WO2020189523A1 - Chemokine production promoter, therapeutic agent for immune checkpoint inhibitor-resistant cancer and antitumor immunostimulator - Google Patents

Chemokine production promoter, therapeutic agent for immune checkpoint inhibitor-resistant cancer and antitumor immunostimulator Download PDF

Info

Publication number
WO2020189523A1
WO2020189523A1 PCT/JP2020/010894 JP2020010894W WO2020189523A1 WO 2020189523 A1 WO2020189523 A1 WO 2020189523A1 JP 2020010894 W JP2020010894 W JP 2020010894W WO 2020189523 A1 WO2020189523 A1 WO 2020189523A1
Authority
WO
WIPO (PCT)
Prior art keywords
plga
cells
cancer
glucose
immune checkpoint
Prior art date
Application number
PCT/JP2020/010894
Other languages
French (fr)
Japanese (ja)
Inventor
啓輔 日野
惣治 仁科
恭 佐々木
山内 明
宏太郎 福田
Original Assignee
株式会社 先端医療開発
学校法人 川崎学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 先端医療開発, 学校法人 川崎学園 filed Critical 株式会社 先端医療開発
Publication of WO2020189523A1 publication Critical patent/WO2020189523A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7004Monosaccharides having only carbon, hydrogen and oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a chemokine production promoter, an immune checkpoint inhibitor, a therapeutic agent for resistant cancer, and an antitumor immunostimulant.
  • Immune checkpoint inhibitors are expected as a treatment for cancer. Immune checkpoint inhibitors block the immunosuppressive mechanism mediated by immune checkpoint molecules by cancer cells, resulting in an antitumor effect by the immune system.
  • Non-Patent Document 1 reports that anti-tumor immunity is suppressed by activation of glycolysis in cancer cells.
  • Non-Patent Document 2 suggests that in the microenvironment of cancer, glucose metabolism in cancer cells is enhanced, so that the activity of T cells is reduced by reducing the supply of glucose to T cells. There is.
  • Non-Patent Document 1 when the expression levels of 75 types of cell chemotaxis factors (chemokines) and cytokines were examined, T cells were examined in melanoma cells having low glycolytic activity rather than melanoma cells having high glycolytic activity. It has been shown that a large amount of CXCL10, which enhances chemotaxis, is produced. In Non-Patent Document 1, although the amount of chemokine produced by melanoma cells with low glycolytic activity extracted using the rate of extracellular acidification as an index is evaluated, the production of chemokines by inhibiting the glycolytic system of cancer cells. The effect on quantity has not been investigated.
  • chemokines cell chemotaxis factors
  • the present invention has been made in view of the above circumstances, and is a chemokine production promoter, an immune checkpoint inhibitor, a resistant cancer therapeutic agent, and an antitumor immunostimulant, which can enhance antitumor immunity in a cancer microenvironment.
  • the purpose is to provide.
  • the present inventor has conducted extensive research, and in addition to enhancing chemokine production and T cell chemotaxis by cancer cells by inhibiting glycolysis in cancer cells, glucose metabolism between cancer cells and T cells We have found that interventions in balance enhance anti-tumor immunity and complete the present invention.
  • the chemokine production promoter according to the first aspect of the present invention is Contains sugar derivatives.
  • the chemokine production promoter according to the first aspect of the present invention is Promotes the production of CXCL9, CXCL10 and CXCL11 from cancer cells, It may be that.
  • the chemokine production promoter according to the first aspect of the present invention is Further containing biocompatible particles containing a lactic acid / glycolic acid copolymer
  • the sugar derivative is Encapsulated in the biocompatible particles, It may be that.
  • the immune checkpoint inhibitor-resistant cancer therapeutic agent according to the second aspect of the present invention is Contains sugar derivatives.
  • the antitumor immunostimulant according to the third aspect of the present invention is Contains sugar derivatives Used in combination with immune checkpoint inhibitors.
  • Chemokine production promoter according to the first aspect of the present invention immune checkpoint inhibitor-resistant cancer therapeutic agent according to the second aspect of the present invention, or antitumor immunostimulant according to the third aspect of the present invention.
  • the sugar derivative is 2-Deoxy-D-glucose, It may be that.
  • anti-tumor immunity in the microenvironment of cancer can be enhanced.
  • liver tumor tissue which was immunostained of the anti-PD-1 antibody resistance mouse which concerns on Test Example 5. It is a figure which shows the number of CD3 positive T cells in the liver tumor tissue shown in FIG. It is a figure which shows the appearance of the liver tumor of the liver carcinogenic mouse which concerns on Test Example 6. It is a figure which shows the tumor maximum diameter in the liver carcinogenic mouse which concerns on Test Example 6. It is a figure which shows the total tumor volume in the liver carcinogenic mouse which concerns on Test Example 6.
  • the chemokine production promoter according to the present embodiment contains a sugar derivative as an active ingredient.
  • the sugar derivative is, for example, a derivative of D-glucose that inhibits glycolysis.
  • the sugar derivative is a glucose derivative that does not have a hydroxyl group at the 2-position of the glucose ring.
  • Glucose derivatives include mannose, galactose and 5-thio-glucose.
  • the glucose derivative may have fluorine instead of hydrogen at any position on the glucose ring. Examples of the glucose derivative having fluorine include 2-fluoro-2-deoxy-D-glucose and 2-difluoro-2-D-deoxy-glucose.
  • the glucose derivative may have an amino group instead of a hydroxyl group at any position other than the 6-position on the glucose ring.
  • Examples of the glucose derivative having an amino group include 2-amino-2-deoxy-D-glucose and 2-amino-2-deoxy-D-galactose.
  • examples of glucose derivatives include 2-F-mannose, 2-mannosamine, 2-deoxygalactose, 2-F-deoxygalactose and the like.
  • the sugar derivative is 2DG, which is a derivative of glucose. 2DG is taken up into cancer cells via a glucose transporter. 2DG accumulated in cancer cells inhibits glycolysis.
  • the chemokine production promoter further contains biocompatible particles containing a lactic acid / glycolic acid copolymer (also referred to as a polylactide glycolide copolymer; hereinafter simply referred to as "PLGA").
  • Biocompatible particles are particles that are less irritating or toxic to living organisms and have the property of being decomposed and metabolized after administration.
  • the sugar derivative is encapsulated in biocompatible particles.
  • PLGA is, for example, a copolymer composed of lactic acid or lactide and glycolic acid or glycolide in a ratio of 1:99 to 99: 1, preferably 75:25, more preferably 3: 1.
  • PLGA having a content of lactic acid and glycolic acid of 25% by weight to 65% by weight is preferable in that it is amorphous and soluble in an organic solvent such as acetone.
  • the particle size of the biocompatible particles is less than 1000 nm, for example 2.5-900 nm, preferably 25-500 nm or 50-300 nm, more preferably 100-250 nm, still more preferably 130-200 nm, particularly preferably 150-180 nm. Is.
  • the particle size of biocompatible particles is measured by sieving, sedimentation, microscopy, light scattering, laser diffraction / scattering, electrical resistance test, observation with a transmission electron microscope, observation with a scanning electron microscope, etc. it can.
  • the particle size may be measured with a particle size distribution meter.
  • the particle size can be represented by a stalk-equivalent diameter, a circle-equivalent diameter, and a sphere-equivalent diameter, depending on the measurement method.
  • the particle size may be an average particle size, a volume average particle size, an area average particle size, or the like expressed by averaging a plurality of particles as measurement targets. Further, the particle size may be an average particle size calculated from a number distribution or the like based on a measurement such as a laser diffraction / scattering method.
  • the particle size may be 50% diameter (D 50 ), which is the particle size at the point where the cumulative curve is 50%.
  • Cumulative curve and D 50 can be determined using a commercially available particle size distribution meter. Examples of the particle size distribution meter include NIKKISO Nanotrac Wave-EX150 (manufactured by Nikkiso Co., Ltd.).
  • the surface of the biocompatible particles may be modified with polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the surface is modified with PEG to improve the blood stability of biocompatible particles.
  • biocompatible particles can be produced by the underwater emulsion method.
  • the underwater emulsion method two kinds of solvents, a good solvent in which PLGA dissolves and a poor solvent in which PLGA does not dissolve, are used.
  • a good solvent an organic solvent in which PLGA is dissolved and miscible with a poor solvent is used.
  • the types of the good solvent and the poor solvent are not particularly limited.
  • Water can be mentioned as a poor solvent.
  • a surfactant may be added to the water.
  • PVA polyvinyl alcohol
  • examples of the surfactant other than PVA include lecithin, hydroxymethyl cellulose, hydroxypropyl cellulose and the like.
  • good solvents include halogenated alkanes, which are organic solvents having a low boiling point and poor water solubility, acetone, methanol, ethanol, ethyl acetate, diethyl ether, cyclohexane, benzene, toluene and the like.
  • halogenated alkanes which are organic solvents having a low boiling point and poor water solubility
  • acetone methanol, ethanol, ethyl acetate, diethyl ether, cyclohexane, benzene, toluene and the like.
  • acetone methanol
  • ethanol ethyl acetate
  • diethyl ether diethyl ether
  • cyclohexane benzene
  • benzene toluene and the like.
  • acetone acetone having less adverse effect on the environment or the human body or a mixed solution of acetone and ethanol is used.
  • PLGA is dissolved in a good solvent, and then a sugar derivative solution is added to the good solvent and mixed so that PLGA does not precipitate.
  • the mixed solution containing PLGA and the sugar derivative is added dropwise to the poor solvent under stirring, the good solvent in the mixed solution rapidly diffuses and migrates into the poor solvent. As a result, emulsification of a good solvent occurs in a poor solvent, and emulsion droplets of the good solvent are formed.
  • the organic solvent is continuously diffused from the emulsion into the poor solvent, so that the solubility of PLGA and the sugar derivative in the emulsion droplet is lowered.
  • biocompatible particles of spherical crystal particles containing the sugar derivative are produced.
  • the organic solvent which is a good solvent is centrifuged or distilled under reduced pressure to obtain a powder of biocompatible particles.
  • the obtained powder is composited as it is or, if necessary, into aggregated particles that can be redispersed by freeze-drying or the like.
  • the content of the sugar derivative in the obtained biocompatible particles is, for example, 0.01 to 99% by weight, 0.1 to 30% by weight, 0.5 to 20% by weight, 1 to 15% by weight, and 3 to 10% by weight. % Or 5-10% by weight.
  • the content of the sugar derivative here is the ratio of the weight of the sugar derivative to the weight of the biocompatible particles.
  • the content rate is determined by quantifying the weight of the sugar derivative extracted from the biocompatible particles having a predetermined weight and calculating the ratio of the weight of the sugar derivative to the weight of the biocompatible particles.
  • a cationic polymer may be added to the poor solvent in order to increase the content of the sugar derivative in the biocompatible particles.
  • the cationic polymer include chitosan and chitosan derivatives, cationized cellulose in which a plurality of cationic groups are bonded to cellulose, and polyamino compounds such as polyethyleneimine, polyvinylamine, and polyallylamine.
  • the biocompatible particles encapsulating the sugar derivative are produced using a forced thin film microreactor.
  • a forced thin film type microreactor first, the above-mentioned good solvent and poor solvent are introduced between the processing surfaces which are arranged so as to face each other and at least one of them rotates relative to the other.
  • a good solvent and a poor solvent are mixed, and biocompatible particles in which a sugar derivative is encapsulated are precipitated in the thin film fluid.
  • ULREA SS-11 manufactured by M-Technique
  • the chemokine production promoter is produced by a known method and contains 0.000001 to 99.9% by weight, 0.00001 to 99.8% by weight, 0.0001 to 99.7% by weight, 0.001 to 9% by weight as active ingredients. 99.6% by weight, 0.01-99.5% by weight, 0.1 to 99% by weight, 0.5 to 60% by weight, 1 to 50% by weight or 1 to 20% by weight of sugar derivative or sugar derivative Includes encapsulated biocompatible particles.
  • the chemokine production promoter may be a solid preparation or a liquid preparation.
  • the chemokine production promoter may contain a pharmacologically acceptable carrier or the like in addition to the sugar derivative or biocompatible particles.
  • the chemokine production promoter contains excipients, lubricants, binders, disintegrants, solvents, solubilizers, suspending agents, isotonic agents, buffers, soothing agents and the like. May be good.
  • additives such as preservatives, antioxidants, colorants and sweeteners may be added, if necessary.
  • the chemokine production promoter promotes the production of chemokine from cancer cells, particularly at least one of CXCL9, CXCL10 and CXCL11, as shown in Test Example 1 and Test Example 3 below.
  • CXCL9, CXCL10 or CXCL11 By binding CXCL9, CXCL10 or CXCL11 to the receptor CXCR3 expressed on the surface of CD8-positive T cells, the chemotaxis of T cells is enhanced. As a result, anti-tumor immunity is activated. Therefore, chemokine production promoters are preferably used in the treatment of cancers, especially solid cancers.
  • solid cancers include hepatocellular carcinoma, gastric cancer, pancreatic cancer, lung cancer, colon cancer, breast cancer, liver cancer (liver cancer), kidney cancer (kidney cancer), tongue cancer, thyroid cancer, uterine cancer, and ovarian cancer.
  • Prostate cancer osteosarcoma, chondrosarcoma, rhabdomyosarcoma, smooth myoma and the like.
  • the chemokine production promoter is used in the treatment of cancer in which a polycythemia tumor is formed.
  • a polycythemia tumor is a tumor with abundant arterial blood flow that is enhanced by contrast in a contrast examination such as contrast-enhanced computed tomography.
  • the types of cancer in which polycythemia tumors are formed are, for example, hepatocellular carcinoma and renal cell carcinoma.
  • solid cancers detected by positron emission tomography (PET) using fluorodeoxyglucose have enhanced glucose metabolism, so that sugar derivatives are efficiently accumulated. Therefore, the chemokine production promoter is also suitable for the treatment of solid cancer detected by PET.
  • the route of administration of the chemokine production promoter to humans is not particularly limited.
  • Chemokine production promoters are administered, for example, by injection or orally.
  • the dose of the chemokine production promoter is appropriately determined depending on the sex, age, body weight, symptoms and the like of the administration subject.
  • the chemokine production promoter is administered so that the sugar derivative is in an effective amount.
  • the effective amount is the amount of sugar derivative required to obtain the desired result, and is the amount required to bring about delay, inhibition, prevention, reversal or cure of the progression of the condition to be treated or treated.
  • the dose of the chemokine production promoter is typically 0.01 mg / kg to 1000 mg / kg, preferably 0.1 mg / kg to 200 mg / kg, more preferably 0.2 mg / kg to 20 mg / kg. It can be administered once a day or in divided doses. When the chemokine production promoter is administered in divided portions, the chemokine production promoter is preferably administered 1 to 4 times a day. In addition, the chemokine production promoter may be administered at various administration frequencies such as daily, every other day, once a week, every other week, and once a month. Preferably, the administration frequency is easily determined by a doctor or the like. If necessary, an amount outside the above range can be used.
  • the chemokine production promoter promotes the production of chemokines from cancer cells. Since chemokines enhance the chemotaxis of T cells to cancer cells, the chemokine production promoter can enhance anti-tumor immunity.
  • a T cell chemotaxis enhancer containing the above sugar derivative is provided.
  • the sugar derivative according to the present embodiment promotes the production of IFN ⁇ from T cells, as shown in Test Example 2 below. Therefore, the chemokine production promoter according to the present embodiment can also be used as an IFN ⁇ production promoter.
  • the sugar derivative inhibits glucose uptake by cancer cells, as shown in Test Example 2 below. Therefore, the chemokine production promoter according to the present embodiment can also be used as a glucose uptake inhibitor.
  • glucose uptake by cancer cells is suppressed, glucose uptake by T cells is relatively increased in the cancer microenvironment. Therefore, the chemokine production promoter according to the present embodiment can also be used as a glucose uptake promoter for T cells. Increased glucose uptake by T cells also enhances the chemotaxis of T cells to cancer cells.
  • the sugar derivative inhibits the production of lactic acid in cancer cells, as shown in Test Example 2 below. Therefore, the chemokine production promoter according to the present embodiment can be used as a lactic acid production inhibitor.
  • the chemotaxis of T cells to cancer cells is also enhanced by reducing the concentration of lactic acid produced by the cancer cells.
  • the sugar derivative is T-celled via CXCL9-CXCR3 interaction, CXCL10-CXCR3 interaction and CXCL11-CXCR3 interaction in cancer tissue, as shown in Test Examples 3-5 below, especially when encapsulated in PLGA. It has an antitumor effect by enhancing tumor immunity. Therefore, the chemokine production promoter according to the present embodiment can be used as an immune checkpoint inhibitor-resistant cancer therapeutic agent.
  • the immune checkpoint inhibitor is not particularly limited as long as it is known.
  • immune checkpoint inhibitors include anti-PD-1 antibody, anti-CTLA-4 antibody and anti-PD-L1 antibody.
  • Immune Checkpoint Inhibitor-Resistant Cancers are Treated or Treated Even With Effective Amounts of Immune Checkpoint Inhibitors There is no tendency to delay, inhibit, reverse or cure the progression of the cancer, or immune checkpoint inhibitors It is a cancer that is less severe than an effective cancer.
  • the immune checkpoint inhibitor-resistant cancer includes cases in which the tendency of delaying, inhibiting, reversing or curing the progression of cancer by the immune checkpoint inhibitor is smaller than that of other patients even in the same cancer type.
  • Immune checkpoint inhibitor-resistant cancers include, for example, lung cancer and malignant melanoma.
  • the chemokine production promoter according to the present embodiment can also be used as an antitumor immunostimulant used in combination with an immune checkpoint inhibitor.
  • the combination means that the antitumor immunostimulant and the immune checkpoint inhibitor are administered to the same patient during a predetermined period. In combination, it is preferable to administer the antitumor immunostimulant at the same time as the immune checkpoint inhibitor, but administer the other independently while the effect of one remains, for example, after a while. You may.
  • the routes of administration of the antitumor immunostimulant and the immune checkpoint inhibitor may be the same or different.
  • the antitumor immunostimulant and immune checkpoint inhibitor are administered over a predetermined period of time according to a single regimen that specifies the dosage and usage of each of the antitumor immunostimulant and immune checkpoint inhibitor.
  • an immune checkpoint inhibitor used in combination with the antitumor immunostimulant is provided.
  • the sugar derivative according to the present embodiment may be encapsulated in biocompatible particles.
  • sugar derivatives By encapsulating in biocompatible particles, sugar derivatives can be selectively and efficiently accumulated in the target tissue due to the EPR (Enhanced Permeability and Regeneration) effect, and a high antitumor effect can be obtained.
  • EPR Enhanced Permeability and Regeneration
  • the anticancer agent provided in another embodiment includes the biocompatible particles in which the above-mentioned sugar derivative or sugar derivative is encapsulated, and an immune checkpoint inhibitor. That is, the anticancer agent contains both a biocompatible particle containing a sugar derivative or a sugar derivative and an immune checkpoint inhibitor in a single preparation. As a result, the sugar derivative and the immune checkpoint inhibitor can be simultaneously administered through the same route of administration.
  • the weight ratio of the sugar derivative to the immune checkpoint inhibitor in the anticancer agent is not particularly limited, and is appropriately adjusted according to the antitumor effect and the like.
  • a method of treating or preventing cancer or immune checkpoint inhibitor-resistant cancer of the patient is provided by administering the above sugar derivative to the patient.
  • a method for promoting the production of chemokines in the subject by administering the above sugar derivative to the subject, a method for inhibiting glucose uptake by the target cancer cells, a method for promoting glucose uptake by the target T cells, and the subject.
  • a method of inhibiting the production of lactic acid from cancer cells in a subject, or a method of activating anti-tumor immunity in a subject is provided.
  • 2DG was added to the medium so as to be 0.1 mM, 1 mM and 10 mM, and incubated for 24 hours.
  • CXCL9 and CXCL10 secretion from Huh7 were stimulated by adding IFN ⁇ 100 ng / mL and TNF ⁇ 50 ng / mL to each of the above media.
  • the concentrations of CXCL9 and CXCL10 in the culture supernatant after 24 hours were measured by the ELISA method (Quantine ELISA Human CXCL9 / MIG Immunoassay and Quantikine ELISA Human CXCL10 / IP-10 Immunoassay, both manufactured by RISA).
  • T cells CD8-positive T cells (hereinafter, simply “T cells”) to liver cancer cells stimulated to secrete CXCL9 and CXCL10 by IFN ⁇ and TNF ⁇ using a real-time cytodynamic analyzer (EZ-TAXIScan, manufactured by Effector cell Institute). It was examined whether or not the chemotaxis of () was further enhanced by 2DG. Furthermore, it was examined whether the effect of 2DG on T cell chemotaxis was canceled by a neutralizing antibody (anti-CXCR3 antibody) against CXCR3, which is a receptor for CXCL9 and CXCL10.
  • EZ-TAXIScan real-time cytodynamic analyzer
  • Peripheral blood mononuclear cells were extracted from whole human blood with Lymphoprep (manufactured by AXIS-SHIELD), and T cells were further extracted with CD8 + T cell isolation kit (manufactured by Miltenyi Biotech).
  • Lymphoprep manufactured by AXIS-SHIELD
  • CD8 + T cell isolation kit manufactured by Miltenyi Biotech.
  • a 4 ⁇ m thick chip and cover glass were used. 1 ⁇ 10 5 T cells were applied to chamber A of each channel of the real-time cytodynamic analyzer.
  • a Huh7-containing culture supernatant was applied as a sample to chamber B of each channel.
  • a concentration gradient of CXCL9 and CXCL10 is formed in a fine flow path interposed between chamber A and chamber B.
  • CCD Charge Coupled Device
  • the sample applied to the chamber B was prepared as follows. After seeding 5 ⁇ 10 5 Huh7s and incubating overnight for engraftment, Huh7s were incubated under the following conditions. After incubation, the culture supernatant containing the exfoliated Huh7 was applied to chamber B.
  • A1 Control group Incubated in a 2DG-free medium for 48 hours.
  • B1 IFN ⁇ + TNF ⁇ group After incubation in a 2DG-free medium for 24 hours, 100 ng / mL IFN ⁇ and 50 ng / mL TNF ⁇ were added and incubated for 24 hours.
  • (C1) IFN ⁇ + TNF ⁇ + 2DG group After incubation in a medium containing 10 mM 2DG for 24 hours, 100 ng / mL IFN ⁇ and 50 ng / mL TNF ⁇ were added and incubated for 24 hours.
  • (D1) IFN ⁇ + TNF ⁇ + 2DG + anti-CXCR3 antibody group After incubation in a medium containing 10 mM 2DG for 24 hours, 100 ng / mL IFN ⁇ , 50 ng / mL TNF ⁇ and anti-CXCR3 antibody (manufactured by R & D Systems) were added and incubated for 24 hours.
  • the holder temperature was set to 37 ° C, and the terrace was imaged for 1.5 hours.
  • the obtained image was analyzed using TAXIScan Analyzer 2 (manufactured by Effector cell Institute), which is dedicated software.
  • (result) 1 (A) and 1 (B) show the concentrations of CXCL9 and CXCL10 in the Huh7 culture supernatant, respectively.
  • the concentrations of CXCL9 and CXCL10 were increased by stimulation with IFN ⁇ and TNF ⁇ (2DG 0 mM group).
  • the concentrations of CXCL9 and CXCL10 increased even more significantly in a 2DG concentration-dependent manner.
  • FIG. 2 is a diagram showing photographs of the terraces of the lanes corresponding to A1 to D1 before the start of the experiment (0 hours) and 1.5 hours after the start of the experiment. After 1.5 hours, it was observed that more T cells were migrating from chamber A to chamber B in the IFN ⁇ + TNF ⁇ group compared to the control group. In the IFN ⁇ + TNF ⁇ + 2DG group, it was observed that more T cells were migrating from chamber A to chamber B. The number of T cells that migrated from chamber A to chamber B in the IFN ⁇ + TNF ⁇ + 2DG + anti-CXCR3 antibody group was lower than that in the IFN ⁇ + TNF ⁇ + 2DG group.
  • FIG. 3 shows a VD plot of T cells randomly sampled for measurement on the terrace of each lane.
  • the number of T cells to be measured is 9 in lane 1, 20 in lane 2, 20 in lane 3, and 10 in lane 4.
  • the horizontal axis of the BD plot shows the direction of movement every minute for each T cell to be measured.
  • the direction of cell migration is 1.57 radians in the direction toward chamber B, that is, the direction toward the cell chemotaxis factor, 0 radians in the horizontal direction, and the direction opposite to the direction toward the cell chemotaxis factor.
  • the direction is -1.57 radians.
  • the vertical axis of the BD plot shows the movement rate per minute for each T cell to be measured.
  • FIGS. 4 and 5 The average values for each lane of all movement speeds and movement directions shown in FIG. 3 are shown in FIGS. 4 and 5, respectively.
  • T cell chemotaxis was enhanced by IFN ⁇ and TNF ⁇ stimulation (lane 2).
  • T cell chemotaxis was further enhanced by administration of 2DG (lane 3).
  • T cell chemotaxis was canceled by the combined use of anti-CXCR3 antibody (lane 4). From the above results, it was proved that 2DG promotes the chemotaxis of T cells by promoting the secretion of CXCL9 and CXCL10 in liver cancer cells.
  • 2DG nanoparticles (2DG-PLGA) were prepared as follows. First, the liquid A tank was filled with the liquid A, and the tank was pressurized to 0.3 MPa. Then, the solution A was sent at a set value of 43 ° C. at 167 mL / min, and then the solution B was sent at a set value of 41 ° C. (measured value of about 29 ° C.) at 100 mL / min. Solution A is an aqueous solution containing 0.5% PVA.
  • the solution B is a solution of PLGA: 2DG: acetone: ethanol in a weight ratio of 0.65: 0.25: 66: 33.
  • the rotation speed was 1000 rpm, and the back pressure was 0.02 MPa.
  • 400.5 mL of the discharged liquid was collected, and the solvent was distilled off from the discharged liquid with an evaporator for 80 minutes.
  • 224 mL of the obtained 2DG-PLGA aqueous dispersion was freeze-dried to obtain 2.16 g of 2DG-PLGA.
  • the 2DG content in 2DG-PLGA was evaluated as follows. First, a standard solution was prepared. 200 mg of 2DG was weighed in a 100 mL volumetric flask, and 50 mL of water was added to dissolve it. Next, the mixture was made up to 100 mL with acetonitrile to prepare a standard stock solution (2000 ⁇ g / mL). The standard stock solution was serially diluted with acetonitrile: water (1: 1) to a concentration of 250, 125, 62.5, 31.25 ⁇ g / mL to prepare a standard solution.
  • the standard solution and the sample solution were analyzed by high performance liquid chromatography (HPLC) under the following conditions, and the concentration of 2DG in the sample solution was calculated from the calibration line of the standard solution.
  • the 2DG content was calculated based on the weight of 2DG-PLGA and the concentration of 2DG.
  • the content of 2DG in 2DG-PLGA was 8.1 ⁇ 0.4%. As shown in FIG. 6, the particle size distribution of 2DG-PLGA was a single peak, D 50 was 166 nm ⁇ 5.4 nm, and the span value was 1.52 ⁇ 0.15.
  • the 2DG-PLGA was used in the following test examples.
  • the cell chemotaxis of T cells co-cultured with Huh7 using Transwell was examined, and the effect of suppression of glucose metabolism by 2DG-PLGA on co-cultured T cells in liver cancer cells was analyzed.
  • a medium containing 5 ⁇ M CXCL10 was applied to the chamber B of each channel in the above-mentioned real-time cytodynamic analyzer using a 4 ⁇ m-thick tip and cover glass.
  • T cells to be applied to chamber A were prepared as follows. The T cells used in the following procedure were extracted in the same manner as in Test Example 1. (A2) PLGA + glucose-free group Huh7 medium was replaced with glucose-free medium containing 10 mM PLGA, incubated for 24 hours, and then co-cultured for 20 hours with Transwell seeded with 1 ⁇ 10 5 T cells set. Was done.
  • (B2) A state in which the medium of the 2DG-PLGA + glucose-free group Huh7 was replaced with a glucose-free medium containing 10 mM 2DG-PLGA, incubated for 24 hours, and then Transwell in which 1 ⁇ 10 5 T cells were seeded was set.
  • (C2) The medium of the group Huh7 with PLGA + glucose was replaced with a medium containing 10 mM PLGA and 900 mg / dL glucose, and after incubation for 24 hours, a Transwell in which 1 ⁇ 10 5 T cells were seeded was set for 20 hours. Co-culture was performed.
  • the culture supernatant containing the exfoliated Huh7 was applied to chamber A.
  • the holder temperature was set to 37 ° C. and the terrace was imaged for 2 hours.
  • the obtained image was analyzed using TAXIScan Analyzer 2.
  • the amount of lactic acid produced in the Huh7 culture supernatant 24 hours after the administration of PLGA or 2DG-PLGA was measured (Glycolysis Cell-Based Assay kit, manufactured by Cayman Chemical Co., Ltd.).
  • T cells (A3 to D2) prepared in the same manner as A2 to D2, except that the number of T cells seeded in Transwell is 1 ⁇ 10 6 and the co-culture time of Huh7 and T cells is 4 hours. D3) was obtained.
  • mRNA was extracted using RNeasy MiniKit (manufactured by Qiagen), cDNA was synthesized by SuperScript VILO (trademark), manufactured by Invitrogen), and then ⁇ was performed by real-time PCR (Polymerase Chain Reaction).
  • T cells (A4-D4) were obtained.
  • A4-D4 T cells a fluorescent glucose analog 2-NBDG (2-deoxy-2-[(7-nitro-2,1,3-benzoxdiazol-4-yl) amino] -D-glucose) Glucose uptake was evaluated using. Specifically, the medium of T cells was replaced with a medium containing 2-NBDG (manufactured by Cayman Chemical) and incubated for 16 hours to separate Huh7 and T cells.
  • FIG. 7 is a diagram showing photographs of the terrace before the start of the experiment (0 hours) and 2 hours after the start of the experiment.
  • the PLGA + glucose-free group and the 2DG-PLGA + glucose-free group almost no T cells migrated in the direction of chamber B to which CXCL10 was applied were observed.
  • T cells were observed to move toward chamber B.
  • the group with 2DG-PLGA + glucose more T cells were migrating toward chamber B.
  • FIG. 8 is a diagram showing a VD plot similar to Test Example 1 above.
  • the number of T cells to be measured is 5 in lane 1, 5 in lane 2, 15 in lane 3, and 15 in lane 4.
  • the horizontal and vertical axes of the VD plot indicate the direction of movement per minute for each T cell to be measured and the movement speed for each minute per T cell to be measured.
  • the average values for each lane of all movement speeds and movement directions shown in FIG. 8 are shown in FIGS. 9 and 10, respectively.
  • the cell chemotaxis index in both directionality and migration speed was higher in the group with 2DG-PLGA + glucose than in the group with PLGA + glucose.
  • FIG. 11 shows the results of the amount of lactic acid produced in the Huh7 culture supernatant 24 hours after the administration of PLGA or 2DG-PLGA in each of the above groups A2 to D2. No significant lactate production was observed with either PLGA or 2DG-PLGA administration under the condition without glucose. In the condition with glucose, the amount of lactic acid produced increased by the administration of PLGA was significantly suppressed by the administration of 2DG-PLGA.
  • FIG. 12 shows the relative expression level of IFN ⁇ mRNA in T cells at 4 hours after co-culture with Huh7 in each of the above groups A3 to D3. In both cases without glucose and with glucose, the expression level of IFN ⁇ mRNA was significantly increased when 2DG-PLGA was administered as compared with the case where PLGA was administered.
  • the relative uptake amount of 2-NBDG of Huh7 in the above A4 to D4 is shown in FIG.
  • the amount of 2-NBDG uptake of Huh7 was reduced in the 2DG-PLGA-administered group as compared to the PLGA-administered group, both without glucose and with glucose.
  • the decrease in 2-NBDG uptake in Huh7 was significantly reduced when 2DG-PLGA was administered as compared to when PLGA was administered.
  • FIG. 14 shows the relative uptake of 2-NBDG of T cells in the above A4 to D4.
  • 2DG-PLGA enhances T cell functions such as T cell chemotaxis and IFN ⁇ production in T cells co-cultured with liver cancer cells in a high-concentration glucose environment.
  • the relative increase in glucose uptake of T cells accompanying the decrease in glucose uptake of hepatocellular carcinoma in the microenvironment of cancer, or the decrease in lactate production from hepatocellular carcinoma cells causes T cells. It was considered that the activation of the function of lactic acid was involved.
  • (A1) PLGA group PLGA was administered to the tail vein once a week at 800 mg / kg / day.
  • (B1) 2DG-PLGA group 2DG-PLGA was administered to the tail vein once a week at 800 mg / kg / day.
  • 2DG-PLGA of b1 was made into a suspension of 100 mg / mL with phosphate buffered saline (PBS) before each administration, and 200 ⁇ L was administered per animal. Considering that the 2DG filling rate in 2DG-PLGA is about 8%, a substantial single dose of 2DG per mouse in b1 corresponds to about 1.6 mg.
  • PBS phosphate buffered saline
  • CXCL9, CXCL10 and CXCL11 mRNA were compared (TaqMan Gene Expression Assays, Assay ID; Mm00434946_m1 (CXCL9), Mm00445235_m1 (CXCL10), Mm00446262_m1 (CXCL10), Mm00444662_m1 (CXCL10)
  • FIG. 16 and 17 show the maximum tumor diameter and total tumor volume 21 days after the start of administration, respectively.
  • the maximum tumor diameter and total tumor volume were significantly reduced in the 2DG-PLGA group compared to the PLGA group.
  • FIGS. 18, 19 and 20 show the mRNA expression levels of CXCL9, CXCL10 and CXCL11 in the tumor tissue in each group, respectively.
  • the mRNA expression levels of CXCL9, CXCL10 and CXCL11 were significantly increased in the 2DG-PLGA administration group as compared with the PLGA administration group.
  • the STAM mouse is a mouse that is not immunodeficient, including T cell immunity. Therefore, the antitumor effect mediated by the upregulation of CXCL9, CXCL10 and CXCL11 expression by 2DG-PLGA on an immune-responsive liver carcinogenesis mouse model was demonstrated.
  • (B2) PLGA group 200 ⁇ g of isotype rat IgG was intraperitoneally administered every 3 days, and PLGA 800 mg / kg / day was administered to the tail vein once a week.
  • C2) 2DG group In addition to intraperitoneal administration of 200 ⁇ g of isotype rat IgG every 3 days, 2DG was intraperitoneally administered at 100 mg / kg / day every day.
  • (E2) Anti-PD-1 antibody group 200 ⁇ g of anti-PD-1 antibody (InVivoMAb anti-mouse PD-1, manufactured by BioXCell) was intraperitoneally administered every 3 days.
  • the substantial single dose of 2DG administered at 100 mg / kg / day in c2 corresponds to about 2.7 mg per mouse having an average body weight of 27 g.
  • PLGA of b2 and 2DG-PLGA of d2 were made into a suspension of 100 mg / mL with PBS before each administration, and 200 ⁇ L was administered per animal.
  • the 2DG filling rate in 2DG-PLGA is about 8%
  • the actual single dose of 2DG per mouse in the above d2 corresponds to about 1.6 mg, which is about 60% of c2. Become.
  • the tumor volume was measured every 3 days from the start of administration, and the transition of the tumor volume over time was evaluated. In addition, 12 days after administration, the tumor was collected, observed with the naked eye, and blood was collected.
  • (result) 21 and 22, respectively, show the appearance of the tumor and the time course of the tumor volume 12 days after the start of administration, respectively.
  • the tumor of malignant melanoma cells was smaller in the 2DG group, and the increase in tumor volume was suppressed.
  • the tumors of malignant melanoma cells were clearly smaller in the 2DG-PLGA group than in the control group, PLGA group and anti-PD-1 antibody group, and the increase in tumor volume was significantly suppressed.
  • the PLGA of a3 and b3 and the 2DG-PLGA of c3 and d3 were made into a suspension of 100 mg / mL in PBS before each administration, and 200 ⁇ L was administered to each animal.
  • the 2DG filling rate in 2DG-PLGA is about 8%
  • a substantial single dose of 2DG per mouse in c3 and d3 corresponds to about 1.6 mg.
  • the tumor volume was measured every 3 days from the start of administration, and the transition of the tumor volume over time was evaluated. In addition, 12 days after administration, the tumor was collected, observed with the naked eye, and blood was collected. In addition, immunostaining was performed on liver tumor tissue using a Rabbit Monoclonal CD3 antibody (manufactured by GeneTex).
  • (result) 23 and 24 show the appearance of the tumor and the time course of the tumor volume 12 days after the start of administration, respectively.
  • the tumor of malignant melanoma cells was clearly smaller in the 2DG-PLGA group, and the increase in tumor volume was significantly suppressed.
  • the 2DG-PLGA + anti-CXCR3 antibody group the effect of suppressing tumor volume increase was partially reduced.
  • FIG. 25 The result of immunostaining of liver tumor tissue is shown in FIG. Arrows in FIG. 25 indicate CD3-positive T cells.
  • FIG. 26 shows the number of CD3-positive T cells per HPF (high-power field). Compared with the control group and the anti-CXCR3 antibody group, a significant increase in T cell infiltration into the tumor was observed in the 2DG-PLGA group. In addition, the enhancement of T cell infiltration into the tumor by 2DG-PLGA was suppressed by the anti-CXCR3 antibody.
  • the substantially single dose of 2DG administered at 100 mg / kg / day administered with c4 corresponds to about 2.7 mg as in the case of c2 above.
  • 2DG-PLGA of d4 was made into a suspension of 100 mg / mL in PBS before each administration, and 200 ⁇ L was administered to each animal.
  • the 2DG filling rate in 2DG-PLGA is about 8%
  • the actual single dose of 2DG per mouse in d4 corresponds to about 1.6 mg, which is about 60% of c4. ..
  • a4 to d4 the entire liver was observed on the 21st day from the start of administration, the maximum tumor diameter, the number of tumors, and the total tumor volume in the liver were measured, and blood was collected.
  • Tumors in the liver 21 days after the start of administration are indicated by the arrows in FIG. 28 and 29 show the maximum tumor diameter and total tumor volume 21 days after the start of administration, respectively.
  • the combined use of anti-PD-1 antibody and 2DG reduced the maximum tumor diameter and total tumor volume compared to the anti-PD-1 antibody group. Furthermore, the combined use of anti-PD-1 antibody and 2DG-PLGA was found to significantly suppress the total tumor volume.
  • Table 1 shows serological findings and liver weight on the 21st day after the start of administration. No significant difference was found between all groups. From the above, the combined effect of 2DG-PLGA and anti-PD-1 antibody on a mouse model of liver carcinogenesis was shown.
  • the present invention is suitable for pharmaceuticals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

