WO2020188886A1 - Power conversion device, drive control system, machine learning device, and motor monitoring method - Google Patents

Power conversion device, drive control system, machine learning device, and motor monitoring method Download PDF

Info

Publication number
WO2020188886A1
WO2020188886A1 PCT/JP2019/045711 JP2019045711W WO2020188886A1 WO 2020188886 A1 WO2020188886 A1 WO 2020188886A1 JP 2019045711 W JP2019045711 W JP 2019045711W WO 2020188886 A1 WO2020188886 A1 WO 2020188886A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
unit
frequency
motor
current frequency
Prior art date
Application number
PCT/JP2019/045711
Other languages
French (fr)
Japanese (ja)
Inventor
憲和 服部
規央 鈴木
田中 哲夫
直人 法名
崇弘 原田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/429,635 priority Critical patent/US11362614B2/en
Priority to JP2020515994A priority patent/JP6704560B1/en
Priority to DE112019006863.6T priority patent/DE112019006863T5/en
Priority to CN201980093995.1A priority patent/CN113574791B/en
Publication of WO2020188886A1 publication Critical patent/WO2020188886A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor

Definitions

  • the present invention relates to a power conversion device for supplying electric power to a motor, a drive control system, a machine learning device, and a motor monitoring method.
  • power converters that supply power to motors are required to comply with functional safety standards such as IEC (International Electrotechnical Commission) 61508 or ISO (International Organization for Standardization) 13849, which are international standards.
  • functional safety standards such as IEC (International Electrotechnical Commission) 61508 or ISO (International Organization for Standardization) 13849, which are international standards.
  • power converters are required to support safety speed monitoring (SLS: Safety Limited Speed), which is one of the functional safety standards.
  • Safe speed monitoring is a function to monitor that the specified speed limit is not exceeded.
  • the power supply to the motor is stopped by turning off the gate drive signal of the power conversion device to improve safety. Secure.
  • Patent Document 1 discloses a technique in which a current value, which is a value of a current supplied to a motor, is detected by a current sensor, and the speed of the motor is monitored based on the current value.
  • Patent Document 1 only describes that the speed of the motor is monitored based on the current value detected by the current sensor, and no specific processing is proposed.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device capable of performing safe speed monitoring with a simple configuration using a current sensor.
  • the power conversion device of the present invention controls the main circuit unit and the main circuit unit that convert DC power into AC power and supply the converted AC power to the motor. It includes a control unit for detecting a current supplied from the main circuit unit to the motor, and a half-wave rectifying unit for half-wave rectifying the current detection signal output from the current sensor.
  • the control unit includes a current frequency calculation unit that calculates the current frequency, which is the frequency of the current, and a current frequency based on at least one of the rise timing and the fall timing of the current detection signal that has been half-wave rectified by the half-wave rectifier unit. It includes a monitoring unit that monitors the speed of the motor based on the current frequency calculated by the calculation unit.
  • the power conversion device has an effect that safe speed monitoring can be performed with a simple configuration using a current sensor.
  • the figure which shows the relationship between the current detection signal output from the current sensor which concerns on Embodiment 1, the current detection signal which is half-wave rectified by a half-wave rectifier, and the current code signal A flowchart showing an example of processing of the drive control unit of the control unit according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration example of a drive control system including a power conversion device according to a first embodiment of the present invention.
  • the drive control system 100 according to the first embodiment includes a power conversion device 1, a motor 2, an AC power supply 3, and a safety device 4.
  • the power conversion device 1 operates by the AC power supplied from the AC power supply 3 and controls and drives the motor 2.
  • the power conversion device 1 converts the three-phase AC power supplied from the AC power supply 3 into AC power having a frequency corresponding to a command signal input from the outside, and supplies the AC power to the motor 2.
  • the motor 2 is a three-phase AC motor
  • the power conversion device 1 converts the three-phase AC power supplied from the AC power supply 3 into a three-phase AC power having a frequency corresponding to a command signal, and the three-phase AC is applied. Power can be supplied to the motor 2.
  • the AC power supply 3 may be a single-phase power supply.
  • the safety device 4 outputs a safety signal for putting the motor 2 in a safe state in the drive control system 100 to the power conversion device 1.
  • Types of safety signals include, for example, a signal requesting safe torque off (STO: Safe Torque Off), a signal requesting safe stop 1 (SS1: Safe Stop 1), and a signal requesting safe speed monitoring (SLS). Is included.
  • STO Safe Torque Off
  • SS1 Safe Stop 1
  • SLS signal requesting safe speed monitoring
  • the STO signal is a signal that requests the power conversion device 1 to stop the power supply from the power conversion device 1 that drives the motor 2 to the motor 2.
  • the SS1 signal is a signal that requests the power conversion device 1 to stop the power supply to the motor 2 by safety torque off after a lapse of a designated time after starting the deceleration of the motor 2.
  • the SLS signal monitors that the speed of the motor 2 does not exceed the specified speed limit value, and when the speed of the motor 2 exceeds the specified speed limit value, powers to stop the power supply to the motor 2 by safety torque off. This is a signal required for the conversion device 1.
  • the STO signal, SS1 signal, and SLS signal are, for example, signals that require the performance of safety functions specified in the international standard IEC61508-5-1.
  • the safety device 4 outputs a safety signal to the power conversion device 1 when, for example, an operator's approach to the motor 2 is detected or an emergency stop button is operated.
  • the safety device 4 is, for example, a safety PLC (Programmable Logic Controller) or a safety relay.
  • a safety PLC Programmable Logic Controller
  • a safety relay When the safety device 4 is connected to a plurality of devices such as a detection device for detecting the approach of an operator to the motor 2 and an emergency stop button, and receives an emergency notification from any of these devices. , Output a safety signal.
  • the power conversion device 1 includes a main circuit unit 11, a control unit 12, a gate drive unit 13, a current sensor 14, and a zero-cross detection unit 15.
  • the main circuit unit 11 supplies AC power for driving the motor 2 to the motor 2 based on the three-phase AC power supplied from the AC power supply 3.
  • the main circuit unit 11 includes an AC / DC converter 20 and a DC / AC converter 21.
  • the AC / DC converter 20 converts the AC power supplied from the AC power supply 3 into DC power.
  • the AC / DC converter 20 has a three-phase diode bridge 22 composed of a plurality of diodes connected by a three-phase bridge, and a smoothing capacitor 23 for smoothing an AC voltage rectified by the three-phase diode bridge 22.
  • the AC / DC converter 20 may have a configuration having a plurality of switching elements connected by a three-phase bridge instead of the three-phase diode bridge 22.
  • the DC / AC converter 21 converts the DC power supplied from the AC / DC converter 20 into AC power having a frequency corresponding to the command signal, and outputs the converted AC power to the motor 2.
  • the DC / AC converter 21 has a plurality of switching elements 31, 32, 33, 34, 35, 36 connected by a three-phase bridge.
  • the switching elements 31, 32, 33, 34, 35, 36 are semiconductor switching elements such as MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) or IGBTs (Insulated Gate Bipolar Transistors), for example.
  • the control unit 12 includes a drive control unit 40 that generates a control signal for driving the motor 2 and monitors an abnormality or the like, and a safety function unit 50 that monitors the abnormality or the like. As will be described later, the drive control unit 40 and the safety function unit 50 make the processing for the safety signal redundant by duplication.
  • the drive control unit 40 generates a control signal based on a command signal input from the outside, and outputs the generated control signal to the gate drive unit 13.
  • a command signal is, for example, a signal indicating a speed command that specifies the speed of the motor 2.
  • the drive control unit 40 When the command signal is a speed command, the drive control unit 40 generates a control signal for setting the speed of the motor 2 to a speed corresponding to the speed command, and outputs the generated control signal to the gate drive unit 13.
  • the drive control unit 40 generates a control signal based on the safety signal output from the safety device 4, and outputs the generated control signal to the gate drive unit 13. For example, when the safety signal output from the safety device 4 is an SLS signal, the drive control unit 40 controls the motor 2 so that the speed of the motor 2 does not exceed the specified speed limit value, and the zero cross detection unit 15 Based on the output current code signal I sig1 , it is monitored that the speed of the motor 2 does not exceed the specified speed limit value. Then, when the speed of the motor 2 exceeds the specified speed limit value, the drive control unit 40 outputs a control signal for turning off the switching elements 31, 32, 33, 34, 35, 36 to the gate drive unit 13.
  • the safety function unit 50 controls the drive control unit 40 based on the safety signal output from the safety device 4. For example, when the safety signal output from the safety device 4 is an SLS signal, the safety function unit 50 sets the speed of the motor 2 to a specified speed limit value based on the current code signal I sig2 output from the zero cross detection unit 15. Monitor not to exceed. Then, when the speed of the motor 2 exceeds the specified speed limit value, the safety function unit 50 causes the drive control unit 40 to execute the safety torque off function.
  • the gate drive unit 13 generates a plurality of PWM (Pulse Width Modulation) signals for driving the switching elements 31, 32, 33, 34, 35, 36 based on the control signal output from the drive control unit 40. ..
  • the gate drive unit 13 outputs each generated PWM signal to the corresponding switching element among the switching elements 31, 32, 33, 34, 35, and 36. Since such a PWM signal drives the gates of the switching elements 31, 32, 33, 34, 35, 36, it is also called a gate drive signal.
  • Current sensor 14 detects the alternating current supplied from the main circuit unit 11 to the motor 2, and outputs a current detection signal I det showing an analog waveform of the alternating current supplied from the main circuit unit 11 to the motor 2.
  • Such current sensor 14 when the motor 2 is a three-phase AC motor, and outputs a current detection signal I det showing an analog waveform of the alternating current supplied to one phase of the three phases.
  • the current sensor 14 is a Hall element type current sensor including, for example, a magnetic core, a Hall element, an operational amplifier, and the like.
  • the current sensor 14 converts the magnetic field generated around the conductor wire that supplies the drive current from the main circuit unit 11 to the motor 2 into a voltage by using the Hall effect, and outputs the converted voltage as a current detection signal ID. To do.
  • the current sensor 14 may be, for example, a CT (Current Transformer) type current sensor including a magnetic core, a secondary winding, a resistor, and the like. Further, the current sensor 14 may have a configuration including a shunt resistor connected in series between the main circuit unit 11 and the motor 2.
  • Zero-cross detecting unit 15 based on the current detection signal I det output from the current sensor 14 generates a current code signal I sig1, I sig2. Then, the zero cross detection unit 15 outputs the current code signal I sig1 to the drive control unit 40, and outputs the current code signal I sig2 to the safety function unit 50.
  • the current code signals I sig1 and I sig2 are a time-series sample sequence containing code information indicating the positive / negative of the drive current obtained by sampling the waveform of the drive current supplied from the main circuit unit 11 to the motor 2. It is a signal.
  • FIG. 2 is a diagram showing a configuration example of a control unit, a gate drive unit, and a zero cross detection unit in the power conversion device according to the first embodiment.
  • the zero cross detection unit 15 includes current code signal generation units 61 and 62.
  • the current code signal generation unit 61 generates the current code signal I sig1 based on the current detection signal I det output from the current sensor 14.
  • the current code signal generation unit 62 generates the current code signal I sig2 based on the current detection signal I det output from the current sensor 14.
  • the current code signal generation unit 61 and the current code signal generation unit 62 have the same configuration as each other.
  • FIG. 3 is a diagram showing a configuration example of the current code signal generation unit according to the first embodiment.
  • the current code signal generation unit 61 includes a half-wave rectifier unit 80, an operational amplifier 81, a filter 82, and a hysteresis comparator 83.
  • the half-wave rectifier unit 80 half-wave rectifies the current detection signal I det output from the current sensor 14, and outputs the current detection signal I detr , which is the current detection signal I det after the half-wave rectification.
  • the half-wave rectifier unit 80 is composed of, for example, a diode.
  • the operational amplifier 81 amplifies the current detection signal I detr output from the half-wave rectifier unit 80 and outputs it.
  • the filter 82 removes noise from the current detection signal I detr voltage-amplified by the operational amplifier 81.
  • the filter 82 is, for example, an RC low-pass filter.
  • the filter 82 may be a bandpass filter.
  • the hysteresis comparator 83 detects the rising timing and the falling timing of the current detection signal I detr output from the filter 82, and outputs the current code signal I sig1 which is a signal indicating the detection result.
  • the operational amplifier 81, the filter 82, and the hysteresis comparator 83 process the current detection signal I detr, which is a half-wave rectified waveform. Therefore, the operational amplifier 81, the filter 82, and the hysteresis comparator 83 do not require a negative electrode power source and can be driven by a single power source. Therefore, the current code signal generation unit 61 can have a simple configuration.
  • the hysteresis comparator 83 includes a comparator 91 and resistors 92, 93, 94, 95, 96.
  • the hysteresis comparator 83 raises the current code signal I sig1 to a higher level when the current detection signal I der becomes the sign inversion threshold Th1 or more, and the current code when the current detection signal I der becomes the sign inversion threshold Th2 or less. Set the signal I sig1 to a lower level. Th1> Th2.
  • FIG. 4 is a diagram showing the relationship between the current detection signal output from the current sensor according to the first embodiment, the current detection signal half-wave rectified by the half-wave rectifier unit, and the current code signal.
  • the current detection signal I det is half-wave rectified by the half-wave rectifier unit 80, and the half-wave rectified current detection signal I detr is output to the hysteresis comparator 83.
  • the hysteresis comparator 83 detects the rising timing and the falling timing of the current detection signal I detr output from the half-wave rectifier unit 80. For example, the hysteresis comparator 83 detects the rising timing of the current detection signal I der at the timing when the current detection signal I der becomes the sign inversion threshold Th1 or more, and changes the current code signal I sig1 from the low level to the high level. Further, the hysteresis comparator 83 detects the falling timing of the current detection signal I der at the timing when the current detection signal I der becomes the sign inversion threshold Th2 or less, and changes the current code signal I sig1 from the high level to the low level. ..
  • the hysteresis comparator 83 does not detect a ripple of a drive current smaller than the difference between the code inversion threshold Th1 and the code inversion threshold Th2, and has high noise resistance. Therefore, in the current code signal generation unit 61, the filter 82 can have a simple configuration.
  • the current code signal generation units 61 and 62 are not limited to the configuration shown in FIG.
  • the current code signal generator 61 and 62 if the current detection signal I det may not be voltage amplified, may be a structure without the operational amplifier 81.
  • the hysteresis comparator 83 is not limited to the configuration shown in FIG.
  • the hysteresis comparator 83 sets the current code signal I sig1 to a lower level when the current detection signal I der becomes the code inversion threshold Th1 or more, and the current when the current detection signal I der becomes the code inversion threshold Th2 or less.
  • the code signal I sig1 may be set to a high level.
  • the relationship between the code reversal threshold Th1 and the code reversal threshold Th2 may be Th1 ⁇ Th2.
  • the hysteresis comparator 83 may be a digital circuit instead of the analog circuit.
  • control unit 12 includes a drive control unit 40 and a safety function unit 50.
  • the drive control unit 40 includes a control signal generation unit 41, a current frequency calculation unit 42, and a monitoring unit 43.
  • the control signal generation unit 41 generates a control signal based on a command signal input from the outside or a safety signal input from the safety device 4.
  • the power conversion device 1 is provided with a current sensor (not shown) that is different from the current sensor 14 and detects a three-phase current supplied to the motor 2.
  • the control signal generation unit 41 has a speed control unit (not shown) that controls the speed based on the three-phase current detected by the current sensor, and a speed control unit (not shown) that controls the current based on the three-phase current detected by the current sensor. It is equipped with a current control unit.
  • the speed control unit estimates the speed of the motor 2 based on, for example, the three-phase current detected by the current sensor, and generates a current command so that the estimated speed of the motor 2 matches the speed command. be able to. Further, the current control unit (not shown) can generate a control signal so that the q-axis current of the dq coordinate system obtained from the three-phase current detected by the current sensor and the current command match.
  • the current frequency calculation unit 42 calculates the current frequency ⁇ c1 , which is the frequency of the current supplied from the main circuit unit 11 to the motor 2, based on the current code signal I sig1 output from the zero cross detection unit 15. Specifically, the current frequency calculation unit 42 has a pulse counter function, and counts both rising and falling edges of the current code signal I sig1 . The current frequency calculation unit 42 samples the count value at a preset cycle, and calculates the current frequency ⁇ c1 from the sampled count value.
  • the current frequency calculator 42 based on the result of counting both rise and fall of the current sign signal I sig1, Instead of calculating the current frequency omega c1, rising or falling of the current sign signal I sig1
  • the current frequency ⁇ c1 may be calculated based on the result of counting only.
  • the monitoring unit 43 monitors the speed of the motor 2 based on the current frequency ⁇ c1 calculated by the current frequency calculation unit 42, and determines, for example, whether or not to execute the safety torque off based on the monitoring result. Specifically, when the monitoring unit 43 determines that the control unit 12 is not controlling the motor 2 in response to the safety signal based on the current frequency ⁇ c1 calculated by the current frequency calculation unit 42.
  • the control signal generation unit 41 is made to execute the safety torque off.
  • the monitoring unit 43 includes a current frequency self-diagnosis unit 44, a current frequency mutual diagnosis unit 45, and an output frequency self-diagnosis unit 46.
  • the current frequency self-diagnosis unit 44 sets the speed of the motor 2 as a value directly proportional to the current frequency ⁇ c1 or the current frequency ⁇ c1 calculated by the current frequency calculation unit 42, and the speed of the motor 2 is a preset predetermined speed limit value. It is determined whether or not it is ⁇ th or less.
  • the control signal generation unit 41 causes the control signal generation unit 41 to execute the safety torque off.
  • the control signal is output to the gate drive unit 13.
  • the current frequency ⁇ c1 is a value directly proportional to the speed of the motor 2 per the number of poles of the stator in the motor 2, and can be treated as an estimated value of the speed of the motor 2.
  • the value directly proportional to the current frequency ⁇ c1 is, for example, a value obtained by multiplying the current frequency ⁇ c1 by 2 by the number of poles of the stator in the motor 2, and is used as an estimated value of the speed [rps] of the motor 2.
  • the specified speed limit omega th is the speed of the motor 2 [rps] The corresponding upper limit.
  • the gate drive unit 13 has a PWM signal generation unit 71 that generates a PWM signal to be output to the switching elements 31, 32, 33, 34, 35, 36 based on the control signal output from the control signal generation unit 41. ing.
  • the PWM signal generation unit 71 turns off the PWM signals to the switching elements 31, 32, 33, 34, 35, 36. .. As a result, the power supply from the main circuit unit 11 to the motor 2 is stopped.
  • the display 16 can display an alarm.
  • the display 16 is a display such as an LCD (Liquid Crystal Display) or an alarm lamp.
  • the current frequency self-diagnosis unit 44 displays character information indicating that the value directly proportional to the current frequency ⁇ c1 or the current frequency ⁇ c1 is not equal to or less than the specified speed limit value ⁇ th . It can be displayed at 16.
  • the current frequency self-diagnosis unit 44 may display on the display 16 the information of the graph showing the temporal deviation of the value directly proportional to the current frequency ⁇ c1 or the current frequency ⁇ c1 and the specified speed limit value ⁇ th. it can.
  • the speaker (not shown) may output an alarm sound. it can.
  • the control signal generation unit 41 causes the control signal generation unit 41 to execute the safety torque off. It is also possible to output a control signal for reducing the power supply to the motor 2 to the gate drive unit 13 instead of the control signal for the purpose. As a result, the electric power supplied to the motor 2 can be reduced.
  • the current frequency mutual diagnosis unit 45 performs mutual judgment processing based on the current frequency ⁇ c1 calculated by the current frequency calculation unit 42 and the current frequency ⁇ c2 calculated by the safety function unit 50, which will be described later. Specifically, the current frequency mutual diagnosis unit 45 determines whether or not the difference between the current frequency ⁇ c1 and the current frequency ⁇ c2 is within the preset predetermined range R th1 . When the current frequency mutual diagnosis unit 45 determines that the difference between the current frequency ⁇ c1 and the current frequency ⁇ c2 is outside the specified range R th1 , the control signal generation unit 41 transmits a control signal for executing the safety torque off. Output to the gate drive unit 13. As a result, the power supply to the motor 2 is stopped.
  • the output frequency self-diagnosis unit 46 is within a predetermined range R th2 in which the difference between the current frequency ⁇ c1 calculated by the current frequency calculation unit 42 and the output frequency ⁇ out calculated by the gate drive unit 13 is set in advance. Judge whether or not.
  • the gate drive unit 13 has an output frequency calculation unit 72 that calculates the output frequency ⁇ out , and the output frequency self-diagnosis unit 46 outputs information on the output frequency ⁇ out calculated by the output frequency calculation unit 72. Obtained from the calculation unit 72.
  • the output frequency ⁇ out is the frequency of the drive voltage output from the DC / AC converter 21 of the main circuit unit 11 to the motor 2 by controlling the gate drive signals of the switching elements 31, 32, 33, 34, 35, 36.
  • the output frequency calculation unit 72 calculates the output frequency ⁇ out based on the control signal generated by the control signal generation unit 41. For example, when the control signal includes a voltage command having three-phase coordinates, the frequency of the voltage command can be calculated as the output frequency ⁇ out .
  • the output frequency self-diagnosis unit 46 determines that the difference between the current frequency ⁇ c1 and the output frequency ⁇ out is outside the specified range R th2, the output frequency self-diagnosis unit 46 causes the control signal generation unit 41 to transmit a control signal for executing the safety torque off. Output to the gate drive unit 13. As a result, the power supply to the motor 2 is stopped.
  • the current frequency mutual diagnosis unit 45 and the output frequency self-diagnosis unit 46 display an alarm on the display 16 when the control signal generation unit 41 executes the safety torque off. , It is possible to output an alarm sound to a speaker (not shown). Further, the current frequency mutual diagnosis unit 45 and the output frequency self-diagnosis unit 46, like the current frequency self-diagnosis unit 44, send the control signal generation unit 41 to the motor 2 instead of the control signal for executing the safety torque off. It is also possible to output a control signal for reducing the power supply of the gate drive unit 13.
  • the safety function unit 50 includes a current frequency calculation unit 51 and a monitoring unit 52.
  • the current frequency calculation unit 51 calculates the current frequency ⁇ c2 , which is the frequency of the current supplied from the main circuit unit 11 to the motor 2, based on the current code signal I sig2 output from the zero cross detection unit 15. Similar to the current frequency calculation unit 42, the current frequency calculation unit 51 has a pulse counter function and counts both rising and falling edges of the current code signal I sig2 .
  • the current frequency calculation unit 51 samples the count value at a preset cycle, and calculates the current frequency ⁇ c2 as the speed of the motor 2 from the sampled count value.
  • the current frequency calculator 51 based on the result of counting both rise and fall of the current sign signal I sig2, Instead of calculating the current frequency omega c2, rising or falling of the current sign signal I sig2
  • the current frequency ⁇ c2 may be calculated based on the result of counting only.
  • the monitoring unit 52 determines whether or not the safety torque off can be executed based on the current frequency ⁇ c2 calculated by the current frequency calculation unit 51. Specifically, when the monitoring unit 52 determines that the control unit 12 is not controlling the motor 2 in response to the safety signal based on the current frequency ⁇ c2 detected by the current frequency calculation unit 51.
  • the control signal generation unit 41 is made to execute the safety torque off.
  • the monitoring unit 52 includes a current frequency self-diagnosis unit 53, a current frequency mutual diagnosis unit 54, and an output frequency self-diagnosis unit 55.
  • the current frequency self-diagnosis unit 53 sets the speed of the motor 2 as a value directly proportional to the current frequency ⁇ c2 or the current frequency ⁇ c2 calculated by the current frequency calculation unit 51, and the speed of the motor 2 is a preset predetermined speed limit value. It is determined whether or not it is ⁇ th or less.
  • the control signal generation unit 41 causes the control signal generation unit 41 to execute the safety torque off.
  • the control signal is output to the gate drive unit 13. As a result, the power supply to the motor 2 is stopped.
  • the current frequency self-diagnosis unit 53 determines that the value directly proportional to the current frequency ⁇ c2 or the current frequency ⁇ c2 is not equal to or less than the specified speed limit value ⁇ th . It is possible to display an alarm on 16 or to output an alarm sound to a speaker (not shown).
  • the control signal It is also possible to have the generation unit 41 output a control signal for reducing the power supply to the motor 2 to the gate drive unit 13 instead of the control signal for executing the safe torque off.
  • the current frequency ⁇ c2 is a value directly proportional to the speed of the motor 2 per the number of poles of the stator in the motor 2, and can be treated as an estimated value of the speed of the motor 2 in the same manner as the current frequency ⁇ c1 .
  • omega th specified speed limit omega th is per number of poles of the stator in the motor 2 of the motor 2 This is the limit value corresponding to the speed.
  • the value directly proportional to the current frequency ⁇ c2 is, for example, a value obtained by multiplying the current frequency ⁇ c2 by 2 by the number of poles of the stator in the motor 2, and is used as an estimated value of the speed [rps] of the motor 2. Can be handled. If whether or not the value that is directly proportional to the current frequency omega c2 at a current frequency self-diagnosis unit 53 is equal to or less than the prescribed speed limit value omega th is determined, the specified speed limit omega th is the speed of the motor 2 [rps] The corresponding upper limit.
