WO2020188733A1 - Stator, electric motor, compressor, air conditioner, and method for manufacturing stator - Google Patents

Stator, electric motor, compressor, air conditioner, and method for manufacturing stator Download PDF

Info

Publication number
WO2020188733A1
WO2020188733A1 PCT/JP2019/011395 JP2019011395W WO2020188733A1 WO 2020188733 A1 WO2020188733 A1 WO 2020188733A1 JP 2019011395 W JP2019011395 W JP 2019011395W WO 2020188733 A1 WO2020188733 A1 WO 2020188733A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase coil
coil
phase
racing material
stator
Prior art date
Application number
PCT/JP2019/011395
Other languages
French (fr)
Japanese (ja)
Inventor
松岡 篤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/011395 priority Critical patent/WO2020188733A1/en
Priority to JP2021506880A priority patent/JP7204887B2/en
Publication of WO2020188733A1 publication Critical patent/WO2020188733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto

Definitions

  • the present invention relates to a stator of an electric motor.
  • a magnetizing method in which a permanent magnet of a rotor is magnetized using a three-phase coil attached to a stator core.
  • an electromagnetic force is generated when a magnetizing current flows through the three-phase coil, and this electromagnetic force may cause deformation of the three-phase coil. Therefore, in the stator described in Patent Document 1, a string is wound around the three-phase coil in order to prevent deformation of the three-phase coil.
  • An object of the present invention is that when the permanent magnet of the rotor is magnetized with the rotor placed inside the stator, the three-phase coil of the stator is significantly deformed regardless of the connection state of the three-phase coil. To prevent.
  • the stator according to one aspect of the present invention is With the stator core A three-phase coil, which is attached to the stator core in a distributed winding manner and has a first-phase coil, a second-phase coil, and a third-phase coil, and a first racing material wound around the three-phase coil.
  • the second racing material wound around the three-phase coil and It is equipped with a third racing material wound around the three-phase coil.
  • the first-phase coil, the second-phase coil, and the third-phase coil are arranged in this order in the circumferential direction of the stator core.
  • the third phase coil is located closer to the center of the stator core than the first phase coil.
  • the first racing material holds the coil of the first phase and the coil of the second phase.
  • the second racing material holds the coil of the second phase and the coil of the third phase.
  • the third racing material holds the coil of the third phase and the coil of the first phase.
  • the second racing material is wound around the three-phase coil more than at least one of the first racing material and the third racing material.
  • the electric motor according to another aspect of the present invention With the stator It includes a rotor arranged inside the stator.
  • the compressor according to another aspect of the present invention With a closed container With the compression device arranged in the closed container, The electric motor for driving the compression device is provided.
  • the air conditioner according to another aspect of the present invention is With the compressor Equipped with a heat exchanger.
  • the method for producing a stator according to another aspect of the present invention is A method for manufacturing a stator having a stator core and a three-phase coil which is attached to the stator core in a distributed winding manner and has a first-phase coil, a second-phase coil, and a third-phase coil.
  • the first-phase coil, the second-phase coil, and the third-phase coil are arranged in this order in the circumferential direction of the stator core, and at the coil end.
  • the three-phase coil is attached to the stator core so that the third-phase coil is located closer to the center of the stator core than the first-phase coil.
  • the first racing material, the second racing material, and the third racing material are wound around the three-phase coil. At least one of the second racing material and the third racing material is wound around the three-phase coil in a larger amount than the first racing material.
  • the permanent magnet of the rotor when the permanent magnet of the rotor is magnetized with the rotor placed inside the stator, it is possible to prevent significant deformation of the three-phase coil of the stator.
  • FIG. 1 It is a top view which shows schematic structure of the stator which concerns on Embodiment 1 of this invention. It is a figure which shows schematic structure of a three-phase coil. It is a figure which shows another example of the structure of a three-phase coil. It is a schematic diagram which shows an example of the connection method in a three-phase coil. It is a schematic diagram which shows another example of the connection method in a three-phase coil. It is a flowchart which shows an example of the manufacturing process of a stator. It is a figure which shows the insertion process of the coil of the 1st phase in the manufacturing process of a stator. It is a figure which shows the insertion process of the coil of the 2nd phase in the manufacturing process of a stator.
  • FIG. 1 It is a figure which shows the insertion process of the 3rd phase coil in the manufacturing process of a stator. It is a top view which shows the example of the structure of the stator which concerns on the modification. It is a flowchart which shows an example of the magnetizing process of a permanent magnet of a rotor. It is a figure which shows an example of the connection state of the three-phase coil connected by the Y connection, and the power source for magnetism in the stator 3 shown in FIG. It is a figure which shows an example of the connection state of the three-phase coil connected by the delta connection, and the power source for magnetism in the stator 3 shown in FIG.
  • FIG. 5 is a diagram showing an example of a connection state between a three-phase coil connected by a delta connection and a power source for magnetization in the stator 3 shown in FIG.
  • FIG. 5 shows the example of the electromagnetic force in the radial direction generated at the coil end of a three-phase coil when the three-phase coil shown in FIG. 14 and FIG. 15 is energized in the magnetizing step of a permanent magnet.
  • FIGS. 1 shows an example of the electromagnetic force in the axial direction generated at the coil end of a three-phase coil when the three-phase coil shown in FIGS.
  • Embodiment 1 In the xyz orthogonal coordinate system shown in each figure, the z-axis direction (z-axis) indicates a direction parallel to the axis Ax of the electric motor 1 described later, and the x-axis direction (x-axis) is the z-axis direction (z-axis). Indicates a direction orthogonal to, and the y-axis direction (y-axis) indicates a direction orthogonal to both the z-axis direction and the x-axis direction.
  • the axis Ax is the center of the stator 3 and also the center of rotation of the rotor 2, which will be described later.
  • the direction parallel to the axis Ax is also referred to as "axial direction of rotor 2" or simply “axial direction”.
  • the radial direction is the radial direction of the rotor 2 or the stator 3 and is a direction orthogonal to the axis Ax.
  • the xy plane is a plane orthogonal to the axial direction.
  • the arrow D1 indicates the circumferential direction centered on the axis Ax.
  • the circumferential direction of the rotor 2 or the stator 3 is also simply referred to as the "circumferential direction”.
  • FIG. 1 is a plan view schematically showing the structure of the stator 3 according to the first embodiment of the present invention.
  • the stator 3 is used in an electric motor (for example, an electric motor 1 described later).
  • the stator 3 includes a stator core 31, a three-phase coil 32, at least one first racing material 331, at least one second racing material 332, at least one third racing material 333, and a varnish 34. And have.
  • the three-phase coil 32 has six poles.
  • the stator core 31 has a plurality of slots 311 in which the three-phase coil 32 is arranged.
  • the stator core 31 has 18 slots 311. Therefore, the number of slots for each pole and each phase is 1.
  • FIG. 2 is a diagram schematically showing the structure of the three-phase coil 32.
  • the three-phase coil 32 is attached to the stator core 31 in a distributed winding manner. As shown in FIG. 2, the three-phase coil 32 has a coil side 32b arranged in the slot 311 and a coil end 32a not arranged in the slot 311. Each coil end 32a is an axial end of the three-phase coil 32.
  • the three-phase coil 32 has three first-phase coils 321, three second-phase coils 322, and three third-phase coils 323.
  • the number of the first phase coil 321 and the number of the second phase coil 322 and the number of the third phase coil 323 are not limited to this embodiment.
  • the stator 3 has the structure shown in FIG. 1 at the two coil ends 32a.
  • the stator 3 may have the structure shown in FIG. 1 at one of the two coil ends 32a.
  • FIG. 3 is a diagram showing another example of the structure of the three-phase coil 32.
  • the three-phase coil 32 shown in FIG. 3 has one first-phase coil 321 and one second-phase coil 322 and one third-phase coil 323.
  • the three-phase coil 32 is attached to the stator core 31 by wave winding.
  • the three-phase coil 32 has a first phase, a second phase, and a third phase.
  • the first phase is the U phase
  • the second phase is the V phase
  • the third phase is the W phase.
  • the three-phase coil 32 forms six poles.
  • FIG. 4 is a schematic view showing an example of a wiring method for the three-phase coil 32.
  • the connection method for the three-phase coil 32 is, for example, Y connection.
  • the three-phase coil 32 is connected by, for example, a Y connection.
  • the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a Y connection.
  • FIG. 5 is a schematic view showing another example of the wiring method in the three-phase coil 32.
  • the connection method for the three-phase coil 32 may be delta connection as shown in FIG.
  • the three-phase coil 32 may be connected by, for example, a delta connection.
  • the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a delta connection.
  • the three-phase coil 32 has a plurality of portions 321a corresponding to the first phase, a plurality of portions 322a corresponding to the second phase, and a plurality of portions 323a corresponding to the third phase.
  • the 322a and the portion 323a corresponding to the third phase are arranged in this order in the circumferential direction of the stator core 31. That is, at each coil end 32a of the three-phase coil 32, the first-phase coil 321 and the second-phase coil 322, and the third-phase coil 323 are arranged in this order in the circumferential direction of the stator core 31.
  • first phase portion 321a In each coil end 32a, the portion 321a corresponding to the first phase of the three-phase coil 32 is referred to as "first phase portion 321a”. In each coil end 32a, the portion 322a corresponding to the second phase of the three-phase coil 32 is referred to as a "second phase portion 322a”. In each coil end 32a, the portion 323a corresponding to the third phase of the three-phase coil 32 is referred to as a "third-phase portion 323a".
  • the first-phase coil 321 has a plurality of first-phase portions 321a
  • the second-phase coil 322 has a plurality of second-phase portions 322a
  • the third-phase coil 323 has a plurality of third phases. It has a phase portion 333a.
  • each first phase portion 321a is a part of the first phase coil 321 at the coil end 32a in the three phase coil 32
  • each second phase portion 322a is the first at the coil end 32a in the three phase coil 32.
  • It is a part of the two-phase coil 322
  • each third-phase portion 323a is a part of the third-phase coil 323 at the coil end 32a of the three-phase coil 32.
  • the first phase portion 321a, the second phase portion 322a, and the third phase portion 323a of the three-phase coils 32 are arranged in this order in the circumferential direction of the stator core 31.
  • the third-phase coil 323 is closer to the center of the stator core 31 than the first-phase coil 321. positioned. Specifically, at each coil end 32a of the three-phase coil 32, the portion corresponding to the third phase of the three-phase coil 32, that is, the third-phase portion 323a is the first phase of the three-phase coil 32. It is located closer to the center of the stator core 31 than the portion corresponding to, that is, the first phase portion 321a. In other words, at each coil end 32a of the three-phase coil 32, the third-phase coil 323 is located closer to the axis Ax than the first-phase coil 321.
  • At least one first racing material 331, at least one second racing material 332, and at least one third racing material 333 are wound around a three-phase coil 32.
  • the first racing material 331, the second racing material 332, and the third racing material 333 are, for example, strings.
  • the first racing material 331 holds the first phase portion 321a of the three-phase coil 32 and the second phase portion 322a of the three-phase coil 32. That is, the first racing material 331 holds the first phase coil 321 and the second phase coil 322. In other words, the first racing material 331 is wound around the first phase coil 321 and the second phase coil 322. As a result, the first phase coil 321 and the second phase coil 322 are fastened by the first racing material 331.
  • the second racing material 332 holds the second phase portion 322a of the three-phase coil 32 and the third phase portion 323a of the three-phase coil 32. That is, the second racing material 332 holds the second phase coil 322 and the third phase coil 323. In other words, the second racing material 332 is wound around the second phase coil 322 and the third phase coil 323. As a result, the second-phase coil 322 and the third-phase coil 323 are fastened by the second racing material 332.
  • the third racing material 333 holds the third phase portion 323a of the three-phase coil 32 and the first phase portion 321a of the three-phase coil 32. That is, the third racing material 333 holds the coil 323 of the third phase and the coil 321 of the first phase. In other words, the third racing material 333 is wound around the third phase coil 323 and the first phase coil 321. As a result, the third phase coil 323 and the first phase coil 321 are fastened by the third racing material 333.
  • Varnish 34 is attached to the first racing material 331. As a result, the first racing material 331 is fixed to the three-phase coil 32. Similarly, the varnish 34 is attached to the second racing material 332. As a result, the second racing material 332 is fixed to the three-phase coil 32. Similarly, the varnish 34 is attached to the third racing material 333. As a result, the third racing material 333 is fixed to the three-phase coil 32.
  • At least one of the second racing material 332 and the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331.
  • at least one of the number of turns of the second racing material 332 and the number of turns of the third racing material 333 is larger than the number of turns of the first racing material 331.
  • the second racing material 332 is wound around the three-phase coil 32 more than at least one of the first racing material 331 and the third racing material 333.
  • the number of turns of the second racing material 332 is greater than at least one of the number of turns of the first racing material 331 and the number of turns of the third racing material 333.
  • the second racing material 332 is wound around the three-phase coil 32 more than the third racing material 333.
  • the number of turns of the second racing material 332 is larger than the number of turns of the third racing material 333, and is the same as the number of turns of the first racing material 331.
  • the second racing material 332 may be wound around the three-phase coil 32 more than both the first racing material 331 and the third racing material 333. That is, the number of turns of the second racing material 332 may be larger than both the number of turns of the first racing material 331 and the number of turns of the third racing material 333.
  • the amount of varnish 34 adhering to the second racing material 332 is out of the amount of varnish 34 adhering to the first racing material 331 and the amount of varnish 34 adhering to the third racing material 333. More than at least one of them.
  • the amount of varnish 34 adhering to the second racing material 332 is larger than the amount of varnish 34 adhering to the third racing material 333, and the first racing material 331 It is the same as the amount of varnish 34 attached to.
  • the amount of varnish 34 adhering to the second racing material 332 is both the amount of varnish 34 adhering to the first racing material 331 and the amount of varnish 34 adhering to the third racing material 333. May be more.
  • FIG. 6 is a flowchart showing an example of the manufacturing process of the stator 3.
  • FIG. 7 is a diagram showing an insertion step of the first phase coil 321 in step S11.
  • step S11 as shown in FIG. 7, the first phase coil 321 is attached to the prefabricated stator core 31 in a distributed winding manner. Specifically, the first phase coil 321 is inserted into the slot 311 of the stator core 31 with an insertion device.
  • FIG. 8 is a diagram showing an insertion step of the second phase coil 322 in step S12.
  • step S12 as shown in FIG. 8, the second phase coil 322 is attached in a distributed winding manner. Specifically, the second phase coil 322 is inserted into the slot 311 of the stator core 31 with an insertion tool.
  • FIG. 9 is a diagram showing an insertion step of the third phase coil 323 in step S13.
  • step S13 as shown in FIG. 9, the third phase coil 323 is attached in a distributed winding manner. Specifically, the third-phase coil 323 is inserted into the slot 311 of the stator core 31 with an insertion tool.
  • steps S11 to S13 at each coil end 32a of the three-phase coil 32, the portion 321a of the three-phase coil 32 corresponding to the first phase, the portion 322a corresponding to the second phase, and the third phase are supported.
  • the three-phase coil 32 is attached to the stator core 31 so that the portions 323a to be formed are arranged in this order in the circumferential direction of the stator core 31. That is, in steps S11 to S13, at each coil end 32a of the three-phase coil 32, the first-phase coil 321 and the second-phase coil 322, and the third-phase coil 323 are arranged in this order in the circumferential direction of the stator core 31.
  • the three-phase coils 32 are attached to the stator core 31 so that they are arranged.
  • steps S11 to S13 at each coil end 32a of the three-phase coil 32, the portion corresponding to the third phase of the three-phase coil 32, that is, the third-phase portion 323a is of the three-phase coil 32.
  • the three-phase coil 32 is attached to the stator core 31 so as to be located closer to the center of the stator core 31 than the portion corresponding to the first phase of the above, that is, the first phase portion 321a. That is, in steps S11 to S13, at each coil end 32a of the three-phase coil 32, the three-phase coil 323 is located closer to the center of the stator core 31 than the first-phase coil 321.
  • the coil 32 is attached to the stator core 31.
  • step S14 the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected.
  • the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by Y connection or delta connection.
  • step S15 the first racing material 331, the second racing material 332, and the third racing material 333 are attached to the three-phase coil 32.
  • the first racing material 331 is wound around the first phase coil 321 and the second phase coil 322. More specifically, the first racing material 331 is wound around the first phase portion 321a and the second phase portion 322a. As a result, the first phase coil 321 and the second phase coil 322 are fastened by the first racing material 331.
  • the second racing material 332 is wound around the second phase coil 322 and the third phase coil 323. More specifically, the second racing material 332 is wound around the second phase portion 322a and the third phase portion 323a. As a result, the second phase coil 322 and the third phase coil 323 are fastened by the second racing material 332.
  • the third racing material 333 is wound around the third phase coil 323 and the first phase coil 321. More specifically, the third racing material 333 is wound around the third phase portion 323a and the first phase portion 321a. As a result, the third-phase coil 323 and the first-phase coil 321 are fastened by the third racing material 333.
  • step S15 at least one of the second racing material 332 and the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331.
  • the second racing material 332 is wound around the three-phase coil 32 more than at least one of the first racing material 331 and the third racing material 333.
  • the number of turns of the second racing material 332 is greater than at least one of the number of turns of the first racing material 331 and the number of turns of the third racing material 333.
  • Is wound around a three-phase coil 32 (specifically, a second phase portion 322a and a third phase portion 323a).
  • the second racing material 332 is wound around the three-phase coil 32 more than the third racing material 333.
  • the second racing material 332 may be wound around the three-phase coil 32 more than both the first racing material 331 and the third racing material 333.
  • step S16 the varnish 34 is attached to the first racing material 331, the second racing material 332, and the third racing material 333.
  • the varnish 34 is impregnated with the first racing material 331, the second racing material 332, and the third racing material 333.
  • the second racing material 332 Since the second racing material 332 is wound around the three-phase coil 32 more than at least one of the first racing material 331 and the third racing material 333, it adheres to the second racing material 332.
  • the amount of varnish 34 present is greater than at least one of the amount of varnish 34 adhering to the first racing material 331 and the amount of varnish 34 adhering to the third racing material 333.
  • the holding force of the second racing material 332 is strengthened.
  • the second-phase coil 322 and the third-phase coil 323 can be firmly fixed, and the amount of varnish 34 in the stator 3 can be reduced.
  • step S17 the varnish 34 adhered to the first racing material 331, the second racing material 332, and the third racing material 333 is cured.
  • the varnish 34 attached to the first racing material 331, the second racing material 332, and the third racing material 333 is heated by a heater, the varnish 34 is cured.
  • the three-phase coil 32 is fixed by the first racing material 331, the second racing material 332, and the third racing material 333, and the stator 3 shown in FIG. 1 is obtained.
  • FIG. 10 is a plan view schematically showing an example of the structure of the stator 3 according to the modified example.
  • the stator 3 according to the modified example has the structure shown in FIG. 10 at the two coil ends 32a.
  • the stator 3 according to the modified example may have the structure shown in FIG. 10 at one of the two coil ends 32a.
  • the third racing material 333 is wound around the three-phase coil 32 more than at least one of the first racing material 331 and the second racing material 332.
  • the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. More specifically, in the example shown in FIG. 10, each of the second racing material 332 and the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331.
  • the third racing material 333 may be wound around the three-phase coil 32 more than both the first racing material 331 and the second racing material 332.
  • the number of turns of the third racing material 333 is larger than at least one of the number of turns of the first racing material 331 and the number of turns of the second racing material 332.
  • each of the number of turns of the second racing material 332 and the number of turns of the third racing material 333 is larger than the number of turns of the first racing material 331.
  • the number of turns of the third racing material 333 is larger than the number of turns of the first racing material 331 and is the same as the number of turns of the second racing material 332. is there.
  • the number of turns of the third racing material 333 may be larger than both the number of turns of the first racing material 331 and the number of turns of the second racing material 332.
  • the amount of varnish 34 adhering to the third racing material 333 is out of the amount of varnish 34 adhering to the first racing material 331 and the amount of varnish 34 adhering to the second racing material 332. More than at least one of them.
  • the amount of the varnish 34 adhering to the second racing material 332 and the amount of the varnish 34 adhering to the third racing material 333 are each attached to the first racing material 331. More than the amount of varnish 34 attached. More specifically, in the example shown in FIG. 10, the amount of varnish 34 adhering to the third racing material 333 is larger than the amount of varnish 34 adhering to the first racing material 331. It is the same as the amount of varnish 34 adhering to the second racing material 332.
