていない部分の成長方向における長さを示している。図3(a)~(c)は、それぞれ実施例1,2および比較例1のリチウム含有酸化物結晶の外観を示す写真である。図3(a)~(c)における左側が結晶成長の開始側であり、右側に向かって原料の溶融および成長をさせたas-grownの状態を示している。 FIG. 2 is a table showing evaluations of Examples 1 and 2 and Comparative Example 1 of lithium-containing oxide crystals grown by the FZ method. The area column in FIG. 2 shows the cross-sectional area in the non-cracked portion, and the length column shows the length in the growth direction of the non-cracked portion having a cross-sectional area of 0.38 cm 2 or more. There is. 3 (a) to 3 (c) are photographs showing the appearance of the lithium-containing oxide crystals of Examples 1 and 2, respectively. The left side in FIGS. 3 (a) to 3 (c) is the start side of crystal growth, and the state of as-grown in which the raw material is melted and grown is shown toward the right side.
 図2および図3に示したように、実施例1では直径7mmで断面積が0.38cmの領域が10mm存在しており、当該領域内においてクラックは生じていなかった。また実施例2では直径7mmで断面積が0.38cmの領域が40mm存在しており、当該領域内においてクラックは生じていなかった。一方、比較例1ではリチウム含有酸化物結晶の全面にクラックがあり、クラックが含まれない領域が存在しなかった。したがって、露点が-35℃より大きい場合には、断面積が0.38cm以上のクラックが無いリチウム含有酸化物結晶を得られないことがわかる。
(実施例3~6および比較例2)
As shown in FIGS. 2 and 3, in Example 1, a region having a diameter of 7 mm and a cross section of 0.38 cm 2 was present at 10 mm, and no crack was generated in the region. Further, in Example 2, a region having a diameter of 7 mm and a cross section of 0.38 cm 2 existed in an area of 40 mm, and no crack was generated in the region. On the other hand, in Comparative Example 1, there were cracks on the entire surface of the lithium-containing oxide crystal, and there was no region not containing the cracks. Therefore, when the dew point is larger than −35 ° C., it can be seen that a lithium-containing oxide crystal having a cross section of 0.38 cm 2 or more and without cracks cannot be obtained.
(Examples 3 to 6 and Comparative Example 2)
 次に、実施例3~6および比較例2として、FZ法を用いて、リチウム含有酸化物結晶であるLi6.5LaZr1.5Nb0.512を成長させた。原料に含まれるLiの量は、得られるリチウム含有酸化物結晶に含まれるLiの108%とした。成長工程中の雰囲気は、室温で1気圧の空気(ドライエアー)を毎分7リットルの流量で流し、実施例3~6および比較例2は、それぞれ露点が-40℃、-43℃、-48℃、-62℃、-68℃の条件に設定した。得られたリチウム含有酸化物結晶について、光学顕微鏡を用いて外観検査を行った。 Next, as Examples 3 to 6 and Comparative Example 2, Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 , which is a lithium-containing oxide crystal, was grown using the FZ method. The amount of Li contained in the raw material was 108% of Li contained in the obtained lithium-containing oxide crystal. The atmosphere during the growth process was such that 1 atm of air (dry air) was flowed at a flow rate of 7 liters per minute at room temperature, and the dew points of Examples 3 to 6 and Comparative Example 2 were −40 ° C., −43 ° C., and −, respectively. The conditions were set at 48 ° C., −62 ° C., and −68 ° C. The obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
 図4は、露点条件を変えてFZ法を用いて成長した実施例3~6および比較例2のリチウム含有酸化物結晶の外観写真を示す表である。図4に於いて、露点-40℃が実施例3、露点-43℃が実施例4、露点-48℃が実施例5、露点-62℃が実施例6、露点-68℃が比較例2である、実施例3~6の何れにおいても、断面積が0.38cmの領域が存在しており、当該領域内においてクラックは生じていなかった。また、実施例3~6および比較例2の何れにおいても、導電率は0.65(mS/cm)以上であり、特に実施例5では0.85(mS/cm)であった。一方、比較例2ではリチウム含有酸化物結晶の結晶成長方向に沿ってクラックが生じており、クラックが含まれない領域が存在しなかった。 