A chemokine production promoter that comprises a saccharide derivative.

Description

ケモカイン産生促進剤、免疫チェックポイント阻害剤抵抗性癌治療薬及び抗腫瘍免疫賦活剤Chemokine production promoter, immune checkpoint inhibitor, resistant cancer therapeutic agent, and antitumor immunostimulant
 本発明は、ケモカイン産生促進剤、免疫チェックポイント阻害剤抵抗性癌治療薬及び抗腫瘍免疫賦活剤に関する。 The present invention relates to a chemokine production promoter, an immune checkpoint inhibitor, a therapeutic agent for resistant cancer, and an antitumor immunostimulant.
 癌に対する治療法として、免疫チェックポイント阻害剤が期待されている。免疫チェックポイント阻害剤は、癌細胞による免疫チェックポイント分子を介した免疫抑制機構を阻害し、免疫系による抗腫瘍効果をもたらす。 Immune checkpoint inhibitors are expected as a treatment for cancer. Immune checkpoint inhibitors block the immunosuppressive mechanism mediated by immune checkpoint molecules by cancer cells, resulting in an antitumor effect by the immune system.
 進行性癌の微小環境では免疫抑制機構が亢進している。例えば、非特許文献1では、癌細胞における解糖系の活性化によって抗腫瘍免疫が抑制されることが報告されている。非特許文献2には、癌の微小環境では、癌細胞におけるグルコース代謝が亢進しているため、T細胞へのグルコースの供給量が低下することでT細胞の活性が低下することが示唆されている。 The immunosuppressive mechanism is enhanced in the microenvironment of advanced cancer. For example, Non-Patent Document 1 reports that anti-tumor immunity is suppressed by activation of glycolysis in cancer cells. Non-Patent Document 2 suggests that in the microenvironment of cancer, glucose metabolism in cancer cells is enhanced, so that the activity of T cells is reduced by reducing the supply of glucose to T cells. There is.
 癌細胞に対するT細胞の走化性の亢進は、癌の微小環境における抗腫瘍免疫の活性化に重要である。非特許文献1には、75種類の細胞走化性因子(ケモカイン)及びサイトカインの発現量を検討したところ、解糖系活性の低いメラノーマ細胞では解糖系活性の高いメラノーマ細胞よりも、T細胞の走化性を亢進するCXCL10が多く産生されることが示されている。非特許文献1では、細胞外酸性化速度を指標に抽出した解糖系活性の低いメラノーマ細胞によるケモカインの産生量が評価されているものの、癌細胞の解糖系を阻害することによるケモカインの産生量への影響は検討されていない。 Increased chemotaxis of T cells against cancer cells is important for activation of anti-tumor immunity in the cancer microenvironment. In Non-Patent Document 1, when the expression levels of 75 types of cell chemotaxis factors (chemokines) and cytokines were examined, T cells were examined in melanoma cells having low glycolytic activity rather than melanoma cells having high glycolytic activity. It has been shown that a large amount of CXCL10, which enhances chemotaxis, is produced. In Non-Patent Document 1, although the amount of chemokine produced by melanoma cells with low glycolytic activity extracted using the rate of extracellular acidification as an index is evaluated, the production of chemokines by inhibiting the glycolytic system of cancer cells. The effect on quantity has not been investigated.
 本発明は、上記実情に鑑みてなされたものであり、癌の微小環境における抗腫瘍免疫を増強することができるケモカイン産生促進剤、免疫チェックポイント阻害剤抵抗性癌治療薬及び抗腫瘍免疫賦活剤を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a chemokine production promoter, an immune checkpoint inhibitor, a resistant cancer therapeutic agent, and an antitumor immunostimulant, which can enhance antitumor immunity in a cancer microenvironment. The purpose is to provide.
 本発明者は、鋭意研究を重ね、癌細胞における解糖系の阻害によって、癌細胞によるケモカインの産生及びT細胞の走化性が亢進することに加え、癌細胞とT細胞の間における糖代謝バランスへの介入で抗腫瘍免疫が増強されることを見出し、本発明を完成させた。 The present inventor has conducted extensive research, and in addition to enhancing chemokine production and T cell chemotaxis by cancer cells by inhibiting glycolysis in cancer cells, glucose metabolism between cancer cells and T cells We have found that interventions in balance enhance anti-tumor immunity and complete the present invention.
 本発明の第1の観点に係るケモカイン産生促進剤は、
 糖誘導体を含む。
The chemokine production promoter according to the first aspect of the present invention is
Contains sugar derivatives.
 この場合、上記本発明の第1の観点に係るケモカイン産生促進剤は、
 癌細胞からのCXCL9、CXCL10及びCXCL11の産生を促進する、
 こととしてもよい。
In this case, the chemokine production promoter according to the first aspect of the present invention is
Promotes the production of CXCL9, CXCL10 and CXCL11 from cancer cells,
It may be that.
 また、上記本発明の第1の観点に係るケモカイン産生促進剤は、
 乳酸・グリコール酸共重合体を含有する生体適合性粒子をさらに含み、
 前記糖誘導体は、
 前記生体適合性粒子に封入されている、
 こととしてもよい。
In addition, the chemokine production promoter according to the first aspect of the present invention is
Further containing biocompatible particles containing a lactic acid / glycolic acid copolymer
The sugar derivative is
Encapsulated in the biocompatible particles,
It may be that.
 本発明の第2の観点に係る免疫チェックポイント阻害剤抵抗性癌治療薬は、
 糖誘導体を含む。
The immune checkpoint inhibitor-resistant cancer therapeutic agent according to the second aspect of the present invention is
Contains sugar derivatives.
 本発明の第3の観点に係る抗腫瘍免疫賦活剤は、
 糖誘導体を含み、
 免疫チェックポイント阻害剤と併用される。
The antitumor immunostimulant according to the third aspect of the present invention is
Contains sugar derivatives
Used in combination with immune checkpoint inhibitors.
 上記本発明の第1の観点に係るケモカイン産生促進剤、上記本発明の第2の観点に係る免疫チェックポイント阻害剤抵抗性癌治療薬又は上記本発明の第3の観点に係る抗腫瘍免疫賦活剤において、
 前記糖誘導体は、
 2-デオキシ-D-グルコースである、
 こととしてもよい。
Chemokine production promoter according to the first aspect of the present invention, immune checkpoint inhibitor-resistant cancer therapeutic agent according to the second aspect of the present invention, or antitumor immunostimulant according to the third aspect of the present invention. In the agent
The sugar derivative is
2-Deoxy-D-glucose,
It may be that.
 本発明によれば、癌の微小環境における抗腫瘍免疫を増強することができる。 According to the present invention, anti-tumor immunity in the microenvironment of cancer can be enhanced.
試験例1に係る肝癌細胞からのケモカインの分泌量に及ぼす2-デオキシ-D-グルコース(以下、単に「2DG」とする)の影響を示す図である。(A)はCXCL10の分泌量を示す図である。(B)はCXCL9の分泌量を示す図である。It is a figure which shows the influence of 2-deoxy-D-glucose (hereinafter, simply referred to as "2DG") on the amount of chemokine secreted from the liver cancer cell which concerns on Test Example 1. (A) is a figure which shows the amount of secretion of CXCL10. (B) is a figure which shows the amount of secretion of CXCL9. 試験例1に係る2DGによる肝癌細胞へのT細胞の走化性の亢進を示す図である。It is a figure which shows the enhancement of chemotaxis of T cell to the liver cancer cell by 2DG which concerns on Test Example 1. 試験例1に係るVelocity-Directionality(V-D)プロットを示す図である。It is a figure which shows the velocity-directionality (VD) plot which concerns on Test Example 1. FIG. 試験例1に係るT細胞の移動速度を示す図である。It is a figure which shows the migration rate of the T cell which concerns on Test Example 1. 試験例1に係るT細胞の移動の方向性を示す図である。It is a figure which shows the direction of movement of the T cell which concerns on Test Example 1. 試験例2に係る2DGナノ粒子の粒度分布を示す図である。It is a figure which shows the particle size distribution of 2DG nanoparticles which concerns on Test Example 2. 試験例2に係る2DGナノ粒子による肝癌細胞へのT細胞の走化性の亢進を示す図である。It is a figure which shows the enhancement of the chemotaxis of T cell to the liver cancer cell by the 2DG nanoparticles which concerns on Test Example 2. 試験例2に係るV-Dプロットを示す図である。It is a figure which shows the VD plot which concerns on Test Example 2. 試験例2に係るT細胞の移動速度を示す図である。It is a figure which shows the migration rate of the T cell which concerns on Test Example 2. 試験例2に係るT細胞の移動の方向性を示す図である。It is a figure which shows the direction of movement of the T cell which concerns on Test Example 2. 試験例2に係る肝癌細胞からの乳酸産生量を示す図である。It is a figure which shows the amount of lactic acid production from the liver cancer cell which concerns on Test Example 2. 試験例2に係るT細胞からのIFNγのmRNAの相対的な発現量を示す図である。It is a figure which shows the relative expression level of IFNγ mRNA from the T cell which concerns on Test Example 2. 試験例2に係る肝癌細胞の2-NBDGの相対的な取り込み量を示す図である。It is a figure which shows the relative uptake amount of 2-NBDG of the liver cancer cell which concerns on Test Example 2. 試験例2に係るT細胞の2-NBDGの相対的な取り込み量を示す図である。It is a figure which shows the relative uptake amount of 2-NBDG of the T cell which concerns on Test Example 2. 試験例3に係る肝発癌マウスの肝臓の腫瘍の外観を示す図である。It is a figure which shows the appearance of the liver tumor of the liver carcinogenic mouse which concerns on Test Example 3. 試験例3に係る肝発癌マウスにおける腫瘍最大径を示す図である。It is a figure which shows the tumor maximum diameter in the liver carcinogenic mouse which concerns on Test Example 3. 試験例3に係る肝発癌マウスにおける総腫瘍体積を示す図である。It is a figure which shows the total tumor volume in the liver carcinogenic mouse which concerns on Test Example 3. 試験例3に係る腫瘍組織におけるCXCL9のmRNA発現量を示す図である。It is a figure which shows the mRNA expression level of CXCL9 in the tumor tissue which concerns on Test Example 3. 試験例3に係る腫瘍組織におけるCXCL10のmRNA発現量を示す図である。It is a figure which shows the mRNA expression level of CXCL10 in the tumor tissue which concerns on Test Example 3. 試験例3に係る腫瘍組織におけるCXCL11のmRNA発現量を示す図である。It is a figure which shows the mRNA expression level of CXCL11 in the tumor tissue which concerns on Test Example 3. 試験例4に係る抗PD-1抗体抵抗性マウスの腫瘍の外観を示す図である。It is a figure which shows the appearance of the tumor of the anti-PD-1 antibody resistant mouse which concerns on Test Example 4. 試験例4に係る抗PD-1抗体抵抗性マウスにおける腫瘍体積の経時変化を示す図である。It is a figure which shows the time-dependent change of the tumor volume in the anti-PD-1 antibody resistant mouse which concerns on Test Example 4. 試験例5に係る抗PD-1抗体抵抗性マウスの腫瘍の外観を示す図である。It is a figure which shows the appearance of the tumor of the anti-PD-1 antibody resistant mouse which concerns on Test Example 5. 試験例5に係る抗PD-1抗体抵抗性マウスにおける腫瘍体積の経時変化を示す図である。It is a figure which shows the time-dependent change of the tumor volume in the anti-PD-1 antibody resistant mouse which concerns on Test Example 5. 試験例5に係る抗PD-1抗体抵抗性マウスの免疫染色した肝腫瘍組織を示す図である。It is a figure which shows the liver tumor tissue which was immunostained of the anti-PD-1 antibody resistance mouse which concerns on Test Example 5. 図25に示す肝腫瘍組織におけるCD3陽性T細胞数を示す図である。It is a figure which shows the number of CD3 positive T cells in the liver tumor tissue shown in FIG. 試験例6に係る肝発癌マウスの肝臓の腫瘍の外観を示す図である。It is a figure which shows the appearance of the liver tumor of the liver carcinogenic mouse which concerns on Test Example 6. 試験例6に係る肝発癌マウスにおける腫瘍最大径を示す図である。It is a figure which shows the tumor maximum diameter in the liver carcinogenic mouse which concerns on Test Example 6. 試験例6に係る肝発癌マウスにおける総腫瘍体積を示す図である。It is a figure which shows the total tumor volume in the liver carcinogenic mouse which concerns on Test Example 6.
 (実施の形態)
 本発明に係る実施の形態について説明する。本実施の形態に係るケモカイン産生促進剤は、糖誘導体を有効成分として含む。糖誘導体は、例えば解糖系を阻害するD-グルコースの誘導体である。好ましくは、糖誘導体は、グルコース環の2位においてヒドロキシル基を有さないグルコース誘導体である。グルコース誘導体としては、マンノース、ガラクトース及び5-チオ-グルコースが挙げられる。グルコース誘導体は、グルコース環上の任意の位置における水素の代わりにフッ素を有してもよい。フッ素を有するグルコース誘導体としては、例えば、2-フルオロ-2-デオキシ-D-グルコース及び2-ジフルオロ-2-D-デオキシ-グルコース等が挙げられる。
(Embodiment)
An embodiment according to the present invention will be described. The chemokine production promoter according to the present embodiment contains a sugar derivative as an active ingredient. The sugar derivative is, for example, a derivative of D-glucose that inhibits glycolysis. Preferably, the sugar derivative is a glucose derivative that does not have a hydroxyl group at the 2-position of the glucose ring. Glucose derivatives include mannose, galactose and 5-thio-glucose. The glucose derivative may have fluorine instead of hydrogen at any position on the glucose ring. Examples of the glucose derivative having fluorine include 2-fluoro-2-deoxy-D-glucose and 2-difluoro-2-D-deoxy-glucose.
 グルコース誘導体は、グルコース環上の6位以外の任意の位置において水酸基の代わりにアミノ基を有してもよい。アミノ基を有するグルコース誘導体としては、例えば、2-アミノ-2-デオキシ-D-グルコース及び2-アミノ-2-デオキシ-D-ガラクトース等が挙げられる。上記の他にグルコース誘導体として、2-F-マンノース、2-マンノサミン、2-デオキシガラクトース、2-F-デオキシガラクトース等が例示される。好適には、糖誘導体はグルコースの誘導体である2DGである。2DGは、グルコーストランスポーターを介して癌細胞内に取り込まれる。癌細胞内に蓄積した2DGは解糖系を阻害する。 The glucose derivative may have an amino group instead of a hydroxyl group at any position other than the 6-position on the glucose ring. Examples of the glucose derivative having an amino group include 2-amino-2-deoxy-D-glucose and 2-amino-2-deoxy-D-galactose. In addition to the above, examples of glucose derivatives include 2-F-mannose, 2-mannosamine, 2-deoxygalactose, 2-F-deoxygalactose and the like. Preferably, the sugar derivative is 2DG, which is a derivative of glucose. 2DG is taken up into cancer cells via a glucose transporter. 2DG accumulated in cancer cells inhibits glycolysis.
 好ましくは、ケモカイン産生促進剤は、乳酸・グリコール酸共重合体(ポリラクチドグリコライド共重合体ともいう。以下、単に「PLGA」という)を含有する生体適合性粒子をさらに含む。生体適合性粒子は、生体への刺激又は毒性が低く、かつ投与後分解して代謝される性質を備える粒子である。糖誘導体は生体適合性粒子に封入されている。 Preferably, the chemokine production promoter further contains biocompatible particles containing a lactic acid / glycolic acid copolymer (also referred to as a polylactide glycolide copolymer; hereinafter simply referred to as "PLGA"). Biocompatible particles are particles that are less irritating or toxic to living organisms and have the property of being decomposed and metabolized after administration. The sugar derivative is encapsulated in biocompatible particles.
 PLGAは、例えば1:99~99:1、好ましくは75:25、より好ましくは3:1の割合で、乳酸又はラクチドと、グリコール酸又はグリコライドと、からなるコポリマーである。PLGAは、任意のモノマーから公知の方法で合成してもよいし、市販のPLGAを使用してもよい。市販のPLGAとしては、例えばPLGA7520(乳酸:グリコール酸=75:25、平均重量分子量20,000、和光純薬社製)が挙げられる。乳酸及びグリコール酸の含有量が25重量%~65重量%であるPLGAは非晶質であり、アセトン等の有機溶媒に可溶である点で好ましい。 PLGA is, for example, a copolymer composed of lactic acid or lactide and glycolic acid or glycolide in a ratio of 1:99 to 99: 1, preferably 75:25, more preferably 3: 1. The PLGA may be synthesized from any monomer by a known method, or a commercially available PLGA may be used. Examples of commercially available PLGA include PLGA7520 (lactic acid: glycolic acid = 75:25, average weight molecular weight 20,000, manufactured by Wako Pure Chemical Industries, Ltd.). PLGA having a content of lactic acid and glycolic acid of 25% by weight to 65% by weight is preferable in that it is amorphous and soluble in an organic solvent such as acetone.
 生体適合性粒子の粒径は、1000nm未満で、例えば2.5~900nm、好ましくは25~500nm又は50~300nm、より好ましくは100~250nm、さらに好ましくは130~200nm、特に好ましくは150~180nmである。生体適合性粒子の粒径は、ふるい分け法、沈降法、顕微鏡法、光散乱法、レーザー回折・散乱法、電気的抵抗試験、透過型電子顕微鏡による観察、及び走査型電子顕微鏡による観察等で測定できる。粒径は粒度分布計で測定してもよい。粒径は、測定方法に応じて、ストーク相当径、円相当径及び球相当径で表すことができる。また、粒径は、複数の粒子を測定対象として、平均で表した平均粒径、体積平均粒径及び面積平均粒径等であってもよい。また、粒径は、レーザー回折・散乱法等の測定に基づく個数分布等から算出される平均粒径であってもよい。 The particle size of the biocompatible particles is less than 1000 nm, for example 2.5-900 nm, preferably 25-500 nm or 50-300 nm, more preferably 100-250 nm, still more preferably 130-200 nm, particularly preferably 150-180 nm. Is. The particle size of biocompatible particles is measured by sieving, sedimentation, microscopy, light scattering, laser diffraction / scattering, electrical resistance test, observation with a transmission electron microscope, observation with a scanning electron microscope, etc. it can. The particle size may be measured with a particle size distribution meter. The particle size can be represented by a stalk-equivalent diameter, a circle-equivalent diameter, and a sphere-equivalent diameter, depending on the measurement method. Further, the particle size may be an average particle size, a volume average particle size, an area average particle size, or the like expressed by averaging a plurality of particles as measurement targets. Further, the particle size may be an average particle size calculated from a number distribution or the like based on a measurement such as a laser diffraction / scattering method.
