WO2020188769A1 - Dc power supply device, motor drive device, air conditioning device, refrigerator, and heat pump hot-water supply device - Google Patents

Dc power supply device, motor drive device, air conditioning device, refrigerator, and heat pump hot-water supply device Download PDF

Info

Publication number
WO2020188769A1
WO2020188769A1 PCT/JP2019/011543 JP2019011543W WO2020188769A1 WO 2020188769 A1 WO2020188769 A1 WO 2020188769A1 JP 2019011543 W JP2019011543 W JP 2019011543W WO 2020188769 A1 WO2020188769 A1 WO 2020188769A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
motor
supply device
circuit
Prior art date
Application number
PCT/JP2019/011543
Other languages
French (fr)
Japanese (ja)
Inventor
章斗 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/011543 priority Critical patent/WO2020188769A1/en
Priority to JP2021506910A priority patent/JP7198344B2/en
Publication of WO2020188769A1 publication Critical patent/WO2020188769A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention is a DC power supply device including a booster circuit in which a plurality of series circuits composed of a reactor and a switching element are connected in parallel, a motor drive device including the DC power supply device, an air conditioner, a refrigerator and a heat pump hot water supply. Regarding the device.
  • the output of the rectifier circuit is branched into a plurality of current paths, and a plurality of series circuits composed of a reactor and a switching element are provided in parallel with each other.
  • the switching element is off, the current output from the reactors provided in each of the plurality of series circuits is supplied to the smoothing capacitor via the backflow prevention diode.
  • the voltage output from the smoothing capacitor can be boosted by adjusting the duedy ratio of the switching element.
  • the switching elements provided in each of the plurality of series circuits are driven in different phases.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a DC power supply device capable of suppressing abnormal heat generation of parts.
  • the DC power supply device includes a rectifier circuit that rectifies an AC voltage output from an AC power supply, a plurality of reactors, a plurality of switching elements, and a plurality of backflows. It has a prevention element and includes a booster circuit that boosts the voltage rectified by the rectifier circuit. Further, the DC power supply device includes a smoothing capacitor that smoothes the output voltage, which is the voltage output from the booster circuit, and a voltage detection unit that detects the voltage across the smoothing capacitor.
  • the DC power supply device determines and determines the duty ratio of the plurality of switching elements to a predetermined value greater than 0 and equal to or less than the threshold value.
  • a control unit that controls a plurality of switching elements based on the calculated duty ratio is provided.
  • the DC power supply device has the effect of suppressing abnormal heat generation of parts.
  • the DC power supply device, motor drive device, air conditioner, refrigerator and heat pump hot water supply device according to the embodiment of the present invention will be described in detail below with reference to the drawings.
  • the present invention is not limited to this embodiment.
  • FIG. 1 is a diagram showing a configuration example of a DC power supply device according to a first embodiment of the present invention.
  • the DC power supply device 100 can convert the AC power supplied from the AC power source 1 which is a single-phase AC power source into DC power, and then boost the DC power and output the DC power.
  • the DC power supply device 100 is provided between the inrush prevention circuit 3 which is an inrush current prevention circuit for preventing the inrush current, and the AC power supply 1 and the inrush prevention circuit 3, and is superimposed on the current output from the AC power supply 1. It is provided with a noise filter 2 for reducing high-frequency noise.
  • the DC power supply device 100 further includes a rectifier circuit 4 that rectifies the AC voltage output from the AC power supply 1 via the noise filter 2 and the inrush prevention circuit 3, and a booster circuit 20 that boosts the voltage rectified by the rectifier circuit 4. And a smoothing capacitor 8 for smoothing the voltage output from the booster circuit 20.
  • the DC power supply device 100 is further arranged between the shunt resistance 9 for detecting the primary current connected to the negative end of the booster circuit 20 and the rectifying circuit 4 and the shunt resistance 9, and is the primary current of the power supply.
  • a primary current detection circuit 10 which is a current detection circuit for detecting a current, and a voltage detection unit 12 for detecting a voltage across the smoothing capacitor 8 are provided.
  • the DC power supply device 100 further includes a control unit 11 that controls the booster circuit 20.
  • the inrush prevention circuit 3 is provided to prevent the parts from being destroyed by the inrush current.
  • the AC power supplied from the AC power supply 1 is full-wave rectified by the rectifier circuit 4 via the noise filter 2 and the inrush prevention circuit 3, boosted by the booster circuit 20, and smoothed by the smoothing capacitor 8.
  • the booster circuit 20 includes three reactors 5, three switching elements 6, and three backflow prevention diodes 7.
  • One reactor 5 and one switching element 6 form one series circuit.
  • three series circuits are connected in parallel, but the number of series circuits connected in parallel is not limited to three, and may be two or four or more. That is, the booster circuit 20 may have a plurality of reactors 5, a plurality of switching elements 6, and a plurality of backflow prevention diodes 7.
  • the midpoint of each series circuit is connected to the positive electrode of the smoothing capacitor 8 via the backflow prevention diode 7.
  • Each core of the three reactors 5 includes the circuit configuration of the DC power supply device 100, the control method by the control unit 11, the power conversion efficiency of the DC power supply device 100, the amount of heat generated by the DC power supply device 100, and the weight of the DC power supply device 100. , The selection may be made in consideration of factors such as the volume of the DC power supply device 100.
  • Each of the three switching elements 6 is, for example, an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • Each of the three backflow prevention diodes 7 is an example of a backflow prevention element.
  • the anode of the backflow prevention diode 7 is connected to the reactor 5 and the switching element 6, and the cathode is connected to the smoothing capacitor 8.
  • the shunt resistor 9 is provided for detecting the primary current, and one end thereof is connected to one end of the booster circuit 20, specifically, the emitter or source of the switching element 6.
  • the other end of the shunt resistor 9 is connected to a connection line connecting the negative terminal of the rectifier circuit 4 and the negative electrode of the smoothing capacitor 8.
  • the connection line connecting the negative terminal of the rectifier circuit 4 and the negative electrode of the smoothing capacitor 8 is between the connection point 13 where the shunt resistor 9 is connected and the negative terminal of the rectifier circuit 4. It is provided in.
  • the primary current detection circuit 10 detects the current flowing between the rectifier circuit 4 and the booster circuit 20 as the primary current.
  • the primary current detection circuit 10 outputs the detection result of the primary current to the control unit 11.
  • the smoothing capacitor 8 is full-wave rectified by the rectifier circuit 4 and smoothes the voltage boosted by the booster circuit 20.
  • the positive electrode of the smoothing capacitor 8 is connected to the cathode of the backflow prevention diode 7, and the negative electrode of the smoothing capacitor 8 is connected to the shunt resistor 9 and the primary current detection circuit 10.
  • the control unit 11 is connected to the primary current detection circuit 10 and also to the voltage detection unit 12.
  • the control unit 11 acquires the detection result of the primary current from the primary current detection circuit 10, and acquires the detection result of the voltage across the smoothing capacitor 8 from the voltage detection unit 12. Further, although not shown, the control unit 11 is connected to each switching element 6 and sends a PWM (Pulse Width Modulation) control signal for controlling on / off of each switching element 6 to each switching element 6. Output.
  • the control unit 11 generates a PWM signal so that the switching elements 6 are not simultaneously turned on, specifically, the periods during which the switching elements 6 are turned on are shifted from each other.
  • control unit 11 sets the target voltage and the primary current so that the output voltage, which is the voltage boosted by the booster circuit 20, becomes the target voltage which is the target value of the output voltage and is a predetermined value.
  • the switching duty ratio which is the duty ratio of each switching element 6, is determined based on the detection result and the voltage value, and the PWM signal is generated based on the switching duty ratio.
  • a method for determining the switching duty ratio of each switching element 6 such that the voltage boosted by the booster circuit 20 becomes the target voltage a general method can be used, and there are no particular restrictions, so detailed description thereof will be omitted. ..
  • the control unit 11 is realized by a processing circuit.
  • This processing circuit may be a control circuit including a processor, or may be dedicated hardware.
  • FIG. 2 is a diagram showing a configuration example of a control circuit including the processor of the present embodiment.
  • the control circuit 200 includes a processor 201 and a memory 202.
  • the processor 201 is a CPU (also referred to as a Central Processing Unit, a central processing unit, a processing unit, a computing device, a microprocessor, a microprocessor, a processor, or a DSP (Digital Signal Processor)).
  • the memory 202 corresponds to, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), or a flash memory.
  • control unit 11 When the control unit 11 is realized by the control circuit 200 shown in FIG. 2, the control unit 11 is realized by the processor 201 reading and executing the program stored in the memory 202.
  • the memory 202 is also used as a temporary memory in each process performed by the processor 201.
  • the processing circuit is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable). Gate Array) or a combination of these.
  • the control unit 11 may be realized by combining a processing circuit and a control circuit, which are dedicated hardware.
  • the switching duty ratio becomes 0 when a voltage exceeding the boost target voltage is input.
  • the control unit 11 targets the detection value of the voltage across the smoothing capacitor 8 (hereinafter, simply referred to as the voltage detection value).
  • the duty ratio of the plurality of switching elements 6 is determined to be a predetermined value greater than 0 and equal to or less than the threshold value, and the plurality of switching elements 6 are controlled based on the determined duty ratio.
  • An example of this predetermined value is a defined minimum value. That is, the control unit 11 operates the switching element 6 with, for example, the specified minimum switching duty ratio.
  • the specified minimum switching duty ratio is, for example, the minimum switching duty ratio that can be set in the DC power supply device 100.
  • an example of the above-mentioned predetermined value is a settable minimum value.
  • the minimum switching duty ratio is determined, for example, by the switching characteristics of the switching element and the delay caused by the circuit specifications, such as the delay caused by the RC filter, the photocoupler, and the like. Further, the switching element has restrictions such as an allowable minimum pulse width. The minimum switching duty ratio is determined, for example, to meet these constraints. In the following, an example in which the specified minimum switching duty ratio is used when the detected value of the voltage across the smoothing capacitor 8 is equal to or higher than the target voltage will be described, but the switching is not limited to the minimum, and for example, switching below the threshold value. It may be a duty ratio.
