WO2020188692A1 - Water level measuring device, water level measuring method and water level measuring program - Google Patents

Water level measuring device, water level measuring method and water level measuring program Download PDF

Info

Publication number
WO2020188692A1
WO2020188692A1 PCT/JP2019/011134 JP2019011134W WO2020188692A1 WO 2020188692 A1 WO2020188692 A1 WO 2020188692A1 JP 2019011134 W JP2019011134 W JP 2019011134W WO 2020188692 A1 WO2020188692 A1 WO 2020188692A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
water
water level
region
identification
Prior art date
Application number
PCT/JP2019/011134
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 大西
茂樹 桑原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/011134 priority Critical patent/WO2020188692A1/en
Publication of WO2020188692A1 publication Critical patent/WO2020188692A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the present invention relates to a water level measuring device for measuring a water level from an image, a water level measuring method, and a water level measuring program.
  • stable water level measurement can be realized in consideration of changes in the surrounding environment.
  • Embodiment 1 In the first embodiment, as an example, a case where the target of water level measurement is a river and the river is photographed by a surveillance camera will be described below.
  • FIG. 1 is a functional block diagram showing a main part of the water level measuring device 100 according to the first embodiment of the present invention.
  • the water level measuring device 100 is connected to the surveillance camera 1, the operation input device 2, and the display device 5.
  • the connection method may be wired or wireless.
  • the surveillance camera 1 captures a river to be measured by the water level measuring device 100.
  • the range to be photographed by the surveillance camera 1 includes river water and substances other than river water (for example, buildings and land around the river).
  • the image captured by the surveillance camera 1 is referred to as a “captured image”.
  • the surveillance camera 1 outputs image data indicating a captured image to the water level measuring device 100.
  • the operation input device 2 receives an input of an operation by a worker who uses the water level measuring device 100 (hereinafter, simply referred to as a "worker").
  • the operation input device 2 is composed of, for example, a keyboard 3 and a mouse 4.
  • the display device 5 is composed of, for example, a display 6 such as a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the learning image generation unit 14 outputs the learning image to the image learning unit 15.
  • the learning image generation unit 14 is an example of a reference image generation unit.
  • the combination of the image identification unit 12 and the image learning unit 15 uses, for example, a "neural network".
  • a neural network is a computer that inputs a plurality of image data together with correct answers in advance and trains them to determine whether or not what is copied in the newly input image data is a specific target. It is one of the mechanisms to operate so as to output the result.
  • the model includes a convolutional neural network and a model using a support vector machine (Support Vector Machine, SVM), and machine learning related to discrimination between a water region and a non-water region can be executed for a training image. Any model may be used. Since the structure of the neural network and the machine learning by the neural network are conventional techniques and various known methods can be used, the description thereof will be omitted.
  • the bus 23 is a signal path that electrically connects each device and exchanges data.
  • the processor 21 is composed of, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, a DSP (Digital Signal Processor), and the like. Alternatively, the processor 21 is a combination of the above.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • DSP Digital Signal Processor
  • the memory 22 stores a program for causing the computer to function as the base point setting unit 11, the image identification unit 12, the water level calculation unit 13, the learning image generation unit 14, and the image learning unit 15 shown in FIG. Further, the memory 22 stores the image data generated by the learning image generation unit 14.
  • the processor 21 reads out and executes the program stored in the memory 22, the base point setting unit 11, the image identification unit 12, the water level calculation unit 13, the learning image generation unit 14, and the image learning unit 15 shown in FIG. 1 The function of is realized.
  • FIG. 3 is a flowchart showing the operation of the base point setting unit 11 of the water level measuring device 100 according to the first embodiment of the present invention. The operation of the base point setting unit 11 will be described below with reference to FIG.
  • Step ST1 is executed only once, for example, when the surveillance camera 1 is installed and the water level measuring device 100 is started to be used. Although it is assumed that step ST1 is executed only once, it may be executed repeatedly. For example, when an operation for instructing the change of the coordinates of the base point or the change of the base point water level value of the base point is performed, step ST1 may be performed and the base point setting unit 11 may update the coordinates of the base point or the base point water level value of the base point. ..
  • the surveillance camera 1 continuously executes the process of shooting the shooting range and outputting the image data indicating the shot image.
  • the process of outputting image data indicating the captured image of the surveillance camera 1 may not be continuously executed or may be fragmentary. Further, the timing of the process of outputting the image data is not particularly limited.
  • the water level measuring device 100 automatically executes the process shown in the flowchart of FIG. 4 and the process shown in the flowchart of FIG. 6 for each of the image data sequentially output by the surveillance camera 1.
  • FIG. 4 is a flowchart showing the operation of the image identification unit 12 and the water level calculation unit 13 of the water level measuring device 100 according to the first embodiment of the present invention. The operation of the image identification unit 12 and the water level calculation unit 13 of the water level measuring device 100 will be described below with reference to FIG.
  • FIG. 5 is an example of the image 30 captured by the surveillance camera 1.
  • FIG. 5 is a photographed image 30 in which the sky 31, the mountain 32, the sandy area 33, the river 34, and the grassland 35 are photographed by the surveillance camera 1.
  • the identification image to be identified in step ST12 may be the identification image D1 in which the target area is the entire area of the captured image, or the specific area in which the target area is a part of the entire area.
  • the identification image D2 and the identification image D3 may be used.
  • the image identification unit 12 divides the target area into a predetermined area below the target area in the identification image, and is the center of the predetermined image which is the image of the predetermined area the water region? , Identify whether it is a non-water area. At this time, the image identification unit 12 executes the identification process of whether it is a water region or a non-water region based on the result of machine learning by the image learning unit 15. Machine learning by the image learning unit 15 will be described later.
  • the predetermined area is an example of the area corresponding to the identification image, and may be the same area as the target area or a smaller area than the target area.
  • the image identification unit 12 identifies the boundary line between the water region and the non-water region of the identification image by repeatedly executing the process of determining the boundary between the water region and the non-water region in step ST12. To do.
  • the image identification unit 12 shifts the center of the predetermined image by one pixel or a plurality of pixels in a certain direction, and repeatedly identifies whether the center of the predetermined image is a water region or a non-water region until it corresponds to the identification image. To do.
  • the image identification unit 12 shifts the center of the predetermined image by one pixel or a plurality of pixels in a certain direction, but the center may be changed at random. Further, the image identification unit 12 divides the target area into one or more areas of various sizes, and until the divided image corresponds to the identification image, whether the center of the divided image is the water area or the non-water area. You may identify whether it is.
  • the image identification unit 12 determines the boundary between the coordinates identified as the water region and the coordinates identified as the non-water region, for example, the identification of the water region and the identification of the non-water region in two adjacent pixels or the adjacent specific region. Is determined by exchanging.
  • the image identification unit 12 determines the boundary between the water region and the non-water region by switching the identification of the water region and the identification of the non-water region until it corresponds to the identification image, and the water region and the non-water region of the identification image are determined. Identify the border with the area. If the boundary line between the water region and the non-water region of the identification image cannot be identified, step ST13: NO is set, and the process returns to step ST12.
  • step ST13 YES is set, the identification result is output to the water level calculation unit 13, and the process proceeds to the next step.
  • the identification result output by the image identification unit 12 in step ST13 is stored in the memory 22 until a predetermined condition is satisfied (for example, an operation for instructing deletion is performed after a certain period of time has passed).
  • step ST14 the water level calculation unit 13 uses the identification result output by the image identification unit 12 in step ST13 and the base point water level value corresponding to each coordinate output by the base point setting unit 11 in step ST1 to monitor the camera. Calculate the water level value in the shooting range of 1. Further, the water level calculation result output by the water level calculation unit 13 in step ST14 is stored in the memory 22 and stored until a predetermined condition is satisfied (for example, an operation for instructing deletion is performed after a certain period of time has passed). Will be done.
  • a predetermined condition for example, an operation for instructing deletion is performed after a certain period of time has passed.
  • water level measurement processing the processing of steps ST11 to ST14 is referred to as "water level measurement processing".
  • the water level measuring device 100 satisfies a predetermined condition (for example, when an operation for instructing the end of the water level measuring process is performed, when the power of the water level measuring device 100 is turned off, or monitoring.
  • the water level measurement process is repeatedly executed until the communication connection between the camera 1 and the water level measuring device 100 is disconnected). Although it is assumed that the water level measurement process is repeatedly executed, it may be executed only once without repeating the process.
  • step ST21 the learning image generation unit 14 has the identification result output by the image identification unit 12 in step ST13 and the water level calculation result output by the water level calculation unit 13 in step ST14 stored in the memory 22 in the water level measurement process. To get.
  • step ST22 the learning image generation unit 14 determines the water region and the non-water region from the identification result output by the image identification unit 12 in step ST13 and the water level calculation result output by the water level calculation unit 13 in step ST14. Obtain the coordinates of the boundary line and the water level value corresponding to the coordinates. The learning image generation unit 14 stores the coordinates of the acquired boundary line between the water region and the non-water region and the water level value of the coordinates in the memory 22.
  • the water level measuring device 100 instructs to generate a learning image when a predetermined condition is satisfied (for example, immediately after the water level measuring device 100 is installed, when the variation of the water level measurement result is equal to or greater than the threshold value, or when a certain period of time has elapsed. Executed when an operation is performed). Further, the water level measuring device 100 satisfies a predetermined condition (for example, when an operation for instructing the end of the water level measuring process is performed, when the power of the water level measuring device 100 is turned off, or when the monitoring camera 1 and the water level are turned off.
  • the learning image generation process is repeatedly executed until the communication connection between the measuring devices 100 is disconnected (for example). Although it is assumed that the learning image generation process is repeatedly executed, it may be executed only once without repeating the process.
  • step ST31 the image learning unit 15 acquires the image data corresponding to the learning image stored in step ST25 stored in the memory 22 and the identification information.
  • the power of the water level measuring device 100 is turned off, or the communication connection between the monitoring camera 1 and the water level measuring device 100 is disconnected) Until, the machine learning process is automatically and repeatedly executed. Although it is assumed that the machine learning process is repeatedly executed, it may be executed only once without repeating.
  • the water level measuring device 100 of the first embodiment sets the coordinate value of the base point according to the operation input to the operation input device 2, it is also used for water level measurement of a river or the like in which a water level plate is not installed. be able to.
  • the water level measuring device 100 of the first embodiment automatically and repeatedly executes the machine learning process, the accuracy of identification by the image identification unit 12 can be gradually improved.
  • the water level measuring device 100 of the first embodiment automatically and repeatedly executes the learning image generation process, the water level can be measured with high accuracy even if the worker does not manually collect the learning images in advance.
  • the base point setting unit 11 of the first embodiment sets the coordinate values of the plurality of base points in the captured image and the base point water level values corresponding to each of the plurality of base points. By increasing the number of base points in this way, the water level calculation unit 13 can calculate a finer water level.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

In conventional water level measuring devices, there were instances where high precision water level measurement could not be performed when the surrounding environment changed due to season, time, weather, etc. A water level measuring device (100) of the present invention is provided with an image identification unit (12) and a water level calculation unit (13). The image identification unit (12) identifies whether a region corresponding to an image for identification, which is an image of a region including a predetermined reference point for an acquired photographed image, is a water region or a non-water region, said identification being made on the basis of a plurality of water region images, which correspond to the surrounding environment affecting image identification, and a plurality of non-water region images corresponding to the surrounding environment. The water level calculation unit (13) calculates the water level in the photographed image on the basis of the identification results by the image identification unit (12) and a reference point water level value corresponding to the reference point.