 具体的には、粒子の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒径である50%径(D50)を粒径としてもよい。累積カーブ及びD50は、市販の粒度分布計を用いて求めることができる。粒度分布計としては、例えば、NIKKISO Nanotrac Wave-EX150(日機装社製)が挙げられる。 Specifically, when the cumulative curve is obtained with the total product of the particle population as 100%, the particle size may be 50% diameter (D 50 ), which is the particle size at the point where the cumulative curve is 50%. Cumulative curve and D 50 can be determined using a commercially available particle size distribution meter. Examples of the particle size distribution meter include NIKKISO Nanotrac Wave-EX150 (manufactured by Nikkiso Co., Ltd.).
 上記生体適合性粒子は、表面をポリエチレングリコール(PEG)で修飾してもよい。例えば、上記生体適合性粒子の製造に、PLGAのPEG修飾体を用いることで、表面がPEGで修飾された生体適合性粒子が得られる。表面がPEGで修飾されることで、生体適合性粒子の血中安定性が向上する。 The surface of the biocompatible particles may be modified with polyethylene glycol (PEG). For example, by using a PEG-modified product of PLGA in the production of the biocompatible particles, biocompatible particles whose surface is modified with PEG can be obtained. The surface is modified with PEG to improve the blood stability of biocompatible particles.
 糖誘導体が封入されている生体適合性粒子の製造方法として、公知の任意の製造方法を採用できる。例えば、生体適合性粒子は、水中エマルジョン法で製造できる。水中エマルジョン法では、PLGAが溶解する良溶媒と、PLGAが溶解しない貧溶媒の2種類の溶媒を用いる。良溶媒には、PLGAが溶解し、かつ貧溶媒へ混和する有機溶媒を用いる。良溶媒及び貧溶媒の種類は、特に限定されない。 Any known production method can be adopted as a method for producing biocompatible particles in which a sugar derivative is encapsulated. For example, biocompatible particles can be produced by the underwater emulsion method. In the underwater emulsion method, two kinds of solvents, a good solvent in which PLGA dissolves and a poor solvent in which PLGA does not dissolve, are used. As a good solvent, an organic solvent in which PLGA is dissolved and miscible with a poor solvent is used. The types of the good solvent and the poor solvent are not particularly limited.
 貧溶媒としては、水が挙げられる。貧溶媒として水を用いる場合、水に界面活性剤を添加してもよい。例えば、界面活性剤としては、ポリビニルアルコール(PVA)が好ましい。PVA以外の界面活性剤としては、レシチン、ヒドロキシメチルセルロース及びヒドロキシプロピルセルロース等が挙げられる。 Water can be mentioned as a poor solvent. When water is used as the poor solvent, a surfactant may be added to the water. For example, polyvinyl alcohol (PVA) is preferable as the surfactant. Examples of the surfactant other than PVA include lecithin, hydroxymethyl cellulose, hydroxypropyl cellulose and the like.
 良溶媒としては、低沸点かつ難水溶性の有機溶媒であるハロゲン化アルカン類、アセトン、メタノール、エタノール、エチルアセテート、ジエチルエーテル、シクロヘキサン、ベンゼン及びトルエン等が挙げられる。好ましくは、例えば環境や人体に対する悪影響が少ないアセトンのみ又はアセトンとエタノールとの混合液が用いられる。 Examples of good solvents include halogenated alkanes, which are organic solvents having a low boiling point and poor water solubility, acetone, methanol, ethanol, ethyl acetate, diethyl ether, cyclohexane, benzene, toluene and the like. Preferably, for example, only acetone having less adverse effect on the environment or the human body or a mixed solution of acetone and ethanol is used.
 水中エマルジョン法では、まず、良溶媒中にPLGAを溶解後、PLGAが析出しないように糖誘導体溶液を良溶媒中へ添加し混合する。PLGAと糖誘導体とを含む混合液を、撹拌下で貧溶媒中に滴下すると、混合液中の良溶媒が貧溶媒中へ急速に拡散移行する。その結果、貧溶媒中で良溶媒の乳化が起き、良溶媒のエマルジョン滴が形成される。 In the underwater emulsion method, first, PLGA is dissolved in a good solvent, and then a sugar derivative solution is added to the good solvent and mixed so that PLGA does not precipitate. When the mixed solution containing PLGA and the sugar derivative is added dropwise to the poor solvent under stirring, the good solvent in the mixed solution rapidly diffuses and migrates into the poor solvent. As a result, emulsification of a good solvent occurs in a poor solvent, and emulsion droplets of the good solvent are formed.
 さらに良溶媒と貧溶媒の相互拡散により、エマルジョン内から有機溶媒が貧溶媒へと継続的に拡散するため、エマルジョン滴内のPLGA及び糖誘導体の溶解度が低下する。最終的には、糖誘導体を含有する球形結晶粒子の生体適合性粒子が生成する。その後、良溶媒である有機溶媒を遠心分離又は減圧留去し、生体適合性粒子の粉末を得る。得られた粉末は、そのまま、又は必要に応じて凍結乾燥等により再分散可能な凝集粒子に複合化される。得られた生体適合性粒子における糖誘導体の含有率は、例えば0.01~99重量%、0.1~30重量%、0.5~20重量%、1~15重量%、3~10重量%又は5~10重量%である。なお、ここでの糖誘導体の含有率は、生体適合性粒子の重量に対する糖誘導体の重量の割合である。含有率は、所定重量の生体適合性粒子から抽出された糖誘導体の重量を定量し、生体適合性粒子の重量に対する糖誘導体の重量の割合を算出することで求められる。 Further, due to the mutual diffusion of the good solvent and the poor solvent, the organic solvent is continuously diffused from the emulsion into the poor solvent, so that the solubility of PLGA and the sugar derivative in the emulsion droplet is lowered. Eventually, biocompatible particles of spherical crystal particles containing the sugar derivative are produced. Then, the organic solvent which is a good solvent is centrifuged or distilled under reduced pressure to obtain a powder of biocompatible particles. The obtained powder is composited as it is or, if necessary, into aggregated particles that can be redispersed by freeze-drying or the like. The content of the sugar derivative in the obtained biocompatible particles is, for example, 0.01 to 99% by weight, 0.1 to 30% by weight, 0.5 to 20% by weight, 1 to 15% by weight, and 3 to 10% by weight. % Or 5-10% by weight. The content of the sugar derivative here is the ratio of the weight of the sugar derivative to the weight of the biocompatible particles. The content rate is determined by quantifying the weight of the sugar derivative extracted from the biocompatible particles having a predetermined weight and calculating the ratio of the weight of the sugar derivative to the weight of the biocompatible particles.
 なお、生体適合性粒子における糖誘導体の含有率を高めるため、貧溶媒にカチオン性高分子を添加してもよい。カチオン性高分子としては、キトサン並びにキトサン誘導体、セルロースに複数のカチオン基を結合させたカチオン化セルロース及びポリエチレンイミン、ポリビニルアミン並びにポリアリルアミン等のポリアミノ化合物等が挙げられる。 A cationic polymer may be added to the poor solvent in order to increase the content of the sugar derivative in the biocompatible particles. Examples of the cationic polymer include chitosan and chitosan derivatives, cationized cellulose in which a plurality of cationic groups are bonded to cellulose, and polyamino compounds such as polyethyleneimine, polyvinylamine, and polyallylamine.
 好適には、糖誘導体が封入されている生体適合性粒子は、強制薄膜式マイクロリアクターを用いて製造される。強制薄膜式マイクロリアクターを用いる場合、まず、互いに対向して配設され、少なくとも一方が他方に対して相対的に回転する処理用面間に、上述の良溶媒と貧溶媒とを導入する。これにより形成される薄膜流体中で、良溶媒と貧溶媒とを混合し、糖誘導体が封入されている生体適合性粒子を、薄膜流体中に析出させる。強制薄膜式マイクロリアクターとしては、好ましくはULREA SS-11(エム・テクニック社製)が用いられる。 Preferably, the biocompatible particles encapsulating the sugar derivative are produced using a forced thin film microreactor. When a forced thin film type microreactor is used, first, the above-mentioned good solvent and poor solvent are introduced between the processing surfaces which are arranged so as to face each other and at least one of them rotates relative to the other. In the thin film fluid formed thereby, a good solvent and a poor solvent are mixed, and biocompatible particles in which a sugar derivative is encapsulated are precipitated in the thin film fluid. As the forced thin film type microreactor, ULREA SS-11 (manufactured by M-Technique) is preferably used.
 ケモカイン産生促進剤は、既知の方法で製造され、有効成分として0.000001~99.9重量%、0.00001~99.8重量%、0.0001~99.7重量%、0.001~99.6重量%、0.01~99.5重量%、0.1~99重量%、0.5~60重量%、1~50重量%又は1~20重量%の糖誘導体又は糖誘導体が封入されている生体適合性粒子を含む。ケモカイン産生促進剤は、固形製剤であっても、液状製剤であってもよい。 The chemokine production promoter is produced by a known method and contains 0.000001 to 99.9% by weight, 0.00001 to 99.8% by weight, 0.0001 to 99.7% by weight, 0.001 to 9% by weight as active ingredients. 99.6% by weight, 0.01-99.5% by weight, 0.1 to 99% by weight, 0.5 to 60% by weight, 1 to 50% by weight or 1 to 20% by weight of sugar derivative or sugar derivative Includes encapsulated biocompatible particles. The chemokine production promoter may be a solid preparation or a liquid preparation.
 ケモカイン産生促進剤は、糖誘導体又は生体適合性粒子に加え、薬理学上許容される担体等を含んでもよい。例えば、ケモカイン産生促進剤には、賦形剤、滑沢剤、結合剤、崩壊剤、溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤及び無痛化剤等が配合されてもよい。また、必要に応じて、防腐剤、抗酸化剤、着色剤及び甘味剤等の添加物が配合されてもよい。 The chemokine production promoter may contain a pharmacologically acceptable carrier or the like in addition to the sugar derivative or biocompatible particles. For example, the chemokine production promoter contains excipients, lubricants, binders, disintegrants, solvents, solubilizers, suspending agents, isotonic agents, buffers, soothing agents and the like. May be good. In addition, additives such as preservatives, antioxidants, colorants and sweeteners may be added, if necessary.
 本実施の形態に係るケモカイン産生促進剤は、下記試験例1及び試験例3に示すように、癌細胞からのケモカイン、特にはCXCL9、CXCL10及びCXCL11の少なくとも一つの産生を促進する。CXCL9、CXCL10又はCXCL11がCD8陽性T細胞の表面に発現している受容体CXCR3に結合することで、T細胞の走化性が亢進する。この結果、抗腫瘍免疫が活性化する。したがって、ケモカイン産生促進剤は、好ましくは、癌、特には固形癌の治療に用いられる。具体的には、固形癌としては、肝細胞癌、胃癌、膵臓癌、肺癌、大腸癌、乳癌、肝臓癌(肝癌)、腎臓癌(腎癌)、舌癌、甲状腺癌、子宮癌、卵巣癌、前立腺癌、骨肉腫、軟骨肉腫、横紋筋肉腫及び平滑筋腫等が挙げられる。好適には、当該ケモカイン産生促進剤は、多血性腫瘍が形成される癌の治療に用いられる。多血性腫瘍とは、造影コンピューター断層撮影法等の造影検査において、造影にて増強される動脈血流の豊富な腫瘍である。多血性腫瘍が形成される癌種は、例えば、肝細胞癌及び腎細胞癌である。また、フルオロデオキシグルコースを用いる陽電子放出断層撮影(PET)で検出される固形癌は、ブドウ糖代謝が亢進しているため、効率よく糖誘導体を集積させる。したがって、当該ケモカイン産生促進剤は、PETで検出される固形癌の治療にも好適である。 The chemokine production promoter according to the present embodiment promotes the production of chemokine from cancer cells, particularly at least one of CXCL9, CXCL10 and CXCL11, as shown in Test Example 1 and Test Example 3 below. By binding CXCL9, CXCL10 or CXCL11 to the receptor CXCR3 expressed on the surface of CD8-positive T cells, the chemotaxis of T cells is enhanced. As a result, anti-tumor immunity is activated. Therefore, chemokine production promoters are preferably used in the treatment of cancers, especially solid cancers. Specifically, solid cancers include hepatocellular carcinoma, gastric cancer, pancreatic cancer, lung cancer, colon cancer, breast cancer, liver cancer (liver cancer), kidney cancer (kidney cancer), tongue cancer, thyroid cancer, uterine cancer, and ovarian cancer. , Prostate cancer, osteosarcoma, chondrosarcoma, rhabdomyosarcoma, smooth myoma and the like. Preferably, the chemokine production promoter is used in the treatment of cancer in which a polycythemia tumor is formed. A polycythemia tumor is a tumor with abundant arterial blood flow that is enhanced by contrast in a contrast examination such as contrast-enhanced computed tomography. The types of cancer in which polycythemia tumors are formed are, for example, hepatocellular carcinoma and renal cell carcinoma. In addition, solid cancers detected by positron emission tomography (PET) using fluorodeoxyglucose have enhanced glucose metabolism, so that sugar derivatives are efficiently accumulated. Therefore, the chemokine production promoter is also suitable for the treatment of solid cancer detected by PET.
 ケモカイン産生促進剤のヒトへの投与経路は特に限定されない。ケモカイン産生促進剤は、例えば注射又は経口で投与される。ケモカイン産生促進剤の投与量は、投与対象の性別、年齢、体重及び症状等によって適宜決定される。当該ケモカイン産生促進剤は、糖誘導体が有効量となるように投与される。有効量とは、所望の結果を得るために必要な糖誘導体の量であり、治療又は処置する状態の進行の遅延、阻害、予防、逆転又は治癒をもたらすのに必要な量である。 The route of administration of the chemokine production promoter to humans is not particularly limited. Chemokine production promoters are administered, for example, by injection or orally. The dose of the chemokine production promoter is appropriately determined depending on the sex, age, body weight, symptoms and the like of the administration subject. The chemokine production promoter is administered so that the sugar derivative is in an effective amount. The effective amount is the amount of sugar derivative required to obtain the desired result, and is the amount required to bring about delay, inhibition, prevention, reversal or cure of the progression of the condition to be treated or treated.
 ケモカイン産生促進剤の投与量は、典型的には、0.01mg/kg~1000mg/kg、好ましくは0.1mg/kg~200mg/kg、より好ましくは0.2mg/kg~20mg/kgであり、1日に1回、又はそれ以上に分割して投与することができる。ケモカイン産生促進剤を分割して投与する場合、ケモカイン産生促進剤は、好ましくは1日に1~4回投与される。また、ケモカイン産生促進剤は、毎日、隔日、1週間に1回、隔週、1ヶ月に1回等の様々な投与頻度で投与してもよい。好ましくは、投与頻度は、医師等により容易に決定される。なお、必要に応じて、上記の範囲外の量を用いることもできる。 The dose of the chemokine production promoter is typically 0.01 mg / kg to 1000 mg / kg, preferably 0.1 mg / kg to 200 mg / kg, more preferably 0.2 mg / kg to 20 mg / kg. It can be administered once a day or in divided doses. When the chemokine production promoter is administered in divided portions, the chemokine production promoter is preferably administered 1 to 4 times a day. In addition, the chemokine production promoter may be administered at various administration frequencies such as daily, every other day, once a week, every other week, and once a month. Preferably, the administration frequency is easily determined by a doctor or the like. If necessary, an amount outside the above range can be used.
 以上詳細に説明したように、本実施の形態に係るケモカイン産生促進剤は、癌細胞からのケモカインの産生を促進する。ケモカインはT細胞の癌細胞への走化性を亢進するため、当該ケモカイン産生促進剤によれば、抗腫瘍免疫を増強することができる。また、別の実施の形態では、上記糖誘導体を含むT細胞走化性亢進剤が提供される。 As described in detail above, the chemokine production promoter according to the present embodiment promotes the production of chemokines from cancer cells. Since chemokines enhance the chemotaxis of T cells to cancer cells, the chemokine production promoter can enhance anti-tumor immunity. In another embodiment, a T cell chemotaxis enhancer containing the above sugar derivative is provided.
 本実施の形態に係る糖誘導体は、下記試験例2に示すように、T細胞からのIFNγの産生を促進する。したがって、本実施の形態に係るケモカイン産生促進剤は、IFNγ産生促進剤としても使用できる。 The sugar derivative according to the present embodiment promotes the production of IFNγ from T cells, as shown in Test Example 2 below. Therefore, the chemokine production promoter according to the present embodiment can also be used as an IFNγ production promoter.
 当該糖誘導体は、下記試験例2に示すように、癌細胞によるグルコースの取り込みを阻害する。よって、本実施の形態に係るケモカイン産生促進剤は、グルコース取り込み阻害剤としても使用できる。癌細胞によるグルコースの取り込みが抑制されると、癌の微小環境において、T細胞によるグルコースの取り込みが相対的に増加する。このため、本実施の形態に係るケモカイン産生促進剤は、T細胞のグルコース取り込み促進剤としても使用できる。T細胞によるグルコースの取り込みが増加することによっても、T細胞の癌細胞への走化性が亢進する。 The sugar derivative inhibits glucose uptake by cancer cells, as shown in Test Example 2 below. Therefore, the chemokine production promoter according to the present embodiment can also be used as a glucose uptake inhibitor. When glucose uptake by cancer cells is suppressed, glucose uptake by T cells is relatively increased in the cancer microenvironment. Therefore, the chemokine production promoter according to the present embodiment can also be used as a glucose uptake promoter for T cells. Increased glucose uptake by T cells also enhances the chemotaxis of T cells to cancer cells.
 さらに、当該糖誘導体は、下記試験例2に示すように、癌細胞における乳酸の産生を阻害する。よって、本実施の形態に係るケモカイン産生促進剤は、乳酸産生阻害剤として使用できる。癌細胞から産生される乳酸の濃度が低下することによっても、T細胞の癌細胞への走化性は亢進する。 Furthermore, the sugar derivative inhibits the production of lactic acid in cancer cells, as shown in Test Example 2 below. Therefore, the chemokine production promoter according to the present embodiment can be used as a lactic acid production inhibitor. The chemotaxis of T cells to cancer cells is also enhanced by reducing the concentration of lactic acid produced by the cancer cells.
 当該糖誘導体は、特にPLGAに封入した場合に、下記試験例3~5に示すように、癌組織におけるCXCL9-CXCR3相互作用、CXCL10-CXCR3相互作用及びCXCL11-CXCR3相互作用を介してT細胞性腫瘍免疫を亢進させることで抗腫瘍効果をもたらす。したがって、本実施の形態に係るケモカイン産生促進剤は、免疫チェックポイント阻害剤抵抗性癌治療薬として使用できる。 The sugar derivative is T-celled via CXCL9-CXCR3 interaction, CXCL10-CXCR3 interaction and CXCL11-CXCR3 interaction in cancer tissue, as shown in Test Examples 3-5 below, especially when encapsulated in PLGA. It has an antitumor effect by enhancing tumor immunity. Therefore, the chemokine production promoter according to the present embodiment can be used as an immune checkpoint inhibitor-resistant cancer therapeutic agent.
