WO2020188888A1 - Vibration detection optical fiber sensor and vibration detection method - Google Patents

Vibration detection optical fiber sensor and vibration detection method Download PDF

Info

Publication number
WO2020188888A1
WO2020188888A1 PCT/JP2019/045789 JP2019045789W WO2020188888A1 WO 2020188888 A1 WO2020188888 A1 WO 2020188888A1 JP 2019045789 W JP2019045789 W JP 2019045789W WO 2020188888 A1 WO2020188888 A1 WO 2020188888A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
moving average
otdr
light
abnormality
Prior art date
Application number
PCT/JP2019/045789
Other languages
French (fr)
Japanese (ja)
Inventor
祥宏 神田
Original Assignee
沖電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沖電気工業株式会社 filed Critical 沖電気工業株式会社
Publication of WO2020188888A1 publication Critical patent/WO2020188888A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Definitions

  • the present disclosure is a vibration detection optical fiber sensor and vibration that can be used to detect illegal intrusion of people in large facilities such as power plants and factories, and to detect cracks in large civil engineering structures such as bridges and roads. Regarding the detection method.
  • vibration transmitted to an optical fiber can be detected simply by replacing the laser used to generate an optical pulse as input light with a laser having a small frequency drift and a narrow line width (for example, J.C. Juarez, See W. Maier, K. N. Choi, and H. F. Taylor, “Distributed Fiber-Optic Intrusion Sensor System,” IEEE JLT, vol. 23, No. 6, June 2005, pp. 2081-2087).
  • a laser having a small frequency drift and a narrow line width for example, J.C. Juarez, See W. Maier, K. N. Choi, and H. F. Taylor, “Distributed Fiber-Optic Intrusion Sensor System,” IEEE JLT, vol. 23, No. 6, June 2005, pp. 2081-2087).
  • the waveform of the light intensity of the backscattered light is the strong interference of the coherent backscattered light generated at multiple scattering centers in the optical fiber while the optical pulse propagates through the optical fiber. Observed as a result.
  • the refractive index and birefringence of the optical fiber change only at that position.
  • the relative phase difference between the plurality of coherent backscattered lights from the plurality of scattering centers at the position where the vibration is applied changes.
  • the waveform changes when the relative phase difference between the waveforms changes. Therefore, in the observed OTDR waveform, only the waveform at the time corresponding to the position where the vibration is applied changes. By utilizing this phenomenon, the occurrence and position of vibration can be detected by calculating the difference between the observed OTDR waveform and the OTDR waveform observed at a previous time.
  • phase sensitive OTDR This method is called phase sensitive OTDR or ⁇ -OTDR.
  • the phase sensitive OTDR the difference from the OTDR waveform at the previous time is obtained. At this time, even if there is no abnormal vibration, if the amplitude fluctuation of the OTDR waveform is large, a large noise will be generated. This causes the presence or absence of abnormal vibration to be overlooked or false detection for the purpose of detecting abnormal vibration.
  • methods called moving average (moving averaging) and moving differential (moving differential) are known (for example, Y. Lu, T. Zhu, L. Chen, and X. Bao, “ Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR, ”IEEE JLT, vol. 28, No. 22, Nov. 15, 2010, pp.3243-3249).
  • the moving average is a method of reducing noise when the difference is calculated by obtaining the moving average for each position of a plurality of OTDR waveforms observed with the passage of time.
  • the movement difference is the difference from the OTDR waveform observed at a slightly distant time, instead of calculating the difference from the OTDR waveforms adjacent to each other on the time axis when calculating the difference between the OTDR waveforms observed at different times. Is a method of calculating. When the duration of the vibration is sufficiently long compared to the time interval for acquiring the OTDR waveform, a large difference value can be obtained as compared with the method of calculating the difference between the OTDR waveforms adjacent to each other on the time axis.
  • the ratio of the values with and without abnormal vibration is about several times.
  • the magnitude of the difference when there is abnormal vibration is, in principle, limited to the difference between the maximum value and the minimum value of the possible amplitude of the OTDR waveform at the maximum.
  • the operation of the vibration detection optical fiber sensor is unstable.
  • the phase-sensitive OTDR can detect even a slight vibration, the degree of noise depends on the environment in which the optical fiber is laid. Therefore, it is difficult to distinguish the presence or absence of an abnormality in an environment affected by wind or the like.
  • the present disclosure statistically evaluates changes in the OTDR waveform by utilizing the nature of noise in addition to the use of moving averages and moving differences in OTDRs, such as phase-sensitive OTDRs, to determine the presence or absence of abnormal vibrations.
  • a vibration detection optical fiber sensor and a vibration detection method for clearly discriminating.
  • the first aspect of the present disclosure is a vibration detection optical fiber sensor, which comprises a light source unit, an optical fiber, a light intensity acquisition unit, an OTDR waveform acquisition unit, a moving average acquisition unit, a difference waveform acquisition unit, and the like. It includes a position-specific statistical information acquisition unit, an abnormality degree acquisition unit, and an abnormality determination unit.
  • the light source unit generates an optical pulse as probe light.
  • the probe light is input to the optical fiber, and the light intensity acquisition unit acquires the intensity of the output light in which the probe light is backscattered by the optical fiber.
  • the OTDR waveform acquisition unit sequentially acquires and stores the OTDR waveform, which is the waveform of the output light for each optical pulse sent from the light intensity acquisition unit.
  • the moving average acquisition unit acquires the kth moving average waveform by averaging the temporally continuous OTDR waveforms of the kth (k is an integer of 1 or more) to the k + M-1 (M is an integer of 2 or more).
  • M is an integer of 2 or more.
  • the difference waveform acquisition unit acquires the moving average waveform of the k + N-1 (N is an integer of 2 or more) and the difference waveform p'(x) of the kth moving average waveform.
  • the position-specific statistical information acquisition unit acquires the sample mean ⁇ (x) and the standard deviation ⁇ (x) of each position for the difference waveforms of the kth to k + i-1 (i is an integer of 2 or more).
  • the abnormality degree acquisition unit acquires the abnormality degree waveform indicating the abnormality degree by calculating the abnormality degree a (p') of each position using the following equation (1).
  • the abnormality determination unit acquires the presence or absence of abnormal vibration and the position of the abnormal vibration from the value of the degree of abnormality.
  • the second aspect of the present disclosure is an exemplary embodiment in the above aspect, and the light source unit may be configured to include a narrow line width laser, a function generator, and an intensity modulator.
  • the narrow line width laser is a light source that generates a laser beam, and the line width may be 10 kHz or less. Even if the function generator generates an electrical pulse at a constant frequency.
  • the intensity modulator may generate an optical pulse by converting the laser beam into an optical pulse with an electric pulse.
  • a third aspect of the present disclosure is a vibration detection method, which includes an optical pulse generation process, a light intensity acquisition process, an OTDR waveform acquisition process, a moving average acquisition process, a difference waveform acquisition process, and a position-based method. It includes a statistical information acquisition process, an abnormality degree acquisition process, and an abnormality determination process.
  • an optical pulse is generated as probe light.
  • the intensity of the output light in which the probe light is backscattered by the optical fiber is acquired.
  • the OTDR waveform acquisition process the OTDR waveform, which is the waveform of the output light for each optical pulse acquired in the light intensity acquisition process, is sequentially acquired and stored.
  • the moving average acquisition process the kth moving average waveform is acquired by averaging the temporally continuous kth (k is an integer of 1 or more) to k + M-1 (M is an integer of 2 or more) OTDR waveforms. And remember.
  • the moving average waveform of the k + N-1 (N is an integer of 2 or more) and the difference waveform p'(x) of the kth moving average waveform are acquired.
  • the sample mean ⁇ (x) and standard deviation ⁇ (x) of each position are acquired for the difference waveforms of the kth to k + i-1 (i is an integer of 2 or more).
  • an abnormality degree waveform indicating the abnormality degree is acquired by calculating the abnormality degree a (p') at each position using the above equation (1).
  • the abnormality determination process the presence or absence of abnormal vibration and the position of the abnormal vibration, if any, are acquired from the value of the degree of abnormality.
  • a fourth aspect of the present disclosure is an exemplary embodiment in the third aspect, wherein the optical pulse generation process includes a process of generating a laser beam using a narrow line width laser having a line width of 10 kHz or less and a constant frequency.
  • a process of generating an electric pulse and a process of generating an optical pulse by converting a laser beam into an electric pulse with an electric pulse may be provided.
  • the vibration detection optical fiber sensor and the vibration detection method of the present disclosure not only take the difference waveform between the OTDR waveform and the moving average waveform, but also obtain the sample average and standard deviation of each position of the difference waveform.
  • the degree of abnormality is obtained by using, and the presence or absence of abnormal vibration is determined from the value of this degree of abnormality.
  • the ratio of the peak values when there is an abnormality and when there is no abnormality becomes larger than the ratio of the peak values in the difference waveform, and the presence or absence of the abnormality becomes clearer. Furthermore, it is possible to clearly judge the detection of distributed abnormal vibrations that suppress the dependence of sensitivity on the distance from the input end of the optical fiber.
  • FIG. 1 is a block diagram showing a schematic configuration of a vibration detection optical fiber sensor.
  • This vibration detection optical fiber sensor is configured to include a light source unit 10, an optical fiber 20, an optical circulator 30, and a measurement unit 40. This vibration detection optical fiber sensor is used for OTDR.
  • the light source unit 10 periodically generates an optical pulse as probe light.
  • the spatial resolution of the vibration detection optical fiber sensor depends on the width of this optical pulse. Further, the measurement distance of the vibration detection optical fiber sensor depends on the frequency of the optical pulse.
  • the optical pulse takes 5 ns to propagate 1 m through the optical fiber 20. When observing backscattered light, it takes a round trip time of forward propagation and reverse propagation, so a delay of 10 ns per 1 m occurs. For example, when the pulse width is 100 ns and the frequency is 5 kHz, the spatial resolution is 10 m and the maximum measurement distance is 20 km.
  • the light source unit 10 includes, for example, a laser light source 12, an intensity modulator 14, a function generator 16, and an optical amplifier 18.
  • the laser light source 12 generates laser light as continuous light in the communication wavelength band.
  • the laser light source 12 it is preferable to use a so-called narrow line width laser having a line width of 10 kHz or less.
  • this vibration detection optical fiber sensor can be used for a phase sensitive OTDR.
  • the wavelength of the laser beam may be arbitrary, but it is preferable to use a standard single-mode optical fiber with a low loss of 1550 nm.
  • the laser beam generated by the laser light source 12 is sent to the intensity modulator 14.