  • FIG. 3 is a flowchart showing an example of the operation in the control unit 11 of the DC power supply device 100 of the present embodiment.
  • the control unit 11 stops all the switching elements 6.
  • the control unit 11 acquires the detection results of the primary current and the voltage (step S2).
  • the control unit 11 acquires the detection result of the primary current from the primary current detection circuit 10, and acquires the detection result of the voltage, that is, the voltage across the smoothing capacitor 8 from the voltage detection unit 12.
  • the primary current detection circuit 10 and the voltage detection unit 12 may periodically output the detection result to the control unit 11, and the control unit 11 transmits the detection result to the primary current detection circuit 10 and the voltage detection unit 12. By instructing, the detection result may be acquired from the primary current detection circuit 10 and the voltage detection unit 12.
  • the control unit 11 determines whether or not at least one of the primary current and the voltage is within the abnormal range (step S3).
  • the anomaly range is predetermined for each of the primary current and voltage.
  • the abnormal range is a range outside the normal range.
  • the upper limit of the normal range is set to a voltage that satisfies the withstand voltage restrictions of, for example, the power module and the capacitor to be used.
  • the lower limit of the normal range is set according to the current withstand capacity on the load side, the inrush current withstand capacity, and the like. For example, if the voltage cannot be boosted to the target voltage for some reason during operation and the DC voltage drops, the current on the load side including the inverter will increase, and electronic components may fail or the performance may deteriorate. is there.
  • step S3 Yes when at least one of the primary current and the voltage is within the abnormal range (step S3 Yes), the control unit 11 determines that it is abnormal and stops the operation of the switching element 6. That is, the control unit 11 detects an abnormality based on at least one of the current detected by the primary current detection circuit 10 and the voltage detected by the voltage detection unit 12, and when the abnormality is detected, a plurality of switching elements. Stop the operation of 6. Further, at this time, the control unit 11 may notify the user by notifying the outside of the abnormality or displaying it on a display unit (not shown).
  • a phase loss may occur in the booster circuit 20 due to disconnection of the reactor 5, failure of the switching element 6, or the like. If the boosting operation is continued in the open phase state, the energy supplied to the smoothing capacitor 8 may be insufficient depending on the size of the load connected to the subsequent stage of the DC power supply device 100, and the load cannot be continuously operated. there is a possibility. For example, when the DC power supply device 100 is used for an air conditioner or the like, the inability to continuously operate the air conditioner or the like causes a problem that comfort and energy saving are impaired. Therefore, in the present embodiment, the abnormal ranges of the primary current and the voltage are defined as the ranges assumed to be in the open phase state, and switching is performed when at least one of the primary current and the voltage is within the abnormal range. By stopping the operation of the element 6, it is possible to prevent the boosting operation from continuing in a state where the phase is open.
  • both ends of the smoothing capacitor 8 are used. There is a possibility that the voltage exceeds the target voltage, or the control becomes unstable and the voltage across the smoothing capacitor 8 becomes a voltage lower than the target voltage. If a range higher than the target voltage by a certain value or more and a range lower than the target voltage by a certain value or more are defined as the abnormal voltage range, Yes is determined in step S3 after step S6 via step S7, and the switching element. 6 can be stopped.
  • step S3 No the control unit 11 determines whether or not the detected voltage, that is, the detection result of the voltage detection unit 12 is less than the target voltage (step S3 No). S4).
  • step S4 Yes the control unit 11 determines the switching duty ratio based on the target voltage, the detected primary current and the voltage (step S5). Then, the control unit 11 generates a PWM signal based on the determined switching duty ratio and outputs the PWM signal to the switching element 6 (step S6), and repeats the processing from step S2.
  • step S7 determines the switching duty ratio to the specified minimum switching duty ratio (step S7), and proceeds to the process of step S6.
  • the control unit 11 determines the switching duty ratio to the specified minimum switching duty ratio (step S7), and proceeds to the process of step S6.
  • the switching element 6 since the switching element 6 is operated in a state where the detected voltage is equal to or higher than the target voltage, the voltage across the smoothing capacitor 8 becomes a voltage exceeding the target voltage, or control is performed. There is a possibility that the smoothing capacitor 8 will not be stable and the voltage across the smoothing capacitor 8 will be lower than the target voltage.
  • step S3 Yes determines the abnormal range of the voltage
  • the DC power supply device 100 of the present embodiment operates the switching element 6 with the specified minimum switching duty ratio when the detected voltage is equal to or higher than the target voltage. , Suppresses the concentration of current in the plurality of reactors 5 and low impedance paths. Therefore, abnormal heat generation of parts can be suppressed. Further, when the detected primary current or voltage is within the abnormal range, the switching element 6 is stopped, so that it is possible to prevent the boosting operation from continuing in the open phase state.
  • FIG. 4 is a diagram showing a configuration example of the motor drive device according to the second embodiment.
  • the motor drive device 101 of the second embodiment includes the DC power supply device 100 described in the first embodiment.
  • the motor drive device 101 drives the motor 42, which is a load.
  • the motor drive device 101 includes a DC power supply device 100 described in the first embodiment, an inverter 41, a motor current detection unit 44, and an inverter control unit 43.
  • the inverter 41 drives the motor 42 by converting the DC power supplied from the DC power supply device 100 described in the first embodiment into AC power and outputting it to the motor 42.
  • a motor drive device 101 will be described as an example of a device that uses the DC power supply device 100 as a power source for the inverter 41.
  • a device that uses the DC power supply device 100 as a power source for the inverter 41 will be described as a motor drive device 101.
  • the load connected to the inverter 41 may be any device to which AC power is input, and may be a device other than the motor 42.
  • the inverter 41 is a circuit in which switching elements such as IGBTs have a three-phase bridge configuration or a two-phase bridge configuration.
  • the switching element used in the inverter 41 is not limited to the IGBT.
  • the motor current detection unit 44 detects the current flowing between the inverter 41 and the motor 42.
  • the inverter control unit 43 uses the current detected by the motor current detection unit 44 to generate a PWM signal for driving the switching element in the inverter 41 so that the motor 42 rotates at a desired rotation speed. Is applied to the inverter 41.
  • the inverter control unit 43 is realized by a processing circuit like the control unit 11 of the first embodiment.
  • the motor drive device 101 of the present embodiment can suppress abnormal heat generation of parts by using the DC power supply device 100 described in the first embodiment. Further, when the detected primary current or voltage is within the abnormal range, the switching element 6 is stopped, so that the operation of the motor 42 can be stopped. Therefore, it is possible to suppress the continuation of the boosting operation in the open phase state, and it is possible to suppress the phenomenon that the motor 42 cannot be continuously operated.
  • FIG. 5 is a diagram showing a configuration example of the air conditioner according to the third embodiment.
  • the air conditioner 700 of the present embodiment includes the motor drive device 101 and the motor 42 described in the second embodiment. That is, the air conditioner 700 includes the DC power supply device 100 described in the first embodiment.
  • the air conditioner 700 includes a compressor 81 having a compression mechanism 87 and a motor 42 built-in, a four-way valve 82, an outdoor heat exchanger 83, an expansion valve 84, an indoor heat exchanger 85, and a refrigerant pipe 86. ..
  • the air conditioner 700 is not limited to a separate type air conditioner in which the outdoor unit is separated from the indoor unit, and the compressor 81, the indoor heat exchanger 85, and the outdoor heat exchanger 83 are provided in one housing.
  • a body type air conditioner may be used.
  • the motor 42 is driven by the motor drive device 101.
  • a compression mechanism 87 that compresses the refrigerant and a motor 42 that operates the compression mechanism 87 are provided inside the compressor 81.
  • the refrigeration cycle is configured by circulating the refrigerant through the compressor 81, the four-way valve 82, the outdoor heat exchanger 83, the expansion valve 84, the indoor heat exchanger 85, and the refrigerant pipe 86.
  • the air conditioner 700 has been described as an example of the refrigeration cycle device including the motor drive device 101 and the motor 42 described in the second embodiment, the refrigeration cycle device including the DC power supply device 100 is the air conditioner 700. It is not limited, and may be a refrigerator, a heat pump hot water supply device, or the like.
  • the motor 42 may be applied to the drive source for driving the indoor unit blower and the outdoor unit blower (not shown) included in the air conditioner 700, and the motor 42 may be driven by the motor drive device 101. Further, the motor 42 may be applied to the drive sources of the indoor unit blower, the outdoor unit blower, and the compressor 81, and the motor 42 may be driven by the motor drive device 101.
  • the air conditioner 700 of the present embodiment can suppress abnormal heat generation of parts by using the DC power supply device 100 described in the first embodiment. Further, when the detected primary current or voltage is within the abnormal range, the switching element 6 is stopped, so that the operation of the air conditioner 700 can be stopped. Therefore, it is possible to suppress the continuation of the boosting operation in the open phase state, and it is possible to suppress the phenomenon that the air conditioner 700 cannot be continuously operated. As a result, comfort and energy saving can be maintained.
  • the DC power supply device 100 described in the first embodiment is applied to a refrigeration cycle device other than the air conditioner 700, the same effect as that of the air conditioner 700 can be obtained.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention addresses the problem of possibility of an abnormal heat generation occuring in a component when the switching duty ratio of a switching element becomes zero. The DC power supply device (100) according to the present invention is provided with: a rectifier circuit (4) for rectifying the AC voltage output from an AC power supply (1); a boost circuit (20) having a plurality of reactors (5), a plurality of switching elements (6), and a plurality of backflow prevention diodes (7) and boosting up the voltage rectified by the rectifier circuit (4); a smoothing capacitor (8) for smoothing an output voltage that is the voltage output from the boost circuit (20); a voltage detection unit (12) for detecting the voltage between both ends of the smoothing capacitor (8); and a control unit (11) for determining the duty ratios of the plurality of switching elements (6) to be a predetermined value that is larger than zero and less than or equal to a threshold value when the voltage detected by the voltage detection unit (12) is greater than or equal to a target value of the output voltage, and for controlling the plurality of switching elements (6) on the basis of the determined duty ratios.