  • the current frequency mutual diagnosis unit 54 performs mutual determination processing based on the current frequencies ⁇ c1 and ⁇ c2 . Specifically, the current frequency mutual diagnosis unit 54 determines whether or not the difference between the current frequency ⁇ c1 and the current frequency ⁇ c2 is within the preset predetermined range R th1 . When the current frequency mutual diagnosis unit 54 determines that the difference between the current frequency ⁇ c1 and the current frequency ⁇ c2 is outside the specified range R th1 , the control signal generation unit 41 transmits a control signal for executing the safety torque off. Output to the gate drive unit 13. As a result, the power supply to the motor 2 is stopped.
  • the output frequency self-diagnosis unit 55 determines whether or not the difference between the current frequency ⁇ c2 and the output frequency ⁇ out is within the preset predetermined range R th2 .
  • the output frequency self-diagnosis unit 55 gate-drives the control signal generation unit 41 to execute a safety torque off. Output to unit 13. As a result, the power supply to the motor 2 is stopped.
  • the current frequency mutual diagnosis unit 54 and the output frequency self-diagnosis unit 55 display an alarm on the display 16 when the control signal generation unit 41 executes the safety torque off. , It is possible to output an alarm sound to a speaker (not shown). Further, the current frequency mutual diagnosis unit 54 and the output frequency self-diagnosis unit 55, like the current frequency self-diagnosis unit 53, send the control signal generation unit 41 to the motor 2 instead of the control signal for executing the safety torque off. It is also possible to output a control signal for reducing the power supply of the gate drive unit 13.
  • FIG. 5 is a flowchart showing an example of processing of the drive control unit of the control unit according to the first embodiment.
  • the drive control unit 40 determines whether or not the SLS signal has been received from the safety device 4 (step S10).
  • the drive control unit 40 calculates the current frequency ⁇ c1 (step S11).
  • the drive control unit 40 determines whether or not the current frequency ⁇ c1 is equal to or less than the specified speed limit value ⁇ th (step S12).
  • the drive control unit 40 determines that the current frequency ⁇ c1 is equal to or less than the specified speed limit value ⁇ th (step S12: Yes)
  • the difference between the current frequency ⁇ c1 and the current frequency ⁇ c2 is outside the specified range R th1 . It is determined whether or not there is (step S13).
  • step S13 When the drive control unit 40 determines that the difference between the current frequency ⁇ c1 and the current frequency ⁇ c2 is not outside the specified range R th1 (step S13: No), the difference between the current frequency ⁇ c1 and the output frequency ⁇ out is It is determined whether or not the frequency is outside the specified range R th2 (step S14). When the drive control unit 40 determines that the current frequency ⁇ c1 is not equal to or less than the specified speed limit value ⁇ th (step S12: No), the difference between the current frequency ⁇ c1 and the current frequency ⁇ c2 is outside the specified range R th1 .
  • step S13 If it is determined that there is (step S13: Yes), or if it is determined that the difference between the current frequency ⁇ c1 and the output frequency ⁇ out is outside the specified range R th2 (step S14: Yes), it is determined to execute the safe torque off. Then, the control unit 12 is made to execute the safety torque off (step S15).
  • step S15 when the drive control unit 40 determines that the SLS signal is not received (step S10: No), or when the difference between the current frequency ⁇ c1 and the output frequency ⁇ out is within the specified range R.
  • step S14: No the process shown in FIG. 5 is terminated.
  • the processing of the safety function unit 50 of the control unit 12 is the same as the processing of the drive control unit 40 shown in FIG. 5, and in steps S11, S12, and S14 shown in FIG. 5, the current frequency is replaced with the current frequency ⁇ c1. It differs from the processing of the drive control unit 40 shown in FIG. 5 in that ⁇ c2 is used.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the gate drive unit, the zero cross detection unit, the drive control unit, and the safety function unit according to the first embodiment.
  • each of the gate drive unit 13, the zero cross detection unit 15, the drive control unit 40, and the safety function unit 50 includes a computer including a processor 101, a memory 102, and an interface circuit 103.
  • the processor 101, the memory 102, and the interface circuit 103 can send and receive data to and from each other by the bus 104.
  • a part of the PWM signal generation unit 71 of the gate drive unit 13 is realized by the interface circuit 103.
  • the processor 101 in the gate drive unit 13 executes the functions of the PWM signal generation unit 71 and the output frequency calculation unit 72 by reading and executing the program stored in the memory 102.
  • the processor 101 in the zero-cross detection unit 15 executes the functions of the current code signal generation units 61 and 62 by reading and executing the program stored in the memory 102.
  • the processor 101 in the drive control unit 40 executes the functions of the control signal generation unit 41, the current frequency calculation unit 42, and the monitoring unit 43 by reading and executing the program stored in the memory 102.
  • the processor 101 in the safety function unit 50 executes the functions of the current frequency calculation unit 51 and the monitoring unit 52 by reading and executing the program stored in the memory 102.
  • the pulse counter function of the processor 101 executes counting of both rising and falling edges of the current code signals I sig1 and I sig2 in the current frequency calculation units 42 and 51 described above.
  • the current frequency calculation units 42 and 51 may be configured such that the processor 101 counts the number of inversions of the current code signals I sig1 and I sig2 by using the input port of the interface circuit 103.
  • the processor 101 is an example of a processing circuit, and includes one or more of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration).
  • the memory 102 is one or more of RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). Including.
  • the memory 102 also includes a recording medium on which a computer-readable program is recorded. Such recording media include one or more of non-volatile or volatile semiconductor memories, magnetic disks, flexible memories, optical disks, compact disks, and DVDs (Digital Versatile Discs).
  • the control unit 12 may include integrated circuits such as an ASIC (Application Specific Integrated Circuit) and an FPGA (Field Programmable Gate Array).
  • the drive control unit 40 and the safety function unit 50 include the processor 101 and the program operating on the processor 101, respectively, and the drive control unit 40 and the safety function unit 50 function independently of each other.
  • the power conversion device 1 includes a main circuit unit 11, a control unit 12, a current sensor 14, and a half-wave rectifier unit 80.
  • the main circuit unit 11 converts DC power into AC power and supplies the converted AC power to the motor 2.
  • the control unit 12 controls the main circuit unit 11.
  • the current sensor 14 detects the current supplied from the main circuit unit 11 to the motor 2.
  • the control unit 12 includes current frequency calculation units 42 and 51 and monitoring units 43 and 52.
  • the current frequency calculation units 42 and 51 use the current frequency ⁇ based on at least one of the rising timing and the falling timing of the current detection signal I detr , which is the current detection signal I det rectified by the half wave rectifying unit 80. Detect c1 and ⁇ c2 .
  • the monitoring units 43 and 52 monitor the speed of the motor 2 based on the current frequencies ⁇ c1 and ⁇ c2 calculated by the current frequency calculation units 42 and 51.
  • the power conversion device 1 can perform safe speed monitoring without using an external detector such as an encoder, and the power conversion device 1 processes the current detection signal I der which is a half-wave rectified waveform. Therefore, a negative power source is not required, and safe speed monitoring can be performed with a simple configuration.
  • the power conversion device 1 includes a hysteresis comparator 83 that compares the rising timing and the falling timing of the current detection signal I detr half-wave rectified by the half-wave rectifying unit 80 with different threshold values .
  • the current frequency calculation units 42 and 51 calculate the current frequencies ⁇ c1 and ⁇ c2 based on the rise timing obtained from the comparison result by the hysteresis comparator 83.
  • the power conversion device 1 does not detect a ripple of a drive current smaller than the difference between the code inversion threshold Th1 and the code inversion threshold Th2 described above, so that noise resistance can be improved. Therefore, for example, in the current code signal generation units 61 and 62, the filter 82 can have a simple configuration.
  • the monitoring units 43 and 52 may be used.
  • the supply of AC power from the main circuit unit 11 to the motor 2 can be stopped.
  • the power conversion device 1 can stop the motor 2 when the speed of the motor 2 exceeds the specified speed limit value.
  • the monitoring units 43 and 52 are main circuit units when the difference between the current frequencies ⁇ c1 and ⁇ c2 calculated by the plurality of current frequency calculation units 42 and 51 is outside the preset predetermined range R th1.
  • the power supply from 11 to the motor 2 is stopped.
  • the power conversion device 1 can perform mutual diagnosis between the redundant monitoring units 43 and 52, and accurately confirm that the control unit 12 does not control the motor 2 in response to the safety signal. Can be detected.
  • the power conversion device 1 has a PWM signal generation unit 71 that generates a PWM signal that PWM-controls the main circuit unit 11, and an output frequency ⁇ out that is a frequency of an AC voltage output from the main circuit unit 11 to the motor 2. It includes an output frequency calculation unit 72 for calculation.
  • the monitoring units 43 and 52 have a predetermined range R in which the difference between the current frequencies ⁇ c1 and ⁇ c2 calculated by the current frequency calculation units 42 and 51 and the output frequency ⁇ out calculated by the output frequency calculation unit 72 is preset. When it is outside th2 , the power supply from the main circuit unit 11 to the motor 2 is stopped. As a result, the power conversion device 1 can accurately detect that the control unit 12 is not controlling the motor 2 in response to the safety signal.
  • Embodiment 2 The power conversion device according to the second embodiment is different from the power conversion device 1 according to the first embodiment in that the current frequency is calculated using the calculation model generated by machine learning.
  • components having the same functions as those in the first embodiment will be designated by the same reference numerals and description thereof will be omitted, and the differences from the drive control system 100 of the first embodiment will be mainly described.
  • FIG. 7 is a diagram showing a configuration example of a drive control system including the power conversion device according to the second embodiment.
  • the drive control system 100A according to the second embodiment includes a power conversion device 1A, a motor 2, an AC power supply 3, a safety device 4, and a measuring device 5.
  • the measuring device 5 is an example of an external measuring device.
  • the power conversion device 1A is different from the power conversion device 1 in that the control unit 12A having the drive control unit 40A and the safety function unit 50A is provided in place of the control unit 12 having the drive control unit 40 and the safety function unit 50.
  • the drive control unit 40A is different from the drive control unit 40 in that the current frequency calculation unit 42A is provided in place of the current frequency calculation unit 42.
  • the current frequency calculation unit 42A calculates the current frequency ⁇ c1 from the current code signal I sig1 using the calculation model generated by machine learning.
  • the safety function unit 50A is different from the safety function unit 50 in that the current frequency calculation unit 51A is provided instead of the current frequency calculation unit 51.
  • the current frequency calculation unit 51A calculates the current frequency ⁇ c2 from the current code signal I sig2 using the calculation model generated by machine learning. Since the current frequency calculation unit 42A and the current frequency calculation unit 51A have the same configuration, the configuration of the current frequency calculation unit 42A will be specifically described below, and the description of the configuration of the current frequency calculation unit 51A will be omitted. ..
  • the measuring device 5 measures the alternating current supplied from the power conversion device 1A to the motor 2 or the speed of the motor 2 at a preset cycle, and outputs a measured value which is data indicating the measurement result to the power conversion device 1A. To do.
  • the measuring device 5 is, for example, a measuring device such as a data logger having a current detection function.
  • the measuring device 5 outputs, for example, current waveform data indicating the waveform of the alternating current supplied from the power conversion device 1A to the motor 2 to the power conversion device 1A as a measured value.
  • the current waveform data is data obtained by directly attaching a probe of the measuring device 5 to the power semiconductor chip and is affected by noise due to measurement. It is data showing no real current waveform.
  • the measuring device 5 may be an encoder attached to the motor 2. In this case, the measuring device 5 detects the speed of the motor 2.
  • the speed of the motor 2 is the mechanical angular velocity of the motor 2, but it may be the electric angular velocity of the motor 2.
  • the measuring device 5 detects, for example, the rotation position of the rotation shaft of the motor 2 and detects the speed of the motor 2 from the change in the detected rotation position.
  • the measuring device 5 outputs speed data indicating the detected speed of the motor 2 as a measured value to the power conversion device 1A.
  • FIG. 8 is a diagram showing a configuration example of the current frequency calculation unit according to the second embodiment.
  • the current frequency calculation unit 42A includes a first acquisition unit 63, a second acquisition unit 64, a learning unit 65, and a frequency calculation unit 66.
  • the first acquisition unit 63 acquires the current code signal I sig1 output from the zero cross detection unit 15 as a state variable.
  • the second acquisition unit 64 acquires the measured value from the measuring device 5 at a preset cycle via the network by wired communication or wireless communication. For example, the second acquisition unit 64 acquires velocity data or current waveform data as measured values from the measuring device 5.
  • the second acquisition unit 64 calculates the current frequency ⁇ based on the acquired measured value.
  • the current frequency ⁇ is the frequency of the alternating current supplied from the power converter 1A to the motor 2.
  • the second acquisition unit 64 calculates the current frequency ⁇ by performing a fast Fourier transform process on the current waveform data.
  • the second acquisition unit 64 calculates the current frequency ⁇ based on the velocity data and the number of poles of the motor 2.
  • the learning unit 65 performs learning processing and calculates according to the data set created based on the combination of the current code signal I sig1 acquired by the first acquisition unit 63 and the current frequency ⁇ calculated by the second acquisition unit 64. Generate model M.
  • the calculation model generated by the learning unit 65 is a calculation model in which the current code signal I sig1 is input and the current frequency ⁇ c1 is output.
  • the learning unit 65 performs learning processing by so-called supervised learning according to, for example, a neural network model, and generates a calculation model M composed of a neural network.
  • supervised learning is to give a large amount of data sets of inputs and results to a learning device, learn the features in those data sets, and generate a calculation model that estimates the results from the inputs by machine learning. It is a method to do.
  • a neural network is composed of an input layer composed of a plurality of neurons, an intermediate layer composed of a plurality of neurons, and an output layer composed of a plurality of neurons.
  • the intermediate layer may be one layer or three or more layers.
  • the mesosphere is also called a hidden layer.
  • FIG. 9 is a diagram showing an example of a three-layer neural network according to the second embodiment.
  • the learning unit 65 when a plurality of inputs are input to the plurality of input layers X1, X2, X3, the input values are multiplied by the weight W1 and the intermediate layer is used. It is input to Y1 and Y2. Further, the weight W2 is further multiplied by the values input to the intermediate layers Y1 and Y2, and the values are output from the output layers Z1, Z2 and Z3. This output result depends on the values of the weights W1 and W2.
  • the weights W1 are the weights w11 to w16
  • the weights W2 are the weights w21 to w26.
  • the value input to the input layer X1 is multiplied by the weight w11 and input to the intermediate layer Y1, and is multiplied by the weight w12 and input to the intermediate layer Y2.
  • the value input to the input layer X2 is multiplied by the weight w13 and input to the intermediate layer Y1, and is multiplied by the weight w14 and input to the intermediate layer Y2.
  • the value input to the input layer X3 is multiplied by the weight w15 and input to the intermediate layer Y1, and is multiplied by the weight w16 and input to the intermediate layer Y2.
  • the value input to the intermediate layer Y1 is multiplied by the weight w21 and input to the output layer Z1, the weight w23 is multiplied and input to the output layer Z2, and the weight w25 is multiplied and input to the output layer Z3.
  • the value input to the intermediate layer Y2 is multiplied by the weight w22 and input to the output layer Z1, the weight w24 is multiplied and input to the output layer Z2, and the weight w26 is multiplied and input to the output layer Z3.
  • the neural network used in the calculation model M learns the frequency detection method by so-called supervised learning according to a data set including a combination of the current code signal I sig1 and the current frequency ⁇ . That is, the neural network used in the calculation model M sets the weights W1 and W2 so that the result of the current code signal I sig1 input to the input layer and output from the output layer approaches the current frequency ⁇ obtained from the measured value.
  • the learning process is performed by adjusting, and the calculation model M is generated.
  • the learning unit 65 can also generate a calculation model M by so-called unsupervised learning.
  • Unsupervised learning is to give a large amount of input data to a machine learning device so that the machine learning device can learn how the input data is distributed without giving the teacher data corresponding to the input data.
  • It is a method to generate a calculation model that compresses, classifies, and shapes input data by machine learning.
  • unsupervised learning features in a dataset can be clustered among similar people. Then, in unsupervised learning, the output can be predicted by using the result of clustering and assigning an output that optimizes it by setting some standard.
  • semi-supervised learning is also what is called semi-supervised learning as an intermediate problem setting between unsupervised learning and supervised learning. In semi-supervised learning, only a part of the input and output data set is used for learning, and the other input-only data is used for learning.
  • a learning algorithm used in the calculation model M instead of the neural network, deep learning, which learns the extraction of the feature amount itself, can be used, and other known methods such as genetic programming, Machine learning may be performed according to functional logic programming, support vector machines, and the like.
  • the learning unit 65 sets the generated calculation model M in the frequency calculation unit 66.
  • the frequency calculation unit 66 causes the calculation model M to calculate the current frequency ⁇ c1 by inputting the current code signal I sig1 into the calculation model M.
  • the hardware configuration of the current frequency calculation unit 42A is the same as the hardware configuration shown in FIG.
  • Each part of the first acquisition unit 63, the second acquisition unit 64, and the frequency calculation unit 66 is realized by the interface circuit 103.
  • the functions of the first acquisition unit 63, the second acquisition unit 64, the learning unit 65, and the frequency calculation unit 66 are executed by the processor 101 reading and executing the program stored in the memory 102.
  • the first acquisition unit 63, the second acquisition unit 64, the learning unit 65, and the frequency calculation unit 66 may be partially or wholly composed of hardware such as an ASIC or FPGA.
  • FIG. 10 is a diagram showing another example of the configuration of the drive control system including the power conversion device according to the second embodiment.
  • the drive control system 100A according to the second embodiment includes a power conversion device 1A, a motor 2, an AC power supply 3, a safety device 4, a measuring device 5, and a machine learning device 6. Be prepared.
  • the current frequency calculation unit 42A of the power conversion device 1A shown in FIG. 10 does not have the first acquisition unit 63, the second acquisition unit 64, and the learning unit 65 shown in FIG. 8, and the current frequency shown in FIG. It is different from the calculation unit 42A.
  • the current frequency calculation unit 51A shown in FIG. 10 has the same configuration as the current frequency calculation unit 42A shown in FIG.
  • FIG. 11 is a diagram showing a configuration example of the machine learning device according to the second embodiment.
  • the machine learning device 6 includes a first acquisition unit 111, a second acquisition unit 112, a learning unit 113, a storage unit 114, and an output unit 115.
  • the machine learning device 6 is communicably connected to the power conversion device 1A via, for example, a network (not shown).
  • the machine learning device 6 may be arranged on the cloud server.
  • the first acquisition unit 111 acquires the current code signals I sig1 and I sig2 from the power conversion device 1A as state variables at a preset cycle via a network by wired communication or wireless communication.
  • the second acquisition unit 112 acquires the measured value from the measuring device 5 by wired communication or wireless communication at a preset cycle via the network.
  • the measured value acquired by the second acquisition unit 112 is the same as the measured value acquired by the second acquisition unit 64. Similar to the second acquisition unit 64, the second acquisition unit 112 calculates the current frequency ⁇ based on the acquired measured value.
  • the learning unit 113 is the same as the learning unit 65 according to the data set created based on the combination of the current code signal I sig1 acquired by the first acquisition unit 111 and the current frequency ⁇ calculated by the second acquisition unit 112. The learning process is performed to generate the calculation model M. Further, the learning unit 113 and the learning unit 65 are in accordance with the data set created based on the combination of the current code signal I sig2 acquired by the first acquisition unit 111 and the current frequency ⁇ calculated by the second acquisition unit 112. The same learning process is performed to generate the calculation model M.
  • the learning unit 113 stores the generated calculation model M in the storage unit 114.
  • the output unit 115 transmits the information of the calculation model M stored in the storage unit 114 to the power conversion device 1A via the network by wired communication or wireless communication.
  • the control unit 12A of the power conversion device 1A sets the information of the calculation model M transmitted from the machine learning device 6 in the current frequency calculation unit 42A and the current frequency calculation unit 51A. For example, the control unit 12A, the current sign signal to set the calculation model M, which is generated using I sig1 to the current frequency calculator 42A, the current sign signal I sig2 current frequency calculator a calculation model M generated using Set to 51A.
  • the hardware configuration of the machine learning device 6 is the same as the hardware configuration shown in FIG.
  • Each part of the first acquisition unit 111, the second acquisition unit 112, and the output unit 115 is realized by the interface circuit 103.
  • the storage unit 114 is realized by the memory 102.
  • the functions of the first acquisition unit 111, the second acquisition unit 112, the learning unit 113, and the output unit 115 are executed by the processor 101 reading and executing the program stored in the memory 102.
  • the first acquisition unit 111, the second acquisition unit 112, the learning unit 113, and the output unit 115 may be partially or wholly composed of hardware such as an ASIC or FPGA.
  • the learning unit 113 can also generate the calculation model M according to the data sets created for the plurality of power conversion devices 1A. Further, the machine learning device 6 can also acquire current code signals I sig1 and I sig2 from a plurality of power conversion devices 1A used at the same site, and a plurality of power conversion devices operating independently at different sites. It is also possible to acquire the current code signals I sig1 and I sig2 from 1A. Further, the machine learning device 6 can add the power conversion device 1A to be acquired of the current code signals I sig1 and I sig2 on the way, or can remove the power conversion device 1A to be acquired from the acquisition target. Further, the machine learning device 6 that generated the calculation model M by machine learning for a certain power conversion device 1A is attached to another power conversion device 1A, and the calculation model M is relearned for the other power conversion device 1A. It can also be updated.
  • the hardware configuration of the drive control unit 40A and the safety function unit 50A is the same as the hardware configuration of the drive control unit 40 and the safety function unit 50.
  • the functions of the drive control unit 40A and the safety function unit 50A are executed by the processor 101 reading and executing the program stored in the memory 102.
  • the drive control unit 40A and the safety function unit 50A may be partially or wholly composed of hardware such as an ASIC or FPGA.
  • the current frequency calculation units 42A and 51A of the power conversion device 1A calculate the current frequencies ⁇ c1 and ⁇ c2 by using the calculation model generated by machine learning. As a result, the current frequencies ⁇ c1 and ⁇ c2 can be calculated accurately.
  • the current frequency calculation units 42A and 51A perform machine learning based on the current code signals I sig1 and I sig2 and the current frequency ⁇ obtained from the waveform of the current measured by the measuring device 5 or the measured value indicating the speed of the motor 2.
  • Each of the current code signals I sig1 and I sig2 is an example of a signal indicating at least one of a rising timing and a falling timing.
  • the current frequency calculation units 42A and 51A input the current code signals I sig1 and I sig2 into the calculation model M to cause the calculation model M to calculate the current frequencies ⁇ c1 and ⁇ c2 .
  • the current sensor 14 is susceptible to noise when the motor 2 operates at a low speed or when the current supplied to the motor 2 is low.
  • the current frequency calculation units 42A and 51A make the calculation model M calculate the current frequencies ⁇ c1 and ⁇ c2 so that the current frequencies ⁇ c1 and ⁇ c2 are accurate even when the current sensor 14 is affected by noise. It can be calculated well.
  • the current frequency calculation units 42A and 51A include a first acquisition unit 63, a second acquisition unit 64, and a learning unit 65.
  • the first acquisition unit 63 acquires the current code signals I sig1 and I sig2 as state variables.
  • the second acquisition unit 64 acquires the measured value from the measuring device 5 and calculates the current frequency ⁇ based on the acquired measured value.
  • the learning unit 65 generates a calculation model M by machine learning based on a data set created by a combination of a state variable acquired by the first acquisition unit 63 and a current frequency ⁇ calculated by the second acquisition unit 64. To do.
  • the power conversion device 1A can generate the calculation model M, so that the current frequencies ⁇ c1 and ⁇ c2 can be calculated accurately even if there are individual differences for each power conversion device 1A. it can.
  • the drive control system 100A includes a machine learning device 6 that generates a calculation model M.
  • the machine learning device 6 includes a first acquisition unit 111, a second acquisition unit 112, and a learning unit 113.
  • the first acquisition unit 111 acquires the current code signals I sig1 and I sig2 as state variables.
  • the second acquisition unit 112 acquires the measured value from the measuring device 5, and calculates the current frequency ⁇ based on the acquired measured value.
  • the learning unit 113 generates a calculation model M by machine learning based on a data set created by a combination of a state variable acquired by the first acquisition unit 111 and a current frequency ⁇ calculated by the second acquisition unit 112. To do.
  • the machine learning device 6 can generate, for example, a calculation model M common to a plurality of power conversion devices 1A, so that the calculation model M is compared with the case where the calculation model M for each power conversion device 1A is generated. Can be easily generated.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