  • the amount of varnish 34 adhering to the third racing material 333 is both the amount of varnish 34 adhering to the first racing material 331 and the amount of varnish 34 adhering to the second racing material 332. May be more.
  • the stator 3 according to the modified example can be manufactured by the same method as the method for manufacturing the stator 3 according to the first embodiment. That is, the stator 3 shown in FIG. 10 can be manufactured according to the same steps as the manufacturing steps from step S11 to step S17 shown in FIG.
  • step S15 is different from the process in step S15 of the method for manufacturing the stator 3 according to the first embodiment.
  • the third racing material 333 is wound around the three-phase coil 32 more than at least one of the first racing material 331 and the second racing material 332.
  • the number of turns of the third racing material 333 is greater than at least one of the number of turns of the first racing material 331 and the number of turns of the second racing material 332.
  • Is wound around a three-phase coil 32 (specifically, a third-phase portion 323a and a first-phase portion 321a).
  • the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331.
  • the third racing material 333 may be wound around the three-phase coil 32 more than both the first racing material 331 and the second racing material 332.
  • FIG. 11 is a flowchart showing an example of a magnetizing process of the permanent magnet of the rotor.
  • step S21 the stator 3 is fixed.
  • the stator 3 is fixed in the compressor or the electric motor by a fixing method such as press fitting or shrink fitting.
  • step S22 the rotor is arranged inside the stator 3. At least one permanent magnet is attached to this rotor.
  • step S23 the three-phase coil 32 is connected to a magnetic power source (also simply referred to as a power source).
  • a magnetic power source also simply referred to as a power source.
  • FIG. 12 shows an example of the connection state between the three-phase coil 32 connected by the Y connection and the power supply for magnetization in the stator 3 according to the first embodiment, that is, the stator 3 shown in FIG. It is a figure.
  • FIG. 13 shows an example of the connection state between the three-phase coil 32 connected by the delta connection and the power supply for magnetization in the stator 3 according to the first embodiment, that is, the stator 3 shown in FIG. It is a figure.
  • the positive side of the power supply is connected to the coil 322 of the second phase
  • the negative side of the power supply is connected to the coil 321 of the first phase and the coil 323 of the third phase.
  • the positive side of the power supply is connected to the coil 321 of the first phase and the coil 322 of the second phase
  • the negative side of the power supply is connected to the coil 322 of the second phase and the coil 323 of the third phase. Has been done.
  • FIG. 14 is a diagram showing an example of a connection state between the three-phase coil 32 connected by the Y connection and the power supply for magnetization in the stator 3 according to the modified example, that is, the stator 3 shown in FIG. is there.
  • FIG. 15 is a diagram showing an example of a connection state between the three-phase coil 32 connected by the delta connection and the power supply for magnetization in the stator 3 according to the modified example, that is, the stator 3 shown in FIG. is there.
  • the positive side of the power supply is connected to the coil 323 of the third phase
  • the negative side of the power supply is connected to the coil 321 of the first phase and the coil 322 of the second phase.
  • the positive side of the power supply is connected to the second phase coil 322 and the third phase coil 323, and the negative side of the power supply is connected to the first phase coil 321 and the third phase coil 323. Has been done.
  • step S24 the position of the rotor having at least one permanent magnet (specifically, the phase of the rotor) is fixed with a jig.
  • step S25 the permanent magnet is magnetized. Specifically, a large current is supplied from the power source to the three-phase coil 32.
  • a large current flows from the power supply to the coil 322 of the second phase, and the current from the coil 322 of the second phase branches into the coil 321 of the first phase and the coil 323 of the third phase.
  • the current flowing through the second-phase coil 322 is larger than the current flowing through the first-phase coil 321 and the current flowing through the third-phase coil 323.
  • a large current flows from the power supply to the second phase coil 322.
  • the current flowing through the second phase coil 322 is larger than the current flowing through the first phase coil 321 and the current flowing through the third phase coil 323.
  • a large current flows from the power supply to the coil 323 of the third phase, and the current from the coil 323 of the third phase branches into the coil 321 of the first phase and the coil 322 of the second phase.
  • the current flowing through the coil 323 of the third phase is larger than the current flowing through the coil 321 of the first phase and the current flowing through the coil 322 of the second phase.
  • a large current flows from the power supply to the coil 323 of the third phase.
  • the current flowing through the coil 323 of the third phase is larger than the current flowing through the coil 321 of the first phase and the current flowing through the coil 322 of the second phase.
  • a magnetic field is generated by the current flowing from the power supply to the three-phase coil 32, and the permanent magnet of the rotor is magnetized.
  • step S26 the jig used in step S24 is removed from the rotor.
  • the stator 3 according to the first embodiment is applied to, for example, an electric motor having a rotor having a permanent magnet.
  • an electric motor having a rotor having a permanent magnet.
  • a large current is passed through the three-phase coil 32 of the stator 3 in a state where the rotor is arranged inside the stator 3 to rotate the stator 3. Magnetize the child's permanent magnet.
  • FIG. 16 shows the diameter generated at the coil end 32a of the three-phase coil 32 when the three-phase coil 32 shown in FIGS. 14 and 15 is energized in the manufacturing process of the electric motor, specifically, the magnetizing process of the permanent magnet. It is a figure which shows the example of the electromagnetic force F1 in a direction.
  • the second-phase coil 322 and the third-phase coil 323 A radial electromagnetic force F1 that repels each other is generated between them, and a radial electromagnetic force F1 that repels each other is generated between the first phase coil 321 and the third phase coil 323.
  • This electromagnetic force F1 is also called Lorentz force.
  • FIG. 17 shows a shaft generated at the coil end 32a of the three-phase coil 32 when the three-phase coil 32 shown in FIGS. 14 and 15 is energized in the manufacturing process of the electric motor, specifically, the magnetizing process of the permanent magnet. It is a figure which shows the example of the electromagnetic force F2 in a direction.
  • FIG. 18 is a graph showing the difference in the magnitude of the electromagnetic force F1 in the radial direction for each connection pattern in the three-phase coil 32 when the permanent magnet of the rotor in the electric motor is magnetized.
  • the data shown in FIG. 18 is the result of analysis by electromagnetic field analysis.
  • connection pattern C1 a large current flows from the magnetizing power supply to the coil 321 of the first phase, and the current flowing through the coil 321 of the first phase is the current flowing through the coil 322 of the second phase and the coil 323 of the third phase. Greater than each of the currents flowing through.
  • connection pattern C2 a large current flows from the magnetizing power supply to the second phase coil 322, and the current flowing through the second phase coil 322 is the current flowing through the first phase coil 321 and the third phase coil 323. Greater than each of the currents flowing through.
  • the connection pattern C2 corresponds to, for example, the connection state shown in FIGS. 12 and 13.
  • connection pattern C3 a large current flows from the magnetizing power supply to the coil 323 of the third phase, and the current flowing through the coil 323 of the third phase is the current flowing through the coil 321 of the first phase and the coil 322 of the second phase. Greater than each of the currents flowing through.
  • the connection pattern C3 corresponds to, for example, the connection state shown in FIGS. 14 and 15.
  • the third-phase coil 323 is located closer to the axis Ax than the first-phase coil 321. Therefore, when the permanent magnet of the rotor in the electric motor is magnetized, the coil 323 of the third phase may come off from the stator core 31. As shown in FIG. 18, particularly in the connection pattern C1, when the permanent magnet of the rotor in the electric motor is magnetized, the electromagnetic force F1 in the radial direction generated in the coil 321 of the first phase is very large.
  • the coil 323 of the third phase is susceptible to the repulsive force generated between the coil 321 of the first phase and the coil 323 of the third phase, the coil 323 of the third phase is disengaged from the stator core 31 by this repulsive force. there is a possibility.
  • At least one of the second racing material 332 and the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. That is, the third-phase coil 323 is firmly held by at least one of the second racing material 332 and the third racing material 333.
  • the three-phase coil 32, particularly the third-phase coil 323, is firmly fixed to at least one of the second racing material 332 and the third racing material 333 regardless of the connection pattern in the three-phase coil 32.
  • the permanent magnet of the rotor is magnetized with the rotor placed inside the stator 3
  • the three-phase coil 32 of the stator 3 is significantly deformed regardless of the connection state of the three-phase coil. Can be prevented.
  • the quality of the stator 3 can be improved.
  • the number of racing materials is reduced.
  • the cost of the stator 3 can be reduced. This makes it possible to efficiently prevent significant deformation of the three-phase coil 32.
  • the amount of the varnish 34 adhering to the second racing material 332 is the amount of the varnish 34 adhering to the first racing material 331 and the amount of the varnish 34 adhering to the third racing material 333. More than at least one of them.
  • the holding force of the second racing material 332 is strengthened, and the second phase coil 322 and the third phase coil 323, particularly the third phase coil 323 can be firmly fixed. As a result, significant deformation of the three-phase coil 32 can be prevented.
  • the amount of varnish 34 adhering to the second racing material 332 may be larger than the amount of varnish 34 adhering to the third racing material 333. In this case, the amount of the varnish 34 in the stator 3 can be reduced, and the cost of the stator 3 can be reduced. This makes it possible to efficiently prevent significant deformation of the three-phase coil 32.
  • the third-phase coil 323 can be more firmly fixed. it can. As a result, significant deformation of the three-phase coil 32 can be prevented.
  • each of the amount of the varnish 34 adhering to the second racing material 332 and the amount of the varnish 34 adhering to the third racing material 333 are attached to the first racing material 331. If the amount is greater than the amount of, the third phase coil 323 can be more firmly fixed. As a result, significant deformation of the three-phase coil 32 can be prevented.
  • FIG. 19 is a graph showing the difference in the magnitude of the electromagnetic force F2 in the axial direction for each connection pattern in the three-phase coil 32 when the permanent magnet of the rotor in the electric motor is magnetized.
  • the data shown in FIG. 19 is the result of analysis by electromagnetic field analysis.
  • the connection patterns C1, C2, and C3 correspond to the connection patterns C1, C2, and C3 in FIG. 18, respectively.
  • a large electromagnetic force F2 in the axial direction is generated in one of the three-phase coils 32 regardless of the connection pattern.
  • a large current flows from the power supply to the coil 321 of the first phase, and a large electromagnetic force F2 in the axial direction is generated in the coil 321 of the first phase.
  • a large current flows from the power source to the coil 322 of the second phase, and a large electromagnetic force F2 in the axial direction is generated in the coil 322 of the second phase.
  • a large current flows from the power source to the coil 323 of the third phase, and a large electromagnetic force F2 in the axial direction is generated in the coil 323 of the third phase.
  • the stator 3 when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet, the current supplied from the power supply flows through the second-phase coil 322 and the second-phase coil.
  • the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a Y connection so that the current from 322 branches into the first phase coil 321 and the third phase coil 323. (Connection pattern C2).
  • the second racing material 332 is wound around the three-phase coil 32 more than the first racing material 331.
  • stator 3 when a current is passed from the power supply to the 3-phase coil 32 to magnetize the permanent magnet, the current supplied from the power supply flows through the 3rd phase coil 323 and the 3rd phase coil.
  • the first phase coil 321 and the second phase coil 322 and the third phase coil 323 are connected by a Y connection so that the current from 323 branches into the first phase coil 321 and the second phase coil 322. (Connection pattern C3).
  • the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331.
  • stator 3 when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet, the current flowing from the power supply to the second-phase coil 322 is transferred to the first-phase coil 321.
  • the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a delta connection so as to be larger than each of the flowing current and the current flowing through the third phase coil 323. ..
  • the second racing material 332 is wound around the three-phase coil 32 more than the first racing material 331.
  • stator 3 when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet, the current flowing from the power supply to the third-phase coil 32 is transferred to the first-phase coil 321.
  • the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a delta connection so as to be larger than each of the flowing current and the current flowing through the second phase coil 322. ..
  • the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331.
  • FIG. 20 is a partial cross-sectional view schematically showing the structure of the electric motor 1 according to the second embodiment of the present invention.
  • the electric motor 1 has a rotor 2, a stator 3 (including a modified example) according to the first embodiment, bearings 14a and 14b, and a shaft 16 fixed to the rotor 2. As shown in FIG. 20, the electric motor 1 may further have a bracket 13 (also referred to as a frame).
  • the electric motor 1 is, for example, a permanent magnet synchronous motor.
  • the rotor 2 is rotatably arranged inside the stator 3.
  • the rotor 2 has at least one permanent magnet 21. There is an air gap between the rotor 2 and the stator 3. The rotor 2 rotates about the axis Ax.
  • the electric motor 1 according to the second embodiment has the stator 3 according to the first embodiment, it has the advantages described in the first embodiment.
  • the electric motor 1 when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet 21, the current supplied from the power supply flows through the second-phase coil 322 and the second-phase coil
  • the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a Y connection so that the current from 322 branches into the first phase coil 321 and the third phase coil 323.
  • Connection pattern C2 it is desirable that the second racing material 332 is wound around the three-phase coil 32 more than the first racing material 331.
  • the motor 1 when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet 21, the current supplied from the power supply flows through the third-phase coil 323 and the third-phase coil.
  • the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a Y connection so that the current from 323 branches into the first phase coil 321 and the second phase coil 322. (Connection pattern C3).
  • the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331.
  • the electric motor 1 when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet 21, the current flowing from the power supply to the second-phase coil 322 is transferred to the first-phase coil 321.
  • the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a delta connection so as to be larger than each of the flowing current and the current flowing through the third phase coil 323. ..
  • the second racing material 332 is wound around the three-phase coil 32 more than the first racing material 331.
  • the electric motor 1 when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet 21, the current flowing from the power supply to the third-phase coil 32 is transferred to the first-phase coil 321.
  • the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a delta connection so as to be larger than each of the flowing current and the current flowing through the second phase coil 322. ..
  • the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331.
  • the electric motor 1 according to the second embodiment has the stator 3 according to the first embodiment, the cost of the electric motor 1 can be reduced and the quality of the electric motor 1 can be improved.
  • the electric motor 1 according to the second embodiment can be manufactured by using the magnetizing process described in the first embodiment.
  • the permanent magnet 21 of the rotor 2 can be magnetized inside the electric motor 1, so that the electric motor 1 can be easily assembled as compared with the method of magnetizing outside the electric motor 1.
  • FIG. 21 is a cross-sectional view schematically showing the structure of the compressor 6 according to the third embodiment.
  • the compressor 6 has an electric motor 1 as an electric element, a closed container 61 as a housing, and a compression mechanism 62 as a compression element (also referred to as a compression device).
  • the compressor 6 is a rotary compressor.
  • the compressor 6 is not limited to the rotary compressor.
  • the electric motor 1 in the compressor 6 is the electric motor 1 described in the second embodiment.
  • the electric motor 1 drives the compression mechanism 62.
  • the closed container 61 covers the electric motor 1 and the compression mechanism 62.
  • the closed container 61 is a cylindrical container. Refrigerating machine oil that lubricates the sliding portion of the compression mechanism 62 is stored in the bottom of the closed container 61.
  • the compressor 6 further has a glass terminal 63 fixed to the closed container 61, an accumulator 64, a suction pipe 65, and a discharge pipe 66.
  • the compression mechanism 62 is attached to the cylinder 62a, the piston 62b, the upper frame 62c (also referred to as the first frame), the lower frame 62d (also referred to as the second frame), and the upper frame 62c and the lower frame 62d. It has a plurality of mufflers 62e.
  • the compression mechanism 62 further has a vane that divides the inside of the cylinder 62a into a suction side and a compression side.
  • the compression mechanism 62 is arranged in the closed container 61.
  • the compression mechanism 62 is driven by the electric motor 1.
  • the electric motor 1 is fixed in the closed container 61 by press fitting or shrink fitting. Instead of press fitting and shrink fitting, the motor 1 may be directly attached to the closed container 61 by welding.
  • Electric power is supplied to the coil of the electric motor 1 (for example, the three-phase coil 32 described in the first embodiment) through the glass terminal 63.
  • the rotor 2 (specifically, one side of the shaft 16) of the electric motor 1 is rotatably supported by bearings provided on each of the upper frame 62c and the lower frame 62d.
  • a shaft 16 is inserted through the piston 62b.
  • a shaft 16 is rotatably inserted into the upper frame 62c and the lower frame 62d.
  • the upper frame 62c and the lower frame 62d close the end faces of the cylinder 62a.
  • the accumulator 64 supplies a refrigerant (for example, a refrigerant gas) to the cylinder 62a through the suction pipe 65.
  • the refrigerant supplied from the accumulator 64 is sucked into the cylinder 62a from the suction pipe 65 fixed to the closed container 61.
  • the piston 62b fitted to the shaft 16 rotates in the cylinder 62a.
  • the refrigerant is compressed in the cylinder 62a.
  • the compressed refrigerant passes through the muffler 62e and rises in the closed container 61. In this way, the compressed refrigerant is supplied to the high pressure side of the refrigeration cycle through the discharge pipe 66.
  • R410A, R407C, R22, or the like can be used as the refrigerant of the compressor 6.
  • the refrigerant of the compressor 6 is not limited to these types.
  • a refrigerant having a small GWP (global warming potential) for example, the following refrigerant can be used.
  • the GWP of HFO-1234yf is 4.
  • a hydrocarbon having a carbon double bond in the composition for example, R1270 (propylene) may be used.
  • the GWP of R1270 is 3, which is lower than HFO-1234yf but higher in flammability than HFO-1234yf.
  • a mixture containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition for example, a mixture of HFO-1234yf and R32. May be good. Since the above-mentioned HFO-1234yf is a low-pressure refrigerant, the pressure loss tends to be large, which may lead to deterioration of the performance of the refrigeration cycle (particularly the evaporator). Therefore, it is practically desirable to use a mixture with R32 or R41, which is a high-pressure refrigerant, rather than HFO-1234yf.
  • the compressor 6 according to the third embodiment has the advantages described in the first and second embodiments.
  • the compressor 6 according to the third embodiment has the electric motor 1 according to the second embodiment, the cost of the compressor can be reduced and the quality of the compressor 6 can be improved.
  • the compressor 6 according to the third embodiment can be manufactured by using the magnetizing step described in the first embodiment.
  • the permanent magnet 21 of the rotor 2 can be magnetized inside the compressor 6, so that the compressor 6 can be easily assembled as compared with the method of magnetizing outside the compressor 6.
  • FIG. 22 is a diagram schematically showing the configuration of the refrigerating and air-conditioning apparatus 7 according to the fourth embodiment of the present invention.
  • the refrigerating and air-conditioning device 7 can be operated for heating and cooling, for example.
  • the refrigerant circuit diagram shown in FIG. 22 is an example of a refrigerant circuit diagram of an air conditioner capable of cooling operation.
  • the refrigerating and air-conditioning device 7 has an outdoor unit 71, an indoor unit 72, and a refrigerant pipe 73 connecting the outdoor unit 71 and the indoor unit 72.
  • the outdoor unit 71 includes a compressor 6, a condenser 74 as a heat exchanger, a throttle device 75, and an outdoor blower 76 (first blower).
  • the condenser 74 condenses the refrigerant compressed by the compressor 6.
  • the drawing device 75 decompresses the refrigerant condensed by the condenser 74 and adjusts the flow rate of the refrigerant.
  • the diaphragm device 75 is also called a decompression device.
  • the indoor unit 72 has an evaporator 77 as a heat exchanger and an indoor blower 78 (second blower).
  • the evaporator 77 evaporates the refrigerant decompressed by the throttle device 75 to cool the indoor air.
  • the refrigerant is compressed by the compressor 6 and flows into the condenser 74.
  • the refrigerant is condensed by the condenser 74, and the condensed refrigerant flows into the drawing device 75.
  • the refrigerant is decompressed by the throttle device 75, and the decompressed refrigerant flows into the evaporator 77.
  • the refrigerant evaporates in the evaporator 77, and the refrigerant (specifically, the refrigerant gas) flows into the compressor 6 of the outdoor unit 71 again.
  • the configuration and operation of the refrigerating air conditioner 7 described above is an example, and is not limited to the above-mentioned example.
  • the refrigerating and air-conditioning apparatus 7 according to the fourth embodiment, it has the advantages described in the first to third embodiments.
  • the refrigerating air conditioner 7 according to the fourth embodiment has the compressor 6 according to the third embodiment, the cost of the refrigerating air conditioner 7 can be reduced and the quality of the refrigerating air conditioner 7 can be improved. Can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