  • the function generator 16 generates a rectangular electric pulse. This electric pulse is sent to the intensity modulator 14.
  • the electric pulse generated by the function generator 16 has, for example, a pulse width of 100 nsec and a repetition frequency of 5 kHz.
  • the output of the function generator 16 is also sent to the analog-to-digital (A / D) converter 44, which will be described later, and is used as a trigger signal.
  • the intensity modulator 14 converts the laser beam into an optical pulse with an electric pulse to generate an optical pulse.
  • This optical pulse is sent to the optical amplifier 18.
  • the pulse width and frequency of the optical pulse generated by the intensity modulator 14 are both the same as the electric pulse generated by the function generator 16.
  • the optical pulse has a pulse width of 100 nsec and a repetition frequency of 5 kHz.
  • the optical pulse generated by the intensity modulator 14 is amplified by the optical amplifier 18 and then sent to the optical fiber 20 as probe light via the optical circulator 30.
  • the probe light sent to the optical fiber 20 propagates in the optical fiber 20, and backscattered light is generated along with the propagation of the probe light. This backscattered light is sent to the measuring unit 40 as output light via the optical circulator 30.
  • the measurement unit 40 includes a photodetector 42 and an A / D converter 44 as a light intensity acquisition unit, and a calculation unit 50.
  • the output light input from the optical fiber 20 to the measuring unit 40 is sent to the photodetector 42.
  • the photodetector 42 can be composed of, for example, a photodiode (PD).
  • PD photodiode
  • the photodetector 42 converts the output light into an electric signal by square detection and sends it to the A / D converter 44.
  • the light intensity of the backscattered light is small. Therefore, it is desirable that the photodetector 42 has a sensitivity to receive light even at about -30 dBm.
  • the A / D converter 44 converts the electric signal received from the photodetector 42 into a digital signal.
  • the sampling frequency of the A / D converter 44 may be large enough to sample the OTDR waveform, and about 200 MHz is sufficient.
  • the digital signal obtained by the A / D converter 44 is sent to the arithmetic unit 50.
  • the arithmetic unit 50 statistically evaluates changes in the OTDR waveform using a digital signal, detects the presence or absence of abnormal vibration, and identifies the position of vibration.
  • arithmetic unit 50 for example, a commercially available personal computer (PC) in which a program for detecting the presence or absence of abnormal vibration and specifying the position of vibration is installed can be used.
  • the arithmetic unit 50 will be described as being configured to include a CPU (Central Processing Unit) 60, a RAM (Random Access Memory) 52, a ROM (Read Only Memory) 54, and a storage unit 56.
  • the CPU 60 realizes each functional unit described later by executing a program stored in the ROM 54.
  • the processing result of each functional unit is temporarily stored in the RAM 52.
  • the OTDR waveform is periodically sent from the A / D converter 44 to the arithmetic unit 50.
  • the OTDR waveform is represented by, for example, taking x indicating the distance from the input end of the optical fiber 20 on the horizontal axis and taking the signal strength p (x, k) at the distance x on the vertical axis.
  • k is an integer of 1 or more and corresponds to the number of the optical pulse input to the optical fiber 20.
  • the number k of this optical pulse indicates the elapsed time.
  • the end of the optical fiber 20 on the side connected to the optical circulator 30 is used as the input end.
  • the OTDR waveform acquisition unit 62 sequentially stores, that is, stores the OTDR waveforms of the kth to k + M-1, which are OTDR waveforms for M pieces (M is an integer of 2 or more) that are continuous in time, in the storage unit 56. After M OTDR waveforms are stored, the oldest OTDR waveform is deleted and a new OTDR waveform is stored in the storage unit 56.
  • the moving average acquisition unit 64 receives the OTDR waveform from the A / D converter 44, the moving average of the kth moving average is obtained by averaging the M OTDR waveforms of the kth to k + M-1 that are continuous in time. Get the waveform.
  • the kth moving average waveform is stored in the storage unit 56.
  • the time-consecutive N moving average waveforms (N is an integer of 2 or more) acquired by the moving average acquisition unit 64 are sequentially stored in the storage unit 56. After N moving average waveforms are stored, the oldest moving average waveform is deleted and a new moving average waveform is stored in the storage unit 56.
  • the difference waveform acquisition unit 66 obtains the kth difference waveform p'(x) by taking the difference between the k + N-1 moving average waveform and the kth moving average waveform stored in the storage unit 56. get. In addition, this difference may be referred to as a moving difference.
  • the kth moving average waveform is stored in the storage unit 56.
  • the time-continuous i moving average waveforms (i is an integer of 2 or more) acquired by the moving average acquisition unit 64 are sequentially stored in the storage unit 56. After i moving average waveforms are stored, the oldest moving average waveform is deleted and a new moving average waveform is stored in the storage unit 56.
  • the position-specific statistical information acquisition unit 68 acquires the sample average ⁇ (x) and the standard deviation ⁇ (x) of each position for the difference waveforms of the kth to k + i-1.
  • the sample average ⁇ (x) and the standard deviation ⁇ (x) can be obtained, for example, at intervals of about the spatial resolution of this vibration detection optical fiber sensor. Alternatively, it may be the interval between measurement points adjacent to each other in the longitudinal direction of the optical fiber 20 when viewed from the digital data acquired by the A / D converter 44.
  • the abnormality degree acquisition unit 70 acquires a waveform indicating the abnormality degree (hereinafter, also referred to as an abnormality degree waveform) by calculating the abnormality degree at each position using the above equation (1).
  • the abnormality determination unit 72 determines the presence or absence of abnormal vibration from the degree of abnormality.
  • the threshold value used to determine the presence or absence of the degree of abnormality may be set to an appropriate value by monitoring the influence of the environment of the installation location.
  • the number M of waveforms when calculating the moving average is determined, for example, based on the line width of the laser light source 12.
  • the line width of the laser light source 12 is 500 Hz
  • M can be set to 20.
  • the moving average waveform becomes the average for a time of 4 msec.
  • the position-specific statistical information acquisition unit 68 acquires the sample average ⁇ (x) and the standard deviation ⁇ (x), it is preferable to perform the calculation without abnormal vibration. Therefore, for example, when the abnormality determination unit 72 determines that there is an abnormality vibration, the position-specific statistical information acquisition unit 68 excludes the sample corresponding to the position, and the sample average ⁇ (x) and the standard deviation. It can be configured to acquire ⁇ (x). Further, when the abnormality determination unit 72 determines that there is an abnormal vibration, the moving average acquisition unit 64 may be configured to acquire the moving average waveform excluding the corresponding OTDR waveform.
  • the time difference between the OTDR waveform and the moving average waveform when acquiring the difference waveform should be set to be equal to or longer than the period of abnormal vibration.
  • the frequency of vibration generated by hitting the optical fiber is about several hundred Hz.
  • the time difference is preferable to set to about 4 msec.
  • the number M of waveforms when calculating the moving average is determined, for example, based on the line width of the laser light source 12.
  • the line width of the laser light source 12 is 500 Hz
  • M can be set to 20.
  • the moving average waveform becomes the average for a time of 4 msec.
  • FIG. 2 is a schematic diagram for explaining the concept of determining abnormal vibration.
  • FIG. 2 (1) shows the difference waveform
  • FIG. 2 (2) shows the degree of abnormality obtained based on the difference waveform shown in FIG. 2 (1).
  • i 4 and four difference waveforms from the first to the fourth are shown.
  • the three axes (1) in FIG. 2 show the distance from the input end of the optical fiber 20, the elapsed time, and the light intensity of the difference waveform. Further, in FIG. 2 (2), the horizontal axis shows the distance from the input end of the optical fiber, and the vertical axis shows the degree of abnormality.
  • the position-specific statistical information acquisition unit 68 acquires the sample average ⁇ (x) and standard deviation ⁇ (x) of each position, and the abnormality determination unit 72 causes an abnormality. Judge the presence or absence of abnormal vibration from the degree. By normalizing with the sample mean ⁇ (x) and standard deviation ⁇ (x) at each position in this way, as shown in FIG. 2 (2), the degree of anomaly in the section where the disturbance is always applied is small. And its impact is underestimated. Therefore, the position dependence of the disturbance can be suppressed.
  • the characteristic test of this vibration detection optical fiber sensor will be described.
  • the length of the optical fiber 20 is set to 18.2 km.
  • the optical fiber at a position of 15.6 to 15.8 km from the input end side of the optical fiber 20 was vibrated and abnormal vibration was applied.
  • the laser light source 12 was a narrow line width laser having a line width of 500 Hz.
  • the pulse width and frequency of the optical pulse were set to 100 nsec and 5 kHz, respectively.
  • the number M of the OTDR waveforms used when calculating the moving average was set to 20, and the time difference when acquiring the difference waveform was set to 4 msec. This time difference of 4 msec is equivalent to 20 light pulses when converted to the number N of optical pulses.
  • the number i of the difference waveforms when acquiring the sample mean ⁇ (x) and the standard deviation ⁇ (x) was set to 20.
  • the number M of waveforms used when calculating the moving average, the number N of optical pulses converted from the time difference when acquiring the difference waveform, the sample mean ⁇ (x) and the standard deviation ⁇ is equal to 20.
  • (1) and (2) of FIG. 3 are diagrams showing the results of the characteristic test.
  • (1) of FIG. 3 is a diagram showing a movement difference, in which the horizontal axis shows the distance [unit: km] from the input end of the optical fiber 20, and the vertical axis shows the signal level [unit: mV]. It is shown.
  • FIG. 3 (2) is a diagram showing the degree of abnormality, in which the horizontal axis shows the distance [unit: km] from the input end of the optical fiber 20 and the vertical axis shows the degree of abnormality.
  • the signal level of the movement difference is the same as that no abnormal vibration is applied.
  • the signal level varies with distance.
  • the degree of abnormality is calculated using the above equation (1), and as a result, the range is 0 to 15.6 km. In the range of 15.8 to 18.2 km, the degree of anomaly is almost 0, and it can be clearly distinguished from the degree of anomaly in the section of 15.6 to 15.8 km to which the abnormal vibration is applied.
  • this vibration detection optical fiber sensor statistically evaluates the fluctuation of the OTDR waveform at each position in the vicinity of each time with the passage of time. Therefore, the detection of the distributed abnormal vibration that suppresses the dependence of the sensitivity on the distance from the input end of the optical fiber 20 can be clearly determined. Furthermore, even if the external environment changes slowly, the effect of suppressing the influence on the sensitivity of vibration detection can be expected.
  • Coherent detection may be performed by interfering the backscattered light with the laser light generated by the laser light source, as described in Nov. 15, 2010, pp.3243-3249.
  • a 90-degree light hybrid receiver may be used to observe the phase change of the backscattered light.
  • Heterodyne detection may also be performed on the backscattered light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