This power conversion device is provided with a main circuit unit, a control unit (12), a current sensor, and a half-wave rectifier. The control unit (12) is provided with current frequency calculation units (42, 51) and monitoring units (43, 52). The current frequency calculation units (42, 51) calculate current frequencies (ωc1, ωc2) on the basis of the rise timing and/or the fall timing of a current detection signal, which is the current detection signal that has been half-wave rectified by the half-wave rectifier. The monitoring units (43, 52) monitor the motor speed on the basis of the current frequencies (ωc1, ωc2) calculated by the current frequency calculation units (42, 51).

Description

電力変換装置、駆動制御システム、機械学習装置、およびモータ監視方法Power converters, drive control systems, machine learning devices, and motor monitoring methods
 本発明は、モータへの電力供給を行う電力変換装置、駆動制御システム、機械学習装置、およびモータ監視方法に関する。 The present invention relates to a power conversion device for supplying electric power to a motor, a drive control system, a machine learning device, and a motor monitoring method.
 近年、モータへの電力供給を行う電力変換装置は、国際標準規格であるIEC(International Electrotechnical Commission)61508またはISO(International Organization for Standardization)13849などの機能安全規格に対応することが求められている。特に、機能安全規格の中の一つである安全速度監視(SLS:Safety Limited Speed)への対応が電力変換装置に求められている。 In recent years, power converters that supply power to motors are required to comply with functional safety standards such as IEC (International Electrotechnical Commission) 61508 or ISO (International Organization for Standardization) 13849, which are international standards. In particular, power converters are required to support safety speed monitoring (SLS: Safety Limited Speed), which is one of the functional safety standards.
 安全速度監視は、規定速度制限値を超えないことを監視する機能である。かかる安全速度監視に対応した電力変換装置では、モータの速度が規定速度制限値を超えた場合、電力変換装置のゲート駆動信号をオフすることで、モータへの電力供給を停止し、安全性を確保する。 Safe speed monitoring is a function to monitor that the specified speed limit is not exceeded. In the power conversion device corresponding to such safe speed monitoring, when the speed of the motor exceeds the specified speed limit value, the power supply to the motor is stopped by turning off the gate drive signal of the power conversion device to improve safety. Secure.
 この種の電力変換装置において、エンコーダなどの外部検出器を使用してモータの速度を監視する場合、コストがアップしたり、外部検出器の接続配線が複雑になったりする。そのため、かかる電力変換装置に関し、電流センサによって検出される電流値に基づいて、モータの速度を監視する技術が提案されている。例えば、特許文献1には、モータへ供給される電流の値である電流値を電流センサによって検出し、かかる電流値に基づいて、モータの速度を監視する技術が開示されている。 In this type of power conversion device, when monitoring the speed of the motor using an external detector such as an encoder, the cost increases and the connection wiring of the external detector becomes complicated. Therefore, regarding such a power conversion device, a technique for monitoring the speed of a motor based on a current value detected by a current sensor has been proposed. For example, Patent Document 1 discloses a technique in which a current value, which is a value of a current supplied to a motor, is detected by a current sensor, and the speed of the motor is monitored based on the current value.
国際公開第2016/051552号International Publication No. 2016/051552
 しかしながら、上記特許文献1では、電流センサによって検出される電流値に基づいてモータの速度を監視することが記載されていることに留まり、具体的な処理は提案されていない。 However, Patent Document 1 only describes that the speed of the motor is monitored based on the current value detected by the current sensor, and no specific processing is proposed.
 本発明は、上記に鑑みてなされたものであって、電流センサを用いて簡易な構成で安全速度監視を行うことができる電力変換装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device capable of performing safe speed monitoring with a simple configuration using a current sensor.
 上述した課題を解決し、目的を達成するために、本発明の電力変換装置は、直流電力を交流電力に変換し、変換した交流電力をモータへ供給する主回路部と、主回路部を制御する制御部と、主回路部からモータへ供給される電流を検出する電流センサと、電流センサから出力される電流検出信号を半波整流する半波整流部とを備える。制御部は、半波整流部によって半波整流された電流検出信号の立ち上がりタイミングおよび立ち下がりタイミングの少なくともいずれかに基づいて、電流の周波数である電流周波数を算出する電流周波数算出部と、電流周波数算出部によって算出された電流周波数に基づいて、モータの速度を監視する監視部とを備える。 In order to solve the above-mentioned problems and achieve the object, the power conversion device of the present invention controls the main circuit unit and the main circuit unit that convert DC power into AC power and supply the converted AC power to the motor. It includes a control unit for detecting a current supplied from the main circuit unit to the motor, and a half-wave rectifying unit for half-wave rectifying the current detection signal output from the current sensor. The control unit includes a current frequency calculation unit that calculates the current frequency, which is the frequency of the current, and a current frequency based on at least one of the rise timing and the fall timing of the current detection signal that has been half-wave rectified by the half-wave rectifier unit. It includes a monitoring unit that monitors the speed of the motor based on the current frequency calculated by the calculation unit.
 本発明にかかる電力変換装置は、電流センサを用いて簡易な構成で安全速度監視を行うことができる、という効果を奏する。 The power conversion device according to the present invention has an effect that safe speed monitoring can be performed with a simple configuration using a current sensor.
本発明の実施の形態1にかかる電力変換装置を含む駆動制御システムの構成例を示す図The figure which shows the structural example of the drive control system including the power conversion apparatus which concerns on Embodiment 1 of this invention. 実施の形態1にかかる電力変換装置における制御部、ゲート駆動部およびゼロクロス検出部の構成例を示す図The figure which shows the configuration example of the control part, the gate drive part, and the zero cross detection part in the power conversion apparatus which concerns on Embodiment 1. 実施の形態1にかかる電流符号信号生成部の構成例を示す図The figure which shows the structural example of the current code signal generation part which concerns on Embodiment 1. 実施の形態1にかかる電流センサから出力される電流検出信号、半波整流部によって半波整流される電流検出信号、および電流符号信号の関係を示す図The figure which shows the relationship between the current detection signal output from the current sensor which concerns on Embodiment 1, the current detection signal which is half-wave rectified by a half-wave rectifier, and the current code signal 実施の形態1にかかる制御部の駆動制御部の処理の一例を示すフローチャートA flowchart showing an example of processing of the drive control unit of the control unit according to the first embodiment. 実施の形態1にかかるゲート駆動部、ゼロクロス検出部、駆動制御部、および安全機能部のハードウェア構成の一例を示す図The figure which shows an example of the hardware composition of the gate drive part, the zero cross detection part, the drive control part, and the safety function part which concerns on Embodiment 1. 実施の形態2にかかる電力変換装置を含む駆動制御システムの構成例を示す図The figure which shows the configuration example of the drive control system including the power conversion apparatus which concerns on Embodiment 2. 実施の形態2にかかる電流周波数算出部の構成例を示す図The figure which shows the structural example of the current frequency calculation part which concerns on Embodiment 2. 実施の形態2にかかる3層のニューラルネットワークの一例を示す図The figure which shows an example of the three-layer neural network which concerns on Embodiment 2. 実施の形態2にかかる電力変換装置を含む駆動制御システムの構成の他の例を示す図The figure which shows another example of the structure of the drive control system including the power conversion device which concerns on Embodiment 2. 実施の形態2にかかる機械学習装置の構成例を示す図The figure which shows the structural example of the machine learning apparatus which concerns on Embodiment 2.
 以下に、本発明の実施の形態にかかる電力変換装置、駆動制御システム、機械学習装置、およびモータ監視方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The power conversion device, drive control system, machine learning device, and motor monitoring method according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる電力変換装置を含む駆動制御システムの構成例を示す図である。図1に示すように、実施の形態1にかかる駆動制御システム100は、電力変換装置1と、モータ2と、交流電源3と、安全装置4とを備える。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a drive control system including a power conversion device according to a first embodiment of the present invention. As shown in FIG. 1, the drive control system 100 according to the first embodiment includes a power conversion device 1, a motor 2, an AC power supply 3, and a safety device 4.
 電力変換装置1は、交流電源3から供給される交流電力により動作し、モータ2を制御駆動する。かかる電力変換装置1は、交流電源3から供給される3相交流電力を、外部から入力される指令信号に応じた周波数の交流電力へ変換し、かかる交流電力をモータ2へ供給する。例えば、モータ2が3相交流モータである場合、電力変換装置1は、交流電源3から供給される3相交流電力を指令信号に応じた周波数の3相交流電力へ変換し、かかる3相交流電力をモータ2へ供給することができる。なお、交流電源3は単相電源であってもよい。 The power conversion device 1 operates by the AC power supplied from the AC power supply 3 and controls and drives the motor 2. The power conversion device 1 converts the three-phase AC power supplied from the AC power supply 3 into AC power having a frequency corresponding to a command signal input from the outside, and supplies the AC power to the motor 2. For example, when the motor 2 is a three-phase AC motor, the power conversion device 1 converts the three-phase AC power supplied from the AC power supply 3 into a three-phase AC power having a frequency corresponding to a command signal, and the three-phase AC is applied. Power can be supplied to the motor 2. The AC power supply 3 may be a single-phase power supply.
 安全装置4は、駆動制御システム100においてモータ2を安全な状態にするための安全信号を電力変換装置1へ出力する。安全信号の種類には、例えば、安全トルクオフ(STO:Safe Torque Off)を要求する信号、安全停止1(SS1:Safe Stop 1)を要求する信号、および安全速度監視(SLS)を要求する信号などが含まれる。以下、安全トルクオフを要求する信号をSTO信号と記載し、安全停止1を要求する信号をSS1信号と記載し、安全速度監視を要求する信号をSLS信号と記載する場合がある。 The safety device 4 outputs a safety signal for putting the motor 2 in a safe state in the drive control system 100 to the power conversion device 1. Types of safety signals include, for example, a signal requesting safe torque off (STO: Safe Torque Off), a signal requesting safe stop 1 (SS1: Safe Stop 1), and a signal requesting safe speed monitoring (SLS). Is included. Hereinafter, a signal requesting safe torque off may be described as an STO signal, a signal requesting safe stop 1 may be described as an SS1 signal, and a signal requesting safe speed monitoring may be described as an SLS signal.
 STO信号は、モータ2を駆動する電力変換装置1からモータ2への電力供給を停止することを電力変換装置1に要求する信号である。SS1信号は、モータ2の減速を開始させた後、指定時間が経過したら安全トルクオフによりモータ2への電力供給を停止することを電力変換装置1に要求する信号である。SLS信号は、モータ2の速度が規定速度制限値を超えないことを監視し、モータ2の速度が規定速度制限値を超えた場合、安全トルクオフによりモータ2への電力供給を停止することを電力変換装置1に要求する信号である。STO信号、SS1信号、およびSLS信号は、例えば、国際規格IEC61508-5-1で規定されている安全機能の実行を要求する信号である。 The STO signal is a signal that requests the power conversion device 1 to stop the power supply from the power conversion device 1 that drives the motor 2 to the motor 2. The SS1 signal is a signal that requests the power conversion device 1 to stop the power supply to the motor 2 by safety torque off after a lapse of a designated time after starting the deceleration of the motor 2. The SLS signal monitors that the speed of the motor 2 does not exceed the specified speed limit value, and when the speed of the motor 2 exceeds the specified speed limit value, powers to stop the power supply to the motor 2 by safety torque off. This is a signal required for the conversion device 1. The STO signal, SS1 signal, and SLS signal are, for example, signals that require the performance of safety functions specified in the international standard IEC61508-5-1.
 安全装置4は、例えば、モータ2への作業者の接近などを検知したり、非常停止ボタンの操作が行われたりした場合などに、電力変換装置1へ安全信号を出力する。安全装置4は、例えば、安全PLC(Programmable Logic Controller)または安全リレーなどである。かかる安全装置4は、例えば、モータ2への作業者の接近などを検知する検出装置および非常停止ボタンなどの複数の装置に接続され、これらの装置のいずれかから緊急事態の通知を受信した場合、安全信号を出力する。 The safety device 4 outputs a safety signal to the power conversion device 1 when, for example, an operator's approach to the motor 2 is detected or an emergency stop button is operated. The safety device 4 is, for example, a safety PLC (Programmable Logic Controller) or a safety relay. When the safety device 4 is connected to a plurality of devices such as a detection device for detecting the approach of an operator to the motor 2 and an emergency stop button, and receives an emergency notification from any of these devices. , Output a safety signal.
 電力変換装置1は、主回路部11と、制御部12と、ゲート駆動部13と、電流センサ14と、ゼロクロス検出部15とを備える。主回路部11は、交流電源3から供給される3相交流電力に基づき、モータ2を駆動するための交流電力をモータ2へ供給する。かかる主回路部11は、AC/DCコンバータ20と、DC/ACコンバータ21とを備える。 The power conversion device 1 includes a main circuit unit 11, a control unit 12, a gate drive unit 13, a current sensor 14, and a zero-cross detection unit 15. The main circuit unit 11 supplies AC power for driving the motor 2 to the motor 2 based on the three-phase AC power supplied from the AC power supply 3. The main circuit unit 11 includes an AC / DC converter 20 and a DC / AC converter 21.
 AC/DCコンバータ20は、交流電源3から供給される交流電力を直流電力に変換する。かかるAC/DCコンバータ20は、3相ブリッジ接続された複数のダイオードから構成される3相ダイオードブリッジ22と、3相ダイオードブリッジ22によって整流された交流電圧を平滑する平滑コンデンサ23とを有する。なお、AC/DCコンバータ20は、3相ダイオードブリッジ22に代えて、3相ブリッジ接続された複数のスイッチング素子を有する構成であってもよい。 The AC / DC converter 20 converts the AC power supplied from the AC power supply 3 into DC power. The AC / DC converter 20 has a three-phase diode bridge 22 composed of a plurality of diodes connected by a three-phase bridge, and a smoothing capacitor 23 for smoothing an AC voltage rectified by the three-phase diode bridge 22. The AC / DC converter 20 may have a configuration having a plurality of switching elements connected by a three-phase bridge instead of the three-phase diode bridge 22.
 DC/ACコンバータ21は、AC/DCコンバータ20から供給される直流電力を、指令信号に応じた周波数の交流電力に変換し、変換した交流電力をモータ2へ出力する。DC/ACコンバータ21は、3相ブリッジ接続された複数のスイッチング素子31,32,33,34,35,36を有する。なお、スイッチング素子31,32,33,34,35,36は、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)またはIGBT(Insulated Gate Bipolar Transistor)などの半導体スイッチング素子である。 The DC / AC converter 21 converts the DC power supplied from the AC / DC converter 20 into AC power having a frequency corresponding to the command signal, and outputs the converted AC power to the motor 2. The DC / AC converter 21 has a plurality of switching elements 31, 32, 33, 34, 35, 36 connected by a three-phase bridge. The switching elements 31, 32, 33, 34, 35, 36 are semiconductor switching elements such as MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) or IGBTs (Insulated Gate Bipolar Transistors), for example.
 制御部12は、モータ2を駆動するための制御信号を生成すると共に異常などの監視を行う駆動制御部40と、異常などの監視を行う安全機能部50とを備える。駆動制御部40と安全機能部50とによって、後述するように、安全信号に対する処理が二重化により冗長化される。 The control unit 12 includes a drive control unit 40 that generates a control signal for driving the motor 2 and monitors an abnormality or the like, and a safety function unit 50 that monitors the abnormality or the like. As will be described later, the drive control unit 40 and the safety function unit 50 make the processing for the safety signal redundant by duplication.
 駆動制御部40は、例えば、外部から入力される指令信号に基づいて制御信号を生成し、生成した制御信号をゲート駆動部13へ出力する。かかる指令信号は、例えば、モータ2の速度を指定する速度指令を示す信号である。指令信号が速度指令である場合、駆動制御部40は、モータ2の速度を速度指令に応じた速度にする制御信号を生成し、生成した制御信号をゲート駆動部13へ出力する。 For example, the drive control unit 40 generates a control signal based on a command signal input from the outside, and outputs the generated control signal to the gate drive unit 13. Such a command signal is, for example, a signal indicating a speed command that specifies the speed of the motor 2. When the command signal is a speed command, the drive control unit 40 generates a control signal for setting the speed of the motor 2 to a speed corresponding to the speed command, and outputs the generated control signal to the gate drive unit 13.
 また、駆動制御部40は、安全装置4から出力される安全信号に基づいて制御信号を生成し、生成した制御信号をゲート駆動部13へ出力する。例えば、駆動制御部40は、安全装置4から出力される安全信号がSLS信号である場合、モータ2の速度が規定速度制限値を超えないようにモータ2を制御すると共に、ゼロクロス検出部15から出力される電流符号信号Isig1に基づいて、モータ2の速度が規定速度制限値を超えないことを監視する。そして、駆動制御部40は、モータ2の速度が規定速度制限値を超えた場合、スイッチング素子31,32,33,34,35,36をオフさせる制御信号をゲート駆動部13へ出力する。 Further, the drive control unit 40 generates a control signal based on the safety signal output from the safety device 4, and outputs the generated control signal to the gate drive unit 13. For example, when the safety signal output from the safety device 4 is an SLS signal, the drive control unit 40 controls the motor 2 so that the speed of the motor 2 does not exceed the specified speed limit value, and the zero cross detection unit 15 Based on the output current code signal I sig1 , it is monitored that the speed of the motor 2 does not exceed the specified speed limit value. Then, when the speed of the motor 2 exceeds the specified speed limit value, the drive control unit 40 outputs a control signal for turning off the switching elements 31, 32, 33, 34, 35, 36 to the gate drive unit 13.
 安全機能部50は、安全装置4から出力される安全信号に基づいて、駆動制御部40を制御する。例えば、安全機能部50は、安全装置4から出力される安全信号がSLS信号である場合、ゼロクロス検出部15から出力される電流符号信号Isig2に基づいて、モータ2の速度が規定速度制限値を超えないことを監視する。そして、安全機能部50は、モータ2の速度が規定速度制限値を超えた場合、駆動制御部40に安全トルクオフの機能を実行させる。 The safety function unit 50 controls the drive control unit 40 based on the safety signal output from the safety device 4. For example, when the safety signal output from the safety device 4 is an SLS signal, the safety function unit 50 sets the speed of the motor 2 to a specified speed limit value based on the current code signal I sig2 output from the zero cross detection unit 15. Monitor not to exceed. Then, when the speed of the motor 2 exceeds the specified speed limit value, the safety function unit 50 causes the drive control unit 40 to execute the safety torque off function.
 ゲート駆動部13は、駆動制御部40から出力される制御信号に基づいて、スイッチング素子31,32,33,34,35,36を駆動するための複数のPWM(Pulse Width Modulation)信号を生成する。ゲート駆動部13は、生成した各PWM信号をスイッチング素子31,32,33,34,35,36のうち対応するスイッチング素子へ出力する。かかるPWM信号は、スイッチング素子31,32,33,34,35,36のゲートを駆動するため、ゲート駆動信号とも呼ばれる。 The gate drive unit 13 generates a plurality of PWM (Pulse Width Modulation) signals for driving the switching elements 31, 32, 33, 34, 35, 36 based on the control signal output from the drive control unit 40. .. The gate drive unit 13 outputs each generated PWM signal to the corresponding switching element among the switching elements 31, 32, 33, 34, 35, and 36. Since such a PWM signal drives the gates of the switching elements 31, 32, 33, 34, 35, 36, it is also called a gate drive signal.
 電流センサ14は、主回路部11からモータ2へ供給される交流電流を検出し、主回路部11からモータ2へ供給される交流電流のアナログ波形を示す電流検出信号Idetを出力する。かかる電流センサ14は、モータ2が3相交流モータである場合、3相のうち1相に供給される交流電流のアナログ波形を示す電流検出信号Idetを出力する。 Current sensor 14 detects the alternating current supplied from the main circuit unit 11 to the motor 2, and outputs a current detection signal I det showing an analog waveform of the alternating current supplied from the main circuit unit 11 to the motor 2. Such current sensor 14, when the motor 2 is a three-phase AC motor, and outputs a current detection signal I det showing an analog waveform of the alternating current supplied to one phase of the three phases.
 電流センサ14は、例えば、磁気コア、ホール素子、およびオペアンプなどを含むホール素子式電流センサである。かかる電流センサ14は、主回路部11からモータ2へ駆動電流を供給する導体線の周りに生じる磁界を、ホール効果を利用して電圧に変換し、変換した電圧を電流検出信号Idetとして出力する。なお、電流センサ14は、例えば、磁気コア、2次巻線、および抵抗などを含むCT(Current Transformer)方式の電流センサであってもよい。また、電流センサ14は、主回路部11とモータ2との間に直列に接続されるシャント抵抗を含む構成であってもよい。 The current sensor 14 is a Hall element type current sensor including, for example, a magnetic core, a Hall element, an operational amplifier, and the like. The current sensor 14 converts the magnetic field generated around the conductor wire that supplies the drive current from the main circuit unit 11 to the motor 2 into a voltage by using the Hall effect, and outputs the converted voltage as a current detection signal ID. To do. The current sensor 14 may be, for example, a CT (Current Transformer) type current sensor including a magnetic core, a secondary winding, a resistor, and the like. Further, the current sensor 14 may have a configuration including a shunt resistor connected in series between the main circuit unit 11 and the motor 2.
 ゼロクロス検出部15は、電流センサ14から出力される電流検出信号Idetに基づいて、電流符号信号Isig1,Isig2を生成する。そして、ゼロクロス検出部15は、電流符号信号Isig1を駆動制御部40へ出力し、電流符号信号Isig2を安全機能部50へ出力する。電流符号信号Isig1,Isig2は、主回路部11からモータ2へ供給される駆動電流の波形をサンプリングして得られる駆動電流の正負を示す符号の情報を時系列に含む時系列サンプル列の信号である。 Zero-cross detecting unit 15 based on the current detection signal I det output from the current sensor 14 generates a current code signal I sig1, I sig2. Then, the zero cross detection unit 15 outputs the current code signal I sig1 to the drive control unit 40, and outputs the current code signal I sig2 to the safety function unit 50. The current code signals I sig1 and I sig2 are a time-series sample sequence containing code information indicating the positive / negative of the drive current obtained by sampling the waveform of the drive current supplied from the main circuit unit 11 to the motor 2. It is a signal.
 次に、安全装置4から出力される安全信号がSLS信号である場合の処理を実行する電力変換装置1の構成例について説明する。図2は、実施の形態1にかかる電力変換装置における制御部、ゲート駆動部およびゼロクロス検出部の構成例を示す図である。 Next, a configuration example of the power conversion device 1 that executes processing when the safety signal output from the safety device 4 is an SLS signal will be described. FIG. 2 is a diagram showing a configuration example of a control unit, a gate drive unit, and a zero cross detection unit in the power conversion device according to the first embodiment.
 図2に示すように、ゼロクロス検出部15は、電流符号信号生成部61,62を備える。電流符号信号生成部61は、電流センサ14から出力される電流検出信号Idetに基づいて、電流符号信号Isig1を生成する。同様に、電流符号信号生成部62は、電流センサ14から出力される電流検出信号Idetに基づいて、電流符号信号Isig2を生成する。電流符号信号生成部61と電流符号信号生成部62とは互いに同じ構成である。 As shown in FIG. 2, the zero cross detection unit 15 includes current code signal generation units 61 and 62. The current code signal generation unit 61 generates the current code signal I sig1 based on the current detection signal I det output from the current sensor 14. Similarly, the current code signal generation unit 62 generates the current code signal I sig2 based on the current detection signal I det output from the current sensor 14. The current code signal generation unit 61 and the current code signal generation unit 62 have the same configuration as each other.
 図3は、実施の形態1にかかる電流符号信号生成部の構成例を示す図である。図3に示すように、電流符号信号生成部61は、半波整流部80と、オペアンプ81と、フィルタ82と、ヒステリシスコンパレータ83とを備える。 FIG. 3 is a diagram showing a configuration example of the current code signal generation unit according to the first embodiment. As shown in FIG. 3, the current code signal generation unit 61 includes a half-wave rectifier unit 80, an operational amplifier 81, a filter 82, and a hysteresis comparator 83.
 半波整流部80は、電流センサ14から出力される電流検出信号Idetを半波整流し、半波整流後の電流検出信号Idetである電流検出信号Idetrを出力する。半波整流部80は、例えば、ダイオードによって構成される。 The half-wave rectifier unit 80 half-wave rectifies the current detection signal I det output from the current sensor 14, and outputs the current detection signal I detr , which is the current detection signal I det after the half-wave rectification. The half-wave rectifier unit 80 is composed of, for example, a diode.
 オペアンプ81は、半波整流部80から出力される電流検出信号Idetrを電圧増幅して出力する。フィルタ82は、オペアンプ81によって電圧増幅された電流検出信号Idetrのノイズを除去する。かかるフィルタ82は、例えば、RCローパスフィルタである。なお、フィルタ82は、バンドパスフィルタであってもよい。 The operational amplifier 81 amplifies the current detection signal I detr output from the half-wave rectifier unit 80 and outputs it. The filter 82 removes noise from the current detection signal I detr voltage-amplified by the operational amplifier 81. The filter 82 is, for example, an RC low-pass filter. The filter 82 may be a bandpass filter.
 ヒステリシスコンパレータ83は、フィルタ82から出力される電流検出信号Idetrの立ち上がりタイミングおよび立ち下がりタイミングを検出し、かかる検出結果を示す信号である電流符号信号Isig1を出力する。オペアンプ81、フィルタ82、およびヒステリシスコンパレータ83は、半波整流波形である電流検出信号Idetrを処理する。そのため、オペアンプ81、フィルタ82、およびヒステリシスコンパレータ83は、負極性の電源が必要なく、片電源で駆動することができる。そのため、電流符号信号生成部61を簡素な構成にすることができる。 The hysteresis comparator 83 detects the rising timing and the falling timing of the current detection signal I detr output from the filter 82, and outputs the current code signal I sig1 which is a signal indicating the detection result. The operational amplifier 81, the filter 82, and the hysteresis comparator 83 process the current detection signal I detr, which is a half-wave rectified waveform. Therefore, the operational amplifier 81, the filter 82, and the hysteresis comparator 83 do not require a negative electrode power source and can be driven by a single power source. Therefore, the current code signal generation unit 61 can have a simple configuration.