FIG. 4 is a table showing external photographs of lithium-containing oxide crystals of Examples 3 to 6 and Comparative Example 2 grown by using the FZ method under different dew point conditions. In FIG. 4, a dew point of −40 ° C. is Example 3, a dew point of −43 ° C. is Example 4, a dew point of −48 ° C. is Example 5, a dew point of −62 ° C. is Example 6, and a dew point of −68 ° C. is Comparative Example 2. In each of Examples 3 to 6, a region having a cross section of 0.38 cm 2 existed, and no crack was generated in the region. Further, in both Examples 3 to 6 and Comparative Example 2, the conductivity was 0.65 (mS / cm) or more, and in particular, in Example 5, it was 0.85 (mS / cm). On the other hand, in Comparative Example 2, cracks were generated along the crystal growth direction of the lithium-containing oxide crystal, and there was no region containing no cracks.
 図4に示したように、実施例3ではLi不足による白濁が部分的に生じており、断面積が0.38cm以上でクラックの無い領域は10mm未満であった。また、実施例4でも断面積が0.38cm以上でクラックの無い領域は10mm未満であった。したがって、露点を-65℃以上-45℃以下の範囲内に設定することで、断面積が0.38cm以上でクラックの無い領域を10mm以上の寸法で形成できることがわかる。
(実施例7~10)
As shown in FIG. 4, in Example 3, white turbidity was partially generated due to lack of Li, and the cross section was 0.38 cm 2 or more and the crack-free region was less than 10 mm. Further, also in Example 4, the cross section was 0.38 cm 2 or more and the region without cracks was less than 10 mm. Therefore, it can be seen that by setting the dew point within the range of −65 ° C. or higher and −45 ° C. or lower, a region having a cross section of 0.38 cm 2 or more and no cracks can be formed with a size of 10 mm or more.
(Examples 7 to 10)
 次に、実施例7~10として、CZ法を用いて、リチウム含有酸化物結晶であるLi6.5LaZr1.5Nb0.512とLi6.5LaZr1.5Nb0.25Ta0.2512を成長させた。成長工程中の雰囲気は、室温で1気圧のNを毎分2~4リットルの流量で流し、実施例7~10は、それぞれ露点が-40℃、-65℃、-66℃、-69℃の条件に設定した。坩堝にはIr材料を用いた。得られたリチウム含有酸化物結晶について、光学顕微鏡を用いて外観検査を行った。 Next, as Examples 7 to 10, using the CZ method, Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 and Li 6.5 La 3 Zr 1.5 , which are lithium-containing oxide crystals, are used. Nb 0.25 Ta 0.25 O 12 was grown. In the atmosphere during the growth process, N 2 at 1 atm at room temperature was flowed at a flow rate of 2 to 4 liters per minute, and the dew points of Examples 7 to 10 were −40 ° C., −65 ° C., −66 ° C., and −69, respectively. The condition was set to ℃. Ir material was used for the crucible. The obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
 図5は、CZ法を用いて成長したリチウム含有酸化物結晶の実施例7~10についての評価を示す表である。図5中の面積の欄は、クラックが生じていない部分における断面積を示し、長さの欄は断面積が0.38cm以上でクラックが生じていない部分の成長方向における長さを示している。また、実施例7,8,10はLi6.5LaZr1.5Nb0.512とあり、実施例9はTaを含むLi6.5LaZr1.5Nb0.25Ta0.2512である。図6(a)~(d)は、それぞれ実施例7~10のリチウム含有酸化物結晶の外観を示す写真である。図6(a)~(d)における左側が結晶成長の開始側であり、右側に向かって原料の溶融および成長をさせたas-grownの状態を示している。 FIG. 5 is a table showing the evaluation of Examples 7 to 10 of the lithium-containing oxide crystals grown by the CZ method. The area column in FIG. 5 shows the cross-sectional area in the non-cracked portion, and the length column shows the length in the growth direction of the non-cracked portion having a cross-sectional area of 0.38 cm 2 or more. There is. Further, Examples 7, 8 and 10 have Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 , and Example 9 has Li 6.5 La 3 Zr 1.5 Nb 0.25 containing Ta. It is Ta 0.25 O 12 . 6 (a) to 6 (d) are photographs showing the appearance of the lithium-containing oxide crystals of Examples 7 to 10, respectively. The left side in FIGS. 6 (a) to 6 (d) is the start side of crystal growth, and the state of as-grown in which the raw material is melted and grown is shown toward the right side.