In the present invention, a light intensity acquisition unit acquires the intensity of output light resulting from the backscattering of probe light in an optical fiber. An OTDR waveform acquisition means sequentially acquires and stores OTDR waveforms that are the waveforms of the output light for each optical pulse sent from the light intensity acquisition unit. A moving average acquisition means acquires and stores a kth moving average waveform by averaging kth to (k + M - 1)th temporally continuous OTDR waveforms. A differential waveform acquisition means acquires a differential waveform p'(x) for a (k + M + N)th OTDR waveform and the kth moving average waveform. A position-specific statistical information acquisition means acquires a sample average μ(x) and a standard deviation σ(x) for each position of kth to (k + i - 1)th (where i is an integer greater than or equal to 2) differential waveforms. A degree-of-abnormality acquisition means calculates the degrees of abnormality at each position. An abnormality determination means determines whether there has been abnormal vibration on the basis of the values of the degrees of abnormality, and when there has been abnormal vibration, acquires the position at which the abnormal vibration occurred.

Description

振動検知光ファイバセンサ及び振動検知方法Vibration detection Optical fiber sensor and vibration detection method
 本開示は、発電所や工場などの大型の施設における人の不法な侵入の検知や、橋梁や道路などの大型の土木構造に発生する亀裂の検知に利用可能な、振動検知光ファイバセンサ及び振動検知方法に関する。 The present disclosure is a vibration detection optical fiber sensor and vibration that can be used to detect illegal intrusion of people in large facilities such as power plants and factories, and to detect cracks in large civil engineering structures such as bridges and roads. Regarding the detection method.
 光波を光ファイバへ入力すると、伝搬に伴って後方散乱光が発生していく。光ファイバの長手方向の各位置において発生した後方散乱光は、入力される光波(以下、入力光)が光ファイバの入力端から後方散乱光が発生する位置までの往復に要する時間だけ遅れて観測される。光ファイバの長手方向に、破断点や、伝搬する光を大きく減衰させる点がある場合、その位置に対応する後方散乱光の光強度が変化する。この原理は、通信用光ファイバの破断点の検知に利用され、時間領域反射測定(OTDR:Optical Time Domain Reflectometry)として知られている。 When a light wave is input to an optical fiber, backscattered light is generated as it propagates. The backscattered light generated at each position in the longitudinal direction of the optical fiber is observed with a delay of the time required for the input light wave (hereinafter referred to as input light) to reciprocate from the input end of the optical fiber to the position where the backscattered light is generated. Will be done. When there is a breaking point or a point that greatly attenuates the propagating light in the longitudinal direction of the optical fiber, the light intensity of the backscattered light corresponding to the position changes. This principle is used to detect a break point of a communication optical fiber, and is known as a time domain reflection measurement (OTDR: Optical Time Domain Reflectometry).
 OTDRにおいて、入力光としての光パルスの発生に利用するレーザを、周波数ドリフトが小さく、線幅が狭いレーザに交換するのみで、光ファイバに伝わる振動を検知できる(例えば、J. C. Juarez, W. Maier, K. N. Choi, and H. F. Taylor, “Distributed Fiber-Optic Intrusion Sensor System,” IEEE JLT, vol. 23, No. 6, June 2005, pp. 2081-2087参照)。 In OTDR, vibration transmitted to an optical fiber can be detected simply by replacing the laser used to generate an optical pulse as input light with a laser having a small frequency drift and a narrow line width (for example, J.C. Juarez, See W. Maier, K. N. Choi, and H. F. Taylor, “Distributed Fiber-Optic Intrusion Sensor System,” IEEE JLT, vol. 23, No. 6, June 2005, pp. 2081-2087).
 このようなレーザを利用したOTDRでは、後方散乱光の光強度の波形は、光パルスが光ファイバを伝搬する間に光ファイバ内の複数の散乱中心で発生するコヒーレントな後方散乱光の強い干渉の結果として観測される。 In OTDR using such a laser, the waveform of the light intensity of the backscattered light is the strong interference of the coherent backscattered light generated at multiple scattering centers in the optical fiber while the optical pulse propagates through the optical fiber. Observed as a result.
 光ファイバに振動が加わると、その位置のみ光ファイバの屈折率や複屈折が変化する。これにより、振動が加わった位置の複数の散乱中心からの複数のコヒーレントな後方散乱光間の相対的な位相差が変化する。コヒーレント波の重ね合わせでは、波形間の相対的な位相差が変化すると波形が変化する。このため、観測されるOTDR波形において、振動が加わった位置に相当する時刻の波形のみ変化する。この現象を利用すれば、観測したOTDR波形と、以前の時刻において観測したOTDR波形の差を計算することにより、振動の発生と位置を検出できる。 When vibration is applied to the optical fiber, the refractive index and birefringence of the optical fiber change only at that position. As a result, the relative phase difference between the plurality of coherent backscattered lights from the plurality of scattering centers at the position where the vibration is applied changes. In the superposition of coherent waves, the waveform changes when the relative phase difference between the waveforms changes. Therefore, in the observed OTDR waveform, only the waveform at the time corresponding to the position where the vibration is applied changes. By utilizing this phenomenon, the occurrence and position of vibration can be detected by calculating the difference between the observed OTDR waveform and the OTDR waveform observed at a previous time.
 この方法は、位相感応OTDRやφ-OTDRと呼ばれる。位相感応OTDRでは、以前の時刻のOTDR波形との差分を求める。この際に、異常な振動が無い場合においても、OTDR波形の振幅の揺らぎが大きいと大きな雑音となる。これは、異常な振動を検知するといった目的に対して、異常な振動の有無の見逃しや誤検知の原因となる。この雑音を低減するために、移動平均(moving averaging)と移動差分(moving differential)と呼ばれる方法が知られている(例えば、Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” IEEE JLT, vol. 28, No. 22, Nov. 15, 2010, pp.3243-3249参照)。 This method is called phase sensitive OTDR or φ-OTDR. In the phase sensitive OTDR, the difference from the OTDR waveform at the previous time is obtained. At this time, even if there is no abnormal vibration, if the amplitude fluctuation of the OTDR waveform is large, a large noise will be generated. This causes the presence or absence of abnormal vibration to be overlooked or false detection for the purpose of detecting abnormal vibration. In order to reduce this noise, methods called moving average (moving averaging) and moving differential (moving differential) are known (for example, Y. Lu, T. Zhu, L. Chen, and X. Bao, “ Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR, ”IEEE JLT, vol. 28, No. 22, Nov. 15, 2010, pp.3243-3249).
 移動平均は、時間の経過と共に観測した複数のOTDR波形に関し、位置ごとに移動平均を求めることにより、差分を計算した場合の雑音を低減する方法である。移動差分は、異なる時刻で観測したOTDR波形の差分を計算する際に、時間軸上で隣り合ったOTDR波形との差分を計算するのではなく、少し離れた時刻において観測したOTDR波形との差分を計算する方法である。OTDR波形を取得する時間の間隔と比較して振動の持続時間が十分に長い場合、時間軸上で隣り合ったOTDR波形との差分を計算する方法と比較して大きな差分の値を得られる。 The moving average is a method of reducing noise when the difference is calculated by obtaining the moving average for each position of a plurality of OTDR waveforms observed with the passage of time. The movement difference is the difference from the OTDR waveform observed at a slightly distant time, instead of calculating the difference from the OTDR waveforms adjacent to each other on the time axis when calculating the difference between the OTDR waveforms observed at different times. Is a method of calculating. When the duration of the vibration is sufficiently long compared to the time interval for acquiring the OTDR waveform, a large difference value can be obtained as compared with the method of calculating the difference between the OTDR waveforms adjacent to each other on the time axis.
 しかしながら、OTDR波形に対して移動平均と移動差分を利用しても、異常な振動が有る場合と無い場合の値の比は数倍程度である。差分のみで振動の有無を評価する限り、異常な振動が有る場合の差分の大きさは、原理的に、最大でもOTDR波形のとり得る振幅の最大値と最小値の差に留まる。このように、異常な振動が有る場合と無い場合の値の比が小さいため、振動検知光ファイバセンサの動作は不安定である。さらに、位相感応OTDRは僅かな振動も検知できる一方で、雑音の程度は光ファイバが敷設された環境に依存する。このため、風などの影響を受ける環境下では、異常の有無を見分けることが難しい。 However, even if the moving average and the moving difference are used for the OTDR waveform, the ratio of the values with and without abnormal vibration is about several times. As long as the presence or absence of vibration is evaluated only by the difference, the magnitude of the difference when there is abnormal vibration is, in principle, limited to the difference between the maximum value and the minimum value of the possible amplitude of the OTDR waveform at the maximum. As described above, since the ratio of the values when there is abnormal vibration and when there is no abnormal vibration is small, the operation of the vibration detection optical fiber sensor is unstable. Further, while the phase-sensitive OTDR can detect even a slight vibration, the degree of noise depends on the environment in which the optical fiber is laid. Therefore, it is difficult to distinguish the presence or absence of an abnormality in an environment affected by wind or the like.
 本開示は、OTDR、例えば、位相感応OTDRにおいて、移動平均と移動差分の利用に加えて、雑音の性質を利用することで、OTDR波形の変化を統計的に評価し、異常な振動の有無を明瞭に判別する、振動検知光ファイバセンサ及び振動検知方法を提供する。 The present disclosure statistically evaluates changes in the OTDR waveform by utilizing the nature of noise in addition to the use of moving averages and moving differences in OTDRs, such as phase-sensitive OTDRs, to determine the presence or absence of abnormal vibrations. Provided are a vibration detection optical fiber sensor and a vibration detection method for clearly discriminating.
 本開示の第1の態様は、振動検知光ファイバセンサであって、光源部と、光ファイバと、光強度取得部と、OTDR波形取得部と、移動平均取得部と、差分波形取得部と、位置別統計情報取得部と、異常度取得部と、異常判定部とを備える。 The first aspect of the present disclosure is a vibration detection optical fiber sensor, which comprises a light source unit, an optical fiber, a light intensity acquisition unit, an OTDR waveform acquisition unit, a moving average acquisition unit, a difference waveform acquisition unit, and the like. It includes a position-specific statistical information acquisition unit, an abnormality degree acquisition unit, and an abnormality determination unit.
 光源部は、プローブ光として、光パルスを生成する。光ファイバにはプローブ光が入力され、光強度取得部は、プローブ光が光ファイバで後方散乱した出力光の強度を取得する。 The light source unit generates an optical pulse as probe light. The probe light is input to the optical fiber, and the light intensity acquisition unit acquires the intensity of the output light in which the probe light is backscattered by the optical fiber.