Description

直流電源装置、モータ駆動装置、空気調和装置、冷蔵庫およびヒートポンプ給湯装置DC power supply, motor drive, air conditioner, refrigerator and heat pump water heater
 本発明は、リアクタおよびスイッチング素子で構成される複数の直列回路が複数並列に接続された昇圧回路、を備える直流電源装置、この直流電源装置を備えるモータ駆動装置、空気調和装置、冷蔵庫およびヒートポンプ給湯装置に関する。 The present invention is a DC power supply device including a booster circuit in which a plurality of series circuits composed of a reactor and a switching element are connected in parallel, a motor drive device including the DC power supply device, an air conditioner, a refrigerator and a heat pump hot water supply. Regarding the device.
 特許文献1に開示される電源装置には、整流回路の出力が複数の電流経路に分岐され、リアクタおよびスイッチング素子で構成される複数の直列回路が互いに並列に設けられる。スイッチング素子がオフのときに、複数の直列回路のそれぞれに設けられたリアクタから出力される電流は、逆流防止ダイオードを介して平滑コンデンサに供給される。特許文献1に開示される電源装置では、スイッチング素子のデューディ比が調整されることで、平滑コンデンサから出力される電圧を昇圧させることができる。特許文献1に開示される電源装置では、複数の直列回路のそれぞれに設けられたスイッチング素子は、それぞれが異なる位相で駆動される。これにより、複数のスイッチング素子のそれぞれに流れる電流が抑制されるとともに、リアクタから出力される電流のリプル成分が抑制される。並列に接続された複数の直列回路を備え、並列に接続された複数の直列回路のそれぞれに設けられたスイッチング素子が異なる位相で駆動される昇圧回路は、一般に、インターリーブ方式の昇圧回路とも呼ばれる。 In the power supply device disclosed in Patent Document 1, the output of the rectifier circuit is branched into a plurality of current paths, and a plurality of series circuits composed of a reactor and a switching element are provided in parallel with each other. When the switching element is off, the current output from the reactors provided in each of the plurality of series circuits is supplied to the smoothing capacitor via the backflow prevention diode. In the power supply device disclosed in Patent Document 1, the voltage output from the smoothing capacitor can be boosted by adjusting the duedy ratio of the switching element. In the power supply device disclosed in Patent Document 1, the switching elements provided in each of the plurality of series circuits are driven in different phases. As a result, the current flowing through each of the plurality of switching elements is suppressed, and the ripple component of the current output from the reactor is suppressed. A booster circuit having a plurality of series circuits connected in parallel and having switching elements provided in each of the plurality of series circuits connected in parallel driven in different phases is also generally called an interleaving type booster circuit.
特開2007-195282号公報JP-A-2007-195282
 特許文献1に記載されているような、リアクタおよびスイッチング素子で構成される直列回路が複数並列に接続された昇圧回路では、昇圧の目標電圧を超える電圧が入力された場合には、昇圧動作を行う必要がないため、スイッチング素子のスイッチングデューティ比は0となる。スイッチング素子のスイッチングデューティ比が0となると、スイッチング素子のスイッチングによるアクティブな制御が行われなくなるため、昇圧回路は、パッシブ回路のようにふるまう。その際に、並列に複数接続された直列回路のリアクタ、およびインピーダンスの低い経路に電流が集中する。これにより、リアクタ、インピーダンスの低い経路上の電子部品、といった部品に異常発熱が生じる可能性があるという問題がある。 In a booster circuit in which a plurality of series circuits composed of a reactor and a switching element are connected in parallel as described in Patent Document 1, when a voltage exceeding the target voltage for boosting is input, the boosting operation is performed. Since it is not necessary to do so, the switching duty ratio of the switching element becomes 0. When the switching duty ratio of the switching element becomes 0, active control by switching of the switching element is not performed, so that the booster circuit behaves like a passive circuit. At that time, the current is concentrated on the reactor of the series circuit connected in parallel and the path having low impedance. As a result, there is a problem that abnormal heat generation may occur in components such as a reactor and electronic components on a path having low impedance.
 本発明は、上記に鑑みてなされたものであって、部品の異常発熱を抑制することができる直流電源装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a DC power supply device capable of suppressing abnormal heat generation of parts.
 上述した課題を解決し、目的を達成するために、本発明にかかる直流電源装置は、交流電源から出力される交流電圧を整流する整流回路と、複数のリアクタ、複数のスイッチング素子および複数の逆流防止素子を有し、整流回路で整流された電圧を昇圧する昇圧回路と、を備える。また、直流電源装置は、昇圧回路から出力される電圧である出力電圧を平滑化する平滑コンデンサと、平滑コンデンサの両端電圧を検出する電圧検出部と、を備える。さらに、直流電源装置は、電圧検出部により検出された電圧が出力電圧の目標値以上の場合に、複数のスイッチング素子のデューティ比を0より大きく閾値以下のあらかじめ定められた値に決定し、決定したデューティ比に基づいて複数のスイッチング素子を制御する制御部、を備える。 In order to solve the above-mentioned problems and achieve the object, the DC power supply device according to the present invention includes a rectifier circuit that rectifies an AC voltage output from an AC power supply, a plurality of reactors, a plurality of switching elements, and a plurality of backflows. It has a prevention element and includes a booster circuit that boosts the voltage rectified by the rectifier circuit. Further, the DC power supply device includes a smoothing capacitor that smoothes the output voltage, which is the voltage output from the booster circuit, and a voltage detection unit that detects the voltage across the smoothing capacitor. Further, when the voltage detected by the voltage detection unit is equal to or higher than the target value of the output voltage, the DC power supply device determines and determines the duty ratio of the plurality of switching elements to a predetermined value greater than 0 and equal to or less than the threshold value. A control unit that controls a plurality of switching elements based on the calculated duty ratio is provided.
 本発明にかかる直流電源装置は、部品の異常発熱を抑制することができるという効果を奏する。 The DC power supply device according to the present invention has the effect of suppressing abnormal heat generation of parts.
実施の形態1にかかる直流電源装置の構成例を示す図The figure which shows the structural example of the DC power supply device which concerns on Embodiment 1. 実施の形態1のプロセッサを備える制御回路の構成例を示す図The figure which shows the structural example of the control circuit which comprises the processor of Embodiment 1. 実施の形態1の直流電源装置の制御部における動作の一例を示すフローチャートA flowchart showing an example of the operation in the control unit of the DC power supply device of the first embodiment. 実施の形態2に係るモータ駆動装置の構成例を示す図The figure which shows the structural example of the motor drive device which concerns on Embodiment 2. 実施の形態3に係る空気調和機の構成例を示す図The figure which shows the structural example of the air conditioner which concerns on Embodiment 3.
 以下に、本発明の実施の形態にかかる直流電源装置、モータ駆動装置、空気調和装置、冷蔵庫およびヒートポンプ給湯装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The DC power supply device, motor drive device, air conditioner, refrigerator and heat pump hot water supply device according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる直流電源装置の構成例を示す図である。直流電源装置100は、単相交流電源である交流電源1から供給される交流電力を直流電力に変換した後、当該直流電力を昇圧して出力することが可能である。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a DC power supply device according to a first embodiment of the present invention. The DC power supply device 100 can convert the AC power supplied from the AC power source 1 which is a single-phase AC power source into DC power, and then boost the DC power and output the DC power.
 直流電源装置100は、突入電流を防止するための突入電流防止回路である突入防止回路3と、交流電源1と突入防止回路3との間に設けられ、交流電源1から出力される電流に重畳している高周波ノイズを低減するノイズフィルタ2と、を備える。直流電源装置100は、さらに、ノイズフィルタ2および突入防止回路3を介して交流電源1から出力される交流電圧を整流する整流回路4と、整流回路4で整流された電圧を昇圧する昇圧回路20と、昇圧回路20から出力される電圧を平滑化する平滑コンデンサ8と、を備える。直流電源装置100は、さらに、昇圧回路20の負側の端部に接続される一次電流検出用のシャント抵抗9と、整流回路4とシャント抵抗9との間に配され、電源電流である一次電流を検出する電流検出回路である一次電流検出回路10と、平滑コンデンサ8の両端電圧を検出する電圧検出部12とを備える。直流電源装置100は、さらに、昇圧回路20を制御する制御部11を備える。 The DC power supply device 100 is provided between the inrush prevention circuit 3 which is an inrush current prevention circuit for preventing the inrush current, and the AC power supply 1 and the inrush prevention circuit 3, and is superimposed on the current output from the AC power supply 1. It is provided with a noise filter 2 for reducing high-frequency noise. The DC power supply device 100 further includes a rectifier circuit 4 that rectifies the AC voltage output from the AC power supply 1 via the noise filter 2 and the inrush prevention circuit 3, and a booster circuit 20 that boosts the voltage rectified by the rectifier circuit 4. And a smoothing capacitor 8 for smoothing the voltage output from the booster circuit 20. The DC power supply device 100 is further arranged between the shunt resistance 9 for detecting the primary current connected to the negative end of the booster circuit 20 and the rectifying circuit 4 and the shunt resistance 9, and is the primary current of the power supply. A primary current detection circuit 10 which is a current detection circuit for detecting a current, and a voltage detection unit 12 for detecting a voltage across the smoothing capacitor 8 are provided. The DC power supply device 100 further includes a control unit 11 that controls the booster circuit 20.
 図1に示した直流電源装置100が、動作を開始すると、初期状態では平滑コンデンサ8には電荷が無いため、突入電流と呼ばれる電流が流れる。突入防止回路3は、突入電流による部品の破壊を防ぐために設けられる。交流電源1から供給される交流電力は、ノイズフィルタ2と突入防止回路3を介して整流回路4で全波整流され、昇圧回路20で昇圧されて平滑コンデンサ8で平滑される。 When the DC power supply device 100 shown in FIG. 1 starts operation, a current called an inrush current flows because the smoothing capacitor 8 has no electric charge in the initial state. The inrush prevention circuit 3 is provided to prevent the parts from being destroyed by the inrush current. The AC power supplied from the AC power supply 1 is full-wave rectified by the rectifier circuit 4 via the noise filter 2 and the inrush prevention circuit 3, boosted by the booster circuit 20, and smoothed by the smoothing capacitor 8.
 昇圧回路20は、3つのリアクタ5と、3つのスイッチング素子6と、3つの逆流防止ダイオード7とを備える。1つのリアクタ5および1つのスイッチング素子6は1つの直列回路を構成する。図1に示した例では、直列回路が3つ並列に接続されているが、並列に接続される直列回路の数は3に限定されず、2または4以上であってもよい。すなわち、昇圧回路20は、複数のリアクタ5、複数のスイッチング素子6および複数の逆流防止ダイオード7を有していればよい。各直列回路の中点は、それぞれ逆流防止ダイオード7を介して、平滑コンデンサ8の正側電極に接続される。 The booster circuit 20 includes three reactors 5, three switching elements 6, and three backflow prevention diodes 7. One reactor 5 and one switching element 6 form one series circuit. In the example shown in FIG. 1, three series circuits are connected in parallel, but the number of series circuits connected in parallel is not limited to three, and may be two or four or more. That is, the booster circuit 20 may have a plurality of reactors 5, a plurality of switching elements 6, and a plurality of backflow prevention diodes 7. The midpoint of each series circuit is connected to the positive electrode of the smoothing capacitor 8 via the backflow prevention diode 7.