Description

水位計測装置、水位計測方法および水位計測プログラムWater level measuring device, water level measuring method and water level measuring program
 本発明は、画像から水位を計測する水位計測装置、水位計測方法および水位計測プログラムに関するものである。 The present invention relates to a water level measuring device for measuring a water level from an image, a water level measuring method, and a water level measuring program.
 従来、河川などに設置されている監視カメラにより撮影された画像あるいはビデオ映像を用いて、河川などの水位を計測する技術が開発されている。 Conventionally, a technology for measuring the water level of a river or the like has been developed using an image or a video image taken by a surveillance camera installed in the river or the like.
 例えば、特許文献1の水位計測装置は、河川において、監視カメラなどにより撮影された河川の水以外のもの(例えば特定の構造物など)を含む画像を用いて、当該河川の水位を計測するものである。具体的には、特許文献1の水位計測装置は、監視カメラにより撮影された河川の映像から、機械学習により水領域と非水領域との識別を行うことで、水領域と非水領域との境界座標を判定する。上記境界座標と座標の基点水位値とを用いて、水位を計測する。 For example, the water level measuring device of Patent Document 1 measures the water level of a river by using an image including something other than the water of the river (for example, a specific structure) taken by a surveillance camera or the like. Is. Specifically, the water level measuring device of Patent Document 1 distinguishes between a water region and a non-water region by machine learning from an image of a river taken by a surveillance camera. Determine the boundary coordinates. The water level is measured using the boundary coordinates and the base point water level value of the coordinates.
WO2018-092238号公報WO2018-092238
 しかしながら、上記した従来の水位計測装置では、季節、時間、天気などで周辺環境が変化した場合、高精度な水位計測ができない場合があった。 However, with the above-mentioned conventional water level measuring device, high-precision water level measurement may not be possible when the surrounding environment changes due to seasons, time, weather, etc.
 本発明は、上述のような問題を解決するためになされたものであって、変化する周辺環境に対しても安定して水位計測を行う水位計測装置、水位計測方法および水位計測プログラムを提供することを目的としている。 The present invention has been made to solve the above-mentioned problems, and provides a water level measuring device, a water level measuring method, and a water level measuring program that stably measure a water level even in a changing surrounding environment. The purpose is.
 本発明に係る水位計測装置は、画像識別に影響する周辺環境に応じた複数の水領域の画像、及び周辺環境に応じた複数の非水領域の画像に基づき、取得した撮影画像について予め定められた基点を含む領域の画像である識別用画像に対応する領域が水領域であるのか非水領域であるのかを識別する画像識別部と、画像識別部による識別結果と、基点に対応する基点水位値とに基づき、撮影画像における水位を算定する水位算定部とを備える。 The water level measuring device according to the present invention is determined in advance with respect to acquired captured images based on images of a plurality of water areas according to the surrounding environment affecting image identification and images of a plurality of non-water areas according to the surrounding environment. An image identification unit that identifies whether the region corresponding to the identification image, which is an image of the region including the base point, is a water region or a non-water region, the identification result by the image identification unit, and the base point water level corresponding to the base point. It is equipped with a water level calculation unit that calculates the water level in the captured image based on the value.
 本発明によれば、周辺環境の変化を考慮するため、安定した水位計測を実現できる。 According to the present invention, stable water level measurement can be realized in consideration of changes in the surrounding environment.
本発明の実施の形態1に係る水位計測装置の要部を示す機能ブロック図である。It is a functional block diagram which shows the main part of the water level measuring apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る水位計測装置のハードウェア構成図である。It is a hardware block diagram of the water level measuring apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る水位計測装置の基点設定部の動作を示すフローチャートである。It is a flowchart which shows the operation of the base point setting part of the water level measuring apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る水位計測装置の画像識別部及び水位算定部の動作を示すフローチャートである。It is a flowchart which shows the operation of the image identification part and the water level calculation part of the water level measuring apparatus which concerns on Embodiment 1 of this invention. 監視カメラによる撮影画像の一例である。This is an example of an image taken by a surveillance camera. 本発明の実施の形態1に係る水位計測装置の学習用画像生成部の動作を示すフローチャートである。It is a flowchart which shows the operation of the learning image generation part of the water level measuring apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る水位計測装置の画像学習部の動作を示すフローチャートである。It is a flowchart which shows the operation of the image learning part of the water level measuring apparatus which concerns on Embodiment 1 of this invention.
実施の形態1.
 本実施の形態1では、例として、水位計測の対象を河川とし、当該河川を監視カメラで撮影している場合について以下に説明する。
Embodiment 1.
In the first embodiment, as an example, a case where the target of water level measurement is a river and the river is photographed by a surveillance camera will be described below.
 図1は、本発明の実施の形態1に係る水位計測装置100の要部を示す機能ブロック図である。 FIG. 1 is a functional block diagram showing a main part of the water level measuring device 100 according to the first embodiment of the present invention.
 図1において、水位計測装置100は、監視カメラ1と、操作入力装置2と、表示装置5とに接続している。なお、接続方法は、有線、無線など問わない。 In FIG. 1, the water level measuring device 100 is connected to the surveillance camera 1, the operation input device 2, and the display device 5. The connection method may be wired or wireless.
 監視カメラ1は、水位計測装置100による水位計測の対象となる河川を撮影するものである。監視カメラ1による撮影対象となる範囲(以下「撮影範囲」という。)には、河川の水と河川の水以外のもの(例えば、河川周辺の建造物や陸地)とが含まれている。以下、監視カメラ1により撮影された画像を「撮影画像」という。監視カメラ1は、撮影画像を示す画像データを水位計測装置100に出力する。 The surveillance camera 1 captures a river to be measured by the water level measuring device 100. The range to be photographed by the surveillance camera 1 (hereinafter referred to as “photographing range”) includes river water and substances other than river water (for example, buildings and land around the river). Hereinafter, the image captured by the surveillance camera 1 is referred to as a “captured image”. The surveillance camera 1 outputs image data indicating a captured image to the water level measuring device 100.
 操作入力装置2は、水位計測装置100を使用する作業者(以下、単に「作業者」という。)による操作の入力を受け付けるものである。操作入力装置2は、例えば、キーボード3及びマウス4により構成されている。また、表示装置5は、例えば、液晶ディスプレイまたは有機EL(Electro Luminescence)ディスプレイなどのディスプレイ6により構成されている。 The operation input device 2 receives an input of an operation by a worker who uses the water level measuring device 100 (hereinafter, simply referred to as a "worker"). The operation input device 2 is composed of, for example, a keyboard 3 and a mouse 4. Further, the display device 5 is composed of, for example, a display 6 such as a liquid crystal display or an organic EL (Electro Luminescence) display.
 以下、周辺環境の変化を考慮した学習を行うことで水位を計測する水位計測装置100の要部について説明する。 Hereinafter, the main parts of the water level measuring device 100 that measures the water level by performing learning in consideration of changes in the surrounding environment will be described.
 水位計測装置100は、水位計測の基準となる点である基点を設定する基点設定部11と、画像の河川の水が存在する領域(以下「水領域」という。)と河川の水以外が存在する領域(以下「非水領域」という。)との識別に係る機械学習を行う画像学習部15と、画像学習部15の学習結果から画像の水領域と非水領域との境界線を識別する画像識別部12と、水位を算定する水位算定部13と、周辺環境の変化を考慮した学習用の画像を生成する学習用画像生成部14とを備える。 The water level measuring device 100 includes a base point setting unit 11 that sets a base point that is a reference point for water level measurement, a region in which river water exists in an image (hereinafter referred to as "water region"), and other than river water. The boundary line between the water region and the non-water region of the image is identified from the learning results of the image learning unit 15 that performs machine learning related to the identification from the region (hereinafter referred to as “non-water region”). It includes an image identification unit 12, a water level calculation unit 13 for calculating the water level, and a learning image generation unit 14 for generating a learning image in consideration of changes in the surrounding environment.
 基点設定部11は、監視カメラ1が出力した画像データを取得する。基点設定部11は、操作入力装置2に入力された操作に応じて、撮影画像における水位計測の基準となる任意の点である基点の座標値と、当該基点に対応する水位を示す値(以下「基点水位値」という。)とを設定する。より具体的には、基点設定部11は、撮影画像における1以上の基点の座標値と、1以上の基点の各々に対応する基点水位値とを設定する。基点設定部11は、各基点の座標値と、各基点に対応する基点水位値とを水位算定部13に出力する。 The base point setting unit 11 acquires the image data output by the surveillance camera 1. The base point setting unit 11 responds to the operation input to the operation input device 2, and indicates the coordinate value of the base point, which is an arbitrary point that serves as a reference for measuring the water level in the captured image, and the value indicating the water level corresponding to the base point (hereinafter,). "Base point water level value") and is set. More specifically, the base point setting unit 11 sets the coordinate values of one or more base points in the captured image and the base point water level values corresponding to each of the one or more base points. The base point setting unit 11 outputs the coordinate value of each base point and the base point water level value corresponding to each base point to the water level calculation unit 13.
 なお、基点水位値とは、海面から測った高さの値、すなわち、海抜の値に限らず、ある範囲の場所において、任意の場所を基準とした相対的な高さを表す値であっても良いものとする。 The base water level value is not limited to the value of the height measured from the sea level, that is, the value above sea level, but is a value representing a relative height with respect to an arbitrary place in a certain range of places. Is also good.
画像識別部12は、監視カメラ1が出力した画像データを取得する。画像識別部12は、取得した画像データが示す撮影画像のうち、撮影画像の全領域あるいは全領域の一部分である特定領域を対象の領域(以下「対象領域」という。)とする。画像識別部12は、対象領域に対応する識別すべき画像(以下「識別用画像」という。)の水領域と非水領域との境界線を識別する。 The image identification unit 12 acquires the image data output by the surveillance camera 1. The image identification unit 12 sets a specific area which is a whole area or a part of the whole area of the photographed image among the photographed images indicated by the acquired image data as a target area (hereinafter referred to as “target area”). The image identification unit 12 identifies the boundary line between the water region and the non-water region of the image to be identified (hereinafter referred to as “identification image”) corresponding to the target region.
 なお、画像識別部12は、対象領域が特定領域である場合、基点設定部11により設定された各基点の座標値を含む領域を切り出す。 When the target area is a specific area, the image identification unit 12 cuts out an area including the coordinate values of each base point set by the base point setting unit 11.
 水位算定部13は、画像識別部12による識別結果と、基点設定部11が出力した各座標における基点水位値とを用いて、監視カメラ1の対象領域の識別用画像における水位値を算定する。水位算定部13は、算定結果及び画像識別部12の識別結果を学習用画像生成部14に出力する。 The water level calculation unit 13 calculates the water level value in the identification image of the target area of the surveillance camera 1 by using the identification result by the image identification unit 12 and the base point water level value at each coordinate output by the base point setting unit 11. The water level calculation unit 13 outputs the calculation result and the identification result of the image identification unit 12 to the learning image generation unit 14.