 図5および図6に示したように、実施例7では成長初期段階において直径18mmで断面積が2.76cmのクラックが無い領域が形成されており、断面積が0.38cm以上でクラックが生じていない部分も11mm存在していた。また実施例8では、直径15mmで断面積が1.77cmのクラックが無い領域が形成されており、断面積が0.38cm以上でクラックが生じていない部分も38mm存在していた。また実施例9では、直径9.6mmで断面積が0.72cmのクラックが無い領域が形成されており、断面積が0.38cm以上でクラックが生じていない部分も27mm存在していた。また実施例10では、部分的に割れが生じたものの、直径16mmで断面積が2.0cmのクラックが無い領域が形成されており、断面積が0.38cm以上でクラックが生じていない部分も24mm存在していた。 As shown in FIGS. 5 and 6, in Example 7, a crack-free region having a diameter of 18 mm and a cross section of 2.76 cm 2 was formed in the initial stage of growth, and cracks were formed when the cross section was 0.38 cm 2 or more. There was also a portion of 11 mm in which was not generated. Further, in Example 8, a crack-free region having a diameter of 15 mm and a cross section of 1.77 cm 2 was formed, and a portion having a cross section of 0.38 cm 2 or more and no cracks was also present at 38 mm. Further, in Example 9, a crack-free region having a diameter of 9.6 mm and a cross section of 0.72 cm 2 was formed, and there was a portion having a cross section of 0.38 cm 2 or more and no cracks of 27 mm. .. Further, in Example 10, although cracks were partially generated, a crack-free region having a diameter of 16 mm and a cross section of 2.0 cm 2 was formed, and cracks were not generated when the cross section was 0.38 cm 2 or more. The part was also present at 24 mm.
 したがって、露点を-70℃以上-40℃以下の範囲内に設定することで、断面積が1.76cm以上100cm以下の面積を有するクラックが無いリチウム含有酸化物結晶が得られることがわかる。
(実施例11)
Therefore, by setting the dew point in the range of -70 ° C. or higher -40 ℃ less, it can be seen that the lithium-containing oxide crack no cross-sectional area has an area of 1.76 cm 2 or more 100 cm 2 or less crystals are obtained ..
(Example 11)
 次に、実施例11として、CZ法を用いて、リチウム含有酸化物結晶であるLi6.8LaZr1.8Nb0.212を成長させた。成長工程中の雰囲気は、室温で1気圧のNを毎分2~4リットルの流量で流し、露点が-65℃の条件に設定した。坩堝にはIr材料を用いた。得られたリチウム含有酸化物結晶について、光学顕微鏡を用いて外観検査を行った。 Next, as Example 11, a lithium-containing oxide crystal, Li 6.8 La 3 Zr 1.8 Nb 0.2 O 12, was grown using the CZ method. The atmosphere during the growth process was set to a dew point of −65 ° C. by flowing N 2 at room temperature at a flow rate of 2 to 4 liters per minute. Ir material was used for the crucible. The obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
 以下に、CZ法を用いて成長したリチウム含有酸化物結晶の実施例11についての評価を示す。また図7は実施例11のリチウム含有酸化物結晶の外観を示す写真である。図7における右側が結晶成長の開始側であり、左側に向かって原料の溶融および成長をさせたas-grownの状態を示している。 The evaluation of Example 11 of the lithium-containing oxide crystal grown by the CZ method is shown below. Further, FIG. 7 is a photograph showing the appearance of the lithium-containing oxide crystal of Example 11. The right side in FIG. 7 is the start side of crystal growth, and the state of as-grown in which the raw materials are melted and grown is shown toward the left side.
 図7に示したように、実施例11ではクラックが無い領域が、直径9.5mm、断面積0.70cmで形成されており、断面積が0.38cm以上でクラックが生じていない部分も長手方向の寸法(成長方向における長さ)で30mm存在していた。 As shown in FIG. 7, in Example 11, a crack-free region is formed with a diameter of 9.5 mm and a cross section of 0.70 cm 2 , and a portion having a cross section of 0.38 cm 2 or more and no cracks. Also existed in the longitudinal dimension (length in the growth direction) of 30 mm.