A stator (3) comprises: a stator core (31); a three-phase coil (32) attached to the stator core (31) in a distributed winding; a first lacing member (331) for holding a first-phase coil (321) and a second-phase coil (322); a second lacing member (332) for holding the second-phase coil (322) and a third-phase coil (323); and a third lacing member (333) for holding the third-phase coil (323) and the first-phase coil (321). At a coil end (32a) of the three-phase coil (32), the first-phase coil (321), second-phase coil (322), and third-phase coil (323) are arranged in that order in the circumferential direction of the stator core (31). At the coil end (32a), the third-phase coil (323) is positioned closer to the center of the stator core (31) than the first-phase coil (321). There are more second lacing members (332) wound around the three-phase coil (32) than there are of at least one of the first lacing member (331) and the third lacing member (333).

Description

固定子、電動機、圧縮機、空気調和機、及び固定子の製造方法Manufacturing method of stator, electric motor, compressor, air conditioner, and stator
 本発明は、電動機の固定子に関する。 The present invention relates to a stator of an electric motor.
 一般に、ステータコアに取り付けられた3相コイルを利用して、回転子の永久磁石を着磁する着磁方法が知られている。この着磁方法では、3相コイルに着磁用の電流が流れたときに電磁力が生じ、この電磁力が3相コイルの変形を引き起こすことがある。そのため、特許文献1に記載の固定子では、3相コイルの変形を防ぐため、3相コイルに紐が巻きつけられている。 Generally, a magnetizing method is known in which a permanent magnet of a rotor is magnetized using a three-phase coil attached to a stator core. In this magnetizing method, an electromagnetic force is generated when a magnetizing current flows through the three-phase coil, and this electromagnetic force may cause deformation of the three-phase coil. Therefore, in the stator described in Patent Document 1, a string is wound around the three-phase coil in order to prevent deformation of the three-phase coil.
特開平03-118749号公報Japanese Unexamined Patent Publication No. 03-118749
 しかしながら、従来の技術では、回転子を固定子の内側に配置した状態で回転子の永久磁石を着磁するときに、3相コイルの結線状態によっては、固定子の3相コイルの著しい変形を防ぐことができない。 However, in the conventional technique, when the permanent magnet of the rotor is magnetized with the rotor placed inside the stator, the three-phase coil of the stator is significantly deformed depending on the connection state of the three-phase coil. It cannot be prevented.
 本発明の目的は、回転子を固定子の内側に配置した状態で回転子の永久磁石を着磁するときに、3相コイルの結線状態に関わらず、固定子の3相コイルの著しい変形を防ぐことである。 An object of the present invention is that when the permanent magnet of the rotor is magnetized with the rotor placed inside the stator, the three-phase coil of the stator is significantly deformed regardless of the connection state of the three-phase coil. To prevent.
 本発明の一態様に係る固定子は、
 ステータコアと、
 前記ステータコアに分布巻きで取り付けられており、第1相のコイル、第2相のコイル、及び第3相のコイルを有する3相コイルと
 前記3相コイルに巻かれた第1のレーシング材と、
 前記3相コイルに巻かれた第2のレーシング材と、
 前記3相コイルに巻かれた第3のレーシング材と
 を備え、
 前記3相コイルのコイルエンドにおいて、前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルは、前記ステータコアの周方向においてこの順に配列されており、
 前記コイルエンドにおいて、前記第3相のコイルは、前記第1相のコイルに比べて前記ステータコアの中心の近くに位置しており、
 前記第1のレーシング材は、前記第1相のコイル及び前記第2相のコイルを保持しており、
 前記第2のレーシング材は、前記第2相のコイル及び前記第3相のコイルを保持しており、
 前記第3のレーシング材は、前記第3相のコイル及び前記第1相のコイルを保持しており、
 前記第2のレーシング材は、前記第1のレーシング材及び前記第3のレーシング材のうちの少なくとも一方よりも多く前記3相コイルに巻かれている。
 本発明の他の態様に係る電動機は、
 前記固定子と、
 前記固定子の内側に配置された回転子と
 を備える。
 本発明の他の態様に係る圧縮機は、
 密閉容器と、
 前記密閉容器内に配置された圧縮装置と、
 前記圧縮装置を駆動する前記電動機と
 を備える。
 本発明の他の態様に係る空気調和機は、
 前記圧縮機と、
 熱交換器と
 を備える。
 本発明の他の態様に係る固定子の製造方法は、
 ステータコアと、前記ステータコアに分布巻きで取り付けられており、第1相のコイル、第2相のコイル、及び第3相のコイルを有する3相コイルとを有する固定子の製造方法であって、
 前記3相コイルのコイルエンドにおいて、前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルが前記ステータコアの周方向においてこの順に配列されるように、且つ前記コイルエンドにおいて、前記第3相のコイルが前記第1相のコイルに比べて前記ステータコアの中心の近くに位置するように、前記3相コイルを前記ステータコアに取り付けることと、
 第1のレーシング材、第2のレーシング材、及び第3のレーシング材を前記3相コイルに巻きつけることと
 を備え、
 前記第2のレーシング材及び前記第3のレーシング材のうちの少なくとも一方は、前記第1のレーシング材よりも多く前記3相コイルに巻きつけられている。
The stator according to one aspect of the present invention is
With the stator core
A three-phase coil, which is attached to the stator core in a distributed winding manner and has a first-phase coil, a second-phase coil, and a third-phase coil, and a first racing material wound around the three-phase coil.
The second racing material wound around the three-phase coil and
It is equipped with a third racing material wound around the three-phase coil.
At the coil end of the three-phase coil, the first-phase coil, the second-phase coil, and the third-phase coil are arranged in this order in the circumferential direction of the stator core.
At the coil end, the third phase coil is located closer to the center of the stator core than the first phase coil.
The first racing material holds the coil of the first phase and the coil of the second phase.
The second racing material holds the coil of the second phase and the coil of the third phase.
The third racing material holds the coil of the third phase and the coil of the first phase.
The second racing material is wound around the three-phase coil more than at least one of the first racing material and the third racing material.
The electric motor according to another aspect of the present invention
With the stator
It includes a rotor arranged inside the stator.
The compressor according to another aspect of the present invention
With a closed container
With the compression device arranged in the closed container,
The electric motor for driving the compression device is provided.
The air conditioner according to another aspect of the present invention is
With the compressor
Equipped with a heat exchanger.
The method for producing a stator according to another aspect of the present invention is
A method for manufacturing a stator having a stator core and a three-phase coil which is attached to the stator core in a distributed winding manner and has a first-phase coil, a second-phase coil, and a third-phase coil.
At the coil end of the three-phase coil, the first-phase coil, the second-phase coil, and the third-phase coil are arranged in this order in the circumferential direction of the stator core, and at the coil end. The three-phase coil is attached to the stator core so that the third-phase coil is located closer to the center of the stator core than the first-phase coil.
The first racing material, the second racing material, and the third racing material are wound around the three-phase coil.
At least one of the second racing material and the third racing material is wound around the three-phase coil in a larger amount than the first racing material.
 本発明によれば、回転子を固定子の内側に配置した状態で回転子の永久磁石を着磁するときに、固定子の3相コイルの著しい変形を防ぐことができる。 According to the present invention, when the permanent magnet of the rotor is magnetized with the rotor placed inside the stator, it is possible to prevent significant deformation of the three-phase coil of the stator.
本発明の実施の形態1に係る固定子の構造を概略的に示す平面図である。It is a top view which shows schematic structure of the stator which concerns on Embodiment 1 of this invention. 3相コイルの構造を概略的に示す図である。It is a figure which shows schematic structure of a three-phase coil. 3相コイルの構造の他の例を示す図である。It is a figure which shows another example of the structure of a three-phase coil. 3相コイルにおける結線方法の一例を示す模式図である。It is a schematic diagram which shows an example of the connection method in a three-phase coil. 3相コイルにおける結線方法の他の例を示す模式図である。It is a schematic diagram which shows another example of the connection method in a three-phase coil. 固定子の製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of a stator. 固定子の製造工程における第1相のコイルの挿入工程を示す図である。It is a figure which shows the insertion process of the coil of the 1st phase in the manufacturing process of a stator. 固定子の製造工程における第2相のコイルの挿入工程を示す図である。It is a figure which shows the insertion process of the coil of the 2nd phase in the manufacturing process of a stator. 固定子の製造工程における第3相のコイルの挿入工程を示す図である。It is a figure which shows the insertion process of the 3rd phase coil in the manufacturing process of a stator. 変形例に係る固定子の構造の例を概略的に示す平面図である。It is a top view which shows the example of the structure of the stator which concerns on the modification. 回転子の永久磁石の着磁工程の一例を示すフローチャートである。It is a flowchart which shows an example of the magnetizing process of a permanent magnet of a rotor. 図1に示される固定子3において、Y結線で接続された3相コイルと着磁用の電源との接続状態の一例を示す図である。It is a figure which shows an example of the connection state of the three-phase coil connected by the Y connection, and the power source for magnetism in the stator 3 shown in FIG. 図1に示される固定子3において、デルタ結線で接続された3相コイルと着磁用の電源との接続状態の一例を示す図である。It is a figure which shows an example of the connection state of the three-phase coil connected by the delta connection, and the power source for magnetism in the stator 3 shown in FIG. 図10に示される固定子3において、Y結線で接続された3相コイルと着磁用の電源との接続状態の一例を示す図である。It is a figure which shows an example of the connection state of the three-phase coil connected by the Y connection, and the power source for magnetism in the stator 3 shown in FIG. 図10に示される固定子3において、デルタ結線で接続された3相コイルと着磁用の電源との接続状態の一例を示す図である。FIG. 5 is a diagram showing an example of a connection state between a three-phase coil connected by a delta connection and a power source for magnetization in the stator 3 shown in FIG. 永久磁石の着磁工程において、図14及び図15に示される3相コイルに通電したとき、3相コイルのコイルエンドに生じる径方向における電磁力の例を示す図である。It is a figure which shows the example of the electromagnetic force in the radial direction generated at the coil end of a three-phase coil when the three-phase coil shown in FIG. 14 and FIG. 15 is energized in the magnetizing step of a permanent magnet. 永久磁石の着磁工程において、図14及び図15に示される3相コイルに通電したとき、3相コイルのコイルエンドに生じる軸方向における電磁力の例を示す図である。It is a figure which shows the example of the electromagnetic force in the axial direction generated at the coil end of a three-phase coil when the three-phase coil shown in FIGS. 14 and 15 is energized in the magnetizing process of a permanent magnet. 電動機内の回転子の永久磁石を着磁するときの、3相コイルにおける結線パターンごとの径方向における電磁力の大きさの違いを示すグラフである。It is a graph which shows the difference in the magnitude of the electromagnetic force in the radial direction for each connection pattern in a three-phase coil when magnetizing a permanent magnet of a rotor in an electric motor. 電動機内の回転子の永久磁石を着磁するときの、3相コイルにおける結線パターンごとの軸方向における電磁力の大きさの違いを示すグラフである。It is a graph which shows the difference in the magnitude of the electromagnetic force in the axial direction for each connection pattern in a three-phase coil when magnetizing a permanent magnet of a rotor in an electric motor. 本発明の実施の形態2に係る電動機の構造を概略的に示す部分断面図である。It is a partial cross-sectional view which shows schematic structure of the electric motor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る圧縮機の構造を概略的に示す断面図である。It is sectional drawing which shows schematic structure of the compressor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍空調装置の構成を概略的に示す図である。It is a figure which shows schematic structure of the refrigerating air-conditioning apparatus which concerns on Embodiment 4 of this invention.
実施の形態1.
 各図に示されるxyz直交座標系において、z軸方向(z軸)は、後述する電動機1の軸線Axと平行な方向を示し、x軸方向(x軸)は、z軸方向(z軸)に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線Axは、固定子3の中心であり、後述する回転子2の回転中心でもある。軸線Axと平行な方向は、「回転子2の軸方向」又は単に「軸方向」ともいう。径方向は、回転子2又は固定子3の半径方向であり、軸線Axと直交する方向である。xy平面は、軸方向と直交する平面である。矢印D1は、軸線Axを中心とする周方向を示す。回転子2又は固定子3の周方向を、単に「周方向」ともいう。
Embodiment 1.
In the xyz orthogonal coordinate system shown in each figure, the z-axis direction (z-axis) indicates a direction parallel to the axis Ax of the electric motor 1 described later, and the x-axis direction (x-axis) is the z-axis direction (z-axis). Indicates a direction orthogonal to, and the y-axis direction (y-axis) indicates a direction orthogonal to both the z-axis direction and the x-axis direction. The axis Ax is the center of the stator 3 and also the center of rotation of the rotor 2, which will be described later. The direction parallel to the axis Ax is also referred to as "axial direction of rotor 2" or simply "axial direction". The radial direction is the radial direction of the rotor 2 or the stator 3 and is a direction orthogonal to the axis Ax. The xy plane is a plane orthogonal to the axial direction. The arrow D1 indicates the circumferential direction centered on the axis Ax. The circumferential direction of the rotor 2 or the stator 3 is also simply referred to as the "circumferential direction".
〈固定子3の構造〉
 図1は、本発明の実施の形態1に係る固定子3の構造を概略的に示す平面図である。
 固定子3は、電動機(例えば、後述する電動機1)に用いられる。
<Structure of stator 3>
FIG. 1 is a plan view schematically showing the structure of the stator 3 according to the first embodiment of the present invention.
The stator 3 is used in an electric motor (for example, an electric motor 1 described later).
 固定子3は、ステータコア31と、3相コイル32と、少なくとも1つの第1のレーシング材331と、少なくとも1つの第2のレーシング材332と、少なくとも1つの第3のレーシング材333と、ワニス34とを有する。本実施の形態では、3相コイル32は、6極を持つ。 The stator 3 includes a stator core 31, a three-phase coil 32, at least one first racing material 331, at least one second racing material 332, at least one third racing material 333, and a varnish 34. And have. In this embodiment, the three-phase coil 32 has six poles.
 ステータコア31は、3相コイル32が配置される複数のスロット311を有する。図1に示される例では、ステータコア31は、18個のスロット311を有する。したがって、毎極毎相スロット数は、1である。 The stator core 31 has a plurality of slots 311 in which the three-phase coil 32 is arranged. In the example shown in FIG. 1, the stator core 31 has 18 slots 311. Therefore, the number of slots for each pole and each phase is 1.
 図2は、3相コイル32の構造を概略的に示す図である。
 3相コイル32は、ステータコア31に分布巻きで取り付けられている。図2に示されるように、3相コイル32は、スロット311内に配置されたコイルサイド32bと、スロット311内に配置されていないコイルエンド32aとを持つ。各コイルエンド32aは、3相コイル32の軸方向における端部である。
FIG. 2 is a diagram schematically showing the structure of the three-phase coil 32.
The three-phase coil 32 is attached to the stator core 31 in a distributed winding manner. As shown in FIG. 2, the three-phase coil 32 has a coil side 32b arranged in the slot 311 and a coil end 32a not arranged in the slot 311. Each coil end 32a is an axial end of the three-phase coil 32.
 本実施の形態では、3相コイル32は、3個の第1相のコイル321と、3個の第2相のコイル322と、3個の第3相のコイル323とを有する。ただし、第1相のコイル321の数、第2相のコイル322の数、及び第3相のコイル323の数は、本実施の形態に限定されない。本実施の形態では、固定子3は、2つのコイルエンド32aにおいて、図1に示される構造を持っている。ただし、固定子3は、2つのコイルエンド32aの一方において、図1に示される構造を持っていればよい。 In the present embodiment, the three-phase coil 32 has three first-phase coils 321, three second-phase coils 322, and three third-phase coils 323. However, the number of the first phase coil 321 and the number of the second phase coil 322 and the number of the third phase coil 323 are not limited to this embodiment. In this embodiment, the stator 3 has the structure shown in FIG. 1 at the two coil ends 32a. However, the stator 3 may have the structure shown in FIG. 1 at one of the two coil ends 32a.
 図3は、3相コイル32の構造の他の例を示す図である。
 図3に示される3相コイル32は、1個の第1相のコイル321と、1個の第2相のコイル322と、1個の第3相のコイル323とを有する。この場合、3相コイル32は、ステータコア31に波巻きで取り付けられている。
FIG. 3 is a diagram showing another example of the structure of the three-phase coil 32.
The three-phase coil 32 shown in FIG. 3 has one first-phase coil 321 and one second-phase coil 322 and one third-phase coil 323. In this case, the three-phase coil 32 is attached to the stator core 31 by wave winding.
 3相コイル32は、第1相、第2相、及び第3相を持つ。例えば、第1相はU相であり、第2相はV相であり、第3相はW相である。本実施の形態では、3相コイル32に電流が流れたとき、3相コイル32は、6極を形成する。 The three-phase coil 32 has a first phase, a second phase, and a third phase. For example, the first phase is the U phase, the second phase is the V phase, and the third phase is the W phase. In the present embodiment, when a current flows through the three-phase coil 32, the three-phase coil 32 forms six poles.
 図4は、3相コイル32における結線方法の一例を示す模式図である。
 3相コイル32における結線方法は、例えば、Y結線である。言い換えると、3相コイル32は、例えば、Y結線で接続されている。この場合、第1相のコイル321、第2相のコイル322、及び第3相のコイル323は、Y結線で接続されている。
FIG. 4 is a schematic view showing an example of a wiring method for the three-phase coil 32.
The connection method for the three-phase coil 32 is, for example, Y connection. In other words, the three-phase coil 32 is connected by, for example, a Y connection. In this case, the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a Y connection.
 図5は、3相コイル32における結線方法の他の例を示す模式図である。
 3相コイル32における結線方法は、図5に示されるように、デルタ結線でもよい。言い換えると、3相コイル32は、例えば、デルタ結線で接続されていてもよい。この場合、第1相のコイル321、第2相のコイル322、及び第3相のコイル323は、デルタ結線で接続されている。
FIG. 5 is a schematic view showing another example of the wiring method in the three-phase coil 32.
The connection method for the three-phase coil 32 may be delta connection as shown in FIG. In other words, the three-phase coil 32 may be connected by, for example, a delta connection. In this case, the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a delta connection.
 図1に示されるように、3相コイル32は、第1相に対応する複数の部分321a、第2相に対応する複数の部分322a、及び第3相に対応する複数の部分323aを有する。 As shown in FIG. 1, the three-phase coil 32 has a plurality of portions 321a corresponding to the first phase, a plurality of portions 322a corresponding to the second phase, and a plurality of portions 323a corresponding to the third phase.
 図1に示される例では、3相コイル32の各コイルエンド32aにおいて(すなわち、xy平面において)、3相コイル32のうちの、第1相に対応する部分321a、第2相に対応する部分322a、及び第3相に対応する部分323aは、ステータコア31の周方向においてこの順に配列されている。すなわち、3相コイル32の各コイルエンド32aにおいて、第1相のコイル321、第2相のコイル322、及び第3相のコイル323は、ステータコア31の周方向においてこの順に配列されている。 In the example shown in FIG. 1, at each coil end 32a of the three-phase coil 32 (that is, in the xy plane), the portion 321a corresponding to the first phase and the portion corresponding to the second phase of the three-phase coil 32. The 322a and the portion 323a corresponding to the third phase are arranged in this order in the circumferential direction of the stator core 31. That is, at each coil end 32a of the three-phase coil 32, the first-phase coil 321 and the second-phase coil 322, and the third-phase coil 323 are arranged in this order in the circumferential direction of the stator core 31.
 各コイルエンド32aにおいて、3相コイル32のうちの第1相に対応する部分321aを、「第1相部分321a」と称する。各コイルエンド32aにおいて、3相コイル32のうちの第2相に対応する部分322aを、「第2相部分322a」と称する。各コイルエンド32aにおいて、3相コイル32のうちの第3相に対応する部分323aを、「第3相部分323a」と称する。 In each coil end 32a, the portion 321a corresponding to the first phase of the three-phase coil 32 is referred to as "first phase portion 321a". In each coil end 32a, the portion 322a corresponding to the second phase of the three-phase coil 32 is referred to as a "second phase portion 322a". In each coil end 32a, the portion 323a corresponding to the third phase of the three-phase coil 32 is referred to as a "third-phase portion 323a".
 すなわち、第1相のコイル321は、複数の第1相部分321aを持ち、第2相のコイル322は、複数の第2相部分322aを持ち、第3相のコイル323は、複数の第3相部分333aを持つ。 That is, the first-phase coil 321 has a plurality of first-phase portions 321a, the second-phase coil 322 has a plurality of second-phase portions 322a, and the third-phase coil 323 has a plurality of third phases. It has a phase portion 333a.
 言い換えると、各第1相部分321aは、3相コイル32におけるコイルエンド32aにおける第1相のコイル321の一部であり、各第2相部分322aは、3相コイル32におけるコイルエンド32aにおける第2相のコイル322の一部であり、各第3相部分323aは、3相コイル32におけるコイルエンド32aにおける第3相のコイル323の一部である。 In other words, each first phase portion 321a is a part of the first phase coil 321 at the coil end 32a in the three phase coil 32, and each second phase portion 322a is the first at the coil end 32a in the three phase coil 32. It is a part of the two-phase coil 322, and each third-phase portion 323a is a part of the third-phase coil 323 at the coil end 32a of the three-phase coil 32.
 すなわち、各コイルエンド32aにおいて、3相コイル32のうちの、第1相部分321a、第2相部分322a、及び第3相部分323aは、ステータコア31の周方向においてこの順に配列されている。 That is, at each coil end 32a, the first phase portion 321a, the second phase portion 322a, and the third phase portion 323a of the three-phase coils 32 are arranged in this order in the circumferential direction of the stator core 31.
 図1に示されるように、3相コイル32の各コイルエンド32aにおいて(すなわち、xy平面において)、第3相のコイル323は、第1相のコイル321に比べてステータコア31の中心の近くに位置している。具体的には、3相コイル32の各コイルエンド32aにおいて、3相コイル32のうちの第3相に対応する部分、すなわち、第3相部分323aは、3相コイル32のうちの第1相に対応する部分、すなわち、第1相部分321aに比べてステータコア31の中心の近くに位置している。言い換えると、3相コイル32の各コイルエンド32aにおいて、第3相のコイル323は、第1相のコイル321に比べて軸線Axの近くに位置している。 As shown in FIG. 1, at each coil end 32a of the three-phase coil 32 (ie, in the xy plane), the third-phase coil 323 is closer to the center of the stator core 31 than the first-phase coil 321. positioned. Specifically, at each coil end 32a of the three-phase coil 32, the portion corresponding to the third phase of the three-phase coil 32, that is, the third-phase portion 323a is the first phase of the three-phase coil 32. It is located closer to the center of the stator core 31 than the portion corresponding to, that is, the first phase portion 321a. In other words, at each coil end 32a of the three-phase coil 32, the third-phase coil 323 is located closer to the axis Ax than the first-phase coil 321.
 少なくとも1つの第1のレーシング材331、少なくとも1つの第2のレーシング材332、及び少なくとも1つの第3のレーシング材333は、3相コイル32に巻かれている。 At least one first racing material 331, at least one second racing material 332, and at least one third racing material 333 are wound around a three-phase coil 32.
 第1のレーシング材331、第2のレーシング材332、及び第3のレーシング材333は、例えば、紐である。 The first racing material 331, the second racing material 332, and the third racing material 333 are, for example, strings.
 第1のレーシング材331は、3相コイル32の第1相部分321a及び3相コイル32の第2相部分322aを保持している。すなわち、第1のレーシング材331は、第1相のコイル321及び第2相のコイル322を保持している。言い換えると、第1のレーシング材331は、第1相のコイル321及び第2相のコイル322に巻かれている。これにより、第1相のコイル321及び第2相のコイル322は、第1のレーシング材331で留められている。 The first racing material 331 holds the first phase portion 321a of the three-phase coil 32 and the second phase portion 322a of the three-phase coil 32. That is, the first racing material 331 holds the first phase coil 321 and the second phase coil 322. In other words, the first racing material 331 is wound around the first phase coil 321 and the second phase coil 322. As a result, the first phase coil 321 and the second phase coil 322 are fastened by the first racing material 331.