 学習用画像生成部14は、監視カメラ1が出力した画像データを取得する。学習用画像生成部14は、水位算定部13から出力された識別結果及び算定結果に対応する識別用画像と、それよりも過去の時間の画像と未来の時間の画像との少なくとも一方の水領域と非水領域との境界線の識別結果及び算定結果とを用いて、監視カメラ1から取得した画像データが示す撮影画像から、画像識別に影響する周辺環境に応じた複数の水領域の画像、あるいは周辺環境に応じた複数の非水領域の画像を判定する。学習用画像生成部14は、周辺環境に応じた複数の水領域の画像あるいは周辺環境に応じた複数の非水領域の画像と判定された当該画像の画像データを、学習用の画像データとして画像学習部15に出力する。具体的には、周辺環境に応じた複数の水領域の画像の画像データとは、撮影画像の対象領域において河川の水が写されている可能性が高い画像データであり、周辺環境に応じた複数の非水領域の画像とは、撮影画像の対象領域において河川の水以外のものが写されている可能性が高い領域の画像データである。以下、周辺環境に応じた複数の水領域の画像あるいは周辺環境に応じた複数の非水領域の画像と判定された画像を「学習用画像」という。学習用画像生成部14は、学習用画像を画像学習部15に出力する。学習用画像生成部14は、基準用画像生成部の一例である。 The learning image generation unit 14 acquires the image data output by the surveillance camera 1. The learning image generation unit 14 is a water region of at least one of the identification result and the identification image corresponding to the calculation result output from the water level calculation unit 13, and the image of the past time and the image of the future time. Using the identification result and the calculation result of the boundary line between the non-water area and the non-water area, from the captured image shown by the image data acquired from the surveillance camera 1, a plurality of images of the water area according to the surrounding environment affecting the image identification. Alternatively, images of a plurality of non-water areas according to the surrounding environment are determined. The learning image generation unit 14 uses image data of the image determined to be an image of a plurality of water regions according to the surrounding environment or an image of a plurality of non-water regions according to the surrounding environment as image data for learning. Output to the learning unit 15. Specifically, the image data of the image of a plurality of water areas according to the surrounding environment is the image data in which there is a high possibility that the water of the river is captured in the target area of the photographed image, and is according to the surrounding environment. The image of the plurality of non-water regions is image data of an region in the target region of the captured image in which there is a high possibility that something other than river water is captured. Hereinafter, an image determined to be an image of a plurality of water regions according to the surrounding environment or an image of a plurality of non-water regions according to the surrounding environment is referred to as a "learning image". The learning image generation unit 14 outputs the learning image to the image learning unit 15. The learning image generation unit 14 is an example of a reference image generation unit.
 画像学習部15は、学習用画像を用いて、水領域と非水領域との識別に係る機械学習を実行する。 The image learning unit 15 executes machine learning related to the discrimination between the water region and the non-water region by using the learning image.
 画像識別部12と画像学習部15とを合わせたものは、例えば、「ニューラルネットワーク」を用いたものである。ニューラルネットワークとは、計算機に予め複数の画像データを正解とともに入力して学習させておくことにより、新たに入力された画像データに写されているものが、特定の対象であるのかどうかを判定して結果を出力するように動作させる仕組みの一つである。例えば、モデルは、畳み込みニューラルネットワーク、サポートベクトルマシン(Support Vector Machine,SVM)を用いたものなどがあり、学習用画像に対して水領域と非水領域との識別に係る機械学習が実行可能なモデルを用いたものであれば良い。ニューラルネットワークの構造、及びニューラルネットワークによる機械学習については、従来技術であり、公知の種々の方法を用いることができるため、説明を省略する。 The combination of the image identification unit 12 and the image learning unit 15 uses, for example, a "neural network". A neural network is a computer that inputs a plurality of image data together with correct answers in advance and trains them to determine whether or not what is copied in the newly input image data is a specific target. It is one of the mechanisms to operate so as to output the result. For example, the model includes a convolutional neural network and a model using a support vector machine (Support Vector Machine, SVM), and machine learning related to discrimination between a water region and a non-water region can be executed for a training image. Any model may be used. Since the structure of the neural network and the machine learning by the neural network are conventional techniques and various known methods can be used, the description thereof will be omitted.
 次に、実施の形態1における水位計測装置100のハードウェア構成について説明する。 Next, the hardware configuration of the water level measuring device 100 according to the first embodiment will be described.
 図2は、本発明の実施の形態1に係る水位計測装置100のハードウェア構成図である。図2を用いて、本発明の実施の形態1に係る水位計測装置100の構成について説明する。 FIG. 2 is a hardware configuration diagram of the water level measuring device 100 according to the first embodiment of the present invention. The configuration of the water level measuring device 100 according to the first embodiment of the present invention will be described with reference to FIG.
 図2に示す通り、水位計測装置100は、コンピュータにより構成されており、プロセッサ21と、メモリ22と、バス23とで構成されている。 As shown in FIG. 2, the water level measuring device 100 is composed of a computer, and is composed of a processor 21, a memory 22, and a bus 23.
 バス23は、各装置間を電気的に接続し、データのやり取りを行う信号経路である。 The bus 23 is a signal path that electrically connects each device and exchanges data.
 プロセッサ21は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラあるいはDSP(Digital Signal Processor)などにより構成されている。または、プロセッサ21は、上述したものを組み合わせたものである。 The processor 21 is composed of, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, a DSP (Digital Signal Processor), and the like. Alternatively, the processor 21 is a combination of the above.
 メモリ22は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、フレキシブルディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)あるいはHDD(Hard Disk Drive)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、光ディスク、あるいは光磁気ディスクなどにより構成されている。または、メモリ22は、上述したものを組み合わせたものである。 The memory 22 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Memory Disk), an EEPROM (Electrically Memory), and an EEPROM (Electrically Memory). It is composed of a non-volatile or volatile semiconductor memory such as a disk, a DVD (Digital Versaille Disc) or an HDD (Hard Disk Drive), a magnetic disk, an optical disk, a magneto-optical disk, or the like. Alternatively, the memory 22 is a combination of the above-mentioned ones.
 メモリ22は、当該コンピュータを図1に示す基点設定部11、画像識別部12、水位算定部13、学習用画像生成部14、画像学習部15として機能させるためのプログラムを記憶している。また、メモリ22は学習用画像生成部14の生成した画像データを記憶している。メモリ22に記憶されたプログラムをプロセッサ21が読みだして実行することにより、図1に示す基点設定部11、画像識別部12、水位算定部13、学習用画像生成部14、画像学習部15との機能が実現される。 The memory 22 stores a program for causing the computer to function as the base point setting unit 11, the image identification unit 12, the water level calculation unit 13, the learning image generation unit 14, and the image learning unit 15 shown in FIG. Further, the memory 22 stores the image data generated by the learning image generation unit 14. When the processor 21 reads out and executes the program stored in the memory 22, the base point setting unit 11, the image identification unit 12, the water level calculation unit 13, the learning image generation unit 14, and the image learning unit 15 shown in FIG. 1 The function of is realized.
 なお、プロセッサ21あるいはメモリ22は、基点設定部11、画像識別部12、水位算定部13、学習用画像生成部14、画像学習部15との機能それぞれを別々のプロセッサあるいは別々のメモリで実現してもよい。 The processor 21 or the memory 22 realizes the functions of the base point setting unit 11, the image identification unit 12, the water level calculation unit 13, the learning image generation unit 14, and the image learning unit 15 by different processors or different memories. You may.
 また、水位計測装置100の各機能は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって実現することができる。 Further, each function of the water level measuring device 100 can be realized by hardware, software, firmware, or a combination thereof.
 なお、水位計測装置100の装置間及び機器間は通信を介して接続されている。用いる通信については、有線通信でも無線通信でもよい。 Note that the devices of the water level measuring device 100 and the devices are connected via communication. The communication to be used may be wired communication or wireless communication.
 次に、水位計測装置100の動作について説明する。 Next, the operation of the water level measuring device 100 will be described.
 図3は、本発明の実施の形態1に係る水位計測装置100の基点設定部11の動作を示すフローチャートである。図3を用いて、基点設定部11の動作を以下に説明する。 FIG. 3 is a flowchart showing the operation of the base point setting unit 11 of the water level measuring device 100 according to the first embodiment of the present invention. The operation of the base point setting unit 11 will be described below with reference to FIG.
 ステップST1において、基点設定部11は、監視カメラ1が出力した画像データを取得する。基点設定部11は、操作入力装置2に入力された操作に応じて、撮影画像における1以上の基点の座標値と、各基点に対応する基点水位値とを設定する。基点設定部11は、各基点の座標値と、各基点に対応する基点水位値とを水位算定部13に出力する。 In step ST1, the base point setting unit 11 acquires the image data output by the surveillance camera 1. The base point setting unit 11 sets the coordinate values of one or more base points in the captured image and the base point water level values corresponding to each base point according to the operation input to the operation input device 2. The base point setting unit 11 outputs the coordinate value of each base point and the base point water level value corresponding to each base point to the water level calculation unit 13.
 具体的には、例えば、基点設定部11は、監視カメラ1が出力した画像データを取得して、当該画像データが示す撮影画像をディスプレイ6に表示させる。基点設定部11は、ディスプレイ6に表示された撮影画像に対して、マウス4を用いて作業者によって指定された1以上または各座標について基点を設定する。基点設定部11は、指定された各基点の座標値を算出する。基点設定部11は、指定された各基点に対して、キーボード3を用いて作業者によって入力された各基点に対応する基点水位値を設定する。または、メモリ22が各座標に対応した基点水位値を記憶しておき、基点設定部11は、メモリ22から当該基点水位値を取得することにより、基点水位値を設定してもよい。 Specifically, for example, the base point setting unit 11 acquires the image data output by the surveillance camera 1 and displays the captured image indicated by the image data on the display 6. The base point setting unit 11 sets a base point for one or more or each coordinate designated by the operator using the mouse 4 with respect to the captured image displayed on the display 6. The base point setting unit 11 calculates the coordinate values of each designated base point. The base point setting unit 11 sets the base point water level value corresponding to each base point input by the operator using the keyboard 3 for each designated base point. Alternatively, the memory 22 may store the base point water level value corresponding to each coordinate, and the base point setting unit 11 may set the base point water level value by acquiring the base point water level value from the memory 22.
なお、各基点に対応する基点水位値を設定するためには、事前に河川周辺の建造物や陸地などについてのサイズ及び凹凸形状などを測量しておくことが求められる。当該測量については、公知の種々の方法を用いることができるため、説明を省略する。 In addition, in order to set the base point water level value corresponding to each base point, it is necessary to measure the size and uneven shape of the buildings and land around the river in advance. Since various known methods can be used for the survey, the description thereof will be omitted.
 ステップST1は、例えば、監視カメラ1が設置されて水位計測装置100の使用を開始するときに1回だけ実行される。なお、ステップST1を1回だけ実行するとしたが、繰り返し実行してもよい。例えば、基点の座標の変更または基点の基点水位値の変更の指示をする操作がなされた場合、ステップST1を行い、基点設定部11は基点の座標または基点の基点水位値を更新してもよい。 Step ST1 is executed only once, for example, when the surveillance camera 1 is installed and the water level measuring device 100 is started to be used. Although it is assumed that step ST1 is executed only once, it may be executed repeatedly. For example, when an operation for instructing the change of the coordinates of the base point or the change of the base point water level value of the base point is performed, step ST1 may be performed and the base point setting unit 11 may update the coordinates of the base point or the base point water level value of the base point. ..