 免疫チェックポイント阻害剤は、公知のものであれば特に限定されない。例えば、免疫チェックポイント阻害剤として、抗PD-1抗体、抗CTLA-4抗体及び抗PD-L1抗体が挙げられる。免疫チェックポイント阻害剤抵抗性癌は、有効量の免疫チェックポイント阻害剤を投与しても治療又は処置する癌の進行の遅延、阻害、逆転又は治癒の傾向がない、又は免疫チェックポイント阻害剤が有効な癌よりもその程度が小さい癌である。なお、免疫チェックポイント阻害剤抵抗性癌には、同じ癌種でも免疫チェックポイント阻害剤による癌の進行の遅延、阻害、逆転又は治癒の傾向が他の患者と比較して小さい場合も含まれる。免疫チェックポイント阻害剤抵抗性癌は、例えば、肺癌及び悪性黒色腫等である。 The immune checkpoint inhibitor is not particularly limited as long as it is known. For example, immune checkpoint inhibitors include anti-PD-1 antibody, anti-CTLA-4 antibody and anti-PD-L1 antibody. Immune Checkpoint Inhibitor-Resistant Cancers Are Treated or Treated Even With Effective Amounts of Immune Checkpoint Inhibitors There is no tendency to delay, inhibit, reverse or cure the progression of the cancer, or immune checkpoint inhibitors It is a cancer that is less severe than an effective cancer. It should be noted that the immune checkpoint inhibitor-resistant cancer includes cases in which the tendency of delaying, inhibiting, reversing or curing the progression of cancer by the immune checkpoint inhibitor is smaller than that of other patients even in the same cancer type. Immune checkpoint inhibitor-resistant cancers include, for example, lung cancer and malignant melanoma.
 また、本実施の形態に係るケモカイン産生促進剤は、免疫チェックポイント阻害剤と併用される抗腫瘍免疫賦活剤としても使用できる。併用とは、所定の期間に同一患者に当該抗腫瘍免疫賦活剤と免疫チェックポイント阻害剤とを投与することをいう。併用では、抗腫瘍免疫賦活剤を免疫チェックポイント阻害剤と同時に投与することが好ましいが、一方の効果が残っている間に他方を投与する等して、時間が前後してそれぞれ単独で投与してもよい。併用においては、抗腫瘍免疫賦活剤及び免疫チェックポイント阻害剤の投与経路は同一であってもよいし、異なってもよい。例えば併用では、抗腫瘍免疫賦活剤及び免疫チェックポイント阻害剤それぞれの用量及び用法が規定された1つのレジメンに従って、所定の期間に渡って、抗腫瘍免疫賦活剤及び免疫チェックポイント阻害剤が投与される。なお、別の実施の形態では、上記抗腫瘍免疫賦活剤と併用される免疫チェックポイント阻害剤が提供される。 In addition, the chemokine production promoter according to the present embodiment can also be used as an antitumor immunostimulant used in combination with an immune checkpoint inhibitor. The combination means that the antitumor immunostimulant and the immune checkpoint inhibitor are administered to the same patient during a predetermined period. In combination, it is preferable to administer the antitumor immunostimulant at the same time as the immune checkpoint inhibitor, but administer the other independently while the effect of one remains, for example, after a while. You may. In combination, the routes of administration of the antitumor immunostimulant and the immune checkpoint inhibitor may be the same or different. For example, in combination, the antitumor immunostimulant and immune checkpoint inhibitor are administered over a predetermined period of time according to a single regimen that specifies the dosage and usage of each of the antitumor immunostimulant and immune checkpoint inhibitor. To. In another embodiment, an immune checkpoint inhibitor used in combination with the antitumor immunostimulant is provided.
 また、本実施の形態に係る糖誘導体は、生体適合性粒子に封入されてもよいこととした。生体適合性粒子に封入することで、EPR(Enhanced Permeability and Retention)効果により、標的組織に選択的に効率よく糖誘導体を集積させることができ、高い抗腫瘍効果が得られる。 Further, the sugar derivative according to the present embodiment may be encapsulated in biocompatible particles. By encapsulating in biocompatible particles, sugar derivatives can be selectively and efficiently accumulated in the target tissue due to the EPR (Enhanced Permeability and Regeneration) effect, and a high antitumor effect can be obtained.
 他の実施の形態で提供される抗癌剤は、上記の糖誘導体又は糖誘導体が封入されている生体適合性粒子と、免疫チェックポイント阻害剤と、を含む。すなわち、当該抗癌剤は、糖誘導体又は糖誘導体が封入されている生体適合性粒子及び免疫チェックポイント阻害剤の両成分を単一の製剤に含む。これにより、糖誘導体と免疫チェックポイント阻害剤とを同一投与経路において同時に投与することができる。当該抗癌剤における糖誘導体と免疫チェックポイント阻害剤との重量比は特に限定されず、抗腫瘍効果等に応じて適宜調整される。 The anticancer agent provided in another embodiment includes the biocompatible particles in which the above-mentioned sugar derivative or sugar derivative is encapsulated, and an immune checkpoint inhibitor. That is, the anticancer agent contains both a biocompatible particle containing a sugar derivative or a sugar derivative and an immune checkpoint inhibitor in a single preparation. As a result, the sugar derivative and the immune checkpoint inhibitor can be simultaneously administered through the same route of administration. The weight ratio of the sugar derivative to the immune checkpoint inhibitor in the anticancer agent is not particularly limited, and is appropriately adjusted according to the antitumor effect and the like.
 別の実施の形態では、上記の糖誘導体を患者に投与することにより、該患者の癌又は免疫チェックポイント阻害剤抵抗性癌を治療又は予防する方法が提供される。また、上記の糖誘導体を対象に投与することにより、対象におけるケモカインの産生を促進する方法、対象の癌細胞によるグルコースの取り込みを阻害する方法、対象のT細胞によるグルコース取り込みを促進する方法、対象における癌細胞からの乳酸の産生を阻害する方法、又は対象における抗腫瘍免疫を賦活する方法が提供される。 In another embodiment, a method of treating or preventing cancer or immune checkpoint inhibitor-resistant cancer of the patient is provided by administering the above sugar derivative to the patient. In addition, a method for promoting the production of chemokines in the subject by administering the above sugar derivative to the subject, a method for inhibiting glucose uptake by the target cancer cells, a method for promoting glucose uptake by the target T cells, and the subject. A method of inhibiting the production of lactic acid from cancer cells in a subject, or a method of activating anti-tumor immunity in a subject is provided.
 実施例を含む以下の試験例により、本発明をさらに具体的に説明するが、本発明は実施例及び試験例によって限定されるものではない。 The present invention will be described in more detail with reference to the following test examples including examples, but the present invention is not limited to the examples and test examples.
 (試験例1:肝癌細胞の解糖系抑制によるT細胞走化性因子分泌を介したT細胞走化性亢進能の検討)
 2DGによる解糖系の阻害が肝癌細胞からの直接的なCXCL9及びCXCL10の分泌を亢進させるか否かを検討した。肝癌細胞株であるHuh7(国立大学法人東北大学 加齢医学研究所 医用細胞資源センター・細胞バンク)を2×10個播種し、一晩インキュベートし生着させた。Huh7は、5%COインキュベーターを用いて37℃で培養した。Huh7の培地には、10%ウシ胎児血清を含むDMEM(Dulbecco’s Modified Eagle’s Medium)を用いた。
(Test Example 1: Examination of T cell chemotaxis enhancement ability through T cell chemotaxis factor secretion by suppressing glycolysis of liver cancer cells)
It was investigated whether inhibition of glycolysis by 2DG enhances the direct secretion of CXCL9 and CXCL10 from hepatocellular carcinoma cells. Huh7 (National University Corporation Tohoku University Institute of Aging Medicine Medical Cell Resource Center / Cell Bank), which is a liver cancer cell line, was seeded in 2 × 10 5 cells and incubated overnight for engraftment. Huh7 was cultured at 37 ° C. in a 5% CO 2 incubator. As the medium of Huh7, DMEM (Dulvecco's Modified Eagle's Medium) containing 10% fetal bovine serum was used.
 2DGを、0.1mM、1mM及び10mMとなるように培地に加え、24時間インキュベートした。その後上記各培地にIFNγ 100ng/mL及びTNFα 50ng/mLを添加することで、Huh7からのCXCL9及びCXCL10分泌刺激を行った。24時間経過後の培養上清中のCXCL9及びCXCL10の濃度をELISA法(Quantikine ELISA Human CXCL9/MIG Immunoassay及びQuantikine ELISA Human CXCL10/IP-10 Immunoassay、ともにR&D社製)にて測定した。 2DG was added to the medium so as to be 0.1 mM, 1 mM and 10 mM, and incubated for 24 hours. After that, CXCL9 and CXCL10 secretion from Huh7 were stimulated by adding IFNγ 100 ng / mL and TNFα 50 ng / mL to each of the above media. The concentrations of CXCL9 and CXCL10 in the culture supernatant after 24 hours were measured by the ELISA method (Quantine ELISA Human CXCL9 / MIG Immunoassay and Quantikine ELISA Human CXCL10 / IP-10 Immunoassay, both manufactured by RISA).
 また、リアルタイム細胞動態解析装置(EZ-TAXIScan、Effector cell Institute社製)を用いて、IFNγ及びTNFαによってCXCL9及びCXCL10分泌刺激を受けた肝癌細胞へのCD8陽性T細胞(以下、単に「T細胞」という)の走化性が2DGによりさらに亢進するか否かを検討した。さらには、2DGのT細胞走化性への影響が、CXCL9及びCXCL10の受容体であるCXCR3に対する中和抗体(抗CXCR3抗体)によりキャンセルされるか否かを検討した。 In addition, CD8-positive T cells (hereinafter, simply "T cells") to liver cancer cells stimulated to secrete CXCL9 and CXCL10 by IFNγ and TNFα using a real-time cytodynamic analyzer (EZ-TAXIScan, manufactured by Effector cell Institute). It was examined whether or not the chemotaxis of () was further enhanced by 2DG. Furthermore, it was examined whether the effect of 2DG on T cell chemotaxis was canceled by a neutralizing antibody (anti-CXCR3 antibody) against CXCR3, which is a receptor for CXCL9 and CXCL10.
 ヒト全血からLymphoprep(AXIS-SHIELD社製)にて末梢血単核球を抽出し、さらにCD8+ T cell isolation kit(Miltenyi Biotech社製)にてT細胞を抽出した。リアルタイム細胞動態解析装置では、4μm厚のチップ及びカバーグラスを使用した。リアルタイム細胞動態解析装置の各チャネルのチャンバーAにT細胞を1×10個ずつアプライした。各チャンネルのチャンバーBには、試料としてHuh7含有培養上清をアプライした。チャンバーBに含まれる細胞走化性因子としてのCXCL9及びCXCL10の濃度に応じて、チャンバーAとチャンバーBとの間に介在する微細流路にCXCL9及びCXCL10の濃度勾配が形成される。微細流路中に配置された水平なガラス面(テラス)をCCD(Charge Coupled Device)カメラで撮像することで、チャンバーAにアプライしたT細胞のガラス面上の動態を解析することができる。 Peripheral blood mononuclear cells were extracted from whole human blood with Lymphoprep (manufactured by AXIS-SHIELD), and T cells were further extracted with CD8 + T cell isolation kit (manufactured by Miltenyi Biotech). In the real-time cytodynamic analyzer, a 4 μm thick chip and cover glass were used. 1 × 10 5 T cells were applied to chamber A of each channel of the real-time cytodynamic analyzer. A Huh7-containing culture supernatant was applied as a sample to chamber B of each channel. Depending on the concentration of CXCL9 and CXCL10 as cell chemotaxis factors contained in chamber B, a concentration gradient of CXCL9 and CXCL10 is formed in a fine flow path interposed between chamber A and chamber B. By imaging the horizontal glass surface (terrace) arranged in the microchannel with a CCD (Charge Coupled Device) camera, the dynamics of the T cells applied to the chamber A on the glass surface can be analyzed.
 チャンバーBにアプライした試料は以下のように調製した。Huh7を5×10個播種し、一晩インキュベートし生着させた後、Huh7を次の条件でインキュベートした。インキュベート後、剥離したHuh7を含む培養上清をチャンバーBにアプライした。
  (A1)対照群 2DG非含有培地にて48時間インキュベートした。
  (B1)IFNγ+TNFα群 2DG非含有培地にて24時間インキュベート後、100ng/mL IFNγ及び50ng/mL TNFαを添加し24時間インキュベートした。
  (C1)IFNγ+TNFα+2DG群 10mM 2DG含有培地にて24時間インキュベート後、100ng/mL IFNγ及び50ng/mL TNFαを添加し24時間インキュベートした。
  (D1)IFNγ+TNFα+2DG+抗CXCR3抗体群 10mM 2DG含有培地にて24時間インキュベート後、100ng/mL IFNγ、50ng/mL TNFα及び抗CXCR3抗体(R&D Systems社製)を添加し24時間インキュベートした。
The sample applied to the chamber B was prepared as follows. After seeding 5 × 10 5 Huh7s and incubating overnight for engraftment, Huh7s were incubated under the following conditions. After incubation, the culture supernatant containing the exfoliated Huh7 was applied to chamber B.
(A1) Control group Incubated in a 2DG-free medium for 48 hours.
(B1) IFNγ + TNFα group After incubation in a 2DG-free medium for 24 hours, 100 ng / mL IFNγ and 50 ng / mL TNFα were added and incubated for 24 hours.
(C1) IFNγ + TNFα + 2DG group After incubation in a medium containing 10 mM 2DG for 24 hours, 100 ng / mL IFNγ and 50 ng / mL TNFα were added and incubated for 24 hours.
(D1) IFNγ + TNFα + 2DG + anti-CXCR3 antibody group After incubation in a medium containing 10 mM 2DG for 24 hours, 100 ng / mL IFNγ, 50 ng / mL TNFα and anti-CXCR3 antibody (manufactured by R & D Systems) were added and incubated for 24 hours.
 ホルダー温度を37℃に設定して、1.5時間にわたってテラスを撮像した。得られた画像を専用ソフトウェアであるTAXIScan Analyzer 2(Effector cell Institute社製)を用いて解析した。 The holder temperature was set to 37 ° C, and the terrace was imaged for 1.5 hours. The obtained image was analyzed using TAXIScan Analyzer 2 (manufactured by Effector cell Institute), which is dedicated software.
 (結果)
 図1(A)及び図1(B)は、それぞれHuh7培養上清中のCXCL9及びCXCL10の濃度を示す。非刺激群に対し、IFNγ及びTNFαによる刺激によってCXCL9及びCXCL10の濃度が増加した(2DG 0mM群)。CXCL9及びCXCL10の濃度は、2DG濃度依存的にさらに有意に増加した。
(result)
1 (A) and 1 (B) show the concentrations of CXCL9 and CXCL10 in the Huh7 culture supernatant, respectively. In the non-stimulated group, the concentrations of CXCL9 and CXCL10 were increased by stimulation with IFNγ and TNFα (2DG 0 mM group). The concentrations of CXCL9 and CXCL10 increased even more significantly in a 2DG concentration-dependent manner.
 図2は、実験開始前(0時間)及び実験開始1.5時間後のA1~D1それぞれに対応するレーンのテラスの写真を示す図である。1.5時間後には、IFNγ+TNFα群では、対照群と比較して、多くのT細胞がチャンバーAからチャンバーBの方向へ移動していることが観察された。IFNγ+TNFα+2DG群では、さらに多くのT細胞がチャンバーAからチャンバーBの方向へ移動していることが観察された。IFNγ+TNFα+2DG+抗CXCR3抗体群においてチャンバーAからチャンバーBの方向へ移動したT細胞の個数は、IFNγ+TNFα+2DG群よりも減少した。 FIG. 2 is a diagram showing photographs of the terraces of the lanes corresponding to A1 to D1 before the start of the experiment (0 hours) and 1.5 hours after the start of the experiment. After 1.5 hours, it was observed that more T cells were migrating from chamber A to chamber B in the IFNγ + TNFα group compared to the control group. In the IFNγ + TNFα + 2DG group, it was observed that more T cells were migrating from chamber A to chamber B. The number of T cells that migrated from chamber A to chamber B in the IFNγ + TNFα + 2DG + anti-CXCR3 antibody group was lower than that in the IFNγ + TNFα + 2DG group.
 図3は、各レーンのテラスにおいて測定対象として無作為に抽出したT細胞に関するV-Dプロットを示す。測定対象としたT細胞の数は、レーン1で9個、レーン2で20個、レーン3で20個及びレーン4で10個である。V-Dプロットの横軸は、測定対象としたT細胞1個あたり1分毎の移動の方向性を示す。細胞の移動の方向性は、チャンバーBへの方向、すなわち細胞走化性因子への方向を1.57ラジアン、水平方向への方向を0ラジアン、細胞走化性因子への方向とは逆の方向を-1.57ラジアンとする。V-Dプロットの縦軸は、測定対象としたT細胞1個あたり1分毎の移動速度を示す。 FIG. 3 shows a VD plot of T cells randomly sampled for measurement on the terrace of each lane. The number of T cells to be measured is 9 in lane 1, 20 in lane 2, 20 in lane 3, and 10 in lane 4. The horizontal axis of the BD plot shows the direction of movement every minute for each T cell to be measured. The direction of cell migration is 1.57 radians in the direction toward chamber B, that is, the direction toward the cell chemotaxis factor, 0 radians in the horizontal direction, and the direction opposite to the direction toward the cell chemotaxis factor. The direction is -1.57 radians. The vertical axis of the BD plot shows the movement rate per minute for each T cell to be measured.
 図3に示されたすべての移動速度及び移動の方向性のレーンごとの平均値を、それぞれ図4及び図5に示す。対照群(レーン1)に対して、IFNγ及びTNFα刺激でT細胞走化性は亢進した(レーン2)。T細胞走化性は、2DGの投与によりさらに亢進した(レーン3)。T細胞走化性は、抗CXCR3抗体の併用によりキャンセルされた(レーン4)。以上の結果より、2DGは、肝癌細胞におけるCXCL9及びCXCL10の分泌を促進させることで、T細胞の走化性を亢進させることが証明された。 The average values for each lane of all movement speeds and movement directions shown in FIG. 3 are shown in FIGS. 4 and 5, respectively. Compared to the control group (lane 1), T cell chemotaxis was enhanced by IFNγ and TNFα stimulation (lane 2). T cell chemotaxis was further enhanced by administration of 2DG (lane 3). T cell chemotaxis was canceled by the combined use of anti-CXCR3 antibody (lane 4). From the above results, it was proved that 2DG promotes the chemotaxis of T cells by promoting the secretion of CXCL9 and CXCL10 in liver cancer cells.
 (試験例2:肝癌細胞と共培養したT細胞の機能に2DG-PLGAが及ぼす効果についての検討)
 ULREA SS-11(エム・テクニック社製)を使用して、以下のように2DGナノ粒子(2DG-PLGA)を作製した。まず、A液をA液タンクに充填し、タンクを0.3MPaに加圧した。その後、設定値43℃でA液を167mL/分で送液し、次いで設定値41℃(実測値約29℃)でB液を100mL/分で送液した。A液は0.5%PVAを含む水溶液である。また、B液は、PLGA:2DG:アセトン:エタノールが重量比で0.65:0.25:66:33の溶液である。回転数を1000rpmとし、背圧を0.02MPaとした。吐出液400.5mLを回収し、吐出液からエバポレーターで80分間、溶媒を留去した。なお、B液におけるPLGAとして、PLGA-7520(乳酸:グリコール酸=75:25、平均重量分子量20,000、和光純薬社製)を用いた。得られた2DG-PLGA水性分散液224mLを凍結乾燥し、2.16gの2DG-PLGAを得た。
(Test Example 2: Examination of the effect of 2DG-PLGA on the function of T cells co-cultured with liver cancer cells)
Using ULREA SS-11 (manufactured by M-Technique), 2DG nanoparticles (2DG-PLGA) were prepared as follows. First, the liquid A tank was filled with the liquid A, and the tank was pressurized to 0.3 MPa. Then, the solution A was sent at a set value of 43 ° C. at 167 mL / min, and then the solution B was sent at a set value of 41 ° C. (measured value of about 29 ° C.) at 100 mL / min. Solution A is an aqueous solution containing 0.5% PVA. The solution B is a solution of PLGA: 2DG: acetone: ethanol in a weight ratio of 0.65: 0.25: 66: 33. The rotation speed was 1000 rpm, and the back pressure was 0.02 MPa. 400.5 mL of the discharged liquid was collected, and the solvent was distilled off from the discharged liquid with an evaporator for 80 minutes. As PLGA in Solution B, PLGA-7520 (lactic acid: glycolic acid = 75:25, average weight molecular weight 20,000, manufactured by Wako Pure Chemical Industries, Ltd.) was used. 224 mL of the obtained 2DG-PLGA aqueous dispersion was freeze-dried to obtain 2.16 g of 2DG-PLGA.