 したがって、露点を-65℃に設定することで、断面積が0.38cm以上の面積で、且つ長手方向の寸法で10mm以上に亘ってクラックが無いリチウム含有酸化物結晶が得られることがわかる。 Therefore, it can be seen that by setting the dew point to −65 ° C., a lithium-containing oxide crystal having a cross-sectional area of 0.38 cm 2 or more and a longitudinal dimension of 10 mm or more without cracks can be obtained. ..
 上述したように本実施形態では、クラックが無く大面積を有するリチウム含有酸化物結晶およびその製造方法を提供することができる。また、そのリチウム含有酸化物結晶の少なくとも一部を備える電池を提供することができる。
(実施例12)
As described above, in the present embodiment, it is possible to provide a lithium-containing oxide crystal having a large area without cracks and a method for producing the same. Further, it is possible to provide a battery including at least a part of the lithium-containing oxide crystal.
(Example 12)
  次に、実施例12として、CZ法を用いて、リチウム含有酸化物結晶であるLi6.0LaZr1.0Nb1.012を成長させた。原料に含まれるLiの量は、得られるリチウム含有酸化物結晶に含まれるLiの110%とした。成長工程中の雰囲気は、室温で1気圧のNを毎分4リットルの流量で流し、露点を-62℃の条件に設定した。坩堝にはIr材料を用いた。得られたリチウム含有酸化物結晶について、光学顕微鏡を用いて外観検査を行った。 Next, as Example 12, a lithium-containing oxide crystal, Li 6.0 La 3 Zr 1.0 Nb 1.0 O 12, was grown using the CZ method. The amount of Li contained in the raw material was 110% of Li contained in the obtained lithium-containing oxide crystal. As for the atmosphere during the growth process, N 2 at 1 atm at room temperature was flowed at a flow rate of 4 liters per minute, and the dew point was set to −62 ° C. Ir material was used for the crucible. The obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
 図8は、実施例12のリチウム含有酸化物結晶の外観を示す写真である。図8における左側が結晶成長の開始側であり、右側に向かって原料の溶融および成長をさせたas-grownの状態を示している。 FIG. 8 is a photograph showing the appearance of the lithium-containing oxide crystal of Example 12. The left side in FIG. 8 is the start side of crystal growth, and the state of as-grown in which the raw materials are melted and grown is shown toward the right side.
 図8に示したように、実施例12では直径7mmで断面積が0.38cmの領域が11mm存在しており、当該領域内においてクラックは生じていなかった。
(実施例13)
As shown in FIG. 8, in Example 12, a region having a diameter of 7 mm and a cross section of 0.38 cm 2 was present at 11 mm, and no crack was generated in the region.
(Example 13)
 次に、実施例13として、CZ法を用いて、リチウム含有酸化物結晶であるLi6.5LaZr1.5Ta0.512を成長させた。成長工程中の雰囲気は、室温で1気圧のNを毎分4リットルの流量で流し、露点を-69℃の条件に設定した。坩堝にはIr材料を用いた。得られたリチウム含有酸化物結晶について、光学顕微鏡を用いて外観検査を行った。 Next, as Example 13, a lithium-containing oxide crystal, Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12, was grown using the CZ method. As for the atmosphere during the growth process, N 2 at 1 atm at room temperature was flowed at a flow rate of 4 liters per minute, and the dew point was set to −69 ° C. Ir material was used for the crucible. The obtained lithium-containing oxide crystals were visually inspected using an optical microscope.
 図9は、実施例13のリチウム含有酸化物結晶の外観を示す写真である。図9における左側が結晶成長の開始側であり、右側に向かって原料の溶融および成長をさせたas-grownの状態を示している。 FIG. 9 is a photograph showing the appearance of the lithium-containing oxide crystal of Example 13. The left side in FIG. 9 is the start side of crystal growth, and the state of as-grown in which the raw materials are melted and grown is shown toward the right side.
 図9に示したように、実施例13では直径7mmで断面積が0.38cmの領域が12mm存在しており、当該領域内においてクラックは生じていなかった。 As shown in FIG. 9, in Example 13, a region having a diameter of 7 mm and a cross section of 0.38 cm 2 was present at 12 mm, and no crack was generated in the region.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.