 ヒステリシスコンパレータ83は、コンパレータ91と、抵抗92,93,94,95,96とを備える。かかるヒステリシスコンパレータ83は、電流検出信号Idetrが符号反転閾値Th1以上になった場合、電流符号信号Isig1を高位レベルにし、電流検出信号Idetrが符号反転閾値Th2以下になった場合、電流符号信号Isig1を低位レベルにする。Th1>Th2である。 The hysteresis comparator 83 includes a comparator 91 and resistors 92, 93, 94, 95, 96. The hysteresis comparator 83 raises the current code signal I sig1 to a higher level when the current detection signal I der becomes the sign inversion threshold Th1 or more, and the current code when the current detection signal I der becomes the sign inversion threshold Th2 or less. Set the signal I sig1 to a lower level. Th1> Th2.
 図4は、実施の形態1にかかる電流センサから出力される電流検出信号、半波整流部によって半波整流される電流検出信号、および電流符号信号の関係を示す図である。図4に示すように、電流検出信号Idetは、半波整流部80によって半波整流され、半波整流された電流検出信号Idetrがヒステリシスコンパレータ83へ出力される。 FIG. 4 is a diagram showing the relationship between the current detection signal output from the current sensor according to the first embodiment, the current detection signal half-wave rectified by the half-wave rectifier unit, and the current code signal. As shown in FIG. 4, the current detection signal I det is half-wave rectified by the half-wave rectifier unit 80, and the half-wave rectified current detection signal I detr is output to the hysteresis comparator 83.
 ヒステリシスコンパレータ83は、半波整流部80から出力される電流検出信号Idetrの立ち上がりタイミングと立ち下がりタイミングを検出する。例えば、ヒステリシスコンパレータ83は、電流検出信号Idetrが符号反転閾値Th1以上になったタイミングで電流検出信号Idetrの立ち上がりタイミングを検出し、電流符号信号Isig1を低位レベルから高位レベルへ変化させる。また、ヒステリシスコンパレータ83は、電流検出信号Idetrが符号反転閾値Th2以下になったタイミングで電流検出信号Idetrの立ち下がりタイミングを検出し、電流符号信号Isig1を高位レベルから低位レベルへ変化させる。 The hysteresis comparator 83 detects the rising timing and the falling timing of the current detection signal I detr output from the half-wave rectifier unit 80. For example, the hysteresis comparator 83 detects the rising timing of the current detection signal I der at the timing when the current detection signal I der becomes the sign inversion threshold Th1 or more, and changes the current code signal I sig1 from the low level to the high level. Further, the hysteresis comparator 83 detects the falling timing of the current detection signal I der at the timing when the current detection signal I der becomes the sign inversion threshold Th2 or less, and changes the current code signal I sig1 from the high level to the low level. ..
 かかるヒステリシスコンパレータ83は、符号反転閾値Th1と符号反転閾値Th2との差よりも小さい駆動電流のリップルは検出せず、耐ノイズ性が高い。そのため、電流符号信号生成部61において、フィルタ82を簡素な構成にすることができる。なお、電流符号信号生成部61,62は、図3に示す構成に限定されない。例えば、電流符号信号生成部61,62は、電流検出信号Idetを電圧増幅しなくてもよい場合、オペアンプ81を設けない構成であってもよい。 The hysteresis comparator 83 does not detect a ripple of a drive current smaller than the difference between the code inversion threshold Th1 and the code inversion threshold Th2, and has high noise resistance. Therefore, in the current code signal generation unit 61, the filter 82 can have a simple configuration. The current code signal generation units 61 and 62 are not limited to the configuration shown in FIG. For example, the current code signal generator 61 and 62, if the current detection signal I det may not be voltage amplified, may be a structure without the operational amplifier 81.
 また、ヒステリシスコンパレータ83は、図3に示す構成に限定されない。例えば、ヒステリシスコンパレータ83は、電流検出信号Idetrが符号反転閾値Th1以上になった場合、電流符号信号Isig1を低位レベルにし、電流検出信号Idetrが符号反転閾値Th2以下になった場合、電流符号信号Isig1を高位レベルにする構成であってもよい。また、符号反転閾値Th1と符号反転閾値Th2との関係は、Th1<Th2であってもよい。また、ヒステリシスコンパレータ83は、アナログ回路に代えて、デジタル回路であってもよい。 Further, the hysteresis comparator 83 is not limited to the configuration shown in FIG. For example, the hysteresis comparator 83 sets the current code signal I sig1 to a lower level when the current detection signal I der becomes the code inversion threshold Th1 or more, and the current when the current detection signal I der becomes the code inversion threshold Th2 or less. The code signal I sig1 may be set to a high level. Further, the relationship between the code reversal threshold Th1 and the code reversal threshold Th2 may be Th1 <Th2. Further, the hysteresis comparator 83 may be a digital circuit instead of the analog circuit.
 図2に戻って、制御部12の説明を続ける。図2に示すように、制御部12は、駆動制御部40と、安全機能部50とを備える。駆動制御部40は、制御信号生成部41と、電流周波数算出部42と、監視部43とを備える。 Returning to FIG. 2, the explanation of the control unit 12 is continued. As shown in FIG. 2, the control unit 12 includes a drive control unit 40 and a safety function unit 50. The drive control unit 40 includes a control signal generation unit 41, a current frequency calculation unit 42, and a monitoring unit 43.
 制御信号生成部41は、外部から入力される指令信号または安全装置4から入力される安全信号に基づいて制御信号を生成する。電力変換装置1には、電流センサ14とは異なる電流センサであってモータ2へ供給される3相電流を検出する不図示の電流センサが設けられている。制御信号生成部41は、かかる電流センサによって検出される3相電流に基づいて速度制御を行う不図示の速度制御部と、電流センサによって検出される3相電流に基づいて電流制御を行う不図示の電流制御部とを備える。 The control signal generation unit 41 generates a control signal based on a command signal input from the outside or a safety signal input from the safety device 4. The power conversion device 1 is provided with a current sensor (not shown) that is different from the current sensor 14 and detects a three-phase current supplied to the motor 2. The control signal generation unit 41 has a speed control unit (not shown) that controls the speed based on the three-phase current detected by the current sensor, and a speed control unit (not shown) that controls the current based on the three-phase current detected by the current sensor. It is equipped with a current control unit.
 不図示の速度制御部は、例えば、電流センサによって検出される3相電流に基づいて、モータ2の速度を推定し、推定したモータ2の速度が速度指令と一致するように電流指令を生成することができる。また、不図示の電流制御部は、電流センサによって検出される3相電流から得られるdq座標系のq軸電流と電流指令とが一致するように制御信号を生成することができる。 The speed control unit (not shown) estimates the speed of the motor 2 based on, for example, the three-phase current detected by the current sensor, and generates a current command so that the estimated speed of the motor 2 matches the speed command. be able to. Further, the current control unit (not shown) can generate a control signal so that the q-axis current of the dq coordinate system obtained from the three-phase current detected by the current sensor and the current command match.
 電流周波数算出部42は、ゼロクロス検出部15から出力される電流符号信号Isig1に基づいて、主回路部11からモータ2へ供給される電流の周波数である電流周波数ωc1を算出する。具体的には、電流周波数算出部42は、パルスカウンタ機能を有しており、電流符号信号Isig1の立ち上がりと立ち下がりの両エッジをカウントする。電流周波数算出部42は、予め設定された周期でカウント値をサンプリングし、サンプリングしたカウント値から電流周波数ωc1を算出する。なお、電流周波数算出部42は、電流符号信号Isig1の立ち上がりと立ち下がりを共にカウントした結果に基づいて、電流周波数ωc1を算出することに代えて、電流符号信号Isig1の立ち上がりまたは立ち下がりのみをカウントした結果に基づいて、電流周波数ωc1を算出する構成であってもよい。 The current frequency calculation unit 42 calculates the current frequency ω c1 , which is the frequency of the current supplied from the main circuit unit 11 to the motor 2, based on the current code signal I sig1 output from the zero cross detection unit 15. Specifically, the current frequency calculation unit 42 has a pulse counter function, and counts both rising and falling edges of the current code signal I sig1 . The current frequency calculation unit 42 samples the count value at a preset cycle, and calculates the current frequency ω c1 from the sampled count value. The current frequency calculator 42, based on the result of counting both rise and fall of the current sign signal I sig1, Instead of calculating the current frequency omega c1, rising or falling of the current sign signal I sig1 The current frequency ω c1 may be calculated based on the result of counting only.
 監視部43は、電流周波数算出部42によって算出された電流周波数ωc1に基づいて、モータ2の速度を監視し、かかる監視結果に基づいて、例えば、安全トルクオフの実行の可否を決定する。具体的には、監視部43は、電流周波数算出部42によって算出された電流周波数ωc1に基づいて、安全信号に応じたモータ2の制御が制御部12で行われていないと判定した場合、制御信号生成部41に安全トルクオフを実行させる。かかる監視部43は、電流周波数自己診断部44と、電流周波数相互診断部45と、出力周波数自己診断部46とを備える。 The monitoring unit 43 monitors the speed of the motor 2 based on the current frequency ω c1 calculated by the current frequency calculation unit 42, and determines, for example, whether or not to execute the safety torque off based on the monitoring result. Specifically, when the monitoring unit 43 determines that the control unit 12 is not controlling the motor 2 in response to the safety signal based on the current frequency ω c1 calculated by the current frequency calculation unit 42. The control signal generation unit 41 is made to execute the safety torque off. The monitoring unit 43 includes a current frequency self-diagnosis unit 44, a current frequency mutual diagnosis unit 45, and an output frequency self-diagnosis unit 46.
 電流周波数自己診断部44は、電流周波数算出部42によって算出された電流周波数ωc1または電流周波数ωc1に正比例する値をモータ2の速度とし、モータ2の速度が予め設定された規定速度制限値ωth以下であるか否かを判定する。電流周波数自己診断部44は、電流周波数ωc1または電流周波数ωc1に正比例する値が規定速度制限値ωth以下ではないと判定した場合、制御信号生成部41に、安全トルクオフを実行させるための制御信号をゲート駆動部13へ出力させる。 The current frequency self-diagnosis unit 44 sets the speed of the motor 2 as a value directly proportional to the current frequency ω c1 or the current frequency ω c1 calculated by the current frequency calculation unit 42, and the speed of the motor 2 is a preset predetermined speed limit value. It is determined whether or not it is ω th or less. When the current frequency self-diagnosis unit 44 determines that the value directly proportional to the current frequency ω c1 or the current frequency ω c1 is not equal to or less than the specified speed limit value ω th , the control signal generation unit 41 causes the control signal generation unit 41 to execute the safety torque off. The control signal is output to the gate drive unit 13.
 なお、電流周波数ωc1は、モータ2におけるステータの極数当りのモータ2の速度に正比例する値であり、モータ2の速度の推定値として取り扱うことができる。電流周波数自己診断部44において電流周波数ωc1が規定速度制限値ωth以下であるか否かが判定される場合、規定速度制限値ωthは、モータ2におけるステータの極数当りのモータ2の速度に対応する制限値である。また、電流周波数ωc1に正比例する値は、例えば、電流周波数ωc1に2を掛けた値をモータ2におけるステータの極数で除した値であり、モータ2の速度[rps]の推定値として取り扱うことができる。電流周波数自己診断部44において電流周波数ωc1に正比例する値が規定速度制限値ωth以下であるか否かが判定される場合、規定速度制限値ωthは、モータ2の速度[rps]に対応する上限値である。 The current frequency ω c1 is a value directly proportional to the speed of the motor 2 per the number of poles of the stator in the motor 2, and can be treated as an estimated value of the speed of the motor 2. When the current frequency omega c1 at a current frequency self-diagnosis unit 44 is determined whether it is below the specified speed limit value omega th is specified speed limit omega th is per number of poles of the stator in the motor 2 of the motor 2 This is the limit value corresponding to the speed. The value directly proportional to the current frequency ω c1 is, for example, a value obtained by multiplying the current frequency ω c1 by 2 by the number of poles of the stator in the motor 2, and is used as an estimated value of the speed [rps] of the motor 2. Can be handled. If whether or not the value that is directly proportional to the current frequency omega c1 at a current frequency self-diagnosis unit 44 is equal to or less than the prescribed speed limit value omega th is determined, the specified speed limit omega th is the speed of the motor 2 [rps] The corresponding upper limit.
 ゲート駆動部13は、制御信号生成部41から出力される制御信号に基づいて、スイッチング素子31,32,33,34,35,36へ出力するPWM信号を生成するPWM信号生成部71を有している。かかるPWM信号生成部71は、安全トルクオフを実行させるための制御信号が制御信号生成部41から出力された場合、スイッチング素子31,32,33,34,35,36へのPWM信号をオフにする。これにより、主回路部11からのモータ2への電力供給が停止される。 The gate drive unit 13 has a PWM signal generation unit 71 that generates a PWM signal to be output to the switching elements 31, 32, 33, 34, 35, 36 based on the control signal output from the control signal generation unit 41. ing. When the control signal for executing the safety torque off is output from the control signal generation unit 41, the PWM signal generation unit 71 turns off the PWM signals to the switching elements 31, 32, 33, 34, 35, 36. .. As a result, the power supply from the main circuit unit 11 to the motor 2 is stopped.
 なお、電流周波数自己診断部44は、電流周波数ωc1または電流周波数ωc1に正比例する値が規定速度制限値ωth以下ではないと判定した場合、表示器16にアラーム表示を行うことができる。表示器16は、LCD(Liquid Crystal Display)などのディスプレイまたはアラームランプなどである。電流周波数自己診断部44は、表示器16がLCDである場合、電流周波数ωc1または電流周波数ωc1に正比例する値が規定速度制限値ωth以下ではない旨を示す文字の情報などを表示器16に表示することができる。また、電流周波数自己診断部44は、電流周波数ωc1または電流周波数ωc1に正比例する値の時間的偏移と規定速度制限値ωthとを示すグラフの情報を表示器16に表示することもできる。なお、電流周波数自己診断部44は、電流周波数ωc1または電流周波数ωc1に正比例する値が規定速度制限値ωth以下ではないと判定した場合、不図示のスピーカにアラーム音を出力させることもできる。 When the current frequency self-diagnosis unit 44 determines that the value directly proportional to the current frequency ω c1 or the current frequency ω c1 is not equal to or less than the specified speed limit value ω th , the display 16 can display an alarm. The display 16 is a display such as an LCD (Liquid Crystal Display) or an alarm lamp. When the display 16 is an LCD, the current frequency self-diagnosis unit 44 displays character information indicating that the value directly proportional to the current frequency ω c1 or the current frequency ω c1 is not equal to or less than the specified speed limit value ω th . It can be displayed at 16. Further, the current frequency self-diagnosis unit 44 may display on the display 16 the information of the graph showing the temporal deviation of the value directly proportional to the current frequency ω c1 or the current frequency ω c1 and the specified speed limit value ω th. it can. When the current frequency self-diagnosis unit 44 determines that the value directly proportional to the current frequency ω c1 or the current frequency ω c1 is not equal to or less than the specified speed limit value ω th , the speaker (not shown) may output an alarm sound. it can.
 また、電流周波数自己診断部44は、電流周波数ωc1または電流周波数ωc1に正比例する値が規定速度制限値ωth以下ではないと判定した場合、制御信号生成部41に、安全トルクオフを実行させるための制御信号に代えて、モータ2への電力供給を減少させるための制御信号をゲート駆動部13へ出力させることもできる。これにより、モータ2へ供給される電力を減少させることができる。 Further, when the current frequency self-diagnosis unit 44 determines that the value directly proportional to the current frequency ω c1 or the current frequency ω c1 is not equal to or less than the specified speed limit value ω th , the control signal generation unit 41 causes the control signal generation unit 41 to execute the safety torque off. It is also possible to output a control signal for reducing the power supply to the motor 2 to the gate drive unit 13 instead of the control signal for the purpose. As a result, the electric power supplied to the motor 2 can be reduced.
 電流周波数相互診断部45は、電流周波数算出部42によって算出された電流周波数ωc1と安全機能部50によって算出される後述の電流周波数ωc2とに基づいて、相互判断処理を行う。具体的には、電流周波数相互診断部45は、電流周波数ωc1と電流周波数ωc2との差が予め設定された規定範囲Rth1内であるか否かを判定する。電流周波数相互診断部45は、電流周波数ωc1と電流周波数ωc2との差が規定範囲Rth1外であると判定した場合、制御信号生成部41に、安全トルクオフを実行させるための制御信号をゲート駆動部13へ出力させる。これにより、モータ2への電力供給が停止される。 The current frequency mutual diagnosis unit 45 performs mutual judgment processing based on the current frequency ω c1 calculated by the current frequency calculation unit 42 and the current frequency ω c2 calculated by the safety function unit 50, which will be described later. Specifically, the current frequency mutual diagnosis unit 45 determines whether or not the difference between the current frequency ω c1 and the current frequency ω c2 is within the preset predetermined range R th1 . When the current frequency mutual diagnosis unit 45 determines that the difference between the current frequency ω c1 and the current frequency ω c2 is outside the specified range R th1 , the control signal generation unit 41 transmits a control signal for executing the safety torque off. Output to the gate drive unit 13. As a result, the power supply to the motor 2 is stopped.
 出力周波数自己診断部46は、電流周波数算出部42によって算出された電流周波数ωc1と、ゲート駆動部13によって算出された出力周波数ωoutとの差が予め設定された規定範囲Rth2内であるか否かを判定する。ゲート駆動部13は、出力周波数ωoutを算出する出力周波数算出部72を有しており、出力周波数自己診断部46は、出力周波数算出部72によって算出される出力周波数ωoutの情報を出力周波数算出部72から取得する。 The output frequency self-diagnosis unit 46 is within a predetermined range R th2 in which the difference between the current frequency ω c1 calculated by the current frequency calculation unit 42 and the output frequency ω out calculated by the gate drive unit 13 is set in advance. Judge whether or not. The gate drive unit 13 has an output frequency calculation unit 72 that calculates the output frequency ω out , and the output frequency self-diagnosis unit 46 outputs information on the output frequency ω out calculated by the output frequency calculation unit 72. Obtained from the calculation unit 72.
 出力周波数ωoutは、スイッチング素子31,32,33,34,35,36のゲート駆動信号の制御によって主回路部11のDC/ACコンバータ21からモータ2へ出力させる駆動電圧の周波数である。出力周波数算出部72は、制御信号生成部41によって生成される制御信号に基づいて、出力周波数ωoutを算出する。例えば、制御信号が3相座標の電圧指令を含む場合、かかる電圧指令の周波数を出力周波数ωoutとして算出することができる。 The output frequency ω out is the frequency of the drive voltage output from the DC / AC converter 21 of the main circuit unit 11 to the motor 2 by controlling the gate drive signals of the switching elements 31, 32, 33, 34, 35, 36. The output frequency calculation unit 72 calculates the output frequency ω out based on the control signal generated by the control signal generation unit 41. For example, when the control signal includes a voltage command having three-phase coordinates, the frequency of the voltage command can be calculated as the output frequency ω out .
 出力周波数自己診断部46は、電流周波数ωc1と出力周波数ωoutとの差が規定範囲Rth2外であると判定した場合、制御信号生成部41に、安全トルクオフを実行させるための制御信号をゲート駆動部13へ出力させる。これにより、モータ2への電力供給が停止される。 When the output frequency self-diagnosis unit 46 determines that the difference between the current frequency ω c1 and the output frequency ω out is outside the specified range R th2, the output frequency self-diagnosis unit 46 causes the control signal generation unit 41 to transmit a control signal for executing the safety torque off. Output to the gate drive unit 13. As a result, the power supply to the motor 2 is stopped.
 なお、電流周波数相互診断部45および出力周波数自己診断部46は、電流周波数自己診断部44と同様に、制御信号生成部41に安全トルクオフを実行させる際に、表示器16にアラーム表示を行ったり、不図示のスピーカにアラーム音を出力させたりすることができる。また、電流周波数相互診断部45および出力周波数自己診断部46は、電流周波数自己診断部44と同様に、制御信号生成部41に、安全トルクオフを実行させるための制御信号に代えて、モータ2への電力供給を減少させるための制御信号をゲート駆動部13へ出力させることもできる。 Similar to the current frequency self-diagnosis unit 44, the current frequency mutual diagnosis unit 45 and the output frequency self-diagnosis unit 46 display an alarm on the display 16 when the control signal generation unit 41 executes the safety torque off. , It is possible to output an alarm sound to a speaker (not shown). Further, the current frequency mutual diagnosis unit 45 and the output frequency self-diagnosis unit 46, like the current frequency self-diagnosis unit 44, send the control signal generation unit 41 to the motor 2 instead of the control signal for executing the safety torque off. It is also possible to output a control signal for reducing the power supply of the gate drive unit 13.
 安全機能部50は、電流周波数算出部51と、監視部52とを備える。電流周波数算出部51は、ゼロクロス検出部15から出力される電流符号信号Isig2に基づいて、主回路部11からモータ2へ供給される電流の周波数である電流周波数ωc2を算出する。かかる電流周波数算出部51は、電流周波数算出部42と同様に、パルスカウンタ機能を有しており、電流符号信号Isig2の立ち上がりと立ち下がりの両エッジをカウントする。電流周波数算出部51は、予め設定された周期でカウント値をサンプリングし、サンプリングしたカウント値から電流周波数ωc2をモータ2の速度として算出する。なお、電流周波数算出部51は、電流符号信号Isig2の立ち上がりと立ち下がりを共にカウントした結果に基づいて、電流周波数ωc2を算出することに代えて、電流符号信号Isig2の立ち上がりまたは立ち下がりのみをカウントした結果に基づいて、電流周波数ωc2を算出する構成であってもよい。 The safety function unit 50 includes a current frequency calculation unit 51 and a monitoring unit 52. The current frequency calculation unit 51 calculates the current frequency ω c2 , which is the frequency of the current supplied from the main circuit unit 11 to the motor 2, based on the current code signal I sig2 output from the zero cross detection unit 15. Similar to the current frequency calculation unit 42, the current frequency calculation unit 51 has a pulse counter function and counts both rising and falling edges of the current code signal I sig2 . The current frequency calculation unit 51 samples the count value at a preset cycle, and calculates the current frequency ω c2 as the speed of the motor 2 from the sampled count value. The current frequency calculator 51, based on the result of counting both rise and fall of the current sign signal I sig2, Instead of calculating the current frequency omega c2, rising or falling of the current sign signal I sig2 The current frequency ω c2 may be calculated based on the result of counting only.
 監視部52は、電流周波数算出部51によって算出された電流周波数ωc2に基づいて、安全トルクオフの実行の可否を決定する。具体的には、監視部52は、電流周波数算出部51によって検出された電流周波数ωc2に基づいて、安全信号に応じたモータ2の制御が制御部12で行われていないと判定した場合、制御信号生成部41に安全トルクオフを実行させる。かかる監視部52は、電流周波数自己診断部53と、電流周波数相互診断部54と、出力周波数自己診断部55とを備える。 The monitoring unit 52 determines whether or not the safety torque off can be executed based on the current frequency ω c2 calculated by the current frequency calculation unit 51. Specifically, when the monitoring unit 52 determines that the control unit 12 is not controlling the motor 2 in response to the safety signal based on the current frequency ω c2 detected by the current frequency calculation unit 51. The control signal generation unit 41 is made to execute the safety torque off. The monitoring unit 52 includes a current frequency self-diagnosis unit 53, a current frequency mutual diagnosis unit 54, and an output frequency self-diagnosis unit 55.
 電流周波数自己診断部53は、電流周波数算出部51によって算出された電流周波数ωc2または電流周波数ωc2に正比例する値をモータ2の速度とし、モータ2の速度が予め設定された規定速度制限値ωth以下であるか否かを判定する。電流周波数自己診断部53は、電流周波数ωc2または電流周波数ωc2に正比例する値が規定速度制限値ωth以下ではないと判定した場合、制御信号生成部41に、安全トルクオフを実行させるための制御信号をゲート駆動部13へ出力させる。これにより、モータ2への電力供給が停止される。 The current frequency self-diagnosis unit 53 sets the speed of the motor 2 as a value directly proportional to the current frequency ω c2 or the current frequency ω c2 calculated by the current frequency calculation unit 51, and the speed of the motor 2 is a preset predetermined speed limit value. It is determined whether or not it is ω th or less. When the current frequency self-diagnosis unit 53 determines that the value directly proportional to the current frequency ω c2 or the current frequency ω c2 is not equal to or less than the specified speed limit value ω th , the control signal generation unit 41 causes the control signal generation unit 41 to execute the safety torque off. The control signal is output to the gate drive unit 13. As a result, the power supply to the motor 2 is stopped.
 また、電流周波数自己診断部53は、電流周波数自己診断部44と同様に、電流周波数ωc2または電流周波数ωc2に正比例する値が規定速度制限値ωth以下ではないと判定した場合、表示器16にアラーム表示を行ったり、不図示のスピーカにアラーム音を出力させたりすることができる。また、電流周波数自己診断部53は、電流周波数自己診断部44と同様に、電流周波数ωc2または電流周波数ωc2に正比例する値が規定速度制限値ωth以下ではないと判定した場合、制御信号生成部41に、安全トルクオフを実行させるための制御信号に代えて、モータ2への電力供給を減少させるための制御信号をゲート駆動部13へ出力させることもできる。 Further, the current frequency self-diagnosis unit 53, like the current frequency self-diagnosis unit 44, determines that the value directly proportional to the current frequency ω c2 or the current frequency ω c2 is not equal to or less than the specified speed limit value ω th . It is possible to display an alarm on 16 or to output an alarm sound to a speaker (not shown). Further, when the current frequency self-diagnosis unit 53 determines that the value directly proportional to the current frequency ω c2 or the current frequency ω c2 is not equal to or less than the specified speed limit value ω th, as in the current frequency self-diagnosis unit 44, the control signal It is also possible to have the generation unit 41 output a control signal for reducing the power supply to the motor 2 to the gate drive unit 13 instead of the control signal for executing the safe torque off.
 なお、電流周波数ωc2は、モータ2におけるステータの極数当りのモータ2の速度に正比例する値であり、電流周波数ωc1と同様に、モータ2の速度の推定値として取り扱うことができる。電流周波数自己診断部53において電流周波数ωc2が規定速度制限値ωth以下であるか否かが判定される場合、規定速度制限値ωthは、モータ2におけるステータの極数当りのモータ2の速度に対応する制限値である。また、電流周波数ωc2に正比例する値は、例えば、電流周波数ωc2に2を掛けた値をモータ2におけるステータの極数で除した値であり、モータ2の速度[rps]の推定値として取り扱うことができる。電流周波数自己診断部53において電流周波数ωc2に正比例する値が規定速度制限値ωth以下であるか否かが判定される場合、規定速度制限値ωthは、モータ2の速度[rps]に対応する上限値である。 The current frequency ω c2 is a value directly proportional to the speed of the motor 2 per the number of poles of the stator in the motor 2, and can be treated as an estimated value of the speed of the motor 2 in the same manner as the current frequency ω c1 . When the current frequency omega c2 at a current frequency self-diagnosis unit 53 is determined whether it is below the specified speed limit value omega th is specified speed limit omega th is per number of poles of the stator in the motor 2 of the motor 2 This is the limit value corresponding to the speed. The value directly proportional to the current frequency ω c2 is, for example, a value obtained by multiplying the current frequency ω c2 by 2 by the number of poles of the stator in the motor 2, and is used as an estimated value of the speed [rps] of the motor 2. Can be handled. If whether or not the value that is directly proportional to the current frequency omega c2 at a current frequency self-diagnosis unit 53 is equal to or less than the prescribed speed limit value omega th is determined, the specified speed limit omega th is the speed of the motor 2 [rps] The corresponding upper limit.