 上記で調製した2DG-PLGA3.7mgをチューブに量りとり、ミリQ水3.7mLを加えた。ボルテックスミキサーで30秒間撹拌後、5分間超音波処理を行った。ミリQ水を対照とし、2DG-PLGAの粒度分布をNIKKISO Nanotrac Wave-EX150(日機装社製)で測定した。 3.7 mg of 2DG-PLGA prepared above was weighed into a tube, and 3.7 mL of Milli-Q water was added. After stirring with a vortex mixer for 30 seconds, ultrasonic treatment was performed for 5 minutes. The particle size distribution of 2DG-PLGA was measured with NIKKISO Nanotrac Wave-EX150 (manufactured by Nikkiso Co., Ltd.) using milli-Q water as a control.
 2DG-PLGAにおける2DGの含有率は、以下のように評価した。まず、標準溶液を調製した。200mgの2DGを100mLメスフラスコに量りとり、水50mLを加えて溶解した。次にアセトニトリルを用いて100mLにメスアップし、標準原液(2000μg/mL)とした。標準原液を250、125、62.5、31.25μg/mLになるようにアセトニトリル:水(1:1)を用いて段階希釈し、標準溶液とした。 The 2DG content in 2DG-PLGA was evaluated as follows. First, a standard solution was prepared. 200 mg of 2DG was weighed in a 100 mL volumetric flask, and 50 mL of water was added to dissolve it. Next, the mixture was made up to 100 mL with acetonitrile to prepare a standard stock solution (2000 μg / mL). The standard stock solution was serially diluted with acetonitrile: water (1: 1) to a concentration of 250, 125, 62.5, 31.25 μg / mL to prepare a standard solution.
 試料溶液の調製では、試料として約20mgの2DG-PLGAを量りとり、ミリQ水10mLを加えた。ボルテックスミキサーで30秒間撹拌後、30分間超音波処理し試料原液とした。試料原液1.0mLにアセトニトリルを加え2mLとした。この液を20℃、10,000×gで15分間遠心分離した。遠心後の上澄み液を、0.2μmメンブレンフィルターを用いてろ過し、得られたろ液を試料溶液とした。試料溶液についてはn=3で試験を実施した。標準溶液及び試料溶液を下記条件にて高速液体クロマトグラフィー(HPLC)で分析し、標準溶液の検量線から試料溶液中の2DGの濃度を計算により求めた。上記の2DG-PLGAの重量及び2DGの濃度に基づいて2DGの含有率を算出した。 In the preparation of the sample solution, about 20 mg of 2DG-PLGA was weighed as a sample, and 10 mL of milliQ water was added. After stirring with a vortex mixer for 30 seconds, sonication was performed for 30 minutes to prepare a sample stock solution. Acetonitrile was added to 1.0 mL of the sample stock solution to make 2 mL. The solution was centrifuged at 10,000 xg for 15 minutes at 20 ° C. The supernatant after centrifugation was filtered using a 0.2 μm membrane filter, and the obtained filtrate was used as a sample solution. The sample solution was tested at n = 3. The standard solution and the sample solution were analyzed by high performance liquid chromatography (HPLC) under the following conditions, and the concentration of 2DG in the sample solution was calculated from the calibration line of the standard solution. The 2DG content was calculated based on the weight of 2DG-PLGA and the concentration of 2DG.
 HPLCの条件
  機器:Shimadzu 10A series(島津製作所社製)
  検出:Shimadzu ELSD-LT
  ゲイン:8
  ドリフト温度:40℃
  ガス圧力:350kPa(実測358kPa)
  ネブライザーガス:N2
  カラム:Shodex Asahipak NH2P-504D(150mm×4.6mm)
  カラム温度:40℃
  移動相:A:水、B:アセトニトリル
  B.濃度 75%→69%(8分)69→75%(8分→16分)
  流量:1.0mL/分
  カラム温度:40℃
  注入量:20μL
  測定時間:16分
HPLC conditions Equipment: Shimadzu 10A series (manufactured by Shimadzu Corporation)
Detection: Shimadzu ELSD-LT
Gain: 8
Drift temperature: 40 ° C
Gas pressure: 350 kPa (actual measurement 358 kPa)
Nebulizer gas: N2
Column: Shodex Asahipak NH2P-504D (150 mm x 4.6 mm)
Column temperature: 40 ° C
Mobile phase: A: water, B: acetonitrile B. Concentration 75% → 69% (8 minutes) 69 → 75% (8 minutes → 16 minutes)
Flow rate: 1.0 mL / min Column temperature: 40 ° C
Injection volume: 20 μL
Measurement time: 16 minutes
 2DG-PLGAにおける2DGの含有率は、8.1±0.4%であった。図6に示すように、2DG-PLGAの粒度分布はシングルピークで、D50が166nm±5.4nm、スパン値は1.52±0.15であった。当該2DG-PLGAを以下の試験例で用いた。 The content of 2DG in 2DG-PLGA was 8.1 ± 0.4%. As shown in FIG. 6, the particle size distribution of 2DG-PLGA was a single peak, D 50 was 166 nm ± 5.4 nm, and the span value was 1.52 ± 0.15. The 2DG-PLGA was used in the following test examples.
 Transwell(Corning社製)を用いてHuh7と共培養したT細胞における細胞走化性を検討し、肝癌細胞における2DG-PLGAによる糖代謝抑制が共培養したT細胞の機能に及ぼす効果を解析した。 The cell chemotaxis of T cells co-cultured with Huh7 using Transwell (manufactured by Corning) was examined, and the effect of suppression of glucose metabolism by 2DG-PLGA on co-cultured T cells in liver cancer cells was analyzed.
 4μm厚のチップ及びカバーグラスを使用した上記リアルタイム細胞動態解析装置における各チャネルのチャンバーBに5μM CXCL10含有培地をアプライした。Huh7を5×10個播種し、一晩インキュベートすることで生着させた後に、チャンバーAにアプライするT細胞を以下のように調製した。なお、下記の操作で用いたT細胞は試験例1と同様に抽出した。
  (A2)PLGA+グルコースなし群 Huh7の培地を10mM PLGAを含むグルコース非含有培地に交換し、24時間インキュベート後、1×10個のT細胞が播種されたTranswellをセットした状態で20時間共培養を行った。
  (B2)2DG-PLGA+グルコースなし群 Huh7の培地を10mM 2DG-PLGAを含むグルコース非含有培地に培地交換し、24時間インキュベート後、1×10個のT細胞が播種されたTranswellをセットした状態で20時間共培養を行った。
  (C2)PLGA+グルコースあり群 Huh7の培地を10mM PLGA及び900mg/dL グルコースを含む培地に交換し、24時間インキュベート後、1×10個のT細胞が播種されたTranswellをセットした状態で20時間共培養を行った。
  (D2)2DG-PLGA+グルコースあり群 Huh7の培地を10mM 2DG-PLGA及び900mg/dL グルコースを含む培地に交換し、24時間インキュベート後、1×10個のT細胞が播種されたTranswellをセットした状態で20時間共培養を行った。
A medium containing 5 μM CXCL10 was applied to the chamber B of each channel in the above-mentioned real-time cytodynamic analyzer using a 4 μm-thick tip and cover glass. After seeding 5 × 10 5 Huh7s and incubating them overnight to engraft, T cells to be applied to chamber A were prepared as follows. The T cells used in the following procedure were extracted in the same manner as in Test Example 1.
(A2) PLGA + glucose-free group Huh7 medium was replaced with glucose-free medium containing 10 mM PLGA, incubated for 24 hours, and then co-cultured for 20 hours with Transwell seeded with 1 × 10 5 T cells set. Was done.
(B2) A state in which the medium of the 2DG-PLGA + glucose-free group Huh7 was replaced with a glucose-free medium containing 10 mM 2DG-PLGA, incubated for 24 hours, and then Transwell in which 1 × 10 5 T cells were seeded was set. Was co-cultured for 20 hours.
(C2) The medium of the group Huh7 with PLGA + glucose was replaced with a medium containing 10 mM PLGA and 900 mg / dL glucose, and after incubation for 24 hours, a Transwell in which 1 × 10 5 T cells were seeded was set for 20 hours. Co-culture was performed.
(D2) The medium of the group Huh7 with 2DG-PLGA + glucose was replaced with a medium containing 10 mM 2DG-PLGA and 900 mg / dL glucose, and after incubating for 24 hours, a Transwell seeded with 1 × 10 5 T cells was set. The co-culture was carried out for 20 hours in this state.
 上記A2~D2について、共培養後、剥離したHuh7を含む培養上清をチャンバーAにアプライした。ホルダー温度を37℃に設定して、2時間にわたってテラスを撮像した。得られた画像をTAXIScan Analyzer 2を用いて解析した。 For the above A2 to D2, after co-culturing, the culture supernatant containing the exfoliated Huh7 was applied to chamber A. The holder temperature was set to 37 ° C. and the terrace was imaged for 2 hours. The obtained image was analyzed using TAXIScan Analyzer 2.
 上記A2~D2について、PLGA又は2DG-PLGA投与から24時間後のHuh7培養上清中の乳酸産生量を測定した(Glycolysis Cell-Based Assay kit、Cayman Chemical社製)。 For the above A2-D2, the amount of lactic acid produced in the Huh7 culture supernatant 24 hours after the administration of PLGA or 2DG-PLGA was measured (Glycolysis Cell-Based Assay kit, manufactured by Cayman Chemical Co., Ltd.).
 また、Transwellに播種するT細胞を1×10個とし、かつHuh7とT細胞との共培養時間を4時間とする点を除いて、A2~D2と同様にそれぞれ調製したT細胞(A3~D3)を得た。A3~D3のT細胞について、RNeasy MiniKit(Qiagen社製)を用いてmRNAを抽出し、SuperScript VILO(商標)、Invitrogen社製)にてcDNA合成後に、リアルタイムPCR(Polymerase Chain Reaction)にて、β-アクチンのmRNAで補正したIFNγ mRNAの発現量を比較した(TaqMan Gene Expression Assays、Assay ID;Hs00989291_m1(IFNγ)、Hs01060665_m1(β-アクチン)、Applied Biosystems社製)。 In addition, T cells (A3 to D2) prepared in the same manner as A2 to D2, except that the number of T cells seeded in Transwell is 1 × 10 6 and the co-culture time of Huh7 and T cells is 4 hours. D3) was obtained. For A3 to D3 T cells, mRNA was extracted using RNeasy MiniKit (manufactured by Qiagen), cDNA was synthesized by SuperScript VILO (trademark), manufactured by Invitrogen), and then β was performed by real-time PCR (Polymerase Chain Reaction). -The expression levels of IFNγ mRNA corrected for actin mRNA were compared (TaqMan Gene Expression Assays, Assay ID; Hs0998291_m1 (IFNγ), Hs01060665_m1 (β-actin), Applied Biosystems).
 Huh7を5×10個播種し、一晩インキュベートすることで生着させた後に、Transwellに播種するT細胞を5×10個とする点を除いて、A3~D3と同様にそれぞれ調製したT細胞(A4~D4)を得た。A4~D4のT細胞に関して、蛍光性グルコースアナログである2-NBDG(2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose)を用いてグルコース取り込み量を評価した。詳細には、T細胞の培地を、2-NBDG(Cayman Chemical社製)含有培地に交換し、16時間インキュベートし、Huh7とT細胞とを分離した。その後、Huh7における単位タンパク質あたりの2-NBDGの取り込み量及びT細胞における単位細胞あたりの2-NBDGの取り込み量について、蛍光マイクロプレートリーダー(FLUO star OPTIMA system、BMG Labtechnologies社製)を用いて4群間で相対比較を行った。 After seeding 5 × 10 4 Huh7 and incubating overnight to engraft, they were prepared in the same manner as A3 to D3 except that the number of T cells seeded in Transwell was 5 × 10 5 . T cells (A4-D4) were obtained. For A4-D4 T cells, a fluorescent glucose analog 2-NBDG (2-deoxy-2-[(7-nitro-2,1,3-benzoxdiazol-4-yl) amino] -D-glucose) Glucose uptake was evaluated using. Specifically, the medium of T cells was replaced with a medium containing 2-NBDG (manufactured by Cayman Chemical) and incubated for 16 hours to separate Huh7 and T cells. Then, regarding the amount of 2-NBDG uptake per unit protein in Huh7 and the amount of 2-NBDG uptake per unit cell in T cells, 4 groups were used using a fluorescent microplate reader (FLOO star OPTIMA system, manufactured by BMG Labtechnologies). A relative comparison was made between them.
 (結果)
 図7は、実験開始前(0時間)及び実験開始2時間後のテラスの写真を示す図である。PLGA+グルコースなし群及び2DG-PLGA+グルコースなし群では、CXCL10をアプライしたチャンバーBの方向に移動したT細胞はほとんど見られなかった。PLGA+グルコースあり群では、T細胞がチャンバーBの方向へ移動していることが観察された。2DG-PLGA+グルコースあり群では、さらに多くのT細胞がチャンバーBの方向へ移動していた。
(result)
FIG. 7 is a diagram showing photographs of the terrace before the start of the experiment (0 hours) and 2 hours after the start of the experiment. In the PLGA + glucose-free group and the 2DG-PLGA + glucose-free group, almost no T cells migrated in the direction of chamber B to which CXCL10 was applied were observed. In the group with PLGA + glucose, T cells were observed to move toward chamber B. In the group with 2DG-PLGA + glucose, more T cells were migrating toward chamber B.
 図8は、上記試験例1と同様にV-Dプロットを示す図である。測定対象としたT細胞の数は、レーン1で5個、レーン2で5個、レーン3で15個及びレーン4で15個である。当該V-Dプロットの横軸及び縦軸は、測定対象としたT細胞1個あたり1分毎の移動の方向性及び測定対象としたT細胞1個あたり1分毎の移動速度をそれぞれ示す。図8に示されたすべての移動速度及び移動の方向性のレーンごとの平均値を、それぞれ図9及び図10に示す。グルコースありの条件では、方向性及び移動速度いずれの細胞走化性指標においても、PLGA+グルコースあり群よりも2DG-PLGA+グルコースあり群で高い値を示した。 FIG. 8 is a diagram showing a VD plot similar to Test Example 1 above. The number of T cells to be measured is 5 in lane 1, 5 in lane 2, 15 in lane 3, and 15 in lane 4. The horizontal and vertical axes of the VD plot indicate the direction of movement per minute for each T cell to be measured and the movement speed for each minute per T cell to be measured. The average values for each lane of all movement speeds and movement directions shown in FIG. 8 are shown in FIGS. 9 and 10, respectively. Under the condition with glucose, the cell chemotaxis index in both directionality and migration speed was higher in the group with 2DG-PLGA + glucose than in the group with PLGA + glucose.
 上記A2~D2の各群におけるPLGA又は2DG-PLGA投与から24時間後のHuh7培養上清中の乳酸産生量の結果を図11に示す。グルコースなしの条件ではPLGA及び2DG-PLGA投与いずれにおいても有意な乳酸産生は見られなかった。グルコースありの条件では、PLGAを投与することで増加した乳酸産生量が2DG-PLGAの投与で有意に抑制された。 FIG. 11 shows the results of the amount of lactic acid produced in the Huh7 culture supernatant 24 hours after the administration of PLGA or 2DG-PLGA in each of the above groups A2 to D2. No significant lactate production was observed with either PLGA or 2DG-PLGA administration under the condition without glucose. In the condition with glucose, the amount of lactic acid produced increased by the administration of PLGA was significantly suppressed by the administration of 2DG-PLGA.
 上記A3~D3の各群におけるHuh7との共培養4時間後の時点でのT細胞におけるIFNγ mRNAの相対的な発現量を図12に示す。グルコースなし及びグルコースありのいずれにおいても、IFNγ mRNAの発現量はPLGAを投与した場合と比較して、2DG-PLGAを投与した場合に有意に増加していた。 FIG. 12 shows the relative expression level of IFNγ mRNA in T cells at 4 hours after co-culture with Huh7 in each of the above groups A3 to D3. In both cases without glucose and with glucose, the expression level of IFNγ mRNA was significantly increased when 2DG-PLGA was administered as compared with the case where PLGA was administered.
 上記A4~D4におけるHuh7の2-NBDGの相対的な取り込み量を図13に示す。グルコースなし及びグルコースありのいずれにおいても、Huh7の2-NBDG取り込み量は、PLGAを投与した場合と比較して、2DG-PLGAを投与した群で減少した。特に、グルコースありの条件下では、Huh7における2-NBDG取り込み量の減少は、PLGAを投与した場合に対して2DG-PLGAを投与した場合に有意に減少した。 The relative uptake amount of 2-NBDG of Huh7 in the above A4 to D4 is shown in FIG. The amount of 2-NBDG uptake of Huh7 was reduced in the 2DG-PLGA-administered group as compared to the PLGA-administered group, both without glucose and with glucose. In particular, under the condition with glucose, the decrease in 2-NBDG uptake in Huh7 was significantly reduced when 2DG-PLGA was administered as compared to when PLGA was administered.
 図14は、上記A4~D4におけるT細胞の2-NBDGの相対的な取り込み量を示す。グルコースなし及びグルコースありのいずれにおいても、T細胞の2-NBDG取り込み量は、PLGAを投与した場合と比較して、2DG-PLGAを投与した群で有意に増加した。 FIG. 14 shows the relative uptake of 2-NBDG of T cells in the above A4 to D4. The amount of 2-NBDG uptake of T cells, both without glucose and with glucose, was significantly increased in the 2DG-PLGA-administered group as compared to the PLGA-administered group.
 以上の結果より、高濃度グルコース環境下で肝癌細胞と共培養したT細胞に関して、2DG-PLGAはT細胞走化性及びIFNγ産生量といったT細胞の機能を亢進させることが明らかとなった。また、その機序の一つとして、癌の微小環境における肝癌細胞のグルコース取り込み量の低下に伴う相対的なT細胞のグルコース取り込み量の増加、又は肝癌細胞からの乳酸産生量低下に伴うT細胞の機能の活性化が関与していると考えられた。 From the above results, it was clarified that 2DG-PLGA enhances T cell functions such as T cell chemotaxis and IFNγ production in T cells co-cultured with liver cancer cells in a high-concentration glucose environment. In addition, as one of the mechanisms, the relative increase in glucose uptake of T cells accompanying the decrease in glucose uptake of hepatocellular carcinoma in the microenvironment of cancer, or the decrease in lactate production from hepatocellular carcinoma cells causes T cells. It was considered that the activation of the function of lactic acid was involved.
 (試験例3:免疫応答性肝発癌マウスに対する2DGのCXCL9、CXCL10及びCXCL11の発現増強を介した抗腫瘍効果の検討)
 肝発癌モデル動物であるSTAM(STelic Animal Model)マウスは、生後2日齢のC57BL6/Nマウス雄に200μgのストレプトゾトシンを皮下投与し、出生から4週目に離乳を行い、餌を高脂肪食に切り替えることにより作製される。STAMマウス(SMCラボラトリーズ社製)雄12週齢を、以下の2群に群分けした。
(Test Example 3: Examination of antitumor effect through enhanced expression of 2DG CXCL9, CXCL10 and CXCL11 on immune-responsive liver carcinogenic mice)
For STAM (Stelic Animal Model) mice, which are model animals for liver carcinogenesis, 200 μg of streptozotocin was subcutaneously administered to 2-day-old C57BL6 / N mouse males, and weaned 4 weeks after birth to feed on a high-fat diet. Produced by switching. 12-week-old male STM mice (manufactured by SMC Laboratories) were grouped into the following two groups.
  (a1)PLGA群 800mg/kg/日でPLGAを週1回尾静脈投与した。
  (b1)2DG-PLGA群 800mg/kg/日で2DG-PLGAを週1回尾静脈投与した。
(A1) PLGA group PLGA was administered to the tail vein once a week at 800 mg / kg / day.
(B1) 2DG-PLGA group 2DG-PLGA was administered to the tail vein once a week at 800 mg / kg / day.