 ステップST1が完了した後、監視カメラ1は、撮影範囲を撮影して、撮影画像を示す画像データを出力する処理を継続して実行する。なお、監視カメラ1の撮影画像を示す画像データを出力する処理は、継続して実行されていなくてもよく、断片的でもよい。また、画像データを出力する処理のタイミングも特に問わない。水位計測装置100は、監視カメラ1が順次出力する画像データの各々に対して、図4のフローチャートに示す処理と図6のフローチャートに示す処理とを自動で実行する。 After the step ST1 is completed, the surveillance camera 1 continuously executes the process of shooting the shooting range and outputting the image data indicating the shot image. The process of outputting image data indicating the captured image of the surveillance camera 1 may not be continuously executed or may be fragmentary. Further, the timing of the process of outputting the image data is not particularly limited. The water level measuring device 100 automatically executes the process shown in the flowchart of FIG. 4 and the process shown in the flowchart of FIG. 6 for each of the image data sequentially output by the surveillance camera 1.
 図4は、本発明の実施の形態1に係る水位計測装置100の画像識別部12及び水位算定部13の動作を示すフローチャートである。図4を用いて、水位計測装置100の画像識別部12及び水位算定部13の動作を以下に説明する。 FIG. 4 is a flowchart showing the operation of the image identification unit 12 and the water level calculation unit 13 of the water level measuring device 100 according to the first embodiment of the present invention. The operation of the image identification unit 12 and the water level calculation unit 13 of the water level measuring device 100 will be described below with reference to FIG.
 ステップST11において、画像識別部12は、監視カメラ1が出力した画像データを取得する。当該画像データは、例えば、ステップST11に対する直近のタイミングにて監視カメラ1が撮影した1個または複数の撮影画像を示すものである。なお、当該画像データは、過去のデータなどでもよく、時間の制約はない。 In step ST11, the image identification unit 12 acquires the image data output by the surveillance camera 1. The image data indicates, for example, one or a plurality of captured images captured by the surveillance camera 1 at the latest timing with respect to step ST11. The image data may be past data or the like, and there is no time limit.
 ステップST12において、画像識別部12は、ステップST11で取得した画像データが示す撮影画像から識別用画像を切り出す。このとき、図3のステップST1で設定された各基点の座標値を含む領域が対象領域となる。 In step ST12, the image identification unit 12 cuts out an identification image from the captured image indicated by the image data acquired in step ST11. At this time, the area including the coordinate values of the base points set in step ST1 of FIG. 3 becomes the target area.
 図5は監視カメラ1による撮影画像30の一例である。 FIG. 5 is an example of the image 30 captured by the surveillance camera 1.
 図5は、監視カメラ1により、空31、山32、砂地33、河川34、草地35が撮影された撮影画像30である。識別用画像D1~D3に示す通り、ステップST12で識別を行う識別用画像は、対象領域が撮影画像の全領域である識別用画像D1でもよいし、対象領域が全領域の一部分である特定領域である識別用画像D2及び識別用画像D3でもよい。 FIG. 5 is a photographed image 30 in which the sky 31, the mountain 32, the sandy area 33, the river 34, and the grassland 35 are photographed by the surveillance camera 1. As shown in the identification images D1 to D3, the identification image to be identified in step ST12 may be the identification image D1 in which the target area is the entire area of the captured image, or the specific area in which the target area is a part of the entire area. The identification image D2 and the identification image D3 may be used.
 図4のステップST12に戻って、画像識別部12は、識別用画像において、対象領域を対象領域以下の所定の領域に区切り、所定の領域の画像である所定画像の中心が水領域であるのか、非水領域であるのかを識別する。このとき、画像識別部12は、画像学習部15による機械学習の結果に基づき、水領域であるのか非水領域であるのかの識別処理を実行する。画像学習部15による機械学習については、後述する。なお、所定の領域は、識別用画像に対応する領域の一例であり、対象領域と同じ領域でも、それよりも小さい領域でもよい。 Returning to step ST12 of FIG. 4, the image identification unit 12 divides the target area into a predetermined area below the target area in the identification image, and is the center of the predetermined image which is the image of the predetermined area the water region? , Identify whether it is a non-water area. At this time, the image identification unit 12 executes the identification process of whether it is a water region or a non-water region based on the result of machine learning by the image learning unit 15. Machine learning by the image learning unit 15 will be described later. The predetermined area is an example of the area corresponding to the identification image, and may be the same area as the target area or a smaller area than the target area.
 ステップST13において、画像識別部12は、ステップST12と、水領域と非水領域との境界を決定する処理を繰り返し実行することにより、識別用画像の水領域と非水領域との境界線を識別する。画像識別部12は、所定画像を一定方向に1画素または複数画素ずつ中心をずらして、識別用画像に相当するまで所定画像の中心が水領域であるのか、非水領域であるのかを繰り返し識別する。なお、画像識別部12は、所定画像を一定方向に1画素または複数画素ずつ中心をずらすとしたが、ランダムに中心を変更するなどでもよい。また、画像識別部12は、対象領域を1以上の様々な大きさの領域に区切り、区切った画像が識別用画像に相当するまで、区切った画像の中心が水領域であるのか、非水領域であるのかを識別してもよい。 In step ST13, the image identification unit 12 identifies the boundary line between the water region and the non-water region of the identification image by repeatedly executing the process of determining the boundary between the water region and the non-water region in step ST12. To do. The image identification unit 12 shifts the center of the predetermined image by one pixel or a plurality of pixels in a certain direction, and repeatedly identifies whether the center of the predetermined image is a water region or a non-water region until it corresponds to the identification image. To do. The image identification unit 12 shifts the center of the predetermined image by one pixel or a plurality of pixels in a certain direction, but the center may be changed at random. Further, the image identification unit 12 divides the target area into one or more areas of various sizes, and until the divided image corresponds to the identification image, whether the center of the divided image is the water area or the non-water area. You may identify whether it is.
画像識別部12は、水領域と識別された座標と非水領域と識別された座標との境界を、例えば、隣合う2画素または隣合う特定領域で水領域の識別と非水領域の識別とが入れ替わることにより決定する。画像識別部12は、水領域の識別と非水領域の識別との入れ替わりによる水領域と非水領域との境界の決定を識別用画像に相当するまで行い、識別用画像の水領域と非水領域との境界線を識別する。識別用画像の水領域と非水領域との境界線を識別できなかった場合、ステップST13:NOとなり、ステップST12に戻る。画像識別部12は、識別用画像の水領域と非水領域との境界線を識別できた場合、ステップST13:YESとなり、識別結果を水位算定部13に出力し、次のステップへ進む。なお、画像識別部12がステップST13にて出力した識別結果は、メモリ22に記憶され、所定の条件を満たすとき(例えば、一定期間を経過する、削除を指示する操作が行われる)まで記憶される。 The image identification unit 12 determines the boundary between the coordinates identified as the water region and the coordinates identified as the non-water region, for example, the identification of the water region and the identification of the non-water region in two adjacent pixels or the adjacent specific region. Is determined by exchanging. The image identification unit 12 determines the boundary between the water region and the non-water region by switching the identification of the water region and the identification of the non-water region until it corresponds to the identification image, and the water region and the non-water region of the identification image are determined. Identify the border with the area. If the boundary line between the water region and the non-water region of the identification image cannot be identified, step ST13: NO is set, and the process returns to step ST12. When the image identification unit 12 can identify the boundary line between the water region and the non-water region of the identification image, step ST13: YES is set, the identification result is output to the water level calculation unit 13, and the process proceeds to the next step. The identification result output by the image identification unit 12 in step ST13 is stored in the memory 22 until a predetermined condition is satisfied (for example, an operation for instructing deletion is performed after a certain period of time has passed). To.
 ステップST14において、水位算定部13は、画像識別部12がステップST13にて出力した識別結果と、ステップST1で基点設定部11が出力した各座標に対応する基点水位値とを用いて、監視カメラ1の撮影範囲における水位値を算定する。また、水位算定部13がステップST14にて出力した水位算定結果は、メモリ22に記憶され、所定の条件を満たすとき(例えば、一定期間を経過する、削除を指示する操作が行われる)まで記憶される。 In step ST14, the water level calculation unit 13 uses the identification result output by the image identification unit 12 in step ST13 and the base point water level value corresponding to each coordinate output by the base point setting unit 11 in step ST1 to monitor the camera. Calculate the water level value in the shooting range of 1. Further, the water level calculation result output by the water level calculation unit 13 in step ST14 is stored in the memory 22 and stored until a predetermined condition is satisfied (for example, an operation for instructing deletion is performed after a certain period of time has passed). Will be done.
 以下、ステップST11~ST14の処理を「水位計測処理」という。水位計測装置100はステップST1が完了した後、所定の条件を満たすとき(例えば、水位計測処理の終了を指示する操作が行われたとき、水位計測装置100の電源が切られたとき、または監視カメラ1と水位計測装置100間の通信接続が解除されたとき)まで、水位計測処理を繰り返し実行する。なお、水位計測処理を繰り返し実行するとしたが、繰り返さず一回実行するだけでもよい。 Hereinafter, the processing of steps ST11 to ST14 is referred to as "water level measurement processing". After the step ST1 is completed, the water level measuring device 100 satisfies a predetermined condition (for example, when an operation for instructing the end of the water level measuring process is performed, when the power of the water level measuring device 100 is turned off, or monitoring. The water level measurement process is repeatedly executed until the communication connection between the camera 1 and the water level measuring device 100 is disconnected). Although it is assumed that the water level measurement process is repeatedly executed, it may be executed only once without repeating the process.
 図6は、本発明の実施の形態1に係る水位計測装置100の学習用画像生成部14の動作を示すフローチャートである。図6を用いて、水位計測装置100の学習用画像生成部14の動作を以下に説明する。 FIG. 6 is a flowchart showing the operation of the learning image generation unit 14 of the water level measuring device 100 according to the first embodiment of the present invention. The operation of the learning image generation unit 14 of the water level measuring device 100 will be described below with reference to FIG.
 ステップST21において、学習用画像生成部14は、水位計測処理でメモリ22に記憶された、画像識別部12がステップST13で出力した識別結果と水位算定部13がステップST14で出力した水位算定結果とを取得する。 In step ST21, the learning image generation unit 14 has the identification result output by the image identification unit 12 in step ST13 and the water level calculation result output by the water level calculation unit 13 in step ST14 stored in the memory 22 in the water level measurement process. To get.
ステップST22において、学習用画像生成部14は、画像識別部12がステップST13で出力した識別結果と、水位算定部13がステップST14で出力した水位算定結果とから、水領域と非水領域との境界線の座標及び当該座標に対応する水位値を取得する。学習用画像生成部14は、取得した水領域と非水領域との境界線の座標及び当該座標の水位値をメモリ22に記憶する。 In step ST22, the learning image generation unit 14 determines the water region and the non-water region from the identification result output by the image identification unit 12 in step ST13 and the water level calculation result output by the water level calculation unit 13 in step ST14. Obtain the coordinates of the boundary line and the water level value corresponding to the coordinates. The learning image generation unit 14 stores the coordinates of the acquired boundary line between the water region and the non-water region and the water level value of the coordinates in the memory 22.
 ステップST23において、学習用画像生成部14は、学習用画像を生成すべき領域を選定する。通常、学習により識別精度を向上させる装置において、ほぼ同じ学習用画像をいくら学習しても識別精度はそこまで変化しない。一方、例えば、草地で季節がめぐるにつれて葉の色が緑色から茶色に変化する、昼から夜に時間が過ぎるにつれて水の色が青色から紺色に変化する、晴れから曇りに天気が変化するにつれて水の色が青色から紺色に変化するなど、同じ領域でも周辺環境の色が変化することにより多様なパターンの画像が存在する場合、多様なパターンの画像を学習することにより、学習により識別精度を向上させる装置の識別精度は飛躍的に向上する。 In step ST23, the learning image generation unit 14 selects an area in which the learning image should be generated. Normally, in a device that improves the identification accuracy by learning, the identification accuracy does not change so much no matter how much the same learning image is learned. On the other hand, for example, the color of the leaves changes from green to brown as the seasons change in the grassland, the color of water changes from blue to dark blue as time passes from day to night, and water as the weather changes from sunny to cloudy. When there are images with various patterns due to changes in the color of the surrounding environment even in the same area, such as when the color of is changed from blue to dark blue, learning the images with various patterns improves the identification accuracy by learning. The identification accuracy of the device to be used is dramatically improved.