 OTDR波形取得部は、光強度取得部から送られてくる、光パルスごとの出力光の波形であるOTDR波形を順次取得して記憶する。移動平均取得部は、時間的に連続する第k(kは1以上の整数)~第k+M-1(Mは2以上の整数)のOTDR波形を平均することにより第kの移動平均波形を取得して記憶する。差分波形取得部は、第k+N-1(Nは2以上の整数)の移動平均波形と、第kの移動平均波形の差分波形p'(x)を取得する。位置別統計情報取得部は、第k~第k+i-1(iは2以上の整数)の差分波形について、各位置の、標本平均μ(x)と、標準偏差σ(x)を取得する。異常度取得部は、以下の式(1)を用いて、各位置の異常度a(p')を計算することにより、異常度を示す異常度波形を取得する。 The OTDR waveform acquisition unit sequentially acquires and stores the OTDR waveform, which is the waveform of the output light for each optical pulse sent from the light intensity acquisition unit. The moving average acquisition unit acquires the kth moving average waveform by averaging the temporally continuous OTDR waveforms of the kth (k is an integer of 1 or more) to the k + M-1 (M is an integer of 2 or more). And remember. The difference waveform acquisition unit acquires the moving average waveform of the k + N-1 (N is an integer of 2 or more) and the difference waveform p'(x) of the kth moving average waveform. The position-specific statistical information acquisition unit acquires the sample mean μ (x) and the standard deviation σ (x) of each position for the difference waveforms of the kth to k + i-1 (i is an integer of 2 or more). The abnormality degree acquisition unit acquires the abnormality degree waveform indicating the abnormality degree by calculating the abnormality degree a (p') of each position using the following equation (1).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 異常判定部は、異常度の値から、異常振動の有無と、異常振動が有った場合はその位置を取得する。 The abnormality determination unit acquires the presence or absence of abnormal vibration and the position of the abnormal vibration from the value of the degree of abnormality.
 本開示の第2の態様は、上記態様において例示的実施形態、光源部は、狭線幅レーザと、関数発生器と、強度変調器とを備えて構成されてもよい。狭線幅レーザは、レーザ光を生成する光源であって、線幅が10kHz以下であってもよい。関数発生器は、一定の周波数で電気パルスを生成してもより。強度変調器は、レーザ光を電気パルスで光パルス化することにより、光パルスを生成してもよい。 The second aspect of the present disclosure is an exemplary embodiment in the above aspect, and the light source unit may be configured to include a narrow line width laser, a function generator, and an intensity modulator. The narrow line width laser is a light source that generates a laser beam, and the line width may be 10 kHz or less. Even if the function generator generates an electrical pulse at a constant frequency. The intensity modulator may generate an optical pulse by converting the laser beam into an optical pulse with an electric pulse.
 また、本開示の第3の態様は、振動検知方法であって、光パルス生成過程と、光強度取得過程と、OTDR波形取得過程と、移動平均取得過程と、差分波形取得過程と、位置別統計情報取得過程と、異常度取得過程と、異常判定過程とを備える。 A third aspect of the present disclosure is a vibration detection method, which includes an optical pulse generation process, a light intensity acquisition process, an OTDR waveform acquisition process, a moving average acquisition process, a difference waveform acquisition process, and a position-based method. It includes a statistical information acquisition process, an abnormality degree acquisition process, and an abnormality determination process.
 光パルス生成過程では、プローブ光として、光パルスを生成する。光強度取得過程では、プローブ光が光ファイバで後方散乱した出力光の強度を取得する。OTDR波形取得過程では、光強度取得過程で取得された、光パルスごとの出力光の波形であるOTDR波形を順次取得して記憶する。移動平均取得過程では、時間的に連続する第k(kは1以上の整数)~第k+M-1(Mは2以上の整数)のOTDR波形を平均することにより第kの移動平均波形を取得して記憶する。差分波形取得過程では、第k+N-1(Nは2以上の整数)の移動平均波形と、第kの移動平均波形の差分波形p'(x)を取得する。位置別統計情報取得過程では、第k~第k+i-1(iは2以上の整数)の差分波形について、各位置の標本平均μ(x)及び標準偏差σ(x)を取得する。異常度取得過程では、上記式(1)を用いて、各位置の異常度a(p')を計算することにより、異常度を示す異常度波形を取得する。異常判定過程では、異常度の値から、異常振動の有無と、異常振動が有った場合はその位置を取得する。 In the optical pulse generation process, an optical pulse is generated as probe light. In the light intensity acquisition process, the intensity of the output light in which the probe light is backscattered by the optical fiber is acquired. In the OTDR waveform acquisition process, the OTDR waveform, which is the waveform of the output light for each optical pulse acquired in the light intensity acquisition process, is sequentially acquired and stored. In the moving average acquisition process, the kth moving average waveform is acquired by averaging the temporally continuous kth (k is an integer of 1 or more) to k + M-1 (M is an integer of 2 or more) OTDR waveforms. And remember. In the difference waveform acquisition process, the moving average waveform of the k + N-1 (N is an integer of 2 or more) and the difference waveform p'(x) of the kth moving average waveform are acquired. In the position-specific statistical information acquisition process, the sample mean μ (x) and standard deviation σ (x) of each position are acquired for the difference waveforms of the kth to k + i-1 (i is an integer of 2 or more). In the abnormality degree acquisition process, an abnormality degree waveform indicating the abnormality degree is acquired by calculating the abnormality degree a (p') at each position using the above equation (1). In the abnormality determination process, the presence or absence of abnormal vibration and the position of the abnormal vibration, if any, are acquired from the value of the degree of abnormality.
 本開示の第4の態様は、上記第3の態様において例示的実施形態、光パルス生成過程は、線幅が10kHz以下の狭線幅レーザを用いてレーザ光を生成する過程と、一定の周波数で電気パルスを生成する過程と、レーザ光を電気パルスで光パルス化することにより、光パルスを生成する過程とを備えていてもよい。 A fourth aspect of the present disclosure is an exemplary embodiment in the third aspect, wherein the optical pulse generation process includes a process of generating a laser beam using a narrow line width laser having a line width of 10 kHz or less and a constant frequency. A process of generating an electric pulse and a process of generating an optical pulse by converting a laser beam into an electric pulse with an electric pulse may be provided.
 上記態様によれば、本開示の振動検知光ファイバセンサ及び振動検知方法は、単にOTDR波形と移動平均波形との差分波形を取るだけでなく、差分波形の、各位置の標本平均及び標準偏差を用いて異常度を取得し、この異常度の値から異常振動の有無を判定する。この結果、異常がある場合と無い場合のピーク値の比が、差分波形でのピーク値の比に比べて大きくなり、異常の有無がより明確になる。さらに、光ファイバの入力端からの距離に対する感度の依存性を抑圧した、分布的な異常振動の検知を明瞭に判断できる。 According to the above aspect, the vibration detection optical fiber sensor and the vibration detection method of the present disclosure not only take the difference waveform between the OTDR waveform and the moving average waveform, but also obtain the sample average and standard deviation of each position of the difference waveform. The degree of abnormality is obtained by using, and the presence or absence of abnormal vibration is determined from the value of this degree of abnormality. As a result, the ratio of the peak values when there is an abnormality and when there is no abnormality becomes larger than the ratio of the peak values in the difference waveform, and the presence or absence of the abnormality becomes clearer. Furthermore, it is possible to clearly judge the detection of distributed abnormal vibrations that suppress the dependence of sensitivity on the distance from the input end of the optical fiber.
振動検知光ファイバセンサの概略的構成を示すブロック図である。It is a block diagram which shows the schematic structure of the vibration detection optical fiber sensor. 異常振動の判定の概念を示す模式図である。It is a schematic diagram which shows the concept of determination of anomalous vibration. 特性試験の結果を示す図である。It is a figure which shows the result of the characteristic test.
 以下、図を参照して、本開示の例示的実施形態について説明するが、各構成要素の形状、大きさ及び配置関係については、本開示が理解できる程度に概略的に示したものに過ぎない。また、以下、本開示の好適な構成例につき説明するが、数値的条件などは、単なる好適例にすぎない。従って、本開示は以下の例示的実施形態に限定されるものではなく、本開示の構成の範囲を逸脱せずに本開示の効果を達成できる多くの変更又は変形を行うことができる。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings, but the shape, size, and arrangement of each component are only schematically shown to the extent that the present disclosure can be understood. .. Further, although a preferable configuration example of the present disclosure will be described below, numerical conditions and the like are merely suitable examples. Therefore, the present disclosure is not limited to the following exemplary embodiments, and many modifications or modifications can be made to achieve the effects of the present disclosure without departing from the scope of the configuration of the present disclosure.
 (振動検知光ファイバセンサ)
 図1を参照して、振動検知光ファイバセンサの例示的実施形態について説明する。図1は、振動検知光ファイバセンサの概略的構成を示すブロック図である。
(Vibration detection optical fiber sensor)
An exemplary embodiment of the vibration detection optical fiber sensor will be described with reference to FIG. FIG. 1 is a block diagram showing a schematic configuration of a vibration detection optical fiber sensor.
 この振動検知光ファイバセンサは、光源部10、光ファイバ20、光サーキュレータ30、及び、計測部40を備えて構成される。この振動検知光ファイバセンサは、OTDRに用いられる。 This vibration detection optical fiber sensor is configured to include a light source unit 10, an optical fiber 20, an optical circulator 30, and a measurement unit 40. This vibration detection optical fiber sensor is used for OTDR.
 光源部10は、プローブ光として、周期的に光パルスを生成する。振動検知光ファイバセンサの空間分解能は、この光パルスの幅に依存する。また、振動検知光ファイバセンサの測定距離は、光パルスの周波数に依存する。光パルスは、光ファイバ20を1m伝搬するのに5nsの時間を要する。後方散乱光を観測する場合は,順方向の伝搬と,逆方向の伝搬の往復の時間を要するので、1mあたり10nsの遅延が発生する。例えば、パルス幅を100ns、周波数を5kHzとしたとき、空間分解能は10mとなり、最大の測定距離は20kmとなる。 The light source unit 10 periodically generates an optical pulse as probe light. The spatial resolution of the vibration detection optical fiber sensor depends on the width of this optical pulse. Further, the measurement distance of the vibration detection optical fiber sensor depends on the frequency of the optical pulse. The optical pulse takes 5 ns to propagate 1 m through the optical fiber 20. When observing backscattered light, it takes a round trip time of forward propagation and reverse propagation, so a delay of 10 ns per 1 m occurs. For example, when the pulse width is 100 ns and the frequency is 5 kHz, the spatial resolution is 10 m and the maximum measurement distance is 20 km.
 光源部10は、例えば、レーザ光源12、強度変調器14、関数発生器16及び光増幅器18を備えて構成される。 The light source unit 10 includes, for example, a laser light source 12, an intensity modulator 14, a function generator 16, and an optical amplifier 18.
 レーザ光源12は、通信波長帯の連続光として、レーザ光を生成する。レーザ光源12として、線幅が10kHz以下のいわゆる狭線幅レーザを用いるのが良い。レーザ光源12として狭線幅レーザを用いると、この振動検知光ファイバセンサは、位相感応OTDRに用いることができる。レーザ光の波長は、任意で良いが、標準単一モード光ファイバで低損失の1550nmにするのが良い。レーザ光源12で生成されたレーザ光は、強度変調器14に送られる。 The laser light source 12 generates laser light as continuous light in the communication wavelength band. As the laser light source 12, it is preferable to use a so-called narrow line width laser having a line width of 10 kHz or less. When a narrow line width laser is used as the laser light source 12, this vibration detection optical fiber sensor can be used for a phase sensitive OTDR. The wavelength of the laser beam may be arbitrary, but it is preferable to use a standard single-mode optical fiber with a low loss of 1550 nm. The laser beam generated by the laser light source 12 is sent to the intensity modulator 14.