 第2のレーシング材332は、3相コイル32の第2相部分322a及び3相コイル32の第3相部分323aを保持している。すなわち、第2のレーシング材332は、第2相のコイル322及び第3相のコイル323を保持している。言い換えると、第2のレーシング材332は、第2相のコイル322及び第3相のコイル323に巻かれている。これにより、第2相のコイル322及び第3相のコイル323は、第2のレーシング材332で留められている。 The second racing material 332 holds the second phase portion 322a of the three-phase coil 32 and the third phase portion 323a of the three-phase coil 32. That is, the second racing material 332 holds the second phase coil 322 and the third phase coil 323. In other words, the second racing material 332 is wound around the second phase coil 322 and the third phase coil 323. As a result, the second-phase coil 322 and the third-phase coil 323 are fastened by the second racing material 332.
 第3のレーシング材333は、3相コイル32の第3相部分323a及び3相コイル32の第1相部分321aを保持している。すなわち、第3のレーシング材333は、第3相のコイル323及び第1相のコイル321を保持している。言い換えると、第3のレーシング材333は、第3相のコイル323及び第1相のコイル321に巻かれている。これにより、第3相のコイル323及び第1相のコイル321は、第3のレーシング材333で留められている。 The third racing material 333 holds the third phase portion 323a of the three-phase coil 32 and the first phase portion 321a of the three-phase coil 32. That is, the third racing material 333 holds the coil 323 of the third phase and the coil 321 of the first phase. In other words, the third racing material 333 is wound around the third phase coil 323 and the first phase coil 321. As a result, the third phase coil 323 and the first phase coil 321 are fastened by the third racing material 333.
 第1のレーシング材331には、ワニス34が付着している。これにより、第1のレーシング材331が3相コイル32に固定されている。同様に、第2のレーシング材332には、ワニス34が付着している。これにより、第2のレーシング材332が3相コイル32に固定されている。同様に、第3のレーシング材333には、ワニス34が付着している。これにより、第3のレーシング材333が3相コイル32に固定されている。 Varnish 34 is attached to the first racing material 331. As a result, the first racing material 331 is fixed to the three-phase coil 32. Similarly, the varnish 34 is attached to the second racing material 332. As a result, the second racing material 332 is fixed to the three-phase coil 32. Similarly, the varnish 34 is attached to the third racing material 333. As a result, the third racing material 333 is fixed to the three-phase coil 32.
 第2のレーシング材332及び第3のレーシング材333のうちの少なくとも一方は、第1のレーシング材331よりも多く3相コイル32に巻かれている。言い換えると、第2のレーシング材332の巻回数及び第3のレーシング材333の巻回数のうちの少なくとも一方は、第1のレーシング材331の巻回数よりも多い。 At least one of the second racing material 332 and the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. In other words, at least one of the number of turns of the second racing material 332 and the number of turns of the third racing material 333 is larger than the number of turns of the first racing material 331.
 図1に示される例では、第2のレーシング材332は、第1のレーシング材331及び第3のレーシング材333のうちの少なくとも一方よりも多く3相コイル32に巻かれている。言い換えると、第2のレーシング材332の巻回数は、第1のレーシング材331の巻回数及び第3のレーシング材333の巻回数のうちの少なくとも一方よりも多い。図1に示される例では、第2のレーシング材332は、第3のレーシング材333よりも多く3相コイル32に巻かれている。具体的には、第2のレーシング材332の巻回数は、第3のレーシング材333の巻回数よりも多く、第1のレーシング材331の巻回数と同じである。 In the example shown in FIG. 1, the second racing material 332 is wound around the three-phase coil 32 more than at least one of the first racing material 331 and the third racing material 333. In other words, the number of turns of the second racing material 332 is greater than at least one of the number of turns of the first racing material 331 and the number of turns of the third racing material 333. In the example shown in FIG. 1, the second racing material 332 is wound around the three-phase coil 32 more than the third racing material 333. Specifically, the number of turns of the second racing material 332 is larger than the number of turns of the third racing material 333, and is the same as the number of turns of the first racing material 331.
 ただし、第2のレーシング材332は、第1のレーシング材331及び第3のレーシング材333の両方よりも多く3相コイル32に巻かれていてもよい。すなわち、第2のレーシング材332の巻回数は、第1のレーシング材331の巻回数及び第3のレーシング材333の巻回数の両方よりも多くてもよい。 However, the second racing material 332 may be wound around the three-phase coil 32 more than both the first racing material 331 and the third racing material 333. That is, the number of turns of the second racing material 332 may be larger than both the number of turns of the first racing material 331 and the number of turns of the third racing material 333.
 第2のレーシング材332に付着しているワニス34の量は、第1のレーシング材331に付着しているワニス34の量及び第3のレーシング材333に付着しているワニス34の量のうちの少なくとも一方よりも多い。図1に示される例では、第2のレーシング材332に付着しているワニス34の量は、第3のレーシング材333に付着しているワニス34の量よりも多く、第1のレーシング材331に付着しているワニス34の量と同じである。第2のレーシング材332に付着しているワニス34の量は、第1のレーシング材331に付着しているワニス34の量及び第3のレーシング材333に付着しているワニス34の量の両方よりも多くてもよい。 The amount of varnish 34 adhering to the second racing material 332 is out of the amount of varnish 34 adhering to the first racing material 331 and the amount of varnish 34 adhering to the third racing material 333. More than at least one of them. In the example shown in FIG. 1, the amount of varnish 34 adhering to the second racing material 332 is larger than the amount of varnish 34 adhering to the third racing material 333, and the first racing material 331 It is the same as the amount of varnish 34 attached to. The amount of varnish 34 adhering to the second racing material 332 is both the amount of varnish 34 adhering to the first racing material 331 and the amount of varnish 34 adhering to the third racing material 333. May be more.
〈固定子3の製造方法〉
 固定子3の製造方法の一例について説明する。
 図6は、固定子3の製造工程の一例を示すフローチャートである。
<Manufacturing method of stator 3>
An example of a method for manufacturing the stator 3 will be described.
FIG. 6 is a flowchart showing an example of the manufacturing process of the stator 3.
 図7は、ステップS11における第1相のコイル321の挿入工程を示す図である。
 ステップS11では、図7に示されるように、予め作製されたステータコア31に、第1相のコイル321を分布巻きで取り付ける。具体的には、ステータコア31のスロット311内に、第1相のコイル321を挿入器具で挿入する。
FIG. 7 is a diagram showing an insertion step of the first phase coil 321 in step S11.
In step S11, as shown in FIG. 7, the first phase coil 321 is attached to the prefabricated stator core 31 in a distributed winding manner. Specifically, the first phase coil 321 is inserted into the slot 311 of the stator core 31 with an insertion device.
 図8は、ステップS12における第2相のコイル322の挿入工程を示す図である。
 ステップS12では、図8に示されるように、第2相のコイル322を分布巻きで取り付ける。具体的には、ステータコア31のスロット311内に、第2相のコイル322を挿入器具で挿入する。
FIG. 8 is a diagram showing an insertion step of the second phase coil 322 in step S12.
In step S12, as shown in FIG. 8, the second phase coil 322 is attached in a distributed winding manner. Specifically, the second phase coil 322 is inserted into the slot 311 of the stator core 31 with an insertion tool.
 図9は、ステップS13における第3相のコイル323の挿入工程を示す図である。
 ステップS13では、図9に示されるように、第3相のコイル323を分布巻きで取り付ける。具体的には、ステータコア31のスロット311内に、第3相のコイル323を挿入器具で挿入する。
FIG. 9 is a diagram showing an insertion step of the third phase coil 323 in step S13.
In step S13, as shown in FIG. 9, the third phase coil 323 is attached in a distributed winding manner. Specifically, the third-phase coil 323 is inserted into the slot 311 of the stator core 31 with an insertion tool.
 ステップS11からステップS13では、3相コイル32の各コイルエンド32aにおいて、3相コイル32のうちの、第1相に対応する部分321a、第2相に対応する部分322a、及び第3相に対応する部分323aがステータコア31の周方向においてこの順に配列されるように、3相コイル32がステータコア31に取り付けられる。すなわち、ステップS11からステップS13では、3相コイル32の各コイルエンド32aにおいて、第1相のコイル321、第2相のコイル322、及び第3相のコイル323がステータコア31の周方向においてこの順に配列されるように、3相コイル32がステータコア31に取り付けられる。 In steps S11 to S13, at each coil end 32a of the three-phase coil 32, the portion 321a of the three-phase coil 32 corresponding to the first phase, the portion 322a corresponding to the second phase, and the third phase are supported. The three-phase coil 32 is attached to the stator core 31 so that the portions 323a to be formed are arranged in this order in the circumferential direction of the stator core 31. That is, in steps S11 to S13, at each coil end 32a of the three-phase coil 32, the first-phase coil 321 and the second-phase coil 322, and the third-phase coil 323 are arranged in this order in the circumferential direction of the stator core 31. The three-phase coils 32 are attached to the stator core 31 so that they are arranged.
 さらに、ステップS11からステップS13では、3相コイル32の各コイルエンド32aにおいて、3相コイル32のうちの第3相に対応する部分、すなわち、第3相部分323aが、3相コイル32のうちの第1相に対応する部分、すなわち、第1相部分321aに比べてステータコア31の中心の近くに位置するように、3相コイル32がステータコア31に取り付けられる。すなわち、ステップS11からステップS13では、3相コイル32の各コイルエンド32aにおいて、第3相のコイル323が第1相のコイル321に比べてステータコア31の中心の近くに位置するように、3相コイル32がステータコア31に取り付けられる。 Further, in steps S11 to S13, at each coil end 32a of the three-phase coil 32, the portion corresponding to the third phase of the three-phase coil 32, that is, the third-phase portion 323a is of the three-phase coil 32. The three-phase coil 32 is attached to the stator core 31 so as to be located closer to the center of the stator core 31 than the portion corresponding to the first phase of the above, that is, the first phase portion 321a. That is, in steps S11 to S13, at each coil end 32a of the three-phase coil 32, the three-phase coil 323 is located closer to the center of the stator core 31 than the first-phase coil 321. The coil 32 is attached to the stator core 31.
 ステップS14では、第1相のコイル321、第2相のコイル322、及び第3相のコイル323を接続する。例えば、第1相のコイル321、第2相のコイル322、及び第3相のコイル323は、Y結線又はデルタ結線で接続される。 In step S14, the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected. For example, the first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by Y connection or delta connection.
 ステップS15では、第1のレーシング材331、第2のレーシング材332、及び第3のレーシング材333を3相コイル32に取り付ける。 In step S15, the first racing material 331, the second racing material 332, and the third racing material 333 are attached to the three-phase coil 32.
 具体的には、第1のレーシング材331を、第1相のコイル321及び第2相のコイル322に巻きつける。より具体的には、第1のレーシング材331を、第1相部分321a及び第2相部分322aに巻きつける。これにより、第1相のコイル321及び第2相のコイル322は、第1のレーシング材331で留められる。 Specifically, the first racing material 331 is wound around the first phase coil 321 and the second phase coil 322. More specifically, the first racing material 331 is wound around the first phase portion 321a and the second phase portion 322a. As a result, the first phase coil 321 and the second phase coil 322 are fastened by the first racing material 331.
 同様に、第2のレーシング材332を、第2相のコイル322及び第3相のコイル323に巻きつける。より具体的には、第2のレーシング材332を、第2相部分322a及び第3相部分323aに巻きつける。これにより、第2相のコイル322及び第3相のコイル323は、第2のレーシング材332で留められる。 Similarly, the second racing material 332 is wound around the second phase coil 322 and the third phase coil 323. More specifically, the second racing material 332 is wound around the second phase portion 322a and the third phase portion 323a. As a result, the second phase coil 322 and the third phase coil 323 are fastened by the second racing material 332.
 同様に、第3のレーシング材333を、第3相のコイル323及び第1相のコイル321に巻きつける。より具体的には、第3のレーシング材333を、第3相部分323a及び第1相部分321aに巻きつける。これにより、第3相のコイル323及び第1相のコイル321は、第3のレーシング材333で留められる。 Similarly, the third racing material 333 is wound around the third phase coil 323 and the first phase coil 321. More specifically, the third racing material 333 is wound around the third phase portion 323a and the first phase portion 321a. As a result, the third-phase coil 323 and the first-phase coil 321 are fastened by the third racing material 333.
 ステップS15において、第2のレーシング材332及び第3のレーシング材333のうちの少なくとも一方が、第1のレーシング材331よりも多く3相コイル32に巻きつけられる。本実施の形態では、第2のレーシング材332が、第1のレーシング材331及び第3のレーシング材333のうちの少なくとも一方よりも多く3相コイル32に巻きつけられる。言い換えると、第2のレーシング材332の巻回数が第1のレーシング材331の巻回数及び第3のレーシング材333の巻回数のうちの少なくとも一方よりも多くなるように、第2のレーシング材332が、3相コイル32(具体的には、第2相部分322a及び第3相部分323a)に巻きつけられる。例えば、第2のレーシング材332が、第3のレーシング材333よりも多く3相コイル32に巻きつけられる。第2のレーシング材332が、第1のレーシング材331及び第3のレーシング材333の両方よりも多く3相コイル32に巻かれてもよい。 In step S15, at least one of the second racing material 332 and the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. In the present embodiment, the second racing material 332 is wound around the three-phase coil 32 more than at least one of the first racing material 331 and the third racing material 333. In other words, the number of turns of the second racing material 332 is greater than at least one of the number of turns of the first racing material 331 and the number of turns of the third racing material 333. Is wound around a three-phase coil 32 (specifically, a second phase portion 322a and a third phase portion 323a). For example, the second racing material 332 is wound around the three-phase coil 32 more than the third racing material 333. The second racing material 332 may be wound around the three-phase coil 32 more than both the first racing material 331 and the third racing material 333.
 ステップS16では、ワニス34を、第1のレーシング材331、第2のレーシング材332、及び第3のレーシング材333に付着させる。例えば、第1のレーシング材331、第2のレーシング材332、及び第3のレーシング材333をワニス34に含侵させる。 In step S16, the varnish 34 is attached to the first racing material 331, the second racing material 332, and the third racing material 333. For example, the varnish 34 is impregnated with the first racing material 331, the second racing material 332, and the third racing material 333.
 第2のレーシング材332は、第1のレーシング材331及び第3のレーシング材333のうちの少なくとも一方よりも多く3相コイル32に巻かれているので、第2のレーシング材332に付着しているワニス34の量は、第1のレーシング材331に付着しているワニス34の量及び第3のレーシング材333に付着しているワニス34の量のうちの少なくとも一方よりも多い。これにより、第2のレーシング材332の保持力が強化される。その結果、第2相のコイル322及び第3相のコイル323をしっかり固定することができ、固定子3におけるワニス34の量を低減することができる。 Since the second racing material 332 is wound around the three-phase coil 32 more than at least one of the first racing material 331 and the third racing material 333, it adheres to the second racing material 332. The amount of varnish 34 present is greater than at least one of the amount of varnish 34 adhering to the first racing material 331 and the amount of varnish 34 adhering to the third racing material 333. As a result, the holding force of the second racing material 332 is strengthened. As a result, the second-phase coil 322 and the third-phase coil 323 can be firmly fixed, and the amount of varnish 34 in the stator 3 can be reduced.
 ステップS17では、第1のレーシング材331、第2のレーシング材332、及び第3のレーシング材333に付着されたワニス34を硬化させる。例えば、第1のレーシング材331、第2のレーシング材332、及び第3のレーシング材333に付着されたワニス34を加熱器で加熱すると、ワニス34が硬化する。これにより、3相コイル32は、第1のレーシング材331、第2のレーシング材332、及び第3のレーシング材333で固定され、図1に示される固定子3が得られる。 In step S17, the varnish 34 adhered to the first racing material 331, the second racing material 332, and the third racing material 333 is cured. For example, when the varnish 34 attached to the first racing material 331, the second racing material 332, and the third racing material 333 is heated by a heater, the varnish 34 is cured. As a result, the three-phase coil 32 is fixed by the first racing material 331, the second racing material 332, and the third racing material 333, and the stator 3 shown in FIG. 1 is obtained.
変形例.
 図10は、変形例に係る固定子3の構造の例を概略的に示す平面図である。
 変形例に係る固定子3は、2つのコイルエンド32aにおいて、図10に示される構造を持つ。ただし、変形例に係る固定子3は、2つのコイルエンド32aの一方において、図10に示される構造を持っていればよい。
Modification example.
FIG. 10 is a plan view schematically showing an example of the structure of the stator 3 according to the modified example.
The stator 3 according to the modified example has the structure shown in FIG. 10 at the two coil ends 32a. However, the stator 3 according to the modified example may have the structure shown in FIG. 10 at one of the two coil ends 32a.
 以下、変形例に係る固定子3に関し、実施の形態1に係る固定子3と異なる点を主に説明する。 Hereinafter, the points different from the stator 3 according to the first embodiment will be mainly described with respect to the stator 3 according to the modified example.
 変形例に係る固定子3では、第3のレーシング材333は、第1のレーシング材331及び第2のレーシング材332のうちの少なくとも一方よりも多く3相コイル32に巻かれている。図10に示される例では、第3のレーシング材333は、第1のレーシング材331よりも多く3相コイル32に巻かれている。より具体的には、図10に示される例では、第2のレーシング材332及び第3のレーシング材333の各々が、第1のレーシング材331よりも多く3相コイル32に巻かれている。第3のレーシング材333は、第1のレーシング材331及び第2のレーシング材332の両方よりも多く3相コイル32に巻かれていてもよい。 In the stator 3 according to the modified example, the third racing material 333 is wound around the three-phase coil 32 more than at least one of the first racing material 331 and the second racing material 332. In the example shown in FIG. 10, the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. More specifically, in the example shown in FIG. 10, each of the second racing material 332 and the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. The third racing material 333 may be wound around the three-phase coil 32 more than both the first racing material 331 and the second racing material 332.
 言い換えると、第3のレーシング材333の巻回数は、第1のレーシング材331の巻回数及び第2のレーシング材332の巻回数のうちの少なくとも一方よりも多い。図10に示される例では、第2のレーシング材332の巻回数及び第3のレーシング材333の巻回数の各々は、第1のレーシング材331の巻回数よりも多い。より具体的には、図10に示される例では、第3のレーシング材333の巻回数は、第1のレーシング材331の巻回数よりも多く、第2のレーシング材332の巻回数と同じである。第3のレーシング材333の巻回数は、第1のレーシング材331の巻回数及び第2のレーシング材332の巻回数の両方よりも多くてもよい。 In other words, the number of turns of the third racing material 333 is larger than at least one of the number of turns of the first racing material 331 and the number of turns of the second racing material 332. In the example shown in FIG. 10, each of the number of turns of the second racing material 332 and the number of turns of the third racing material 333 is larger than the number of turns of the first racing material 331. More specifically, in the example shown in FIG. 10, the number of turns of the third racing material 333 is larger than the number of turns of the first racing material 331 and is the same as the number of turns of the second racing material 332. is there. The number of turns of the third racing material 333 may be larger than both the number of turns of the first racing material 331 and the number of turns of the second racing material 332.
 第3のレーシング材333に付着しているワニス34の量は、第1のレーシング材331に付着しているワニス34の量及び第2のレーシング材332に付着しているワニス34の量のうちの少なくとも一方よりも多い。図10に示される例では、第2のレーシング材332に付着しているワニス34の量及び第3のレーシング材333に付着しているワニス34の量の各々は、第1のレーシング材331に付着しているワニス34の量よりも多い。より具体的には、図10に示される例では、第3のレーシング材333に付着しているワニス34の量は、第1のレーシング材331に付着しているワニス34の量よりも多く、第2のレーシング材332に付着しているワニス34の量と同じである。第3のレーシング材333に付着しているワニス34の量は、第1のレーシング材331に付着しているワニス34の量及び第2のレーシング材332に付着しているワニス34の量の両方よりも多くてもよい。 The amount of varnish 34 adhering to the third racing material 333 is out of the amount of varnish 34 adhering to the first racing material 331 and the amount of varnish 34 adhering to the second racing material 332. More than at least one of them. In the example shown in FIG. 10, the amount of the varnish 34 adhering to the second racing material 332 and the amount of the varnish 34 adhering to the third racing material 333 are each attached to the first racing material 331. More than the amount of varnish 34 attached. More specifically, in the example shown in FIG. 10, the amount of varnish 34 adhering to the third racing material 333 is larger than the amount of varnish 34 adhering to the first racing material 331. It is the same as the amount of varnish 34 adhering to the second racing material 332. The amount of varnish 34 adhering to the third racing material 333 is both the amount of varnish 34 adhering to the first racing material 331 and the amount of varnish 34 adhering to the second racing material 332. May be more.
 変形例に係る固定子3は、実施の形態1に係る固定子3の製造方法と同じ方法で製造できる。すなわち、図10に示される固定子3は、図6に示されるステップS11からステップS17までの製造工程と同じ工程に従って製造できる。 The stator 3 according to the modified example can be manufactured by the same method as the method for manufacturing the stator 3 according to the first embodiment. That is, the stator 3 shown in FIG. 10 can be manufactured according to the same steps as the manufacturing steps from step S11 to step S17 shown in FIG.
 ただし、変形例において、ステップS15における処理は、実施の形態1に係る固定子3の製造方法の、ステップS15における処理と異なる。 However, in the modified example, the process in step S15 is different from the process in step S15 of the method for manufacturing the stator 3 according to the first embodiment.
 具体的には、ステップS15において、第3のレーシング材333を、第1のレーシング材331及び第2のレーシング材332のうちの少なくとも一方よりも多く3相コイル32に巻きつける。言い換えると、第3のレーシング材333の巻回数が第1のレーシング材331の巻回数及び第2のレーシング材332の巻回数のうちの少なくとも一方よりも多くなるように、第3のレーシング材333を、3相コイル32(具体的には、第3相部分323a及び第1相部分321a)に巻きつける。例えば、第3のレーシング材333を、第1のレーシング材331よりも多く3相コイル32に巻きつける。第3のレーシング材333を、第1のレーシング材331及び第2のレーシング材332の両方よりも多く3相コイル32に巻いてもよい。 Specifically, in step S15, the third racing material 333 is wound around the three-phase coil 32 more than at least one of the first racing material 331 and the second racing material 332. In other words, the number of turns of the third racing material 333 is greater than at least one of the number of turns of the first racing material 331 and the number of turns of the second racing material 332. Is wound around a three-phase coil 32 (specifically, a third-phase portion 323a and a first-phase portion 321a). For example, the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. The third racing material 333 may be wound around the three-phase coil 32 more than both the first racing material 331 and the second racing material 332.
〈固定子3を利用した、回転子の永久磁石の着磁方法〉
 固定子3を利用した、回転子の永久磁石の着磁方法について説明する。
 図11は、回転子の永久磁石の着磁工程の一例を示すフローチャートである。
<Method of magnetizing a permanent magnet of a rotor using a stator 3>
A method of magnetizing a permanent magnet of a rotor using a stator 3 will be described.
FIG. 11 is a flowchart showing an example of a magnetizing process of the permanent magnet of the rotor.
 ステップS21では、固定子3を固定する。例えば、固定子3を圧縮機又は電動機内に、圧入又は焼き嵌めなどの固定方法で固定する。 In step S21, the stator 3 is fixed. For example, the stator 3 is fixed in the compressor or the electric motor by a fixing method such as press fitting or shrink fitting.
 ステップS22では、固定子3の内側に回転子を配置する。この回転子には、少なくとも1つの永久磁石が取り付けられている。 In step S22, the rotor is arranged inside the stator 3. At least one permanent magnet is attached to this rotor.
 ステップS23では、着磁用の電源(単に電源ともいう)に3相コイル32を接続する。
 図12は、実施の形態1に係る固定子3、すなわち、図1に示される固定子3において、Y結線で接続された3相コイル32と着磁用の電源との接続状態の一例を示す図である。
 図13は、実施の形態1に係る固定子3、すなわち、図1に示される固定子3において、デルタ結線で接続された3相コイル32と着磁用の電源との接続状態の一例を示す図である。
In step S23, the three-phase coil 32 is connected to a magnetic power source (also simply referred to as a power source).
FIG. 12 shows an example of the connection state between the three-phase coil 32 connected by the Y connection and the power supply for magnetization in the stator 3 according to the first embodiment, that is, the stator 3 shown in FIG. It is a figure.
FIG. 13 shows an example of the connection state between the three-phase coil 32 connected by the delta connection and the power supply for magnetization in the stator 3 according to the first embodiment, that is, the stator 3 shown in FIG. It is a figure.