 電流周波数相互診断部54は、電流周波数相互診断部45と同様に、電流周波数ωc1,ωc2に基づいて、相互判断処理を行う。具体的には、電流周波数相互診断部54は、電流周波数ωc1と電流周波数ωc2との差が予め設定された規定範囲Rth1内であるか否かを判定する。電流周波数相互診断部54は、電流周波数ωc1と電流周波数ωc2との差が規定範囲Rth1外であると判定した場合、制御信号生成部41に、安全トルクオフを実行させるための制御信号をゲート駆動部13へ出力させる。これにより、モータ2への電力供給が停止される。 Similar to the current frequency mutual diagnosis unit 45, the current frequency mutual diagnosis unit 54 performs mutual determination processing based on the current frequencies ω c1 and ω c2 . Specifically, the current frequency mutual diagnosis unit 54 determines whether or not the difference between the current frequency ω c1 and the current frequency ω c2 is within the preset predetermined range R th1 . When the current frequency mutual diagnosis unit 54 determines that the difference between the current frequency ω c1 and the current frequency ω c2 is outside the specified range R th1 , the control signal generation unit 41 transmits a control signal for executing the safety torque off. Output to the gate drive unit 13. As a result, the power supply to the motor 2 is stopped.
 出力周波数自己診断部55は、電流周波数ωc2と出力周波数ωoutとの差が予め設定された規定範囲Rth2内であるか否かを判定する。出力周波数自己診断部55は、電流周波数ωc2と出力周波数ωoutとの差が規定範囲Rth2外であると判定した場合、制御信号生成部41に、安全トルクオフを実行させる制御信号をゲート駆動部13へ出力させる。これにより、モータ2への電力供給が停止される。 The output frequency self-diagnosis unit 55 determines whether or not the difference between the current frequency ω c2 and the output frequency ω out is within the preset predetermined range R th2 . When the output frequency self-diagnosis unit 55 determines that the difference between the current frequency ω c2 and the output frequency ω out is outside the specified range R th2, the output frequency self-diagnosis unit 55 gate-drives the control signal generation unit 41 to execute a safety torque off. Output to unit 13. As a result, the power supply to the motor 2 is stopped.
 なお、電流周波数相互診断部54および出力周波数自己診断部55は、電流周波数自己診断部53と同様に、制御信号生成部41に安全トルクオフを実行させる際に、表示器16にアラーム表示を行ったり、不図示のスピーカにアラーム音を出力させたりすることができる。また、電流周波数相互診断部54および出力周波数自己診断部55は、電流周波数自己診断部53と同様に、制御信号生成部41に、安全トルクオフを実行させるための制御信号に代えて、モータ2への電力供給を減少させるための制御信号をゲート駆動部13へ出力させることもできる。 In addition, the current frequency mutual diagnosis unit 54 and the output frequency self-diagnosis unit 55, like the current frequency self-diagnosis unit 53, display an alarm on the display 16 when the control signal generation unit 41 executes the safety torque off. , It is possible to output an alarm sound to a speaker (not shown). Further, the current frequency mutual diagnosis unit 54 and the output frequency self-diagnosis unit 55, like the current frequency self-diagnosis unit 53, send the control signal generation unit 41 to the motor 2 instead of the control signal for executing the safety torque off. It is also possible to output a control signal for reducing the power supply of the gate drive unit 13.
 つづいて、制御部12における安全速度監視および安全トルクオフの動作を、フローチャートを用いて説明する。図5は、実施の形態1にかかる制御部の駆動制御部の処理の一例を示すフローチャートである。 Next, the operation of safety speed monitoring and safety torque off in the control unit 12 will be described using a flowchart. FIG. 5 is a flowchart showing an example of processing of the drive control unit of the control unit according to the first embodiment.
 図5に示すように、駆動制御部40は、安全装置4からSLS信号を受信したか否かを判定する(ステップS10)。駆動制御部40は、SLS信号を受信したと判定した場合(ステップS10:Yes)、電流周波数ωc1を算出する(ステップS11)。駆動制御部40は、電流周波数ωc1が規定速度制限値ωth以下であるか否かを判定する(ステップS12)。駆動制御部40は、電流周波数ωc1が規定速度制限値ωth以下であると判定した場合(ステップS12:Yes)、電流周波数ωc1と電流周波数ωc2との差が規定範囲Rth1外であるか否かを判定する(ステップS13)。 As shown in FIG. 5, the drive control unit 40 determines whether or not the SLS signal has been received from the safety device 4 (step S10). When the drive control unit 40 determines that the SLS signal has been received (step S10: Yes), the drive control unit 40 calculates the current frequency ω c1 (step S11). The drive control unit 40 determines whether or not the current frequency ω c1 is equal to or less than the specified speed limit value ω th (step S12). When the drive control unit 40 determines that the current frequency ω c1 is equal to or less than the specified speed limit value ω th (step S12: Yes), the difference between the current frequency ω c1 and the current frequency ω c2 is outside the specified range R th1 . It is determined whether or not there is (step S13).
 駆動制御部40は、電流周波数ωc1と電流周波数ωc2との差が規定範囲Rth1外ではないと判定した場合(ステップS13:No)、電流周波数ωc1と出力周波数ωoutとの差が規定範囲Rth2外であるか否かを判定する(ステップS14)。駆動制御部40は、電流周波数ωc1が規定速度制限値ωth以下ではないと判定した場合(ステップS12:No)、電流周波数ωc1と電流周波数ωc2との差が規定範囲Rth1外であると判定した場合(ステップS13:Yes)、または電流周波数ωc1と出力周波数ωoutとの差が規定範囲Rth2外であると判定した場合(ステップS14:Yes)、安全トルクオフの実行を決定し、制御部12に安全トルクオフを実行させる(ステップS15)。 When the drive control unit 40 determines that the difference between the current frequency ω c1 and the current frequency ω c2 is not outside the specified range R th1 (step S13: No), the difference between the current frequency ω c1 and the output frequency ω out is It is determined whether or not the frequency is outside the specified range R th2 (step S14). When the drive control unit 40 determines that the current frequency ω c1 is not equal to or less than the specified speed limit value ω th (step S12: No), the difference between the current frequency ω c1 and the current frequency ω c2 is outside the specified range R th1 . If it is determined that there is (step S13: Yes), or if it is determined that the difference between the current frequency ω c1 and the output frequency ω out is outside the specified range R th2 (step S14: Yes), it is determined to execute the safe torque off. Then, the control unit 12 is made to execute the safety torque off (step S15).
 駆動制御部40は、ステップS15の処理が終了した場合、SLS信号を受信していないと判定した場合(ステップS10:No)、または電流周波数ωc1と出力周波数ωoutとの差が規定範囲Rth2外ではないと判定した場合(ステップS14:No)、図5に示す処理を終了する。なお、制御部12の安全機能部50の処理は、図5に示す駆動制御部40の処理と同様であり、図5に示すステップS11,S12,S14において、電流周波数ωc1に代えて電流周波数ωc2を用いる点で、図5に示す駆動制御部40の処理と異なる。 When the process of step S15 is completed, when the drive control unit 40 determines that the SLS signal is not received (step S10: No), or when the difference between the current frequency ω c1 and the output frequency ω out is within the specified range R. When it is determined that the frequency is not outside th2 (step S14: No), the process shown in FIG. 5 is terminated. The processing of the safety function unit 50 of the control unit 12 is the same as the processing of the drive control unit 40 shown in FIG. 5, and in steps S11, S12, and S14 shown in FIG. 5, the current frequency is replaced with the current frequency ω c1. It differs from the processing of the drive control unit 40 shown in FIG. 5 in that ω c2 is used.
 図6は、実施の形態1にかかるゲート駆動部、ゼロクロス検出部、駆動制御部、および安全機能部のハードウェア構成の一例を示す図である。図6に示すように、ゲート駆動部13、ゼロクロス検出部15、駆動制御部40、および安全機能部50の各々は、プロセッサ101と、メモリ102と、インタフェース回路103とを備えるコンピュータを含む。プロセッサ101、メモリ102、およびインタフェース回路103は、バス104によって互いにデータの送受信が可能である。 FIG. 6 is a diagram showing an example of the hardware configuration of the gate drive unit, the zero cross detection unit, the drive control unit, and the safety function unit according to the first embodiment. As shown in FIG. 6, each of the gate drive unit 13, the zero cross detection unit 15, the drive control unit 40, and the safety function unit 50 includes a computer including a processor 101, a memory 102, and an interface circuit 103. The processor 101, the memory 102, and the interface circuit 103 can send and receive data to and from each other by the bus 104.
 ゲート駆動部13のPWM信号生成部71の一部は、インタフェース回路103によって実現される。ゲート駆動部13におけるプロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、PWM信号生成部71および出力周波数算出部72の機能を実行する。ゼロクロス検出部15におけるプロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、電流符号信号生成部61,62の機能を実行する。駆動制御部40におけるプロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、制御信号生成部41、電流周波数算出部42、および監視部43の機能を実行する。また、安全機能部50におけるプロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、電流周波数算出部51および監視部52の機能を実行する。なお、上述した電流周波数算出部42,51における電流符号信号Isig1,Isig2の立ち上がりと立ち下がりの両エッジのカウントは、プロセッサ101のパルスカウンタ機能によって実行される。また、電流周波数算出部42,51は、インタフェース回路103の入力ポートを使用して電流符号信号Isig1,Isig2の反転回数をプロセッサ101がカウントする構成であってもよい。 A part of the PWM signal generation unit 71 of the gate drive unit 13 is realized by the interface circuit 103. The processor 101 in the gate drive unit 13 executes the functions of the PWM signal generation unit 71 and the output frequency calculation unit 72 by reading and executing the program stored in the memory 102. The processor 101 in the zero-cross detection unit 15 executes the functions of the current code signal generation units 61 and 62 by reading and executing the program stored in the memory 102. The processor 101 in the drive control unit 40 executes the functions of the control signal generation unit 41, the current frequency calculation unit 42, and the monitoring unit 43 by reading and executing the program stored in the memory 102. Further, the processor 101 in the safety function unit 50 executes the functions of the current frequency calculation unit 51 and the monitoring unit 52 by reading and executing the program stored in the memory 102. The pulse counter function of the processor 101 executes counting of both rising and falling edges of the current code signals I sig1 and I sig2 in the current frequency calculation units 42 and 51 described above. Further, the current frequency calculation units 42 and 51 may be configured such that the processor 101 counts the number of inversions of the current code signals I sig1 and I sig2 by using the input port of the interface circuit 103.
 プロセッサ101は、処理回路の一例であり、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、およびシステムLSI(Large Scale Integration)のうち1つ以上を含む。メモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、およびEEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)のうち1つ以上を含む。また、メモリ102は、コンピュータが読み取り可能なプログラムが記録された記録媒体を含む。かかる記録媒体は、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルメモリ、光ディスク、コンパクトディスク、およびDVD(Digital Versatile Disc)のうち1つ以上を含む。なお、制御部12は、ASIC(Application Specific Integrated Circuit)およびFPGA(Field Programmable Gate Array)などの集積回路を含んでいてもよい。 The processor 101 is an example of a processing circuit, and includes one or more of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration). The memory 102 is one or more of RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). Including. The memory 102 also includes a recording medium on which a computer-readable program is recorded. Such recording media include one or more of non-volatile or volatile semiconductor memories, magnetic disks, flexible memories, optical disks, compact disks, and DVDs (Digital Versatile Discs). The control unit 12 may include integrated circuits such as an ASIC (Application Specific Integrated Circuit) and an FPGA (Field Programmable Gate Array).
 このように、駆動制御部40および安全機能部50は、プロセッサ101およびプロセッサ101上で動作するプログラムを各々含み、かかる駆動制御部40と安全機能部50とは互いに独立して機能する。 As described above, the drive control unit 40 and the safety function unit 50 include the processor 101 and the program operating on the processor 101, respectively, and the drive control unit 40 and the safety function unit 50 function independently of each other.
 以上のように、実施の形態1にかかる電力変換装置1は、主回路部11と、制御部12と、電流センサ14と、半波整流部80とを備える。主回路部11は、直流電力を交流電力に変換し、変換した交流電力をモータ2へ供給する。制御部12は、主回路部11を制御する。電流センサ14は、主回路部11からモータ2へ供給される電流を検出する。半波整流部80は、電流センサ14から出力される電流検出信号Idetを半波整流する。制御部12は、電流周波数算出部42,51と、監視部43,52とを備える。電流周波数算出部42,51は、半波整流部80によって半波整流された電流検出信号Idetである電流検出信号Idetrの立ち上がりタイミングおよび立ち下がりタイミングの少なくともいずれかに基づいて、電流周波数ωc1,ωc2を検出する。監視部43,52は、電流周波数算出部42,51によって算出された電流周波数ωc1,ωc2に基づいて、モータ2の速度を監視する。これにより、電力変換装置1は、エンコーダなどの外部検出器を使用することなく安全速度監視を行うことができ、また、電力変換装置1は、半波整流波形である電流検出信号Idetrを処理するため、負極性の電源が必要なく、簡易な構成で安全速度監視を行うことができる。 As described above, the power conversion device 1 according to the first embodiment includes a main circuit unit 11, a control unit 12, a current sensor 14, and a half-wave rectifier unit 80. The main circuit unit 11 converts DC power into AC power and supplies the converted AC power to the motor 2. The control unit 12 controls the main circuit unit 11. The current sensor 14 detects the current supplied from the main circuit unit 11 to the motor 2. Half-wave rectifier 80, half-wave rectifying the current detection signal I det output from the current sensor 14. The control unit 12 includes current frequency calculation units 42 and 51 and monitoring units 43 and 52. The current frequency calculation units 42 and 51 use the current frequency ω based on at least one of the rising timing and the falling timing of the current detection signal I detr , which is the current detection signal I det rectified by the half wave rectifying unit 80. Detect c1 and ω c2 . The monitoring units 43 and 52 monitor the speed of the motor 2 based on the current frequencies ω c1 and ω c2 calculated by the current frequency calculation units 42 and 51. As a result, the power conversion device 1 can perform safe speed monitoring without using an external detector such as an encoder, and the power conversion device 1 processes the current detection signal I der which is a half-wave rectified waveform. Therefore, a negative power source is not required, and safe speed monitoring can be performed with a simple configuration.
 また、電力変換装置1は、半波整流部80によって半波整流された電流検出信号Idetrの立ち上がりタイミングと立ち下がりタイミングとを異なる閾値で比較するヒステリシスコンパレータ83を有する。電流周波数算出部42,51は、ヒステリシスコンパレータ83による比較結果から得られる立ち上がりタイミングに基づいて、電流周波数ωc1,ωc2を算出する。これにより、電力変換装置1は、例えば、上述した符号反転閾値Th1と符号反転閾値Th2との差よりも小さい駆動電流のリップルは検出しないことから、耐ノイズ性を高めることができる。そのため、例えば、電流符号信号生成部61,62において、フィルタ82を簡素な構成にすることができる。 Further, the power conversion device 1 includes a hysteresis comparator 83 that compares the rising timing and the falling timing of the current detection signal I detr half-wave rectified by the half-wave rectifying unit 80 with different threshold values . The current frequency calculation units 42 and 51 calculate the current frequencies ω c1 and ω c2 based on the rise timing obtained from the comparison result by the hysteresis comparator 83. As a result, the power conversion device 1 does not detect a ripple of a drive current smaller than the difference between the code inversion threshold Th1 and the code inversion threshold Th2 described above, so that noise resistance can be improved. Therefore, for example, in the current code signal generation units 61 and 62, the filter 82 can have a simple configuration.
 また、監視部43,52は、電流周波数算出部42,51によって算出された電流周波数ωc1,ωc2または電流周波数ωc1,ωc2に正比例する値が規定速度制限値ωthを超える場合、主回路部11からモータ2への交流電力の供給を停止させることができる。これにより、電力変換装置1は、モータ2の速度が規定速度制限値を超える場合に、モータ2を停止させることができる。 Further, when the values directly proportional to the current frequencies ω c1 and ω c2 or the current frequencies ω c1 and ω c2 calculated by the current frequency calculation units 42 and 51 exceed the specified speed limit value ω th , the monitoring units 43 and 52 may be used. The supply of AC power from the main circuit unit 11 to the motor 2 can be stopped. As a result, the power conversion device 1 can stop the motor 2 when the speed of the motor 2 exceeds the specified speed limit value.
 また、監視部43,52は、複数の電流周波数算出部42,51によって各々算出される電流周波数ωc1,ωc2の差が予め設定された規定範囲Rth1外である場合に、主回路部11からモータ2への電力供給を停止させる。これにより、電力変換装置1は、冗長化された監視部43,52間で相互診断を行うことができ、安全信号に応じたモータ2の制御が制御部12で行われていないことを精度よく検出することができる。 Further, the monitoring units 43 and 52 are main circuit units when the difference between the current frequencies ω c1 and ω c2 calculated by the plurality of current frequency calculation units 42 and 51 is outside the preset predetermined range R th1. The power supply from 11 to the motor 2 is stopped. As a result, the power conversion device 1 can perform mutual diagnosis between the redundant monitoring units 43 and 52, and accurately confirm that the control unit 12 does not control the motor 2 in response to the safety signal. Can be detected.
 また、電力変換装置1は、主回路部11をPWM制御するPWM信号を生成するPWM信号生成部71と、主回路部11からモータ2へ出力される交流電圧の周波数である出力周波数ωoutを算出する出力周波数算出部72とを備える。監視部43,52は、電流周波数算出部42,51によって算出される電流周波数ωc1,ωc2と出力周波数算出部72によって算出される出力周波数ωoutとの差が予め設定された規定範囲Rth2外である場合に、主回路部11からモータ2への電力供給を停止させる。これにより、電力変換装置1は、安全信号に応じたモータ2の制御が制御部12で行われていないことを精度よく検出することができる。 Further, the power conversion device 1 has a PWM signal generation unit 71 that generates a PWM signal that PWM-controls the main circuit unit 11, and an output frequency ω out that is a frequency of an AC voltage output from the main circuit unit 11 to the motor 2. It includes an output frequency calculation unit 72 for calculation. The monitoring units 43 and 52 have a predetermined range R in which the difference between the current frequencies ω c1 and ω c2 calculated by the current frequency calculation units 42 and 51 and the output frequency ω out calculated by the output frequency calculation unit 72 is preset. When it is outside th2 , the power supply from the main circuit unit 11 to the motor 2 is stopped. As a result, the power conversion device 1 can accurately detect that the control unit 12 is not controlling the motor 2 in response to the safety signal.
実施の形態2.
 実施の形態2に係る電力変換装置は、機械学習によって生成された計算モデルを用いて電流周波数を算出する点で実施の形態1にかかる電力変換装置1と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の駆動制御システム100と異なる点を中心に説明する。
Embodiment 2.
The power conversion device according to the second embodiment is different from the power conversion device 1 according to the first embodiment in that the current frequency is calculated using the calculation model generated by machine learning. In the following, components having the same functions as those in the first embodiment will be designated by the same reference numerals and description thereof will be omitted, and the differences from the drive control system 100 of the first embodiment will be mainly described.
 図7は、実施の形態2にかかる電力変換装置を含む駆動制御システムの構成例を示す図である。図7に示すように、実施の形態2にかかる駆動制御システム100Aは、電力変換装置1Aと、モータ2と、交流電源3と、安全装置4と、計測装置5とを備える。計測装置5は、外部計測装置の一例である。 FIG. 7 is a diagram showing a configuration example of a drive control system including the power conversion device according to the second embodiment. As shown in FIG. 7, the drive control system 100A according to the second embodiment includes a power conversion device 1A, a motor 2, an AC power supply 3, a safety device 4, and a measuring device 5. The measuring device 5 is an example of an external measuring device.
 電力変換装置1Aは、駆動制御部40および安全機能部50を有する制御部12に代えて、駆動制御部40Aおよび安全機能部50Aを有する制御部12Aを備える点で電力変換装置1と異なる。駆動制御部40Aは、電流周波数算出部42に代えて、電流周波数算出部42Aを備える点で、駆動制御部40と異なる。電流周波数算出部42Aは、機械学習によって生成された計算モデルを用いて電流符号信号Isig1から電流周波数ωc1を算出する。 The power conversion device 1A is different from the power conversion device 1 in that the control unit 12A having the drive control unit 40A and the safety function unit 50A is provided in place of the control unit 12 having the drive control unit 40 and the safety function unit 50. The drive control unit 40A is different from the drive control unit 40 in that the current frequency calculation unit 42A is provided in place of the current frequency calculation unit 42. The current frequency calculation unit 42A calculates the current frequency ω c1 from the current code signal I sig1 using the calculation model generated by machine learning.
 また、安全機能部50Aは、電流周波数算出部51に代えて、電流周波数算出部51Aを備える点で、安全機能部50と異なる。電流周波数算出部51Aは、機械学習によって生成された計算モデルを用いて電流符号信号Isig2から電流周波数ωc2を算出する。電流周波数算出部42Aと電流周波数算出部51Aとは同じ構成であるため、以下においては、電流周波数算出部42Aの構成を具体的に説明し、電流周波数算出部51Aの構成についての説明は省略する。 Further, the safety function unit 50A is different from the safety function unit 50 in that the current frequency calculation unit 51A is provided instead of the current frequency calculation unit 51. The current frequency calculation unit 51A calculates the current frequency ω c2 from the current code signal I sig2 using the calculation model generated by machine learning. Since the current frequency calculation unit 42A and the current frequency calculation unit 51A have the same configuration, the configuration of the current frequency calculation unit 42A will be specifically described below, and the description of the configuration of the current frequency calculation unit 51A will be omitted. ..
 計測装置5は、電力変換装置1Aからモータ2へ供給される交流電流またはモータ2の速度を予め設定された周期で計測し、計測した結果を示すデータである計測値を電力変換装置1Aへ出力する。計測装置5は、例えば、電流検出機能を有するデータロガーなどの計測器である。計測装置5は、例えば、電力変換装置1Aからモータ2へ供給される交流電流の波形を示す電流波形データを計測値として電力変換装置1Aへ出力する。電流波形データは、例えば、DC/ACコンバータ21が電力半導体チップで構成される場合、電力半導体チップに直接計測装置5のプローブなどを付けて得られるデータであって計測によるノイズの影響を受けていない実電流波形を示すデータである。 The measuring device 5 measures the alternating current supplied from the power conversion device 1A to the motor 2 or the speed of the motor 2 at a preset cycle, and outputs a measured value which is data indicating the measurement result to the power conversion device 1A. To do. The measuring device 5 is, for example, a measuring device such as a data logger having a current detection function. The measuring device 5 outputs, for example, current waveform data indicating the waveform of the alternating current supplied from the power conversion device 1A to the motor 2 to the power conversion device 1A as a measured value. For example, when the DC / AC converter 21 is composed of a power semiconductor chip, the current waveform data is data obtained by directly attaching a probe of the measuring device 5 to the power semiconductor chip and is affected by noise due to measurement. It is data showing no real current waveform.
 また、計測装置5は、モータ2に取り付けられたエンコーダであってもよい。この場合、計測装置5は、モータ2の速度を検出する。モータ2の速度は、モータ2の機械角速度であるが、モータ2の電気角速度であってもよい。計測装置5は、例えば、モータ2の回転軸の回転位置を検出し、検出した回転位置の変化からモータ2の速度を検出する。計測装置5は、検出したモータ2の速度を示す速度データを計測値として電力変換装置1Aへ出力する。 Further, the measuring device 5 may be an encoder attached to the motor 2. In this case, the measuring device 5 detects the speed of the motor 2. The speed of the motor 2 is the mechanical angular velocity of the motor 2, but it may be the electric angular velocity of the motor 2. The measuring device 5 detects, for example, the rotation position of the rotation shaft of the motor 2 and detects the speed of the motor 2 from the change in the detected rotation position. The measuring device 5 outputs speed data indicating the detected speed of the motor 2 as a measured value to the power conversion device 1A.
 図8は、実施の形態2にかかる電流周波数算出部の構成例を示す図である。図8に示すように、電流周波数算出部42Aは、第1取得部63と、第2取得部64と、学習部65と、周波数算出部66とを備える。 FIG. 8 is a diagram showing a configuration example of the current frequency calculation unit according to the second embodiment. As shown in FIG. 8, the current frequency calculation unit 42A includes a first acquisition unit 63, a second acquisition unit 64, a learning unit 65, and a frequency calculation unit 66.
 第1取得部63は、ゼロクロス検出部15から出力される電流符号信号Isig1を状態変数として取得する。第2取得部64は、有線通信または無線通信によってネットワークを介して予め設定された周期で計測装置5から計測値を取得する。例えば、第2取得部64は、計測装置5から速度データまたは電流波形データを計測値として取得する。 The first acquisition unit 63 acquires the current code signal I sig1 output from the zero cross detection unit 15 as a state variable. The second acquisition unit 64 acquires the measured value from the measuring device 5 at a preset cycle via the network by wired communication or wireless communication. For example, the second acquisition unit 64 acquires velocity data or current waveform data as measured values from the measuring device 5.