 3つのリアクタ5それぞれは、例えば、高調波鉄損が小さいコアを用いることができるが、3つのリアクタ5のそれぞれのコアは、これに限定されない。3つのリアクタ5のそれぞれのコアは、直流電源装置100の回路構成、制御部11による制御方法、直流電源装置100の電力変換効率、直流電源装置100で発生する熱量と、直流電源装置100の重量、直流電源装置100の体積といった要素を考慮して選定されればよい。 For each of the three reactors 5, for example, a core having a small harmonic iron loss can be used, but the core of each of the three reactors 5 is not limited to this. Each core of the three reactors 5 includes the circuit configuration of the DC power supply device 100, the control method by the control unit 11, the power conversion efficiency of the DC power supply device 100, the amount of heat generated by the DC power supply device 100, and the weight of the DC power supply device 100. , The selection may be made in consideration of factors such as the volume of the DC power supply device 100.
 3つのスイッチング素子6のそれぞれは、例えば、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。3つのスイッチング素子6のそれぞれは、コレクタまたはドレインがリアクタ5と逆流防止ダイオード7の間に接続され、エミッタまたはソースがシャント抵抗9に接続されている。 Each of the three switching elements 6 is, for example, an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). In each of the three switching elements 6, the collector or drain is connected between the reactor 5 and the backflow prevention diode 7, and the emitter or source is connected to the shunt resistor 9.
 3つの逆流防止ダイオード7のそれぞれは、逆流防止素子の一例である。逆流防止ダイオード7のアノードがリアクタ5とスイッチング素子6に接続され、カソードが平滑コンデンサ8に接続されている。 Each of the three backflow prevention diodes 7 is an example of a backflow prevention element. The anode of the backflow prevention diode 7 is connected to the reactor 5 and the switching element 6, and the cathode is connected to the smoothing capacitor 8.
 シャント抵抗9は、一次電流検出用に設けられており、一端が、昇圧回路20の一端、具体的にはスイッチング素子6のエミッタまたはソースと接続される。シャント抵抗9の他端は、整流回路4の負側端子と平滑コンデンサ8の負側電極とを接続する接続線に接続される。一次電流検出回路10は、整流回路4の負側端子と平滑コンデンサ8の負側電極とを接続する接続線がシャント抵抗9と接続する接続点13と、整流回路4の負側端子との間に設けられる。これにより、一次電流検出回路10は、整流回路4と昇圧回路20との間を流れる電流を一次電流として検出する。一次電流検出回路10は、一次電流の検出結果を制御部11に出力する。 The shunt resistor 9 is provided for detecting the primary current, and one end thereof is connected to one end of the booster circuit 20, specifically, the emitter or source of the switching element 6. The other end of the shunt resistor 9 is connected to a connection line connecting the negative terminal of the rectifier circuit 4 and the negative electrode of the smoothing capacitor 8. In the primary current detection circuit 10, the connection line connecting the negative terminal of the rectifier circuit 4 and the negative electrode of the smoothing capacitor 8 is between the connection point 13 where the shunt resistor 9 is connected and the negative terminal of the rectifier circuit 4. It is provided in. As a result, the primary current detection circuit 10 detects the current flowing between the rectifier circuit 4 and the booster circuit 20 as the primary current. The primary current detection circuit 10 outputs the detection result of the primary current to the control unit 11.
 平滑コンデンサ8は、整流回路4で全波整流され昇圧回路20で昇圧された電圧を平滑化する。平滑コンデンサ8の正側電極は、逆流防止ダイオード7のカソードと接続され、平滑コンデンサ8の負側電極は、シャント抵抗9および一次電流検出回路10に接続される。 The smoothing capacitor 8 is full-wave rectified by the rectifier circuit 4 and smoothes the voltage boosted by the booster circuit 20. The positive electrode of the smoothing capacitor 8 is connected to the cathode of the backflow prevention diode 7, and the negative electrode of the smoothing capacitor 8 is connected to the shunt resistor 9 and the primary current detection circuit 10.
 制御部11は、一次電流検出回路10と接続されるとともに、電圧検出部12に接続される。制御部11は、一次電流検出回路10から、一次電流の検出結果を取得し、電圧検出部12から、平滑コンデンサ8の両端電圧の検出結果を取得する。また、図示は省略しているが、制御部11は、各スイッチング素子6と接続されており、各スイッチング素子6のオンとオフを制御するPWM(Pulse Width Modulation)制御信号を各スイッチング素子6へ出力する。制御部11は、各スイッチング素子6が同時とならないように、具体的には各スイッチング素子6がオンとなる期間を互いにずらすようなPWM信号を生成する。 The control unit 11 is connected to the primary current detection circuit 10 and also to the voltage detection unit 12. The control unit 11 acquires the detection result of the primary current from the primary current detection circuit 10, and acquires the detection result of the voltage across the smoothing capacitor 8 from the voltage detection unit 12. Further, although not shown, the control unit 11 is connected to each switching element 6 and sends a PWM (Pulse Width Modulation) control signal for controlling on / off of each switching element 6 to each switching element 6. Output. The control unit 11 generates a PWM signal so that the switching elements 6 are not simultaneously turned on, specifically, the periods during which the switching elements 6 are turned on are shifted from each other.
 また、制御部11は、昇圧回路20で昇圧される電圧である出力電圧が、該出力電圧の目標値であってあらかじめ定められた値である目標電圧となるように、目標電圧、一次電流の検出結果および電圧値に基づいて各スイッチング素子6のデューティ比であるスイッチングデューティ比を決定し、スイッチングデューティ比に基づいてPWM信号を生成する。昇圧回路20で昇圧された電圧が目標電圧となるような各スイッチング素子6のスイッチングデューティ比の決定方法は、一般的な方法を用いることができ、特に制約はないため、詳細な説明を省略する。 Further, the control unit 11 sets the target voltage and the primary current so that the output voltage, which is the voltage boosted by the booster circuit 20, becomes the target voltage which is the target value of the output voltage and is a predetermined value. The switching duty ratio, which is the duty ratio of each switching element 6, is determined based on the detection result and the voltage value, and the PWM signal is generated based on the switching duty ratio. As a method for determining the switching duty ratio of each switching element 6 such that the voltage boosted by the booster circuit 20 becomes the target voltage, a general method can be used, and there are no particular restrictions, so detailed description thereof will be omitted. ..
 制御部11は、処理回路により実現される。この処理回路は、プロセッサを備える制御回路であってもよいし、専用ハードウェアであってもよい。図2は、本実施の形態のプロセッサを備える制御回路の構成例を示す図である。制御回路200は、プロセッサ201と、メモリ202とを備える。プロセッサ201は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)である。メモリ202は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー等の、不揮発性または揮発性の半導体メモリ等が該当する。 The control unit 11 is realized by a processing circuit. This processing circuit may be a control circuit including a processor, or may be dedicated hardware. FIG. 2 is a diagram showing a configuration example of a control circuit including the processor of the present embodiment. The control circuit 200 includes a processor 201 and a memory 202. The processor 201 is a CPU (also referred to as a Central Processing Unit, a central processing unit, a processing unit, a computing device, a microprocessor, a microprocessor, a processor, or a DSP (Digital Signal Processor)). The memory 202 corresponds to, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), or a flash memory.
 図2に示す制御回路200により、制御部11が実現される場合、プロセッサ201がメモリ202に記憶されたプログラムを読み出して実行することにより、制御部11が実現される。また、メモリ202は、プロセッサ201が実施する各処理における一時メモリとしても使用される。 When the control unit 11 is realized by the control circuit 200 shown in FIG. 2, the control unit 11 is realized by the processor 201 reading and executing the program stored in the memory 202. The memory 202 is also used as a temporary memory in each process performed by the processor 201.
 上記の処理回路が、専用のハードウェアとして構成される場合、処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。制御部11は、専用のハードウェアである処理回路と制御回路とが組み合わされて実現されてもよい。 When the above processing circuit is configured as dedicated hardware, the processing circuit is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable). Gate Array) or a combination of these. The control unit 11 may be realized by combining a processing circuit and a control circuit, which are dedicated hardware.
 つづいて、本実施の形態の動作について説明する。リアクタおよびスイッチング素子で構成される直列回路が複数並列に接続された一般的な昇圧回路では、昇圧の目標電圧を超える電圧が入力された場合には、スイッチングデューティ比が0となる。スイッチングデューティ比が0になると、複数のリアクタ、およびインピーダンスの低い経路に電流が集中する。これにより、リアクタ、インピーダンスの低い経路上の電子部品、といった部品に異常発熱が生じる可能性がある。本実施の形態では、このような部品の異常発熱を抑制するため、以下に述べるように、制御部11が、平滑コンデンサ8の両端電圧の検出値(以下、単に電圧の検出値という)が目標電圧以上の場合、複数のスイッチング素子6のデューティ比を0より大きく閾値以下のあらかじめ定められた値に決定し、決定したデューティ比に基づいて複数のスイッチング素子6を制御する。このあらかじめ定められた値の一例は、規定された最小値である。すなわち、制御部11は、例えば、規定された最小のスイッチングデューティ比でスイッチング素子6を動作させる。これにより、本実施の形態の直流電源装置100は、複数のリアクタ5、およびインピーダンスの低い経路に電流が集中することを抑制する。このため、部品の異常発熱を抑制することができる。規定された最小のスイッチングデューティ比とは、例えば、直流電源装置100において設定可能な最小のスイッチングデューティ比である。すなわち、上記のあらかじめ定められた値の一例は、設定可能な最小値である。最小のスイッチングデューティ比は、例えば、スイッチング素子のスイッチング特性と回路仕様により生じる遅れ、例えばRCフィルタ、フォトカプラなどによる遅れ等により決まる。また、スイッチンス素子には、許容される最小パルス幅などの制約がある。最小のスイッチングデューティ比は、例えば、これらの制約を満たすように定められる。なお、以下では、平滑コンデンサ8の両端電圧の検出値が目標電圧以上の場合に、規定された最小のスイッチングデューティ比を用いる例を説明するが、最小に限定されず、例えば、閾値以下のスイッチングデューティ比であればよい。 Next, the operation of this embodiment will be described. In a general booster circuit in which a plurality of series circuits composed of a reactor and a switching element are connected in parallel, the switching duty ratio becomes 0 when a voltage exceeding the boost target voltage is input. When the switching duty ratio becomes 0, the current is concentrated in a plurality of reactors and paths with low impedance. This can cause abnormal heat generation in components such as reactors and electronic components on low impedance paths. In the present embodiment, in order to suppress abnormal heat generation of such parts, as described below, the control unit 11 targets the detection value of the voltage across the smoothing capacitor 8 (hereinafter, simply referred to as the voltage detection value). When the voltage is equal to or higher than the voltage, the duty ratio of the plurality of switching elements 6 is determined to be a predetermined value greater than 0 and equal to or less than the threshold value, and the plurality of switching elements 6 are controlled based on the determined duty ratio. An example of this predetermined value is a defined minimum value. That is, the control unit 11 operates the switching element 6 with, for example, the specified minimum switching duty ratio. As a result, the DC power supply device 100 of the present embodiment suppresses the concentration of current in the plurality of reactors 5 and paths having low impedance. Therefore, abnormal heat generation of parts can be suppressed. The specified minimum switching duty ratio is, for example, the minimum switching duty ratio that can be set in the DC power supply device 100. That is, an example of the above-mentioned predetermined value is a settable minimum value. The minimum switching duty ratio is determined, for example, by the switching characteristics of the switching element and the delay caused by the circuit specifications, such as the delay caused by the RC filter, the photocoupler, and the like. Further, the switching element has restrictions such as an allowable minimum pulse width. The minimum switching duty ratio is determined, for example, to meet these constraints. In the following, an example in which the specified minimum switching duty ratio is used when the detected value of the voltage across the smoothing capacitor 8 is equal to or higher than the target voltage will be described, but the switching is not limited to the minimum, and for example, switching below the threshold value. It may be a duty ratio.