 水位計測装置100では、水領域と非水領域との境界線の領域で、画像識別部12による水領域と非水領域との識別の精度を上げるために、画像学習部15で画像の学習を行う。そのため、学習用画像生成部14は、水領域と非水領域との境界線の領域において、周辺環境の変化による多様なパターンの学習用画像を生成する必要がある。学習用画像生成部14は、水領域と非水領域との境界線の領域において、水領域と非水領域とが入れ替わる領域あるいは座標を検出し、水領域と非水領域との入れ替わりを検出した領域あるいは座標において、水領域と非水領域とを明確に識別できる時間の識別用画像を学習用画像とすることで、周辺環境の変化による多様なパターンの学習用画像を生成する。 In the water level measuring device 100, in order to improve the accuracy of discrimination between the water region and the non-water region by the image identification unit 12 in the region of the boundary line between the water region and the non-water region, the image learning unit 15 learns the image. Do. Therefore, the learning image generation unit 14 needs to generate learning images of various patterns due to changes in the surrounding environment in the region of the boundary line between the water region and the non-water region. The learning image generation unit 14 detects the region or coordinates where the water region and the non-water region are interchanged in the region of the boundary line between the water region and the non-water region, and detects the exchange between the water region and the non-water region. By using the identification image for the time during which the water region and the non-water region can be clearly distinguished in the region or coordinates as the learning image, various patterns of learning images due to changes in the surrounding environment are generated.
 学習用画像生成部14は、ステップST22で取得した境界線の座標及び水位値を1つまたは複数用いて、時間または空間的な境界線の変化を算定する。具体的には、境界線の変化を算定する座標において、時間の異なる複数の識別結果及び水位算定結果から境界線の変化を算定する。ここで、境界線の変化とは、例えば、境界線の時間的な変動がある、対象領域における水位値の時間的な変動がある、色に変動がある、など河川の水位値及び周辺環境の変化である。なお、河川の水位値については、通常、時間的に連続に変化する。また、水領域と非水領域との境界の変化は、画像内の一部または複数の領域で発生するものであり、河川の水がいきなり干上がるなど画像の全領域に一斉に発生はしないという特徴がある。 The learning image generation unit 14 calculates the change in the temporal or spatial boundary line by using one or more of the boundary line coordinates and the water level value acquired in step ST22. Specifically, in the coordinates for calculating the change of the boundary line, the change of the boundary line is calculated from a plurality of identification results and water level calculation results at different times. Here, the change of the boundary line means, for example, the temporal fluctuation of the boundary line, the temporal fluctuation of the water level value in the target area, the color fluctuation, etc., of the water level value of the river and the surrounding environment. It's a change. The water level of a river usually changes continuously over time. In addition, the change in the boundary between the water region and the non-water region occurs in a part or a plurality of regions in the image, and it does not occur all at once in the entire region such as the river water suddenly drying up. There is.
 ステップST24において、学習用画像生成部14は、水領域と非水領域との境界線の領域において、水領域と非水領域とが入れ替わる領域あるいは座標を検出する。学習用画像生成部14が検出した水領域と非水領域とが入れ替わる領域あるいは座標が、周辺環境の変化によって多様なパターンの画像がある領域または座標である。学習用画像生成部14は、ステップST23にて算定した境界線の変化が第一の特定の条件を満たす領域または座標を、学習用画像抽出用領域または学習用画像抽出用座標と判定する。 In step ST24, the learning image generation unit 14 detects a region or coordinates in which the water region and the non-water region are interchanged in the region of the boundary line between the water region and the non-water region. The area or coordinates in which the water area and the non-water area detected by the learning image generation unit 14 are interchanged are areas or coordinates in which images having various patterns are present due to changes in the surrounding environment. The learning image generation unit 14 determines the region or coordinates in which the change in the boundary line calculated in step ST23 satisfies the first specific condition as the learning image extraction region or the learning image extraction coordinates.
 第一の特定の条件は、ある領域またはある座標において、周辺環境の変化によって多様なパターンの画像が存在する場合の条件である。第一の特定の条件とは、例えば、数時間から数日間継続して特定時間帯ではステップST13の識別結果が常に一定であるが、別時間帯では定期的または不定期にステップST13の識別結果が入れ替わる場合、あるいは、数時間から数日間継続してステップST13の識別を行った際、連続する一定時間内で連続的に水領域と非水領域との境界線の座標が変化する場合などである。なお、例として数時間や数日間をあげているが、数年間など時間に制限はない。 The first specific condition is a condition when images of various patterns exist due to changes in the surrounding environment in a certain area or a certain coordinate. The first specific condition is, for example, that the identification result of step ST13 is always constant in a specific time zone for several hours to several days, but the identification result of step ST13 is periodically or irregularly in another time zone. Or when the coordinates of the boundary line between the water region and the non-water region change continuously within a continuous fixed time when the identification of step ST13 is performed continuously for several hours to several days. is there. In addition, although several hours and several days are given as an example, there is no time limit such as several years.
 ステップST25において、学習用画像生成部14は、水領域と非水領域との入れ替わりを検出した領域あるいは座標において、水領域と非水領域とを明確に識別できる時間の画像を学習用画像とする。具体的には、学習用画像生成部14は、学習用画像抽出用領域または学習用画像抽出用座標で、水領域と非水領域とを明確に識別できる時間の画像を学習用画像として生成する。学習用画像生成部14は、ステップST24にて判定した学習用画像抽出用領域または学習用画像抽出用座標に対応する画像が第二の特定の条件を満たす場合、画像が撮影された時間の直前、一定期間前、直後、一定期間後、あるいはその複数の期間の水領域と非水領域との境界線の座標から、当該中心座標が水領域であるのか非水領域であるのかを識別し、当該識別の情報と共に学習用画像としてメモリ22に記憶する。 In step ST25, the learning image generation unit 14 uses an image at a time during which the water region and the non-water region can be clearly distinguished in the region or coordinates where the replacement of the water region and the non-water region is detected as the learning image. .. Specifically, the learning image generation unit 14 generates an image as a learning image at a time in which the water region and the non-water region can be clearly distinguished by the learning image extraction region or the learning image extraction coordinates. .. When the image corresponding to the learning image extraction area or the learning image extraction coordinates determined in step ST24 satisfies the second specific condition, the learning image generation unit 14 immediately before the time when the image was taken. From the coordinates of the boundary line between the water region and the non-water region for a certain period of time before, immediately after, after a certain period of time, or for a plurality of periods, it is identified whether the center coordinate is a water region or a non-water region. It is stored in the memory 22 as a learning image together with the identification information.
 第二の特定の条件とは、学習用画像抽出用領域または学習用画像抽出用座標に対応する画像において、ある期間で水領域と非水領域との変化が少なく、学習用画像抽出用領域または学習用画像抽出用座標に対応する画像が、水領域に相当する画像である可能性が高い、あるいは非水領域に相当する画像である可能性が高い場合の条件である。水領域に相当する可能性が高い画像及び非水領域に相当する可能性が高い画像を学習用画像とすることで、水位計測装置100の識別精度を向上させることができる。第二の特定の条件とは、例えば、連続する数時間から数日間の同時間帯での撮影画像での水位値の変化が閾値以下である場合、あるいは、連続する数時間から数日間での水領域と非水領域との境界線の座標の変動が閾値以下である場合などである。なお、例として数時間や数日間をあげているが、数年間など時間に制限はない。 The second specific condition is that in the learning image extraction region or the image corresponding to the learning image extraction coordinates, there is little change between the water region and the non-water region in a certain period, and the training image extraction region or the training image extraction region or This is a condition when the image corresponding to the learning image extraction coordinates is likely to be an image corresponding to a water region or an image corresponding to a non-water region. By using an image that is likely to correspond to a water region and an image that is likely to correspond to a non-water region as a learning image, the identification accuracy of the water level measuring device 100 can be improved. The second specific condition is, for example, when the change in the water level value in the captured image in the same time zone for several hours to several days is below the threshold value, or for several hours to several days in a row. For example, the fluctuation of the coordinates of the boundary line between the water region and the non-water region is less than the threshold value. In addition, although several hours and several days are given as an example, there is no time limit such as several years.
 中心座標が水領域であるのか非水領域であるのかの識別については、例えば、学習用画像生成部14は、画像が撮影された時間の直前、一定期間前、直後、一定期間後、あるいはその複数の期間の学習用画像抽出用領域または学習用画像抽出用座標が水領域であれば水領域、非水領域であれば非水領域、と識別する。 Regarding the identification of whether the center coordinates are the water region or the non-water region, for example, the learning image generation unit 14 determines immediately before, before, immediately after, after a certain period, or after the time when the image is taken. If the learning image extraction region or the learning image extraction coordinates of a plurality of periods is a water region, it is identified as a water region, and if it is a non-water region, it is identified as a non-water region.
 以下、ステップST21~ST25の処理を「学習用画像生成処理」という。水位計測装置100は、所定の条件を満たすとき(例えば、水位計測装置100が設置された直後、水位計測結果のばらつきが閾値以上のとき、一定期間が経過したとき、学習用画像生成を指示する操作が行われたときなど)に実行される。また、水位計測装置100は、所定の条件を満たすとき(例えば、水位計測処理の終了を指示する操作が行われたとき、水位計測装置100の電源が切られたとき、または監視カメラ1と水位計測装置100間の通信接続が解除されたときなど)まで、学習用画像生成処理を繰り返し実行する。なお、学習用画像生成処理を繰り返し実行するとしたが、繰り返さず一回実行するだけでもよい。 Hereinafter, the processing of steps ST21 to ST25 is referred to as "learning image generation processing". The water level measuring device 100 instructs to generate a learning image when a predetermined condition is satisfied (for example, immediately after the water level measuring device 100 is installed, when the variation of the water level measurement result is equal to or greater than the threshold value, or when a certain period of time has elapsed. Executed when an operation is performed). Further, the water level measuring device 100 satisfies a predetermined condition (for example, when an operation for instructing the end of the water level measuring process is performed, when the power of the water level measuring device 100 is turned off, or when the monitoring camera 1 and the water level are turned off. The learning image generation process is repeatedly executed until the communication connection between the measuring devices 100 is disconnected (for example). Although it is assumed that the learning image generation process is repeatedly executed, it may be executed only once without repeating the process.
 図7は、本発明の実施の形態1に係る水位計測装置100の画像学習部15の動作を示すフローチャートである。図7を用いて、水位計測装置100の画像学習部15の動作を以下に説明する。 FIG. 7 is a flowchart showing the operation of the image learning unit 15 of the water level measuring device 100 according to the first embodiment of the present invention. The operation of the image learning unit 15 of the water level measuring device 100 will be described below with reference to FIG. 7.
 ステップST31において、画像学習部15は、メモリ22に記憶されたステップST25で記憶した学習用画像に対応する画像データ及び当該識別の情報を取得する。 In step ST31, the image learning unit 15 acquires the image data corresponding to the learning image stored in step ST25 stored in the memory 22 and the identification information.