 図12に示される例では、電源のプラス側が第2相のコイル322に接続されており、電源のマイナス側が第1相のコイル321及び第3相のコイル323に接続されている。図13に示される例では、電源のプラス側が第1相のコイル321及び第2相のコイル322に接続されており、電源のマイナス側が第2相のコイル322及び第3相のコイル323に接続されている。 In the example shown in FIG. 12, the positive side of the power supply is connected to the coil 322 of the second phase, and the negative side of the power supply is connected to the coil 321 of the first phase and the coil 323 of the third phase. In the example shown in FIG. 13, the positive side of the power supply is connected to the coil 321 of the first phase and the coil 322 of the second phase, and the negative side of the power supply is connected to the coil 322 of the second phase and the coil 323 of the third phase. Has been done.
 図14は、変形例に係る固定子3、すなわち、図10に示される固定子3において、Y結線で接続された3相コイル32と着磁用の電源との接続状態の一例を示す図である。
 図15は、変形例に係る固定子3、すなわち、図10に示される固定子3において、デルタ結線で接続された3相コイル32と着磁用の電源との接続状態の一例を示す図である。
FIG. 14 is a diagram showing an example of a connection state between the three-phase coil 32 connected by the Y connection and the power supply for magnetization in the stator 3 according to the modified example, that is, the stator 3 shown in FIG. is there.
FIG. 15 is a diagram showing an example of a connection state between the three-phase coil 32 connected by the delta connection and the power supply for magnetization in the stator 3 according to the modified example, that is, the stator 3 shown in FIG. is there.
 図14に示される例では、電源のプラス側が第3相のコイル323に接続されており、電源のマイナス側が第1相のコイル321及び第2相のコイル322に接続されている。図15に示される例では、電源のプラス側が第2相のコイル322及び第3相のコイル323に接続されており、電源のマイナス側が第1相のコイル321及び第3相のコイル323に接続されている。 In the example shown in FIG. 14, the positive side of the power supply is connected to the coil 323 of the third phase, and the negative side of the power supply is connected to the coil 321 of the first phase and the coil 322 of the second phase. In the example shown in FIG. 15, the positive side of the power supply is connected to the second phase coil 322 and the third phase coil 323, and the negative side of the power supply is connected to the first phase coil 321 and the third phase coil 323. Has been done.
 ステップS24では、少なくとも1つの永久磁石を有する回転子の位置(具体的には、回転子の位相)を治具で固定する。 In step S24, the position of the rotor having at least one permanent magnet (specifically, the phase of the rotor) is fixed with a jig.
 ステップS25では、永久磁石を着磁させる。具体的には、電源から3相コイル32に大きな電流を供給する。 In step S25, the permanent magnet is magnetized. Specifically, a large current is supplied from the power source to the three-phase coil 32.
 図12に示される例では、電源から大きな電流が第2相のコイル322に流れ、第2相のコイル322からの電流が第1相のコイル321及び第3相のコイル323に分岐する。第2相のコイル322に流れる電流は、第1相のコイル321に流れる電流及び第3相のコイル323に流れる電流の各々よりも大きい。 In the example shown in FIG. 12, a large current flows from the power supply to the coil 322 of the second phase, and the current from the coil 322 of the second phase branches into the coil 321 of the first phase and the coil 323 of the third phase. The current flowing through the second-phase coil 322 is larger than the current flowing through the first-phase coil 321 and the current flowing through the third-phase coil 323.
 図13に示される例では、電源から大きな電流が第2相のコイル322に流れる。言い換えると、第2相のコイル322に流れる電流は、第1相のコイル321に流れる電流及び第3相のコイル323に流れる電流の各々よりも大きい。 In the example shown in FIG. 13, a large current flows from the power supply to the second phase coil 322. In other words, the current flowing through the second phase coil 322 is larger than the current flowing through the first phase coil 321 and the current flowing through the third phase coil 323.
 図14に示される例では、電源から大きな電流が第3相のコイル323に流れ、第3相のコイル323からの電流が第1相のコイル321及び第2相のコイル322に分岐する。第3相のコイル323に流れる電流は、第1相のコイル321に流れる電流及び第2相のコイル322に流れる電流の各々よりも大きい。 In the example shown in FIG. 14, a large current flows from the power supply to the coil 323 of the third phase, and the current from the coil 323 of the third phase branches into the coil 321 of the first phase and the coil 322 of the second phase. The current flowing through the coil 323 of the third phase is larger than the current flowing through the coil 321 of the first phase and the current flowing through the coil 322 of the second phase.
 図15に示される例では、電源から大きな電流が第3相のコイル323に流れる。言い換えると、第3相のコイル323に流れる電流は、第1相のコイル321に流れる電流及び第2相のコイル322に流れる電流の各々よりも大きい。 In the example shown in FIG. 15, a large current flows from the power supply to the coil 323 of the third phase. In other words, the current flowing through the coil 323 of the third phase is larger than the current flowing through the coil 321 of the first phase and the current flowing through the coil 322 of the second phase.
 図12から図15に示されるように、電源から3相コイル32に流れる電流によって磁場が生じ、回転子の永久磁石が着磁される。 As shown in FIGS. 12 to 15, a magnetic field is generated by the current flowing from the power supply to the three-phase coil 32, and the permanent magnet of the rotor is magnetized.
 ステップS26では、ステップS24で用いた治具を回転子から取り外す。 In step S26, the jig used in step S24 is removed from the rotor.
〈固定子3の利点〉
 実施の形態1に係る固定子3(変形例を含む)の利点を説明する。
<Advantages of stator 3>
The advantages of the stator 3 (including the modified example) according to the first embodiment will be described.
 上述のように、実施の形態1に係る固定子3は、例えば、永久磁石を持つ回転子を有する電動機に適用される。例えば、電動機の製造工程、具体的には、永久磁石の着磁工程において、固定子3の内側にその回転子を配置した状態で、固定子3の3相コイル32に大きな電流を流し、回転子の永久磁石を着磁する。 As described above, the stator 3 according to the first embodiment is applied to, for example, an electric motor having a rotor having a permanent magnet. For example, in the manufacturing process of an electric motor, specifically, in the magnetizing process of a permanent magnet, a large current is passed through the three-phase coil 32 of the stator 3 in a state where the rotor is arranged inside the stator 3 to rotate the stator 3. Magnetize the child's permanent magnet.
 図16は、電動機の製造工程、具体的には、永久磁石の着磁工程において、図14及び図15に示される3相コイル32に通電したとき、3相コイル32のコイルエンド32aに生じる径方向における電磁力F1の例を示す図である。
 図14及び図15に示される例では、着磁用の電源から電流が3相コイル32に流れると、図16に示されるように、第2相のコイル322と第3相のコイル323との間で、互いに反発する径方向における電磁力F1が生じ、第1相のコイル321と第3相のコイル323との間で、互いに反発する径方向における電磁力F1が生じる。この電磁力F1は、ローレンツ力ともいう。
FIG. 16 shows the diameter generated at the coil end 32a of the three-phase coil 32 when the three-phase coil 32 shown in FIGS. 14 and 15 is energized in the manufacturing process of the electric motor, specifically, the magnetizing process of the permanent magnet. It is a figure which shows the example of the electromagnetic force F1 in a direction.
In the examples shown in FIGS. 14 and 15, when a current flows through the three-phase coil 32 from the magnetizing power source, as shown in FIG. 16, the second-phase coil 322 and the third-phase coil 323 A radial electromagnetic force F1 that repels each other is generated between them, and a radial electromagnetic force F1 that repels each other is generated between the first phase coil 321 and the third phase coil 323. This electromagnetic force F1 is also called Lorentz force.
 図17は、電動機の製造工程、具体的には、永久磁石の着磁工程において、図14及び図15に示される3相コイル32に通電したとき、3相コイル32のコイルエンド32aに生じる軸方向における電磁力F2の例を示す図である。 FIG. 17 shows a shaft generated at the coil end 32a of the three-phase coil 32 when the three-phase coil 32 shown in FIGS. 14 and 15 is energized in the manufacturing process of the electric motor, specifically, the magnetizing process of the permanent magnet. It is a figure which shows the example of the electromagnetic force F2 in a direction.
 一般に、コイルエンドのような湾曲した経路に電流が流れる場合、湾曲した部分における内側と外側との間で電流によって生じる磁束密度に差が生じ、これらの磁束密度が均等になるようにコイルに力が生じる。これにより、コイルエンドにおいて、コイルエンドが直線状に変形しようとする力が生じる。コイルエンドの両端は、ステータコアに固定されているため、コイルエンドにおいて軸方向に力が働く。したがって、着磁用の電源から3相コイル32に電流が流れると、図17に示されるように、軸方向における電磁力F2が3相コイル32に生じる。 Generally, when a current flows through a curved path such as a coil end, there is a difference in the magnetic flux density generated by the current between the inside and the outside in the curved portion, and a force is applied to the coil so that these magnetic flux densities are equal. Occurs. As a result, at the coil end, a force is generated in which the coil end tends to deform linearly. Since both ends of the coil end are fixed to the stator core, a force acts in the axial direction at the coil end. Therefore, when a current flows from the magnetizing power source to the three-phase coil 32, an electromagnetic force F2 in the axial direction is generated in the three-phase coil 32 as shown in FIG.
 図18は、電動機内の回転子の永久磁石を着磁するときの、3相コイル32における結線パターンごとの径方向における電磁力F1の大きさの違いを示すグラフである。図18に示されるデータは、電磁界解析で解析した結果である。 FIG. 18 is a graph showing the difference in the magnitude of the electromagnetic force F1 in the radial direction for each connection pattern in the three-phase coil 32 when the permanent magnet of the rotor in the electric motor is magnetized. The data shown in FIG. 18 is the result of analysis by electromagnetic field analysis.
 結線パターンC1では、着磁用の電源から大きな電流が第1相のコイル321に流れ、第1相のコイル321に流れる電流は、第2相のコイル322に流れる電流及び第3相のコイル323に流れる電流の各々よりも大きい。 In the connection pattern C1, a large current flows from the magnetizing power supply to the coil 321 of the first phase, and the current flowing through the coil 321 of the first phase is the current flowing through the coil 322 of the second phase and the coil 323 of the third phase. Greater than each of the currents flowing through.
 結線パターンC2では、着磁用の電源から大きな電流が第2相のコイル322に流れ、第2相のコイル322に流れる電流は、第1相のコイル321に流れる電流及び第3相のコイル323に流れる電流の各々よりも大きい。結線パターンC2は、例えば、図12及び図13に示される結線状態に対応する。 In the connection pattern C2, a large current flows from the magnetizing power supply to the second phase coil 322, and the current flowing through the second phase coil 322 is the current flowing through the first phase coil 321 and the third phase coil 323. Greater than each of the currents flowing through. The connection pattern C2 corresponds to, for example, the connection state shown in FIGS. 12 and 13.
 結線パターンC3では、着磁用の電源から大きな電流が第3相のコイル323に流れ、第3相のコイル323に流れる電流は、第1相のコイル321に流れる電流及び第2相のコイル322に流れる電流の各々よりも大きい。結線パターンC3は、例えば、図14及び図15に示される結線状態に対応する。 In the connection pattern C3, a large current flows from the magnetizing power supply to the coil 323 of the third phase, and the current flowing through the coil 323 of the third phase is the current flowing through the coil 321 of the first phase and the coil 322 of the second phase. Greater than each of the currents flowing through. The connection pattern C3 corresponds to, for example, the connection state shown in FIGS. 14 and 15.
 3相コイル32の各コイルエンド32aにおいて、第3相のコイル323は、第1相のコイル321に比べて軸線Axの近くに位置している。そのため、電動機内の回転子の永久磁石を着磁するとき、第3相のコイル323がステータコア31から外れる可能性がある。図18に示されるように、特に、結線パターンC1では、電動機内の回転子の永久磁石を着磁するとき、第1相のコイル321に生じる径方向における電磁力F1が非常に大きい。すなわち、第3相のコイル323は、第1相のコイル321と第3相のコイル323との間で生じる反発力を受けやすいため、この反発力により第3相のコイル323がステータコア31から外れる可能性がある。 At each coil end 32a of the three-phase coil 32, the third-phase coil 323 is located closer to the axis Ax than the first-phase coil 321. Therefore, when the permanent magnet of the rotor in the electric motor is magnetized, the coil 323 of the third phase may come off from the stator core 31. As shown in FIG. 18, particularly in the connection pattern C1, when the permanent magnet of the rotor in the electric motor is magnetized, the electromagnetic force F1 in the radial direction generated in the coil 321 of the first phase is very large. That is, since the coil 323 of the third phase is susceptible to the repulsive force generated between the coil 321 of the first phase and the coil 323 of the third phase, the coil 323 of the third phase is disengaged from the stator core 31 by this repulsive force. there is a possibility.
 そこで、本実施の形態では、第2のレーシング材332及び第3のレーシング材333のうちの少なくとも一方は、第1のレーシング材331よりも多く3相コイル32に巻かれている。すなわち、第3相のコイル323は、第2のレーシング材332及び第3のレーシング材333のうちの少なくとも一方でしっかり保持されている。これにより、3相コイル32における結線パターンに関わらず、第2のレーシング材332及び第3のレーシング材333のうちの少なくとも一方で3相コイル32、特に第3相のコイル323をしっかり固定することができ、回転子を固定子3の内側に配置した状態で回転子の永久磁石を着磁するときに、3相コイルの結線状態に関わらず、固定子3の3相コイル32の著しい変形を防ぐことができる。その結果、固定子3の品質を改善することができる。 Therefore, in the present embodiment, at least one of the second racing material 332 and the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. That is, the third-phase coil 323 is firmly held by at least one of the second racing material 332 and the third racing material 333. As a result, the three-phase coil 32, particularly the third-phase coil 323, is firmly fixed to at least one of the second racing material 332 and the third racing material 333 regardless of the connection pattern in the three-phase coil 32. When the permanent magnet of the rotor is magnetized with the rotor placed inside the stator 3, the three-phase coil 32 of the stator 3 is significantly deformed regardless of the connection state of the three-phase coil. Can be prevented. As a result, the quality of the stator 3 can be improved.
 さらに、第2のレーシング材332及び第3のレーシング材333のうちの少なくとも一方が、第1のレーシング材331よりも多く3相コイル32に巻かれていればよいので、レーシング材の数を低減することができ、固定子3のコストを低減することができる。これにより、3相コイル32の著しい変形を効率的に防ぐことができる。 Further, since at least one of the second racing material 332 and the third racing material 333 needs to be wound around the three-phase coil 32 more than the first racing material 331, the number of racing materials is reduced. The cost of the stator 3 can be reduced. This makes it possible to efficiently prevent significant deformation of the three-phase coil 32.
 さらに、第2のレーシング材332に付着しているワニス34の量は、第1のレーシング材331に付着しているワニス34の量及び第3のレーシング材333に付着しているワニス34の量のうちの少なくとも一方よりも多い。これにより、第2のレーシング材332の保持力が強化され、第2相のコイル322及び第3相のコイル323、特に第3相のコイル323をしっかり固定することができる。その結果、3相コイル32の著しい変形を防ぐことができる。 Further, the amount of the varnish 34 adhering to the second racing material 332 is the amount of the varnish 34 adhering to the first racing material 331 and the amount of the varnish 34 adhering to the third racing material 333. More than at least one of them. As a result, the holding force of the second racing material 332 is strengthened, and the second phase coil 322 and the third phase coil 323, particularly the third phase coil 323 can be firmly fixed. As a result, significant deformation of the three-phase coil 32 can be prevented.
 第2のレーシング材332に付着しているワニス34の量は、第3のレーシング材333に付着しているワニス34の量よりも多くてもよい。この場合、固定子3におけるワニス34の量を低減することができ、固定子3のコストを低減することができる。これにより、3相コイル32の著しい変形を効率的に防ぐことができる。 The amount of varnish 34 adhering to the second racing material 332 may be larger than the amount of varnish 34 adhering to the third racing material 333. In this case, the amount of the varnish 34 in the stator 3 can be reduced, and the cost of the stator 3 can be reduced. This makes it possible to efficiently prevent significant deformation of the three-phase coil 32.
 第2のレーシング材332及び第3のレーシング材333の各々が、第1のレーシング材331よりも多く3相コイル32に巻かれている場合、第3相のコイル323をさらにしっかり固定することができる。その結果、3相コイル32の著しい変形を防ぐことができる。 If each of the second racing material 332 and the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331, the third-phase coil 323 can be more firmly fixed. it can. As a result, significant deformation of the three-phase coil 32 can be prevented.
 さらに、第2のレーシング材332に付着しているワニス34の量及び第3のレーシング材333に付着しているワニス34の量の各々が、第1のレーシング材331に付着しているワニス34の量よりも多い場合、第3相のコイル323をさらにしっかり固定することができる。その結果、3相コイル32の著しい変形を防ぐことができる。 Further, each of the amount of the varnish 34 adhering to the second racing material 332 and the amount of the varnish 34 adhering to the third racing material 333 are attached to the first racing material 331. If the amount is greater than the amount of, the third phase coil 323 can be more firmly fixed. As a result, significant deformation of the three-phase coil 32 can be prevented.
 図19は、電動機内の回転子の永久磁石を着磁するときの、3相コイル32における結線パターンごとの軸方向における電磁力F2の大きさの違いを示すグラフである。図19に示されるデータは、電磁界解析で解析した結果である。図19において、結線パターンC1,C2,C3は、図18における結線パターンC1,C2,C3にそれぞれ対応する。 FIG. 19 is a graph showing the difference in the magnitude of the electromagnetic force F2 in the axial direction for each connection pattern in the three-phase coil 32 when the permanent magnet of the rotor in the electric motor is magnetized. The data shown in FIG. 19 is the result of analysis by electromagnetic field analysis. In FIG. 19, the connection patterns C1, C2, and C3 correspond to the connection patterns C1, C2, and C3 in FIG. 18, respectively.
 図19に示されるように、軸方向における電磁力F2に関して、結線パターンに関わらず、3相コイル32のうちの1つのコイルに大きな軸方向における電磁力F2が生じる。具体的には、結線パターンC1では、第1相のコイル321に電源から大きな電流が流れ、第1相のコイル321に軸方向における大きな電磁力F2が生じる。結線パターンC2では、第2相のコイル322に電源から大きな電流が流れ、第2相のコイル322に軸方向における大きな電磁力F2が生じる。結線パターンC3では、第3相のコイル323に電源から大きな電流が流れ、第3相のコイル323に軸方向における大きな電磁力F2が生じる。 As shown in FIG. 19, with respect to the electromagnetic force F2 in the axial direction, a large electromagnetic force F2 in the axial direction is generated in one of the three-phase coils 32 regardless of the connection pattern. Specifically, in the connection pattern C1, a large current flows from the power supply to the coil 321 of the first phase, and a large electromagnetic force F2 in the axial direction is generated in the coil 321 of the first phase. In the connection pattern C2, a large current flows from the power source to the coil 322 of the second phase, and a large electromagnetic force F2 in the axial direction is generated in the coil 322 of the second phase. In the connection pattern C3, a large current flows from the power source to the coil 323 of the third phase, and a large electromagnetic force F2 in the axial direction is generated in the coil 323 of the third phase.
 したがって、固定子3の望ましい例では、電源から3相コイル32に電流を流して永久磁石を着磁するとき、電源から供給される電流が第2相のコイル322を流れ、第2相のコイル322からの電流が第1相のコイル321及び第3相のコイル323に分岐するように、第1相のコイル321、第2相のコイル322、及び第3相のコイル323がY結線で接続されている(結線パターンC2)。この場合、第2のレーシング材332は、第1のレーシング材331よりも多く3相コイル32に巻かれていることが望ましい。これにより、上述のように、第1相のコイル321に生じる径方向における電磁力F1に対して第3相のコイル323を保持する保持力を高めることができる。さらに、第2相のコイル322に生じる軸方向における電磁力F2に対して第2相のコイル322を保持する保持力を高めることができる。その結果、レーシング材の数を低減することができ、3相コイル32の著しい変形を効率的に防ぐことができる。 Therefore, in a desirable example of the stator 3, when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet, the current supplied from the power supply flows through the second-phase coil 322 and the second-phase coil. The first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a Y connection so that the current from 322 branches into the first phase coil 321 and the third phase coil 323. (Connection pattern C2). In this case, it is desirable that the second racing material 332 is wound around the three-phase coil 32 more than the first racing material 331. As a result, as described above, it is possible to increase the holding force for holding the third phase coil 323 with respect to the radial electromagnetic force F1 generated in the first phase coil 321. Further, it is possible to increase the holding force for holding the second phase coil 322 with respect to the axial electromagnetic force F2 generated in the second phase coil 322. As a result, the number of racing materials can be reduced, and significant deformation of the three-phase coil 32 can be efficiently prevented.
 固定子3の望ましい他の例では、電源から3相コイル32に電流を流して永久磁石を着磁するとき、電源から供給される電流が第3相のコイル323を流れ、第3相のコイル323からの電流が第1相のコイル321及び第2相のコイル322に分岐するように、第1相のコイル321、第2相のコイル322、及び第3相のコイル323がY結線で接続されている(結線パターンC3)。この場合、第3のレーシング材333は、第1のレーシング材331よりも多く3相コイル32に巻かれていることが望ましい。これにより、上述のように、第1相のコイル321に生じる径方向における電磁力F1に対して第3相のコイル323を保持する保持力を高めることができる。さらに、第3相のコイル323に生じる軸方向における電磁力F2に対して第3相のコイル323を保持する保持力を高めることができる。その結果、レーシング材の数を低減することができ、3相コイル32の著しい変形を効率的に防ぐことができる。 In another desirable example of the stator 3, when a current is passed from the power supply to the 3-phase coil 32 to magnetize the permanent magnet, the current supplied from the power supply flows through the 3rd phase coil 323 and the 3rd phase coil. The first phase coil 321 and the second phase coil 322 and the third phase coil 323 are connected by a Y connection so that the current from 323 branches into the first phase coil 321 and the second phase coil 322. (Connection pattern C3). In this case, it is desirable that the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. As a result, as described above, it is possible to increase the holding force for holding the third phase coil 323 with respect to the radial electromagnetic force F1 generated in the first phase coil 321. Further, it is possible to increase the holding force for holding the third phase coil 323 with respect to the axial electromagnetic force F2 generated in the third phase coil 323. As a result, the number of racing materials can be reduced, and significant deformation of the three-phase coil 32 can be efficiently prevented.
 固定子3の望ましいさらに他の例では、電源から3相コイル32に電流を流して永久磁石を着磁するとき、電源から第2相のコイル322に流れる電流が、第1相のコイル321に流れる電流及び第3相のコイル323に流れる電流の各々よりも大きくなるように、第1相のコイル321、第2相のコイル322、及び第3相のコイル323がデルタ結線で接続されている。この場合、第2のレーシング材332は、第1のレーシング材331よりも多く3相コイル32に巻かれていることが望ましい。これにより、上述のように、第1相のコイル321に生じる径方向における電磁力F1に対して第3相のコイル323を保持する保持力を高めることができる。さらに、第2相のコイル322に生じる軸方向における電磁力F2に対して第2相のコイル322を保持する保持力を高めることができる。その結果、レーシング材の数を低減することができ、3相コイル32の著しい変形を効率的に防ぐことができる。 In yet another desirable example of the stator 3, when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet, the current flowing from the power supply to the second-phase coil 322 is transferred to the first-phase coil 321. The first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a delta connection so as to be larger than each of the flowing current and the current flowing through the third phase coil 323. .. In this case, it is desirable that the second racing material 332 is wound around the three-phase coil 32 more than the first racing material 331. As a result, as described above, it is possible to increase the holding force for holding the third phase coil 323 with respect to the radial electromagnetic force F1 generated in the first phase coil 321. Further, it is possible to increase the holding force for holding the second phase coil 322 with respect to the axial electromagnetic force F2 generated in the second phase coil 322. As a result, the number of racing materials can be reduced, and significant deformation of the three-phase coil 32 can be efficiently prevented.