Claims (8)

  1.  クラックが無く、0.38cm以上の断面積を有し、酸素を含むことを特徴とするリチウム含有酸化物結晶。 A lithium-containing oxide crystal characterized by having no cracks, having a cross section of 0.38 cm 2 or more, and containing oxygen.
  2.  請求項1に記載のリチウム含有酸化物結晶であって、
    前記断面積が1.76cm以上100cm以下であることを特徴とするリチウム含有酸化物結晶。
    The lithium-containing oxide crystal according to claim 1.
    Lithium-containing oxide crystal wherein the cross-sectional area is 1.76 cm 2 or more 100 cm 2 or less.
  3.  請求項1または2に記載のリチウム含有酸化物結晶であって、
     長手方向の寸法を有し、前記長手方向の寸法が10mm以上であることを特徴とするリチウム含有酸化物結晶。
    The lithium-containing oxide crystal according to claim 1 or 2.
    A lithium-containing oxide crystal having a longitudinal dimension and having a longitudinal dimension of 10 mm or more.
  4.  請求項1から3の何れか一つに記載のリチウム含有酸化物結晶の少なくとも一部を用いることを特徴とする電池。 A battery characterized in that at least a part of the lithium-containing oxide crystal according to any one of claims 1 to 3 is used.
  5.  酸素を含むリチウム含有酸化物結晶原料の少なくとも一部を溶融して溶融部を形成する溶融部形成工程と、
    前記溶融部からリチウム含有酸化物結晶を成長形成する成長工程を有し、
    前記成長工程における雰囲気の露点は-70℃以上-35℃以下の範囲であり、
    前記リチウム含有酸化物結晶は0.38cm以上の断面積を有することを特徴とするリチウム含有酸化物結晶の製造方法。
    A melting part forming step of melting at least a part of a lithium-containing oxide crystal raw material containing oxygen to form a melting part, and
    It has a growth step of growing and forming lithium-containing oxide crystals from the molten portion.
    The dew point of the atmosphere in the growth step is in the range of −70 ° C. or higher and −35 ° C. or lower.
    A method for producing a lithium-containing oxide crystal, wherein the lithium-containing oxide crystal has a cross section of 0.38 cm 2 or more.
  6.  請求項5に記載のリチウム含有酸化物結晶の製造方法であって、
     前記露点を-70℃以上-40℃以下の範囲内に設定し、
     前記溶融部から1.76cm以上100cm以下の面積を有する前記リチウム含有酸化物結晶を成長形成することを特徴とするリチウム含有酸化物結晶の製造方法。
    The method for producing a lithium-containing oxide crystal according to claim 5.
    The dew point is set within the range of −70 ° C. or higher and −40 ° C. or lower.
    Method for producing a lithium-containing oxide crystals, characterized in that said lithium-containing oxide crystal growth form having an area of 1.76 cm 2 or more 100 cm 2 or less from the molten portion.
  7.  請求項5または6に記載のリチウム含有酸化物結晶の製造方法であって、
     前記露点を-65℃以上-45℃以下の範囲内に設定し、
     前記溶融部から10mm以上の長手方向の寸法で前記リチウム含有酸化物結晶を成長形成することを特徴とするリチウム含有酸化物結晶の製造方法。
    The method for producing a lithium-containing oxide crystal according to claim 5 or 6.
    Set the dew point within the range of -65 ° C or higher and -45 ° C or lower.
    A method for producing a lithium-containing oxide crystal, which comprises growing and forming the lithium-containing oxide crystal in a dimension of 10 mm or more in the longitudinal direction from the molten portion.
  8.  請求項5から7の何れか一つに記載のリチウム含有酸化物結晶の製造方法であって、
    前記成長工程は、CZ法又はEFG法を用いることを特徴とするリチウム含有酸化物結晶の製造方法。
    The method for producing a lithium-containing oxide crystal according to any one of claims 5 to 7.
    The growth step is a method for producing a lithium-containing oxide crystal, which comprises using a CZ method or an EFG method.
PCT/JP2020/011916 2019-03-21 2020-03-18 Lithium-containing oxide crystal, battery and method for producing lithium-containing oxide crystal WO2020189705A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080019417.6A CN113544317A (en) 2019-03-21 2020-03-18 Lithium-containing oxide crystal, battery, and method for producing lithium-containing oxide crystal
JP2021507388A JP7572730B2 (en) 2019-03-21 2020-03-18 Lithium-containing oxide crystal, battery, and method for producing lithium-containing oxide crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019053949 2019-03-21
JP2019-053949 2019-03-21