 ステップST32において、画像学習部15は、水領域と非水領域との識別に係る機械学習を実行する。画像学習部15による機械学習は、学習用画像生成処理で水領域に相当する可能性が高い画像の学習用画像と同様の特徴を有する識別用画像が入力された場合は、当該識別用画像に対応する領域が水領域であると識別し、かつ、学習用画像生成処理で非水領域に相当する可能性が高い画像の学習用画像と同様の特徴を有する識別用画像が入力された場合は、当該識別用画像に対応する領域が非水領域であると識別することを目的とした学習である。 In step ST32, the image learning unit 15 executes machine learning related to the discrimination between the water region and the non-water region. In the machine learning by the image learning unit 15, when an identification image having the same characteristics as the learning image of the image that is likely to correspond to the water region is input in the learning image generation process, the identification image is used. When the corresponding area is identified as the water area and an identification image having the same characteristics as the learning image of the image which is likely to correspond to the non-water area is input in the learning image generation process. , The learning is aimed at identifying that the region corresponding to the identification image is a non-water region.
 以下、ステップST31~32の処理を総称して「機械学習処理」という。水位計測装置100は、水位計測装置100が設置された後、所定の条件を満たして(例えば、機械学習処理の開始を指示する操作が操作入力装置2に入力されたとき、学習用画像がメモリ22に記憶されたとき、水位計測処理の実行中における水位計測装置100の処理負荷を低減するために、監視カメラ1のメンテナンスなど水位計測処理が停止したとき)から、所定の条件を満たす(機械学習処理の終了を指示する操作が操作入力装置2に入力されたとき、水位計測装置100の電源が切られたとき、または監視カメラ1と水位計測装置100間の通信接続が解除されたとき)まで、機械学習処理を自動で繰り返し実行する。なお、機械学習処理を繰り返し実行するとしたが、繰り返さず一回実行するだけでもよい。 Hereinafter, the processes of steps ST31 to 32 are collectively referred to as "machine learning process". After the water level measuring device 100 is installed, the water level measuring device 100 satisfies a predetermined condition (for example, when an operation instructing the start of machine learning processing is input to the operation input device 2, the learning image is stored in the memory. When stored in 22, a predetermined condition is satisfied (machine when the water level measurement process such as maintenance of the monitoring camera 1 is stopped in order to reduce the processing load of the water level measurement device 100 during the execution of the water level measurement process). When an operation instructing the end of the learning process is input to the operation input device 2, the power of the water level measuring device 100 is turned off, or the communication connection between the monitoring camera 1 and the water level measuring device 100 is disconnected) Until, the machine learning process is automatically and repeatedly executed. Although it is assumed that the machine learning process is repeatedly executed, it may be executed only once without repeating.
 すなわち、水位計測装置100が水位計測を開始してから時間が経過するにつれて、実行した機械学習処理の回数が増加して、画像学習部15が学習に用いた学習用画像の個数が増えていく。一般に、機械学習は、入力される学習用画像に対応する画像データが多いほど出力の精度が向上する性質を有している。このため、機械学習処理の繰り返しにより、画像識別部12による識別の精度を次第に向上することができる。この結果、水位算定部13による水位算定の精度を向上することができ、水位計測装置100による計測を安定させることができる。 That is, as time elapses from the start of water level measurement by the water level measuring device 100, the number of machine learning processes executed increases, and the number of learning images used by the image learning unit 15 for learning increases. .. In general, machine learning has the property that the accuracy of output improves as the amount of image data corresponding to the input learning image increases. Therefore, by repeating the machine learning process, the accuracy of identification by the image identification unit 12 can be gradually improved. As a result, the accuracy of the water level calculation by the water level calculation unit 13 can be improved, and the measurement by the water level measuring device 100 can be stabilized.
 以上述べたように、実施の形態1の水位計測装置100は、学習用画像生成部14が周辺環境の変化を考慮した学習用画像を生成し、画像学習部15が周辺環境の変化を考慮した学習を行うため、画像識別部12は水領域と非水領域とを高精度に識別することができる。この結果、水位算定部13による水位算定の精度を向上することができ、水位計測装置100による計測を安定させることができる。 As described above, in the water level measuring device 100 of the first embodiment, the learning image generation unit 14 generates a learning image in consideration of the change in the surrounding environment, and the image learning unit 15 considers the change in the surrounding environment. Since the learning is performed, the image identification unit 12 can discriminate between the water region and the non-water region with high accuracy. As a result, the accuracy of the water level calculation by the water level calculation unit 13 can be improved, and the measurement by the water level measuring device 100 can be stabilized.
 また、実施の形態1の水位計測装置100は、操作入力装置2に入力された操作に応じて基点の座標値を設定するため、量水板が設置されていない河川などの水位計測にも用いることができる。 Further, since the water level measuring device 100 of the first embodiment sets the coordinate value of the base point according to the operation input to the operation input device 2, it is also used for water level measurement of a river or the like in which a water level plate is not installed. be able to.
 実施の形態1の水位計測装置100は、機械学習処理を自動で繰り返し実行するため、画像識別部12による識別の精度を次第に向上することができる。 Since the water level measuring device 100 of the first embodiment automatically and repeatedly executes the machine learning process, the accuracy of identification by the image identification unit 12 can be gradually improved.
 実施の形態1の水位計測装置100は、学習用画像生成処理を自動で繰り返し実行するため、作業者が手動で画像を識別し、学習用画像を生成するよりも手間と負担とを大幅に削減することができる。 Since the water level measuring device 100 of the first embodiment automatically and repeatedly executes the learning image generation process, the labor and burden are significantly reduced as compared with the case where the operator manually identifies the image and generates the learning image. can do.
 実施の形態1の水位計測装置100は、学習用画像生成処理を自動で繰り返し実行するため、事前に作業者が手動で学習用画像を収集していなくても水位を高精度に計測できる。 Since the water level measuring device 100 of the first embodiment automatically and repeatedly executes the learning image generation process, the water level can be measured with high accuracy even if the worker does not manually collect the learning images in advance.
 実施の形態1の基点設定部11は、撮影画像における複数個の基点の座標値と、複数個の基点の各々に対応する基点水位値とを設定する。このように基点の個数を増やすことにより、水位算定部13はより細かい水位の算定が可能となる。 The base point setting unit 11 of the first embodiment sets the coordinate values of the plurality of base points in the captured image and the base point water level values corresponding to each of the plurality of base points. By increasing the number of base points in this way, the water level calculation unit 13 can calculate a finer water level.
 なお、実施の形態1では、水位計測装置100による水位計測の対象を河川としたが、河川に限定されるものではない。水位計測装置100は、例えば、湖沼、海洋、ダム、用水路または溜池などの水位計測にも用いることができる。 In the first embodiment, the target of the water level measurement by the water level measuring device 100 is a river, but the target is not limited to the river. The water level measuring device 100 can also be used for measuring the water level of, for example, lakes, marshes, oceans, dams, irrigation canals or reservoirs.
 実施の形態1では、水位計測装置100による水位計測の対象となる河川を撮影するものを監視カメラ1としたが、監視カメラ1でなくても、水位計測装置100による水位計測の対象となる河川を撮影できるものであればよい。 In the first embodiment, the surveillance camera 1 is used to photograph the river to be measured by the water level measuring device 100, but the river to be measured by the water level measuring device 100 even if it is not the surveillance camera 1. Anything that can take a picture of.
 実施の形態1では、水位計測装置100において、学習用画像生成部14は自動で学習用画像を生成し、画像学習部15は水領域と非水領域との画像の機械学習を行ったが、作業者が手動で行ってもよい。具体的には、作業者は、複数の撮影画像から最も確からしい周辺環境に応じた水領域の画像及び非水領域の画像を抽出することで、学習用画像生成部14及び画像学習部15の代わりとなる。つまり、実施の形態1では、水位計測装置100は、学習用画像生成処理を自動で繰り返し実行するとしたが、作業者が手動で画像を識別し、水位計測装置100は当該画像を入力されるようにしてもよい。 In the first embodiment, in the water level measuring device 100, the learning image generation unit 14 automatically generates a learning image, and the image learning unit 15 performs machine learning of the images of the water region and the non-water region. The operator may do it manually. Specifically, the worker extracts the image of the water region and the image of the non-water region according to the most probable surrounding environment from the plurality of captured images, so that the learning image generation unit 14 and the image learning unit 15 It is an alternative. That is, in the first embodiment, the water level measuring device 100 automatically and repeatedly executes the learning image generation process, but the operator manually identifies the image and the water level measuring device 100 inputs the image. It may be.
 実施の形態1では、画像識別部12は、識別用画像において、所定画像の中心が水領域であるのか、非水領域であるのかを識別したが、中心でなくても、所定の位置について水領域であるのか、非水領域であるのかを識別してもよい。 In the first embodiment, the image identification unit 12 discriminates whether the center of the predetermined image is the water region or the non-water region in the identification image, but even if it is not the center, the water is about the predetermined position. It may be possible to identify whether it is a region or a non-water region.
 実施の形態1では、基点設定部11は、撮影画像における1以上の基点の座標値と、1以上の基点の各々に対応する基点水位値とを設定するとしたが、1個の基点の座標値と、当該1個の基点に対応する基点水位値とを設定するものであっても良い。ただし、水位算定部13にてより細かい水位の算定を可能とする観点から、基点設定部11は、複数個の基点の座標値と、当該複数個の基点の各々の基点水位値とを設定するのが好適である。 In the first embodiment, the base point setting unit 11 sets the coordinate values of one or more base points in the captured image and the base point water level values corresponding to each of the one or more base points. However, the coordinate values of one base point are set. And the base point water level value corresponding to the one base point may be set. However, from the viewpoint of enabling the water level calculation unit 13 to calculate a finer water level, the base point setting unit 11 sets the coordinate values of the plurality of base points and the base point water level values of the plurality of base points. Is preferable.
 実施の形態1では、画像識別部12による対象領域の形状は、識別用画像D1~D3のような領域としたが、四角形に限定されるものではなく、如何なる形状であっても良い。また、対象領域は基点の座標値を含むものであれば良く、対象領域における基点を配置する位置はその中心に限定されるものではない。例えば、対象領域は、基点がその隅部に配置されたものであっても良い。 In the first embodiment, the shape of the target area by the image identification unit 12 is a region such as the identification images D1 to D3, but the shape is not limited to the quadrangle and may be any shape. Further, the target area may include the coordinate values of the base points, and the position where the base points are arranged in the target area is not limited to the center thereof. For example, the target area may have a base point arranged at a corner thereof.
 ところで、上記した実施の形態に示した水位計測装置、水位計測方法および水位計測プログラムは一例に過ぎず、その発明の範囲内において、他の装置と組み合わせるなど実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 By the way, the water level measuring device, the water level measuring method, and the water level measuring program shown in the above-described embodiment are merely examples, and within the scope of the invention, modifications of any component of the embodiment such as combination with other devices. Alternatively, any component of the embodiment can be omitted.
 1 監視カメラ、 2 操作入力装置、 3 キーボード、
 4 マウス、 5 表示装置、 6 ディスプレイ、
 11 基点設定部、 12 画像識別部、 13 水位算定部、
 14 学習用画像生成部、 15 画像学習部、
 21 プロセッサ、 22 メモリ、 23 バス、
 30 撮影画像、 31 空、 32 山、 33 砂地、
 34 河川、 35 草地、 D1~D3 識別用画像例、
 100 水位計測装置。
1 Surveillance camera, 2 Operation input device, 3 Keyboard,
4 mouse, 5 display device, 6 display,
11 Basis point setting unit, 12 Image identification unit, 13 Water level calculation unit,
14 Image generation unit for learning, 15 Image learning unit,
21 processors, 22 memories, 23 buses,
30 captured images, 31 sky, 32 mountains, 33 sands,
34 rivers, 35 grasslands, D1 to D3 identification image examples,
100 Water level measuring device.