 固定子3の望ましいさらに他の例では、電源から3相コイル32に電流を流して永久磁石を着磁するとき、電源から第3相のコイル32に流れる電流が、第1相のコイル321に流れる電流及び第2相のコイル322に流れる電流の各々よりも大きくなるように、第1相のコイル321、第2相のコイル322、及び第3相のコイル323がデルタ結線で接続されている。この場合、第3のレーシング材333は、第1のレーシング材331よりも多く3相コイル32に巻かれていることが望ましい。これにより、上述のように、第1相のコイル321に生じる径方向における電磁力F1に対して第3相のコイル323を保持する保持力を高めることができる。さらに、第3相のコイル323に生じる軸方向における電磁力F2に対して第3相のコイル323を保持する保持力を高めることができる。その結果、レーシング材の数を低減することができ、3相コイル32の著しい変形を効率的に防ぐことができる。 In yet another desirable example of the stator 3, when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet, the current flowing from the power supply to the third-phase coil 32 is transferred to the first-phase coil 321. The first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a delta connection so as to be larger than each of the flowing current and the current flowing through the second phase coil 322. .. In this case, it is desirable that the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. As a result, as described above, it is possible to increase the holding force for holding the third phase coil 323 with respect to the radial electromagnetic force F1 generated in the first phase coil 321. Further, it is possible to increase the holding force for holding the third phase coil 323 with respect to the axial electromagnetic force F2 generated in the third phase coil 323. As a result, the number of racing materials can be reduced, and significant deformation of the three-phase coil 32 can be efficiently prevented.
実施の形態2.
 図20は、本発明の実施の形態2に係る電動機1の構造を概略的に示す部分断面図である。
Embodiment 2.
FIG. 20 is a partial cross-sectional view schematically showing the structure of the electric motor 1 according to the second embodiment of the present invention.
 電動機1は、回転子2と、実施の形態1に係る固定子3(変形例を含む)と、ベアリング14a及び14bと、回転子2に固定されたシャフト16とを有する。図20に示されるように、電動機1は、さらにブラケット13(フレームとも称する)を有してもよい。電動機1は、例えば、永久磁石同期電動機である。 The electric motor 1 has a rotor 2, a stator 3 (including a modified example) according to the first embodiment, bearings 14a and 14b, and a shaft 16 fixed to the rotor 2. As shown in FIG. 20, the electric motor 1 may further have a bracket 13 (also referred to as a frame). The electric motor 1 is, for example, a permanent magnet synchronous motor.
 回転子2は、固定子3の内側に回転可能に配置されている。回転子2は、少なくとも1つの永久磁石21を有する。回転子2と固定子3との間には、エアギャップが存在する。回転子2は、軸線Axを中心として回転する。 The rotor 2 is rotatably arranged inside the stator 3. The rotor 2 has at least one permanent magnet 21. There is an air gap between the rotor 2 and the stator 3. The rotor 2 rotates about the axis Ax.
 実施の形態2に係る電動機1は、実施の形態1に係る固定子3を有するので、実施の形態1で説明した利点を持つ。 Since the electric motor 1 according to the second embodiment has the stator 3 according to the first embodiment, it has the advantages described in the first embodiment.
 例えば、電動機1の望ましい例では、電源から3相コイル32に電流を流して永久磁石21を着磁するとき、電源から供給される電流が第2相のコイル322を流れ、第2相のコイル322からの電流が第1相のコイル321及び第3相のコイル323に分岐するように、第1相のコイル321、第2相のコイル322、及び第3相のコイル323がY結線で接続されている(結線パターンC2)。この場合、第2のレーシング材332は、第1のレーシング材331よりも多く3相コイル32に巻かれていることが望ましい。これにより、上述のように、第1相のコイル321に生じる径方向における電磁力F1に対して第3相のコイル323を保持する保持力を高めることができる。さらに、第2相のコイル322に生じる軸方向における電磁力F2に対して第2相のコイル322を保持する保持力を高めることができる。その結果、レーシング材の数を低減することができ、3相コイル32の著しい変形を効率的に防ぐことができる。 For example, in a desirable example of the electric motor 1, when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet 21, the current supplied from the power supply flows through the second-phase coil 322 and the second-phase coil The first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a Y connection so that the current from 322 branches into the first phase coil 321 and the third phase coil 323. (Connection pattern C2). In this case, it is desirable that the second racing material 332 is wound around the three-phase coil 32 more than the first racing material 331. As a result, as described above, it is possible to increase the holding force for holding the third phase coil 323 with respect to the radial electromagnetic force F1 generated in the first phase coil 321. Further, it is possible to increase the holding force for holding the second phase coil 322 with respect to the axial electromagnetic force F2 generated in the second phase coil 322. As a result, the number of racing materials can be reduced, and significant deformation of the three-phase coil 32 can be efficiently prevented.
 電動機1の望ましい他の例では、電源から3相コイル32に電流を流して永久磁石21を着磁するとき、電源から供給される電流が第3相のコイル323を流れ、第3相のコイル323からの電流が第1相のコイル321及び第2相のコイル322に分岐するように、第1相のコイル321、第2相のコイル322、及び第3相のコイル323がY結線で接続されている(結線パターンC3)。この場合、第3のレーシング材333は、第1のレーシング材331よりも多く3相コイル32に巻かれていることが望ましい。これにより、上述のように、第1相のコイル321に生じる径方向における電磁力F1に対して第3相のコイル323を保持する保持力を高めることができる。さらに、第3相のコイル323に生じる軸方向における電磁力F2に対して第3相のコイル323を保持する保持力を高めることができる。その結果、レーシング材の数を低減することができ、3相コイル32の著しい変形を効率的に防ぐことができる。 In another desirable example of the motor 1, when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet 21, the current supplied from the power supply flows through the third-phase coil 323 and the third-phase coil. The first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a Y connection so that the current from 323 branches into the first phase coil 321 and the second phase coil 322. (Connection pattern C3). In this case, it is desirable that the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. As a result, as described above, it is possible to increase the holding force for holding the third phase coil 323 with respect to the radial electromagnetic force F1 generated in the first phase coil 321. Further, it is possible to increase the holding force for holding the third phase coil 323 with respect to the axial electromagnetic force F2 generated in the third phase coil 323. As a result, the number of racing materials can be reduced, and significant deformation of the three-phase coil 32 can be efficiently prevented.
 電動機1の望ましいさらに他の例では、電源から3相コイル32に電流を流して永久磁石21を着磁するとき、電源から第2相のコイル322に流れる電流が、第1相のコイル321に流れる電流及び第3相のコイル323に流れる電流の各々よりも大きくなるように、第1相のコイル321、第2相のコイル322、及び第3相のコイル323がデルタ結線で接続されている。この場合、第2のレーシング材332は、第1のレーシング材331よりも多く3相コイル32に巻かれていることが望ましい。これにより、上述のように、第1相のコイル321に生じる径方向における電磁力F1に対して第3相のコイル323を保持する保持力を高めることができる。さらに、第2相のコイル322に生じる軸方向における電磁力F2に対して第2相のコイル322を保持する保持力を高めることができる。その結果、レーシング材の数を低減することができ、3相コイル32の著しい変形を効率的に防ぐことができる。 In yet another desirable example of the electric motor 1, when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet 21, the current flowing from the power supply to the second-phase coil 322 is transferred to the first-phase coil 321. The first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a delta connection so as to be larger than each of the flowing current and the current flowing through the third phase coil 323. .. In this case, it is desirable that the second racing material 332 is wound around the three-phase coil 32 more than the first racing material 331. As a result, as described above, it is possible to increase the holding force for holding the third phase coil 323 with respect to the radial electromagnetic force F1 generated in the first phase coil 321. Further, it is possible to increase the holding force for holding the second phase coil 322 with respect to the axial electromagnetic force F2 generated in the second phase coil 322. As a result, the number of racing materials can be reduced, and significant deformation of the three-phase coil 32 can be efficiently prevented.
 電動機1の望ましいさらに他の例では、電源から3相コイル32に電流を流して永久磁石21を着磁するとき、電源から第3相のコイル32に流れる電流が、第1相のコイル321に流れる電流及び第2相のコイル322に流れる電流の各々よりも大きくなるように、第1相のコイル321、第2相のコイル322、及び第3相のコイル323がデルタ結線で接続されている。この場合、第3のレーシング材333は、第1のレーシング材331よりも多く3相コイル32に巻かれていることが望ましい。これにより、上述のように、第1相のコイル321に生じる径方向における電磁力F1に対して第3相のコイル323を保持する保持力を高めることができる。さらに、第3相のコイル323に生じる軸方向における電磁力F2に対して第3相のコイル323を保持する保持力を高めることができる。その結果、レーシング材の数を低減することができ、3相コイル32の著しい変形を効率的に防ぐことができる。 In yet another desirable example of the electric motor 1, when a current is passed from the power supply to the three-phase coil 32 to magnetize the permanent magnet 21, the current flowing from the power supply to the third-phase coil 32 is transferred to the first-phase coil 321. The first phase coil 321 and the second phase coil 322, and the third phase coil 323 are connected by a delta connection so as to be larger than each of the flowing current and the current flowing through the second phase coil 322. .. In this case, it is desirable that the third racing material 333 is wound around the three-phase coil 32 more than the first racing material 331. As a result, as described above, it is possible to increase the holding force for holding the third phase coil 323 with respect to the radial electromagnetic force F1 generated in the first phase coil 321. Further, it is possible to increase the holding force for holding the third phase coil 323 with respect to the axial electromagnetic force F2 generated in the third phase coil 323. As a result, the number of racing materials can be reduced, and significant deformation of the three-phase coil 32 can be efficiently prevented.
 実施の形態2に係る電動機1は、実施の形態1に係る固定子3を有するので、電動機1のコストを低減することができ、電動機1の品質を改善することができる。 Since the electric motor 1 according to the second embodiment has the stator 3 according to the first embodiment, the cost of the electric motor 1 can be reduced and the quality of the electric motor 1 can be improved.
 さらに、実施の形態2に係る電動機1は、実施の形態1で説明した着磁工程を用いて製造することができる。これにより、電動機1内で回転子2の永久磁石21を着磁することができるので、電動機1の外で着磁を行う方法に比べて、電動機1を容易に組み立てることができる。 Further, the electric motor 1 according to the second embodiment can be manufactured by using the magnetizing process described in the first embodiment. As a result, the permanent magnet 21 of the rotor 2 can be magnetized inside the electric motor 1, so that the electric motor 1 can be easily assembled as compared with the method of magnetizing outside the electric motor 1.
実施の形態3.
 本発明の実施の形態3に係る圧縮機6について説明する。
 図21は、実施の形態3に係る圧縮機6の構造を概略的に示す断面図である。
Embodiment 3.
The compressor 6 according to the third embodiment of the present invention will be described.
FIG. 21 is a cross-sectional view schematically showing the structure of the compressor 6 according to the third embodiment.
 圧縮機6は、電動要素としての電動機1と、ハウジングとしての密閉容器61と、圧縮要素(圧縮装置ともいう)としての圧縮機構62とを有する。本実施の形態では、圧縮機6は、ロータリー圧縮機である。ただし、圧縮機6は、ロータリー圧縮機に限定されない。 The compressor 6 has an electric motor 1 as an electric element, a closed container 61 as a housing, and a compression mechanism 62 as a compression element (also referred to as a compression device). In the present embodiment, the compressor 6 is a rotary compressor. However, the compressor 6 is not limited to the rotary compressor.
 圧縮機6内の電動機1は、実施の形態2で説明した電動機1である。電動機1は、圧縮機構62を駆動する。 The electric motor 1 in the compressor 6 is the electric motor 1 described in the second embodiment. The electric motor 1 drives the compression mechanism 62.
 密閉容器61は、電動機1及び圧縮機構62を覆う。密閉容器61は、円筒状の容器である。密閉容器61の底部には、圧縮機構62の摺動部分を潤滑する冷凍機油が貯留されている。 The closed container 61 covers the electric motor 1 and the compression mechanism 62. The closed container 61 is a cylindrical container. Refrigerating machine oil that lubricates the sliding portion of the compression mechanism 62 is stored in the bottom of the closed container 61.
 圧縮機6は、さらに、密閉容器61に固定されたガラス端子63と、アキュムレータ64と、吸入パイプ65と、吐出パイプ66とを有する。 The compressor 6 further has a glass terminal 63 fixed to the closed container 61, an accumulator 64, a suction pipe 65, and a discharge pipe 66.
 圧縮機構62は、シリンダ62aと、ピストン62bと、上部フレーム62c(第1のフレームとも称する)と、下部フレーム62d(第2のフレームとも称する)と、上部フレーム62c及び下部フレーム62dに取り付けられた複数のマフラ62eとを有する。圧縮機構62は、さらに、シリンダ62a内を吸入側と圧縮側とに分けるベーンを有する。圧縮機構62は、密閉容器61内に配置されている。圧縮機構62は、電動機1によって駆動される。 The compression mechanism 62 is attached to the cylinder 62a, the piston 62b, the upper frame 62c (also referred to as the first frame), the lower frame 62d (also referred to as the second frame), and the upper frame 62c and the lower frame 62d. It has a plurality of mufflers 62e. The compression mechanism 62 further has a vane that divides the inside of the cylinder 62a into a suction side and a compression side. The compression mechanism 62 is arranged in the closed container 61. The compression mechanism 62 is driven by the electric motor 1.
 電動機1は、圧入又は焼き嵌めで密閉容器61内に固定されている。圧入及び焼き嵌めの代わりに溶接で電動機1を密閉容器61に直接取り付けてもよい。 The electric motor 1 is fixed in the closed container 61 by press fitting or shrink fitting. Instead of press fitting and shrink fitting, the motor 1 may be directly attached to the closed container 61 by welding.
 電動機1のコイル(例えば、実施の形態1で説明した3相コイル32)には、ガラス端子63を通して電力が供給される。 Electric power is supplied to the coil of the electric motor 1 (for example, the three-phase coil 32 described in the first embodiment) through the glass terminal 63.
 電動機1の回転子2(具体的には、シャフト16の片側)は、上部フレーム62c及び下部フレーム62dの各々に備えられた軸受けによって回転自在に支持されている。 The rotor 2 (specifically, one side of the shaft 16) of the electric motor 1 is rotatably supported by bearings provided on each of the upper frame 62c and the lower frame 62d.
 ピストン62bには、シャフト16が挿通されている。上部フレーム62c及び下部フレーム62dには、シャフト16が回転自在に挿通されている。上部フレーム62c及び下部フレーム62dは、シリンダ62aの端面を閉塞する。アキュムレータ64は、吸入パイプ65を通して冷媒(例えば、冷媒ガス)をシリンダ62aに供給する。 A shaft 16 is inserted through the piston 62b. A shaft 16 is rotatably inserted into the upper frame 62c and the lower frame 62d. The upper frame 62c and the lower frame 62d close the end faces of the cylinder 62a. The accumulator 64 supplies a refrigerant (for example, a refrigerant gas) to the cylinder 62a through the suction pipe 65.
 次に、圧縮機6の動作について説明する。アキュムレータ64から供給された冷媒は、密閉容器61に固定された吸入パイプ65からシリンダ62a内へ吸入される。電動機1が回転することにより、シャフト16に嵌合されたピストン62bがシリンダ62a内で回転する。これにより、シリンダ62a内で冷媒が圧縮される。 Next, the operation of the compressor 6 will be described. The refrigerant supplied from the accumulator 64 is sucked into the cylinder 62a from the suction pipe 65 fixed to the closed container 61. As the electric motor 1 rotates, the piston 62b fitted to the shaft 16 rotates in the cylinder 62a. As a result, the refrigerant is compressed in the cylinder 62a.
 圧縮された冷媒は、マフラ62eを通り、密閉容器61内を上昇する。このようにして、圧縮された冷媒が、吐出パイプ66を通って冷凍サイクルの高圧側へ供給される。 The compressed refrigerant passes through the muffler 62e and rises in the closed container 61. In this way, the compressed refrigerant is supplied to the high pressure side of the refrigeration cycle through the discharge pipe 66.
 圧縮機6の冷媒として、R410A、R407C、又はR22等を用いることができる。ただし、圧縮機6の冷媒は、これらの種類に限られない。圧縮機6の冷媒として、GWP(地球温暖化係数)が小さい冷媒、例えば、下記の冷媒を用いることができる。 R410A, R407C, R22, or the like can be used as the refrigerant of the compressor 6. However, the refrigerant of the compressor 6 is not limited to these types. As the refrigerant of the compressor 6, a refrigerant having a small GWP (global warming potential), for example, the following refrigerant can be used.
(1)組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro-Fluoro-Orefin)-1234yf(CF3CF=CH2)を用いることができる。HFO-1234yfのGWPは4である。
(2)組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO-1234yfより低いが、可燃性はHFO-1234yfより高い。
(3)組成中に炭素の二重結合を有するハロゲン化炭化水素又は組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO-1234yfとR32との混合物を用いてもよい。上述したHFO-1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO-1234yfよりも高圧冷媒であるR32又はR41との混合物を用いることが実用上は望ましい。
(1) A halogenated hydrocarbon having a carbon double bond in the composition, for example, HFO (Hydro-Fluoro-Orefin) -1234yf (CF3CF = CH2) can be used. The GWP of HFO-1234yf is 4.
(2) A hydrocarbon having a carbon double bond in the composition, for example, R1270 (propylene) may be used. The GWP of R1270 is 3, which is lower than HFO-1234yf but higher in flammability than HFO-1234yf.
(3) Using a mixture containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition, for example, a mixture of HFO-1234yf and R32. May be good. Since the above-mentioned HFO-1234yf is a low-pressure refrigerant, the pressure loss tends to be large, which may lead to deterioration of the performance of the refrigeration cycle (particularly the evaporator). Therefore, it is practically desirable to use a mixture with R32 or R41, which is a high-pressure refrigerant, rather than HFO-1234yf.
 実施の形態3に係る圧縮機6は、実施の形態1及び2で説明した利点を持つ。 The compressor 6 according to the third embodiment has the advantages described in the first and second embodiments.
 さらに、実施の形態3に係る圧縮機6は、実施の形態2に係る電動機1を有するので、圧縮機のコストを低減することができ、圧縮機6の品質を改善することができる。 Further, since the compressor 6 according to the third embodiment has the electric motor 1 according to the second embodiment, the cost of the compressor can be reduced and the quality of the compressor 6 can be improved.
 さらに、実施の形態3に係る圧縮機6は、実施の形態1で説明した着磁工程を用いて製造することができる。これにより、圧縮機6内で回転子2の永久磁石21を着磁することができるので、圧縮機6の外で着磁を行う方法に比べて、圧縮機6を容易に組み立てることができる。 Further, the compressor 6 according to the third embodiment can be manufactured by using the magnetizing step described in the first embodiment. As a result, the permanent magnet 21 of the rotor 2 can be magnetized inside the compressor 6, so that the compressor 6 can be easily assembled as compared with the method of magnetizing outside the compressor 6.
実施の形態4.
 実施の形態3に係る圧縮機6を有する、空気調和機としての冷凍空調装置7について説明する。
 図22は、本発明の実施の形態4に係る冷凍空調装置7の構成を概略的に示す図である。
Embodiment 4.
The refrigerating and air-conditioning apparatus 7 as an air conditioner having the compressor 6 according to the third embodiment will be described.
FIG. 22 is a diagram schematically showing the configuration of the refrigerating and air-conditioning apparatus 7 according to the fourth embodiment of the present invention.
 冷凍空調装置7は、例えば、冷暖房運転が可能である。図22に示される冷媒回路図は、冷房運転が可能な空気調和機の冷媒回路図の一例である。 The refrigerating and air-conditioning device 7 can be operated for heating and cooling, for example. The refrigerant circuit diagram shown in FIG. 22 is an example of a refrigerant circuit diagram of an air conditioner capable of cooling operation.
 実施の形態4に係る冷凍空調装置7は、室外機71と、室内機72と、室外機71及び室内機72を接続する冷媒配管73とを有する。 The refrigerating and air-conditioning device 7 according to the fourth embodiment has an outdoor unit 71, an indoor unit 72, and a refrigerant pipe 73 connecting the outdoor unit 71 and the indoor unit 72.
 室外機71は、圧縮機6と、熱交換器としての凝縮器74と、絞り装置75と、室外送風機76(第1の送風機)とを有する。凝縮器74は、圧縮機6によって圧縮された冷媒を凝縮する。絞り装置75は、凝縮器74によって凝縮された冷媒を減圧し、冷媒の流量を調節する。絞り装置75は、減圧装置とも言う。 The outdoor unit 71 includes a compressor 6, a condenser 74 as a heat exchanger, a throttle device 75, and an outdoor blower 76 (first blower). The condenser 74 condenses the refrigerant compressed by the compressor 6. The drawing device 75 decompresses the refrigerant condensed by the condenser 74 and adjusts the flow rate of the refrigerant. The diaphragm device 75 is also called a decompression device.
 室内機72は、熱交換器としての蒸発器77と、室内送風機78(第2の送風機)とを有する。蒸発器77は、絞り装置75によって減圧された冷媒を蒸発させ、室内空気を冷却する。 The indoor unit 72 has an evaporator 77 as a heat exchanger and an indoor blower 78 (second blower). The evaporator 77 evaporates the refrigerant decompressed by the throttle device 75 to cool the indoor air.
 冷凍空調装置7における冷房運転の基本的な動作について以下に説明する。冷房運転では、冷媒は、圧縮機6によって圧縮され、凝縮器74に流入する。凝縮器74によって冷媒が凝縮され、凝縮された冷媒が絞り装置75に流入する。絞り装置75によって冷媒が減圧され、減圧された冷媒が蒸発器77に流入する。蒸発器77において冷媒は蒸発し、冷媒(具体的には、冷媒ガス)が再び室外機71の圧縮機6へ流入する。室外送風機76によって空気が凝縮器74に送られると冷媒と空気との間で熱が移動し、同様に、室内送風機78によって空気が蒸発器77に送られると冷媒と空気との間で熱が移動する。 The basic operation of the cooling operation in the refrigerating air conditioner 7 will be described below. In the cooling operation, the refrigerant is compressed by the compressor 6 and flows into the condenser 74. The refrigerant is condensed by the condenser 74, and the condensed refrigerant flows into the drawing device 75. The refrigerant is decompressed by the throttle device 75, and the decompressed refrigerant flows into the evaporator 77. The refrigerant evaporates in the evaporator 77, and the refrigerant (specifically, the refrigerant gas) flows into the compressor 6 of the outdoor unit 71 again. Similarly, when air is sent to the condenser 74 by the outdoor blower 76, heat is transferred between the refrigerant and air, and similarly, when air is sent to the evaporator 77 by the indoor blower 78, heat is transferred between the refrigerant and air. Moving.
 以上に説明した冷凍空調装置7の構成及び動作は、一例であり、上述した例に限定されない。 The configuration and operation of the refrigerating air conditioner 7 described above is an example, and is not limited to the above-mentioned example.
 実施の形態4に係る冷凍空調装置7によれば、実施の形態1から3で説明した利点を持つ。 According to the refrigerating and air-conditioning apparatus 7 according to the fourth embodiment, it has the advantages described in the first to third embodiments.
 さらに、実施の形態4に係る冷凍空調装置7は、実施の形態3に係る圧縮機6を有するので、冷凍空調装置7のコストを低減することができ、冷凍空調装置7の品質を改善することができる。 Further, since the refrigerating air conditioner 7 according to the fourth embodiment has the compressor 6 according to the third embodiment, the cost of the refrigerating air conditioner 7 can be reduced and the quality of the refrigerating air conditioner 7 can be improved. Can be done.
 以上に説明したように、好ましい実施の形態を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。 As described above, the preferred embodiments have been specifically described, but it is obvious that those skilled in the art can adopt various modifications based on the basic technical idea and teaching of the present invention. ..
 以上に説明した各実施の形態における特徴は、互いに適宜組み合わせることができる。 The features in each of the embodiments described above can be combined with each other as appropriate.
 1 電動機、 2 回転子、 3 固定子、 6 圧縮機、 7 冷凍空調装置、 31 ステータコア、 32 3相コイル、 32a コイルエンド、 34 ワニス、 61 密閉容器、 62 圧縮機構、 74 凝縮器、 77 蒸発器、 321 第1相のコイル、 322 第2相のコイル、 323 第3相のコイル、 331 第1のレーシング材、 332 第2のレーシング材、 333 第3のレーシング材。 1 electric motor, 2 rotor, 3 stator, 6 compressor, 7 refrigeration air conditioner, 31 stator core, 32 3-phase coil, 32a coil end, 34 varnish, 61 closed container, 62 compression mechanism, 74 condenser, 77 evaporator , 321 1st phase coil, 322 2nd phase coil, 323 3rd phase coil, 331 1st racing material, 332 2nd racing material, 333 3rd racing material.