 関数発生器16は、矩形状の電気パルスを生成する。この電気パルスは、強度変調器14に送られる。関数発生器16が生成する電気パルスは、例えば、パルス幅が100nsec幅で、繰り返し周波数が5kHzである。また、関数発生器16の出力は、後述するアナログ-ディジタル(A/D)変換器44にも送られ、トリガー信号として用いられる。 The function generator 16 generates a rectangular electric pulse. This electric pulse is sent to the intensity modulator 14. The electric pulse generated by the function generator 16 has, for example, a pulse width of 100 nsec and a repetition frequency of 5 kHz. The output of the function generator 16 is also sent to the analog-to-digital (A / D) converter 44, which will be described later, and is used as a trigger signal.
 強度変調器14は、レーザ光を電気パルスで光パルス化して、光パルスを生成する。この光パルスは、光増幅器18に送られる。強度変調器14が生成する光パルスのパルス幅と周波数は、共に関数発生器16が生成する電気パルスと同じである。この例では、光パルスは、パルス幅が100nsecで、繰り返し周波数が5kHzである。 The intensity modulator 14 converts the laser beam into an optical pulse with an electric pulse to generate an optical pulse. This optical pulse is sent to the optical amplifier 18. The pulse width and frequency of the optical pulse generated by the intensity modulator 14 are both the same as the electric pulse generated by the function generator 16. In this example, the optical pulse has a pulse width of 100 nsec and a repetition frequency of 5 kHz.
 強度変調器14で生成された光パルスは、光増幅器18で所定の増幅を受けた後、プローブ光として、光サーキュレータ30を経て光ファイバ20に送られる。 The optical pulse generated by the intensity modulator 14 is amplified by the optical amplifier 18 and then sent to the optical fiber 20 as probe light via the optical circulator 30.
 光ファイバ20に送られたプローブ光は、光ファイバ20を伝播し、プローブ光の伝播に伴って後方散乱光が発生する。この後方散乱光は、出力光として光サーキュレータ30を経て計測部40に送られる。 The probe light sent to the optical fiber 20 propagates in the optical fiber 20, and backscattered light is generated along with the propagation of the probe light. This backscattered light is sent to the measuring unit 40 as output light via the optical circulator 30.
 計測部40は、光強度取得部としての光検出器42及びA/D変換器44と、演算器50とを備えて構成される。光ファイバ20から計測部40に入力された出力光は、光検出器42に送られる。 The measurement unit 40 includes a photodetector 42 and an A / D converter 44 as a light intensity acquisition unit, and a calculation unit 50. The output light input from the optical fiber 20 to the measuring unit 40 is sent to the photodetector 42.
 光検出器42は、例えば、フォトダイオード(PD)で構成することができる。光検出器42は、出力光を2乗検波することにより電気信号に変換して、A/D変換器44に送る。ここで、後方散乱光の光強度は小さい。このため、光検出器42は、-30dBm程度でも受光できる感度があることが望ましい。 The photodetector 42 can be composed of, for example, a photodiode (PD). The photodetector 42 converts the output light into an electric signal by square detection and sends it to the A / D converter 44. Here, the light intensity of the backscattered light is small. Therefore, it is desirable that the photodetector 42 has a sensitivity to receive light even at about -30 dBm.
 A/D変換器44は、光検出器42から受けとった電気信号をディジタル信号に変換する。ここで、A/D変換器44の標本化周波数は、OTDR波形を標本化できる程度に大きければよく、200MHz程度あれば十分である。 The A / D converter 44 converts the electric signal received from the photodetector 42 into a digital signal. Here, the sampling frequency of the A / D converter 44 may be large enough to sample the OTDR waveform, and about 200 MHz is sufficient.
 A/D変換器44で得られるディジタル信号は、演算器50に送られる。 The digital signal obtained by the A / D converter 44 is sent to the arithmetic unit 50.
 演算器50は、ディジタル信号を用いて、OTDR波形の変化を統計的に評価し、異常な振動の有無の検知及び振動の位置の特定を行う。演算器50としては、例えば、異常な振動の有無の検知及び振動の位置の特定を行うプログラムがインストールされた市販のパーソナルコンピュータ(PC)を利用できる。ここでは、一例として、演算器50が、CPU(Central Processing Unit)60、RAM(Random Access Memory)52、ROM(Read Only Memory)54及び記憶部56を備えて構成されるものとして説明する。CPU60は、ROM54に格納されているプログラムを実行することにより、後述する各機能部を実現する。各機能部での処理結果は、一時的にRAM52に格納される。 The arithmetic unit 50 statistically evaluates changes in the OTDR waveform using a digital signal, detects the presence or absence of abnormal vibration, and identifies the position of vibration. As the arithmetic unit 50, for example, a commercially available personal computer (PC) in which a program for detecting the presence or absence of abnormal vibration and specifying the position of vibration is installed can be used. Here, as an example, the arithmetic unit 50 will be described as being configured to include a CPU (Central Processing Unit) 60, a RAM (Random Access Memory) 52, a ROM (Read Only Memory) 54, and a storage unit 56. The CPU 60 realizes each functional unit described later by executing a program stored in the ROM 54. The processing result of each functional unit is temporarily stored in the RAM 52.
 OTDR波形は、A/D変換器44から演算器50に周期的に送られてくる。OTDR波形は、例えば、横軸に光ファイバ20の入力端からの距離を示すxを取り、縦軸に距離xにおける信号強度p(x、k)を取ることで表される。ここで、kは1以上の整数であり、光ファイバ20に入力される光パルスの番号に対応する。この光パルスの番号kは、経過時間を示す。なお、光ファイバ20の光サーキュレータ30と接続される側の端部を入力端としている。 The OTDR waveform is periodically sent from the A / D converter 44 to the arithmetic unit 50. The OTDR waveform is represented by, for example, taking x indicating the distance from the input end of the optical fiber 20 on the horizontal axis and taking the signal strength p (x, k) at the distance x on the vertical axis. Here, k is an integer of 1 or more and corresponds to the number of the optical pulse input to the optical fiber 20. The number k of this optical pulse indicates the elapsed time. The end of the optical fiber 20 on the side connected to the optical circulator 30 is used as the input end.
 OTDR波形取得部62は、時間的に連続するM個分(Mは2以上の整数)のOTDR波形である第k~第k+M-1のOTDR波形を順に記憶部56に格納、すなわち記憶する。M個分のOTDR波形が格納された後は、一番古いOTDR波形を削除して、新しいOTDR波形を記憶部56に格納していく。 The OTDR waveform acquisition unit 62 sequentially stores, that is, stores the OTDR waveforms of the kth to k + M-1, which are OTDR waveforms for M pieces (M is an integer of 2 or more) that are continuous in time, in the storage unit 56. After M OTDR waveforms are stored, the oldest OTDR waveform is deleted and a new OTDR waveform is stored in the storage unit 56.
 移動平均取得部64は、OTDR波形をA/D変換器44から受け取るたびに、時間的に連続する第k~第k+M-1のM個分のOTDR波形を平均することにより第kの移動平均波形を取得する。第kの移動平均波形は、記憶部56に格納される。移動平均取得部64が取得した時間的に連続するN個分(Nは2以上の整数)の移動平均波形は、順に記憶部56に格納される。N個分の移動平均波形が格納された後は、一番古い移動平均波形を削除して、新しい移動平均波形を記憶部56に格納していく。 Each time the moving average acquisition unit 64 receives the OTDR waveform from the A / D converter 44, the moving average of the kth moving average is obtained by averaging the M OTDR waveforms of the kth to k + M-1 that are continuous in time. Get the waveform. The kth moving average waveform is stored in the storage unit 56. The time-consecutive N moving average waveforms (N is an integer of 2 or more) acquired by the moving average acquisition unit 64 are sequentially stored in the storage unit 56. After N moving average waveforms are stored, the oldest moving average waveform is deleted and a new moving average waveform is stored in the storage unit 56.
 差分波形取得部66は、記憶部56に格納されている、第k+N-1の移動平均波形と、第kの移動平均波形の差分を取ることにより、第kの差分波形p'(x)を取得する。なお、この差分を移動差分と称することもある。第kの移動平均波形は、記憶部56に格納される。移動平均取得部64が取得した時間的に連続するi個分(iは2以上の整数)の移動平均波形は、順に記憶部56に格納される。i個分の移動平均波形が格納された後は、一番古い移動平均波形を削除して、新しい移動平均波形を記憶部56に格納していく。 The difference waveform acquisition unit 66 obtains the kth difference waveform p'(x) by taking the difference between the k + N-1 moving average waveform and the kth moving average waveform stored in the storage unit 56. get. In addition, this difference may be referred to as a moving difference. The kth moving average waveform is stored in the storage unit 56. The time-continuous i moving average waveforms (i is an integer of 2 or more) acquired by the moving average acquisition unit 64 are sequentially stored in the storage unit 56. After i moving average waveforms are stored, the oldest moving average waveform is deleted and a new moving average waveform is stored in the storage unit 56.
 位置別統計情報取得部68は、第k~第k+i-1の差分波形について、各位置の標本平均μ(x)と、標準偏差σ(x)を取得する。 The position-specific statistical information acquisition unit 68 acquires the sample average μ (x) and the standard deviation σ (x) of each position for the difference waveforms of the kth to k + i-1.
 ここで、標本平均μ(x)と、標準偏差σ(x)は、例えば、この振動検知光ファイバセンサの空間分解能程度の間隔で取得することができる。あるいは、A/D変換器44で取得されたディジタルデータでみたときに、光ファイバ20の長手方向に隣接する測定点の間隔としてもよい。 Here, the sample average μ (x) and the standard deviation σ (x) can be obtained, for example, at intervals of about the spatial resolution of this vibration detection optical fiber sensor. Alternatively, it may be the interval between measurement points adjacent to each other in the longitudinal direction of the optical fiber 20 when viewed from the digital data acquired by the A / D converter 44.
 異常度取得部70は、上記式(1)を用いて、各位置の異常度を計算することにより、異常度を示す波形(以下、異常度波形とも称する。)を取得する。 The abnormality degree acquisition unit 70 acquires a waveform indicating the abnormality degree (hereinafter, also referred to as an abnormality degree waveform) by calculating the abnormality degree at each position using the above equation (1).
 その後、異常判定部72が、異常度から異常振動の有無を判断する。なお、異常度の有無を判定する際に用いるしきい値については、設置場所の環境による影響をモニタするなどして、好適な値に設定すればよい。 After that, the abnormality determination unit 72 determines the presence or absence of abnormal vibration from the degree of abnormality. The threshold value used to determine the presence or absence of the degree of abnormality may be set to an appropriate value by monitoring the influence of the environment of the installation location.
 移動平均を計算する際の波形の数Mは、例えば、レーザ光源12の線幅に基づいて定められる。レーザ光源12の線幅が500Hzの場合は、2msec(=1/500Hz)以下の時間の平均になるようにするのが良い。光パルスの周波数が5kHzの場合は、例えば、Mを20にすることができる。この場合、移動平均波形は、4msecの時間の平均になる。 The number M of waveforms when calculating the moving average is determined, for example, based on the line width of the laser light source 12. When the line width of the laser light source 12 is 500 Hz, it is preferable that the average time is 2 msec (= 1/500 Hz) or less. When the frequency of the optical pulse is 5 kHz, for example, M can be set to 20. In this case, the moving average waveform becomes the average for a time of 4 msec.
 なお、位置別統計情報取得部68が標本平均μ(x)及び標準偏差σ(x)を取得するにあたり、異常振動が無い状態で計算するのが良い。従って、位置別統計情報取得部68は、例えば、異常判定部72において、異常振動が有ったと判定された場合は、その位置に対応する標本を除いて、標本平均μ(x)及び標準偏差σ(x)を取得する構成とすることができる。また、異常判定部72において、異常振動が有ったと判定された場合は、移動平均取得部64が、該当するOTDR波形を除いて移動平均波形を取得する構成にしてもよい。 When the position-specific statistical information acquisition unit 68 acquires the sample average μ (x) and the standard deviation σ (x), it is preferable to perform the calculation without abnormal vibration. Therefore, for example, when the abnormality determination unit 72 determines that there is an abnormality vibration, the position-specific statistical information acquisition unit 68 excludes the sample corresponding to the position, and the sample average μ (x) and the standard deviation. It can be configured to acquire σ (x). Further, when the abnormality determination unit 72 determines that there is an abnormal vibration, the moving average acquisition unit 64 may be configured to acquire the moving average waveform excluding the corresponding OTDR waveform.