 なお、b1の2DG-PLGAは、毎回投与前にリン酸緩衝生理食塩水(PBS)にて100mg/mLの懸濁液とし、1匹につき1回あたり200μL投与した。2DG-PLGAにおける2DG充填率が約8%であることを考慮すると、b1におけるマウス1匹あたりの実質的な2DG単回投与量は約1.6mgに相当する。 2DG-PLGA of b1 was made into a suspension of 100 mg / mL with phosphate buffered saline (PBS) before each administration, and 200 μL was administered per animal. Considering that the 2DG filling rate in 2DG-PLGA is about 8%, a substantial single dose of 2DG per mouse in b1 corresponds to about 1.6 mg.
 a1及びb1において、投与開始から21日目に肝臓全体を観察し、肝臓内の腫瘍最大径、腫瘍個数及び総腫瘍体積を計測した。また、RNeasy MiniKit(Qiagen社製)を用いてa1及びb1における腫瘍組織からmRNAを抽出し、SuperScript VILOTM(Invitrogen社製)にてcDNA合成後に、リアルタイムPCRにて、β-アクチンのmRNAで補正したCXCL9、CXCL10及びCXCL11のmRNAの発現量を比較した(TaqMan Gene Expression Assays、Assay ID;Mm00434946_m1(CXCL9)、Mm00445235_m1(CXCL10)、Mm00444662_m1(CXCL11)及びMm02619580_g1(β-アクチン)、Applied Biosystems社製) In a1 and b1, the entire liver was observed on the 21st day from the start of administration, and the maximum tumor diameter, the number of tumors, and the total tumor volume in the liver were measured. In addition, mRNA was extracted from the tumor tissue in a1 and b1 using RNeasy MiniKit (manufactured by Qiagen), cDNA was synthesized by SuperScript VILOTM (manufactured by Invitrogen), and then corrected with β-actin mRNA by real-time PCR. The expression levels of CXCL9, CXCL10 and CXCL11 mRNA were compared (TaqMan Gene Expression Assays, Assay ID; Mm00434946_m1 (CXCL9), Mm00445235_m1 (CXCL10), Mm00446262_m1 (CXCL10), Mm00444662_m1 (CXCL10)
 (結果)
 投与開始21日後の肝臓における腫瘍が図15の矢印によって示されている。図16及び図17は、それぞれ投与開始21日後の腫瘍最大径及び総腫瘍体積を示す。PLGA群と比べて2DG-PLGA群では腫瘍最大径及び総腫瘍体積を有意に減少させた。さらに、図18、図19及び図20は、各群での腫瘍組織におけるCXCL9、CXCL10及びCXCL11のmRNA発現量をそれぞれ示す。CXCL9、CXCL10及びCXCL11のmRNA発現量はPLGA投与群と比べて2DG-PLGA投与群で有意に増加していた。
(result)
Tumors in the liver 21 days after the start of administration are indicated by the arrows in FIG. 16 and 17 show the maximum tumor diameter and total tumor volume 21 days after the start of administration, respectively. The maximum tumor diameter and total tumor volume were significantly reduced in the 2DG-PLGA group compared to the PLGA group. Furthermore, FIGS. 18, 19 and 20 show the mRNA expression levels of CXCL9, CXCL10 and CXCL11 in the tumor tissue in each group, respectively. The mRNA expression levels of CXCL9, CXCL10 and CXCL11 were significantly increased in the 2DG-PLGA administration group as compared with the PLGA administration group.
 STAMマウスは、T細胞免疫も含めて免疫不全ではないマウスである。よって、免疫応答性の肝発癌マウスモデルに対する2DG-PLGAによるCXCL9、CXCL10及びCXCL11発現亢進を介した抗腫瘍効果が証明された。 The STAM mouse is a mouse that is not immunodeficient, including T cell immunity. Therefore, the antitumor effect mediated by the upregulation of CXCL9, CXCL10 and CXCL11 expression by 2DG-PLGA on an immune-responsive liver carcinogenesis mouse model was demonstrated.
 (試験例4:抗PD-1抗体抵抗性マウスにおける2DG及び2DG-PLGAの抗腫瘍効果の検討)
 6週齢のC57BL/6Jマウス(雄性)に抗PD-1抗体抵抗性悪性黒色腫細胞株B16F10を1×10個皮下移植した。移植した細胞の生着及び増殖を確認するために、腫瘍サイズをノギスで計測し、腫瘍の体積が100~150mmとなった時点で以下の7群に群分けした。
  (a2)対照群 200μgのisotype rat IgGを3日毎に腹腔内投与した。
  (b2)PLGA群 200μgのisotype rat IgGを3日毎の腹腔内投与に加えて、PLGA800mg/kg/日を週1回尾静脈投与した。
  (c2)2DG群 200μgのisotype rat IgGを3日毎の腹腔内投与に加えて、100mg/kg/日で2DGを連日腹腔内投与した。
  (d2)2DG-PLGA群 200μgのisotype rat IgGを3日毎の腹腔内投与に加えて、800mg/kg/日で2DG-PLGAを週1回尾静脈投与した。
  (e2)抗PD-1抗体群 200μgの抗PD-1抗体(InVivoMAb anti-mouse PD-1、BioXCell社製)を3日毎に腹腔内投与した。
(Test Example 4: Examination of antitumor effect of 2DG and 2DG-PLGA in anti-PD-1 antibody resistant mouse)
1 × 10 7 anti-PD-1 antibody-resistant malignant melanoma cell lines B16F10 were subcutaneously transplanted into 6-week-old C57BL / 6J mice (male). In order to confirm the engraftment and proliferation of the transplanted cells, the tumor size was measured with a caliper, and when the tumor volume reached 100 to 150 mm 3 , the tumors were divided into the following 7 groups.
(A2) Control group 200 μg of isotype rat IgG was intraperitoneally administered every 3 days.
(B2) PLGA group 200 μg of isotype rat IgG was intraperitoneally administered every 3 days, and PLGA 800 mg / kg / day was administered to the tail vein once a week.
(C2) 2DG group In addition to intraperitoneal administration of 200 μg of isotype rat IgG every 3 days, 2DG was intraperitoneally administered at 100 mg / kg / day every day.
(D2) 2DG-PLGA group In addition to intraperitoneal administration of 200 μg of isotype rat IgG every 3 days, 2DG-PLGA was administered by tail vein once a week at 800 mg / kg / day.
(E2) Anti-PD-1 antibody group 200 μg of anti-PD-1 antibody (InVivoMAb anti-mouse PD-1, manufactured by BioXCell) was intraperitoneally administered every 3 days.
 なお、c2において100mg/kg/日で投与された2DGの実質的な単回投与量は、平均体重27gとするマウス1匹あたりのとしては約2.7mgに相当する。b2のPLGA及びd2の2DG-PLGAは、毎回投与前にPBSにて100mg/mLの懸濁液とし、1匹につき1回あたり200μL投与した。2DG-PLGAにおける2DG充填率が約8%であることを考慮すると、上記d2におけるマウス1匹あたりの実質的な2DG単回投与量は約1.6mgに相当し、c2の約60%程度となる。 It should be noted that the substantial single dose of 2DG administered at 100 mg / kg / day in c2 corresponds to about 2.7 mg per mouse having an average body weight of 27 g. PLGA of b2 and 2DG-PLGA of d2 were made into a suspension of 100 mg / mL with PBS before each administration, and 200 μL was administered per animal. Considering that the 2DG filling rate in 2DG-PLGA is about 8%, the actual single dose of 2DG per mouse in the above d2 corresponds to about 1.6 mg, which is about 60% of c2. Become.
 a2~e2において、投与開始から3日毎に腫瘍体積を計測し、腫瘍体積の経時的推移を評価した。また、投与12日後に腫瘍を採取し肉眼で観察し、血液採取等を行った。 In a2 to e2, the tumor volume was measured every 3 days from the start of administration, and the transition of the tumor volume over time was evaluated. In addition, 12 days after administration, the tumor was collected, observed with the naked eye, and blood was collected.
 (結果)
 図21及び図22には、それぞれ投与開始12日後の腫瘍の外観及び腫瘍体積の経時変化が示されている。対照群、PLGA群及び抗PD-1抗体群と比べて、2DG群では、悪性黒色腫細胞の腫瘍が小さく、腫瘍体積の増大が抑制された。さらに、対照群、PLGA群及び抗PD-1抗体群と比べて、2DG-PLGA群では、悪性黒色腫細胞の腫瘍が明らかに小さく、腫瘍体積の増大が有意に抑制された。
(result)
21 and 22, respectively, show the appearance of the tumor and the time course of the tumor volume 12 days after the start of administration, respectively. Compared with the control group, the PLGA group and the anti-PD-1 antibody group, the tumor of malignant melanoma cells was smaller in the 2DG group, and the increase in tumor volume was suppressed. Furthermore, the tumors of malignant melanoma cells were clearly smaller in the 2DG-PLGA group than in the control group, PLGA group and anti-PD-1 antibody group, and the increase in tumor volume was significantly suppressed.
 (試験例5:抗PD-1抗体抵抗性マウスにおける2DG-PLGAによるT細胞性腫瘍免疫を介した抗腫瘍効果の検討)
 6週齢のC57BL/6Jマウス(雄性)にB16F10を1×10個皮下移植した。移植した細胞の生着及び増殖を確認するために、腫瘍サイズをノギスで計測し、腫瘍の体積が100~150mmとなった時点で以下の4群に群分けした。
  (a3)対照群 800mg/kg/日でPLGAを週1回尾静脈投与した。また、200μgのisotype Hamster IgGをPLGA初回投与前日以降3日毎に腹腔内投与した。
  (b3)抗CXCR3抗体群 800mg/kg/日でPLGAを週1回尾静脈投与した。また、200μgの抗CXCR3抗体をPLGA初回投与前日以降3日毎に腹腔内投与した。
  (c3)2DG-PLGA群 800mg/kg/日で2DG-PLGAを週1回尾静脈投与した。また、200μgのisotype Hamster IgGを2DG-PLGA初回投与前日以降3日毎に腹腔内投与した。
  (d3)2DG-PLGA+抗CXCR3抗体群 800mg/kg/日で2DG-PLGAを週1回尾静脈投与した。また、200μgの抗CXCR3抗体を2DG-PLGA初回投与前日以降3日毎に腹腔内投与した。
(Test Example 5: Examination of antitumor effect mediated by T-cell tumor immunity by 2DG-PLGA in anti-PD-1 antibody-resistant mice)
Six 1 × 10 6 B16F10 mice were subcutaneously transplanted into 6-week-old C57BL / 6J mice (male). In order to confirm the engraftment and proliferation of the transplanted cells, the tumor size was measured with a caliper, and when the tumor volume reached 100 to 150 mm 3 , the tumors were divided into the following four groups.
(A3) PLGA was administered to the tail vein once a week at 800 mg / kg / day in the control group. In addition, 200 μg of isotype hamster IgG was intraperitoneally administered every 3 days after the day before the first administration of PLGA.
(B3) Anti-CXCR3 antibody group PLGA was administered to the tail vein once a week at 800 mg / kg / day. In addition, 200 μg of anti-CXCR3 antibody was intraperitoneally administered every 3 days after the day before the first administration of PLGA.
(C3) 2DG-PLGA group 2DG-PLGA was administered to the tail vein once a week at 800 mg / kg / day. In addition, 200 μg of isotype hamster IgG was intraperitoneally administered every 3 days after the day before the first administration of 2DG-PLGA.
(D3) 2DG-PLGA + anti-CXCR3 antibody group 2DG-PLGA was administered to the tail vein once a week at 800 mg / kg / day. In addition, 200 μg of anti-CXCR3 antibody was intraperitoneally administered every 3 days after the day before the first administration of 2DG-PLGA.
 なお、a3及びb3のPLGA及びc3及びd3の2DG-PLGAは、毎回投与前にPBSにて100mg/mLの懸濁液とし、1匹につき1回あたり200μLを投与した。2DG-PLGAにおける2DG充填率が約8%であることを考慮すると、c3及びd3におけるマウス1匹あたりの実質的な2DG単回投与量は約1.6mgに相当する。 The PLGA of a3 and b3 and the 2DG-PLGA of c3 and d3 were made into a suspension of 100 mg / mL in PBS before each administration, and 200 μL was administered to each animal. Considering that the 2DG filling rate in 2DG-PLGA is about 8%, a substantial single dose of 2DG per mouse in c3 and d3 corresponds to about 1.6 mg.
 a3~d3において、投与開始から3日毎に腫瘍体積を計測し、腫瘍体積の経時的推移を評価した。また、投与12日後に腫瘍を採取し肉眼で観察し、血液採取等を行った。また、肝腫瘍組織に対してRabbit Monoclonal CD3抗体(Gene Tex社製)を用いて免疫染色を行った。 In a3 to d3, the tumor volume was measured every 3 days from the start of administration, and the transition of the tumor volume over time was evaluated. In addition, 12 days after administration, the tumor was collected, observed with the naked eye, and blood was collected. In addition, immunostaining was performed on liver tumor tissue using a Rabbit Monoclonal CD3 antibody (manufactured by GeneTex).
 (結果)
 図23及び図24には、それぞれ投与開始12日後の腫瘍の外観及び腫瘍体積の経時変化が示されている。対照群及び抗CXCR3抗体群と比べて、2DG-PLGA群では、悪性黒色腫細胞の腫瘍が明らかに小さく、腫瘍体積の増大が有意に抑制された。一方、2DG-PLGA+抗CXCR3抗体群では腫瘍体積増大の抑制効果が一部低下した。
(result)
23 and 24 show the appearance of the tumor and the time course of the tumor volume 12 days after the start of administration, respectively. Compared with the control group and the anti-CXCR3 antibody group, the tumor of malignant melanoma cells was clearly smaller in the 2DG-PLGA group, and the increase in tumor volume was significantly suppressed. On the other hand, in the 2DG-PLGA + anti-CXCR3 antibody group, the effect of suppressing tumor volume increase was partially reduced.
 肝腫瘍組織の免疫染色の結果を図25に示す。図25における矢印はCD3陽性T細胞を示す。図26は、HPF(高倍率視野)当たりのCD3陽性T細胞数の細胞数を示す。対照群及び抗CXCR3抗体群と比べて、2DG-PLGA群において、腫瘍内部への有意なT細胞浸潤の亢進が認められた。また、2DG-PLGAによる腫瘍内部へのT細胞浸潤の亢進は抗CXCR3抗体によって抑制された。本試験例の結果と試験例3の結果より、2DG-PLGAの抗腫瘍効果に関して、癌組織におけるCXCL9-CXCR3相互作用、CXCL10-CXCR3相互作用及びCXCL11-CXCR3相互作用を介したT細胞性腫瘍免疫の関与が示された。 The result of immunostaining of liver tumor tissue is shown in FIG. Arrows in FIG. 25 indicate CD3-positive T cells. FIG. 26 shows the number of CD3-positive T cells per HPF (high-power field). Compared with the control group and the anti-CXCR3 antibody group, a significant increase in T cell infiltration into the tumor was observed in the 2DG-PLGA group. In addition, the enhancement of T cell infiltration into the tumor by 2DG-PLGA was suppressed by the anti-CXCR3 antibody. From the results of this test example and the result of test example 3, regarding the antitumor effect of 2DG-PLGA, T cell tumor immunity through CXCL9-CXCR3 interaction, CXCL10-CXCR3 interaction and CXCL11-CXCR3 interaction in cancer tissue Involvement was shown.
 (試験例6:肝発癌マウスに対する2DG-PLGA及び抗PD-1抗体の併用効果の検討
 STAMマウス(SMCラボラトリーズ社製)雄12週齢を、以下の4群に群分けした。
  (a4)対照群 200μgのisotype rat IgGを3日毎に腹腔内投与した。
  (b4)抗PD-1抗体群 200μgの抗PD-1抗体を3日毎に腹腔内投与した。
  (c4)抗PD-1抗体+2DG群 200μgの抗PD-1抗体を3日毎の腹腔内投与に加えて、100mg/kg/日で2DGを連日腹腔内投与した。
  (d4)抗PD-1抗体+2DG-PLGA群 200μgの抗PD-1抗体を3日毎の腹腔内投与に加えて、800mg/kg/日で2DG-PLGAを週1回尾静脈投与した。
(Test Example 6: Examination of the combined effect of 2DG-PLGA and anti-PD-1 antibody on liver carcinogenic mice) 12-week-old male STM mice (manufactured by SMC Laboratories) were grouped into the following four groups.
(A4) Control group 200 μg of isotype rat IgG was intraperitoneally administered every 3 days.
(B4) Anti-PD-1 antibody group 200 μg of anti-PD-1 antibody was intraperitoneally administered every 3 days.
(C4) Anti-PD-1 antibody + 2DG group In addition to intraperitoneal administration of 200 μg of anti-PD-1 antibody every 3 days, 2DG was intraperitoneally administered at 100 mg / kg / day every day.
(D4) Anti-PD-1 antibody + 2DG-PLGA group In addition to intraperitoneal administration of 200 μg of anti-PD-1 antibody every 3 days, 2DG-PLGA was administered by tail vein once a week at 800 mg / kg / day.
 なお、c4で投与された100mg/kg/日で投与された2DGの実質的な単回投与量は、上記c2と同様に約2.7mgに相当する。d4の2DG-PLGAは、毎回投与前にPBSにて100mg/mLの懸濁液とし、1匹につき1回あたり200μLを投与した。2DG-PLGAにおける2DG充填率が約8%であることを考慮すると、d4におけるマウス1匹あたりの実質的な2DG単回投与量は約1.6mgに相当し、c4の約60%程度となる。 It should be noted that the substantially single dose of 2DG administered at 100 mg / kg / day administered with c4 corresponds to about 2.7 mg as in the case of c2 above. 2DG-PLGA of d4 was made into a suspension of 100 mg / mL in PBS before each administration, and 200 μL was administered to each animal. Considering that the 2DG filling rate in 2DG-PLGA is about 8%, the actual single dose of 2DG per mouse in d4 corresponds to about 1.6 mg, which is about 60% of c4. ..
 a4~d4において、投与開始から21日目に肝臓全体を観察し、肝臓内の腫瘍最大径、腫瘍個数及び総腫瘍体積を計測し、血液採取等を行った。 In a4 to d4, the entire liver was observed on the 21st day from the start of administration, the maximum tumor diameter, the number of tumors, and the total tumor volume in the liver were measured, and blood was collected.
 (結果)
 投与開始21日後の肝臓における腫瘍が図27の矢印によって示されている。図28及び図29は、それぞれ投与開始21日後の腫瘍最大径及び総腫瘍体積を示す。抗PD-1抗体と2DGを併用することで、腫瘍最大径及び総腫瘍体積が抗PD-1抗体群よりも低下した。さらに抗PD-1抗体と2DG-PLGAとを併用することで、有意な総腫瘍体積の抑制が認められた。
(result)
Tumors in the liver 21 days after the start of administration are indicated by the arrows in FIG. 28 and 29 show the maximum tumor diameter and total tumor volume 21 days after the start of administration, respectively. The combined use of anti-PD-1 antibody and 2DG reduced the maximum tumor diameter and total tumor volume compared to the anti-PD-1 antibody group. Furthermore, the combined use of anti-PD-1 antibody and 2DG-PLGA was found to significantly suppress the total tumor volume.
 表1は、投与開始21日目の血清学的所見及び肝重量を示す。全群間で有意な差を認めなかった。以上より、肝発癌マウスモデルに対する2DG-PLGAと抗PD-1抗体との併用効果が示された。 Table 1 shows serological findings and liver weight on the 21st day after the start of administration. No significant difference was found between all groups. From the above, the combined effect of 2DG-PLGA and anti-PD-1 antibody on a mouse model of liver carcinogenesis was shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention enables various embodiments and modifications without departing from the broad spirit and scope of the present invention. Moreover, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated by the scope of claims, not by the embodiment. Then, various modifications made within the scope of the claims and the equivalent meaning of the invention are considered to be within the scope of the present invention.
 本出願は、2019年3月15日に出願された、日本国特許出願2019-48743号に基づく。本明細書中に日本国特許出願2019-48743号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2019-48743, filed on March 15, 2019. The specification of Japanese Patent Application No. 2019-48743, the scope of claims, and the entire drawing shall be incorporated into this specification as a reference.
 本発明は、医薬に好適である。 The present invention is suitable for pharmaceuticals.