 図3は、本実施の形態の直流電源装置100の制御部11における動作の一例を示すフローチャートである。初期状態では、制御部11は、全スイッチング素子6を停止させている。制御部11は、動作を開始する(ステップS1)と、一次電流および電圧の検出結果を取得する(ステップS2)。具体的には、制御部11は、一次電流の検出結果を一次電流検出回路10から取得し、電圧すなわち平滑コンデンサ8の両端電圧の検出結果を電圧検出部12から取得する。一次電流検出回路10および電圧検出部12は、検出結果を定期的に制御部11へ出力してもよいし、制御部11が、一次電流検出回路10および電圧検出部12へ検出結果の送信を指示することにより、一次電流検出回路10および電圧検出部12から検出結果を取得してもよい。 FIG. 3 is a flowchart showing an example of the operation in the control unit 11 of the DC power supply device 100 of the present embodiment. In the initial state, the control unit 11 stops all the switching elements 6. When the control unit 11 starts the operation (step S1), the control unit 11 acquires the detection results of the primary current and the voltage (step S2). Specifically, the control unit 11 acquires the detection result of the primary current from the primary current detection circuit 10, and acquires the detection result of the voltage, that is, the voltage across the smoothing capacitor 8 from the voltage detection unit 12. The primary current detection circuit 10 and the voltage detection unit 12 may periodically output the detection result to the control unit 11, and the control unit 11 transmits the detection result to the primary current detection circuit 10 and the voltage detection unit 12. By instructing, the detection result may be acquired from the primary current detection circuit 10 and the voltage detection unit 12.
 制御部11は、一次電流および電圧のうち少なくとも一方が異常範囲内か否かを判断する(ステップS3)。異常範囲は、一次電流および電圧のそれぞれに関してあらかじめ定められている。異常範囲は、正常範囲外の範囲である。正常範囲の上限は、例えば、使用するパワーモジュール、コンデンサなどの耐圧の制約を満たす電圧に設定される。正常範囲の下限は、負荷側の電流耐量、突入電流耐量などに応じて設定される。例えば、運転中になんらかの原因で目標電圧まで昇圧できず、直流電圧が低下してしまった場合、インバータを含む負荷側の電流が大きくなり、電子部品などが故障するまたは性能が低下する可能性がある。また、運転中に直流電源に瞬停が生じて直流電圧が低下した後に、直流電源が復帰すると、大きな突入電流が流れる可能性がある。これらのことから、正常範囲の下限を設け、下限を下回る場合には異常と判断して運転を停止させる。図3の説明に戻り、一次電流および電圧のうち少なくとも一方が異常範囲内である場合(ステップS3 Yes)、制御部11は異常と判断し、スイッチング素子6の動作を停止する。すなわち、制御部11は、一次電流検出回路10により検出された電流、および電圧検出部12により検出された電圧のうち少なくとも一方に基づいて異常を検出し、異常を検出した場合に複数のスイッチング素子6の動作を停止させる。また、このとき、制御部11は、異常であることを外部に通知する、または図示しない表示部に表示するなどによって、ユーザに知らせてもよい。 The control unit 11 determines whether or not at least one of the primary current and the voltage is within the abnormal range (step S3). The anomaly range is predetermined for each of the primary current and voltage. The abnormal range is a range outside the normal range. The upper limit of the normal range is set to a voltage that satisfies the withstand voltage restrictions of, for example, the power module and the capacitor to be used. The lower limit of the normal range is set according to the current withstand capacity on the load side, the inrush current withstand capacity, and the like. For example, if the voltage cannot be boosted to the target voltage for some reason during operation and the DC voltage drops, the current on the load side including the inverter will increase, and electronic components may fail or the performance may deteriorate. is there. Further, if the DC power supply is restored after a momentary power failure occurs in the DC power supply during operation and the DC voltage drops, a large inrush current may flow. Based on these facts, the lower limit of the normal range is set, and if it falls below the lower limit, it is judged to be abnormal and the operation is stopped. Returning to the description of FIG. 3, when at least one of the primary current and the voltage is within the abnormal range (step S3 Yes), the control unit 11 determines that it is abnormal and stops the operation of the switching element 6. That is, the control unit 11 detects an abnormality based on at least one of the current detected by the primary current detection circuit 10 and the voltage detected by the voltage detection unit 12, and when the abnormality is detected, a plurality of switching elements. Stop the operation of 6. Further, at this time, the control unit 11 may notify the user by notifying the outside of the abnormality or displaying it on a display unit (not shown).
 リアクタ5の断線、スイッチング素子6の故障等によって、昇圧回路20に欠相が生じることがある。欠相となった状態で昇圧動作が続けられると、直流電源装置100の後段に接続される負荷の大きさによっては平滑コンデンサ8に供給するエネルギーが不足し、負荷を連続稼働させることができなくなる可能性がある。例えば、直流電源装置100が空気調和機等に用いられる場合、空気調和機等の連続運転ができなくなることは、快適性、省エネ性を損なってしまう問題が発生する。このため、本実施の形態では、一次電流および電圧のそれぞれの異常範囲を欠相状態の場合と想定される範囲として定めておき、一次電流および電圧のうち少なくとも一方が異常範囲内の場合にスイッチング素子6の動作を停止されることにより、欠相となった状態で昇圧動作が続くことを防止する。 A phase loss may occur in the booster circuit 20 due to disconnection of the reactor 5, failure of the switching element 6, or the like. If the boosting operation is continued in the open phase state, the energy supplied to the smoothing capacitor 8 may be insufficient depending on the size of the load connected to the subsequent stage of the DC power supply device 100, and the load cannot be continuously operated. there is a possibility. For example, when the DC power supply device 100 is used for an air conditioner or the like, the inability to continuously operate the air conditioner or the like causes a problem that comfort and energy saving are impaired. Therefore, in the present embodiment, the abnormal ranges of the primary current and the voltage are defined as the ranges assumed to be in the open phase state, and switching is performed when at least one of the primary current and the voltage is within the abnormal range. By stopping the operation of the element 6, it is possible to prevent the boosting operation from continuing in a state where the phase is open.
 また、後述するように、本実施の形態では、検出した電圧が目標電圧以上となっている状態でスイッチング素子6を動作させるので(後述するステップS7を経由したステップS6)、平滑コンデンサ8の両端電圧が目標電圧を超える電圧となる、または制御が安定しなくなり平滑コンデンサ8の両端電圧が目標電圧を下回る電圧となる可能性がある。電圧の異常範囲として、目標電圧より一定値以上高い範囲、および目標電圧より一定値以上低い範囲を定めておけば、ステップS7を経由したステップS6の後のステップS3でYesと判断され、スイッチング素子6を停止させることができる。 Further, as will be described later, in the present embodiment, since the switching element 6 is operated in a state where the detected voltage is equal to or higher than the target voltage (step S6 via step S7 to be described later), both ends of the smoothing capacitor 8 are used. There is a possibility that the voltage exceeds the target voltage, or the control becomes unstable and the voltage across the smoothing capacitor 8 becomes a voltage lower than the target voltage. If a range higher than the target voltage by a certain value or more and a range lower than the target voltage by a certain value or more are defined as the abnormal voltage range, Yes is determined in step S3 after step S6 via step S7, and the switching element. 6 can be stopped.
 一次電流および電圧の両方が、異常範囲内でない場合(ステップS3 No)、制御部11は、検出した電圧すなわち電圧検出部12の検出結果が、目標電圧未満であるか否かを判断する(ステップS4)。検出した電圧が目標電圧未満である場合(ステップS4 Yes)、制御部11は、目標電圧、検出した一次電流および電圧に基づいて、スイッチングデューティ比を決定する(ステップS5)。そして、制御部11は、決定したスイッチングデューティ比に基づいてPWM信号を生成してスイッチング素子6へ出力し(ステップS6)、ステップS2からの処理を繰り返す。 When both the primary current and the voltage are not within the abnormal range (step S3 No), the control unit 11 determines whether or not the detected voltage, that is, the detection result of the voltage detection unit 12 is less than the target voltage (step S3 No). S4). When the detected voltage is less than the target voltage (step S4 Yes), the control unit 11 determines the switching duty ratio based on the target voltage, the detected primary current and the voltage (step S5). Then, the control unit 11 generates a PWM signal based on the determined switching duty ratio and outputs the PWM signal to the switching element 6 (step S6), and repeats the processing from step S2.
 検出した電圧が目標電圧以上である場合(ステップS4 No)、制御部11は、スイッチングデューティ比を、規定された最小のスイッチングデューティ比に決定し(ステップS7)、ステップS6の処理へ進む。このように、本実施の形態では、検出した電圧が目標電圧以上となっている状態で、スイッチング素子6を動作させるので、平滑コンデンサ8の両端電圧が目標電圧を超える電圧となる、または制御が安定しなくなり平滑コンデンサ8の両端電圧が目標電圧を下回る電圧となる可能性がある。しかし、上述したように、電圧の異常範囲を適切に定めておくことにより、上述したステップS3の判断によって、電圧が異常範囲であると判断され(ステップS3 Yes)、スイッチング素子6の動作が停止される。なお、通常運転時には、負荷側に電流が流れているため、スイッチング素子6をオフとすると、リアクタ5などに大きな電流が流れる可能性があるが、スイッチング素子6の動作が停止されている間は、スイッチング素子6をオフとしてもリアクタ5などに大きな電流が流れることはない。 When the detected voltage is equal to or higher than the target voltage (step S4 No), the control unit 11 determines the switching duty ratio to the specified minimum switching duty ratio (step S7), and proceeds to the process of step S6. As described above, in the present embodiment, since the switching element 6 is operated in a state where the detected voltage is equal to or higher than the target voltage, the voltage across the smoothing capacitor 8 becomes a voltage exceeding the target voltage, or control is performed. There is a possibility that the smoothing capacitor 8 will not be stable and the voltage across the smoothing capacitor 8 will be lower than the target voltage. However, as described above, by appropriately determining the abnormal range of the voltage, the voltage is determined to be in the abnormal range by the determination in step S3 described above (step S3 Yes), and the operation of the switching element 6 is stopped. Will be done. Since a current flows on the load side during normal operation, if the switching element 6 is turned off, a large current may flow in the reactor 5 or the like, but while the operation of the switching element 6 is stopped. Even if the switching element 6 is turned off, a large current does not flow to the reactor 5 or the like.