 差分波形を取得する際の、OTDR波形と移動平均波形の時間差は、異常振動の周期以上に設定するのが良い。例えば、光パルスの周波数が5kHzの場合、光パルスの周期は、0.2msec(=1/5kHz)である。これに対し、光ファイバを叩いたことにより発生する振動の周波数は数100Hz程度である。この場合、周期は、数msec程度であるので、時間的に隣接するOTDR波形の差が小さい。このため、時間差を4msec程度にするのが良い。 The time difference between the OTDR waveform and the moving average waveform when acquiring the difference waveform should be set to be equal to or longer than the period of abnormal vibration. For example, when the frequency of the optical pulse is 5 kHz, the period of the optical pulse is 0.2 msec (= 1/5 kHz). On the other hand, the frequency of vibration generated by hitting the optical fiber is about several hundred Hz. In this case, since the period is about several msec, the difference between temporally adjacent OTDR waveforms is small. Therefore, it is preferable to set the time difference to about 4 msec.
 移動平均を計算する際の波形の数Mは、例えば、レーザ光源12の線幅に基づいて定められる。レーザ光源12の線幅が500Hzの場合は、2msec(=1/500Hz)以下の時間の平均になるようにするのが良い。光パルスの周波数が5kHzの場合は、例えば、Mを20にすることができる。この場合、移動平均波形は、4msecの時間の平均になる。 The number M of waveforms when calculating the moving average is determined, for example, based on the line width of the laser light source 12. When the line width of the laser light source 12 is 500 Hz, it is preferable that the average time is 2 msec (= 1/500 Hz) or less. When the frequency of the optical pulse is 5 kHz, for example, M can be set to 20. In this case, the moving average waveform becomes the average for a time of 4 msec.
 位置別統計情報取得部68が、各位置の標本平均μ(x)と、標準偏差σ(x)を取得する際の差分波形の数iは、移動平均を計算する際の波形の数Mと同様に、例えば、レーザ光源12の線幅に基づいて定められる。レーザ光源12の線幅が500Hzの場合は、2msec(=1/500Hz)以下の時間の平均になるようにするのが良い。光パルスの周波数が5kHzの場合は、例えば、iを20にすることができる。 The number i of the difference waveforms when the position-specific statistical information acquisition unit 68 acquires the sample mean μ (x) and the standard deviation σ (x) of each position is the number M of the waveforms when calculating the moving average. Similarly, for example, it is determined based on the line width of the laser light source 12. When the line width of the laser light source 12 is 500 Hz, it is preferable that the average time is 2 msec (= 1/500 Hz) or less. When the frequency of the optical pulse is 5 kHz, i can be set to 20, for example.
 ここで、図2を参照して、本開示で用いられる異常振動の判定の概念を説明する。図2は、異常振動の判定の概念を説明するための模式図である。図2の(1)は、差分波形を示し、図2の(2)は、図2の(1)に示す差分波形に基づいて得られる異常度を示している。図2の(1)では、例として、i=4とし、第1~第4までの4つの差分波形を示している。 Here, with reference to FIG. 2, the concept of determining abnormal vibration used in the present disclosure will be described. FIG. 2 is a schematic diagram for explaining the concept of determining abnormal vibration. FIG. 2 (1) shows the difference waveform, and FIG. 2 (2) shows the degree of abnormality obtained based on the difference waveform shown in FIG. 2 (1). In (1) of FIG. 2, as an example, i = 4 and four difference waveforms from the first to the fourth are shown.
 図2の(1)の3つの軸は、光ファイバ20の入力端からの距離、経過時間、差分波形の光強度を示している。また、図2の(2)は、横軸に光ファイバの入力端からの距離を取って示し、縦軸に異常度を取って示している。 The three axes (1) in FIG. 2 show the distance from the input end of the optical fiber 20, the elapsed time, and the light intensity of the difference waveform. Further, in FIG. 2 (2), the horizontal axis shows the distance from the input end of the optical fiber, and the vertical axis shows the degree of abnormality.
 図2の(1)に示すように、光ファイバ20に、位置により異なる外乱が加えられている場合、外乱が加えられている区間は、異常振動が無い場合であっても、差分波形の値が大きくなる。 As shown in (1) of FIG. 2, when a disturbance different depending on the position is applied to the optical fiber 20, the value of the difference waveform is obtained in the section where the disturbance is applied even if there is no abnormal vibration. Becomes larger.
 これに対し、本開示の振動検知光ファイバセンサでは、位置別統計情報取得部68が、各位置の標本平均μ(x)及び標準偏差σ(x)を取得し、異常判定部72が、異常度から異常振動の有無を判断する。このように、各位置の標本平均μ(x)及び標準偏差σ(x)によって正規化することで、図2の(2)に示すように、外乱が常に加わっている区間の異常度は小さくなり、その影響は低く評価される。このため、外乱の位置依存性を抑圧することができる。 On the other hand, in the vibration detection optical fiber sensor of the present disclosure, the position-specific statistical information acquisition unit 68 acquires the sample average μ (x) and standard deviation σ (x) of each position, and the abnormality determination unit 72 causes an abnormality. Judge the presence or absence of abnormal vibration from the degree. By normalizing with the sample mean μ (x) and standard deviation σ (x) at each position in this way, as shown in FIG. 2 (2), the degree of anomaly in the section where the disturbance is always applied is small. And its impact is underestimated. Therefore, the position dependence of the disturbance can be suppressed.
 (特性試験)
 この振動検知光ファイバセンサの特性試験について説明する。ここでは、光ファイバ20の長さを18.2kmとした。光ファイバ20の、入力端側から15.6~15.8kmの位置の光ファイバに加振し、異常な振動を加えた。
(Characteristic test)
The characteristic test of this vibration detection optical fiber sensor will be described. Here, the length of the optical fiber 20 is set to 18.2 km. The optical fiber at a position of 15.6 to 15.8 km from the input end side of the optical fiber 20 was vibrated and abnormal vibration was applied.
 レーザ光源12は、線幅500Hzの狭線幅レーザとした。光パルスのパルス幅及び周波数をそれぞれ100nsec及び5kHzとした。また、移動平均を計算する際に用いるOTDR波形の数Mを20とし、差分波形を取得する際の時間差を4msecとした。この時間差の4msecは、光パルスの数Nに換算すると20個分になる。また、標本平均μ(x)及び標準偏差σ(x)を取得する際の差分波形の数iを20とした。 The laser light source 12 was a narrow line width laser having a line width of 500 Hz. The pulse width and frequency of the optical pulse were set to 100 nsec and 5 kHz, respectively. Further, the number M of the OTDR waveforms used when calculating the moving average was set to 20, and the time difference when acquiring the difference waveform was set to 4 msec. This time difference of 4 msec is equivalent to 20 light pulses when converted to the number N of optical pulses. Further, the number i of the difference waveforms when acquiring the sample mean μ (x) and the standard deviation σ (x) was set to 20.
 すなわち、この試験では、移動平均を計算する際に用いる波形の数Mと、差分波形を取得する際の時間差から換算される光パルスの数Nと、標本平均μ(x)及び標準偏差σ(x)を取得する際の差分波形の数iは、いずれも20で等しい。記憶部には、M(=20)個のOTDR波形と、N(=20)個の移動平均波形と、i(=20)個の移動差分波形が格納されている。 That is, in this test, the number M of waveforms used when calculating the moving average, the number N of optical pulses converted from the time difference when acquiring the difference waveform, the sample mean μ (x) and the standard deviation σ ( The number i of the difference waveforms when acquiring x) is equal to 20. The storage unit stores M (= 20) OTDR waveforms, N (= 20) moving average waveforms, and i (= 20) moving difference waveforms.
 図3の(1)及び(2)は、特性試験の結果を示す図である。図3の(1)は、移動差分を示す図であり、横軸に光ファイバ20の入力端からの距離[単位:km]を取って示し、縦軸に、信号レベル[単位:mV]を取って示している。図3の(2)は異常度を示す図であり、横軸に光ファイバ20の入力端からの距離[単位:km]を取って示し、縦軸に、異常度を取って示している。 (1) and (2) of FIG. 3 are diagrams showing the results of the characteristic test. (1) of FIG. 3 is a diagram showing a movement difference, in which the horizontal axis shows the distance [unit: km] from the input end of the optical fiber 20, and the vertical axis shows the signal level [unit: mV]. It is shown. FIG. 3 (2) is a diagram showing the degree of abnormality, in which the horizontal axis shows the distance [unit: km] from the input end of the optical fiber 20 and the vertical axis shows the degree of abnormality.
 図3の(2)に示すように、0~15.6kmの範囲と、15.8~18.2kmの範囲において、移動差分の信号レベルは、異常振動が加えられていないにも関わらず、信号レベルが、距離に対してばらついている。 As shown in (2) of FIG. 3, in the range of 0 to 15.6 km and the range of 15.8 to 18.2 km, the signal level of the movement difference is the same as that no abnormal vibration is applied. The signal level varies with distance.
 一方、図3の(2)に示すように、本開示の振動検知光ファイバセンサでは、上記式(1)を用いて異常度を計算しており、その結果、0~15.6kmの範囲と、15.8~18.2kmの範囲において、異常度はほとんど0であり、異常振動が加えられた15.6~15.8kmの区間の異常度と、明確に区別できる。 On the other hand, as shown in FIG. 3 (2), in the vibration detection optical fiber sensor of the present disclosure, the degree of abnormality is calculated using the above equation (1), and as a result, the range is 0 to 15.6 km. In the range of 15.8 to 18.2 km, the degree of anomaly is almost 0, and it can be clearly distinguished from the degree of anomaly in the section of 15.6 to 15.8 km to which the abnormal vibration is applied.
 このように、この振動検知光ファイバセンサでは、各位置におけるOTDR波形の揺らぎを、それぞれ、時間の経過とともに、各時刻近傍を統計的に評価する。これにより、光ファイバ20の入力端からの距離に対する感度の依存性を抑圧した、分布的な異常振動の検知を明瞭に判断できる。さらに、外部環境がゆるやかに変化しても、振動検知の感度への影響を抑圧する効果も期待できる。 In this way, this vibration detection optical fiber sensor statistically evaluates the fluctuation of the OTDR waveform at each position in the vicinity of each time with the passage of time. Thereby, the detection of the distributed abnormal vibration that suppresses the dependence of the sensitivity on the distance from the input end of the optical fiber 20 can be clearly determined. Furthermore, even if the external environment changes slowly, the effect of suppressing the influence on the sensitivity of vibration detection can be expected.
 (他の例示的実施形態)
 ここでは、光強度取得部にPDを用いて、後方散乱光の強度を測定する例を説明したが、これに限定されない。後方散乱光を観測するにあたり、Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” IEEE JLT, vol. 28, No. 22, Nov. 15, 2010, pp.3243-3249に記載されているように、後方散乱光をレーザ光源で生成されたレーザ光と干渉させて、コヒーレント検波を行ってもよい。また、光90度ハイブリッド受信機を用いて後方散乱光の位相変化を観測してもよい。また、後方散乱光に対してヘテロダイン検波をしてもよい。
(Other exemplary embodiments)
Here, an example of measuring the intensity of backscattered light by using a PD as a light intensity acquisition unit has been described, but the present invention is not limited to this. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR,” IEEE JLT, vol. 28, No. 22, Coherent detection may be performed by interfering the backscattered light with the laser light generated by the laser light source, as described in Nov. 15, 2010, pp.3243-3249. Alternatively, a 90-degree light hybrid receiver may be used to observe the phase change of the backscattered light. Heterodyne detection may also be performed on the backscattered light.
 2019年3月18日出願の日本国特許出願2019-050121号の開示は、その全体が参照により本明細書に取り込まれる。 The entire disclosure of Japanese Patent Application No. 2019-050121 filed on March 18, 2019 is incorporated herein by reference in its entirety.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (8)