Claims (6)

  1.  糖誘導体を含む、
     ケモカイン産生促進剤。
    Contains sugar derivatives,
    Chemokine production promoter.
  2.  癌細胞からのCXCL9、CXCL10及びCXCL11の産生を促進する、
     請求項1に記載のケモカイン産生促進剤。
    Promotes the production of CXCL9, CXCL10 and CXCL11 from cancer cells,
    The chemokine production promoter according to claim 1.
  3.  乳酸・グリコール酸共重合体を含有する生体適合性粒子をさらに含み、
     前記糖誘導体は、
     前記生体適合性粒子に封入されている、
     請求項1又は2に記載のケモカイン産生促進剤。
    Further containing biocompatible particles containing a lactic acid / glycolic acid copolymer
    The sugar derivative is
    Encapsulated in the biocompatible particles,
    The chemokine production promoter according to claim 1 or 2.
  4.  糖誘導体を含む、
     免疫チェックポイント阻害剤抵抗性癌治療薬。
    Contains sugar derivatives,
    Immune checkpoint inhibitor A drug for the treatment of resistant cancer.
  5.  糖誘導体を含み、
     免疫チェックポイント阻害剤と併用される、
     抗腫瘍免疫賦活剤。
    Contains sugar derivatives
    Used in combination with immune checkpoint inhibitors,
    Anti-tumor immunostimulant.
  6.  前記糖誘導体は、
     2-デオキシ-D-グルコースである、
     請求項1から3のいずれか一項に記載のケモカイン産生促進剤、請求項4に記載の免疫チェックポイント阻害剤抵抗性癌治療薬、又は請求項5に記載の抗腫瘍免疫賦活剤。
    The sugar derivative is
    2-Deoxy-D-glucose,
    The chemokine production promoter according to any one of claims 1 to 3, the immune checkpoint inhibitor-resistant cancer therapeutic agent according to claim 4, or the antitumor immunostimulant according to claim 5.
PCT/JP2020/010894 2019-03-15 2020-03-12 Chemokine production promoter, therapeutic agent for immune checkpoint inhibitor-resistant cancer and antitumor immunostimulator WO2020189523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019048743A JP2022078362A (en) 2019-03-15 2019-03-15 Chemokine production promoter, therapeutic agent for immune checkpoint inhibitor-resistant cancer, and antitumor immunostimulator
JP2019-048743 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189523A1 true WO2020189523A1 (en) 2020-09-24