 一般には、部品の異常発熱は、部品が故障するまで検知することが難しい。これは、次のような理由による。目標電圧を超える電圧が印加されると、昇圧回路は昇圧動作を行わないため、昇圧回路において並列に接続されたリアクタ、逆流素子ダイオードなどの部品のうち最もインピーダンスの小さい相に電流が偏って流れ発熱する。一般に、これらの部品の温度は制御上必要でないためこれらの部品の温度の上昇を検出することができない。したがって、部品の異常発熱は、部品が故障するまで検知することが難しい。また、部品の保護のためだけにサーミスタ、電流検出器などを追加すると、回路への部品追加が必要となりコストが増加する。これに対し、以上のように、本実施の形態の直流電源装置100は、検出した電圧が目標電圧以上である場合、規定された最小のスイッチングデューティ比でスイッチング素子6を動作させるようにしたので、複数のリアクタ5、およびインピーダンスの低い経路に電流が集中することを抑制する。このため、部品の異常発熱を抑制することができる。また、検出した一次電流または電圧が異常範囲内の場合には、スイッチング素子6を停止させるようにしたので、欠相となった状態で昇圧動作が続けることを防止することができる。 In general, it is difficult to detect abnormal heat generation of a part until the part breaks down. This is due to the following reasons. When a voltage exceeding the target voltage is applied, the booster circuit does not perform booster operation, so the current flows unevenly to the phase with the lowest impedance among the components such as the reactor and backflow element diode connected in parallel in the booster circuit. It generates heat. In general, the temperature rise of these parts cannot be detected because the temperature of these parts is not necessary for control. Therefore, it is difficult to detect abnormal heat generation of a component until the component fails. Further, if a thermistor, a current detector, or the like is added only for the protection of parts, it is necessary to add parts to the circuit, which increases the cost. On the other hand, as described above, the DC power supply device 100 of the present embodiment operates the switching element 6 with the specified minimum switching duty ratio when the detected voltage is equal to or higher than the target voltage. , Suppresses the concentration of current in the plurality of reactors 5 and low impedance paths. Therefore, abnormal heat generation of parts can be suppressed. Further, when the detected primary current or voltage is within the abnormal range, the switching element 6 is stopped, so that it is possible to prevent the boosting operation from continuing in the open phase state.
実施の形態2.
 図4は、実施の形態2に係るモータ駆動装置の構成例を示す図である。実施の形態2のモータ駆動装置101は、実施の形態1で説明した直流電源装置100を備える。モータ駆動装置101は、負荷であるモータ42を駆動する。モータ駆動装置101は、実施の形態1で説明した直流電源装置100と、インバータ41と、モータ電流検出部44と、インバータ制御部43とを備える。インバータ41は、実施の形態1で説明した直流電源装置100から供給される直流電力を交流電力に変換してモータ42へ出力することにより、モータ42を駆動する。なお、以下では、直流電源装置100をインバータ41の電源として用いる装置の例としてモータ駆動装置101を例に挙げて説明するが、直流電源装置100をインバータ41の電源として用いる装置はモータ駆動装置101に限定されない。すなわち、インバータ41に接続される負荷は、交流電力が入力される機器であればよく、モータ42以外の機器でもよい。
Embodiment 2.
FIG. 4 is a diagram showing a configuration example of the motor drive device according to the second embodiment. The motor drive device 101 of the second embodiment includes the DC power supply device 100 described in the first embodiment. The motor drive device 101 drives the motor 42, which is a load. The motor drive device 101 includes a DC power supply device 100 described in the first embodiment, an inverter 41, a motor current detection unit 44, and an inverter control unit 43. The inverter 41 drives the motor 42 by converting the DC power supplied from the DC power supply device 100 described in the first embodiment into AC power and outputting it to the motor 42. In the following, a motor drive device 101 will be described as an example of a device that uses the DC power supply device 100 as a power source for the inverter 41. However, a device that uses the DC power supply device 100 as a power source for the inverter 41 will be described as a motor drive device 101. Not limited to. That is, the load connected to the inverter 41 may be any device to which AC power is input, and may be a device other than the motor 42.
 インバータ41は、IGBTをはじめとするスイッチング素子を、3相ブリッジ構成または2相ブリッジ構成とした回路である。インバータ41に用いられるスイッチング素子は、IGBTに限定されない。 The inverter 41 is a circuit in which switching elements such as IGBTs have a three-phase bridge configuration or a two-phase bridge configuration. The switching element used in the inverter 41 is not limited to the IGBT.
 モータ電流検出部44は、インバータ41とモータ42との間に流れる電流を検出する。インバータ制御部43は、モータ電流検出部44で検出された電流を用いて、モータ42が所望の回転数にて回転するように、インバータ41内のスイッチング素子を駆動するためのPWM信号を生成してインバータ41へ印加する。インバータ制御部43は、実施の形態1の制御部11と同様に、処理回路により実現される。 The motor current detection unit 44 detects the current flowing between the inverter 41 and the motor 42. The inverter control unit 43 uses the current detected by the motor current detection unit 44 to generate a PWM signal for driving the switching element in the inverter 41 so that the motor 42 rotates at a desired rotation speed. Is applied to the inverter 41. The inverter control unit 43 is realized by a processing circuit like the control unit 11 of the first embodiment.
 以上説明したように、本実施の形態のモータ駆動装置101は、実施の形態1で説明した直流電源装置100を用いることにより部品の異常発熱を抑制することができる。また、検出した一次電流または電圧が異常範囲内の場合には、スイッチング素子6を停止させるため、モータ42の運転を停止させることができる。したがって、欠相となった状態で昇圧動作が続けることを抑制することができ、モータ42の連続運転ができなくなる現象を抑制することができる。 As described above, the motor drive device 101 of the present embodiment can suppress abnormal heat generation of parts by using the DC power supply device 100 described in the first embodiment. Further, when the detected primary current or voltage is within the abnormal range, the switching element 6 is stopped, so that the operation of the motor 42 can be stopped. Therefore, it is possible to suppress the continuation of the boosting operation in the open phase state, and it is possible to suppress the phenomenon that the motor 42 cannot be continuously operated.
実施の形態3.
 図5は、実施の形態3に係る空気調和機の構成例を示す図である。図5に示すように、本実施の形態の空気調和機700は、実施の形態2で述べたモータ駆動装置101およびモータ42を備える。すなわち、空気調和機700は実施の形態1で述べた直流電源装置100を備える。空気調和機700は、圧縮機構87およびモータ42を内蔵した圧縮機81と、四方弁82と、室外熱交換器83と、膨張弁84と、室内熱交換器85と、冷媒配管86とを備える。空気調和機700は、室外機が室内機から分離されたセパレート型空気調和機に限定されず、圧縮機81、室内熱交換器85および室外熱交換器83が1つの筐体内に設けられた一体型空気調和機でもよい。モータ42は、モータ駆動装置101により駆動される。
Embodiment 3.
FIG. 5 is a diagram showing a configuration example of the air conditioner according to the third embodiment. As shown in FIG. 5, the air conditioner 700 of the present embodiment includes the motor drive device 101 and the motor 42 described in the second embodiment. That is, the air conditioner 700 includes the DC power supply device 100 described in the first embodiment. The air conditioner 700 includes a compressor 81 having a compression mechanism 87 and a motor 42 built-in, a four-way valve 82, an outdoor heat exchanger 83, an expansion valve 84, an indoor heat exchanger 85, and a refrigerant pipe 86. .. The air conditioner 700 is not limited to a separate type air conditioner in which the outdoor unit is separated from the indoor unit, and the compressor 81, the indoor heat exchanger 85, and the outdoor heat exchanger 83 are provided in one housing. A body type air conditioner may be used. The motor 42 is driven by the motor drive device 101.
 圧縮機81の内部には、冷媒を圧縮する圧縮機構87と、圧縮機構87を動作させるモータ42とが設けられる。圧縮機81、四方弁82、室外熱交換器83、膨張弁84、室内熱交換器85および冷媒配管86に冷媒が循環することにより、冷凍サイクルが構成される。なお、実施の形態2で述べたモータ駆動装置101およびモータ42を備える冷凍サイクル装置の一例として空気調和機700を例に説明したが、直流電源装置100を備える冷凍サイクル装置は空気調和機700に限定されず、冷蔵庫、ヒートポンプ給湯装置等であってもよい。 Inside the compressor 81, a compression mechanism 87 that compresses the refrigerant and a motor 42 that operates the compression mechanism 87 are provided. The refrigeration cycle is configured by circulating the refrigerant through the compressor 81, the four-way valve 82, the outdoor heat exchanger 83, the expansion valve 84, the indoor heat exchanger 85, and the refrigerant pipe 86. Although the air conditioner 700 has been described as an example of the refrigeration cycle device including the motor drive device 101 and the motor 42 described in the second embodiment, the refrigeration cycle device including the DC power supply device 100 is the air conditioner 700. It is not limited, and may be a refrigerator, a heat pump hot water supply device, or the like.
 また、以上説明した例では、圧縮機81の駆動源にモータ42が利用され、モータ駆動装置101によりモータ42を駆動する構成例を説明した。しかしながら、空気調和機700が備える不図示の室内機送風機および室外機送風機を駆動する駆動源にモータ42を適用し、当該モータ42をモータ駆動装置101で駆動してもよい。また、室内機送風機、室外機送風機および圧縮機81の駆動源にモータ42を適用し、当該モータ42をモータ駆動装置101で駆動してもよい。 Further, in the above-described example, a configuration example in which the motor 42 is used as the drive source of the compressor 81 and the motor 42 is driven by the motor drive device 101 has been described. However, the motor 42 may be applied to the drive source for driving the indoor unit blower and the outdoor unit blower (not shown) included in the air conditioner 700, and the motor 42 may be driven by the motor drive device 101. Further, the motor 42 may be applied to the drive sources of the indoor unit blower, the outdoor unit blower, and the compressor 81, and the motor 42 may be driven by the motor drive device 101.
 以上説明したように、本実施の形態の空気調和機700は、実施の形態1で説明した直流電源装置100を用いることにより部品の異常発熱を抑制することができる。また、検出した一次電流または電圧が異常範囲内の場合には、スイッチング素子6を停止させるため、空気調和機700の運転を停止させることができる。したがって、欠相となった状態で昇圧動作が続けることを抑制することができ、空気調和機700の連続運転ができなくなる現象を抑制することができる。これによって、快適性、省エネ性を保つことができる。空気調和機700以外の冷凍サイクル装置に実施の形態1で説明した直流電源装置100を適用した場合にも、空気調和機700と同様の効果を奏することができる。 As described above, the air conditioner 700 of the present embodiment can suppress abnormal heat generation of parts by using the DC power supply device 100 described in the first embodiment. Further, when the detected primary current or voltage is within the abnormal range, the switching element 6 is stopped, so that the operation of the air conditioner 700 can be stopped. Therefore, it is possible to suppress the continuation of the boosting operation in the open phase state, and it is possible to suppress the phenomenon that the air conditioner 700 cannot be continuously operated. As a result, comfort and energy saving can be maintained. When the DC power supply device 100 described in the first embodiment is applied to a refrigeration cycle device other than the air conditioner 700, the same effect as that of the air conditioner 700 can be obtained.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 交流電源、2 ノイズフィルタ、3 突入防止回路、4 整流回路、5 リアクタ、6 スイッチング素子、7 逆流防止ダイオード、8 平滑コンデンサ、9 シャント抵抗、10 一次電流検出回路、11 制御部、12 電圧検出部、20 昇圧回路、41 インバータ、42 モータ、43 インバータ制御部、44 モータ電流検出部、81 圧縮機、82 四方弁、83 室外熱交換器、84 膨張弁、85 室内熱交換器、86 冷媒配管、87 圧縮機構、100 直流電源装置、101 モータ駆動装置、700 空気調和機。 1 AC power supply, 2 noise filter, 3 inrush prevention circuit, 4 rectifier circuit, 5 reactor, 6 switching element, 7 backflow prevention diode, 8 smoothing capacitor, 9 shunt resistance, 10 primary current detection circuit, 11 control unit, 12 voltage detection Unit, 20 booster circuit, 41 inverter, 42 motor, 43 inverter control unit, 44 motor current detector, 81 compressor, 82 four-way valve, 83 outdoor heat exchanger, 84 expansion valve, 85 indoor heat exchanger, 86 refrigerant piping , 87 compression mechanism, 100 DC power supply, 101 motor drive, 700 air conditioner.