  1.  プローブ光として、光パルスを生成する光源部と、
     前記プローブ光が入力される光ファイバと、
     前記プローブ光が前記光ファイバで後方散乱した出力光の強度を取得する光強度取得部と、
     前記光強度取得部から送られてくる、前記光パルスごとの出力光の波形であるOTDR波形を順次取得して記憶するOTDR波形取得部と、
     時間的に連続する第k(kは1以上の整数)~第k+M-1(Mは2以上の整数)のOTDR波形を平均することにより第kの移動平均波形を取得して記憶する、移動平均取得部と、
     第k+N-1(Nは2以上の整数)の移動平均波形と、第kの移動平均波形の差分波形p'(x)を取得する差分波形取得部と、
     第k~第k+i-1(iは2以上の整数)の差分波形について、各位置の、標本平均μ(x)及び標準偏差σ(x)を取得する位置別統計情報取得部と、
     以下の式(1)を用いて、各位置の異常度a(p')を計算することにより、異常度を示す異常度波形を取得する異常度取得部と、
     前記異常度の値から、異常振動の有無と、異常振動が有った場合はその位置を取得する異常判定部と、
     を備える、振動検知光ファイバセンサ。
    Figure JPOXMLDOC01-appb-M000001
    A light source that generates an optical pulse as probe light,
    The optical fiber to which the probe light is input and
    A light intensity acquisition unit that acquires the intensity of the output light in which the probe light is backscattered by the optical fiber.
    An OTDR waveform acquisition unit that sequentially acquires and stores an OTDR waveform that is a waveform of output light for each optical pulse sent from the light intensity acquisition unit.
    A moving average waveform of the kth is acquired and stored by averaging the OTDR waveforms of the kth (k is an integer of 1 or more) to the k + M-1 (M is an integer of 2 or more) that are continuous in time. Average acquisition department and
    A moving average waveform of the k + N-1 (N is an integer of 2 or more), a difference waveform acquisition unit for acquiring the difference waveform p'(x) of the kth moving average waveform, and
    For the difference waveforms of the kth to k + i-1 (i is an integer of 2 or more), a position-specific statistical information acquisition unit that acquires the sample mean μ (x) and standard deviation σ (x) at each position, and
    An abnormality degree acquisition unit that acquires an abnormality degree waveform indicating the abnormality degree by calculating the abnormality degree a (p') at each position using the following equation (1).
    From the value of the degree of abnormality, the presence or absence of abnormal vibration, and if there is abnormal vibration, an abnormality determination unit that acquires the position, and
    A vibration detection fiber optic sensor.
    Figure JPOXMLDOC01-appb-M000001
  2.  前記位置別統計情報取得部は、前記異常判定部において異常振動が有ったと判定された場合、その位置に対応する標本を除いて、標本平均μ(x)及び標準偏差σ(x)を取得する、請求項1に記載の振動検知光ファイバセンサ。 When the position-specific statistical information acquisition unit determines that there is abnormal vibration in the abnormality determination unit, the sample mean μ (x) and standard deviation σ (x) are acquired except for the sample corresponding to the position. The vibration detection optical fiber sensor according to claim 1.
  3.  前記移動平均取得部は、前記異常判定部において異常振動が有ったと判定された場合、該当するOTDR波形を除いて移動平均波形を取得する、請求項1に記載の振動検知光ファイバセンサ。 The vibration detection optical fiber sensor according to claim 1, wherein the moving average acquisition unit acquires a moving average waveform excluding the corresponding OTDR waveform when the abnormality determination unit determines that there is an abnormal vibration.
  4.  前記光源部は、
     レーザ光を生成する光源であって、線幅が10kHz以下の狭線幅レーザと、
     一定の周波数で電気パルスを生成する関数発生器と、
     前記レーザ光を前記電気パルスで光パルス化することにより、前記光パルスを生成する強度変調器と、
     を備える、請求項1~請求項3のいずれか1項に記載の振動検知光ファイバセンサ。
    The light source unit
    A light source that generates laser light, a narrow line width laser with a line width of 10 kHz or less, and
    A function generator that generates electrical pulses at a constant frequency,
    An intensity modulator that generates the optical pulse by converting the laser beam into an optical pulse with the electric pulse.
    The vibration detection optical fiber sensor according to any one of claims 1 to 3.
  5.  プローブ光として、光パルスを生成する光パルス生成過程と、
     前記プローブ光が光ファイバで後方散乱した出力光の強度を取得する光強度取得過程と、
     前記光強度取得過程で取得された、前記光パルスごとの出力光の波形であるOTDR波形を順次取得して記憶するOTDR波形取得過程と、
     時間的に連続する第k(kは1以上の整数)~第k+M-1(Mは2以上の整数)のOTDR波形を平均することにより第kの移動平均波形を取得して記憶する移動平均取得過程と、
     第k+N-1(Nは2以上の整数)の移動平均波形と、第kの移動平均波形の差分波形p'(x)を取得する差分波形取得過程と、
     第k~第k+i-1(iは2以上の整数)の差分波形について、各位置の標本平均μ(x)及び標準偏差σ(x)を取得する位置別統計情報取得過程と、
     以下の式(1)を用いて、各位置の異常度a(p')を計算することにより、異常度を示す異常度波形を取得する異常度取得過程と、
     前記異常度の値から、異常振動の有無と、異常振動が有った場合はその位置を取得する異常判定過程と、
     を備える、振動検知方法。
    Figure JPOXMLDOC01-appb-M000002
    An optical pulse generation process that generates an optical pulse as probe light,
    The light intensity acquisition process for acquiring the intensity of the output light in which the probe light is backscattered by the optical fiber, and
    An OTDR waveform acquisition process in which OTDR waveforms, which are waveforms of output light for each optical pulse acquired in the light intensity acquisition process, are sequentially acquired and stored, and
    A moving average that acquires and stores the kth moving average waveform by averaging the temporally continuous kth (k is an integer of 1 or more) to k + M-1 (M is an integer of 2 or more) OTDR waveforms. Acquisition process and
    The difference waveform acquisition process for acquiring the moving average waveform of the k + N-1 (N is an integer of 2 or more) and the difference waveform p'(x) of the kth moving average waveform.
    For the difference waveforms of the kth to k + i-1 (i is an integer of 2 or more), the position-specific statistical information acquisition process for acquiring the sample mean μ (x) and standard deviation σ (x) at each position, and
    Anomalous degree acquisition process for acquiring anomalous degree waveform indicating anomaly degree by calculating anomaly degree a (p') at each position using the following equation (1), and
    From the value of the degree of abnormality, the presence or absence of abnormal vibration, and the abnormality determination process of acquiring the position if there is abnormal vibration,
    A vibration detection method.
    Figure JPOXMLDOC01-appb-M000002
  6.  前記位置別統計情報取得過程では、前記異常判定過程において異常振動が有ったと判定された場合、その位置に対応する標本を除いて、標本平均μ(x)及び標準偏差σ(x)を取得する、請求項5に記載の振動検知方法。 In the position-specific statistical information acquisition process, when it is determined that there is abnormal vibration in the abnormality determination process, the sample mean μ (x) and standard deviation σ (x) are acquired except for the sample corresponding to the position. The vibration detection method according to claim 5.
  7.  前記移動平均取得過程では、前記異常判定過程において異常振動が有ったと判定された場合、該当するOTDR波形を除いて移動平均波形を取得する、請求項5に記載の振動検知方法。 The vibration detection method according to claim 5, wherein in the moving average acquisition process, when it is determined that there is an abnormal vibration in the abnormality determination process, the moving average waveform is acquired by excluding the corresponding OTDR waveform.
  8.  前記光パルス生成過程は、
     線幅が10kHz以下の狭線幅レーザを用いてレーザ光を生成する過程と、
     一定の周波数で電気パルスを生成する過程と、
     前記レーザ光を前記電気パルスで光パルス化することにより、前記光パルスを生成する過程と、
     を備える、請求項5~請求項7のいずれか1項に記載の振動検知方法。
    The light pulse generation process is
    The process of generating laser light using a narrow line width laser with a line width of 10 kHz or less,
    The process of generating electrical pulses at a constant frequency,
    The process of generating the optical pulse by converting the laser beam into an optical pulse with the electric pulse, and
    The vibration detection method according to any one of claims 5 to 7, further comprising.
PCT/JP2019/045789 2019-03-18 2019-11-22 Vibration detection optical fiber sensor and vibration detection method WO2020188888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019050121A JP7238507B2 (en) 2019-03-18 2019-03-18 Vibration detection optical fiber sensor and vibration detection method
JP2019-050121 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020188888A1 true WO2020188888A1 (en) 2020-09-24