Publications (1)

Publication Number Publication Date
WO2020189705A1 true WO2020189705A1 (en) 2020-09-24

Family

ID=72520175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011916 WO2020189705A1 (en) 2019-03-21 2020-03-18 Lithium-containing oxide crystal, battery and method for producing lithium-containing oxide crystal

Country Status (2)

Country Link
CN (1) CN113544317A (en)
WO (1) WO2020189705A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119950A (en) * 2003-09-26 2005-05-12 Shin Etsu Chem Co Ltd Method for manufacturing monopolarized lithium tantalate crystal and monopolarized lithium tantalate crystal
JP2006124223A (en) * 2004-10-28 2006-05-18 Shin Etsu Chem Co Ltd Method for manufacturing oxide single crystal
WO2017203954A1 (en) * 2016-05-26 2017-11-30 国立研究開発法人産業技術総合研究所 Lowly symmetric garnet-related structured solid electrolyte and lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119950A (en) * 2003-09-26 2005-05-12 Shin Etsu Chem Co Ltd Method for manufacturing monopolarized lithium tantalate crystal and monopolarized lithium tantalate crystal
JP2006124223A (en) * 2004-10-28 2006-05-18 Shin Etsu Chem Co Ltd Method for manufacturing oxide single crystal
WO2017203954A1 (en) * 2016-05-26 2017-11-30 国立研究開発法人産業技術総合研究所 Lowly symmetric garnet-related structured solid electrolyte and lithium secondary battery

Also Published As

Publication number Publication date
JPWO2020189705A1 (en) 2020-09-24
CN113544317A (en) 2021-10-22

Similar Documents

Publication Publication Date Title
EP3410529B1 (en) Solid electrolyte material and all solid lithium ion secondary battery
US9502729B2 (en) Ion-conducting composite electrolyte comprising path-engineered particles
Bednorz et al. Flame-fusion growth of SrTiO3
KR101940240B1 (en) Oxide Based Solid Electrolyte and Methods of the same
WO2016068040A1 (en) Lithium-containing garnet crystal and all-solid-state lithium ion secondary battery
JP6667182B2 (en) Low-symmetric garnet-related structural solid electrolyte and lithium-ion secondary battery
KR101930123B1 (en) Lithium lanthanum titanium oxide sintered body, solid electrolyte containing oxide, lithium air battery employing solid electrolyte and all-solid lithium battery
Vernardou State-of-the-art of chemically grown vanadium pentoxide nanostructures with enhanced electrochemical properties
WO2016017769A1 (en) Lithium-containing garnet crystal body, method for producing same, and all-solid-state lithium ion secondary battery
US11139504B2 (en) Lithium ion conductive crystal body and all-solid state lithium ion secondary battery
JP2023512340A (en) Ion-conducting materials, electrolytes containing ion-conducting materials, and methods of forming the same
CN116490468B (en) Precursor, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5858410B2 (en) Single crystal of lithium ion conductive oxide, method for producing the same, and electrochemical device using the same as member
WO2020189705A1 (en) Lithium-containing oxide crystal, battery and method for producing lithium-containing oxide crystal
JP2019133933A (en) Solid electrolyte and solid state battery
US20220344707A1 (en) Composite oxide powder, method for producing composite oxide powder, method for producing solid electrolyte object, and method for producing lithium ion secondary battery
JP7572730B2 (en) Lithium-containing oxide crystal, battery, and method for producing lithium-containing oxide crystal
Khandaker et al. TSFZ Growth and Anisotropic Ionic Conductivity of Mg-Doped LiCoO2 Single Crystals
KATAOKA et al. Development of a compact all-solid-state lithium secondary battery using single-crystal electrolyte—Towards realizing oxide-type all-solid-state lithium secondary batteries—
KR20170003877A (en) Oxide based solid electrolyte and method for forming the same
JP2001015160A (en) Glass-ceramic composite electrolyte, and lithium secondary battery
CN113437289A (en) High-capacity single crystal cathode material and preparation method thereof
CN100390327C (en) Method for growing lead lanthanum zirconate stannate titanate single-crystal utilizing composite fluxing agent
JP6090290B2 (en) COMPOSITE, BATTERY, COMPOSITE MANUFACTURING METHOD AND ION CONDUCTIVE SOLID MANUFACTURING METHOD
Minegishi et al. Crystal growth and characterization of LixLa (1− x)/3NbO3 using Czochralski method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772576

Country of ref document: EP

Kind code of ref document: A1