Claims (14)

  1.  画像識別に影響する周辺環境に応じた複数の水領域の画像、及び前記周辺環境に応じた複数の非水領域の画像に基づき、取得した撮影画像について予め定められた基点を含む領域の画像である識別用画像に対応する領域が前記水領域であるのか前記非水領域であるのかを識別する画像識別部と、

     前記画像識別部による識別結果と、前記基点に対応する基点水位値とに基づき、前記撮影画像における水位を算定する水位算定部と

    を備える水位計測装置。
    Based on the images of a plurality of water areas according to the surrounding environment that affect the image identification and the images of a plurality of non-water areas according to the surrounding environment, the acquired image is an image of a region including a predetermined base point. An image identification unit that identifies whether the region corresponding to a certain identification image is the water region or the non-water region,

    A water level calculation unit that calculates the water level in the captured image based on the identification result by the image identification unit and the base point water level value corresponding to the base point.

    A water level measuring device equipped with.
  2.  前記画像識別に影響する周辺環境とは、色の変化がある周辺環境である

    請求項1に記載の水位計測装置。
    The surrounding environment that affects the image identification is the surrounding environment in which the color changes.

    The water level measuring device according to claim 1.
  3.  前記色の変化とは、季節、時間、天気のうち少なくとも1つによる色の変化である

    請求項2に記載の水位計測装置。
    The color change is a color change due to at least one of season, time, and weather.

    The water level measuring device according to claim 2.
  4.  前記画像識別部は、前記識別用画像に対応する領域が前記水領域であるのか前記非水領域であるのかを識別することにより前記水領域と前記非水領域との境界線を決定する

    請求項1~3のいずれか1項に記載の水位計測装置。
    The image identification unit determines a boundary line between the water region and the non-water region by identifying whether the region corresponding to the identification image is the water region or the non-water region.

    The water level measuring device according to any one of claims 1 to 3.
  5.  前記識別結果に基づき、識別した前記識別用画像から前記周辺環境に応じた複数の水領域の画像と前記周辺環境に応じた複数の非水領域の画像の少なくとも一方を生成する基準用画像生成部

    を備える請求項1~4のいずれか1項に記載の水位計測装置。
    A reference image generation unit that generates at least one of a plurality of water region images according to the surrounding environment and a plurality of non-water region images according to the surrounding environment from the identified identification image based on the identification result.

    The water level measuring device according to any one of claims 1 to 4.
  6.  前記基準用画像生成部が生成した画像に基づき、前記水領域と前記非水領域との識別に係る機械学習を行う画像学習部

    を備える請求項5に記載の水位計測装置。
    An image learning unit that performs machine learning related to discrimination between the water region and the non-water region based on the image generated by the reference image generation unit.