Family

ID=72519195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045789 WO2020188888A1 (en) 2019-03-18 2019-11-22 Vibration detection optical fiber sensor and vibration detection method

Country Status (2)

Country Link
JP (1) JP7238507B2 (en)
WO (1) WO2020188888A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117091754A (en) * 2023-10-20 2023-11-21 山东远盾网络技术股份有限公司 Large-scale equipment fault detection method and system based on data analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125591B (en) * 2022-01-24 2022-04-22 高勘(广州)技术有限公司 Terminal sensor for optical fiber sensing communication and sensing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344416A (en) * 1998-05-29 1999-12-14 Ando Electric Co Ltd Computing method of reference value in beam line test and beam-line testing apparatus using the same
JP2001305017A (en) * 2000-04-21 2001-10-31 Ando Electric Co Ltd Optical pulse testing device
JP2003090779A (en) * 2001-09-17 2003-03-28 Anritsu Corp Optical pulse tester

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865914B (en) * 2012-09-19 2013-12-18 朱涛 Distributed optic fiber vibrating sensor
CN104568120B (en) * 2015-01-14 2017-11-28 天津大学 Composite principle optical fiber sensing system and sensing method
JP6494459B2 (en) * 2015-07-24 2019-04-03 日本電信電話株式会社 Vibration distribution measuring method and vibration distribution measuring apparatus
CN108088548A (en) * 2017-11-24 2018-05-29 安徽师范大学 Distributed optical fiber vibration sensor high-precision locating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344416A (en) * 1998-05-29 1999-12-14 Ando Electric Co Ltd Computing method of reference value in beam line test and beam-line testing apparatus using the same
JP2001305017A (en) * 2000-04-21 2001-10-31 Ando Electric Co Ltd Optical pulse testing device
JP2003090779A (en) * 2001-09-17 2003-03-28 Anritsu Corp Optical pulse tester

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LU YUELAN: "Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 28, no. 22, 15 November 2010 (2010-11-15), pages 3243 - 3249, XP011339929, DOI: 10.1109/JLT.2010.2078798 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117091754A (en) * 2023-10-20 2023-11-21 山东远盾网络技术股份有限公司 Large-scale equipment fault detection method and system based on data analysis
CN117091754B (en) * 2023-10-20 2023-12-19 山东远盾网络技术股份有限公司 Large-scale equipment fault detection method and system based on data analysis

Also Published As

Publication number Publication date
JP2020153704A (en) 2020-09-24
JP7238507B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
Lu et al. Distributed vibration sensor based on coherent detection of phase-OTDR
CN107917738B (en) Distributed optical fiber sensing system capable of simultaneously measuring temperature, strain and vibration
Liu et al. True Phase Measurement of Distributed Vibration Sensors Based on Heterodyne $\varphi $-OTDR
Yang et al. Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR
EP2350603B1 (en) Distributed fibre optic sensing for event detection
Chen et al. Distributed fiber-optic acoustic sensor with sub-nano strain resolution based on time-gated digital OFDR
Lu et al. Numerical modeling of Fcy OTDR sensing using a refractive index perturbation approach
JP7435160B2 (en) Optical fiber vibration detection device and vibration detection method
Iida et al. High-frequency distributed acoustic sensing faster than repetition limit with frequency-multiplexed phase-OTDR
WO2020188888A1 (en) Vibration detection optical fiber sensor and vibration detection method
Tong et al. High-speed Mach-Zehnder-OTDR distributed optical fiber vibration sensor using medium-coherence laser
Liu et al. Distributed acoustic sensing with Michelson interferometer demodulation
JP3147616B2 (en) Distributed waveguide sensor
JP7077887B2 (en) Vibration detection Optical fiber sensor and vibration detection method
JP2019039881A (en) Vibration detection optical fiber sensor and method for detecting vibration
JP6539931B2 (en) Brillouin frequency shift distribution measurement system, Brillouin frequency shift distribution measurement apparatus, Brillouin frequency shift distribution measurement method, and Brillouin frequency shift distribution measurement program
Li et al. A high-performance DAS system using point-backscattering-enhanced fiber and study of its noise characteristics
Lin et al. Frequency Response Enhanced Quantitative Vibration Detection Using Fading-Free Coherent $\varphi $-OTDR With Randomized Sampling
Muanenda et al. A φ-OTDR sensor for high-frequency distributed vibration measurements with minimal post-processing
Zinsou et al. Adaptive pulse period method for low-frequency vibration sensing with intensity-based phase-sensitive OTDR systems
ALDOĞAN et al. Development of a phase-OTDR interrogator based on coherent detection scheme
RU2400783C1 (en) Method of identifying multimode optical fibre with high differential modal delay
Jostmeier et al. Distributed Acoustic Sensing with 100 km Distance Range Using a Polarization-Diverse Coherent OTDR Interrogator
RU2407167C2 (en) Method of determining length of beats of optical fibre on section of transmission line
Xiang et al. Distributed sensing network using a chirped ultra-weak fiber Bragg grating array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920065

Country of ref document: EP

Kind code of ref document: A1