Claims (16)

  1.  ステータコアと、
     前記ステータコアに分布巻きで取り付けられており、第1相のコイル、第2相のコイル、及び第3相のコイルを有する3相コイルと
     前記3相コイルに巻かれた第1のレーシング材と、
     前記3相コイルに巻かれた第2のレーシング材と、
     前記3相コイルに巻かれた第3のレーシング材と
     を備え、
     前記3相コイルのコイルエンドにおいて、前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルは、前記ステータコアの周方向においてこの順に配列されており、
     前記コイルエンドにおいて、前記第3相のコイルは、前記第1相のコイルに比べて前記ステータコアの中心の近くに位置しており、
     前記第1のレーシング材は、前記第1相のコイル及び前記第2相のコイルを保持しており、
     前記第2のレーシング材は、前記第2相のコイル及び前記第3相のコイルを保持しており、
     前記第3のレーシング材は、前記第3相のコイル及び前記第1相のコイルを保持しており、
     前記第2のレーシング材は、前記第1のレーシング材及び前記第3のレーシング材のうちの少なくとも一方よりも多く前記3相コイルに巻かれている
     固定子。
    With the stator core
    A three-phase coil, which is attached to the stator core in a distributed winding manner and has a first-phase coil, a second-phase coil, and a third-phase coil, and a first racing material wound around the three-phase coil.
    The second racing material wound around the three-phase coil and
    It is equipped with a third racing material wound around the three-phase coil.
    At the coil end of the three-phase coil, the first-phase coil, the second-phase coil, and the third-phase coil are arranged in this order in the circumferential direction of the stator core.
    At the coil end, the third phase coil is located closer to the center of the stator core than the first phase coil.
    The first racing material holds the coil of the first phase and the coil of the second phase.
    The second racing material holds the coil of the second phase and the coil of the third phase.
    The third racing material holds the coil of the third phase and the coil of the first phase.
    The second racing material is a stator wound around the three-phase coil more than at least one of the first racing material and the third racing material.
  2.  前記第2のレーシング材は、前記第3のレーシング材よりも多く前記3相コイルに巻かれている請求項1に記載の固定子。 The stator according to claim 1, wherein the second racing material is wound around the three-phase coil in a larger amount than the third racing material.
  3.  前記第2のレーシング材及び前記第3のレーシング材の各々が、前記第1のレーシング材よりも多く前記3相コイルに巻かれている請求項1又は2に記載の固定子。 The stator according to claim 1 or 2, wherein each of the second racing material and the third racing material is wound around the three-phase coil more than the first racing material.
  4.  前記第1のレーシング材、前記第2のレーシング材、及び前記第3のレーシング材に付着しているワニスをさらに備え、
     前記第2のレーシング材に付着している前記ワニスの量は、前記第1のレーシング材に付着している前記ワニスの量及び前記第3のレーシング材に付着している前記ワニスの量のうちの少なくとも一方よりも多い
     請求項1から3のいずれか1項に記載の固定子。
    Further comprising the first racing material, the second racing material, and the varnish adhering to the third racing material.
    The amount of the varnish adhering to the second racing material is out of the amount of the varnish adhering to the first racing material and the amount of the varnish adhering to the third racing material. The stator according to any one of claims 1 to 3, which is more than at least one of the above.
  5.  前記第2のレーシング材に付着している前記ワニスの量は、前記第3のレーシング材に付着している前記ワニスの量よりも多い請求項4に記載の固定子。 The stator according to claim 4, wherein the amount of the varnish adhering to the second racing material is larger than the amount of the varnish adhering to the third racing material.
  6.  前記第2のレーシング材に付着している前記ワニスの量及び前記第3のレーシング材に付着している前記ワニスの量の各々は、前記第1のレーシング材に付着している前記ワニスの量よりも多い請求項4又は5に記載の固定子。 The amount of the varnish adhering to the second racing material and the amount of the varnish adhering to the third racing material are each the amount of the varnish adhering to the first racing material. More than the stator according to claim 4 or 5.
  7.  前記3相コイルは、Y結線で接続されている請求項1から6のいずれか1項に記載の固定子。 The stator according to any one of claims 1 to 6, wherein the three-phase coil is connected by a Y connection.
  8.  前記3相コイルは、デルタ結線で接続されている請求項1から6のいずれか1項に記載の固定子。 The stator according to any one of claims 1 to 6, wherein the three-phase coil is connected by a delta connection.
  9.  請求項1から6のいずれか1項に記載の固定子と、
     前記固定子の内側に配置されており、永久磁石を有する回転子と
     を備える電動機。
    The stator according to any one of claims 1 to 6 and the stator.
    An electric motor that is located inside the stator and includes a rotor with a permanent magnet.
  10.  電源から前記3相コイルに電流を流して前記永久磁石を着磁するとき、前記電源から供給される電流が前記第2相のコイルを流れ、前記第2相のコイルからの前記電流が前記第1相のコイル及び前記第3相のコイルに分岐するように、前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルがY結線で接続されている
     請求項9に記載の電動機。
    When a current is passed from the power source to the three-phase coil to magnetize the permanent magnet, the current supplied from the power source flows through the second-phase coil, and the current from the second-phase coil is the first. According to claim 9, the first phase coil, the second phase coil, and the third phase coil are connected by a Y connection so as to branch into a one-phase coil and the third-phase coil. The electric motor described.
  11.  電源から前記3相コイルに電流を流して前記永久磁石を着磁するとき、前記電源から供給される電流が前記第3相のコイルを流れ、前記第3相のコイルからの前記電流が前記第1相のコイル及び前記第2相のコイルに分岐するように、前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルがY結線で接続されている
     請求項9に記載の電動機。
    When a current is passed from the power source to the three-phase coil to magnetize the permanent magnet, the current supplied from the power source flows through the third-phase coil, and the current from the third-phase coil is the first. According to claim 9, the first phase coil, the second phase coil, and the third phase coil are connected by a Y connection so as to branch into a one-phase coil and the second-phase coil. The electric motor described.
  12.  電源から前記3相コイルに電流を流して前記永久磁石を着磁するとき、前記電源から前記第2相のコイルに流れる電流が、前記第1相のコイルに流れる電流及び前記第3相のコイルに流れる電流の各々よりも大きくなるように、前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルがデルタ結線で接続されている
     請求項9に記載の電動機。
    When a current is passed from the power supply to the three-phase coil to magnetize the permanent magnet, the current flowing from the power supply to the second-phase coil is the current flowing through the first-phase coil and the third-phase coil. The electric motor according to claim 9, wherein the first phase coil, the second phase coil, and the third phase coil are connected by a delta connection so as to be larger than each of the currents flowing through the motor.
  13.  電源から前記3相コイルに電流を流して前記永久磁石を着磁するとき、前記電源から前記第3相のコイルに流れる電流が、前記第1相のコイルに流れる電流及び前記第2相のコイルに流れる電流の各々よりも大きくなるように、前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルがデルタ結線で接続されている
     請求項9に記載の電動機。
    When a current is passed from the power supply to the three-phase coil to magnetize the permanent magnet, the current flowing from the power supply to the third-phase coil is the current flowing through the first-phase coil and the second-phase coil. The electric motor according to claim 9, wherein the first phase coil, the second phase coil, and the third phase coil are connected by a delta connection so as to be larger than each of the currents flowing through the motor.
  14.  密閉容器と、
     前記密閉容器内に配置された圧縮装置と、
     前記圧縮装置を駆動する、請求項9から13のいずれか1項に記載の電動機と
     を備える圧縮機。
    With a closed container
    With the compression device arranged in the closed container,
    A compressor including the electric motor according to any one of claims 9 to 13, which drives the compressor.
  15.  請求項14に記載の圧縮機と、
     熱交換器と
     を備える空気調和機。
    The compressor according to claim 14,
    An air conditioner equipped with a heat exchanger.
  16.  ステータコアと、前記ステータコアに分布巻きで取り付けられており、第1相のコイル、第2相のコイル、及び第3相のコイルを有する3相コイルとを有する固定子の製造方法であって、
     前記3相コイルのコイルエンドにおいて、前記第1相のコイル、前記第2相のコイル、及び前記第3相のコイルが前記ステータコアの周方向においてこの順に配列されるように、且つ前記コイルエンドにおいて、前記第3相のコイルが前記第1相のコイルに比べて前記ステータコアの中心の近くに位置するように、前記3相コイルを前記ステータコアに取り付けることと、
     第1のレーシング材、第2のレーシング材、及び第3のレーシング材を前記3相コイルに巻きつけることと
     を備え、
     前記第2のレーシング材及び前記第3のレーシング材のうちの少なくとも一方は、前記第1のレーシング材よりも多く前記3相コイルに巻きつけられている
     固定子の製造方法。
    A method for manufacturing a stator having a stator core and a three-phase coil which is attached to the stator core in a distributed winding manner and has a first-phase coil, a second-phase coil, and a third-phase coil.
    At the coil end of the three-phase coil, the first-phase coil, the second-phase coil, and the third-phase coil are arranged in this order in the circumferential direction of the stator core, and at the coil end. The three-phase coil is attached to the stator core so that the third-phase coil is located closer to the center of the stator core than the first-phase coil.
    The first racing material, the second racing material, and the third racing material are wound around the three-phase coil.
    A method for manufacturing a stator in which at least one of the second racing material and the third racing material is wound around the three-phase coil in a larger amount than the first racing material.
PCT/JP2019/011395 2019-03-19 2019-03-19 Stator, electric motor, compressor, air conditioner, and method for manufacturing stator WO2020188733A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/011395 WO2020188733A1 (en) 2019-03-19 2019-03-19 Stator, electric motor, compressor, air conditioner, and method for manufacturing stator
JP2021506880A JP7204887B2 (en) 2019-03-19 2019-03-19 Stator, electric motor, compressor, air conditioner, and stator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/011395 WO2020188733A1 (en) 2019-03-19 2019-03-19 Stator, electric motor, compressor, air conditioner, and method for manufacturing stator