Claims (7)

  1.  交流電源から出力される交流電圧を整流する整流回路と、
     複数のリアクタ、複数のスイッチング素子および複数の逆流防止素子を有し、前記整流回路で整流された電圧を昇圧する昇圧回路と、
     前記昇圧回路から出力される電圧である出力電圧を平滑化する平滑コンデンサと、
     前記平滑コンデンサの両端電圧を検出する電圧検出部と、
     前記電圧検出部により検出された電圧が前記出力電圧の目標値以上の場合に、前記複数のスイッチング素子のデューティ比を0より大きく閾値以下のあらかじめ定められた値に決定し、決定した前記デューティ比に基づいて前記複数のスイッチング素子を制御する制御部と、
     を備える直流電源装置。
    A rectifier circuit that rectifies the AC voltage output from the AC power supply,
    A booster circuit that has a plurality of reactors, a plurality of switching elements, and a plurality of backflow prevention elements and boosts the voltage rectified by the rectifier circuit.
    A smoothing capacitor that smoothes the output voltage, which is the voltage output from the booster circuit,
    A voltage detector that detects the voltage across the smoothing capacitor and
    When the voltage detected by the voltage detection unit is equal to or greater than the target value of the output voltage, the duty ratio of the plurality of switching elements is determined to be a predetermined value greater than 0 and equal to or less than the threshold value, and the determined duty ratio is determined. A control unit that controls the plurality of switching elements based on
    A DC power supply equipped with.
  2.  前記あらかじめ定められた値は、設定可能な最小値である請求項1に記載の直流電源装置。 The DC power supply device according to claim 1, wherein the predetermined value is the minimum value that can be set.
  3.  前記整流回路と前記昇圧回路との間を流れる電流を検出する一次電流検出回路、
     を備え、
     前記制御部は、前記一次電流検出回路により検出された電流、および前記電圧検出部により検出された電圧のうち少なくとも一方に基づいて異常を検出し、異常を検出した場合に前記複数のスイッチング素子の動作を停止させる請求項1または2に記載の直流電源装置。
    A primary current detection circuit that detects the current flowing between the rectifier circuit and the booster circuit,
    With
    The control unit detects an abnormality based on at least one of a current detected by the primary current detection circuit and a voltage detected by the voltage detection unit, and when the abnormality is detected, the plurality of switching elements of the plurality of switching elements. The DC power supply device according to claim 1 or 2, wherein the operation is stopped.
  4.  請求項1から3のいずれか1つに記載の直流電源装置と、
     前記直流電源装置から出力される直流電力を交流電力に変換してモータへ出力するインバータと、
     を備えるモータ駆動装置。
    The DC power supply device according to any one of claims 1 to 3.
    An inverter that converts DC power output from the DC power supply device into AC power and outputs it to the motor.
    Motor drive device.
  5.  モータと、
     前記モータを駆動する請求項4に記載のモータ駆動装置と、
     を備える空気調和装置。
    With the motor
    The motor driving device according to claim 4, which drives the motor,
    Air conditioner equipped with.
  6.  モータと、
     前記モータを駆動する請求項4に記載のモータ駆動装置と、
     を備える冷蔵庫。
    With the motor
    The motor driving device according to claim 4, which drives the motor,
    Refrigerator equipped with.
  7.  モータと、
     前記モータを駆動する請求項4に記載のモータ駆動装置と、
     を備えるヒートポンプ給湯装置。
    With the motor
    The motor driving device according to claim 4, which drives the motor,
    Heat pump water heater equipped with.
PCT/JP2019/011543 2019-03-19 2019-03-19 Dc power supply device, motor drive device, air conditioning device, refrigerator, and heat pump hot-water supply device WO2020188769A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/011543 WO2020188769A1 (en) 2019-03-19 2019-03-19 Dc power supply device, motor drive device, air conditioning device, refrigerator, and heat pump hot-water supply device
JP2021506910A JP7198344B2 (en) 2019-03-19 2019-03-19 DC power supplies, motor drives, air conditioners, refrigerators and heat pump water heaters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/011543 WO2020188769A1 (en) 2019-03-19 2019-03-19 Dc power supply device, motor drive device, air conditioning device, refrigerator, and heat pump hot-water supply device