 第2取得部64は、取得した計測値に基づいて電流周波数ωを算出する。電流周波数ωは、電力変換装置1Aからモータ2へ供給される交流電流の周波数である。第2取得部64は、取得した計測値が電流波形データである場合、電流波形データに対して高速フーリエ変換処理を施すことによって、電流周波数ωを算出する。第2取得部64は、取得した計測値が速度データである場合、速度データとモータ2の極数とに基づいて電流周波数ωを算出する。 The second acquisition unit 64 calculates the current frequency ω based on the acquired measured value. The current frequency ω is the frequency of the alternating current supplied from the power converter 1A to the motor 2. When the acquired measured value is the current waveform data, the second acquisition unit 64 calculates the current frequency ω by performing a fast Fourier transform process on the current waveform data. When the acquired measured value is velocity data, the second acquisition unit 64 calculates the current frequency ω based on the velocity data and the number of poles of the motor 2.
 学習部65は、第1取得部63によって取得された電流符号信号Isig1と第2取得部64で算出された電流周波数ωの組み合わせに基づいて作成されるデータセットに従って、学習処理を行い、計算モデルMを生成する。学習部65によって生成される計算モデルは、電流符号信号Isig1を入力として、電流周波数ωc1を出力する計算モデルである。 The learning unit 65 performs learning processing and calculates according to the data set created based on the combination of the current code signal I sig1 acquired by the first acquisition unit 63 and the current frequency ω calculated by the second acquisition unit 64. Generate model M. The calculation model generated by the learning unit 65 is a calculation model in which the current code signal I sig1 is input and the current frequency ω c1 is output.
 学習部65は、例えば、ニューラルネットワークモデルに従って、いわゆる教師あり学習により、学習処理を行い、ニューラルネットワークで構成される計算モデルMを生成する。ここで、教師あり学習とは、ある入力と結果のデータセットを大量に学習装置に与えることで、それらのデータセットにある特徴を学習し、入力から結果を推定する計算モデルを機械学習によって生成する手法である。 The learning unit 65 performs learning processing by so-called supervised learning according to, for example, a neural network model, and generates a calculation model M composed of a neural network. Here, supervised learning is to give a large amount of data sets of inputs and results to a learning device, learn the features in those data sets, and generate a calculation model that estimates the results from the inputs by machine learning. It is a method to do.
 ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層、および複数のニューロンからなる出力層で構成される。中間層は、1層、または3層以上でもよい。また、中間層は、隠れ層とも呼ばれる。 A neural network is composed of an input layer composed of a plurality of neurons, an intermediate layer composed of a plurality of neurons, and an output layer composed of a plurality of neurons. The intermediate layer may be one layer or three or more layers. The mesosphere is also called a hidden layer.
 図9は、実施の形態2にかかる3層のニューラルネットワークの一例を示す図である。学習部65によって図9に示す3層のニューラルネットワークが用いられる場合、複数の入力が複数の入力層X1,X2,X3へ入力されると、入力された値に重みW1が乗算されて中間層Y1,Y2へ入力される。さらに、中間層Y1,Y2へ入力された値にさらに重みW2が乗算されて出力層Z1,Z2,Z3から出力される。この出力結果は、重みW1とW2の値によって変わる。 FIG. 9 is a diagram showing an example of a three-layer neural network according to the second embodiment. When the three-layer neural network shown in FIG. 9 is used by the learning unit 65, when a plurality of inputs are input to the plurality of input layers X1, X2, X3, the input values are multiplied by the weight W1 and the intermediate layer is used. It is input to Y1 and Y2. Further, the weight W2 is further multiplied by the values input to the intermediate layers Y1 and Y2, and the values are output from the output layers Z1, Z2 and Z3. This output result depends on the values of the weights W1 and W2.
 重みW1は、重みw11~w16であり、重みW2は、重みw21~w26である。入力層X1へ入力された値は、重みw11が乗算されて中間層Y1へ入力され、重みw12が乗算されて中間層Y2へ入力される。入力層X2へ入力された値は、重みw13が乗算されて中間層Y1へ入力され、重みw14が乗算されて中間層Y2へ入力される。入力層X3へ入力された値は、重みw15が乗算されて中間層Y1へ入力され、重みw16が乗算されて中間層Y2へ入力される。中間層Y1へ入力された値は、重みw21が乗算されて出力層Z1へ入力され、重みw23が乗算されて出力層Z2へ入力され、重みw25が乗算されて出力層Z3へ入力される。中間層Y2へ入力された値は、重みw22が乗算されて出力層Z1へ入力され、重みw24が乗算されて出力層Z2へ入力され、重みw26が乗算されて出力層Z3へ入力される。 The weights W1 are the weights w11 to w16, and the weights W2 are the weights w21 to w26. The value input to the input layer X1 is multiplied by the weight w11 and input to the intermediate layer Y1, and is multiplied by the weight w12 and input to the intermediate layer Y2. The value input to the input layer X2 is multiplied by the weight w13 and input to the intermediate layer Y1, and is multiplied by the weight w14 and input to the intermediate layer Y2. The value input to the input layer X3 is multiplied by the weight w15 and input to the intermediate layer Y1, and is multiplied by the weight w16 and input to the intermediate layer Y2. The value input to the intermediate layer Y1 is multiplied by the weight w21 and input to the output layer Z1, the weight w23 is multiplied and input to the output layer Z2, and the weight w25 is multiplied and input to the output layer Z3. The value input to the intermediate layer Y2 is multiplied by the weight w22 and input to the output layer Z1, the weight w24 is multiplied and input to the output layer Z2, and the weight w26 is multiplied and input to the output layer Z3.
 計算モデルMに用いられるニューラルネットワークは、電流符号信号Isig1と電流周波数ωとの組み合わせを含むデータセットに従って、いわゆる教師あり学習により、周波数検出方法を学習する。すなわち、計算モデルMに用いられるニューラルネットワークは、入力層に電流符号信号Isig1が入力されて出力層から出力された結果が、計測値から得られる電流周波数ωに近づくように重みW1とW2を調整することで学習処理を行い、計算モデルMを生成する。 The neural network used in the calculation model M learns the frequency detection method by so-called supervised learning according to a data set including a combination of the current code signal I sig1 and the current frequency ω. That is, the neural network used in the calculation model M sets the weights W1 and W2 so that the result of the current code signal I sig1 input to the input layer and output from the output layer approaches the current frequency ω obtained from the measured value. The learning process is performed by adjusting, and the calculation model M is generated.
 また、学習部65は、いわゆる教師なし学習によって、計算モデルMを生成することもできる。教師なし学習とは、入力データのみを大量に機械学習装置に与えることで、入力データがどのような分布をしているか機械学習装置に学習させ、入力データに対応する教師データを与えなくても、入力データに対して圧縮、分類、および整形などを行う計算モデルを機械学習によって生成する手法である。教師なし学習では、データセットにある特徴を似た者どうしにクラスタリングすることなどができる。そして、教師なし学習では、クラスタリングの結果を用いて、何らかの基準を設けてそれを最適にするような出力の割り当てを行うことで、出力を予測することができる。また、教師なし学習と教師あり学習の中間的な問題設定として、半教師あり学習と呼ばれるものもある。半教師あり学習では、一部のみ入力と出力のデータの組が学習に用いられ、それ以外は入力のみのデータが学習に用いられる。 The learning unit 65 can also generate a calculation model M by so-called unsupervised learning. Unsupervised learning is to give a large amount of input data to a machine learning device so that the machine learning device can learn how the input data is distributed without giving the teacher data corresponding to the input data. , It is a method to generate a calculation model that compresses, classifies, and shapes input data by machine learning. In unsupervised learning, features in a dataset can be clustered among similar people. Then, in unsupervised learning, the output can be predicted by using the result of clustering and assigning an output that optimizes it by setting some standard. There is also what is called semi-supervised learning as an intermediate problem setting between unsupervised learning and supervised learning. In semi-supervised learning, only a part of the input and output data set is used for learning, and the other input-only data is used for learning.
 また、計算モデルMに用いられる学習アルゴリズムとして、ニューラルネットワークに代えて、特徴量そのものの抽出を学習する、深層学習(Deep Learning)を用いることもでき、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。 Further, as a learning algorithm used in the calculation model M, instead of the neural network, deep learning, which learns the extraction of the feature amount itself, can be used, and other known methods such as genetic programming, Machine learning may be performed according to functional logic programming, support vector machines, and the like.
 図8に戻って、電流周波数算出部42Aの説明を続ける。学習部65は、生成した計算モデルMを周波数算出部66に設定する。周波数算出部66は、電流符号信号Isig1を計算モデルMに入力することで、計算モデルMに電流周波数ωc1を算出させる。 Returning to FIG. 8, the description of the current frequency calculation unit 42A will be continued. The learning unit 65 sets the generated calculation model M in the frequency calculation unit 66. The frequency calculation unit 66 causes the calculation model M to calculate the current frequency ω c1 by inputting the current code signal I sig1 into the calculation model M.
 電流周波数算出部42Aのハードウェア構成は、図6に示すハードウェア構成と同様である。第1取得部63、第2取得部64、および周波数算出部66の各々の一部は、インタフェース回路103によって実現される。第1取得部63、第2取得部64、学習部65、および周波数算出部66の機能は、プロセッサ101がメモリ102に記憶されたプログラムを読み出して実行することによって実行される。なお、第1取得部63、第2取得部64、学習部65、および周波数算出部66は、それぞれ一部または全部がASICやFPGA等のハードウェアで構成されてもよい。 The hardware configuration of the current frequency calculation unit 42A is the same as the hardware configuration shown in FIG. Each part of the first acquisition unit 63, the second acquisition unit 64, and the frequency calculation unit 66 is realized by the interface circuit 103. The functions of the first acquisition unit 63, the second acquisition unit 64, the learning unit 65, and the frequency calculation unit 66 are executed by the processor 101 reading and executing the program stored in the memory 102. The first acquisition unit 63, the second acquisition unit 64, the learning unit 65, and the frequency calculation unit 66 may be partially or wholly composed of hardware such as an ASIC or FPGA.
 上述した例では、電力変換装置1Aの内部で計算モデルを算出したが、計算モデルMは電力変換装置1Aとは異なる機械学習装置で生成されてもよい。図10は、実施の形態2にかかる電力変換装置を含む駆動制御システムの構成の他の例を示す図である。図10に示す例では、実施の形態2にかかる駆動制御システム100Aは、電力変換装置1Aと、モータ2と、交流電源3と、安全装置4と、計測装置5と、機械学習装置6とを備える。 In the above example, the calculation model was calculated inside the power conversion device 1A, but the calculation model M may be generated by a machine learning device different from the power conversion device 1A. FIG. 10 is a diagram showing another example of the configuration of the drive control system including the power conversion device according to the second embodiment. In the example shown in FIG. 10, the drive control system 100A according to the second embodiment includes a power conversion device 1A, a motor 2, an AC power supply 3, a safety device 4, a measuring device 5, and a machine learning device 6. Be prepared.
 図10に示す電力変換装置1Aの電流周波数算出部42Aは、図8に示す第1取得部63、第2取得部64、および学習部65を有していない点で、図7に示す電流周波数算出部42Aと異なる。図10に示す電流周波数算出部51Aは、図10に示す電流周波数算出部42Aと同様の構成である。 The current frequency calculation unit 42A of the power conversion device 1A shown in FIG. 10 does not have the first acquisition unit 63, the second acquisition unit 64, and the learning unit 65 shown in FIG. 8, and the current frequency shown in FIG. It is different from the calculation unit 42A. The current frequency calculation unit 51A shown in FIG. 10 has the same configuration as the current frequency calculation unit 42A shown in FIG.
 図11は、実施の形態2にかかる機械学習装置の構成例を示す図である。図11に示すように、機械学習装置6は、第1取得部111と、第2取得部112と、学習部113と、記憶部114と、出力部115とを備える。機械学習装置6は、例えば、不図示のネットワークを介して電力変換装置1Aと通信可能に接続される。なお、機械学習装置6は、クラウドサーバ上に配置されてもよい。 FIG. 11 is a diagram showing a configuration example of the machine learning device according to the second embodiment. As shown in FIG. 11, the machine learning device 6 includes a first acquisition unit 111, a second acquisition unit 112, a learning unit 113, a storage unit 114, and an output unit 115. The machine learning device 6 is communicably connected to the power conversion device 1A via, for example, a network (not shown). The machine learning device 6 may be arranged on the cloud server.
 第1取得部111は、電力変換装置1Aから電流符号信号Isig1,Isig2を状態変数として有線通信または無線通信によってネットワークを介して予め設定された周期で取得する。第2取得部112は、計測装置5から計測値を有線通信または無線通信によってネットワークを介して予め設定された周期で取得する。例えば、第2取得部112が取得する計測値は、第2取得部64によって取得される計測値と同じである。第2取得部112は、第2取得部64と同様に、取得した計測値に基づいて電流周波数ωを算出する。 The first acquisition unit 111 acquires the current code signals I sig1 and I sig2 from the power conversion device 1A as state variables at a preset cycle via a network by wired communication or wireless communication. The second acquisition unit 112 acquires the measured value from the measuring device 5 by wired communication or wireless communication at a preset cycle via the network. For example, the measured value acquired by the second acquisition unit 112 is the same as the measured value acquired by the second acquisition unit 64. Similar to the second acquisition unit 64, the second acquisition unit 112 calculates the current frequency ω based on the acquired measured value.
 学習部113は、第1取得部111によって取得された電流符号信号Isig1と第2取得部112によって算出された電流周波数ωの組み合わせに基づいて作成されるデータセットに従って、学習部65と同一の学習処理を行い、計算モデルMを生成する。また、学習部113は、第1取得部111によって取得された電流符号信号Isig2と第2取得部112によって算出された電流周波数ωの組み合わせに基づいて作成されるデータセットに従って、学習部65と同一の学習処理を行い、計算モデルMを生成する。 The learning unit 113 is the same as the learning unit 65 according to the data set created based on the combination of the current code signal I sig1 acquired by the first acquisition unit 111 and the current frequency ω calculated by the second acquisition unit 112. The learning process is performed to generate the calculation model M. Further, the learning unit 113 and the learning unit 65 are in accordance with the data set created based on the combination of the current code signal I sig2 acquired by the first acquisition unit 111 and the current frequency ω calculated by the second acquisition unit 112. The same learning process is performed to generate the calculation model M.
 学習部113は、生成した計算モデルMを記憶部114に記憶する。出力部115は、記憶部114に記憶された計算モデルMの情報を有線通信または無線通信によってネットワークを介して電力変換装置1Aへ送信する。電力変換装置1Aの制御部12Aは、機械学習装置6から送信される計算モデルMの情報を電流周波数算出部42Aおよび電流周波数算出部51Aに設定する。例えば、制御部12Aは、電流符号信号Isig1を用いて生成された計算モデルMを電流周波数算出部42Aに設定し、電流符号信号Isig2を用いて生成された計算モデルMを電流周波数算出部51Aに設定する。 The learning unit 113 stores the generated calculation model M in the storage unit 114. The output unit 115 transmits the information of the calculation model M stored in the storage unit 114 to the power conversion device 1A via the network by wired communication or wireless communication. The control unit 12A of the power conversion device 1A sets the information of the calculation model M transmitted from the machine learning device 6 in the current frequency calculation unit 42A and the current frequency calculation unit 51A. For example, the control unit 12A, the current sign signal to set the calculation model M, which is generated using I sig1 to the current frequency calculator 42A, the current sign signal I sig2 current frequency calculator a calculation model M generated using Set to 51A.
 機械学習装置6のハードウェア構成は、図6に示すハードウェア構成と同様である。第1取得部111、第2取得部112、および出力部115の各々の一部は、インタフェース回路103によって実現される。記憶部114は、メモリ102によって実現される。第1取得部111、第2取得部112、学習部113、および出力部115の機能は、プロセッサ101がメモリ102に記憶されたプログラムを読み出して実行することによって実行される。なお、第1取得部111、第2取得部112、学習部113、および出力部115は、それぞれ一部または全部がASICやFPGA等のハードウェアで構成されてもよい。 The hardware configuration of the machine learning device 6 is the same as the hardware configuration shown in FIG. Each part of the first acquisition unit 111, the second acquisition unit 112, and the output unit 115 is realized by the interface circuit 103. The storage unit 114 is realized by the memory 102. The functions of the first acquisition unit 111, the second acquisition unit 112, the learning unit 113, and the output unit 115 are executed by the processor 101 reading and executing the program stored in the memory 102. The first acquisition unit 111, the second acquisition unit 112, the learning unit 113, and the output unit 115 may be partially or wholly composed of hardware such as an ASIC or FPGA.
 なお、学習部113は、複数の電力変換装置1Aに対して作成されるデータセットに従って、計算モデルMを生成することもできる。また、機械学習装置6は、同一の現場で使用される複数の電力変換装置1Aから電流符号信号Isig1,Isig2を取得することもでき、異なる現場で独立して稼働する複数の電力変換装置1Aから電流符号信号Isig1,Isig2を取得することもできる。さらに、機械学習装置6は、電流符号信号Isig1,Isig2の取得対象となる電力変換装置1Aを途中で追加したり、取得対象としていた電力変換装置1Aを取得対象から除去することもできる。また、ある電力変換装置1Aに関して機械学習によって計算モデルMを生成した機械学習装置6を、これとは別の電力変換装置1Aに取り付け、かかる別の電力変換装置1Aに関して計算モデルMを再学習によって更新することもできる。 The learning unit 113 can also generate the calculation model M according to the data sets created for the plurality of power conversion devices 1A. Further, the machine learning device 6 can also acquire current code signals I sig1 and I sig2 from a plurality of power conversion devices 1A used at the same site, and a plurality of power conversion devices operating independently at different sites. It is also possible to acquire the current code signals I sig1 and I sig2 from 1A. Further, the machine learning device 6 can add the power conversion device 1A to be acquired of the current code signals I sig1 and I sig2 on the way, or can remove the power conversion device 1A to be acquired from the acquisition target. Further, the machine learning device 6 that generated the calculation model M by machine learning for a certain power conversion device 1A is attached to another power conversion device 1A, and the calculation model M is relearned for the other power conversion device 1A. It can also be updated.
 駆動制御部40Aおよび安全機能部50Aのハードウェア構成は、駆動制御部40および安全機能部50のハードウェア構成と同様である。駆動制御部40Aおよび安全機能部50Aの機能は、プロセッサ101がメモリ102に記憶されたプログラムを読み出して実行することによって実行される。なお、駆動制御部40Aおよび安全機能部50Aは、それぞれ一部または全部がASICやFPGA等のハードウェアで構成されてもよい。 The hardware configuration of the drive control unit 40A and the safety function unit 50A is the same as the hardware configuration of the drive control unit 40 and the safety function unit 50. The functions of the drive control unit 40A and the safety function unit 50A are executed by the processor 101 reading and executing the program stored in the memory 102. The drive control unit 40A and the safety function unit 50A may be partially or wholly composed of hardware such as an ASIC or FPGA.
 以上のように、実施の形態2にかかる電力変換装置1Aの電流周波数算出部42A,51Aは、機械学習によって生成される計算モデルを用いて、電流周波数ωc1,ωc2を算出する。これにより、電流周波数ωc1,ωc2を精度よく算出することができる。 As described above, the current frequency calculation units 42A and 51A of the power conversion device 1A according to the second embodiment calculate the current frequencies ω c1 and ω c2 by using the calculation model generated by machine learning. As a result, the current frequencies ω c1 and ω c2 can be calculated accurately.
 また、電流周波数算出部42A,51Aは、電流符号信号Isig1,Isig2と計測装置5によって計測された電流の波形またはモータ2の速度を示す計測値から得られる電流周波数ωとに基づき機械学習によって生成される計算モデルMを有する。電流符号信号Isig1,Isig2の各々は、立ち上がりタイミングおよび立ち下がりタイミングの少なくともいずれかを示す信号の一例である。電流周波数算出部42A,51Aは、計算モデルMに電流符号信号Isig1,Isig2を入力することで、計算モデルMに電流周波数ωc1,ωc2を算出させる。電流センサ14は、モータ2の低速動作時またはモータ2へ供給される電流が低い時などにノイズの影響を受けやすい。電流周波数算出部42A,51Aは、計算モデルMに電流周波数ωc1,ωc2を算出させることによって電流センサ14がノイズの影響を受けた場合であっても、電流周波数ωc1,ωc2を精度よく算出することができる。 Further, the current frequency calculation units 42A and 51A perform machine learning based on the current code signals I sig1 and I sig2 and the current frequency ω obtained from the waveform of the current measured by the measuring device 5 or the measured value indicating the speed of the motor 2. Has a computational model M generated by. Each of the current code signals I sig1 and I sig2 is an example of a signal indicating at least one of a rising timing and a falling timing. The current frequency calculation units 42A and 51A input the current code signals I sig1 and I sig2 into the calculation model M to cause the calculation model M to calculate the current frequencies ω c1 and ω c2 . The current sensor 14 is susceptible to noise when the motor 2 operates at a low speed or when the current supplied to the motor 2 is low. The current frequency calculation units 42A and 51A make the calculation model M calculate the current frequencies ω c1 and ω c2 so that the current frequencies ω c1 and ω c2 are accurate even when the current sensor 14 is affected by noise. It can be calculated well.
 また、電流周波数算出部42A,51Aは、第1取得部63と、第2取得部64と、学習部65とを備える。第1取得部63は、電流符号信号Isig1,Isig2を状態変数として取得する。第2取得部64は、計測装置5から計測値を取得し、取得した計測値に基づいて電流周波数ωを算出する。学習部65は、第1取得部63によって取得された状態変数と第2取得部64によって算出された電流周波数ωとの組み合わせによって作成されるデータセットに基づいて、機械学習によって計算モデルMを生成する。これにより、電力変換装置1Aは、計算モデルMを生成することができるため、電力変換装置1A毎に個体差がある場合であっても、電流周波数ωc1,ωc2を精度よく算出することができる。 Further, the current frequency calculation units 42A and 51A include a first acquisition unit 63, a second acquisition unit 64, and a learning unit 65. The first acquisition unit 63 acquires the current code signals I sig1 and I sig2 as state variables. The second acquisition unit 64 acquires the measured value from the measuring device 5 and calculates the current frequency ω based on the acquired measured value. The learning unit 65 generates a calculation model M by machine learning based on a data set created by a combination of a state variable acquired by the first acquisition unit 63 and a current frequency ω calculated by the second acquisition unit 64. To do. As a result, the power conversion device 1A can generate the calculation model M, so that the current frequencies ω c1 and ω c2 can be calculated accurately even if there are individual differences for each power conversion device 1A. it can.
 また、実施の形態2にかかる駆動制御システム100Aは、計算モデルMを生成する機械学習装置6を備える。機械学習装置6は、第1取得部111と、第2取得部112と、学習部113とを備える。第1取得部111は、電流符号信号Isig1,Isig2を状態変数として取得する。第2取得部112は、計測装置5から計測値を取得し、取得した計測値に基づいて電流周波数ωを算出する。学習部113は、第1取得部111によって取得された状態変数と第2取得部112によって算出された電流周波数ωとの組み合わせによって作成されるデータセットに基づいて、機械学習によって計算モデルMを生成する。これにより、機械学習装置6は、例えば、複数の電力変換装置1Aに共通の計算モデルMを生成することができるため、電力変換装置1A毎の計算モデルMを生成する場合に比べ、計算モデルMを容易に生成することができる。 Further, the drive control system 100A according to the second embodiment includes a machine learning device 6 that generates a calculation model M. The machine learning device 6 includes a first acquisition unit 111, a second acquisition unit 112, and a learning unit 113. The first acquisition unit 111 acquires the current code signals I sig1 and I sig2 as state variables. The second acquisition unit 112 acquires the measured value from the measuring device 5, and calculates the current frequency ω based on the acquired measured value. The learning unit 113 generates a calculation model M by machine learning based on a data set created by a combination of a state variable acquired by the first acquisition unit 111 and a current frequency ω calculated by the second acquisition unit 112. To do. As a result, the machine learning device 6 can generate, for example, a calculation model M common to a plurality of power conversion devices 1A, so that the calculation model M is compared with the case where the calculation model M for each power conversion device 1A is generated. Can be easily generated.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,1A 電力変換装置、2 モータ、3 交流電源、4 安全装置、5 計測装置、6 機械学習装置、11 主回路部、12,12A 制御部、13 ゲート駆動部、14 電流センサ、15 ゼロクロス検出部、16 表示器、20 AC/DCコンバータ、21 DC/ACコンバータ、22 3相ダイオードブリッジ、23 平滑コンデンサ、31,32,33,34,35,36 スイッチング素子、40,40A 駆動制御部、41 制御信号生成部、42,42A,51,51A 電流周波数算出部、43,52 監視部、44,53 電流周波数自己診断部、45,54 電流周波数相互診断部、46,55 出力周波数自己診断部、50,50A 安全機能部、61,62 電流符号信号生成部、63,111 第1取得部、64,112 第2取得部、65,113 学習部、66 周波数算出部、71 PWM信号生成部、72 出力周波数算出部、80 半波整流部、81 オペアンプ、82 フィルタ、83 ヒステリシスコンパレータ、91 コンパレータ、92,93,94,95,96 抵抗、100,100A 駆動制御システム、114 記憶部、115 出力部、Idet,Idetr 電流検出信号、Isig1,Isig2 電流符号信号、Rth1,Rth2 規定範囲、Th1,Th2 符号反転閾値、ωc1,ωc2 電流周波数、ωout 出力周波数、ωth 規定速度制限値。 1,1A power converter, 2 motor, 3 AC power supply, 4 safety device, 5 measuring device, 6 machine learning device, 11 main circuit section, 12, 12A control section, 13 gate drive section, 14 current sensor, 15 zero cross detection Unit, 16 display, 20 AC / DC converter, 21 DC / AC converter, 22 3-phase diode bridge, 23 smoothing capacitor, 31, 32, 33, 34, 35, 36 switching element, 40, 40A drive control unit, 41 Control signal generation unit, 42,42A, 51,51A Current frequency calculation unit, 43,52 monitoring unit, 44,53 current frequency self-diagnosis unit, 45,54 current frequency mutual diagnosis unit, 46,55 output frequency self-diagnosis unit, 50, 50A Safety function unit, 61, 62 Current code signal generation unit, 63,111 1st acquisition unit, 64,112 2nd acquisition unit, 65,113 Learning unit, 66 frequency calculation unit, 71 PWM signal generation unit, 72 Output frequency calculation unit, 80 half-wave rectifier unit, 81 optoelectronic unit, 82 filter, 83 hysteresis comparator, 91 comparator, 92, 93, 94, 95, 96 resistance, 100, 100A drive control system, 114 storage unit, 115 output unit, I det , I detr current detection signal, I sig1 , I sig2 current code signal, R th1 , R th2 specified range, Th1, Th2 code inversion threshold, ω c1 , ω c2 current frequency, ω out output frequency, ω th specified speed Limit value.