Family

ID=72519325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010894 WO2020189523A1 (en) 2019-03-15 2020-03-12 Chemokine production promoter, therapeutic agent for immune checkpoint inhibitor-resistant cancer and antitumor immunostimulator

Country Status (2)

Country Link
JP (1) JP2022078362A (en)
WO (1) WO2020189523A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004338A1 (en) * 2017-06-28 2019-01-03 株式会社 先端医療開発 Pharmaceutical composition and tumor immunoactivity promoter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004338A1 (en) * 2017-06-28 2019-01-03 株式会社 先端医療開発 Pharmaceutical composition and tumor immunoactivity promoter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TINA CASCONE; JODI A MCKENZIE; RINA M MBOFUNG; SIMONE PUNT; ZHE WANG; CHUNYU XU; LEILA J WILLIAMS; ZHIQIANG WANG; CHRISTOPHER A BR: "Increased Tumor Glycolysis Characterizes Immune Resistance to Adoptive T Cell Therapy", CELL METABOLISM, vol. 27, no. 5, 1 May 2018 (2018-05-01), pages 977 - 987, XP055714873 *

Also Published As

Publication number Publication date
JP2022078362A (en) 2022-05-25

Similar Documents

Publication Publication Date Title
Sun et al. Amplifying STING activation by cyclic dinucleotide–manganese particles for local and systemic cancer metalloimmunotherapy
Ceci et al. Targeting tumor-associated macrophages to increase the efficacy of immune checkpoint inhibitors: a glimpse into novel therapeutic approaches for metastatic melanoma
Yin et al. Engineered macrophage-membrane-coated nanoparticles with enhanced PD-1 expression induce immunomodulation for a synergistic and targeted antiglioblastoma activity
CN112203669A (en) Microbiome-related immunotherapy
Maggio et al. Inhibition of protein phosphatase-2A with LB-100 enhances antitumor immunity against glioblastoma
Wang et al. Arsenic trioxide inhibits lung metastasis of mouse colon cancer via reducing the infiltration of regulatory T cells
He et al. Targeted MIP-3β plasmid nanoparticles induce dendritic cell maturation and inhibit M2 macrophage polarisation to suppress cancer growth
Kim et al. Nanoparticle delivery of recombinant IL-2 (BALLkine-2) achieves durable tumor control with less systemic adverse effects in cancer immunotherapy
Wang et al. Eudragit S100 prepared pH-responsive liposomes-loaded betulinic acid against colorectal cancer in vitro and in vivo
Won et al. Immune checkpoint silencing using RNAi-incorporated nanoparticles enhances antitumor immunity and therapeutic efficacy compared with antibody-based approaches
Li et al. Research progress on therapeutic targeting of cancer-associated fibroblasts to tackle treatment-resistant NSCLC
Paladhi et al. Targeting thymidine phosphorylase alleviates resistance to dendritic cell immunotherapy in colorectal cancer and promotes antitumor immunity
Ryan et al. Black raspberry extract inhibits regulatory T-cell activity in a murine model of head and neck squamous cell carcinoma chemoprevention
Hong et al. Utomilumab in patients with immune checkpoint inhibitor-refractory melanoma and non-small-cell lung cancer
Han et al. Immune checkpoint inhibitors in advanced and recurrent/metastatic cervical cancer
Tanemura et al. Recent advances and developments in the antitumor effect of the HVJ envelope vector on malignant melanoma: from the bench to clinical application
Diao et al. Delivery of gefitinib with an immunostimulatory nanocarrier improves therapeutic efficacy in lung cancer
WO2020189523A1 (en) Chemokine production promoter, therapeutic agent for immune checkpoint inhibitor-resistant cancer and antitumor immunostimulator
US20200376146A1 (en) Nanobiologic compositions for inhibiting trained immunity
Takeuchi et al. Phase III, multicenter, open-label, long-term study of the safety of abatacept in Japanese patients with rheumatoid arthritis and an inadequate response to conventional or biologic disease-modifying antirheumatic drugs
TW202114647A (en) Small molecule inhibitor for treating cancer in tumor subject with high interstitial fluid pressure
Hsu et al. Synergistic effect of Abraxane that combines human IL15 fused with an albumin‐binding domain on murine models of pancreatic ductal adenocarcinoma
Todosenko et al. Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells
US20230106313A1 (en) A bacterial composition for the treatment of cancer
JP6888239B2 (en) Tumor immunoactivity promoter for tumor treatment and pharmaceutical composition for tumor treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP