WO2020189289A1 - Vehicle light and vehicle light system - Google Patents

Vehicle light and vehicle light system Download PDF

Info

Publication number
WO2020189289A1
WO2020189289A1 PCT/JP2020/009212 JP2020009212W WO2020189289A1 WO 2020189289 A1 WO2020189289 A1 WO 2020189289A1 JP 2020009212 W JP2020009212 W JP 2020009212W WO 2020189289 A1 WO2020189289 A1 WO 2020189289A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
infrared light
light source
vehicle
emitted
Prior art date
Application number
PCT/JP2020/009212
Other languages
French (fr)
Japanese (ja)
Inventor
旬 後藤
サイード ファヒン アハメド
隆雄 村松
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2021507177A priority Critical patent/JPWO2020189289A1/ja
Priority to CN202080022319.8A priority patent/CN113727882A/en
Publication of WO2020189289A1 publication Critical patent/WO2020189289A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/13Ultraviolet light; Infrared light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/04Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape

Definitions

  • the present disclosure relates to vehicle lighting equipment and vehicle lighting equipment systems used for vehicles such as automobiles.
  • a vehicle lighting device in which visible light from a visible light source and infrared light from an infrared light source are reflected by separate optical members to irradiate visible light and infrared light to the front of the vehicle (Patent Documents). 1).
  • One of the purposes of the present disclosure is to provide a vehicle lamp and a vehicle lamp system having an improved sensing function using infrared light.
  • One of the purposes of the present disclosure is to provide a vehicle lighting fixture and a vehicle lighting fixture system capable of high-definition light distribution for lighting that varies depending on the surrounding conditions of the vehicle with a simple configuration.
  • the vehicle lighting equipment is The first light source for irradiating the surroundings of the vehicle with visible light, A second light source that emits infrared light to acquire information on the surroundings of the vehicle, Rotating while reflecting the visible light emitted from the first light source and the infrared light emitted from the second light source, in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle.
  • a rotating reflector that scans the visible light and the infrared light
  • a light receiving unit that receives infrared light emitted from the second light source and reflected by an object
  • a control unit that controls the first light source, the second light source, and the rotation reflector.
  • the second light source has a first light emitting element and a second optical element.
  • the control unit emits infrared light of the first light emitting element and infrared light of the second light emitting element so that the first light emitting element and the second light emitting element do not emit infrared light at the same time. Make the timing different.
  • the control unit may be configured to perform one scan in the horizontal direction of the second scan range each time one scan in the horizontal direction of the first scan range is completed.
  • the control unit may be configured to switch between emitting infrared light from the first light emitting element and emitting infrared light from the second light emitting element at predetermined time intervals.
  • the vehicle lighting system is A first light source for irradiating the periphery of the vehicle with visible light, a second light source for emitting infrared light for acquiring information around the vehicle, the visible light emitted from the first light source, and the like.
  • the visible light and the infrared light are scanned in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle by rotating while reflecting the infrared light emitted from the second light source.
  • a third light source for irradiating the periphery of the vehicle with visible light a fourth light source for emitting infrared light for acquiring information on the periphery of the vehicle, and the visible light emitted from the third light source.
  • the visible light and the infrared light are scanned in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle by rotating while reflecting the infrared light emitted from the fourth light source.
  • a second vehicle lighting device with a second rotation reflector and A light receiving unit that receives infrared light emitted from the second light source and reflected by the object and infrared light emitted from the fourth light source and reflected by the object.
  • a control unit that controls the second light source and the fourth light source With The control unit is different from the infrared light emission timing of the second light source and the infrared light emission timing of the fourth light source so that the second light source and the fourth light source do not emit infrared light at the same time. Let me.
  • the control unit may be configured to perform one scan in the horizontal direction of the second scan range each time one scan in the horizontal direction of the first scan range is completed.
  • the control unit may be configured to switch between emitting infrared light from the second light source and emitting infrared light from the fourth light source at predetermined time intervals.
  • the light receiving unit is arranged in the first vehicle lamp, and has a first light receiving unit that receives infrared light emitted from the second light source and reflected by the object, and the second vehicle lamp. It may be provided with a second light receiving unit which is arranged inside and receives infrared light emitted from the fourth light source and reflected by the object.
  • the reflected light of the infrared light reflected by the object can be received in the vicinity of the position where the infrared light is emitted, so that the angle of the return light with respect to the emitted light becomes small. This makes it possible to improve the accuracy of detecting the direction (angle coordinates) and distance of the object.
  • first vehicle lighting equipment may be a left side headlamp
  • second vehicle lighting equipment may be a right side headlamp
  • the sensing function using infrared light is improved in front of the vehicle.
  • the vehicle lighting equipment is The first light source for irradiating the surroundings of the vehicle with visible light, A second light source that emits infrared light to acquire information on the surroundings of the vehicle, Rotating while reflecting the visible light emitted from the first light source and the infrared light emitted from the second light source, in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle.
  • a rotating reflector that scans the visible light and the infrared light
  • a light receiving unit that receives infrared light emitted from the second light source and reflected by an object is provided.
  • the second light source includes a first light emitting element that emits infrared light having a first wavelength, and a second light emitting element that emits infrared light having a second wavelength different from the first wavelength.
  • the first scanning range in which the infrared light emitted from the first light emitting element is scanned and the second scanning range in which the infrared light emitted from the second light emitting element is scanned are partially. It may be duplicated.
  • the light distribution for lighting which varies depending on the surrounding conditions of the vehicle, can be made higher in definition with a simple configuration.
  • the vehicle lighting system is A first light source for irradiating the periphery of the vehicle with visible light, a second light source for emitting infrared light of the first wavelength for acquiring information on the periphery of the vehicle, and the first light source.
  • the visible light and the infrared light rotate while reflecting the visible light and the infrared light emitted from the second light source, and the visible light and the infrared light are horizontally arranged on a virtual vertical screen arranged at a predetermined distance from the vehicle.
  • the first rotating reflector which scans the light source for the first vehicle, and A third light source for irradiating the periphery of the vehicle with visible light, and a fourth light source for emitting infrared light having a second wavelength different from the first wavelength for acquiring information on the periphery of the vehicle. Rotate while reflecting the visible light emitted from the third light source and the infrared light emitted from the fourth light source, and scan the visible light and the infrared light in the horizontal direction on the virtual vertical screen.
  • a second vehicle lighting device with a second rotation reflector includes a light receiving unit that receives infrared light emitted from the second light source and reflected by the object and infrared light emitted from the fourth light source and reflected by the object.
  • first vehicle lamp may be a left headlamp
  • second vehicle lamp may be a right headlamp
  • the sensing function using infrared light is improved in front of the vehicle.
  • At least a part of the first scanning range in which the infrared light emitted from the second light source is scanned and the second scanning range in which the infrared light emitted from the fourth light source is scanned overlap. You may.
  • the light distribution for lighting which varies depending on the surrounding conditions of the vehicle, can be made higher in definition with a simple configuration.
  • the light receiving unit is arranged in the first vehicle lamp, and has a first light receiving unit that receives infrared light emitted from the second light source and reflected by the object, and the second vehicle lamp. It may be provided with a second light receiving unit which is arranged inside and receives infrared light emitted from the fourth light source and reflected by the object.
  • the reflected light of the infrared light reflected by the object can be received in the vicinity of the position where the infrared light is emitted, so that the angle of the return light with respect to the emitted light becomes small. This makes it possible to improve the accuracy of detecting the direction (angle coordinates) and distance of the object.
  • the sensing function using infrared light can be improved.
  • the light distribution for lighting which varies depending on the surrounding conditions of the vehicle, can be made high-definition with a simple configuration.
  • FIG. 1 shows a block diagram of a vehicle system 2 (an example of a vehicle lighting system) mounted on a vehicle 1.
  • the vehicle system 2 includes a vehicle control unit 3 (an example of a control unit), a headlamp 4, a sensor 5, a camera 6, a radar 7, and an HMI (Human Machine). It includes an interface) 8, a GPS (Global Positioning System) 9, a wireless communication unit 10, and a map information storage unit 11.
  • the vehicle system 2 includes a steering actuator 12, a steering device 13, a brake actuator 14, a brake device 15, an accelerator actuator 16, and an accelerator device 17.
  • the vehicle control unit 3 is configured to control the running of the vehicle 1.
  • the vehicle control unit 3 is composed of, for example, an electronic control unit (ECU: Electronic Control Unit).
  • the electronic control unit includes a microcontroller including a processor and a memory, and other electronic circuits (for example, a transistor).
  • the processor is, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), and / or a GPU (Graphics Processing Unit).
  • the memory is a ROM (Read Only Memory) in which various vehicle control programs (for example, an artificial intelligence (AI) program for automatic driving) are stored, and a RAM (Random Access Memory) in which various vehicle control data are temporarily stored. )including.
  • the processor is configured to expand a program designated from various vehicle control programs stored in the ROM on the RAM and execute various processes in cooperation with the RAM.
  • the headlamp 4 is a lighting device mounted on the front portion of the vehicle 1, and includes a lamp unit 42 that irradiates light toward the road around the vehicle 1 and a lamp control unit 43 (an example of the control unit). ing.
  • the detailed configuration of the lamp unit 42 and the lamp control unit 43 will be described later.
  • the vehicle control unit 3 generates an instruction signal for controlling the lighting of the lamp unit 42 when a predetermined condition is satisfied, and transmits the instruction signal to the lamp control unit 43.
  • the lamp control unit 43 controls turning on and off of the lamp unit 42 based on the received instruction signal.
  • the sensor 5 includes an acceleration sensor, a speed sensor, a gyro sensor, and the like.
  • the sensor 5 is configured to detect the traveling state of the vehicle 1 and output the traveling state information to the vehicle control unit 3.
  • the sensor 5 includes a seating sensor that detects whether the driver is sitting in the driver's seat, a face orientation sensor that detects the direction of the driver's face, an external weather sensor that detects the external weather condition, and whether or not there is a person in the vehicle.
  • a motion sensor or the like for detecting may be further provided.
  • the sensor 5 may include an illuminance sensor that detects the illuminance of the surrounding environment of the vehicle 1.
  • the camera 6 is, for example, a camera including an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary MOS).
  • the imaging of the camera 6 is controlled based on the signal transmitted from the vehicle control unit 3. For example, the camera 6 can capture an image at a frame rate matched to the on / off frequency of the lamp unit 42. As a result, the camera 6 can acquire both the image when the lamp unit 42 is lit and the image when the lamp unit 42 is turned off.
  • the radar 7 is a millimeter wave radar, a microwave radar, a laser radar, or the like.
  • the radar 7 may be provided with LiDAR (Light Detection and Ranking or Laser Imaging Detection and Ranking).
  • LiDAR is a sensor that generally emits invisible light in front of it and acquires information such as the distance to an object, the shape of the object, and the material of the object based on the emitted light and the return light.
  • the camera 6 and the radar 7 are configured to detect the surrounding environment of the vehicle 1 (other vehicles, pedestrians, road shapes, traffic signs, obstacles, etc.) and output the surrounding environment information to the vehicle control unit 3. ..
  • the HMI 8 is composed of an input unit that receives an input operation from the driver and an output unit that outputs driving information and the like to the driver.
  • the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode changeover switch for switching the operation mode of the vehicle 1, and the like.
  • the output unit is a display that displays various traveling information.
  • the GPS 9 is configured to acquire the current position information of the vehicle 1 and output the acquired current position information to the vehicle control unit 3.
  • the wireless communication unit 10 is configured to receive information about another vehicle (for example, traveling information) around the vehicle 1 from the other vehicle and transmit information about the vehicle 1 (for example, traveling information) to the other vehicle. (Vehicle-to-vehicle communication). Further, the wireless communication unit 10 is configured to receive infrastructure information from infrastructure equipment such as traffic lights and indicator lights and to transmit traveling information of vehicle 1 to the infrastructure equipment (road-to-vehicle communication).
  • the map information storage unit 11 is an external storage device such as a hard disk drive in which map information is stored, and is configured to output map information to the vehicle control unit 3.
  • the vehicle control unit 3 determines at least one of the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information, the map information, and the like. Generate one automatically.
  • the steering actuator 12 is configured to receive a steering control signal from the vehicle control unit 3 and control the steering device 13 based on the received steering control signal.
  • the brake actuator 14 is configured to receive a brake control signal from the vehicle control unit 3 and control the brake device 15 based on the received brake control signal.
  • the accelerator actuator 16 is configured to receive an accelerator control signal from the vehicle control unit 3 and control the accelerator device 17 based on the received accelerator control signal. As described above, in the automatic driving mode, the traveling of the vehicle 1 is automatically controlled by the vehicle system 2.
  • the vehicle control unit 3 when the vehicle 1 travels in the manual driving mode, the vehicle control unit 3 generates a steering control signal, an accelerator control signal, and a brake control signal according to the manual operation of the driver on the accelerator pedal, the brake pedal, and the steering wheel.
  • the steering control signal, the accelerator control signal, and the brake control signal are generated by the manual operation of the driver, so that the driving of the vehicle 1 is controlled by the driver.
  • the operation mode includes an automatic operation mode and a manual operation mode.
  • the automatic driving mode includes a fully automatic driving mode, an advanced driving support mode, and a driving support mode.
  • the vehicle system 2 automatically performs all driving controls such as steering control, brake control, and accelerator control, and the driver is not in a state where the vehicle 1 can be driven.
  • the vehicle system 2 automatically performs all driving control of steering control, brake control, and accelerator control, and the driver does not drive the vehicle 1 although he / she is in a state where he / she can drive the vehicle 1.
  • the vehicle system 2 In the driving support mode, the vehicle system 2 automatically performs some driving control of steering control, brake control, and accelerator control, and the driver drives the vehicle 1 under the driving support of the vehicle system 2.
  • the vehicle system 2 In the manual driving mode, the vehicle system 2 does not automatically control the driving, and the driver drives the vehicle 1 without the driving support of the vehicle system 2.
  • the driving mode of the vehicle 1 may be switched by operating the driving mode changeover switch.
  • the vehicle control unit 3 sets the driving mode of the vehicle 1 into four driving modes (fully automatic driving mode, advanced driving support mode, driving support mode, manual driving mode) according to the driver's operation on the driving mode changeover switch. ).
  • the driving mode of the vehicle 1 is automatically set based on the information on the travelable section in which the autonomous vehicle can travel, the travel prohibited section in which the autonomous vehicle is prohibited, or the information on the external weather condition. It may be switched.
  • the vehicle control unit 3 switches the driving mode of the vehicle 1 based on this information.
  • the driving mode of the vehicle 1 may be automatically switched by using a seating sensor, a face orientation sensor, or the like. In this case, the vehicle control unit 3 switches the driving mode of the vehicle 1 based on the output signals from the seating sensor and the face orientation sensor.
  • FIG. 2 is a block diagram schematically showing a partial configuration of the vehicle system 2.
  • the headlamps 4 mounted on the vehicle system 2 are provided on the left side and the right side of the front part of the vehicle, respectively. However, for simplification of the drawing, only the left side headlamp of the left and right headlamps is shown in FIG. ing.
  • the vehicle system 2 has, as the camera 6, a visible light camera 6A capable of capturing the periphery of the vehicle 1 with visible light and an image capable of imaging the periphery of the vehicle 1 with infrared light. It is equipped with an infrared camera 6B. Instead of providing the visible light camera 6A and the infrared camera 6B, a single camera using an imaging element capable of simultaneously capturing a color image and an infrared image using both visible light and infrared light is provided. You may be. Further, the vehicle system 2 includes an image processing unit 18 and a monitor 19.
  • the infrared camera 6B is a camera capable of photographing the surroundings of a vehicle even at night by detecting infrared rays (infrared light).
  • the image processing unit 18 processes the video captured by the visible light camera 6A and the infrared camera 6B, and transmits the processed video signal to the vehicle control unit 3 and the monitor 19.
  • the lamp unit 42 of the headlamp 4 includes a low beam lamp unit 42L that forms a low beam light distribution pattern and a high beam lamp unit 42H (an example of a vehicle lamp) that forms a high beam light distribution pattern.
  • the low beam lighting unit 42L is a parabola type or projector type lighting unit.
  • the low beam lamp unit 42L uses an incandescent lamp having a filament such as a halogen lamp, a HID (High Integrity Discovery) lamp such as a metal halide lamp, an LED (Light Emitting Node), or the like as a light source.
  • the high beam lamp unit 42H includes a visible light source 44 (an example of a first light source and a third light source), an infrared light source 45 (an example of a second light source and a fourth light source), an optical member 46, and a photodiode 47 (light receiving light).
  • a visible light source 44 an example of a first light source and a third light source
  • an infrared light source 45 an example of a second light source and a fourth light source
  • an optical member 46 an example of a second light source and a fourth light source
  • a photodiode 47 light receiving light.
  • the lamp control unit 43 of the headlamp 4 is composed of an electronic control unit (ECU), and sets the lighting state of the lamp unit 42 to a predetermined lighting state according to the information related to the automatic operation of the vehicle 1. It is configured.
  • the illumination state referred to here includes the on-off and blinking cycles (ON / OFF cycles of pulse lighting) of each light emitting element constituting the lamp unit 42.
  • the lamp control unit 43 is electrically connected to a power source (not shown), and includes a microcontroller 50 including a processor such as a CPU and MPU and a memory such as a ROM and a RAM, LED drivers 51 and 52, and a motor driver 53.
  • the current-voltage conversion / amplification circuit 54 for the processor 47 and the measurement circuit 55 are included.
  • the LED drivers 51 and 52 are drivers for driving each light emitting element (LED) constituting the visible light source 44 and the infrared light source 45, respectively.
  • the motor driver 53 is a driver for driving the optical member 46 (specifically, the rotary reflector 65 described later).
  • the current-voltage conversion / amplification circuit 54 is a circuit for converting a current signal (sensor signal) output from the photodiode 47 into a voltage signal and amplifying the voltage signal.
  • the measurement circuit 55 receives the drive signal of the infrared light source 45 from the LED driver 52 that drives the infrared light source 45, and the current signal from the photodiode 47 is converted into a voltage signal by the current-voltage conversion / amplification circuit 54. Receive the signal.
  • the measurement circuit 55 measures the difference between the emission timing of the infrared light from the infrared light source 45 and the reception timing of the reflected light of the infrared light by the photodiode 47 from these received signals, and the result is micron. It transmits to the controller 50.
  • the microcontroller 50 controls these drivers 51 to 53 and the circuits 54 and 55, respectively.
  • the emission timing of the infrared light source 45 is a timing at which each light emitting element constituting the infrared light source 45 emits infrared light.
  • the light receiving timing of the photodiode 47 is a timing at which it is detected that the reflected light of infrared light is incident on the photodiode 47 (the photodiode 47 receives the reflected light of infrared light).
  • the vehicle control unit 3 and the lamp control unit 43 are provided as separate configurations, but they may be integrally configured. That is, the lamp control unit 43 and the vehicle control unit 3 may be composed of a single electronic control unit.
  • FIG. 3 is a top view of the high beam lamp unit 42H.
  • FIG. 4 is a partially enlarged view of the high beam lamp unit 42H.
  • the high beam lamp unit 42H includes a bracket 60 for mounting each component.
  • the bracket 60 is attached to a housing (not shown) of the high beam lamp unit 42H.
  • a first wiring board 61 provided with a part of the visible light source 44 and a part of the infrared light source 45 is attached to the bracket 60.
  • a control box 63 in which the components of the lamp control unit 43 are housed is arranged on the right side of the first wiring board 61.
  • a second wiring board 62 provided with another part of the visible light source 44 and another part of the infrared light source 45 at a place separated from the place where the first wiring board 61 of the bracket 60 is attached. Is installed. Further, a photodiode 47 is arranged in a part of the control box 63 (here, the front side of the lamp).
  • a rotary reflector 65 which is a component of the optical member 46, is attached to a position of the bracket 60 facing the first wiring board 61 and the second wiring board 62.
  • a lens 66 which is another component of the optical member 46, is attached to the bracket 60.
  • the lens 66 is provided on the front side of the lamp with respect to the rotary reflector 65.
  • the lens 66 includes a first lens portion 67 shown on the right side of FIGS. 3 and 4, and a second lens portion 68 formed continuously with the first lens portion 67 on the left side of the first lens portion 67. Has been done.
  • Each of the first lens portion 67 and the second lens portion 68 is configured as a plano-convex aspherical lens having a convex front surface and a flat rear surface.
  • the light emitted from the visible light source 44 and the infrared light source 45 is reflected by the rotary reflector 65, passes through the first lens portion 67 or the second lens portion 68, and is irradiated to the front of the lamp.
  • the rotation reflector 65 is rotated in one direction around the rotation axis R by the motor driver 53 (see FIG. 2).
  • the rotary reflector 65 is configured to rotate and reflect the visible light emitted from the visible light source 44 to form a desired light distribution pattern in front of the lamp. Further, the rotary reflector 65 is configured to reflect the infrared light emitted from the infrared light source 45 while rotating and irradiate the front of the lamp.
  • the rotary reflector 65 is provided with two blades 65a having the same shape, which function as a reflecting surface, around the cylindrical rotating portion 65b.
  • the rotation axis R of the rotation reflector 65 is oblique with respect to the optical axis Ax1 of the first lens unit 67 and the optical axis Ax2 of the second lens unit 68.
  • the blade 65a of the rotary reflector 65 has a twisted shape so that the angle formed by the optical axes Ax1 and Ax2 and the reflection surface changes as the blade 65a of the rotary reflector 65 goes in the circumferential direction about the rotation axis R.
  • the blade 65a rotates and reflects the light emitted from the visible light source 44 and the infrared light source 45, so that scanning using the light of each light source becomes possible.
  • FIG. 5 is a front view of the first wiring board 61
  • FIG. 6 is a front view of the second wiring board 62.
  • the first wiring board 61 has a plurality of (nine in this example) light emitting elements (hereinafter referred to as visible light LEDs) 44-1 to capable of emitting visible light as a visible light source 44. 44-9 are arranged.
  • the visible light LEDs 44-1 to 44-9 are arranged in an inverted U shape in order from the visible light LED 44-1 in the front view of the first wiring board 61.
  • the light emitted from these visible light LEDs 44-1 to 44-9 forms a condensing portion in the high beam light distribution pattern.
  • the IR-LED45-1 is arranged on the left side of the visible light LED 44-3 in the front view of the first wiring board 61.
  • the IR-LED45-2 is arranged on the right side of the visible light LED 44-7 in the front view of the first wiring board 61.
  • a plurality of (two in this example) visible light LEDs 44-10 and 44-11 capable of emitting visible light as a visible light source 44 are arranged in parallel on the second wiring board 62. There is. The light emitted from these visible light LEDs 44-10 and 44-11 forms a diffused portion in the high beam light distribution pattern. Further, an infrared light LED 45-3 capable of emitting infrared light as an infrared light source 45 is arranged on the second wiring board 62. The IR-LED45-3 is arranged on the left side and above the visible light LED 44-10 in the front view of the second wiring board 62.
  • Each visible light LED 44-1 to 44-11 as a visible light source 44 is composed of, for example, a white LED capable of irradiating visible light.
  • a white LED capable of irradiating visible light.
  • the visible light source 44 and the infrared light source 45 it is also possible to use a semiconductor light emitting element such as an EL element or an LD element as a light source instead of the LED.
  • a light source that can turn on and off the light accurately in a short time is preferable for the control for non-irradiating a part of the high beam light distribution pattern described later.
  • the first lens portion 67 on the right side of the lens 66 is visible light emitted from visible light LEDs 44-1 to 44-9 arranged on the first wiring board 61 and reflected by the rotating reflector 65, and IR-LED 45. It is arranged at a position where infrared light emitted from -1, 45-2 and reflected by the rotary reflector 65 can be transmitted. That is, visible light and infrared light for forming a condensing portion of the high beam light distribution pattern are transmitted to the front of the lamp through the first lens portion 67.
  • the second lens portion 68 on the left side of the lens 66 is visible light emitted from visible light LEDs 44-10 and 44-11 arranged on the second wiring board 62 and reflected by the rotary reflector 65, and IR. -It is arranged at a position where infrared light emitted from the LED 45-3 and reflected by the rotary reflector 65 can be transmitted. That is, visible light and infrared light for forming the diffused portion of the high beam light distribution pattern are transmitted to the front of the lamp through the second lens portion 68.
  • the shape of the lens 66 may be appropriately selected according to the required light distribution pattern, illuminance distribution, and other light distribution characteristics, but a free-form surface lens may be used instead of the aspherical lens. ..
  • FIG. 7 shows a spot formed on a virtual vertical screen arranged at a position 25 m in front of the vehicle by visible light emitted from the visible light LEDs 44-1 to 44-9 provided on the first wiring board 61, for example. It is a figure which shows the image of light.
  • FIG. 8 is a diagram showing a light distribution pattern P1 on a virtual vertical screen in a state where the visible light emitted from each visible light LED 44-1 to 44-9 is scanned by the rotation of the rotation reflector 65.
  • image S1 is an image of spot light emitted from visible light LED 44-1
  • image S2 is an image of spot light emitted from visible light LED 44-2
  • image S3 is an image of visible light LED 44-3
  • the image S4 is an image of the spot light emitted from the visible light LED 44-4
  • the image S5 is an image of the spot light emitted from the visible light LED 44-5.
  • S6 is an image of spot light emitted from visible light LED 44-6
  • image S7 is an image of spot light emitted from visible light LED 44-7
  • image S8 is an image of spot light emitted from visible light LED 44-8. It is an image of light
  • the image S9 is an image of spot light emitted from the visible light LED 44-9.
  • the images S1 to S9 are arranged and irradiated in a U shape on a virtual vertical screen. Of these, the images S3, S4, S5, S6, and S7 are illuminated on the horizon HH on the virtual vertical screen.
  • the light distribution pattern P1 As shown in FIG. Is formed.
  • the light distribution pattern P1 is formed as a condensing portion of the high beam light distribution pattern described later.
  • the illuminance is particularly high at a portion where visible light emitted from a plurality of visible light LEDs is repeatedly irradiated.
  • the light distribution pattern P1 is formed so that the illuminance is highest at the intersection of the vertical line VV and the horizontal line HH on the virtual vertical screen.
  • FIG. 9 is a diagram showing an image of spot light formed on a virtual vertical screen by visible light emitted from each visible light LED 44-10, 44-11 provided on the second wiring board 62.
  • FIG. 10 is a diagram showing a light distribution pattern P2 on a virtual vertical screen in a state where visible light emitted from each visible light LED 44-10, 44-11 is scanned by the rotation of the rotary reflector 65.
  • the visible light emitted from the visible light LED 44-10 and the visible light LED 44-11 is reflected by the rotating reflector 65 and is transmitted through the second lens unit 68 to be inverted vertically and horizontally, and is shown on the virtual vertical screen.
  • An image of spot light as shown in 9 is formed.
  • the image S10 is an image of the spot light emitted from the visible light LED 44-10
  • the image S11 is an image of the spot light emitted from the visible light LED 44-11.
  • the sizes of the images S10 and S11 are formed to be larger than the sizes of the visible light spotlight images S1 to S9 emitted from the visible light LEDs 44-1 to 44-9 shown in FIG. 7.
  • the images S10 and S11 formed by the visible light LEDs 44-10 and 44-11 mounted on the left headlamp are arranged side by side along the horizontal line HH on the left side of the vertical line VV on the virtual vertical screen. Be irradiated.
  • the images S10 and S11 formed by the visible light LEDs 44-10 and 44-11 mounted on the right headlamp are the horizontal line H on the right side of the vertical line VV on the virtual vertical screen. Irradiated in parallel along -H.
  • the light distribution pattern P2 is formed as a part of the diffused portion of the high beam light distribution pattern described later.
  • the images S10 and S11 formed by the visible light LEDs 44-10 and 44-11 mounted on the left headlamp are diffused because they are irradiated on the left side of the vertical line VV on the virtual vertical screen.
  • the light distribution pattern P2 forming a part of the portion is formed on the left side portion of the irradiation region of the light distribution pattern P1 forming the condensing portion.
  • the images S10 and S11 formed by the visible light LEDs 44-10 and 44-11 mounted on the right headlamp are illuminated on the right side of the vertical line VV on the virtual vertical screen. Therefore, the other part of the diffusing portion is formed on the right side portion of the irradiation region of the light distribution pattern P1 for the condensing portion. In this way, the light distribution of the visible light LEDs 44-10, 44-11 of the left headlamp (light distribution pattern P2) and the light distribution of the visible light LEDs 44-10, 44-11 of the right headlamp are combined. , A light distribution pattern for the diffuser is formed. Then, the light distribution pattern for the high beam shown in FIG. 11 is formed by synthesizing the light distribution pattern P1 for the condensing portion and the light distribution pattern for the diffusing portion.
  • FIG. 11 shows a light distribution pattern P3 formed on a virtual vertical screen by visible light radiated forward from the low beam lamp unit 42L and the high beam lamp unit 42H.
  • the visible light distribution pattern P3 shown in FIG. 11 is formed by combining visible light emitted from the low beam lamp unit 42L and the high beam lamp unit 42H. That is, the light distribution pattern P3 is a combination of the visible light low beam light distribution pattern P4 emitted from the low beam lamp unit 42L and the visible light high beam light distribution patterns P1 and P2 emitted from the high beam lamp unit 42H. Formed by synthesis.
  • the visible light LEDs 44-1 to 44- are arranged so that the upper part of the oncoming vehicle 100 (the position of the driver of the oncoming vehicle 100) and the peripheral area thereof are not irradiated with light.
  • the light distribution is controlled by turning off the light 11 at the timing corresponding to the area. As a result, glare light to the driver of the oncoming vehicle 100 can be suppressed.
  • FIG. 12 shows a virtual vertical screen by infrared light emitted from each IR-LED 45-1, 45-2 provided on the first wiring board 61 and IR-LED 45-3 provided on the second wiring board 62. It is a figure which shows the image of the spot light of the infrared light formed above.
  • FIG. 13 is a diagram showing a light distribution pattern P5 in a state where infrared light emitted from each IR-LED45-1, 45-2 and IR-LED45-3 is scanned by rotation of the rotation reflector 65. ..
  • the infrared light emitted from each of the IR-LEDs 45-1 and 45-2 is reflected by the rotary reflector 65 and is transmitted through the first lens unit 67 to be inverted vertically and horizontally, and is shown on the virtual vertical screen.
  • An image of spot light as shown in No. 12 is formed.
  • the infrared light emitted from the IR-LED45-3 is reflected by the rotary reflector 65 and is transmitted through the second lens portion 68 to be inverted vertically and horizontally, and is shown in FIG. 12 on a virtual vertical screen. Form an image of spot light like this.
  • the image S IR 1 is an image of the spot light of infrared light emitted from IR-LED45-1
  • the image S IR 2 is an image of the spot light of infrared light emitted from IR-LED45-2. It is an image
  • image S IR 3 is an image of spot light of infrared light emitted from IR-LED45-3.
  • the images S IR 1 and S IR 2 are irradiated on the horizontal line HH on the virtual vertical screen at a certain distance.
  • the image S IR 3 is illuminated between the image S IR 1 and the image S IR 2 on the horizontal line HH on the left side of the vertical line VV on the virtual vertical screen.
  • the size of the image S IR 3 is formed to be larger than the size of the images S IR 1 and S IR 2.
  • the image S IR 3 formed by the IR-LED 45-3 mounted on the right headlamp is along the horizontal line HH on the right side of the vertical line VV on the virtual vertical screen. Be irradiated.
  • the light distribution pattern P5 is a high beam light distribution pattern P1 and P2 of visible light according to the images of the spot light of infrared light emitted from IR-LED45-1, 45-2 S IR 1 and S IR 2. Regardless of the control, the light distribution is such that the entire region of the horizon HH is irradiated substantially uniformly. Further, in the light distribution pattern P5, the region irradiated by the infrared light emitted from the IR-LED45-3 (an example of the second scanning range) is the infrared emitted from the IR-LED45-1, 45-2. The light distribution is such that at least a part of the area irradiated by light (an example of the first scanning range) overlaps.
  • the IR-LED 45- The region irradiated by the infrared light emitted from No. 3 is located to the left in the irradiation region of the light distribution pattern P5.
  • the image S IR 3 formed by the IR-LED 45-3 mounted on the right headlamp is illuminated on the right side of the vertical line VV on the virtual vertical screen, so that the IR-LED 45- The region irradiated by the infrared light emitted from No. 3 is located to the right in the irradiation region of the light distribution pattern P5.
  • Infrared light emitted along the horizon HH like the light distribution pattern P5 is reflected by an object (object) existing in front of the vehicle.
  • the photodiode 47 included in the high beam lamp unit 42H receives infrared light reflected by an object and outputs it as a current signal.
  • the output infrared light current signal is converted into a voltage signal by the current-voltage conversion / amplification circuit 54, further amplified, and transmitted to the measurement circuit 55.
  • the measurement circuit 55 determines the emission timing of infrared light and the reflection of the infrared light based on the drive signal of the infrared light source 45 received from the LED driver 52 and the voltage signal transmitted from the current-voltage conversion / amplification circuit 54.
  • a signal relating to the light reception timing and the light intensity of the reflected light is transmitted to the micro controller 50.
  • the microcontroller 50 acquires information such as the distance to the object, the shape of the object, and the material of the object based on the signals related to infrared light (signals related to emitted light and return light (reflected light)) received from the measurement circuit 55. To do.
  • the microcontroller 50 can detect the presence of a pedestrian or an oncoming vehicle in front of the vehicle. Then, the microcontroller 50 turns on and off the visible light source 44 (visible light LEDs 44-1 to 44-11) so as not to give glare to pedestrians and oncoming vehicles in front of the vehicle detected based on the infrared light signal. To control.
  • the microcontroller 50 transmits a signal related to information around the vehicle detected based on the infrared light signal to the vehicle control unit 3.
  • the vehicle control unit 3 automatically outputs at least one of the steering control signal, the accelerator control signal, and the brake control signal based on the surrounding environment information acquired from the microcontroller 50. Can be generated.
  • the lamp control unit 43 of the present embodiment emits infrared light of IR-LED45-1, 45-2 so that IR-LED45-1, 45-2 and IR-LED45-3 do not emit infrared light at the same time.
  • the timing and the emission timing of infrared light of IR-LED45-3 are different.
  • the microcontroller 50 of the lamp control unit 43 can be used.
  • the period and time for emitting infrared light of IR-LED45-1, 45-2 do not overlap with the period and time for emitting infrared light of IR-LED45-3.
  • a pulse signal is generated so that the emission of the infrared light of the IR-LEDs 45-1 and 45-2 and the emission of the infrared light of the IR-LED45-3 can be switched at predetermined time intervals.
  • the LED driver 52 which receives the pulse signal from the microcontroller 50, controls the pulse lighting of the IR-LEDs 45-1, 45-2 and the IR-LED 45-3 based on the pulse signal.
  • the lamp control unit 43 emits red light emitted from the IR-LED45-3 each time the scanning range in which the infrared light emitted from the IR-LEDs 45-1 and 45-2 is scanned is completed. It may be configured to perform a single scan of outside light. As a result, when one of the IR-LEDs 45-1, 45-2 and IR-LED45-3 is lit (infrared light is emitted), the other is not lit (infrared light is not emitted). Is controlled.
  • the infrared light emitted from the IR-LED45-1 and 45-2 and the infrared light emitted from the IR-LED45-3 are reflected by an object (object) existing in front of the vehicle, and at different timings. It is incident on the photodiode 47.
  • the measurement circuit 55 identifies the IR-LED (IR-LED45-1, 45-2 or IR-LED45-3) that emits infrared light based on the drive signal of the infrared light source 45 received from the LED driver 52. , Detects its emission timing.
  • the measurement circuit 55 emits infrared light from the specified IR-LED (and infrared light is emitted from the other IR-LED) based on the voltage signal received from the current-voltage conversion / amplification circuit 54. (For example, before newly receiving the drive signal of the infrared light source 45 received from the LED driver 52), the reception timing of the reflected light of the infrared light incident on the photodiode 47 is detected. Then, the measurement circuit 55 measures the difference between the detected infrared light emission timing of the IR-LED and the reception timing of the reflected infrared light of the infrared light, and transmits the result to the microcontroller 50.
  • the IR-LEDs 45-1, 45-2 and IR-LED 45-3 of the infrared light source 45 simultaneously emit infrared light.
  • the infrared light emission timing of IR-LED45-1, 45-2 and the infrared light emission timing of IR-LED45-3 are different so as not to emit.
  • the sensing function using infrared light is improved, and the position of an object such as an oncoming vehicle can be detected with high accuracy. Therefore, for example, the light distribution pattern in which the glare light shown in FIG. 11 is suppressed can be accurately formed.
  • the visible light source 44, the infrared light source 45, and the photodiode 47 are mounted in a single high beam lamp unit 42H, the high beam lamp is equipped with both visible light irradiation and infrared light irradiation.
  • the miniaturization of the unit 42H can be realized.
  • the infrared light source 45 and the photodiode 47 are mounted in a single high beam lamp unit 42H, the reflection of the infrared light reflected by the object near the position where the infrared light is emitted is reflected. It can receive light. As a result, the angle of the return light with respect to the emitted light can be reduced, and the accuracy of detecting the direction (angle coordinates) and the distance of the object can be improved.
  • the lamp control unit 43 is configured to scan the scanning range of the IR-LED45-3 once each time the scanning range of the IR-LEDs 45-1 and 45-2 is completed.
  • the lamp control unit 43 is configured to switch between the emission of infrared light of IR-LED45-1, 45-2 and the emission of infrared light of IR-LED45-3 at predetermined time intervals. As a result, it is possible to focus on the area around the vehicle that requires the most sensing.
  • IR-LED45-1 and IR-LED45-2 are controlled so that the emission timings of infrared light are the same has been described.
  • the IR-LED45-1 and IR-LED45-2 may be controlled to emit infrared light at different emission timings.
  • two IR-LED45-1 and IR-LED45-2 are arranged on the first wiring board 61.
  • only one of R-LED45-1 and IR-LED45-2 may be arranged.
  • the image S IR 3 which is an image of the spot light of infrared light emitted from the IR-LED45-3, is red emitted from the IR-LED45-1 and the IR-LED45-2. It is formed so as to be larger than the images S IR 1 and S IR 2, which are images of spot light of external light.
  • images S IR 3 and images S IR 1 and S IR 2 may be formed to have similar sizes.
  • IR-LED45-1 in order to improve the sensing function using infrared light, IR-LED45-1 so that IR-LED45-1, 45-2 and IR-LED45-3 do not emit infrared light at the same time.
  • 45-2 infrared light emission timing and IR-LED45-3 infrared light emission timing are different.
  • the infrared light emitted from the IR-LEDs 45-1, 45-2 and IR-LED45-3 and reflected by the object is received by one photodiode 47 at different timings.
  • IR-LED45-1,45-2 and IR-LED45-3 are emitted from IR-LED45-1,45-2.
  • the wavelength of the infrared light and the wavelength of the infrared light emitted from the IR-LED45-3 are configured to be different.
  • the photodiode 47 has a photodiode 47-1 and a photodiode 47.2.
  • the infrared light emitted from the IR-LEDs 45-1, 45-2 and reflected by the object is received by the photodiode 47-1.
  • the infrared light emitted from the IR-LED45-3 and reflected by the object is received by the photodiode 47-2.
  • the basic structure and function of the vehicle system of the second embodiment are the same as those of the vehicle system 2 of the first embodiment shown in FIGS. 2 to 6 except for the above-mentioned differences.
  • the same structure and function as those in the first embodiment will be omitted from the description and illustration for convenience of explanation.
  • IR-LED45-1,45-2 and IR-LED45-3 are the wavelength of infrared light emitted from IR-LED45-1,45-2 and IR-LED45. It is configured so that the wavelength of the infrared light emitted from -3 is different.
  • IR-LED45-1,45-2 is configured to emit infrared light at 850 nm, 905 nm or 1500 nm
  • IR-LED45-3 is IR-LED45-of wavelengths of 850 nm, 905 nm and 1500 nm.
  • 1,45-2 is configured to emit infrared light of a wavelength not used.
  • the photodiode 47-1 having a light receiving sensitivity corresponding to the wavelength of the infrared light emitted by the IR-LEDs 45-1 and 45-2 and the IR-LED45-3 emit the photodiode 47. It has a photodiode 47-2 having a light receiving sensitivity corresponding to the wavelength of infrared light.
  • the infrared light emitted from the IR-LED45-1, 45-2 and the infrared light emitted from the IR-LED45-3 are each reflected by an object (object) existing in front of the vehicle, and the corresponding photo is taken. It is incident on the diodes 47-1 and 47.2.
  • the measurement circuit 55 emits an IR-LED (IR-LED45-1, IR-LED45-2 or IR-LED45-3) that emits infrared light based on the drive signal of the infrared light source 45 received from the LED driver 52. Identify and detect the emission timing.
  • the measurement circuit 55 is infrared from the specified IR-LED (IR-LED45-1, IR-LED45-2 or IR-LED45-3) based on the voltage signal received from the current-voltage conversion / amplification circuit 54. After the light is emitted, the reception timing of the reflected light of the infrared light of the same wavelength incident on the corresponding photodiode 47 (47-1 or 47-2) is detected. The measurement circuit 55 stores in advance the photodiode (47-1 or 47-2) information corresponding to each IR-LED (IR-LED45-1, IR-LED45-2 or IR-LED45-3). You may leave it. Then, the measurement circuit 55 measures the difference between the detected infrared light emission timing of the IR-LED and the reception timing of the reflected infrared light of the infrared light, and transmits the result to the microcontroller 50.
  • the specified IR-LED IR-LED45-1, IR-LED45-2 or IR-LED45-3
  • the IR-LEDs 45-1, 45-2 and IR-LED45-3 of the infrared light source 45 emit infrared light having different wavelengths. ..
  • the sensing function using infrared light is improved, and the position of an object such as an oncoming vehicle can be detected with high accuracy. Therefore, it is possible to improve the definition of the light distribution for lighting, which is variable depending on the situation around the vehicle, with a simple configuration. For example, the light distribution pattern in which the glare light shown in FIG. 11 is suppressed can be accurately formed.
  • the lamp control unit 43 can independently control the emission timing of IR-LED45-1, 45-2 and the emission timing of IR-LED45-3.
  • IR-LED45-1, 45-2 and IR-LED45-3 may be configured to emit infrared light at the same (same period and same time) emission timing. Even in this case, since the reflected light of infrared light having different wavelengths is received by the corresponding photodiodes 47-1 and 47-2, it is possible to detect infrared light for each wavelength. Therefore, it is not necessary to perform control such as detecting the light reception timing based on the infrared light received between the light emission timing of the IR-LED45-1 and the light emission timing of the IR-LED45-3.
  • the visible light source 44, the infrared light source 45, and the photodiode 47 are mounted in a single high beam lamp unit 42H, the high beam lamp is equipped with both visible light irradiation and infrared light irradiation.
  • the miniaturization of the unit 42H can be realized.
  • the infrared light source 45 and the photodiode 47 are mounted in a single high beam lamp unit 42H, the reflection of the infrared light reflected by the object near the position where the infrared light is emitted is reflected. It can receive light. As a result, the angle of the return light with respect to the emitted light can be reduced, and the accuracy of detecting the direction (angle coordinates) and the distance of the object can be improved.
  • the IR-LED45-1 and the IR-LED45-2 emit infrared light having the same wavelength is described.
  • the IR-LED45-1 and IR-LED45-2 may be controlled to emit infrared light of different wavelengths.
  • two IR-LED45-1 and IR-LED45-2 are arranged on the first wiring board 61.
  • only one of IR-LED45-1 and IR-LED45-2 may be arranged.
  • the image S IR 3 which is an image of the spot light of infrared light emitted from the IR-LED45-3, is red emitted from the IR-LED45-1 and the IR-LED45-2. It is formed so as to be larger than the images S IR 1 and S IR 2, which are images of spot light of external light.
  • images S IR 3 and images S IR 1 and S IR 2 may be formed to have similar sizes.
  • FIG. 14 is a schematic view showing a range irradiated by infrared light emitted from the infrared light source 45L of the left headlamp 4L and the infrared light source 45R of the right headlamp 4R according to the third embodiment.
  • FIG. 15 is a diagram showing the light receiving intensity of infrared light reflected by the object of FIG. 14 and received by the photodiodes 47L and 47R.
  • infrared light emitted from a plurality of IR-LEDs IR-LED45-1, IR-LED45-2 and IR-LED45-3 of the infrared light source 45 arranged in the headlamp 4.
  • IR-LED45-1, IR-LED45-2 and IR-LED45-3 IR-LED45-3 of the infrared light source 45 arranged in the headlamp 4.
  • the irradiation areas of the infrared rays overlap is described.
  • the irradiation region by the infrared light emitted from the IR-LED of the infrared light source 45L of the left headlamp 4L and the infrared light emitted from the IR-LED of the infrared light source 45R of the right headlamp 4R are used.
  • the case where the irradiation area overlaps will be described.
  • the configurations of the left headlamp 4L and the right headlamp 4R are the same as those of the headlamp 4 of the first embodiment, the description thereof will be omitted, and the components of the left headlamp 4L and the right headlamp 4R will be described. It will be described with an "L” or “R” indicating the left side or the right side.
  • the left headlamp 4L is mounted on the left side of the front portion of the vehicle 1.
  • the infrared light source 45L of the left headlamp 4L has infrared light in an irradiation range (an example of the first scanning range) from ⁇ L (minus ⁇ L ) to + ⁇ L (plus ⁇ L ) with reference to the vehicle front direction. Is emitted.
  • the photodiode 47L of the left headlamp 4L receives infrared light emitted from the infrared light source 45L and reflected by an object (object) in front of the vehicle.
  • the right headlamp 4R is mounted on the right side of the front portion of the vehicle 1.
  • the infrared light source 45R of the right headlamp 4R has infrared light in the irradiation range (an example of the second scanning range) from ⁇ R (minus ⁇ R ) to + ⁇ R (plus ⁇ R ) with reference to the vehicle front direction. Is emitted.
  • the photodiode 47R of the right headlamp 4R receives infrared light emitted from the infrared light source 45R and reflected by an object (object) in front of the vehicle.
  • ⁇ L and ⁇ R have the same angle
  • - ⁇ L to + ⁇ L and - ⁇ R to + ⁇ R have the same angle range.
  • the irradiation region of the left headlamp 4L and the irradiation region of the right headlamp 4R are configured to overlap in the central region in front of the vehicle.
  • the left headlamp 4L and the right headlamp 4R are arranged so as to be separated from each other by a predetermined distance d between the infrared light source 45L and the infrared light source 45R along the direction orthogonal to the vehicle front-rear direction.
  • the photodiode 47L of the left headlamp 4L and the photodiode 47R of the right headlamp 4R are emitted from the infrared light source 45L and the infrared light source 45R at different angles.
  • the reflected light of the infrared light reflected by the object is incident.
  • the right head lamp 4R has a predetermined angle of ⁇ 1 from the infrared light source 45R (and a predetermined angle centered on ⁇ 1).
  • the infrared light emitted in the angle range of is reflected by the object 100, and the reflected light of the infrared light is received by the photodiode 47R.
  • infrared light emitted by the infrared light source 45L from theta 2 of angle is reflected by the object 100, the reflection of the infrared light Light is received by the photodiode 47L.
  • the position of the object 100 is specified from the difference between the emission timing of the emission light and the reception timing of the return light detected by the left headlamp 4L and the right headlamp 4R, the angles ⁇ 1 and ⁇ 2 of the emission light, and the distance d. can do.
  • the infrared light irradiation region by the infrared light source 45L of the left headlamp 4L and the infrared light irradiation region by the infrared light source 45R of the right headlamp 4R overlap. Therefore, the infrared light received by the photodiode 47L of the left head lamp 4L is either the infrared light emitted from the infrared light source 45L of the left head lamp 4L and reflected by the object, or the right head lamp 4R. It becomes difficult to recognize whether the infrared light is emitted from the infrared light source 45R and reflected by the object.
  • the infrared light received by the photodiode 47R of the right headlamp 4R is the infrared light emitted from the infrared light source 45L of the left headlamp 4L and reflected by the object, or the red of the right headlamp 4R. It becomes difficult to recognize whether the infrared light is emitted from the external light source 45R and reflected by the object.
  • the vehicle control unit 3 of the present embodiment emits infrared light from the infrared light source 45L so that the infrared light source 45L of the left headlamp 4L and the infrared light source 45R of the right headlamp 4R do not emit infrared light at the same time.
  • the timing and the emission timing of the infrared light of the infrared light source 45R are different. For example, when the infrared light source 45L and the infrared light source 45R are pulse-lit controlled so as to emit infrared light at a predetermined period and time, the vehicle control unit 3 receives infrared light via HMI8 or the like.
  • the left head lamp 4L and the right head lamp 4R are set so that the cycle and time for emitting infrared light from the infrared light source 45L do not overlap with the cycle and time for emitting infrared light from the infrared light source 45R.
  • a pulse control instruction signal is generated for each. That is, a pulse control instruction signal is generated so that the emission of the infrared light of the infrared light source 45L and the emission of the infrared light of the infrared light source 45R can be switched at predetermined time intervals.
  • the left headlamp 4L and the right headlamp 4R which have received the pulse control signal from the vehicle control unit 3, control the infrared light source 45L and the infrared light source 45R for pulse lighting at different cycles and times, respectively.
  • the vehicle control unit 3 receives one infrared light emitted from the infrared light source 45R each time the scanning range in which the infrared light emitted from the infrared light source 45L is scanned is completed. It may be configured to perform scanning. As a result, the infrared light source 45L and the infrared light source 45R are controlled so that when one is lit (infrared light is emitted), the other is not lit (infrared light is not emitted).
  • the measurement circuit 55L of the left head lamp 4L emits infrared light of the infrared light source 54L based on the drive signal of the infrared light source 45L received from the LED driver 52L and the voltage signal received from the current-voltage conversion / amplification circuit 54L. The difference between the timing and the reception timing of the reflected light of the infrared light incident on the photodiode 47L is measured. Then, the measurement circuit 55L transmits the result to the microcontroller 50L.
  • the light receiving timing of the photodiode 47L is based on the reflected light of the infrared light incident on the photodiode 47L after the infrared light is emitted from the infrared light source 45L and before the infrared light is emitted from the infrared light source 45R. Is detected.
  • the lighting control instruction signal transmitted from the vehicle control unit 3 to the left headlamp 4L includes lighting control information of the infrared light source 45R of the right headlamp 4R, and the measurement circuit 55L includes this lighting control information. Based on the above, the emission timing of the infrared light of the infrared light source 45R is grasped.
  • the measurement circuit 55R of the right head lamp 4R is based on the drive signal of the infrared light source 45R received from the LED driver 52R and the voltage signal received from the current-voltage conversion / amplification circuit 54R, and the infrared light of the infrared light source 54R. The difference between the light emission timing and the light reception timing of the reflected infrared light incident on the photodiode 47R is measured. Then, the measurement circuit 55R transmits the result to the microcontroller 50R.
  • the vehicle control unit 3 uses the infrared light of the infrared light source 45L so that the infrared light source 45L and the infrared light source 45R do not emit infrared light at the same time.
  • the emission timing of the infrared light and the emission timing of the infrared light of the infrared light source 45R are made different.
  • the sensing function using infrared light is improved, and the position of an object such as an oncoming vehicle can be detected with high accuracy. Therefore, for example, the light distribution pattern in which the glare light shown in FIG. 11 is suppressed can be accurately formed.
  • the infrared light sources 45L and 45R and the photodiodes 47L and 47R are mounted in a single headlamp 4L and 4R, respectively, the infrared light is reflected by the object near the position where the infrared light is emitted. It can receive the reflected light of infrared light. As a result, the angle of the return light with respect to the emitted light can be reduced, and the accuracy of detecting the direction (angle coordinates) and the distance of the object can be improved.
  • the lamp control unit 43 is configured to perform one scan of the scanning range of the infrared light source 45L each time the scanning range of the infrared light source 45R is completed.
  • the lamp control unit 43 is configured to switch between emitting infrared light from the infrared light source 45R and emitting infrared light from the infrared light source 45L at predetermined time intervals. As a result, it is possible to focus on the area around the vehicle that requires the most sensing.
  • the vehicle control unit 3 controls the emission timing of the infrared light of the infrared light source 45L and the emission timing of the infrared light of the infrared light source 45R.
  • the lamp control units 43L and 43R of the left headlamp 4L and the right headlamp 4R send and receive signals including emission timing information to each other to adjust the emission timing of infrared light of the infrared light sources 45L and 45R. May be good.
  • the configuration of the left headlamp 4L and the right headlamp 4R is the same as the configuration of the headlamp 4 of the first embodiment.
  • the configuration of the left headlamp 4L and the right headlamp 4R is the first if the irradiation range of the infrared light source 45 of the left headlamp 4L and the irradiation range of the infrared light source 45 of the right headlamp 4R overlap. It may be different from the configuration of the headlamp 4 of the embodiment.
  • the infrared light source 45L of the left head lamp 4L and the infrared light source 45R of the right head lamp 4R do not emit infrared light at the same time.
  • the emission timing of the infrared light of the infrared light source 45L and the emission timing of the infrared light of the infrared light source 45R are different.
  • the infrared light source 45L of the left head lamp 4L (all optical elements constituting the infrared light source 45L) and the infrared light of the right head lamp 4R are used.
  • the light source 45R (all optical elements constituting the infrared light source 45R) is configured to emit infrared light having different wavelengths from each other.
  • the basic structure and function of the vehicle system of the fourth embodiment are the same as the structure and function of the vehicle system 2 of the third embodiment shown in FIG. 14, except for the above-mentioned differences.
  • the same structure and function as those in the third embodiment will be omitted from the description and illustration for convenience of explanation.
  • the vehicle system 2 of the present embodiment includes an infrared light source 45L of the left headlamp 4L (all optical elements constituting the infrared light source 45L) and an infrared light source 45R of the right headlamp 4R (all constituting the infrared light source 45R).
  • Optical elements are configured to emit infrared light of different wavelengths from each other.
  • the infrared light source 45L is configured to emit infrared light of 850 nm, 905 nm or 1500 nm
  • the infrared light source 45R has wavelengths of 850 nm, 905 nm and 1500 nm that are not used by the infrared light source 45L. It is configured to emit infrared light of.
  • the photodiode 47L of the left headlamp 4L has a light receiving sensitivity corresponding to the wavelength of the infrared light source 45L
  • the photodiode 47R of the right headlamp 4R has a light receiving sensitivity corresponding to the wavelength of the infrared light source 45R. It is configured.
  • the measurement circuit 55L of the left head lamp 4L emits infrared light of the infrared light source 54L based on the drive signal of the infrared light source 45L received from the LED driver 52L and the voltage signal received from the current-voltage conversion / amplification circuit 54L. The difference between the timing and the reception timing of the reflected light of the infrared light having the same wavelength as the infrared light emitted from the infrared light source 54L incident on the photodiode 47L is measured. Then, the measurement circuit 55L transmits the result to the microcontroller 50L.
  • the measurement circuit 55R of the right head lamp 4R is based on the drive signal of the infrared light source 45R received from the LED driver 52R and the voltage signal received from the current-voltage conversion / amplification circuit 54R, and the infrared light of the infrared light source 54R. The difference between the light emission timing and the reception timing of the reflected light of the infrared light having the same wavelength as the infrared light emitted from the infrared light source 54R incident on the photodiode 47R is measured. Then, the measurement circuit 55R transmits the result to the microcontroller 50R.
  • the infrared light source 45L of the left headlamp 4L and the infrared light source 45R of the right headlamp 4R emit infrared light having different wavelengths from each other.
  • the sensing function using infrared light is improved, and the position of an object such as an oncoming vehicle can be detected with high accuracy. Therefore, the light distribution for lighting, which varies depending on the surrounding conditions of the vehicle, can be made higher in definition with a simple configuration. For example, the light distribution pattern in which the glare light shown in FIG. 11 is suppressed can be accurately formed.
  • the infrared light sources 45L and 45R and the photodiodes 47L and 47R are mounted in a single headlamp 4L and 4R, respectively, the infrared light is reflected by the object near the position where the infrared light is emitted. It can receive the reflected light of infrared light. As a result, the angle of the return light with respect to the emitted light can be reduced, and the accuracy of detecting the direction (angle coordinates) and the distance of the object can be improved.
  • all the light emitting elements constituting the infrared light source 45L are configured to emit infrared light having the same wavelength.
  • all the light emitting elements constituting the infrared light source 45L may be configured to emit infrared light having different wavelengths from each other.
  • the configuration of the left headlamp 4L and the right headlamp 4R is the configuration of the IR-LEDs constituting the infrared light sources 45L and 45R (wavelength of the emitted infrared light) and the photodiode 47.
  • the configuration is the same as that of the headlamp 4 of the first embodiment except for the configuration of.
  • the configuration of the left headlamp 4L and the right headlamp 4R is the first if the irradiation range of the infrared light source 45 of the left headlamp 4L and the irradiation range of the infrared light source 45 of the right headlamp 4R overlap. It may be different from the configuration of the headlamp 4 of the embodiment.
  • the present invention is not limited to the above-described embodiment, and can be freely modified, improved, and the like as appropriate.
  • the material, shape, size, numerical value, form, number, arrangement location, etc. of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
  • an infrared light source 45 that irradiates infrared light as a light source for invisible light has been described as an example.
  • a light source for invisible light a light source that irradiates invisible light other than infrared light such as ultraviolet rays or X-rays may be adopted.
  • the high beam lamp unit 42H provided in the headlamp 4 has been described as an example of the lamp, but as an indicator lamp such as a stop lamp or a tail lamp provided at the rear of the vehicle. It may be configured. According to this configuration, the light distribution function as a stop lamp or a tail lamp and the detection function of an object behind the vehicle can be compatible with each other in a single lamp unit.
  • a lens 66 that transmits visible light and infrared light reflected by the rotary reflector 65 is provided in the high beam lamp unit 42H, but the lens 66 is not necessarily provided. There is no need to provide. Visible light and infrared light reflected by the rotary reflector 65 may be directly irradiated in front of the high beam lamp unit 42H without passing through a lens.
  • the photodiode mounted on the high beam lamp unit 42H receives the return light when the infrared light emitted to the front of the vehicle is reflected by an object existing in front of the vehicle.
  • the light is received by 47.
  • the return light of the infrared light is photographed by the infrared camera 6B provided at a place different from the headlamp 4, and the black-and-white image by the photographed infrared light is processed by the image processing unit 18 to obtain the vehicle.
  • the control unit 3 may detect the presence of a pedestrian or an oncoming vehicle in front of the vehicle. Further, by displaying the image taken by the infrared camera 6B on the monitor 19 provided in the vehicle, the driver of the vehicle 1 can confirm the existence of a pedestrian or an oncoming vehicle in front of the vehicle.
  • the positions of the LEDs constituting the visible light source 44 and the infrared light source 45 are not limited to those shown in FIGS. 3 to 6, and may be arranged at positions different from those shown in FIGS. 3 to 6. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A high-beam light unit (42H) includes: a rotating reflector (65) that rotates while reflecting visible light emitted from a visible light source (44) and infrared light emitted from an infrared light source (45), and horizontally scans visible light and infrared light on a virtual vertical screen disposed at a predetermined distance from a vehicle; and a photodiode (47) that receives infrared light emitted from the infrared light source (45) and reflected from a target object. A lamp control unit (43) sets the emission timing of infrared light from a first IR-LED and the emission timing of infrared light from a second IR-LED to be different from each other such that infrared light is not simultaneously emitted from the first IR-LED and the second IR-LED of the infrared light source (45).

Description

車両用灯具および車両用灯具システムVehicle lighting and vehicle lighting system
 本開示は、自動車などの車両に用いられる車両用灯具および車両用灯具システムに関する。 The present disclosure relates to vehicle lighting equipment and vehicle lighting equipment systems used for vehicles such as automobiles.
 可視光源からの可視光および赤外光源からの赤外光をそれぞれ別個の光学部材によって反射して、可視光および赤外光を車両前方に照射する車両用照明装置が開示されている(特許文献1参照)。 A vehicle lighting device is disclosed in which visible light from a visible light source and infrared light from an infrared light source are reflected by separate optical members to irradiate visible light and infrared light to the front of the vehicle (Patent Documents). 1).
日本国特開2009-154615号公報Japanese Patent Application Laid-Open No. 2009-154615
 本開示は、赤外光を用いたセンシング機能が向上した車両用灯具および車両用灯具システムを提供することを目的の一つとする。 One of the purposes of the present disclosure is to provide a vehicle lamp and a vehicle lamp system having an improved sensing function using infrared light.
 本開示は、車両周囲の状況により可変する照明用の配光を簡便な構成で高精細化することが可能な車両用灯具および車両用灯具システムを提供することを目的の一つとする。 One of the purposes of the present disclosure is to provide a vehicle lighting fixture and a vehicle lighting fixture system capable of high-definition light distribution for lighting that varies depending on the surrounding conditions of the vehicle with a simple configuration.
 本開示の一側面に係る車両用灯具は、
 車両の周辺に可視光を照射するための第一光源と、
 前記車両の周辺の情報を取得するために赤外光を出射する第二光源と、
 前記第一光源から照射された前記可視光と前記第二光源から照射された前記赤外光を反射しながら回転し、前記車両から所定距離の位置に配置される仮想鉛直スクリーン上における水平方向に前記可視光および前記赤外光を走査する回転リフレクタと、
 前記第二光源から出射され、対象物により反射された赤外光を受光する受光部と、
 前記第一光源、前記第二光源および前記回転リフレクタを制御する制御部と、
を備え、
 前記第二光源は、第一発光素子と、第二光学素子とを有し、
 前記制御部は、前記第一発光素子および前記第二発光素子が同時に赤外光を出射しないように前記第一発光素子の赤外光の出射タイミングと前記第二発光素子の赤外光の出射タイミングとを異ならせる。
The vehicle lighting equipment according to one aspect of the present disclosure is
The first light source for irradiating the surroundings of the vehicle with visible light,
A second light source that emits infrared light to acquire information on the surroundings of the vehicle,
Rotating while reflecting the visible light emitted from the first light source and the infrared light emitted from the second light source, in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle. A rotating reflector that scans the visible light and the infrared light,
A light receiving unit that receives infrared light emitted from the second light source and reflected by an object,
A control unit that controls the first light source, the second light source, and the rotation reflector.
With
The second light source has a first light emitting element and a second optical element.
The control unit emits infrared light of the first light emitting element and infrared light of the second light emitting element so that the first light emitting element and the second light emitting element do not emit infrared light at the same time. Make the timing different.
 この構成によれば、赤外光を用いたセンシング機能が向上した車両用灯具を提供することができる。 According to this configuration, it is possible to provide a vehicle lamp with an improved sensing function using infrared light.
 また、前記第一発光素子から出射された赤外光が走査される第一走査範囲と、前記第二発光素子から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複しており、
 前記制御部は、前記第一走査範囲の前記水平方向に一回の走査が完了する度に前記第二走査範囲の前記水平方向に一回の走査を行うように構成されていてもよい。
Further, at least a part of the first scanning range in which the infrared light emitted from the first light emitting element is scanned and the second scanning range in which the infrared light emitted from the second light emitting element is scanned are partially. Duplicate,
The control unit may be configured to perform one scan in the horizontal direction of the second scan range each time one scan in the horizontal direction of the first scan range is completed.
 この構成によれば、車両周辺において最もセンシングが必要な領域を重点的にセンシングすることができる。 According to this configuration, it is possible to focus on the area around the vehicle that requires the most sensing.
 また、前記第一発光素子から出射された赤外光が走査される第一走査範囲と、前記第二発光素子から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複しており、
 前記制御部は、所定の時間毎に前記第一発光素子の赤外光の出射と前記第二発光素子の赤外光の出射とを切り替えるように構成されていてもよい。
Further, at least a part of the first scanning range in which the infrared light emitted from the first light emitting element is scanned and the second scanning range in which the infrared light emitted from the second light emitting element is scanned are partially. Duplicate,
The control unit may be configured to switch between emitting infrared light from the first light emitting element and emitting infrared light from the second light emitting element at predetermined time intervals.
 この構成によれば、車両周辺において最もセンシングが必要な領域を重点的にセンシングすることができる。 According to this configuration, it is possible to focus on the area around the vehicle that requires the most sensing.
 本開示の一側面に係る車両用灯具システムは、
 車両の周辺に可視光を照射するための第一光源と、前記車両の周辺の情報を取得するために赤外光を出射する第二光源と、前記第一光源から照射された前記可視光および前記第二光源から照射された前記赤外光を反射しながら回転し、前記車両から所定距離の位置に配置される仮想鉛直スクリーン上における水平方向に前記可視光および前記赤外光を走査する第一回転リフレクタと、を有する第一車両用灯具と、
 前記車両の周辺に可視光を照射するための第三光源と、前記車両の周辺の情報を取得するために赤外光を出射する第四光源と、前記第三光源から照射された前記可視光および前記第四光源から照射された前記赤外光を反射しながら回転し、前記車両から所定距離の位置に配置される仮想鉛直スクリーン上における水平方向に前記可視光および前記赤外光を走査する第二回転リフレクタと、を有する第二車両用灯具と、
 前記第二光源から出射され対象物により反射された赤外光および前記第四光源から出射され前記対象物により反射された赤外光を受光する受光部と、
 前記第二光源および前記第四光源を制御する制御部と、
を備え、
 前記制御部は、前記第二光源および前記第四光源が同時に赤外光を出射しないように前記第二光源の赤外光の出射タイミングと前記第四光源の赤外光の出射タイミングとを異ならせる。
The vehicle lighting system according to one aspect of the present disclosure is
A first light source for irradiating the periphery of the vehicle with visible light, a second light source for emitting infrared light for acquiring information around the vehicle, the visible light emitted from the first light source, and the like. The visible light and the infrared light are scanned in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle by rotating while reflecting the infrared light emitted from the second light source. With a one-turn reflector, and a lighting fixture for the first vehicle,
A third light source for irradiating the periphery of the vehicle with visible light, a fourth light source for emitting infrared light for acquiring information on the periphery of the vehicle, and the visible light emitted from the third light source. The visible light and the infrared light are scanned in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle by rotating while reflecting the infrared light emitted from the fourth light source. A second vehicle lighting device with a second rotation reflector, and
A light receiving unit that receives infrared light emitted from the second light source and reflected by the object and infrared light emitted from the fourth light source and reflected by the object.
A control unit that controls the second light source and the fourth light source,
With
The control unit is different from the infrared light emission timing of the second light source and the infrared light emission timing of the fourth light source so that the second light source and the fourth light source do not emit infrared light at the same time. Let me.
 この構成によれば、赤外光を用いた車両周囲のセンシング機能が向上した車両用灯具システムを提供することができる。 According to this configuration, it is possible to provide a vehicle lighting system having an improved sensing function around the vehicle using infrared light.
 また、前記第二光源から出射された赤外光が走査される第一走査範囲と、前記第四光源から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複しており、
 前記制御部は、前記第一走査範囲の前記水平方向に一回の走査が完了する度に前記第二走査範囲の前記水平方向に一回の走査を行うように構成されていてもよい。
Further, at least a part of the first scanning range in which the infrared light emitted from the second light source is scanned and the second scanning range in which the infrared light emitted from the fourth light source is scanned overlap. And
The control unit may be configured to perform one scan in the horizontal direction of the second scan range each time one scan in the horizontal direction of the first scan range is completed.
 この構成によれば、車両周辺において最もセンシングが必要な領域を重点的にセンシングすることができる。 According to this configuration, it is possible to focus on the area around the vehicle that requires the most sensing.
 また、前記第二光源から出射された赤外光が走査される第一走査範囲と、前記第四光源から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複しており、
 前記制御部は、所定の時間毎に前記第二光源の赤外光の出射と前記第四光源の赤外光の出射とを切り替えるように構成されていてもよい。
Further, at least a part of the first scanning range in which the infrared light emitted from the second light source is scanned and the second scanning range in which the infrared light emitted from the fourth light source is scanned overlap. And
The control unit may be configured to switch between emitting infrared light from the second light source and emitting infrared light from the fourth light source at predetermined time intervals.
 この構成によれば、車両周辺において最もセンシングが必要な領域を重点的にセンシングすることができる。 According to this configuration, it is possible to focus on the area around the vehicle that requires the most sensing.
 また、前記受光部は、前記第一車両用灯具内に配置され、前記第二光源から出射され前記対象物により反射された赤外光を受光する第一受光部と、前記第二車両用灯具内に配置され、前記第四光源から出射され前記対象物により反射された赤外光を受光する第二受光部と、を備えていてもよい。 Further, the light receiving unit is arranged in the first vehicle lamp, and has a first light receiving unit that receives infrared light emitted from the second light source and reflected by the object, and the second vehicle lamp. It may be provided with a second light receiving unit which is arranged inside and receives infrared light emitted from the fourth light source and reflected by the object.
 この構成によれば、赤外光が出射された位置付近において、対象物により反射された当該赤外光の反射光を受光することができるため、出射光に対する戻り光の角度が小さくなる。これにより、対象物の方向(角度座標)や距離を検出する精度を向上させることができる。 According to this configuration, the reflected light of the infrared light reflected by the object can be received in the vicinity of the position where the infrared light is emitted, so that the angle of the return light with respect to the emitted light becomes small. This makes it possible to improve the accuracy of detecting the direction (angle coordinates) and distance of the object.
 また、前記第一車両用灯具は、左側ヘッドランプであり、前記第二車両用灯具は、右側ヘッドランプでもよい。 Further, the first vehicle lighting equipment may be a left side headlamp, and the second vehicle lighting equipment may be a right side headlamp.
 この構成によれば、車両前方において赤外光を用いたセンシング機能が向上する。 According to this configuration, the sensing function using infrared light is improved in front of the vehicle.
 本開示の一側面に係る車両用灯具は、
 車両の周辺に可視光を照射するための第一光源と、
 前記車両の周辺の情報を取得するために赤外光を出射する第二光源と、
 前記第一光源から照射された前記可視光および前記第二光源から照射された前記赤外光を反射しながら回転し、前記車両から所定距離の位置に配置される仮想鉛直スクリーン上における水平方向に前記可視光および前記赤外光を走査する回転リフレクタと、
 前記第二光源から出射され、対象物により反射された赤外光を受光する受光部と、を備え、
 前記第二光源は、第一波長の赤外光を出射する第一発光素子と、前記第一波長とは異なる第二波長の赤外光を出射する第二発光素子とを有する。
The vehicle lighting equipment according to one aspect of the present disclosure is
The first light source for irradiating the surroundings of the vehicle with visible light,
A second light source that emits infrared light to acquire information on the surroundings of the vehicle,
Rotating while reflecting the visible light emitted from the first light source and the infrared light emitted from the second light source, in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle. A rotating reflector that scans the visible light and the infrared light,
A light receiving unit that receives infrared light emitted from the second light source and reflected by an object is provided.
The second light source includes a first light emitting element that emits infrared light having a first wavelength, and a second light emitting element that emits infrared light having a second wavelength different from the first wavelength.
 この構成によれば、車両周囲の状況により可変する照明用の配光を簡便な構成で高精細化することが可能な車両用灯具を提供することができる。 According to this configuration, it is possible to provide a vehicle lighting device capable of high-definition light distribution for lighting, which is variable depending on the situation around the vehicle, with a simple configuration.
 また、前記第一発光素子から出射された赤外光が走査される第一走査範囲と、前記第二発光素子から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複してもよい。 Further, at least a part of the first scanning range in which the infrared light emitted from the first light emitting element is scanned and the second scanning range in which the infrared light emitted from the second light emitting element is scanned are partially. It may be duplicated.
 この構成によれば、車両周囲の状況により可変する照明用の配光を簡便な構成でより高精細化することができる。 According to this configuration, the light distribution for lighting, which varies depending on the surrounding conditions of the vehicle, can be made higher in definition with a simple configuration.
 本開示の一側面に係る車両用灯具システムは、
 車両の周辺に可視光を照射するための第一光源と、前記車両の周辺の情報を取得するために第一波長の赤外光を出射する第二光源と、前記第一光源から照射された前記可視光および前記第二光源から照射された前記赤外光を反射しながら回転し、前記車両から所定距離の位置に配置される仮想鉛直スクリーン上における水平方向に前記可視光および前記赤外光を走査する第一回転リフレクタと、を有する第一車両用灯具と、
 前記車両の周辺に可視光を照射するための第三光源と、前記車両の周辺の情報を取得するために前記第一波長とは異なる第二波長の赤外光を出射する第四光源と、前記第三光源から照射された前記可視光および前記第四光源から照射された前記赤外光を反射しながら回転し、前記仮想鉛直スクリーン上における水平方向前記可視光および前記赤外光を走査する第二回転リフレクタと、を有する第二車両用灯具と、
 前記第二光源から出射され対象物により反射された赤外光および前記第四光源から出射され前記対象物により反射された赤外光を受光する受光部と、を備える。
The vehicle lighting system according to one aspect of the present disclosure is
A first light source for irradiating the periphery of the vehicle with visible light, a second light source for emitting infrared light of the first wavelength for acquiring information on the periphery of the vehicle, and the first light source. The visible light and the infrared light rotate while reflecting the visible light and the infrared light emitted from the second light source, and the visible light and the infrared light are horizontally arranged on a virtual vertical screen arranged at a predetermined distance from the vehicle. The first rotating reflector, which scans the light source for the first vehicle, and
A third light source for irradiating the periphery of the vehicle with visible light, and a fourth light source for emitting infrared light having a second wavelength different from the first wavelength for acquiring information on the periphery of the vehicle. Rotate while reflecting the visible light emitted from the third light source and the infrared light emitted from the fourth light source, and scan the visible light and the infrared light in the horizontal direction on the virtual vertical screen. A second vehicle lighting device with a second rotation reflector, and
It includes a light receiving unit that receives infrared light emitted from the second light source and reflected by the object and infrared light emitted from the fourth light source and reflected by the object.
 この構成によれば、車両周囲の状況により可変する照明用の配光を簡便な構成で高精細化することが可能な車両用灯具システムを提供することができる。 According to this configuration, it is possible to provide a vehicle lighting system capable of improving the definition of the light distribution for lighting, which is variable depending on the surrounding conditions of the vehicle, with a simple configuration.
 また、前記第一車両用灯具は左側ヘッドランプであり、前記第二車両用灯具は右側ヘッドランプでもよい。 Further, the first vehicle lamp may be a left headlamp, and the second vehicle lamp may be a right headlamp.
 この構成によれば、車両前方において赤外光を用いたセンシング機能が向上する。 According to this configuration, the sensing function using infrared light is improved in front of the vehicle.
 また、前記第二光源から出射された赤外光が走査される第一走査範囲と、前記第四光源から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複してもよい。 Further, at least a part of the first scanning range in which the infrared light emitted from the second light source is scanned and the second scanning range in which the infrared light emitted from the fourth light source is scanned overlap. You may.
 この構成によれば、車両周囲の状況により可変する照明用の配光を簡便な構成でより高精細化することができる。 According to this configuration, the light distribution for lighting, which varies depending on the surrounding conditions of the vehicle, can be made higher in definition with a simple configuration.
 また、前記受光部は、前記第一車両用灯具内に配置され、前記第二光源から出射され前記対象物により反射された赤外光を受光する第一受光部と、前記第二車両用灯具内に配置され、前記第四光源から出射され前記対象物により反射された赤外光を受光する第二受光部と、を備えていてもよい。 Further, the light receiving unit is arranged in the first vehicle lamp, and has a first light receiving unit that receives infrared light emitted from the second light source and reflected by the object, and the second vehicle lamp. It may be provided with a second light receiving unit which is arranged inside and receives infrared light emitted from the fourth light source and reflected by the object.
 この構成によれば、赤外光が出射された位置付近において、対象物により反射された当該赤外光の反射光を受光することができるため、出射光に対する戻り光の角度が小さくなる。これにより、対象物の方向(角度座標)や距離を検出する精度を向上させることができる。 According to this configuration, the reflected light of the infrared light reflected by the object can be received in the vicinity of the position where the infrared light is emitted, so that the angle of the return light with respect to the emitted light becomes small. This makes it possible to improve the accuracy of detecting the direction (angle coordinates) and distance of the object.
 本開示に係る車両用灯具および車両用灯具システムによれば、赤外光を用いたセンシング機能を向上させることができる。 According to the vehicle lighting equipment and the vehicle lighting equipment system according to the present disclosure, the sensing function using infrared light can be improved.
 また、車両周囲の状況により可変する照明用の配光を簡便な構成で高精細化することができる。 In addition, the light distribution for lighting, which varies depending on the surrounding conditions of the vehicle, can be made high-definition with a simple configuration.
本開示の実施形態の一例に係る車両用灯具が搭載された車両システムの構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle system which mounted the vehicle lighting equipment which concerns on an example of embodiment of this disclosure. 第一実施形態に係る車両システムの一部の構成を模式的に示したブロック図である。It is a block diagram which shows typically the structure of a part of the vehicle system which concerns on 1st Embodiment. 第一実施形態に係るハイビーム用灯具ユニットの上面図である。It is a top view of the high beam lamp unit which concerns on 1st Embodiment. 図3のハイビーム用灯具ユニットの一部拡大図である。It is a partially enlarged view of the high beam lamp unit of FIG. ハイビーム用灯具ユニットが備える第一配線基板の正面図である。It is a front view of the 1st wiring board provided in the high beam lamp unit. ハイビーム用灯具ユニットが備える第二配線基板の正面図である。It is a front view of the 2nd wiring board provided in the high beam lamp unit. 第一配線基板に設けられた各可視光発光素子から照射される可視光により、仮想鉛直スクリーン上に形成されるスポット光の像を示す図である。It is a figure which shows the image of the spot light formed on the virtual vertical screen by the visible light emitted from each visible light emitting element provided in the 1st wiring board. 第一配線基板に設けられた各可視光発光素子から照射された可視光が回転リフレクタの回転により走査された状態での仮想鉛直スクリーン上の配光パターンを示す図である。It is a figure which shows the light distribution pattern on the virtual vertical screen in the state which the visible light irradiated from each visible light light emitting element provided on the 1st wiring board is scanned by the rotation of a rotation reflector. 第二配線基板に設けられた各可視光発光素子から照射される可視光により、仮想鉛直スクリーン上に形成されるスポット光の像を示す図である。It is a figure which shows the image of the spot light formed on the virtual vertical screen by the visible light emitted from each visible light emitting element provided in the 2nd wiring board. 第二配線基板に設けられた各可視光発光素子から照射された可視光が回転リフレクタの回転により走査された状態での仮想鉛直スクリーン上の配光パターンを示す図である。It is a figure which shows the light distribution pattern on the virtual vertical screen in the state which the visible light irradiated from each visible light light emitting element provided on the 2nd wiring board is scanned by the rotation of a rotation reflector. ロービーム用灯具ユニットおよびハイビーム用灯具ユニットから前方に照射される可視光により、仮想鉛直スクリーン上に形成される配光パターンを示す図である。It is a figure which shows the light distribution pattern formed on the virtual vertical screen by the visible light which irradiates forward from the low beam lamp unit and the high beam lamp unit. 第一配線基板および第二配線基板に設けられた各赤外光発光素子から照射された赤外光により、仮想鉛直スクリーン上に形成される赤外光のスポット光の像を示す図である。It is a figure which shows the image of the spot light of the infrared light formed on the virtual vertical screen by the infrared light emitted from each infrared light emitting element provided in the 1st wiring board and the 2nd wiring board. 各赤外光発光素子から照射される赤外光が、回転リフレクタの回転により走査された状態での配光パターンを示す図である。It is a figure which shows the light distribution pattern in the state which the infrared light emitted from each infrared light emitting element is scanned by the rotation of a rotary reflector. 第三実施形態に係る左側ヘッドランプの赤外光源および右側ヘッドランプの赤外光源Rから出射される赤外光により照射される範囲を示した模式図である。It is a schematic diagram which showed the range which is irradiated by the infrared light emitted from the infrared light source of the left-hand headlamp and the infrared light source R of the right-hand headlamp which concerns on 3rd Embodiment. 図14の対象物により反射されてフォトダイオードにより受光された赤外光の受光強度を示した図である。It is a figure which showed the light receiving intensity of the infrared light which was reflected by the object of FIG. 14 and received by a photodiode.
 以下、本開示を実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述される全ての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present disclosure will be described with reference to the drawings based on the embodiment. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. Further, the embodiment is not limited to the invention but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the invention.
 図1は、車両1に搭載される車両システム2(車両用灯具システムの一例)のブロック図を示している。
 図1に示すように、本実施形態に係る車両システム2は、車両制御部3(制御部の一例)と、ヘッドランプ4と、センサ5と、カメラ6と、レーダ7と、HMI(Human Machine Interface)8と、GPS(Global Positioning System)9と、無線通信部10と、地図情報記憶部11とを備えている。さらに、車両システム2は、ステアリングアクチュエータ12と、ステアリング装置13と、ブレーキアクチュエータ14と、ブレーキ装置15と、アクセルアクチュエータ16と、アクセル装置17とを備えている。
FIG. 1 shows a block diagram of a vehicle system 2 (an example of a vehicle lighting system) mounted on a vehicle 1.
As shown in FIG. 1, the vehicle system 2 according to the present embodiment includes a vehicle control unit 3 (an example of a control unit), a headlamp 4, a sensor 5, a camera 6, a radar 7, and an HMI (Human Machine). It includes an interface) 8, a GPS (Global Positioning System) 9, a wireless communication unit 10, and a map information storage unit 11. Further, the vehicle system 2 includes a steering actuator 12, a steering device 13, a brake actuator 14, a brake device 15, an accelerator actuator 16, and an accelerator device 17.
 車両制御部3は、車両1の走行を制御するように構成されている。車両制御部3は、例えば、電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、プロセッサとメモリを含むマイクロコントローラと、その他電子回路(例えば、トランジスタ等)を含む。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)及び/又はGPU(Graphics Processing Unit)である。メモリは、各種車両制御プログラム(例えば、自動運転用の人工知能(AI)プログラム等)が記憶されたROM(Read Only Memory)と、各種車両制御データが一時的に記憶されるRAM(Random Access Memory)を含む。プロセッサは、ROMに記憶された各種車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されている。 The vehicle control unit 3 is configured to control the running of the vehicle 1. The vehicle control unit 3 is composed of, for example, an electronic control unit (ECU: Electronic Control Unit). The electronic control unit includes a microcontroller including a processor and a memory, and other electronic circuits (for example, a transistor). The processor is, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), and / or a GPU (Graphics Processing Unit). The memory is a ROM (Read Only Memory) in which various vehicle control programs (for example, an artificial intelligence (AI) program for automatic driving) are stored, and a RAM (Random Access Memory) in which various vehicle control data are temporarily stored. )including. The processor is configured to expand a program designated from various vehicle control programs stored in the ROM on the RAM and execute various processes in cooperation with the RAM.
 ヘッドランプ4は、車両1の前部に搭載された照明装置であり、車両1の周囲の道路へ向けて光を照射するランプユニット42と、ランプ制御部43(制御部の一例)とを備えている。ランプユニット42およびランプ制御部43の詳細な構成については後述する。 The headlamp 4 is a lighting device mounted on the front portion of the vehicle 1, and includes a lamp unit 42 that irradiates light toward the road around the vehicle 1 and a lamp control unit 43 (an example of the control unit). ing. The detailed configuration of the lamp unit 42 and the lamp control unit 43 will be described later.
 例えば、車両制御部3は、所定の条件を満たした場合にランプユニット42の点消灯を制御するための指示信号を生成して、当該指示信号をランプ制御部43に送信する。ランプ制御部43は、受信した指示信号に基づいて、ランプユニット42の点消灯を制御する。 For example, the vehicle control unit 3 generates an instruction signal for controlling the lighting of the lamp unit 42 when a predetermined condition is satisfied, and transmits the instruction signal to the lamp control unit 43. The lamp control unit 43 controls turning on and off of the lamp unit 42 based on the received instruction signal.
 センサ5は、加速度センサ、速度センサ、ジャイロセンサ等を備える。センサ5は、車両1の走行状態を検出して、走行状態情報を車両制御部3に出力するように構成されている。センサ5は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。さらに、センサ5は、車両1の周辺環境の照度を検出する照度センサを備えてもよい。 The sensor 5 includes an acceleration sensor, a speed sensor, a gyro sensor, and the like. The sensor 5 is configured to detect the traveling state of the vehicle 1 and output the traveling state information to the vehicle control unit 3. The sensor 5 includes a seating sensor that detects whether the driver is sitting in the driver's seat, a face orientation sensor that detects the direction of the driver's face, an external weather sensor that detects the external weather condition, and whether or not there is a person in the vehicle. A motion sensor or the like for detecting may be further provided. Further, the sensor 5 may include an illuminance sensor that detects the illuminance of the surrounding environment of the vehicle 1.
 カメラ6は、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS)等の撮像素子を含むカメラである。カメラ6の撮像は、車両制御部3から送信される信号に基づいて制御される。例えば、カメラ6は、ランプユニット42の点消灯の周波数に合わせたフレームレートにより画像を撮像し得る。これにより、カメラ6は、ランプユニット42の点灯時の画像と消灯時の画像の双方を取得することができる。 The camera 6 is, for example, a camera including an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary MOS). The imaging of the camera 6 is controlled based on the signal transmitted from the vehicle control unit 3. For example, the camera 6 can capture an image at a frame rate matched to the on / off frequency of the lamp unit 42. As a result, the camera 6 can acquire both the image when the lamp unit 42 is lit and the image when the lamp unit 42 is turned off.
 レーダ7は、ミリ波レーダ、マイクロ波レーダ又はレーザーレーダ等である。レーダ7は、LiDAR(Light Detection and RangingまたはLaser Imaging Detection and Ranging)を備えていてもよい。LiDARは、一般にその前方に非可視光を出射し、出射光と戻り光とに基づいて、物体までの距離、物体の形状、物体の材質などの情報を取得するセンサである。カメラ6とレーダ7は、車両1の周辺環境(他車、歩行者、道路形状、交通標識、障害物等)を検出し、周辺環境情報を車両制御部3に出力するように構成されている。 The radar 7 is a millimeter wave radar, a microwave radar, a laser radar, or the like. The radar 7 may be provided with LiDAR (Light Detection and Ranking or Laser Imaging Detection and Ranking). LiDAR is a sensor that generally emits invisible light in front of it and acquires information such as the distance to an object, the shape of the object, and the material of the object based on the emitted light and the return light. The camera 6 and the radar 7 are configured to detect the surrounding environment of the vehicle 1 (other vehicles, pedestrians, road shapes, traffic signs, obstacles, etc.) and output the surrounding environment information to the vehicle control unit 3. ..
 HMI8は、運転者からの入力操作を受付ける入力部と、走行情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両1の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、各種走行情報を表示するディスプレイである。 The HMI 8 is composed of an input unit that receives an input operation from the driver and an output unit that outputs driving information and the like to the driver. The input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode changeover switch for switching the operation mode of the vehicle 1, and the like. The output unit is a display that displays various traveling information.
 GPS9は、車両1の現在位置情報を取得し、当該取得された現在位置情報を車両制御部3に出力するように構成されている。無線通信部10は、車両1の周囲にいる他車に関する情報(例えば、走行情報)を他車から受信すると共に、車両1に関する情報(例えば、走行情報)を他車に送信するように構成されている(車車間通信)。また、無線通信部10は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両1の走行情報をインフラ設備に送信するように構成されている(路車間通信)。地図情報記憶部11は、地図情報が記憶されたハードディスクドライブ等の外部記憶装置であって、地図情報を車両制御部3に出力するように構成されている。 The GPS 9 is configured to acquire the current position information of the vehicle 1 and output the acquired current position information to the vehicle control unit 3. The wireless communication unit 10 is configured to receive information about another vehicle (for example, traveling information) around the vehicle 1 from the other vehicle and transmit information about the vehicle 1 (for example, traveling information) to the other vehicle. (Vehicle-to-vehicle communication). Further, the wireless communication unit 10 is configured to receive infrastructure information from infrastructure equipment such as traffic lights and indicator lights and to transmit traveling information of vehicle 1 to the infrastructure equipment (road-to-vehicle communication). The map information storage unit 11 is an external storage device such as a hard disk drive in which map information is stored, and is configured to output map information to the vehicle control unit 3.
 車両1が自動運転モードで走行する場合、車両制御部3は、走行状態情報、周辺環境情報、現在位置情報、地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ12は、ステアリング制御信号を車両制御部3から受信して、受信したステアリング制御信号に基づいてステアリング装置13を制御するように構成されている。ブレーキアクチュエータ14は、ブレーキ制御信号を車両制御部3から受信して、受信したブレーキ制御信号に基づいてブレーキ装置15を制御するように構成されている。アクセルアクチュエータ16は、アクセル制御信号を車両制御部3から受信して、受信したアクセル制御信号に基づいてアクセル装置17を制御するように構成されている。このように、自動運転モードでは、車両1の走行は車両システム2により自動制御される。 When the vehicle 1 travels in the automatic driving mode, the vehicle control unit 3 determines at least one of the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information, the map information, and the like. Generate one automatically. The steering actuator 12 is configured to receive a steering control signal from the vehicle control unit 3 and control the steering device 13 based on the received steering control signal. The brake actuator 14 is configured to receive a brake control signal from the vehicle control unit 3 and control the brake device 15 based on the received brake control signal. The accelerator actuator 16 is configured to receive an accelerator control signal from the vehicle control unit 3 and control the accelerator device 17 based on the received accelerator control signal. As described above, in the automatic driving mode, the traveling of the vehicle 1 is automatically controlled by the vehicle system 2.
 一方、車両1が手動運転モードで走行する場合、車両制御部3は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に従って、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両1の走行は運転者により制御される。 On the other hand, when the vehicle 1 travels in the manual driving mode, the vehicle control unit 3 generates a steering control signal, an accelerator control signal, and a brake control signal according to the manual operation of the driver on the accelerator pedal, the brake pedal, and the steering wheel. As described above, in the manual driving mode, the steering control signal, the accelerator control signal, and the brake control signal are generated by the manual operation of the driver, so that the driving of the vehicle 1 is controlled by the driver.
 次に、車両1の運転モードについて説明する。運転モードは、自動運転モードと手動運転モードとからなる。自動運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードとからなる。完全自動運転モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両1を運転できる状態にはない。高度運転支援モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両1を運転できる状態にはあるものの車両1を運転しない。運転支援モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御のうち一部の走行制御を自動的に行うと共に、車両システム2の運転支援の下で運転者が車両1を運転する。一方、手動運転モードでは、車両システム2が走行制御を自動的に行わないと共に、車両システム2の運転支援なしに運転者が車両1を運転する。 Next, the driving mode of the vehicle 1 will be described. The operation mode includes an automatic operation mode and a manual operation mode. The automatic driving mode includes a fully automatic driving mode, an advanced driving support mode, and a driving support mode. In the fully automatic driving mode, the vehicle system 2 automatically performs all driving controls such as steering control, brake control, and accelerator control, and the driver is not in a state where the vehicle 1 can be driven. In the advanced driving support mode, the vehicle system 2 automatically performs all driving control of steering control, brake control, and accelerator control, and the driver does not drive the vehicle 1 although he / she is in a state where he / she can drive the vehicle 1. In the driving support mode, the vehicle system 2 automatically performs some driving control of steering control, brake control, and accelerator control, and the driver drives the vehicle 1 under the driving support of the vehicle system 2. On the other hand, in the manual driving mode, the vehicle system 2 does not automatically control the driving, and the driver drives the vehicle 1 without the driving support of the vehicle system 2.
 また、車両1の運転モードは、運転モード切替スイッチを操作することで切り替えられてもよい。この場合、車両制御部3は、運転モード切替スイッチに対する運転者の操作に応じて、車両1の運転モードを4つの運転モード(完全自動運転モード、高度運転支援モード、運転支援モード、手動運転モード)の間で切り替える。また、車両1の運転モードは、自動運転車が走行可能である走行可能区間や自動運転車の走行が禁止されている走行禁止区間についての情報または外部天候状態についての情報に基づいて自動的に切り替えられてもよい。この場合、車両制御部3は、これらの情報に基づいて車両1の運転モードを切り替える。さらに、車両1の運転モードは、着座センサや顔向きセンサ等を用いることで自動的に切り替えられてもよい。この場合、車両制御部3は、着座センサや顔向きセンサからの出力信号に基づいて、車両1の運転モードを切り替える。 Further, the driving mode of the vehicle 1 may be switched by operating the driving mode changeover switch. In this case, the vehicle control unit 3 sets the driving mode of the vehicle 1 into four driving modes (fully automatic driving mode, advanced driving support mode, driving support mode, manual driving mode) according to the driver's operation on the driving mode changeover switch. ). In addition, the driving mode of the vehicle 1 is automatically set based on the information on the travelable section in which the autonomous vehicle can travel, the travel prohibited section in which the autonomous vehicle is prohibited, or the information on the external weather condition. It may be switched. In this case, the vehicle control unit 3 switches the driving mode of the vehicle 1 based on this information. Further, the driving mode of the vehicle 1 may be automatically switched by using a seating sensor, a face orientation sensor, or the like. In this case, the vehicle control unit 3 switches the driving mode of the vehicle 1 based on the output signals from the seating sensor and the face orientation sensor.
(第一実施形態)
 次に、本開示の第一実施形態に係る車両システム2の具体的構成について図2等を参照して説明する。図2は、車両システム2の一部の構成を模式的に示したブロック図である。車両システム2に搭載されるヘッドランプ4は、車両前部の左側と右側にそれぞれ設けられるが、図面の簡略化のため、図2では、左右のヘッドランプのうち左側のヘッドランプのみを図示している。
(First Embodiment)
Next, a specific configuration of the vehicle system 2 according to the first embodiment of the present disclosure will be described with reference to FIG. 2 and the like. FIG. 2 is a block diagram schematically showing a partial configuration of the vehicle system 2. The headlamps 4 mounted on the vehicle system 2 are provided on the left side and the right side of the front part of the vehicle, respectively. However, for simplification of the drawing, only the left side headlamp of the left and right headlamps is shown in FIG. ing.
 図2に示すように、本実施形態に係る車両システム2は、カメラ6として、可視光により車両1の周辺を撮像可能な可視光カメラ6Aと、赤外光により車両1の周辺を撮像可能な赤外線カメラ6Bとを備えている。なお、可視光カメラ6Aと赤外線カメラ6Bとを設ける代わりに、可視光と赤外光の両方を使用してカラー画像と赤外線画像とを同時に撮像可能な撮像素子を用いた単一のカメラを備えていてもよい。また、車両システム2は、画像処理部18と、モニタ19とを備えている。赤外線カメラ6Bは、赤外線(赤外光)の検出により特に夜間でも車両周囲の撮影が可能なカメラである。画像処理部18は、可視光カメラ6Aや赤外線カメラ6Bにより撮影された映像を処理し、車両制御部3やモニタ19に処理された映像信号を送信する。 As shown in FIG. 2, the vehicle system 2 according to the present embodiment has, as the camera 6, a visible light camera 6A capable of capturing the periphery of the vehicle 1 with visible light and an image capable of imaging the periphery of the vehicle 1 with infrared light. It is equipped with an infrared camera 6B. Instead of providing the visible light camera 6A and the infrared camera 6B, a single camera using an imaging element capable of simultaneously capturing a color image and an infrared image using both visible light and infrared light is provided. You may be. Further, the vehicle system 2 includes an image processing unit 18 and a monitor 19. The infrared camera 6B is a camera capable of photographing the surroundings of a vehicle even at night by detecting infrared rays (infrared light). The image processing unit 18 processes the video captured by the visible light camera 6A and the infrared camera 6B, and transmits the processed video signal to the vehicle control unit 3 and the monitor 19.
 ヘッドランプ4のランプユニット42は、ロービーム用配光パターンを形成するロービーム用灯具ユニット42Lと、ハイビーム用配光パターンを形成するハイビーム用灯具ユニット42H(車両用灯具の一例)とを備えている。ロービーム用灯具ユニット42Lは、パラボラ型あるいはプロジェクタ型の灯具ユニットである。ロービーム用灯具ユニット42Lは、光源としてハロゲンランプ等のフィラメントを有する白熱灯や、メタルハライドランプ等のHID(High Intensity Discharge)ランプ、LED(Light Emitting Diode)等を用いている。 The lamp unit 42 of the headlamp 4 includes a low beam lamp unit 42L that forms a low beam light distribution pattern and a high beam lamp unit 42H (an example of a vehicle lamp) that forms a high beam light distribution pattern. The low beam lighting unit 42L is a parabola type or projector type lighting unit. The low beam lamp unit 42L uses an incandescent lamp having a filament such as a halogen lamp, a HID (High Integrity Discovery) lamp such as a metal halide lamp, an LED (Light Emitting Node), or the like as a light source.
 ハイビーム用灯具ユニット42Hは、可視光源44(第一光源、第三光源の一例)と、赤外光源45(第二光源、第四光源の一例)と、光学部材46と、フォトダイオード47(受光部、第一受光部、第二受光部の一例)と、を備えている。 The high beam lamp unit 42H includes a visible light source 44 (an example of a first light source and a third light source), an infrared light source 45 (an example of a second light source and a fourth light source), an optical member 46, and a photodiode 47 (light receiving light). A unit, a first light receiving unit, and an example of a second light receiving unit).
 ヘッドランプ4のランプ制御部43は、電子制御ユニット(ECU)により構成されており、車両1の自動運転に係る情報に応じて、ランプユニット42の照明状態を所定の照明状態に設定するように構成されている。ここでいう照明状態とは、ランプユニット42を構成する各発光素子の点消灯や点滅周期(パルス点灯のON/OFF周期)等を含む。ランプ制御部43は、図示しない電源に電気的に接続されており、CPUやMPU等のプロセッサとROM及びRAM等のメモリとを含むマイクロコントローラ50と、LEDドライバ51,52と、モータドライバ53と、フォトダイオード47用の電流-電圧変換・増幅回路54と、計測回路55とを含んでいる。LEDドライバ51,52は、可視光源44および赤外光源45を構成する各発光素子(LED)をそれぞれ駆動するためのドライバである。モータドライバ53は、光学部材46(具体的には、後述の回転リフレクタ65)を駆動するためのドライバである。電流-電圧変換・増幅回路54は、フォトダイオード47から出力された電流信号(センサ信号)を電圧信号へと変換し、電圧信号を増幅するための回路である。計測回路55は、赤外光源45を駆動するLEDドライバ52から赤外光源45の駆動信号を受信するとともに、フォトダイオード47からの電流信号が電流-電圧変換・増幅回路54により電圧信号に変換された信号を受信する。そして、計測回路55は、これらの受信信号から、赤外光源45からの赤外光の発光タイミングとフォトダイオード47による赤外光の反射光の受光タイミングとの差分を計測し、その結果をマイクロコントローラ50へ送信する。マイクロコントローラ50は、これらのドライバ51~53や各回路54,55をそれぞれ制御する。赤外光源45の発光タイミングとは、赤外光源45を構成する各発光素子が赤外光を出射するタイミングである。フォトダイオード47の受光タイミングとは、赤外光の反射光がフォトダイオード47へ入射した(フォトダイオード47が赤外光の反射光を受光した)ことを検出したタイミングである。なお、本実施形態では、車両制御部3とランプ制御部43は、別個の構成として設けられているが、一体的に構成されてもよい。つまり、ランプ制御部43と車両制御部3は、単一の電子制御ユニットにより構成されていてもよい。 The lamp control unit 43 of the headlamp 4 is composed of an electronic control unit (ECU), and sets the lighting state of the lamp unit 42 to a predetermined lighting state according to the information related to the automatic operation of the vehicle 1. It is configured. The illumination state referred to here includes the on-off and blinking cycles (ON / OFF cycles of pulse lighting) of each light emitting element constituting the lamp unit 42. The lamp control unit 43 is electrically connected to a power source (not shown), and includes a microcontroller 50 including a processor such as a CPU and MPU and a memory such as a ROM and a RAM, LED drivers 51 and 52, and a motor driver 53. The current-voltage conversion / amplification circuit 54 for the processor 47 and the measurement circuit 55 are included. The LED drivers 51 and 52 are drivers for driving each light emitting element (LED) constituting the visible light source 44 and the infrared light source 45, respectively. The motor driver 53 is a driver for driving the optical member 46 (specifically, the rotary reflector 65 described later). The current-voltage conversion / amplification circuit 54 is a circuit for converting a current signal (sensor signal) output from the photodiode 47 into a voltage signal and amplifying the voltage signal. The measurement circuit 55 receives the drive signal of the infrared light source 45 from the LED driver 52 that drives the infrared light source 45, and the current signal from the photodiode 47 is converted into a voltage signal by the current-voltage conversion / amplification circuit 54. Receive the signal. Then, the measurement circuit 55 measures the difference between the emission timing of the infrared light from the infrared light source 45 and the reception timing of the reflected light of the infrared light by the photodiode 47 from these received signals, and the result is micron. It transmits to the controller 50. The microcontroller 50 controls these drivers 51 to 53 and the circuits 54 and 55, respectively. The emission timing of the infrared light source 45 is a timing at which each light emitting element constituting the infrared light source 45 emits infrared light. The light receiving timing of the photodiode 47 is a timing at which it is detected that the reflected light of infrared light is incident on the photodiode 47 (the photodiode 47 receives the reflected light of infrared light). In the present embodiment, the vehicle control unit 3 and the lamp control unit 43 are provided as separate configurations, but they may be integrally configured. That is, the lamp control unit 43 and the vehicle control unit 3 may be composed of a single electronic control unit.
 図3は、ハイビーム用灯具ユニット42Hの上面図である。図4は、ハイビーム用灯具ユニット42Hの一部拡大図である。
 図3に示すように、ハイビーム用灯具ユニット42Hは、各構成部品を取り付けるためのブラケット60を備えている。ブラケット60は、ハイビーム用灯具ユニット42Hの不図示のハウジングに取り付けられている。ブラケット60には、可視光源44の一部および赤外光源45の一部が設けられた第一配線基板61が取り付けられている。第一配線基板61の右方には、ランプ制御部43の構成部品が収容された制御ボックス63が配置されている。また、ブラケット60の第一配線基板61が取り付けられた箇所とは離隔した箇所には、可視光源44の他の一部および赤外光源45の他の一部が設けられた第二配線基板62が取り付けられている。また、制御ボックス63の一部(ここでは、灯具前方側)には、フォトダイオード47が配置されている。
FIG. 3 is a top view of the high beam lamp unit 42H. FIG. 4 is a partially enlarged view of the high beam lamp unit 42H.
As shown in FIG. 3, the high beam lamp unit 42H includes a bracket 60 for mounting each component. The bracket 60 is attached to a housing (not shown) of the high beam lamp unit 42H. A first wiring board 61 provided with a part of the visible light source 44 and a part of the infrared light source 45 is attached to the bracket 60. On the right side of the first wiring board 61, a control box 63 in which the components of the lamp control unit 43 are housed is arranged. Further, a second wiring board 62 provided with another part of the visible light source 44 and another part of the infrared light source 45 at a place separated from the place where the first wiring board 61 of the bracket 60 is attached. Is installed. Further, a photodiode 47 is arranged in a part of the control box 63 (here, the front side of the lamp).
 図3および図4に示すように、ブラケット60の第一配線基板61および第二配線基板62と対向する位置には、光学部材46の一部品である回転リフレクタ65が取り付けられている。さらに、ブラケット60には、光学部材46の他の一部品であるレンズ66が取り付けられている。レンズ66は、回転リフレクタ65よりも灯具前方側に設けられている。レンズ66は、図3および図4の右側に図示された第一レンズ部67と、第一レンズ部67の左側において第一レンズ部67と連続して形成された第二レンズ部68とから構成されている。第一レンズ部67および第二レンズ部68は、それぞれ、前方側表面が凸面で後方側表面が平面の平凸非球面レンズとして構成されている。可視光源44および赤外光源45から出射された光は、回転リフレクタ65により反射され、第一レンズ部67または第二レンズ部68を透過して灯具前方へ照射される。 As shown in FIGS. 3 and 4, a rotary reflector 65, which is a component of the optical member 46, is attached to a position of the bracket 60 facing the first wiring board 61 and the second wiring board 62. Further, a lens 66, which is another component of the optical member 46, is attached to the bracket 60. The lens 66 is provided on the front side of the lamp with respect to the rotary reflector 65. The lens 66 includes a first lens portion 67 shown on the right side of FIGS. 3 and 4, and a second lens portion 68 formed continuously with the first lens portion 67 on the left side of the first lens portion 67. Has been done. Each of the first lens portion 67 and the second lens portion 68 is configured as a plano-convex aspherical lens having a convex front surface and a flat rear surface. The light emitted from the visible light source 44 and the infrared light source 45 is reflected by the rotary reflector 65, passes through the first lens portion 67 or the second lens portion 68, and is irradiated to the front of the lamp.
 回転リフレクタ65は、モータドライバ53(図2参照)により回転軸Rを中心に一方向に回転する。回転リフレクタ65は、可視光源44から出射された可視光を回転しながら反射し、灯具前方に所望の配光パターンを形成するように構成されている。また、回転リフレクタ65は、赤外光源45から出射された赤外光を回転しながら反射し、灯具前方に照射するように構成されている。 The rotation reflector 65 is rotated in one direction around the rotation axis R by the motor driver 53 (see FIG. 2). The rotary reflector 65 is configured to rotate and reflect the visible light emitted from the visible light source 44 to form a desired light distribution pattern in front of the lamp. Further, the rotary reflector 65 is configured to reflect the infrared light emitted from the infrared light source 45 while rotating and irradiate the front of the lamp.
 回転リフレクタ65は、反射面として機能する、形状の同じ2枚のブレード65aが筒状の回転部65bの周囲に設けられている。回転リフレクタ65の回転軸Rは、第一レンズ部67の光軸Ax1および第二レンズ部68の光軸Ax2に対して斜めになっている。回転リフレクタ65のブレード65aは、回転軸Rを中心とする周方向に向かうにつれて、光軸Ax1,Ax2と反射面とが成す角が変化するように捩られた形状を有している。これにより、ブレード65aが、可視光源44や赤外光源45から出射された光を回転しながら反射することで、各光源の光を用いた走査が可能となる。 The rotary reflector 65 is provided with two blades 65a having the same shape, which function as a reflecting surface, around the cylindrical rotating portion 65b. The rotation axis R of the rotation reflector 65 is oblique with respect to the optical axis Ax1 of the first lens unit 67 and the optical axis Ax2 of the second lens unit 68. The blade 65a of the rotary reflector 65 has a twisted shape so that the angle formed by the optical axes Ax1 and Ax2 and the reflection surface changes as the blade 65a of the rotary reflector 65 goes in the circumferential direction about the rotation axis R. As a result, the blade 65a rotates and reflects the light emitted from the visible light source 44 and the infrared light source 45, so that scanning using the light of each light source becomes possible.
 図5は、第一配線基板61の正面図であり、図6は、第二配線基板62の正面図である。
 図5に示すように、第一配線基板61には、可視光源44として可視光を出射可能な複数(本例では、9つ)の発光素子(以下、可視光LEDと称す)44-1~44-9が配置されている。可視光LED44-1~44-9は、第一配線基板61の正面視において、可視光LED44-1から順に逆U字状となるように配列されている。これらの可視光LED44-1~44-9から出射された光により、ハイビーム用配光パターンのうち集光部が形成される。
FIG. 5 is a front view of the first wiring board 61, and FIG. 6 is a front view of the second wiring board 62.
As shown in FIG. 5, the first wiring board 61 has a plurality of (nine in this example) light emitting elements (hereinafter referred to as visible light LEDs) 44-1 to capable of emitting visible light as a visible light source 44. 44-9 are arranged. The visible light LEDs 44-1 to 44-9 are arranged in an inverted U shape in order from the visible light LED 44-1 in the front view of the first wiring board 61. The light emitted from these visible light LEDs 44-1 to 44-9 forms a condensing portion in the high beam light distribution pattern.
 また、第一配線基板61には、赤外光源45として赤外光を出射可能な複数(本例では、2つ)の赤外光発光素子(以下、IR-LEDと称す)45-1,45-2が配置されている。IR-LED45-1は、第一配線基板61の正面視において、可視光LED44-3の左側に配置されている。IR-LED45-2は、第一配線基板61の正面視において、可視光LED44-7の右側に配置されている。 Further, on the first wiring substrate 61, a plurality of (two in this example) infrared light emitting elements (hereinafter referred to as IR-LEDs) 45-1, which can emit infrared light as an infrared light source 45, 45-2 is arranged. The IR-LED45-1 is arranged on the left side of the visible light LED 44-3 in the front view of the first wiring board 61. The IR-LED45-2 is arranged on the right side of the visible light LED 44-7 in the front view of the first wiring board 61.
 図6に示すように、第二配線基板62上には、可視光源44として可視光を出射可能な複数(本例では、2つ)の可視光LED44-10,44-11が並列配置されている。これら可視光LED44-10,44-11から出射された光により、ハイビーム用配光パターンのうち拡散部が形成される。また、第二配線基板62上には、赤外光源45として赤外光を出射可能な赤外光LED45-3が配置されている。IR-LED45-3は、第二配線基板62の正面視において、可視光LED44-10の左側且つ上方に配置されている。 As shown in FIG. 6, a plurality of (two in this example) visible light LEDs 44-10 and 44-11 capable of emitting visible light as a visible light source 44 are arranged in parallel on the second wiring board 62. There is. The light emitted from these visible light LEDs 44-10 and 44-11 forms a diffused portion in the high beam light distribution pattern. Further, an infrared light LED 45-3 capable of emitting infrared light as an infrared light source 45 is arranged on the second wiring board 62. The IR-LED45-3 is arranged on the left side and above the visible light LED 44-10 in the front view of the second wiring board 62.
 可視光源44としての各可視光LED44-1~44-11は、例えば可視光を照射可能な白色LEDから構成されている。可視光源44および赤外光源45としては、LEDの代わりに、EL素子やLD素子などの半導体発光素子を光源として用いることも可能である。特に後述するハイビーム用配光パターンの一部を非照射とするための制御には、点消灯が短時間に精度良く行える光源が好ましい。 Each visible light LED 44-1 to 44-11 as a visible light source 44 is composed of, for example, a white LED capable of irradiating visible light. As the visible light source 44 and the infrared light source 45, it is also possible to use a semiconductor light emitting element such as an EL element or an LD element as a light source instead of the LED. In particular, a light source that can turn on and off the light accurately in a short time is preferable for the control for non-irradiating a part of the high beam light distribution pattern described later.
 レンズ66のうち右側の第一レンズ部67は、第一配線基板61上に配置された可視光LED44-1~44-9から出射されて回転リフレクタ65で反射された可視光、およびIR-LED45-1,45-2から出射されて回転リフレクタ65で反射された赤外光が透過可能な位置に配置されている。すなわち、ハイビーム用配光パターンの集光部を形成するための可視光と、赤外光とが、第一レンズ部67を透過して灯具前方に照射される。また、レンズ66のうち左側の第二レンズ部68は、第二配線基板62上に配置された可視光LED44-10,44-11から出射されて回転リフレクタ65で反射された可視光、およびIR-LED45-3から出射されて回転リフレクタ65で反射された赤外光が透過可能な位置に配置されている。すなわち、ハイビーム用配光パターンの拡散部を形成するための可視光と、赤外光とが、第二レンズ部68を透過して灯具前方に照射される。なお、レンズ66の形状は、要求される配光パターンや照度分布などの配光特性に応じて適宜選択すればよいが、非球面レンズに代えて、例えば、自由曲面レンズが用いられてもよい。 The first lens portion 67 on the right side of the lens 66 is visible light emitted from visible light LEDs 44-1 to 44-9 arranged on the first wiring board 61 and reflected by the rotating reflector 65, and IR-LED 45. It is arranged at a position where infrared light emitted from -1, 45-2 and reflected by the rotary reflector 65 can be transmitted. That is, visible light and infrared light for forming a condensing portion of the high beam light distribution pattern are transmitted to the front of the lamp through the first lens portion 67. Further, the second lens portion 68 on the left side of the lens 66 is visible light emitted from visible light LEDs 44-10 and 44-11 arranged on the second wiring board 62 and reflected by the rotary reflector 65, and IR. -It is arranged at a position where infrared light emitted from the LED 45-3 and reflected by the rotary reflector 65 can be transmitted. That is, visible light and infrared light for forming the diffused portion of the high beam light distribution pattern are transmitted to the front of the lamp through the second lens portion 68. The shape of the lens 66 may be appropriately selected according to the required light distribution pattern, illuminance distribution, and other light distribution characteristics, but a free-form surface lens may be used instead of the aspherical lens. ..
 図7は、第一配線基板61に設けられた各可視光LED44-1~44-9から照射される可視光により、例えば車両前方25mの位置に配置された仮想鉛直スクリーン上に形成されるスポット光の像を示す図である。図8は、各可視光LED44-1~44-9から照射された可視光が回転リフレクタ65の回転により走査された状態での仮想鉛直スクリーン上の配光パターンP1を示す図である。 FIG. 7 shows a spot formed on a virtual vertical screen arranged at a position 25 m in front of the vehicle by visible light emitted from the visible light LEDs 44-1 to 44-9 provided on the first wiring board 61, for example. It is a figure which shows the image of light. FIG. 8 is a diagram showing a light distribution pattern P1 on a virtual vertical screen in a state where the visible light emitted from each visible light LED 44-1 to 44-9 is scanned by the rotation of the rotation reflector 65.
 各可視光LED44-1~44-9から出射された可視光は、回転リフレクタ65により反射されて、第一レンズ部67を透過することで上下左右に反転して、仮想鉛直スクリーン上に図7に示すようなスポット光の像を形成する。図7において、像S1が可視光LED44-1から照射されたスポット光の像であり、像S2が可視光LED44-2から照射されたスポット光の像であり、像S3が可視光LED44-3から照射されたスポット光の像であり、像S4が可視光LED44-4から照射されたスポット光の像であり、像S5が可視光LED44-5から照射されたスポット光の像であり、像S6が可視光LED44-6から照射されたスポット光の像であり、像S7が可視光LED44-7から照射されたスポット光の像であり、像S8が可視光LED44-8から照射されたスポット光の像であり、像S9が可視光LED44-9から照射されたスポット光の像である。像S1~S9は、仮想鉛直スクリーン上においてU字状となるように配列されて照射される。このうち、像S3,S4,S5,S6,S7が仮想鉛直スクリーン上の水平線H-H上に照射される。 The visible light emitted from each of the visible light LEDs 44-1 to 44-9 is reflected by the rotating reflector 65, passes through the first lens unit 67, and is inverted vertically and horizontally, and is projected on the virtual vertical screen in FIG. 7. It forms an image of spot light as shown in. In FIG. 7, image S1 is an image of spot light emitted from visible light LED 44-1, image S2 is an image of spot light emitted from visible light LED 44-2, and image S3 is an image of visible light LED 44-3. The image S4 is an image of the spot light emitted from the visible light LED 44-4, and the image S5 is an image of the spot light emitted from the visible light LED 44-5. S6 is an image of spot light emitted from visible light LED 44-6, image S7 is an image of spot light emitted from visible light LED 44-7, and image S8 is an image of spot light emitted from visible light LED 44-8. It is an image of light, and the image S9 is an image of spot light emitted from the visible light LED 44-9. The images S1 to S9 are arranged and irradiated in a U shape on a virtual vertical screen. Of these, the images S3, S4, S5, S6, and S7 are illuminated on the horizon HH on the virtual vertical screen.
 回転リフレクタ65の回転により、各可視光LED44-1~44-9から出射された可視光のスポット光の像S1~S9が左右方向に走査されると、図8に示すような配光パターンP1が形成される。配光パターンP1は、後述のハイビーム用配光パターンの集光部として形成される。配光パターンP1のうち、複数の可視光LEDから出射された可視光が重複して照射される箇所が特に照度が高くなる。具体的には、配光パターンP1は、仮想鉛直スクリーン上の垂直線V-Vと水平線H-Hとが交差する箇所が最も照度が高くなるように形成されている。 When the visible light spot light images S1 to S9 emitted from the visible light LEDs 44-1 to 44-9 are scanned in the left-right direction by the rotation of the rotary reflector 65, the light distribution pattern P1 as shown in FIG. Is formed. The light distribution pattern P1 is formed as a condensing portion of the high beam light distribution pattern described later. Among the light distribution patterns P1, the illuminance is particularly high at a portion where visible light emitted from a plurality of visible light LEDs is repeatedly irradiated. Specifically, the light distribution pattern P1 is formed so that the illuminance is highest at the intersection of the vertical line VV and the horizontal line HH on the virtual vertical screen.
 図9は、第二配線基板62に設けられた各可視光LED44-10,44-11から照射される可視光により、仮想鉛直スクリーン上に形成されるスポット光の像を示す図であり、図10は、各可視光LED44-10,44-11から照射された可視光が回転リフレクタ65の回転により走査された状態での仮想鉛直スクリーン上の配光パターンP2を示す図である。 FIG. 9 is a diagram showing an image of spot light formed on a virtual vertical screen by visible light emitted from each visible light LED 44-10, 44-11 provided on the second wiring board 62. FIG. 10 is a diagram showing a light distribution pattern P2 on a virtual vertical screen in a state where visible light emitted from each visible light LED 44-10, 44-11 is scanned by the rotation of the rotary reflector 65.
 可視光LED44-10および可視光LED44-11から出射された可視光は、回転リフレクタ65により反射されて、第二レンズ部68を透過することで上下左右に反転して、仮想鉛直スクリーン上に図9に示すようなスポット光の像を形成する。図9において、像S10が可視光LED44-10から照射されたスポット光の像であり、像S11が可視光LED44-11から照射されたスポット光の像である。像S10および像S11のサイズは、図7に示す各可視光LED44-1~44-9から出射された可視光のスポット光の像S1~S9のサイズよりも大きくなるように形成されている。左側ヘッドランプに搭載される可視光LED44-10,44-11により形成される像S10および像S11は、仮想鉛直スクリーン上において垂直線V-Vの左側において水平線H-Hに沿って並列して照射される。なお、図示は省略するが、右側ヘッドランプに搭載される可視光LED44-10,44-11により形成される像S10および像S11は、仮想鉛直スクリーン上において垂直線V-Vの右側において水平線H-Hに沿って並列して照射される。 The visible light emitted from the visible light LED 44-10 and the visible light LED 44-11 is reflected by the rotating reflector 65 and is transmitted through the second lens unit 68 to be inverted vertically and horizontally, and is shown on the virtual vertical screen. An image of spot light as shown in 9 is formed. In FIG. 9, the image S10 is an image of the spot light emitted from the visible light LED 44-10, and the image S11 is an image of the spot light emitted from the visible light LED 44-11. The sizes of the images S10 and S11 are formed to be larger than the sizes of the visible light spotlight images S1 to S9 emitted from the visible light LEDs 44-1 to 44-9 shown in FIG. 7. The images S10 and S11 formed by the visible light LEDs 44-10 and 44-11 mounted on the left headlamp are arranged side by side along the horizontal line HH on the left side of the vertical line VV on the virtual vertical screen. Be irradiated. Although not shown, the images S10 and S11 formed by the visible light LEDs 44-10 and 44-11 mounted on the right headlamp are the horizontal line H on the right side of the vertical line VV on the virtual vertical screen. Irradiated in parallel along -H.
 回転リフレクタ65の回転により、可視光LED44-10および可視光LED44-11から出射された可視光のスポット光の像S10,S11が左右方向に走査されると、図10に示すような配光パターンP2が形成される。配光パターンP2は、後述のハイビーム用配光パターンの拡散部の一部として形成される。上述の通り、左側ヘッドランプに搭載される可視光LED44-10,44-11により形成される像S10および像S11は、仮想鉛直スクリーン上において垂直線V-Vの左側に照射されるため、拡散部の一部を形成する配光パターンP2は、集光部を形成する配光パターンP1の照射領域のうち左側の部分に形成される。なお、図示は省略するが、右側ヘッドランプに搭載される可視光LED44-10,44-11により形成される像S10および像S11は、仮想鉛直スクリーン上において垂直線V-Vの右側に照射されるため、拡散部の他の一部は、集光部用配光パターンP1の照射領域のうち右側の部分に形成される。
 このように、左側ヘッドランプの可視光LED44-10,44-11の配光(配光パターンP2)と右側ヘッドランプの可視光LED44-10,44-11の配光とが合成されることで、拡散部用配光パターンが形成される。そして、集光部用配光パターンP1と拡散部用配光パターンとが合成されることで図11に示されるハイビーム用配光パターンが形成される。
When the visible light spot light images S10 and S11 emitted from the visible light LED 44-10 and the visible light LED 44-11 are scanned in the left-right direction by the rotation of the rotary reflector 65, the light distribution pattern as shown in FIG. P2 is formed. The light distribution pattern P2 is formed as a part of the diffused portion of the high beam light distribution pattern described later. As described above, the images S10 and S11 formed by the visible light LEDs 44-10 and 44-11 mounted on the left headlamp are diffused because they are irradiated on the left side of the vertical line VV on the virtual vertical screen. The light distribution pattern P2 forming a part of the portion is formed on the left side portion of the irradiation region of the light distribution pattern P1 forming the condensing portion. Although not shown, the images S10 and S11 formed by the visible light LEDs 44-10 and 44-11 mounted on the right headlamp are illuminated on the right side of the vertical line VV on the virtual vertical screen. Therefore, the other part of the diffusing portion is formed on the right side portion of the irradiation region of the light distribution pattern P1 for the condensing portion.
In this way, the light distribution of the visible light LEDs 44-10, 44-11 of the left headlamp (light distribution pattern P2) and the light distribution of the visible light LEDs 44-10, 44-11 of the right headlamp are combined. , A light distribution pattern for the diffuser is formed. Then, the light distribution pattern for the high beam shown in FIG. 11 is formed by synthesizing the light distribution pattern P1 for the condensing portion and the light distribution pattern for the diffusing portion.
 図11は、ロービーム用灯具ユニット42Lおよびハイビーム用灯具ユニット42Hから前方に照射される可視光により、仮想鉛直スクリーン上に形成される配光パターンP3を示している。 FIG. 11 shows a light distribution pattern P3 formed on a virtual vertical screen by visible light radiated forward from the low beam lamp unit 42L and the high beam lamp unit 42H.
 図11に示される可視光の配光パターンP3は、ロービーム用灯具ユニット42Lおよびハイビーム用灯具ユニット42Hから照射される可視光の合成によって形成される。すなわち、配光パターンP3は、ロービーム用灯具ユニット42Lから照射される可視光のロービーム用配光パターンP4と、ハイビーム用灯具ユニット42Hから照射される可視光のハイビーム用配光パターンP1,P2との合成によって形成される。配光パターンP3は、例えば車両前方の領域のうち対向車100の上部(対向車100の運転者の位置)およびその周辺領域には光が照射されないように、各可視光LED44-1~44-11をその領域に対応するタイミングで消灯することにより、その配光が制御されている。これにより、対向車100のドライバへのグレア光を抑制することができる。 The visible light distribution pattern P3 shown in FIG. 11 is formed by combining visible light emitted from the low beam lamp unit 42L and the high beam lamp unit 42H. That is, the light distribution pattern P3 is a combination of the visible light low beam light distribution pattern P4 emitted from the low beam lamp unit 42L and the visible light high beam light distribution patterns P1 and P2 emitted from the high beam lamp unit 42H. Formed by synthesis. In the light distribution pattern P3, for example, in the area in front of the vehicle, the visible light LEDs 44-1 to 44- are arranged so that the upper part of the oncoming vehicle 100 (the position of the driver of the oncoming vehicle 100) and the peripheral area thereof are not irradiated with light. The light distribution is controlled by turning off the light 11 at the timing corresponding to the area. As a result, glare light to the driver of the oncoming vehicle 100 can be suppressed.
 図12は、第一配線基板61に設けられた各IR-LED45-1,45-2および第二配線基板62に設けられたIR-LED45-3から照射された赤外光により、仮想鉛直スクリーン上に形成される赤外光のスポット光の像を示す図である。図13は、各IR-LED45-1,45-2およびIR-LED45-3から照射される赤外光が、回転リフレクタ65の回転により走査された状態での配光パターンP5を示す図である。 FIG. 12 shows a virtual vertical screen by infrared light emitted from each IR-LED 45-1, 45-2 provided on the first wiring board 61 and IR-LED 45-3 provided on the second wiring board 62. It is a figure which shows the image of the spot light of the infrared light formed above. FIG. 13 is a diagram showing a light distribution pattern P5 in a state where infrared light emitted from each IR-LED45-1, 45-2 and IR-LED45-3 is scanned by rotation of the rotation reflector 65. ..
 各IR-LED45-1,45-2から出射された赤外光は、回転リフレクタ65により反射されて、第一レンズ部67を透過することで上下左右に反転して、仮想鉛直スクリーン上に図12に示すようなスポット光の像を形成する。また、IR-LED45-3から出射された赤外光は、回転リフレクタ65により反射されて、第二レンズ部68を透過することで上下左右に反転して、仮想鉛直スクリーン上に図12に示すようなスポット光の像を形成する。図12において、像SIR1がIR-LED45-1から照射された赤外光のスポット光の像であり、像SIR2がIR-LED45-2から照射された赤外光のスポット光の像であり、像SIR3がIR-LED45-3から照射された赤外光のスポット光の像である。像SIR1,SIR2は、仮想鉛直スクリーン上の水平線H-H上に一定距離離隔して照射される。像SIR3は、仮想鉛直スクリーン上の垂直線V-Vの左側において水平線H-H上の像SIR1と像SIR2との間に照射される。像SIR3のサイズは、像SIR1,SIR2のサイズよりも大きくなるように形成されている。なお、図示は省略するが、右側ヘッドランプに搭載されるIR-LED45-3により形成される像SIR3は、仮想鉛直スクリーン上において垂直線V-Vの右側において水平線H-Hに沿って照射される。 The infrared light emitted from each of the IR-LEDs 45-1 and 45-2 is reflected by the rotary reflector 65 and is transmitted through the first lens unit 67 to be inverted vertically and horizontally, and is shown on the virtual vertical screen. An image of spot light as shown in No. 12 is formed. Further, the infrared light emitted from the IR-LED45-3 is reflected by the rotary reflector 65 and is transmitted through the second lens portion 68 to be inverted vertically and horizontally, and is shown in FIG. 12 on a virtual vertical screen. Form an image of spot light like this. In FIG. 12, the image S IR 1 is an image of the spot light of infrared light emitted from IR-LED45-1, and the image S IR 2 is an image of the spot light of infrared light emitted from IR-LED45-2. It is an image, and image S IR 3 is an image of spot light of infrared light emitted from IR-LED45-3. The images S IR 1 and S IR 2 are irradiated on the horizontal line HH on the virtual vertical screen at a certain distance. The image S IR 3 is illuminated between the image S IR 1 and the image S IR 2 on the horizontal line HH on the left side of the vertical line VV on the virtual vertical screen. The size of the image S IR 3 is formed to be larger than the size of the images S IR 1 and S IR 2. Although not shown, the image S IR 3 formed by the IR-LED 45-3 mounted on the right headlamp is along the horizontal line HH on the right side of the vertical line VV on the virtual vertical screen. Be irradiated.
 回転リフレクタ65の回転により、IR-LED45-1,45-2から出射された赤外光のスポット光の像SIR1,SIR2およびIR-LED45-3から出射された赤外光のスポット光の像SIR3が左右方向に走査されると、図13に示すような配光パターンP5が形成される。配光パターンP5は、水平線H-H上に形成されている。なお、非可視光である赤外光については、対向車のドライバへのグレア光を考慮する必要はない。そのため、配光パターンP5は、IR-LED45-1,45-2から出射された赤外光のスポット光の像SIR1,SIR2により、可視光のハイビーム用配光パターンP1,P2の制御に関わらず水平線H-Hの領域の全体を略均一に照射するような配光となっている。また、配光パターンP5は、IR-LED45-3から出射された赤外光により照射される領域(第二走査範囲の一例)が、IR-LED45-1,45-2から出射された赤外光により照射される領域(第一走査範囲の一例)と少なくとも一部が重複するような配光となっている。なお、上述の通り、左側ヘッドランプに搭載されるIR-LED45-3により形成される像SIR3は、仮想鉛直スクリーン上において垂直線V-Vの左側に照射されるため、IR-LED45-3から出射された赤外光により照射される領域は、配光パターンP5の照射領域において左寄りに位置する。図示は省略するが、右側ヘッドランプに搭載されるIR-LED45-3により形成される像SIR3は、仮想鉛直スクリーン上において垂直線V-Vの右側に照射されるため、IR-LED45-3から出射された赤外光により照射される領域は、配光パターンP5の照射領域において右寄りに位置する。 Image of infrared light spot light emitted from IR-LED45-1, 45-2 due to rotation of the rotary reflector 65 Infrared light spot emitted from S IR 1, S IR 2 and IR-LED 45-3 When the light image S IR 3 is scanned in the left-right direction, the light distribution pattern P5 as shown in FIG. 13 is formed. The light distribution pattern P5 is formed on the horizon HH. Regarding infrared light, which is invisible light, it is not necessary to consider glare light to the driver of the oncoming vehicle. Therefore, the light distribution pattern P5 is a high beam light distribution pattern P1 and P2 of visible light according to the images of the spot light of infrared light emitted from IR-LED45-1, 45-2 S IR 1 and S IR 2. Regardless of the control, the light distribution is such that the entire region of the horizon HH is irradiated substantially uniformly. Further, in the light distribution pattern P5, the region irradiated by the infrared light emitted from the IR-LED45-3 (an example of the second scanning range) is the infrared emitted from the IR-LED45-1, 45-2. The light distribution is such that at least a part of the area irradiated by light (an example of the first scanning range) overlaps. As described above, since the image S IR 3 formed by the IR-LED 45-3 mounted on the left headlamp is irradiated on the left side of the vertical line VV on the virtual vertical screen, the IR-LED 45- The region irradiated by the infrared light emitted from No. 3 is located to the left in the irradiation region of the light distribution pattern P5. Although not shown, the image S IR 3 formed by the IR-LED 45-3 mounted on the right headlamp is illuminated on the right side of the vertical line VV on the virtual vertical screen, so that the IR-LED 45- The region irradiated by the infrared light emitted from No. 3 is located to the right in the irradiation region of the light distribution pattern P5.
 配光パターンP5のように水平線H-Hに沿って照射される赤外光は、車両前方に存在する物体(対象物)により反射される。ハイビーム用灯具ユニット42Hが備えるフォトダイオード47は、物体により反射された赤外光を受光して電流信号として出力する。出力された赤外光の電流信号は、電流-電圧変換・増幅回路54により電圧信号へと変換されて更に増幅されて、計測回路55へと送信される。計測回路55は、LEDドライバ52から受信した赤外光源45の駆動信号および電流-電圧変換・増幅回路54から送信された電圧信号に基づいて、赤外光の出射タイミングおよび当該赤外光の反射光の受光タイミングや当該反射光の光強度に関する信号をマイクロコントローラ50へ送信する。マイクロコントローラ50は、計測回路55から受信した赤外光に関する信号(出射光と戻り光(反射光)に関する信号)に基づいて、物体までの距離、物体の形状、物体の材質などの情報を取得する。これにより、マイクロコントローラ50は、車両前方の歩行者や対向車の存在を検出することができる。そして、マイクロコントローラ50は、赤外光信号に基づいて検出された車両前方の歩行者や対向車へグレアを与えないように、可視光源44(可視光LED44-1~44-11)の点消灯を制御する。また、マイクロコントローラ50は、赤外光信号に基づいて検出された車両周囲の情報に関する信号を、車両制御部3へ送信する。車両1が自動運転モードで走行する場合、車両制御部3は、マイクロコントローラ50から取得した周辺環境情報に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成することができる。 Infrared light emitted along the horizon HH like the light distribution pattern P5 is reflected by an object (object) existing in front of the vehicle. The photodiode 47 included in the high beam lamp unit 42H receives infrared light reflected by an object and outputs it as a current signal. The output infrared light current signal is converted into a voltage signal by the current-voltage conversion / amplification circuit 54, further amplified, and transmitted to the measurement circuit 55. The measurement circuit 55 determines the emission timing of infrared light and the reflection of the infrared light based on the drive signal of the infrared light source 45 received from the LED driver 52 and the voltage signal transmitted from the current-voltage conversion / amplification circuit 54. A signal relating to the light reception timing and the light intensity of the reflected light is transmitted to the micro controller 50. The microcontroller 50 acquires information such as the distance to the object, the shape of the object, and the material of the object based on the signals related to infrared light (signals related to emitted light and return light (reflected light)) received from the measurement circuit 55. To do. As a result, the microcontroller 50 can detect the presence of a pedestrian or an oncoming vehicle in front of the vehicle. Then, the microcontroller 50 turns on and off the visible light source 44 (visible light LEDs 44-1 to 44-11) so as not to give glare to pedestrians and oncoming vehicles in front of the vehicle detected based on the infrared light signal. To control. Further, the microcontroller 50 transmits a signal related to information around the vehicle detected based on the infrared light signal to the vehicle control unit 3. When the vehicle 1 travels in the automatic driving mode, the vehicle control unit 3 automatically outputs at least one of the steering control signal, the accelerator control signal, and the brake control signal based on the surrounding environment information acquired from the microcontroller 50. Can be generated.
 本実施形態では、上述の通り、配光パターンP5において、IR-LED45-1,45-2から出射される赤外光により照射される領域と、IR-LED45-3から出射された赤外光により照射される領域とが重複している。このため、フォトダイオード47により受光した赤外光がIR-LED45-1またはIR-LED45-2から出射されて対象物により反射された赤外光であるか、またはIR-LED45-3から出射されて対象物により反射された赤外光であるかを識別することが困難となる。 In the present embodiment, as described above, in the light distribution pattern P5, the region irradiated by the infrared light emitted from the IR-LED45-1, 45-2 and the infrared light emitted from the IR-LED45-3. It overlaps with the area irradiated by. Therefore, the infrared light received by the photodiode 47 is the infrared light emitted from the IR-LED45-1 or IR-LED45-2 and reflected by the object, or emitted from the IR-LED45-3. Therefore, it becomes difficult to identify whether the infrared light is reflected by the object.
 本実施形態のランプ制御部43は、IR-LED45-1,45-2およびIR-LED45-3が同時に赤外光を出射しないようにIR-LED45-1,45-2の赤外光の出射タイミングとIR-LED45-3の赤外光の出射タイミングとを異ならせている。例えば、IR-LED45-1,45-2およびIR-LED45-3はそれぞれ所定の周期及び時間で赤外光を出射するようにパルス点灯制御されている場合、ランプ制御部43のマイクロコントローラ50は、IR-LED45-1,45-2の赤外光を出射する周期および時間がIR-LED45-3の赤外光を出射する周期および時間と重複しないようなパルス信号を生成する。すなわち、所定の時間毎にIR-LED45-1,45-2の赤外光の出射とIR-LED45-3の赤外光の出射とが切り替えられるようにパルス信号を生成する。マイクロコントローラ50からパルス信号を受信したLEDドライバ52は、該パルス信号に基づいてIR-LED45-1,45-2およびIR-LED45-3をパルス点灯制御する。あるいは、ランプ制御部43は、IR-LED45-1,45-2から出射された赤外光が走査される走査範囲の一回の走査が完了する度にIR-LED45-3から出射された赤外光の一回の走査を行うように構成されていてもよい。これにより、IR-LED45-1,45-2およびIR-LED45-3は一方が点灯している(赤外光を出射している)場合には他方が点灯しない(赤外光を出射しない)ように制御される。 The lamp control unit 43 of the present embodiment emits infrared light of IR-LED45-1, 45-2 so that IR-LED45-1, 45-2 and IR-LED45-3 do not emit infrared light at the same time. The timing and the emission timing of infrared light of IR-LED45-3 are different. For example, when the IR-LEDs 45-1, 45-2 and IR-LED45-3 are pulse-lit controlled so as to emit infrared light at a predetermined cycle and time, the microcontroller 50 of the lamp control unit 43 can be used. , The period and time for emitting infrared light of IR-LED45-1, 45-2 do not overlap with the period and time for emitting infrared light of IR-LED45-3. That is, a pulse signal is generated so that the emission of the infrared light of the IR-LEDs 45-1 and 45-2 and the emission of the infrared light of the IR-LED45-3 can be switched at predetermined time intervals. The LED driver 52, which receives the pulse signal from the microcontroller 50, controls the pulse lighting of the IR-LEDs 45-1, 45-2 and the IR-LED 45-3 based on the pulse signal. Alternatively, the lamp control unit 43 emits red light emitted from the IR-LED45-3 each time the scanning range in which the infrared light emitted from the IR-LEDs 45-1 and 45-2 is scanned is completed. It may be configured to perform a single scan of outside light. As a result, when one of the IR-LEDs 45-1, 45-2 and IR-LED45-3 is lit (infrared light is emitted), the other is not lit (infrared light is not emitted). Is controlled.
 IR-LED45-1,45-2が出射された赤外光およびIR-LED45-3から出射された赤外光はそれぞれ、車両前方に存在する物体(対象物)により反射されて、異なるタイミングでフォトダイオード47に入射する。計測回路55は、LEDドライバ52から受信した赤外光源45の駆動信号に基づき、赤外光を出射したIR-LED(IR-LED45-1,45-2またはIR-LED45-3)を特定し、その出射タイミングを検出する。また、計測回路55は、電流-電圧変換・増幅回路54から受信した電圧信号に基づき、特定したIR-LEDから赤外光が出射された後(且つ他のIR-LEDから赤外光が出射される前、例えば、LEDドライバ52から受信した赤外光源45の駆動信号を新たに受信する前)にフォトダイオード47に入射した赤外光の反射光の受光タイミングを検出する。そして、計測回路55は、検出したIR-LEDの赤外光の出射タイミングおよびその赤外光の反射光の受光タイミングとの差分を計測し、その結果をマイクロコントローラ50へ送信する。 The infrared light emitted from the IR-LED45-1 and 45-2 and the infrared light emitted from the IR-LED45-3 are reflected by an object (object) existing in front of the vehicle, and at different timings. It is incident on the photodiode 47. The measurement circuit 55 identifies the IR-LED (IR-LED45-1, 45-2 or IR-LED45-3) that emits infrared light based on the drive signal of the infrared light source 45 received from the LED driver 52. , Detects its emission timing. Further, the measurement circuit 55 emits infrared light from the specified IR-LED (and infrared light is emitted from the other IR-LED) based on the voltage signal received from the current-voltage conversion / amplification circuit 54. (For example, before newly receiving the drive signal of the infrared light source 45 received from the LED driver 52), the reception timing of the reflected light of the infrared light incident on the photodiode 47 is detected. Then, the measurement circuit 55 measures the difference between the detected infrared light emission timing of the IR-LED and the reception timing of the reflected infrared light of the infrared light, and transmits the result to the microcontroller 50.
 以上説明したように、第一実施形態に係るハイビーム用灯具ユニット42Hにおいて、ランプ制御部43は、赤外光源45のIR-LED45-1,45-2およびIR-LED45-3が同時に赤外光を出射しないようにIR-LED45-1,45-2の赤外光の出射タイミングとIR-LED45-3の赤外光の出射タイミングとを異ならせる。これにより、赤外光を用いたセンシング機能が向上し、対向車等の対象物の位置を精度よく検出できる。したがって、例えば図11に示したグレア光を抑制した配光パターンを精度よく形成することができる。 As described above, in the high beam lamp unit 42H according to the first embodiment, in the lamp control unit 43, the IR-LEDs 45-1, 45-2 and IR-LED 45-3 of the infrared light source 45 simultaneously emit infrared light. The infrared light emission timing of IR-LED45-1, 45-2 and the infrared light emission timing of IR-LED45-3 are different so as not to emit. As a result, the sensing function using infrared light is improved, and the position of an object such as an oncoming vehicle can be detected with high accuracy. Therefore, for example, the light distribution pattern in which the glare light shown in FIG. 11 is suppressed can be accurately formed.
 また、可視光源44と赤外光源45とフォトダイオード47とが単一のハイビーム用灯具ユニット42H内に搭載されているため、可視光の照射と赤外光の照射とを両立しながらハイビーム用灯具ユニット42Hの小型化を実現することができる。 Further, since the visible light source 44, the infrared light source 45, and the photodiode 47 are mounted in a single high beam lamp unit 42H, the high beam lamp is equipped with both visible light irradiation and infrared light irradiation. The miniaturization of the unit 42H can be realized.
 また、赤外光源45とフォトダイオード47とが単一のハイビーム用灯具ユニット42H内に搭載されているため、赤外光が出射された位置付近において対象物により反射された当該赤外光の反射光を受光することができる。これにより、出射光に対する戻り光の角度を小さくすることができ、対象物の方向(角度座標)や距離を検出する精度を向上させることができる。 Further, since the infrared light source 45 and the photodiode 47 are mounted in a single high beam lamp unit 42H, the reflection of the infrared light reflected by the object near the position where the infrared light is emitted is reflected. It can receive light. As a result, the angle of the return light with respect to the emitted light can be reduced, and the accuracy of detecting the direction (angle coordinates) and the distance of the object can be improved.
 また、本実施形態に係るハイビーム用灯具ユニット42Hにおいては、IR-LED45-1,45-2から出射された赤外光の照射領域と、IR-LED45-3から出射された赤外光の照射領域とは少なくとも一部が重複している。ランプ制御部43は、IR-LED45-1,45-2の走査範囲の一回の走査が完了する度にIR-LED45-3の走査範囲の一回の走査を行うように構成されている。または、ランプ制御部43は、所定の時間毎にIR-LED45-1,45-2の赤外光の出射とIR-LED45-3の赤外光の出射とを切り替えるように構成されている。これにより、車両周辺において最もセンシングが必要な領域を重点的にセンシングすることができる。 Further, in the high beam lamp unit 42H according to the present embodiment, the irradiation region of infrared light emitted from IR-LED45-1, 45-2 and the irradiation of infrared light emitted from IR-LED45-3. At least part of the area overlaps. The lamp control unit 43 is configured to scan the scanning range of the IR-LED45-3 once each time the scanning range of the IR-LEDs 45-1 and 45-2 is completed. Alternatively, the lamp control unit 43 is configured to switch between the emission of infrared light of IR-LED45-1, 45-2 and the emission of infrared light of IR-LED45-3 at predetermined time intervals. As a result, it is possible to focus on the area around the vehicle that requires the most sensing.
 なお、上記の第一実施形態においては、IR-LED45-1とIR-LED45-2は、赤外光の出射タイミングが同一になるように制御される場合について述べた。しかしながら、IR-LED45-1とIR-LED45-2は、異なる出射タイミングで赤外光を出射するように制御されてもよい。 In the first embodiment described above, the case where IR-LED45-1 and IR-LED45-2 are controlled so that the emission timings of infrared light are the same has been described. However, the IR-LED45-1 and IR-LED45-2 may be controlled to emit infrared light at different emission timings.
 上記の第一実施形態においては、第一配線基板61には、二つのIR-LED45-1とIR-LED45-2が配置されている。しかしながら、R-LED45-1とIR-LED45-2の何れか一方のみが配置されてもよい。 In the first embodiment described above, two IR-LED45-1 and IR-LED45-2 are arranged on the first wiring board 61. However, only one of R-LED45-1 and IR-LED45-2 may be arranged.
 上記の第一実施形態においては、IR-LED45-3から出射された赤外光のスポット光の像である像SIR3は、IR-LED45-1とIR-LED45-2から出射される赤外光のスポット光の像である像SIR1,SIR2よりも大きくなるように形成されている。しかしながら、像SIR3および像SIR1,SIR2は、同様のサイズを有するように形成されてもよい。 In the first embodiment described above, the image S IR 3, which is an image of the spot light of infrared light emitted from the IR-LED45-3, is red emitted from the IR-LED45-1 and the IR-LED45-2. It is formed so as to be larger than the images S IR 1 and S IR 2, which are images of spot light of external light. However, images S IR 3 and images S IR 1 and S IR 2 may be formed to have similar sizes.
 (第二実施形態)
 次に、本開示の第二実施形態に係る車両システムの具体的構成について説明する。
(Second Embodiment)
Next, a specific configuration of the vehicle system according to the second embodiment of the present disclosure will be described.
 第一実施形態では、赤外光を用いたセンシング機能を向上させるために、IR-LED45-1,45-2およびIR-LED45-3が同時に赤外光を出射しないようにIR-LED45-1,45-2の赤外光の出射タイミングとIR-LED45-3の赤外光の出射タイミングとを異ならせている。IR-LED45-1,45-2およびIR-LED45-3から出射されて対象物により反射された赤外光はそれぞれ、一つのフォトダイオード47により異なるタイミングで受光される。 In the first embodiment, in order to improve the sensing function using infrared light, IR-LED45-1 so that IR-LED45-1, 45-2 and IR-LED45-3 do not emit infrared light at the same time. , 45-2 infrared light emission timing and IR-LED45-3 infrared light emission timing are different. The infrared light emitted from the IR-LEDs 45-1, 45-2 and IR-LED45-3 and reflected by the object is received by one photodiode 47 at different timings.
 第二実施形態では、赤外光を用いたセンシング機能を向上させるために、IR-LED45-1,45-2とIR-LED45-3とは、IR-LED45-1,45-2から出射される赤外光の波長とIR-LED45-3から出射される赤外光の波長とが異なるように構成されている。フォトダイオード47は、フォトダイオード47-1とフォトダイオード47-2を有している。IR-LED45-1,45-2から出射されて対象物により反射された赤外光は、フォトダイオード47-1により受光される。IR-LED45-3から出射されて対象物により反射された赤外光は、フォトダイオード47-2により受光される。 In the second embodiment, in order to improve the sensing function using infrared light, IR-LED45-1,45-2 and IR-LED45-3 are emitted from IR-LED45-1,45-2. The wavelength of the infrared light and the wavelength of the infrared light emitted from the IR-LED45-3 are configured to be different. The photodiode 47 has a photodiode 47-1 and a photodiode 47.2. The infrared light emitted from the IR-LEDs 45-1, 45-2 and reflected by the object is received by the photodiode 47-1. The infrared light emitted from the IR-LED45-3 and reflected by the object is received by the photodiode 47-2.
 尚、第二実施形態の車両システムの基本的な構造および機能は、上述した相違点を除き図2から図6に示される第一実施形態の車両システム2の構造および機能と同じである。第二実施形態において、第一実施形態と同一の構造および機能については、説明の便宜上、その説明および図示は省略する。 The basic structure and function of the vehicle system of the second embodiment are the same as those of the vehicle system 2 of the first embodiment shown in FIGS. 2 to 6 except for the above-mentioned differences. In the second embodiment, the same structure and function as those in the first embodiment will be omitted from the description and illustration for convenience of explanation.
 本実施形態の赤外光源45では、IR-LED45-1,45-2とIR-LED45-3とは、IR-LED45-1,45-2から出射される赤外光の波長とIR-LED45-3から出射される赤外光の波長とが異なるように構成されている。例えば、IR-LED45-1,45-2は、850nm、905nmまたは1500nmの赤外光を出射するように構成され、IR-LED45-3は、850nm、905nmおよび1500nmの波長のうちIR-LED45-1,45-2が使用していない波長の赤外光を出射するように構成されている。また、本実施形態のフォトダイオード47は、IR-LED45-1,45-2が出射する赤外光の波長に対応した受光感度を有するフォトダイオード47-1と、IR-LED45-3が出射する赤外光の波長に対応した受光感度を有するフォトダイオード47-2とを有する。 In the infrared light source 45 of the present embodiment, IR-LED45-1,45-2 and IR-LED45-3 are the wavelength of infrared light emitted from IR-LED45-1,45-2 and IR-LED45. It is configured so that the wavelength of the infrared light emitted from -3 is different. For example, IR-LED45-1,45-2 is configured to emit infrared light at 850 nm, 905 nm or 1500 nm, and IR-LED45-3 is IR-LED45-of wavelengths of 850 nm, 905 nm and 1500 nm. 1,45-2 is configured to emit infrared light of a wavelength not used. Further, in the photodiode 47 of the present embodiment, the photodiode 47-1 having a light receiving sensitivity corresponding to the wavelength of the infrared light emitted by the IR-LEDs 45-1 and 45-2 and the IR-LED45-3 emit the photodiode 47. It has a photodiode 47-2 having a light receiving sensitivity corresponding to the wavelength of infrared light.
 IR-LED45-1,45-2から出射された赤外光およびIR-LED45-3から出射された赤外光はそれぞれ、車両前方に存在する物体(対象物)により反射されて、対応するフォトダイオード47-1,47-2に入射する。計測回路55は、LEDドライバ52から受信した赤外光源45の駆動信号に基づき、赤外光を出射したIR-LED(IR-LED45-1、IR-LED45-2またはIR-LED45-3)を特定し、その出射タイミングを検出する。また、計測回路55は、電流-電圧変換・増幅回路54から受信した電圧信号に基づき、特定したIR-LED(IR-LED45-1、IR-LED45-2またはIR-LED45-3)から赤外光が出射された後に対応するフォトダイオード47(47-1または47-2)に入射した同一波長の赤外光の反射光の受光タイミングを検出する。なお、計測回路55は、各IR-LED(IR-LED45-1、IR-LED45-2またはIR-LED45-3)に対応するフォトダイオード(47-1または47-2)情報を予め記憶しておいてもよい。そして、計測回路55は、検出したIR-LEDの赤外光の出射タイミングおよびその赤外光の反射光の受光タイミングとの差分を計測し、その結果をマイクロコントローラ50へ送信する。 The infrared light emitted from the IR-LED45-1, 45-2 and the infrared light emitted from the IR-LED45-3 are each reflected by an object (object) existing in front of the vehicle, and the corresponding photo is taken. It is incident on the diodes 47-1 and 47.2. The measurement circuit 55 emits an IR-LED (IR-LED45-1, IR-LED45-2 or IR-LED45-3) that emits infrared light based on the drive signal of the infrared light source 45 received from the LED driver 52. Identify and detect the emission timing. Further, the measurement circuit 55 is infrared from the specified IR-LED (IR-LED45-1, IR-LED45-2 or IR-LED45-3) based on the voltage signal received from the current-voltage conversion / amplification circuit 54. After the light is emitted, the reception timing of the reflected light of the infrared light of the same wavelength incident on the corresponding photodiode 47 (47-1 or 47-2) is detected. The measurement circuit 55 stores in advance the photodiode (47-1 or 47-2) information corresponding to each IR-LED (IR-LED45-1, IR-LED45-2 or IR-LED45-3). You may leave it. Then, the measurement circuit 55 measures the difference between the detected infrared light emission timing of the IR-LED and the reception timing of the reflected infrared light of the infrared light, and transmits the result to the microcontroller 50.
 以上説明したように、第二実施形態に係るハイビーム用灯具ユニット42Hにおいて、赤外光源45のIR-LED45-1,45-2およびIR-LED45-3はそれぞれ異なる波長の赤外光を出射する。これにより、赤外光を用いたセンシング機能が向上し、対向車等の対象物の位置を精度よく検出できる。したがって、車両周囲の状況により可変する照明用の配光を簡便な構成で高精細化することができる。例えば図11に示したグレア光を抑制した配光パターンを精度よく形成することができる。 As described above, in the high beam lamp unit 42H according to the second embodiment, the IR-LEDs 45-1, 45-2 and IR-LED45-3 of the infrared light source 45 emit infrared light having different wavelengths. .. As a result, the sensing function using infrared light is improved, and the position of an object such as an oncoming vehicle can be detected with high accuracy. Therefore, it is possible to improve the definition of the light distribution for lighting, which is variable depending on the situation around the vehicle, with a simple configuration. For example, the light distribution pattern in which the glare light shown in FIG. 11 is suppressed can be accurately formed.
 また、ランプ制御部43は、IR-LED45-1,45-2の出射タイミングおよびIR-LED45-3の出射タイミングを独立して制御することができる。例えば、IR-LED45-1,45-2およびIR-LED45-3は、同一(同一周期および同一時間)の出射光タイミングで赤外光を出射するように構成されてもよい。この場合でも、異なる波長の赤外光の反射光を対応するフォトダイオード47-1,47-2によりそれぞれ受光するため、波長毎に赤外光を検出することが可能である。このため、IR-LED45-1の出射タイミングとIR-LED45-3の出射タイミングとの間に受光した赤外光に基づいて受光タイミングを検出する等の制御を行う必要がない。 Further, the lamp control unit 43 can independently control the emission timing of IR-LED45-1, 45-2 and the emission timing of IR-LED45-3. For example, IR-LED45-1, 45-2 and IR-LED45-3 may be configured to emit infrared light at the same (same period and same time) emission timing. Even in this case, since the reflected light of infrared light having different wavelengths is received by the corresponding photodiodes 47-1 and 47-2, it is possible to detect infrared light for each wavelength. Therefore, it is not necessary to perform control such as detecting the light reception timing based on the infrared light received between the light emission timing of the IR-LED45-1 and the light emission timing of the IR-LED45-3.
 また、可視光源44と赤外光源45とフォトダイオード47とが単一のハイビーム用灯具ユニット42H内に搭載されているため、可視光の照射と赤外光の照射とを両立しながらハイビーム用灯具ユニット42Hの小型化を実現することができる。 Further, since the visible light source 44, the infrared light source 45, and the photodiode 47 are mounted in a single high beam lamp unit 42H, the high beam lamp is equipped with both visible light irradiation and infrared light irradiation. The miniaturization of the unit 42H can be realized.
 また、赤外光源45とフォトダイオード47とが単一のハイビーム用灯具ユニット42H内に搭載されているため、赤外光が出射された位置付近において対象物により反射された当該赤外光の反射光を受光することができる。これにより、出射光に対する戻り光の角度を小さくすることができ、対象物の方向(角度座標)や距離を検出する精度を向上させることができる。 Further, since the infrared light source 45 and the photodiode 47 are mounted in a single high beam lamp unit 42H, the reflection of the infrared light reflected by the object near the position where the infrared light is emitted is reflected. It can receive light. As a result, the angle of the return light with respect to the emitted light can be reduced, and the accuracy of detecting the direction (angle coordinates) and the distance of the object can be improved.
 なお、上記の第二実施形態においては、IR-LED45-1とIR-LED45-2は、同一波長の赤外光を出射する場合について述べた。しかしながら、IR-LED45-1とIR-LED45-2は、異なる波長の赤外光を出射するように制御されてもよい。 In the second embodiment described above, the case where the IR-LED45-1 and the IR-LED45-2 emit infrared light having the same wavelength is described. However, the IR-LED45-1 and IR-LED45-2 may be controlled to emit infrared light of different wavelengths.
 上記の第二実施形態においては、第一配線基板61には、二つのIR-LED45-1とIR-LED45-2が配置されている。しかしながら、IR-LED45-1とIR-LED45-2の何れか一方のみが配置されてもよい。 In the second embodiment described above, two IR-LED45-1 and IR-LED45-2 are arranged on the first wiring board 61. However, only one of IR-LED45-1 and IR-LED45-2 may be arranged.
 上記の第二実施形態においては、IR-LED45-3から出射された赤外光のスポット光の像である像SIR3は、IR-LED45-1とIR-LED45-2から出射される赤外光のスポット光の像である像SIR1,SIR2よりも大きくなるように形成されている。しかしながら、像SIR3および像SIR1,SIR2は、同様のサイズを有するように形成されてもよい。 In the second embodiment described above, the image S IR 3, which is an image of the spot light of infrared light emitted from the IR-LED45-3, is red emitted from the IR-LED45-1 and the IR-LED45-2. It is formed so as to be larger than the images S IR 1 and S IR 2, which are images of spot light of external light. However, images S IR 3 and images S IR 1 and S IR 2 may be formed to have similar sizes.
(第三実施形態)
 次に、本開示の第三実施形態について、図14および図15を参照して説明する。図14は、第三実施形態に係る左側ヘッドランプ4Lの赤外光源45Lおよび右側ヘッドランプ4Rの赤外光源45Rから出射される赤外光により照射される範囲を示した模式図である。図15は、図14の対象物により反射されてフォトダイオード47L,47Rにより受光された赤外光の受光強度を示した図である。
(Third Embodiment)
Next, the third embodiment of the present disclosure will be described with reference to FIGS. 14 and 15. FIG. 14 is a schematic view showing a range irradiated by infrared light emitted from the infrared light source 45L of the left headlamp 4L and the infrared light source 45R of the right headlamp 4R according to the third embodiment. FIG. 15 is a diagram showing the light receiving intensity of infrared light reflected by the object of FIG. 14 and received by the photodiodes 47L and 47R.
 第一実施形態では、ヘッドランプ4内に配置された赤外光源45の複数のIR-LED(IR-LED45-1とIR-LED45-2およびIR-LED45-3)から出射される赤外光による照射領域が重複する場合について述べた。本実施形態では、左側ヘッドランプ4Lの赤外光源45LのIR-LEDから出射される赤外光による照射領域と右側ヘッドランプ4Rの赤外光源45RのIR-LEDから出射される赤外光による照射領域とが重複する場合について述べる。なお、左側ヘッドランプ4Lおよび右側ヘッドランプ4Rの構成は、第一実施形態のヘッドランプ4と同じ構成であるためその説明は省略し、左側ヘッドランプ4Lおよび右側ヘッドランプ4Rの各構成部材については左側又は右側を示す「L」または「R」を付して説明する。 In the first embodiment, infrared light emitted from a plurality of IR-LEDs (IR-LED45-1, IR-LED45-2 and IR-LED45-3) of the infrared light source 45 arranged in the headlamp 4. The case where the irradiation areas of the infrared rays overlap is described. In the present embodiment, the irradiation region by the infrared light emitted from the IR-LED of the infrared light source 45L of the left headlamp 4L and the infrared light emitted from the IR-LED of the infrared light source 45R of the right headlamp 4R are used. The case where the irradiation area overlaps will be described. Since the configurations of the left headlamp 4L and the right headlamp 4R are the same as those of the headlamp 4 of the first embodiment, the description thereof will be omitted, and the components of the left headlamp 4L and the right headlamp 4R will be described. It will be described with an "L" or "R" indicating the left side or the right side.
 左側ヘッドランプ4Lは、車両1の前部の左側に搭載されている。左側ヘッドランプ4Lの赤外光源45Lは、車両前方方向を基準として、-θ(マイナスθ)から+θ(プラスθ)の照射範囲(第一走査範囲の一例)に赤外光を出射する。左側ヘッドランプ4Lのフォトダイオード47Lは、赤外光源45Lから出射されて車両前方の物体(対象物)により反射された赤外光を受信する。右側ヘッドランプ4Rは、車両1の前部の右側に搭載されている。右側ヘッドランプ4Rの赤外光源45Rは、車両前方方向を基準として、-θ(マイナスθ)から+θ(プラスθ)の照射範囲(第二走査範囲の一例)に赤外光を出射する。右側ヘッドランプ4Rのフォトダイオード47Rは、赤外光源45Rから出射されて車両前方の物体(対象物)により反射された赤外光を受信する。θおよびθは、同じ角度であり、-θから+θおよび-θから+θは同じ角度範囲である。車両前方において中央領域では精度の高いセンシングが望ましいため、車両前方の中央領域では左側ヘッドランプ4Lの照射領域と右側ヘッドランプ4Rの照射領域とが重複するように構成されている。左側ヘッドランプ4Lおよび右側ヘッドランプ4Rは、車両前後方向に直交する方向に沿って、赤外光源45Lおよび赤外光源45Rの間が所定の距離dになるように離れるように配置されている。 The left headlamp 4L is mounted on the left side of the front portion of the vehicle 1. The infrared light source 45L of the left headlamp 4L has infrared light in an irradiation range (an example of the first scanning range) from −θ L (minus θ L ) to + θ L (plus θ L ) with reference to the vehicle front direction. Is emitted. The photodiode 47L of the left headlamp 4L receives infrared light emitted from the infrared light source 45L and reflected by an object (object) in front of the vehicle. The right headlamp 4R is mounted on the right side of the front portion of the vehicle 1. The infrared light source 45R of the right headlamp 4R has infrared light in the irradiation range (an example of the second scanning range) from −θ R (minus θ R ) to + θ R (plus θ R ) with reference to the vehicle front direction. Is emitted. The photodiode 47R of the right headlamp 4R receives infrared light emitted from the infrared light source 45R and reflected by an object (object) in front of the vehicle. θ L and θ R have the same angle, and -θ L to + θ L and -θ R to + θ R have the same angle range. Since highly accurate sensing is desirable in the central region in front of the vehicle, the irradiation region of the left headlamp 4L and the irradiation region of the right headlamp 4R are configured to overlap in the central region in front of the vehicle. The left headlamp 4L and the right headlamp 4R are arranged so as to be separated from each other by a predetermined distance d between the infrared light source 45L and the infrared light source 45R along the direction orthogonal to the vehicle front-rear direction.
 車両前方に物体(対象物)が存在する場合、左側ヘッドランプ4Lのフォトダイオード47Lおよび右側ヘッドランプ4Rのフォトダイオード47Rには、赤外光源45Lおよび赤外光源45Rからそれぞれ異なる角度で出射されて対象物で反射した赤外光の反射光が入射する。例えば、図14および図15に示すように、対象物100が車両の前方において右寄りに存在する場合、右側ヘッドランプ4Rでは、赤外光源45Rからθの角度(及びθを中心とした所定の角度範囲)で出射された赤外光が対象物100により反射されて、当該赤外光の反射光がフォトダイオード47Rで受光される。左側ヘッドランプ4Lでは、赤外光源45Lからθの角度(及びθを中心とした所定の角度範囲)で出射された赤外光が対象物100により反射されて、当該赤外光の反射光がフォトダイオード47Lで受光される。θは、θよりも大きな角度(θ=θ+θx)となる。左側ヘッドランプ4Lおよび右側ヘッドランプ4Rそれぞれで検出された出射光の出射タイミングと戻り光の受光タイミングとの差分、出射光の角度θおよびθと、距離dから、物体100の位置を特定することができる。 When an object (object) is present in front of the vehicle, the photodiode 47L of the left headlamp 4L and the photodiode 47R of the right headlamp 4R are emitted from the infrared light source 45L and the infrared light source 45R at different angles. The reflected light of the infrared light reflected by the object is incident. For example, as shown in FIGS. 14 and 15, when the object 100 is located to the right in front of the vehicle, the right head lamp 4R has a predetermined angle of θ 1 from the infrared light source 45R (and a predetermined angle centered on θ 1). The infrared light emitted in the angle range of) is reflected by the object 100, and the reflected light of the infrared light is received by the photodiode 47R. In the left headlamp 4L, infrared light emitted by the infrared light source 45L from theta 2 of angle (predetermined angle range a and theta 2 centered) is reflected by the object 100, the reflection of the infrared light Light is received by the photodiode 47L. θ 2 has an angle larger than θ 12 = θ 1 + θ x). The position of the object 100 is specified from the difference between the emission timing of the emission light and the reception timing of the return light detected by the left headlamp 4L and the right headlamp 4R, the angles θ 1 and θ 2 of the emission light, and the distance d. can do.
 本実施形態では、上述の通り、左側ヘッドランプ4Lの赤外光源45Lによる赤外光の照射領域と右側ヘッドランプ4Rの赤外光源45Rによる赤外光の照射領域とが重複している。このため、左側ヘッドランプ4Lのフォトダイオード47Lにより受光した赤外光が、左側ヘッドランプ4Lの赤外光源45Lから出射されて対象物により反射された赤外光であるか、右側ヘッドランプ4Rの赤外光源45Rから出射されて対象物により反射された赤外光であるかを認識することが困難となる。また、右側ヘッドランプ4Rのフォトダイオード47Rにより受光した赤外光が、左側ヘッドランプ4Lの赤外光源45Lから出射されて対象物により反射された赤外光であるか、右側ヘッドランプ4Rの赤外光源45Rから出射されて対象物により反射された赤外光であるかを認識することが困難となる。 In the present embodiment, as described above, the infrared light irradiation region by the infrared light source 45L of the left headlamp 4L and the infrared light irradiation region by the infrared light source 45R of the right headlamp 4R overlap. Therefore, the infrared light received by the photodiode 47L of the left head lamp 4L is either the infrared light emitted from the infrared light source 45L of the left head lamp 4L and reflected by the object, or the right head lamp 4R. It becomes difficult to recognize whether the infrared light is emitted from the infrared light source 45R and reflected by the object. Further, the infrared light received by the photodiode 47R of the right headlamp 4R is the infrared light emitted from the infrared light source 45L of the left headlamp 4L and reflected by the object, or the red of the right headlamp 4R. It becomes difficult to recognize whether the infrared light is emitted from the external light source 45R and reflected by the object.
 本実施形態の車両制御部3は、左側ヘッドランプ4Lの赤外光源45Lおよび右側ヘッドランプ4Rの赤外光源45Rが同時に赤外光を出射しないように、赤外光源45Lの赤外光の出射タイミングと赤外光源45Rの赤外光の出射タイミングとを異ならせている。例えば、赤外光源45Lおよび赤外光源45Rはそれぞれ所定の周期及び時間で赤外光を出射するようにパルス点灯制御されている場合、車両制御部3は、HMI8等を介して赤外光の点灯指示を受信すると、赤外光源45Lの赤外光を出射する周期および時間が赤外光源45Rの赤外光を出射する周期および時間と重複しないように左側ヘッドランプ4Lおよび右側ヘッドランプ4Rに対してそれぞれパルス制御指示信号を生成する。すなわち、所定の時間毎に赤外光源45Lの赤外光の出射と赤外光源45Rの赤外光の出射とが切り替えられるようにパルス制御指示信号を生成する。車両制御部3からパルス制御信号を受信した左側ヘッドランプ4Lおよび右側ヘッドランプ4Rはそれぞれ、異なる周期および時間で赤外光源45Lおよび赤外光源45Rをパルス点灯制御する。あるいは、車両制御部3は、赤外光源45Lから出射された赤外光が走査される走査範囲の一回の走査が完了する度に赤外光源45Rから出射された赤外光の一回の走査を行うように構成されていてもよい。これにより、赤外光源45Lおよび赤外光源45Rは一方が点灯している(赤外光を出射している)場合には他方が点灯しない(赤外光を出射しない)ように制御される。 The vehicle control unit 3 of the present embodiment emits infrared light from the infrared light source 45L so that the infrared light source 45L of the left headlamp 4L and the infrared light source 45R of the right headlamp 4R do not emit infrared light at the same time. The timing and the emission timing of the infrared light of the infrared light source 45R are different. For example, when the infrared light source 45L and the infrared light source 45R are pulse-lit controlled so as to emit infrared light at a predetermined period and time, the vehicle control unit 3 receives infrared light via HMI8 or the like. Upon receiving the lighting instruction, the left head lamp 4L and the right head lamp 4R are set so that the cycle and time for emitting infrared light from the infrared light source 45L do not overlap with the cycle and time for emitting infrared light from the infrared light source 45R. On the other hand, a pulse control instruction signal is generated for each. That is, a pulse control instruction signal is generated so that the emission of the infrared light of the infrared light source 45L and the emission of the infrared light of the infrared light source 45R can be switched at predetermined time intervals. The left headlamp 4L and the right headlamp 4R, which have received the pulse control signal from the vehicle control unit 3, control the infrared light source 45L and the infrared light source 45R for pulse lighting at different cycles and times, respectively. Alternatively, the vehicle control unit 3 receives one infrared light emitted from the infrared light source 45R each time the scanning range in which the infrared light emitted from the infrared light source 45L is scanned is completed. It may be configured to perform scanning. As a result, the infrared light source 45L and the infrared light source 45R are controlled so that when one is lit (infrared light is emitted), the other is not lit (infrared light is not emitted).
 左側ヘッドランプ4Lの計測回路55Lは、LEDドライバ52Lから受信した赤外光源45Lの駆動信号および電流-電圧変換・増幅回路54Lから受信した電圧信号に基づき、赤外光源54Lの赤外光の出射タイミングおよびフォトダイオード47Lに入射した赤外光の反射光の受光タイミングの差分を計測する。そして、計測回路55Lは、その結果をマイクロコントローラ50Lへ送信する。フォトダイオード47Lの受光タイミングは、赤外光源45Lから赤外光が出射された後且つ赤外光源45Rから赤外光が出射される前にフォトダイオード47Lに入射した赤外光の反射光に基づいて検出される。例えば、車両制御部3から左側ヘッドランプ4Lへ送信される点灯制御指示信号には、右側ヘッドランプ4Rの赤外光源45Rの点灯制御情報が含まれており、計測回路55Lは、この点灯制御情報に基づき、赤外光源45Rの赤外光の出射タイミングを把握する。同様に、右側ヘッドランプ4Rの計測回路55Rは、LEDドライバ52Rから受信した赤外光源45Rの駆動信号および電流-電圧変換・増幅回路54Rから受信した電圧信号に基づき、赤外光源54Rの赤外光の出射タイミングおよびフォトダイオード47Rに入射した赤外光の反射光の受光タイミングの差分を計測する。そして、計測回路55Rは、その結果をマイクロコントローラ50Rへ送信する。 The measurement circuit 55L of the left head lamp 4L emits infrared light of the infrared light source 54L based on the drive signal of the infrared light source 45L received from the LED driver 52L and the voltage signal received from the current-voltage conversion / amplification circuit 54L. The difference between the timing and the reception timing of the reflected light of the infrared light incident on the photodiode 47L is measured. Then, the measurement circuit 55L transmits the result to the microcontroller 50L. The light receiving timing of the photodiode 47L is based on the reflected light of the infrared light incident on the photodiode 47L after the infrared light is emitted from the infrared light source 45L and before the infrared light is emitted from the infrared light source 45R. Is detected. For example, the lighting control instruction signal transmitted from the vehicle control unit 3 to the left headlamp 4L includes lighting control information of the infrared light source 45R of the right headlamp 4R, and the measurement circuit 55L includes this lighting control information. Based on the above, the emission timing of the infrared light of the infrared light source 45R is grasped. Similarly, the measurement circuit 55R of the right head lamp 4R is based on the drive signal of the infrared light source 45R received from the LED driver 52R and the voltage signal received from the current-voltage conversion / amplification circuit 54R, and the infrared light of the infrared light source 54R. The difference between the light emission timing and the light reception timing of the reflected infrared light incident on the photodiode 47R is measured. Then, the measurement circuit 55R transmits the result to the microcontroller 50R.
 以上説明したように、第三実施形態に係る車両システム2において、車両制御部3は、赤外光源45Lおよび赤外光源45Rが同時に赤外光を出射しないように赤外光源45Lの赤外光の出射タイミングと赤外光源45Rの赤外光の出射タイミングとを異ならせる。これにより、赤外光を用いたセンシング機能が向上し、対向車等の対象物の位置を精度よく検出できる。したがって、例えば図11に示したグレア光を抑制した配光パターンを精度よく形成することができる。 As described above, in the vehicle system 2 according to the third embodiment, the vehicle control unit 3 uses the infrared light of the infrared light source 45L so that the infrared light source 45L and the infrared light source 45R do not emit infrared light at the same time. The emission timing of the infrared light and the emission timing of the infrared light of the infrared light source 45R are made different. As a result, the sensing function using infrared light is improved, and the position of an object such as an oncoming vehicle can be detected with high accuracy. Therefore, for example, the light distribution pattern in which the glare light shown in FIG. 11 is suppressed can be accurately formed.
 また、赤外光源45L,45Rとフォトダイオード47L,47Rとが単一のヘッドランプ4L,4R内にそれぞれ搭載されているため、赤外光が出射された位置付近において対象物により反射された当該赤外光の反射光を受光することができる。これにより、出射光に対する戻り光の角度を小さくすることができ、対象物の方向(角度座標)や距離を検出する精度を向上させることができる。 Further, since the infrared light sources 45L and 45R and the photodiodes 47L and 47R are mounted in a single headlamp 4L and 4R, respectively, the infrared light is reflected by the object near the position where the infrared light is emitted. It can receive the reflected light of infrared light. As a result, the angle of the return light with respect to the emitted light can be reduced, and the accuracy of detecting the direction (angle coordinates) and the distance of the object can be improved.
 また、本実施形態に係る車両システム2においては、赤外光源45Rから出射された赤外光の照射領域と、赤外光源45Lから出射された赤外光の照射領域とは少なくとも一部が重複している。ランプ制御部43は、赤外光源45Rの走査範囲の一回の走査が完了する度に赤外光源45Lの走査範囲の一回の走査を行うように構成されている。または、ランプ制御部43は、所定の時間毎に赤外光源45Rの赤外光の出射と赤外光源45Lの赤外光の出射とを切り替えるように構成されている。これにより、車両周辺において最もセンシングが必要な領域を重点的にセンシングすることができる。 Further, in the vehicle system 2 according to the present embodiment, at least a part of the infrared light irradiation region emitted from the infrared light source 45R and the infrared light irradiation region emitted from the infrared light source 45L overlap. are doing. The lamp control unit 43 is configured to perform one scan of the scanning range of the infrared light source 45L each time the scanning range of the infrared light source 45R is completed. Alternatively, the lamp control unit 43 is configured to switch between emitting infrared light from the infrared light source 45R and emitting infrared light from the infrared light source 45L at predetermined time intervals. As a result, it is possible to focus on the area around the vehicle that requires the most sensing.
 なお、上記の第三実施形態においては、車両制御部3が、赤外光源45Lの赤外光の出射タイミングと赤外光源45Rの赤外光の出射タイミングを制御していた。しかしながら、例えば、左側ヘッドランプ4Lおよび右側ヘッドランプ4Rのランプ制御部43L,43R同士で互いに出射タイミング情報を含む信号を送受信して赤外光源45L,45Rの赤外光の出射タイミングを調整してもよい。 In the third embodiment described above, the vehicle control unit 3 controls the emission timing of the infrared light of the infrared light source 45L and the emission timing of the infrared light of the infrared light source 45R. However, for example, the lamp control units 43L and 43R of the left headlamp 4L and the right headlamp 4R send and receive signals including emission timing information to each other to adjust the emission timing of infrared light of the infrared light sources 45L and 45R. May be good.
 上記の第三実施形態においては、左側ヘッドランプ4Lおよび右側ヘッドランプ4Rの構成は、第一実施形態のヘッドランプ4の構成と同じである。しかしながら、左側ヘッドランプ4Lおよび右側ヘッドランプ4Rの構成は、左側ヘッドランプ4Lの赤外光源45の照射範囲および右側ヘッドランプ4Rの赤外光源45の照射範囲が重複する構成であれば、第一実施形態のヘッドランプ4の構成と異なってもよい。 In the third embodiment described above, the configuration of the left headlamp 4L and the right headlamp 4R is the same as the configuration of the headlamp 4 of the first embodiment. However, the configuration of the left headlamp 4L and the right headlamp 4R is the first if the irradiation range of the infrared light source 45 of the left headlamp 4L and the irradiation range of the infrared light source 45 of the right headlamp 4R overlap. It may be different from the configuration of the headlamp 4 of the embodiment.
(第四実施形態)
 次に、本開示の第四実施形態について、説明する。
(Fourth Embodiment)
Next, a fourth embodiment of the present disclosure will be described.
 第三実施形態では、赤外光を用いたセンシング機能を向上させるために、左側ヘッドランプ4Lの赤外光源45Lおよび右側ヘッドランプ4Rの赤外光源45Rが同時に赤外光を出射しないように、赤外光源45Lの赤外光の出射タイミングと赤外光源45Rの赤外光の出射タイミングとを異ならせている。 In the third embodiment, in order to improve the sensing function using infrared light, the infrared light source 45L of the left head lamp 4L and the infrared light source 45R of the right head lamp 4R do not emit infrared light at the same time. The emission timing of the infrared light of the infrared light source 45L and the emission timing of the infrared light of the infrared light source 45R are different.
 第四実施形態では、赤外光を用いたセンシング機能を向上させるために、左側ヘッドランプ4Lの赤外光源45L(赤外光源45Lを構成する全ての光学素子)および右側ヘッドランプ4Rの赤外光源45R(赤外光源45Rを構成する全ての光学素子)が互いに異なる波長の赤外光を出射するように構成されている。 In the fourth embodiment, in order to improve the sensing function using infrared light, the infrared light source 45L of the left head lamp 4L (all optical elements constituting the infrared light source 45L) and the infrared light of the right head lamp 4R are used. The light source 45R (all optical elements constituting the infrared light source 45R) is configured to emit infrared light having different wavelengths from each other.
 なお、第四実施形態の車両システムの基本的な構造および機能は、上述した相違点を除き図14に示される第三実施形態の車両システム2の構造および機能と同じである。第四実施形態において、第三実施形態と同一の構造および機能については、説明の便宜上、その説明および図示は省略する。 The basic structure and function of the vehicle system of the fourth embodiment are the same as the structure and function of the vehicle system 2 of the third embodiment shown in FIG. 14, except for the above-mentioned differences. In the fourth embodiment, the same structure and function as those in the third embodiment will be omitted from the description and illustration for convenience of explanation.
 本実施形態の車両システム2は、左側ヘッドランプ4Lの赤外光源45L(赤外光源45Lを構成する全ての光学素子)および右側ヘッドランプ4Rの赤外光源45R(赤外光源45Rを構成する全ての光学素子)が互いに異なる波長の赤外光を出射するように構成されている。例えば、赤外光源45Lは、850nm、905nmまたは1500nmの赤外光を出射するように構成され、赤外光源45Rは、850nm、905nmおよび1500nmの波長のうち赤外光源45Lが使用していない波長の赤外光を出射するように構成されている。また、左側ヘッドランプ4Lのフォトダイオード47Lは赤外光源45Lの波長に対応した受光感度を有し、右側ヘッドランプ4Rのフォトダイオード47Rは赤外光源45Rの波長に対応した受光感度を有するように構成されている。 The vehicle system 2 of the present embodiment includes an infrared light source 45L of the left headlamp 4L (all optical elements constituting the infrared light source 45L) and an infrared light source 45R of the right headlamp 4R (all constituting the infrared light source 45R). Optical elements) are configured to emit infrared light of different wavelengths from each other. For example, the infrared light source 45L is configured to emit infrared light of 850 nm, 905 nm or 1500 nm, and the infrared light source 45R has wavelengths of 850 nm, 905 nm and 1500 nm that are not used by the infrared light source 45L. It is configured to emit infrared light of. Further, the photodiode 47L of the left headlamp 4L has a light receiving sensitivity corresponding to the wavelength of the infrared light source 45L, and the photodiode 47R of the right headlamp 4R has a light receiving sensitivity corresponding to the wavelength of the infrared light source 45R. It is configured.
 左側ヘッドランプ4Lの計測回路55Lは、LEDドライバ52Lから受信した赤外光源45Lの駆動信号および電流-電圧変換・増幅回路54Lから受信した電圧信号に基づき、赤外光源54Lの赤外光の出射タイミングおよびフォトダイオード47Lに入射した赤外光源54Lから出射された赤外光と同一波長の赤外光の反射光の受光タイミングの差分を計測する。そして、計測回路55Lは、その結果をマイクロコントローラ50Lへ送信する。同様に、右側ヘッドランプ4Rの計測回路55Rは、LEDドライバ52Rから受信した赤外光源45Rの駆動信号および電流-電圧変換・増幅回路54Rから受信した電圧信号に基づき、赤外光源54Rの赤外光の出射タイミングおよびフォトダイオード47Rに入射した赤外光源54Rから出射された赤外光と同一波長の赤外光の反射光の受光タイミングの差分を計測する。そして、計測回路55Rは、その結果をマイクロコントローラ50Rへ送信する。 The measurement circuit 55L of the left head lamp 4L emits infrared light of the infrared light source 54L based on the drive signal of the infrared light source 45L received from the LED driver 52L and the voltage signal received from the current-voltage conversion / amplification circuit 54L. The difference between the timing and the reception timing of the reflected light of the infrared light having the same wavelength as the infrared light emitted from the infrared light source 54L incident on the photodiode 47L is measured. Then, the measurement circuit 55L transmits the result to the microcontroller 50L. Similarly, the measurement circuit 55R of the right head lamp 4R is based on the drive signal of the infrared light source 45R received from the LED driver 52R and the voltage signal received from the current-voltage conversion / amplification circuit 54R, and the infrared light of the infrared light source 54R. The difference between the light emission timing and the reception timing of the reflected light of the infrared light having the same wavelength as the infrared light emitted from the infrared light source 54R incident on the photodiode 47R is measured. Then, the measurement circuit 55R transmits the result to the microcontroller 50R.
 以上説明したように、第四実施形態に係る車両システム2において、左側ヘッドランプ4Lの赤外光源45Lおよび右側ヘッドランプ4Rの赤外光源45Rは互いに異なる波長の赤外光を出射する。これにより、赤外光を用いたセンシング機能が向上し、対向車等の対象物の位置を精度よく検出できる。したがって、車両周囲の状況により可変する照明用の配光を簡便な構成でより高精細化することができる。例えば図11に示したグレア光を抑制した配光パターンを精度よく形成することができる。 As described above, in the vehicle system 2 according to the fourth embodiment, the infrared light source 45L of the left headlamp 4L and the infrared light source 45R of the right headlamp 4R emit infrared light having different wavelengths from each other. As a result, the sensing function using infrared light is improved, and the position of an object such as an oncoming vehicle can be detected with high accuracy. Therefore, the light distribution for lighting, which varies depending on the surrounding conditions of the vehicle, can be made higher in definition with a simple configuration. For example, the light distribution pattern in which the glare light shown in FIG. 11 is suppressed can be accurately formed.
 また、赤外光源45L,45Rとフォトダイオード47L,47Rとが単一のヘッドランプ4L,4R内にそれぞれ搭載されているため、赤外光が出射された位置付近において対象物により反射された当該赤外光の反射光を受光することができる。これにより、出射光に対する戻り光の角度を小さくすることができ、対象物の方向(角度座標)や距離を検出する精度を向上させることができる。 Further, since the infrared light sources 45L and 45R and the photodiodes 47L and 47R are mounted in a single headlamp 4L and 4R, respectively, the infrared light is reflected by the object near the position where the infrared light is emitted. It can receive the reflected light of infrared light. As a result, the angle of the return light with respect to the emitted light can be reduced, and the accuracy of detecting the direction (angle coordinates) and the distance of the object can be improved.
 なお、上記の第四実施形態においては、赤外光源45L(赤外光源45R)を構成する全ての発光素子が同一波長の赤外光を出射するように構成されている。しかしながら、例えば、赤外光源45L(赤外光源45R)を構成するすべての発光素子は互いに異なる波長の赤外光を出射するように構成されてもよい。 In the fourth embodiment described above, all the light emitting elements constituting the infrared light source 45L (infrared light source 45R) are configured to emit infrared light having the same wavelength. However, for example, all the light emitting elements constituting the infrared light source 45L (infrared light source 45R) may be configured to emit infrared light having different wavelengths from each other.
 上記の第四実施形態においては、左側ヘッドランプ4Lおよび右側ヘッドランプ4Rの構成は、赤外光源45L,45Rを構成するIR-LEDの構成(出射される赤外光の波長)およびフォトダイオード47の構成以外は第一実施形態のヘッドランプ4の構成と同じである。しかしながら、左側ヘッドランプ4Lおよび右側ヘッドランプ4Rの構成は、左側ヘッドランプ4Lの赤外光源45の照射範囲および右側ヘッドランプ4Rの赤外光源45の照射範囲が重複する構成であれば、第一実施形態のヘッドランプ4の構成と異なってもよい。 In the fourth embodiment described above, the configuration of the left headlamp 4L and the right headlamp 4R is the configuration of the IR-LEDs constituting the infrared light sources 45L and 45R (wavelength of the emitted infrared light) and the photodiode 47. The configuration is the same as that of the headlamp 4 of the first embodiment except for the configuration of. However, the configuration of the left headlamp 4L and the right headlamp 4R is the first if the irradiation range of the infrared light source 45 of the left headlamp 4L and the irradiation range of the infrared light source 45 of the right headlamp 4R overlap. It may be different from the configuration of the headlamp 4 of the embodiment.
 なお、本発明は、上述した実施形態に限定されず、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所等は、本発明を達成できるものであれば任意であり、限定されない。 The present invention is not limited to the above-described embodiment, and can be freely modified, improved, and the like as appropriate. In addition, the material, shape, size, numerical value, form, number, arrangement location, etc. of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
 上記の第一実施形態から第四実施形態においては、非可視光用光源として赤外光を照射する赤外光源45を例にとって説明した。しかしながら、例えば、非可視光用光源として、紫外線やX線などの赤外光以外の非可視光線を照射する光源を採用してもよい。 In the first to fourth embodiments described above, an infrared light source 45 that irradiates infrared light as a light source for invisible light has been described as an example. However, for example, as a light source for invisible light, a light source that irradiates invisible light other than infrared light such as ultraviolet rays or X-rays may be adopted.
 上記の第一実施形態から第四実施形態においては、灯具の一例としてヘッドランプ4に備わるハイビーム用灯具ユニット42Hを例にとって説明したが、車両後方に設けられたストップランプやテールランプ等の標識灯として構成されていてもよい。この構成によれば、ストップランプやテールランプとしての配光機能と車両後方の対象物の検知機能とを単一の灯具ユニットで両立することができる。 In the first to fourth embodiments described above, the high beam lamp unit 42H provided in the headlamp 4 has been described as an example of the lamp, but as an indicator lamp such as a stop lamp or a tail lamp provided at the rear of the vehicle. It may be configured. According to this configuration, the light distribution function as a stop lamp or a tail lamp and the detection function of an object behind the vehicle can be compatible with each other in a single lamp unit.
 上記の第一実施形態から第四実施形態においては、ハイビーム用灯具ユニット42H内に、回転リフレクタ65により反射された可視光および赤外光を透過させるレンズ66が設けられているが、必ずしもレンズ66を設ける必要はない。回転リフレクタ65により反射された可視光および赤外光が、レンズを介することなくハイビーム用灯具ユニット42Hの前方に直接照射される構成としてもよい。 In the first to fourth embodiments described above, a lens 66 that transmits visible light and infrared light reflected by the rotary reflector 65 is provided in the high beam lamp unit 42H, but the lens 66 is not necessarily provided. There is no need to provide. Visible light and infrared light reflected by the rotary reflector 65 may be directly irradiated in front of the high beam lamp unit 42H without passing through a lens.
 上記の第一実施形態から第四実施形態においては、車両前方に照射される赤外光が車両前方に存在する物体に反射された場合の戻り光がハイビーム用灯具ユニット42Hに搭載されたフォトダイオード47により受光されている。しかしながら、赤外光の戻り光を、ヘッドランプ4とは別の箇所に設けられた赤外線カメラ6Bにより撮影し、撮影された赤外光による白黒映像を画像処理部18で処理することにより、車両制御部3は、車両前方の歩行者や対向車の存在を検出するようにしてもよい。また、赤外線カメラ6Bにより撮影された映像を車内に設けられたモニタ19に表示することで、車両1のドライバが車両前方の歩行者や対向車の存在を確認することもできる。 In the first to fourth embodiments described above, the photodiode mounted on the high beam lamp unit 42H receives the return light when the infrared light emitted to the front of the vehicle is reflected by an object existing in front of the vehicle. The light is received by 47. However, the return light of the infrared light is photographed by the infrared camera 6B provided at a place different from the headlamp 4, and the black-and-white image by the photographed infrared light is processed by the image processing unit 18 to obtain the vehicle. The control unit 3 may detect the presence of a pedestrian or an oncoming vehicle in front of the vehicle. Further, by displaying the image taken by the infrared camera 6B on the monitor 19 provided in the vehicle, the driver of the vehicle 1 can confirm the existence of a pedestrian or an oncoming vehicle in front of the vehicle.
 さらに、可視光源44や赤外光源45を構成する各LEDの位置は、図3から図6に図示されているものに限られず、図3から図6とは異なる位置に配置されていてもよい。 Further, the positions of the LEDs constituting the visible light source 44 and the infrared light source 45 are not limited to those shown in FIGS. 3 to 6, and may be arranged at positions different from those shown in FIGS. 3 to 6. ..
 本出願は、2019年3月20日出願の日本特許出願2019-52839号および2019年3月20日出願の日本特許出願2019-52840号に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2019-52839 filed on March 20, 2019 and Japanese Patent Application No. 2019-52840 filed on March 20, 2019, the contents of which are incorporated herein by reference. ..

Claims (12)

  1.  車両の周辺に可視光を照射するための第一光源と、
     前記車両の周辺の情報を取得するために赤外光を出射する第二光源と、
     前記第一光源から照射された前記可視光と前記第二光源から照射された前記赤外光を反射しながら回転し、前記車両から所定距離の位置に配置される仮想鉛直スクリーン上における水平方向に前記可視光および前記赤外光を走査する回転リフレクタと、
     前記第二光源から出射され、対象物により反射された赤外光を受光する受光部と、
     前記第一光源、前記第二光源および前記回転リフレクタを制御する制御部と、
    を備え、
     前記第二光源は、第一発光素子と、第二光学素子とを有し、
     前記制御部は、前記第一発光素子および前記第二発光素子が同時に赤外光を出射しないように前記第一発光素子の赤外光の出射タイミングと前記第二発光素子の赤外光の出射タイミングとを異ならせる、車両用灯具。
    The first light source for irradiating the surroundings of the vehicle with visible light,
    A second light source that emits infrared light to acquire information on the surroundings of the vehicle,
    Rotating while reflecting the visible light emitted from the first light source and the infrared light emitted from the second light source, in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle. A rotating reflector that scans the visible light and the infrared light,
    A light receiving unit that receives infrared light emitted from the second light source and reflected by an object,
    A control unit that controls the first light source, the second light source, and the rotation reflector.
    With
    The second light source has a first light emitting element and a second optical element.
    The control unit emits infrared light of the first light emitting element and infrared light of the second light emitting element so that the first light emitting element and the second light emitting element do not emit infrared light at the same time. Vehicle lighting that makes the timing different.
  2.  前記第一発光素子から出射された赤外光が走査される第一走査範囲と、前記第二発光素子から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複しており、
     前記制御部は、前記第一走査範囲の前記水平方向に一回の走査が完了する度に前記第二走査範囲の前記水平方向に一回の走査を行うように構成されている、請求項1に記載の車両用灯具。
    At least a part of the first scanning range in which the infrared light emitted from the first light emitting element is scanned and the second scanning range in which the infrared light emitted from the second light emitting element is scanned overlap. And
    The control unit is configured to perform one scan in the horizontal direction of the second scan range each time one scan in the horizontal direction of the first scan range is completed. Vehicle lighting equipment described in.
  3.  前記第一発光素子から出射された赤外光が走査される第一走査範囲と、前記第二発光素子から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複しており、
     前記制御部は、所定の時間毎に前記第一発光素子の赤外光の出射と前記第二発光素子の赤外光の出射とを切り替えるように構成されている、請求項1に記載の車両用灯具。
    At least a part of the first scanning range in which the infrared light emitted from the first light emitting element is scanned and the second scanning range in which the infrared light emitted from the second light emitting element is scanned overlap. And
    The vehicle according to claim 1, wherein the control unit is configured to switch between emitting infrared light from the first light emitting element and emitting infrared light from the second light emitting element at predetermined time intervals. Lighting equipment.
  4.  車両の周辺に可視光を照射するための第一光源と、前記車両の周辺の情報を取得するために赤外光を出射する第二光源と、前記第一光源から照射された前記可視光および前記第二光源から照射された前記赤外光を反射しながら回転し、前記車両から所定距離の位置に配置される仮想鉛直スクリーン上における水平方向に前記可視光および前記赤外光を走査する第一回転リフレクタと、を有する第一車両用灯具と、
     前記車両の周辺に可視光を照射するための第三光源と、前記車両の周辺の情報を取得するために赤外光を出射する第四光源と、前記第三光源から照射された前記可視光および前記第四光源から照射された前記赤外光を反射しながら回転し、前記車両から所定距離の位置に配置される仮想鉛直スクリーン上における水平方向に前記可視光および前記赤外光を走査する第二回転リフレクタと、を有する第二車両用灯具と、
     前記第二光源から出射され対象物により反射された赤外光および前記第四光源から出射され前記対象物により反射された赤外光を受光する受光部と、
     前記第二光源および前記第四光源を制御する制御部と、
    を備え、
     前記制御部は、前記第二光源および前記第四光源が同時に赤外光を出射しないように前記第二光源の赤外光の出射タイミングと前記第四光源の赤外光の出射タイミングとを異ならせる、車両用灯具システム。
    A first light source for irradiating the periphery of the vehicle with visible light, a second light source for emitting infrared light for acquiring information around the vehicle, the visible light emitted from the first light source, and the like. The visible light and the infrared light are scanned in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle by rotating while reflecting the infrared light emitted from the second light source. With a one-turn reflector, and a lighting fixture for the first vehicle,
    A third light source for irradiating the periphery of the vehicle with visible light, a fourth light source for emitting infrared light for acquiring information on the periphery of the vehicle, and the visible light emitted from the third light source. The visible light and the infrared light are scanned in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle by rotating while reflecting the infrared light emitted from the fourth light source. A second vehicle lighting device with a second rotation reflector, and
    A light receiving unit that receives infrared light emitted from the second light source and reflected by the object and infrared light emitted from the fourth light source and reflected by the object.
    A control unit that controls the second light source and the fourth light source,
    With
    The control unit is different from the infrared light emission timing of the second light source and the infrared light emission timing of the fourth light source so that the second light source and the fourth light source do not emit infrared light at the same time. A vehicle lighting system.
  5.  前記第二光源から出射された赤外光が走査される第一走査範囲と、前記第四光源から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複しており、
     前記制御部は、前記第一走査範囲の前記水平方向に一回の走査が完了する度に前記第二走査範囲の前記水平方向に一回の走査を行うように構成されている、請求項4に記載の車両用灯具システム。
    At least a part of the first scanning range in which the infrared light emitted from the second light source is scanned and the second scanning range in which the infrared light emitted from the fourth light source is scanned overlap. ,
    4. The control unit is configured to perform one scan in the horizontal direction of the second scan range each time one scan in the horizontal direction of the first scan range is completed. Vehicle lighting system described in.
  6.  前記第二光源から出射された赤外光が走査される第一走査範囲と、前記第四光源から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複しており、
     前記制御部は、所定の時間毎に前記第二光源の赤外光の出射と前記第四光源の赤外光の出射とを切り替えるように構成されている、請求項4に記載の車両用灯具システム。
    At least a part of the first scanning range in which the infrared light emitted from the second light source is scanned and the second scanning range in which the infrared light emitted from the fourth light source is scanned overlap. ,
    The vehicle lamp according to claim 4, wherein the control unit is configured to switch between emitting infrared light from the second light source and emitting infrared light from the fourth light source at predetermined time intervals. system.
  7.  車両の周辺に可視光を照射するための第一光源と、
     前記車両の周辺の情報を取得するために赤外光を出射する第二光源と、
     前記第一光源から照射された前記可視光および前記第二光源から照射された前記赤外光を反射しながら回転し、前記車両から所定距離の位置に配置される仮想鉛直スクリーン上における水平方向に前記可視光および前記赤外光を走査する回転リフレクタと、
     前記第二光源から出射され、対象物により反射された赤外光を受光する受光部と、を備え、
     前記第二光源は、第一波長の赤外光を出射する第一発光素子と、前記第一波長とは異なる第二波長の赤外光を出射する第二発光素子とを有する、車両用灯具。
    The first light source for irradiating the surroundings of the vehicle with visible light,
    A second light source that emits infrared light to acquire information on the surroundings of the vehicle,
    Rotating while reflecting the visible light emitted from the first light source and the infrared light emitted from the second light source, in the horizontal direction on a virtual vertical screen arranged at a predetermined distance from the vehicle. A rotating reflector that scans the visible light and the infrared light,
    A light receiving unit that receives infrared light emitted from the second light source and reflected by an object is provided.
    The second light source is a vehicle lamp having a first light emitting element that emits infrared light having a first wavelength and a second light emitting element that emits infrared light having a second wavelength different from the first wavelength. ..
  8.  前記第一発光素子から出射された赤外光が走査される第一走査範囲と、前記第二発光素子から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複する、請求項7に記載の車両用灯具。 At least a part of the first scanning range in which the infrared light emitted from the first light emitting element is scanned and the second scanning range in which the infrared light emitted from the second light emitting element is scanned overlap. , The vehicle lighting device according to claim 7.
  9.  車両の周辺に可視光を照射するための第一光源と、前記車両の周辺の情報を取得するために第一波長の赤外光を出射する第二光源と、前記第一光源から照射された前記可視光および前記第二光源から照射された前記赤外光を反射しながら回転し、前記車両から所定距離の位置に配置される仮想鉛直スクリーン上における水平方向に前記可視光および前記赤外光を走査する第一回転リフレクタと、を有する第一車両用灯具と、
     前記車両の周辺に可視光を照射するための第三光源と、前記車両の周辺の情報を取得するために前記第一波長とは異なる第二波長の赤外光を出射する第四光源と、前記第三光源から照射された前記可視光および前記第四光源から照射された前記赤外光を反射しながら回転し、前記仮想鉛直スクリーン上における水平方向前記可視光および前記赤外光を走査する第二回転リフレクタと、を有する第二車両用灯具と、
     前記第二光源から出射され対象物により反射された赤外光および前記第四光源から出射され前記対象物により反射された赤外光を受光する受光部と、を備える、車両用灯具システム。
    A first light source for irradiating the periphery of the vehicle with visible light, a second light source for emitting infrared light of the first wavelength for acquiring information on the periphery of the vehicle, and the first light source. The visible light and the infrared light rotate while reflecting the visible light and the infrared light emitted from the second light source, and the visible light and the infrared light are horizontally arranged on a virtual vertical screen arranged at a predetermined distance from the vehicle. The first rotating reflector, which scans the light source for the first vehicle, and
    A third light source for irradiating the periphery of the vehicle with visible light, and a fourth light source for emitting infrared light having a second wavelength different from the first wavelength for acquiring information on the periphery of the vehicle. Rotate while reflecting the visible light emitted from the third light source and the infrared light emitted from the fourth light source, and scan the visible light and the infrared light in the horizontal direction on the virtual vertical screen. A second vehicle lighting device with a second rotation reflector, and
    A vehicle lighting system including a light receiving unit that receives infrared light emitted from the second light source and reflected by an object and infrared light emitted from the fourth light source and reflected by the object.
  10.  前記第二光源から出射された赤外光が走査される第一走査範囲と、前記第四光源から出射された赤外光が走査される第二走査範囲とは少なくとも一部が重複する、請求項9に記載の車両用灯具システム。 Claimed that at least a part of the first scanning range in which the infrared light emitted from the second light source is scanned and the second scanning range in which the infrared light emitted from the fourth light source is scanned overlap. Item 9. The vehicle lighting system according to item 9.
  11.  前記第一車両用灯具は、左側ヘッドランプであり、前記第二車両用灯具は、右側ヘッドランプである、請求項4から請求項6、請求項9および請求項10のいずれか一項に記載の車両用灯具システム。 The first vehicle lighting fixture is a left side headlamp, and the second vehicle lighting fixture is a right side headlamp, according to any one of claims 4 to 6, claim 9, and claim 10. Vehicle lighting system.
  12.  前記受光部は、前記第一車両用灯具内に配置され、前記第二光源から出射され前記対象物により反射された赤外光を受光する第一受光部と、前記第二車両用灯具内に配置され、前記第四光源から出射され前記対象物により反射された赤外光を受光する第二受光部と、を備える、請求項4から請求項6および請求項9から請求項11の何れか一項に記載の車両用灯具システム。 The light receiving portion is arranged in the first vehicle lighting fixture, and in the first light receiving portion that receives infrared light emitted from the second light source and reflected by the object, and in the second vehicle lighting fixture. Any of claims 4 to 6 and claims 9 to 11, further comprising a second light receiving unit that is arranged and emits infrared light emitted from the fourth light source and reflected by the object. The vehicle lighting system described in paragraph 1.
PCT/JP2020/009212 2019-03-20 2020-03-04 Vehicle light and vehicle light system WO2020189289A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021507177A JPWO2020189289A1 (en) 2019-03-20 2020-03-04
CN202080022319.8A CN113727882A (en) 2019-03-20 2020-03-04 Vehicle lamp and vehicle lamp system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-052840 2019-03-20
JP2019-052839 2019-03-20
JP2019052840 2019-03-20
JP2019052839 2019-03-20

Publications (1)

Publication Number Publication Date
WO2020189289A1 true WO2020189289A1 (en) 2020-09-24

Family

ID=72520785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009212 WO2020189289A1 (en) 2019-03-20 2020-03-04 Vehicle light and vehicle light system

Country Status (3)

Country Link
JP (1) JPWO2020189289A1 (en)
CN (1) CN113727882A (en)
WO (1) WO2020189289A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI785943B (en) * 2021-12-22 2022-12-01 大億交通工業製造股份有限公司 Horizontal lighting pattern adjustment system of car lights

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8581982B1 (en) * 2007-07-30 2013-11-12 Flir Systems, Inc. Infrared camera vehicle integration systems and methods
JP2015182660A (en) * 2014-03-25 2015-10-22 スタンレー電気株式会社 Radiation device
JP2016018668A (en) * 2014-07-08 2016-02-01 パナソニックIpマネジメント株式会社 Luminaire and automobile including the same
WO2017073250A1 (en) * 2015-10-27 2017-05-04 株式会社小糸製作所 Vehicle lamp

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4037289B2 (en) * 2003-03-06 2008-01-23 株式会社小糸製作所 Vehicle headlamp
EP2026097A1 (en) * 2007-08-08 2009-02-18 Harman Becker Automotive Systems GmbH Vehicle illumination system
CN106585493B (en) * 2017-02-14 2023-10-20 山东师范大学 Automobile infrared high beam system and implementation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8581982B1 (en) * 2007-07-30 2013-11-12 Flir Systems, Inc. Infrared camera vehicle integration systems and methods
JP2015182660A (en) * 2014-03-25 2015-10-22 スタンレー電気株式会社 Radiation device
JP2016018668A (en) * 2014-07-08 2016-02-01 パナソニックIpマネジメント株式会社 Luminaire and automobile including the same
WO2017073250A1 (en) * 2015-10-27 2017-05-04 株式会社小糸製作所 Vehicle lamp

Also Published As

Publication number Publication date
JPWO2020189289A1 (en) 2020-09-24
CN113727882A (en) 2021-11-30

Similar Documents

Publication Publication Date Title
JP7335721B2 (en) vehicle lamp
US11351912B2 (en) Vehicle headlamp system and vehicle lamp system
WO2017073250A1 (en) Vehicle lamp
CN110869667B (en) Lamp unit and vehicle headlamp
US12096534B2 (en) Vehicle infrared lamp system, vehicle infrared sensor system, vehicle infrared-sensor-equipped lamp, and optical-sensor-equipped lamp
WO2018110389A1 (en) Vehicle lighting system and vehicle
CN110121444B (en) Lighting device
US11840170B2 (en) Vehicle lamp having two lamp units each having a two light sources and a receiver for detecting an intensity of reflected light
WO2020189289A1 (en) Vehicle light and vehicle light system
JP2020009683A (en) Vehicular lamp and vehicle system
WO2020209005A1 (en) Vehicular lamp and vehicle system
WO2022196296A1 (en) Vehicle lamp control device, vehicle lamp control method and vehicle lamp system
WO2020189184A1 (en) Vehicle lamp
WO2021049239A1 (en) Vehicle lamp system
US20220307668A1 (en) Vehicle lamp system and vehicle lamp
JP7442528B2 (en) Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507177

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772703

Country of ref document: EP

Kind code of ref document: A1