Publications (1)

Publication Number Publication Date
WO2020188733A1 true WO2020188733A1 (en) 2020-09-24

Family

ID=72520616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011395 WO2020188733A1 (en) 2019-03-19 2019-03-19 Stator, electric motor, compressor, air conditioner, and method for manufacturing stator

Country Status (2)

Country Link
JP (1) JP7204887B2 (en)
WO (1) WO2020188733A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118749A (en) * 1989-10-02 1991-05-21 Aichi Emerson Electric Co Ltd Permanent magnet field-control motor
JPH0454848A (en) * 1990-06-22 1992-02-21 Hitachi Ltd Stator winding for motor
JPH11341725A (en) * 1998-05-21 1999-12-10 Mitsubishi Electric Corp Permanent magnet motor
JP2003274617A (en) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd Permanent magnet motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091140A (en) * 2013-11-04 2015-05-11 株式会社豊田自動織機 Stator for rotary electric machine, and on-vehicle motor compressor with the stator for rotary electric machine
JP6102684B2 (en) * 2013-11-04 2017-03-29 株式会社豊田自動織機 Rotating electric machine stator and in-vehicle electric compressor provided with the rotating electric machine stator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118749A (en) * 1989-10-02 1991-05-21 Aichi Emerson Electric Co Ltd Permanent magnet field-control motor
JPH0454848A (en) * 1990-06-22 1992-02-21 Hitachi Ltd Stator winding for motor
JPH11341725A (en) * 1998-05-21 1999-12-10 Mitsubishi Electric Corp Permanent magnet motor
JP2003274617A (en) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd Permanent magnet motor

Also Published As

Publication number Publication date
JPWO2020188733A1 (en) 2021-10-14
JP7204887B2 (en) 2023-01-16

Similar Documents

Publication Publication Date Title
US11496005B2 (en) Stator, electric motor, compressor, refrigerating and air conditioning apparatus, and method for manufacturing stator
JP6537623B2 (en) Stator, motor, compressor, and refrigeration air conditioner
US6836051B2 (en) Motor
JP7058802B2 (en) How to make motors, motors, compressors, and air conditioners
CN109565191B (en) Motor, compressor and refrigeration air conditioner
WO2020170390A1 (en) Motor, compressor, and air conditioning device
US11962192B2 (en) Electric motor, compressor, and air conditioner
WO2020188733A1 (en) Stator, electric motor, compressor, air conditioner, and method for manufacturing stator
CN115917930A (en) Stator, motor, compressor, and air conditioner
JP7237159B2 (en) Stator, electric motor, compressor, air conditioner, stator manufacturing method, and magnetizing method
US20230318381A1 (en) Stator, electric motor, compressor, air conditioner, and method for fabricating stator
AU2020444066B2 (en) Rotor, motor, compressor, and air conditioner
JP7130051B2 (en) Rotors, electric motors, compressors, and refrigeration and air conditioning equipment
CN116076004A (en) Stator, motor, compressor, air conditioner, and method for manufacturing stator
US20210152039A1 (en) Stator, motor, compressor, and refrigerating and air conditioning apparatus
WO2023042324A1 (en) Electric motor, compressor, and air conditioner
WO2023112076A1 (en) Electric motor, compressor, and air conditioner
WO2021205527A1 (en) Magnetization method, method for producing electric motor, electric motor, compressor, and air conditioner
WO2023119455A1 (en) Magnetizing method, electric motor, compressor, and refrigeration cycle device
JP7130131B2 (en) Magnetizing ring, magnetizing method, magnetizing device, rotor, electric motor, compressor and air conditioner
US12040680B2 (en) Compressor and air conditioner
JP2005192396A (en) Process for producing induction synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919821

Country of ref document: EP

Kind code of ref document: A1