Publications (1)

Publication Number Publication Date
WO2020188769A1 true WO2020188769A1 (en) 2020-09-24

Family

ID=72519767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011543 WO2020188769A1 (en) 2019-03-19 2019-03-19 Dc power supply device, motor drive device, air conditioning device, refrigerator, and heat pump hot-water supply device

Country Status (2)

Country Link
JP (1) JP7198344B2 (en)
WO (1) WO2020188769A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007827A (en) * 2012-06-22 2014-01-16 Mitsubishi Electric Corp Power conversion device, motor drive control device, air blower, compressor, and refrigerating and air conditioning device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018064410A (en) * 2016-10-14 2018-04-19 サンケン電気株式会社 Switching power supply unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007827A (en) * 2012-06-22 2014-01-16 Mitsubishi Electric Corp Power conversion device, motor drive control device, air blower, compressor, and refrigerating and air conditioning device

Also Published As

Publication number Publication date
JPWO2020188769A1 (en) 2021-10-14
JP7198344B2 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
KR101551048B1 (en) Power conversion apparatus, motor drive apparatus, and refrigeration air-conditioning apparatus
JP5855025B2 (en) Backflow prevention means, power conversion device and refrigeration air conditioner
US9722488B2 (en) Power converter and air conditioner
US9543884B2 (en) Motor control device of air conditioner using distributed power supply
JP6758515B2 (en) Power converters, compressors, blowers, and air conditioners
JP6528002B2 (en) Power supply
US11323050B2 (en) Power supply apparatus
WO2015056403A1 (en) Power converter and air conditioner
WO2019208117A1 (en) Motor driving device and refrigeration cycle device
JP7198344B2 (en) DC power supplies, motor drives, air conditioners, refrigerators and heat pump water heaters
JP7471442B2 (en) Power conversion devices, motor drives, and refrigeration cycle application devices
JP7345674B2 (en) Power conversion equipment, motor drive equipment, and refrigeration cycle application equipment
EP3018807B1 (en) Backflow prevention device, power converter, motor drive device, and refrigerating and air-conditioning device
WO2022185374A1 (en) Ac-dc conversion device, electric motor drive device, and refrigeration cycle device
WO2023238229A1 (en) Power conversion device, motor drive device, and refrigeration cycle application apparatus
US20230238893A1 (en) Electric motor driving apparatus, air conditioner, and refrigerator
JP6518506B2 (en) POWER SUPPLY DEVICE AND AIR CONDITIONER USING SAME
JP2018182939A (en) Power source device
JP7049770B2 (en) Power converter and motor drive system
WO2022172418A1 (en) Power conversion device, motor driving device, and refrigeration-cycle application instrument
JP2021145517A (en) Power supply and motor drive
WO2016190345A1 (en) Heat-source device
JPWO2020208822A1 (en) DC power supply and air conditioner
EP2980973A1 (en) Backflow prevention device, power conversion device, and cooling air-conditioning device
JP2017175873A (en) Power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919951

Country of ref document: EP

Kind code of ref document: A1