Claims (11)

  1.  直流電力を交流電力に変換し、変換した交流電力をモータへ供給する主回路部と、
     前記主回路部を制御する制御部と、
     前記主回路部から前記モータへ供給される電流を検出する電流センサと、
     前記電流センサから出力される電流検出信号を半波整流する半波整流部と、を備え、
     前記制御部は、
     前記半波整流部によって半波整流された電流検出信号の立ち上がりタイミングおよび立ち下がりタイミングの少なくともいずれかに基づいて、前記電流の周波数である電流周波数を算出する電流周波数算出部と、
     前記電流周波数算出部によって算出された電流周波数に基づいて、前記モータの速度を監視する監視部と、を備える
     ことを特徴とする電力変換装置。
    The main circuit section that converts DC power to AC power and supplies the converted AC power to the motor.
    A control unit that controls the main circuit unit and
    A current sensor that detects the current supplied from the main circuit to the motor, and
    A half-wave rectifier for half-wave rectifying the current detection signal output from the current sensor is provided.
    The control unit
    A current frequency calculation unit that calculates the current frequency, which is the frequency of the current, based on at least one of the rise timing and the fall timing of the current detection signal half-wave rectified by the half-wave rectifier unit.
    A power conversion device including a monitoring unit that monitors the speed of the motor based on the current frequency calculated by the current frequency calculation unit.
  2.  前記半波整流部によって半波整流された電流検出信号の立ち上がりタイミングと立ち下がりタイミングとを異なる閾値で比較するヒステリシスコンパレータを有し、
     前記電流周波数算出部は、
     前記ヒステリシスコンパレータによる比較結果から得られる前記立ち上がりタイミングおよび前記立ち下がりタイミングに基づいて、前記電流周波数を算出する
     ことを特徴とする請求項1に記載の電力変換装置。
    It has a hysteresis comparator that compares the rising timing and falling timing of the current detection signal half-wave rectified by the half-wave rectifier with different threshold values.
    The current frequency calculation unit
    The power conversion device according to claim 1, wherein the current frequency is calculated based on the rising timing and the falling timing obtained from the comparison result by the hysteresis comparator.
  3.  前記監視部は、
     前記電流周波数算出部によって算出された電流周波数または前記電流周波数に正比例する値が規定速度制限値を超える場合、前記主回路部から前記モータへの電力供給を停止させる
     ことを特徴とする請求項1または2に記載の電力変換装置。
    The monitoring unit
    Claim 1 is characterized in that when the current frequency calculated by the current frequency calculation unit or a value directly proportional to the current frequency exceeds a specified speed limit value, the power supply from the main circuit unit to the motor is stopped. Or the power conversion device according to 2.
  4.  前記電流周波数算出部を複数備え、
     前記監視部は、
     複数の前記電流周波数算出部によって各々算出される前記電流周波数の差が予め設定された範囲外である場合に、前記主回路部から前記モータへの電力供給を停止させる
     ことを特徴とする請求項3に記載の電力変換装置。
    A plurality of the current frequency calculation units are provided.
    The monitoring unit
    The claim is characterized in that the power supply from the main circuit unit to the motor is stopped when the difference between the current frequencies calculated by each of the plurality of current frequency calculation units is out of a preset range. The power conversion device according to 3.
  5.  前記主回路部をPWM制御するPWM信号を生成するPWM信号生成部と、
     前記主回路部から前記モータへ出力される交流電圧の周波数である出力周波数を算出する出力周波数算出部と、を備え、
     前記監視部は、
     前記電流周波数算出部によって算出される前記電流周波数と前記出力周波数算出部によって算出される前記出力周波数との差が予め設定された範囲外である場合に、前記主回路部から前記モータへの電力供給を停止させる
     ことを特徴とする請求項3または4に記載の電力変換装置。
    A PWM signal generation unit that generates a PWM signal that PWM-controls the main circuit unit,
    It includes an output frequency calculation unit that calculates an output frequency that is a frequency of an AC voltage output from the main circuit unit to the motor.
    The monitoring unit
    When the difference between the current frequency calculated by the current frequency calculation unit and the output frequency calculated by the output frequency calculation unit is out of the preset range, the power from the main circuit unit to the motor The power conversion device according to claim 3 or 4, wherein the supply is stopped.
  6.  前記電流周波数算出部は、
     機械学習によって生成される計算モデルを用いて、前記電流周波数を算出する
     ことを特徴とする請求項1から5のいずれか1つに記載の電力変換装置。
    The current frequency calculation unit
    The power conversion device according to any one of claims 1 to 5, wherein the current frequency is calculated by using a calculation model generated by machine learning.
  7.  前記計算モデルは、
     前記立ち上がりタイミングおよび前記立ち下がりタイミングの少なくともいずれかを示す信号と外部計測装置によって計測された前記電流の波形または前記モータの速度を示す計測値から得られる前記電流の周波数とに基づき機械学習によって生成され、
     前記電流周波数算出部は、
     前記計算モデルに前記立ち上がりタイミングおよび前記立ち下がりタイミングの少なくともいずれかを示す信号を入力することで、前記計算モデルに前記電流周波数を算出させる
     ことを特徴とする請求項6に記載の電力変換装置。
    The calculation model is
    Generated by machine learning based on a signal indicating at least one of the rising timing and the falling timing and the frequency of the current obtained from the waveform of the current measured by an external measuring device or the measured value indicating the speed of the motor. Being done
    The current frequency calculation unit
    The power conversion device according to claim 6, further comprising causing the calculation model to calculate the current frequency by inputting a signal indicating at least one of the rise timing and the fall timing into the calculation model.
  8.  前記立ち上がりタイミングおよび前記立ち下がりタイミングの少なくともいずれかを示す信号を状態変数として取得する第1取得部と、
     前記外部計測装置から前記計測値を取得し、取得した前記計測値に基づいて前記電流の周波数を算出する第2取得部と、
     前記第1取得部によって取得された前記状態変数と前記第2取得部によって算出された前記電流の周波数との組み合わせによって作成されるデータセットに基づいて、機械学習によって前記計算モデルを生成する学習部と、を備える
     ことを特徴とする請求項7に記載の電力変換装置。
    A first acquisition unit that acquires a signal indicating at least one of the rising timing and the falling timing as a state variable, and
    A second acquisition unit that acquires the measured value from the external measuring device and calculates the frequency of the current based on the acquired measured value.
    A learning unit that generates the calculation model by machine learning based on a data set created by a combination of the state variable acquired by the first acquisition unit and the frequency of the current calculated by the second acquisition unit. The power conversion device according to claim 7, further comprising:
  9.  請求項7に記載の電力変換装置と、
     前記計算モデルを生成する機械学習装置と、を備え、
     前記機械学習装置は、
     前記立ち上がりタイミングおよび前記立ち下がりタイミングの少なくともいずれかを示す信号を状態変数として取得する第1取得部と、
     前記外部計測装置から前記計測値を取得し、取得した前記計測値に基づいて前記電流の周波数を算出する第2取得部と、
     前記第1取得部によって取得された前記状態変数と前記第2取得部によって算出された前記電流の周波数との組み合わせによって作成されるデータセットに基づいて、機械学習によって前記計算モデルを生成する学習部と、を備える
     ことを特徴とする駆動制御システム。
    The power conversion device according to claim 7 and
    A machine learning device that generates the calculation model, and
    The machine learning device
    A first acquisition unit that acquires a signal indicating at least one of the rising timing and the falling timing as a state variable, and
    A second acquisition unit that acquires the measured value from the external measuring device and calculates the frequency of the current based on the acquired measured value.
    A learning unit that generates the calculation model by machine learning based on a data set created by a combination of the state variable acquired by the first acquisition unit and the frequency of the current calculated by the second acquisition unit. A drive control system characterized by being equipped with.
  10.  モータへ供給される電流を検出する電流センサから出力され半波整流された電流検出信号の立ち上がりタイミングおよび立ち下がりタイミングの少なくともいずれかを示す信号を状態変数として取得する第1取得部と、
     外部計測装置によって計測された前記電流の波形または前記モータの速度を示す計測値を取得し、取得した前記計測値に基づいて前記電流の周波数を算出する第2取得部と、
     前記第1取得部によって取得された前記状態変数と前記第2取得部によって算出された前記電流の周波数との組み合わせによって作成されるデータセットに基づいて、機械学習によって計算モデルを生成する学習部と、を備える
     ことを特徴とする機械学習装置。
    A first acquisition unit that acquires at least one of the rising timing and falling timing of the half-wave rectified current detection signal output from the current sensor that detects the current supplied to the motor as a state variable.
    A second acquisition unit that acquires the waveform of the current measured by an external measuring device or a measured value indicating the speed of the motor, and calculates the frequency of the current based on the acquired measured value.
    A learning unit that generates a calculation model by machine learning based on a data set created by a combination of the state variable acquired by the first acquisition unit and the frequency of the current calculated by the second acquisition unit. A machine learning device characterized by:
  11.  直流電力を交流電力に変換し、変換した交流電力をモータへ供給する主回路部から前記モータへ供給される電流を電流センサで検出するステップと、
     前記電流センサから出力され半波整流部で半波整流された電流検出信号の立ち上がりタイミングおよび立ち下がりタイミングの少なくともいずれかに基づいて、前記電流の周波数である電流周波数を算出するステップと、
     前記算出された電流周波数に基づいて、前記モータの速度を監視するステップと、を含む
     ことを特徴とするモータ監視方法。
     
    A step of converting DC power into AC power and detecting the current supplied to the motor from the main circuit unit that supplies the converted AC power to the motor with a current sensor.
    A step of calculating the current frequency, which is the frequency of the current, based on at least one of the rising timing and the falling timing of the current detection signal output from the current sensor and half-wave rectified by the half-wave rectifier unit.
    A motor monitoring method comprising a step of monitoring the speed of the motor based on the calculated current frequency.
PCT/JP2019/045711 2019-03-18 2019-11-21 Power conversion device, drive control system, machine learning device, and motor monitoring method WO2020188886A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/429,635 US11362614B2 (en) 2019-03-18 2019-11-21 Power conversion apparatus, drive control system, machine learning apparatus, and motor monitoring method
JP2020515994A JP6704560B1 (en) 2019-03-18 2019-11-21 Power conversion device, drive control system, machine learning device, and motor monitoring method
DE112019006863.6T DE112019006863T5 (en) 2019-03-18 2019-11-21 Power conversion device, operation control system, machine learning device, and engine monitoring method
CN201980093995.1A CN113574791B (en) 2019-03-18 2019-11-21 Power conversion device, drive control system, machine learning device, and motor monitoring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/011139 WO2020188693A1 (en) 2019-03-18 2019-03-18 Power converter and motor monitoring method
JPPCT/JP2019/011139 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020188886A1 true WO2020188886A1 (en) 2020-09-24

Family

ID=72520635

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/011139 WO2020188693A1 (en) 2019-03-18 2019-03-18 Power converter and motor monitoring method
PCT/JP2019/045711 WO2020188886A1 (en) 2019-03-18 2019-11-21 Power conversion device, drive control system, machine learning device, and motor monitoring method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011139 WO2020188693A1 (en) 2019-03-18 2019-03-18 Power converter and motor monitoring method

Country Status (3)

Country Link
CN (1) CN113574791B (en)
DE (1) DE112019006863T5 (en)
WO (2) WO2020188693A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100018689A1 (en) * 2021-07-15 2023-01-15 Ferrari Spa PROCEDURE AND APPARATUS FOR CONTROLLING AN ELECTRIC MOTOR

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835712A (en) * 1994-07-26 1996-02-06 Fujitsu General Ltd Controller for air conditioner
US20130249450A1 (en) * 2012-03-20 2013-09-26 Samsung Electronics Co., Ltd. Sensorless control apparatuses and control methods thereof
WO2018070012A1 (en) * 2016-10-13 2018-04-19 三菱電機株式会社 Power conversion apparatus, motor drive control device, blower, compressor and air conditioner
WO2018159274A1 (en) * 2017-02-28 2018-09-07 株式会社日立産機システム Ac electric motor control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB992730A (en) * 1962-09-17 1965-05-19 Ass Elect Ind Improvements in control systems for a.c. motors
KR102272044B1 (en) * 2014-02-17 2021-07-05 삼성전자주식회사 Apparatus and method of driving a plurality of permanent magnet synchronous motors using single inverter
CN106664043B (en) 2014-10-01 2019-08-20 株式会社日立产机系统 Power inverter, power transferring method and power conversion system
CN105471362B (en) * 2015-11-27 2018-06-26 深圳市瑞凌实业股份有限公司 Motor rotation-speed control circuit and motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835712A (en) * 1994-07-26 1996-02-06 Fujitsu General Ltd Controller for air conditioner
US20130249450A1 (en) * 2012-03-20 2013-09-26 Samsung Electronics Co., Ltd. Sensorless control apparatuses and control methods thereof
WO2018070012A1 (en) * 2016-10-13 2018-04-19 三菱電機株式会社 Power conversion apparatus, motor drive control device, blower, compressor and air conditioner
WO2018159274A1 (en) * 2017-02-28 2018-09-07 株式会社日立産機システム Ac electric motor control device

Also Published As

Publication number Publication date
DE112019006863T5 (en) 2021-11-04
CN113574791B (en) 2022-10-28
CN113574791A (en) 2021-10-29
WO2020188693A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
CN105391364B (en) A kind of brushless direct current motor sensorless control system and control method
US9825579B2 (en) Temperature estimating apparatus for synchronous motor
JP6704560B1 (en) Power conversion device, drive control system, machine learning device, and motor monitoring method
US20080203960A1 (en) Method and apparatus for estimating system inertia where number of motor rotations are restricted
CN107223305A (en) Monitoring arrangement and monitoring method and control device and control method with them
WO2013155844A1 (en) Three-phase ac phase-sequence detection method and device
US9146166B2 (en) Method and apparatus for determining an electrical torque of an electrical machine
CN104854009B (en) Elevator speed control
CN105850029A (en) Power conversion device
WO2020188886A1 (en) Power conversion device, drive control system, machine learning device, and motor monitoring method
US8368420B2 (en) Method of error detection when controlling a rotating-field motor
US20190162773A1 (en) Motor driving device and measuring method
JP2020188540A (en) Power conversion device, system including the same, and diagnostic method thereof
JP6420405B1 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP2016208656A (en) Power conversion device and safety monitoring device
EP3133732B1 (en) Power conversion device and power conversion method
Sapena-Baño et al. Condition monitoring of electrical machines using low computing power devices
US10425016B2 (en) Method for controlling medium-voltage inverter and system comprising the same
JP6359691B2 (en) Power converter and control method of power converter
JPH04161086A (en) Motor controller
CN112952757B (en) Electric drive system with individual diagnostics and method and apparatus for controlling same
El-Sebah et al. A Proposed Fault Diagnostics Technique for Induction Motor Stator Winding
JP6975060B2 (en) Motor drive for estimating stray capacitance
CN109905064B (en) Method, device and equipment for determining electric angle of motor
CN104796062A (en) Power conversion device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020515994

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919897

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19919897

Country of ref document: EP

Kind code of ref document: A1