    The water level measuring device according to claim 5.
  7.  前記基準用画像生成部は、前記識別結果に加え、前記水位算定部の水位算定結果から前記水領域と前記非水領域との境界線の変化を算定し、前記周辺環境に応じた複数の水領域の画像と前記周辺環境に応じた複数の非水領域の画像の少なくとも一方を、前記境界線の変化が第一の特定の条件を満たす領域または座標である学習用画像抽出用領域または学習用画像抽出用座標に対応する画像から生成する

    請求項6に記載の水位計測装置。
    In addition to the identification result, the reference image generation unit calculates a change in the boundary line between the water region and the non-water region from the water level calculation result of the water level calculation unit, and a plurality of waters according to the surrounding environment. For at least one of the image of the region and the image of a plurality of non-water regions according to the surrounding environment, the region or coordinates for which the change of the boundary line satisfies the first specific condition is the region or coordinates for learning image extraction or for learning. Generate from the image corresponding to the image extraction coordinates

    The water level measuring device according to claim 6.
  8.  前記第一の特定の条件とは、数時間から数日間継続して特定時間帯では前記識別結果が常に一定であるが、別時間帯では定期的または不定期に前記識別結果が入れ替わる場合、連続する一定時間内で連続的に前記水領域と前記非水領域との境界線の座標が変化する場合のうち少なくとも一方である

    請求項7に記載の水位計測装置。
    The first specific condition is continuous when the identification result is always constant in a specific time zone for several hours to several days, but the identification result is replaced regularly or irregularly in another time zone. At least one of the cases where the coordinates of the boundary line between the water region and the non-water region change continuously within a certain period of time.

    The water level measuring device according to claim 7.
  9.  前記基準用画像生成部は、前記学習用画像抽出用領域または前記学習用画像抽出用座標に対応する画像が、第二の特定の条件を満たす場合、前記周辺環境に応じた複数の水領域の画像あるいは前記周辺環境に応じた複数の非水領域の画像とする

    請求項7~8のいずれか1項に記載の水位計測装置。
    When the image for learning image extraction region or the image corresponding to the coordinates for image extraction for learning satisfies the second specific condition, the reference image generation unit may generate a plurality of water regions according to the surrounding environment. An image or an image of a plurality of non-water areas according to the surrounding environment.

    The water level measuring device according to any one of claims 7 to 8.
  10.  前記基準用画像生成部は、前記周辺環境に応じた複数の水領域の画像あるいは前記周辺環境に応じた複数の非水領域の画像が撮影された時間のその直前、一定期間前、直後、一定期間後、あるいはその複数の期間の前記水領域と前記非水領域との境界線の座標に基づき、中心座標が水領域であるのか非水領域であるのかを識別し、

     前記画像学習部は、前記中心座標が水領域であるのか非水領域であるのかの識別に基づき、前記水領域と前記非水領域との識別に係る機械学習を行う

    請求項9に記載の水位計測装置。
    The reference image generation unit is constant immediately before, immediately before, immediately after, and constant before the time when the image of the plurality of water regions corresponding to the surrounding environment or the image of the plurality of non-water regions corresponding to the surrounding environment is taken. After a period of time, or based on the coordinates of the boundary between the water area and the non-water area for a plurality of periods, it is possible to identify whether the center coordinate is the water area or the non-water area.

    The image learning unit performs machine learning related to the discrimination between the water region and the non-water region based on the identification of whether the center coordinates are the water region or the non-water region.

    The water level measuring device according to claim 9.
  11.  前記第二の特定の条件とは、連続する数時間から数日間の同時間帯での前記撮影画像での前記水位値の変化が閾値以下の場合、連続する数時間から数日間での前記水領域と前記非水領域との境界線の座標の変動が閾値以下の場合のうち少なくとも一方である

    請求項9~10のいずれか1項に記載の水位計測装置。
    The second specific condition is that when the change in the water level value in the captured image in the same time zone for several hours to several days is equal to or less than the threshold value, the water is taken for several hours to several days in a row. At least one of the cases where the fluctuation of the coordinates of the boundary line between the region and the non-water region is less than or equal to the threshold value.

    The water level measuring device according to any one of claims 9 to 10.
  12.  操作入力装置に入力された操作に応じて、前記基点の座標値と、前記基点に対応する基点水位値とを設定する基点設定部

    を備える請求項1~11のいずれか1項に記載の水位計測装置。
    Operation input unit A base point setting unit that sets the coordinate value of the base point and the base point water level value corresponding to the base point according to the operation input to the input device.

    The water level measuring device according to any one of claims 1 to 11.
  13.  画像識別に影響する周辺環境に応じた複数の水領域の画像、及び前記周辺環境に応じた複数の非水領域の画像に基づき、取得した撮影画像について予め定められた基点を含む領域の画像である識別用画像に対応する領域が前記水領域であるのか前記非水領域であるのかを識別するステップと、

     前記識別するステップの識別結果と、前記基点に対応する基点水位値とに基づき、前記撮影画像における水位を算定するステップと

    を有する水位計測方法。
    Based on the images of a plurality of water areas according to the surrounding environment that affect the image identification and the images of a plurality of non-water areas according to the surrounding environment, the acquired images are images of the area including a predetermined base point. A step of identifying whether the region corresponding to a certain identification image is the water region or the non-water region, and

    A step of calculating the water level in the captured image based on the identification result of the identification step and the base point water level value corresponding to the base point.

    Water level measurement method having.
  14.  画像識別に影響する周辺環境に応じた複数の水領域の画像、及び前記周辺環境に応じた複数の非水領域の画像に基づき、取得した撮影画像について予め定められた基点を含む領域の画像である識別用画像に対応する領域が前記水領域であるのか前記非水領域であるのかを識別する処理と、

     前記識別する処理による識別結果と、前記基点に対応する基点水位値とに基づき、前記撮影画像における水位を算定する処理と

    を実行させる水位計測プログラム。
    Based on the images of a plurality of water areas according to the surrounding environment that affect the image identification and the images of a plurality of non-water areas according to the surrounding environment, the acquired images are images of the area including a predetermined base point. A process of identifying whether the region corresponding to a certain identification image is the water region or the non-water region,

    A process of calculating the water level in the captured image based on the identification result of the identification process and the base point water level value corresponding to the base point.

    Water level measurement program to execute.
PCT/JP2019/011134 2019-03-18 2019-03-18 Water level measuring device, water level measuring method and water level measuring program WO2020188692A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/011134 WO2020188692A1 (en) 2019-03-18 2019-03-18 Water level measuring device, water level measuring method and water level measuring program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/011134 WO2020188692A1 (en) 2019-03-18 2019-03-18 Water level measuring device, water level measuring method and water level measuring program

Publications (1)

Publication Number Publication Date
WO2020188692A1 true WO2020188692A1 (en) 2020-09-24

Family

ID=72520623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011134 WO2020188692A1 (en) 2019-03-18 2019-03-18 Water level measuring device, water level measuring method and water level measuring program

Country Status (1)

Country Link
WO (1) WO2020188692A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754744A (en) * 2022-03-22 2022-07-15 贵州聚原数技术开发有限公司 Reservoir water level dynamic monitoring method based on computer image recognition
CN114812736A (en) * 2022-04-14 2022-07-29 山西长河科技股份有限公司 Water level monitoring method, device, terminal and storage medium
CN115345854A (en) * 2022-08-16 2022-11-15 中国水利水电科学研究院 Water level identification method based on multi-region search

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150248576A1 (en) * 2013-07-24 2015-09-03 Digitalglobe, Inc. Bathymetric techniques using satellite imagery
JP2018041406A (en) * 2016-09-09 2018-03-15 株式会社東芝 Water surface boundary detection device, water surface boundary detection method and computer program
WO2018092238A1 (en) * 2016-11-17 2018-05-24 三菱電機株式会社 Water level measurement device and water level measurement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150248576A1 (en) * 2013-07-24 2015-09-03 Digitalglobe, Inc. Bathymetric techniques using satellite imagery
JP2018041406A (en) * 2016-09-09 2018-03-15 株式会社東芝 Water surface boundary detection device, water surface boundary detection method and computer program
WO2018092238A1 (en) * 2016-11-17 2018-05-24 三菱電機株式会社 Water level measurement device and water level measurement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEC CORPORATION: "Non-official translation: Ibaraki University and NEC Launch Verification Testing of Flood Control Support Systems Utilizing AI Technology", 21 July 2017 (2017-07-21), Retrieved from the Internet <URL:https://jpn.nec.com/press/201707/20170721_02.html> [retrieved on 20190524] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754744A (en) * 2022-03-22 2022-07-15 贵州聚原数技术开发有限公司 Reservoir water level dynamic monitoring method based on computer image recognition
CN114754744B (en) * 2022-03-22 2022-10-28 贵州聚原数技术开发有限公司 Reservoir water level dynamic monitoring method based on computer image recognition
CN114812736A (en) * 2022-04-14 2022-07-29 山西长河科技股份有限公司 Water level monitoring method, device, terminal and storage medium
CN115345854A (en) * 2022-08-16 2022-11-15 中国水利水电科学研究院 Water level identification method based on multi-region search

Similar Documents

Publication Publication Date Title
WO2020188692A1 (en) Water level measuring device, water level measuring method and water level measuring program
JP6125137B1 (en) Water level measuring device and water level measuring method
US20210281748A1 (en) Information processing apparatus
JP7319432B2 (en) LEARNING DATA COLLECTION DEVICE, LEARNING DATA COLLECTION METHOD, AND PROGRAM
JP6370321B2 (en) Water level measuring device
JP6776070B2 (en) Water surface boundary detection device, water surface boundary detection method and computer program
JP6960168B2 (en) Local information assimilation equipment and methods and programs for real-time flood hazard mapping
JP7074182B2 (en) Area determination device, monitoring system, area determination method, and computer program
JP2018128265A (en) Server device, distinction program and distinction system
CN111220235B (en) Water level monitoring method and device
JP2005346664A (en) Coastline extraction method and coastline extraction system
CN113298867A (en) Accurate positioning method and device for ground object target position based on line matching and storage medium
JP2007206843A (en) Method and device for counting moving body underwater or on water surface and its program
JP2005149035A (en) Flood monitoring device
CN105844671B (en) A kind of fast background relief method under the conditions of change illumination
TWI465699B (en) Method of water level measurement
JP2021189029A (en) River water flow measuring device, method and program, and recording medium
CN113129307A (en) Image segmentation method and image segmentation device
CN112801370B (en) Water and soil loss prediction method, device, equipment and storage medium
Spasojević et al. Sky luminance mapping for computational daylight modeling
CN113297344B (en) Three-dimensional remote sensing image-based ground linear matching method and device and ground object target position positioning method
WO2020261634A1 (en) Boundary line detection device and water level measurement device
JP7378278B2 (en) Water level measuring device
CN117112091B (en) Digital twinning-based water condition and dam safety monitoring system and model decoupling method
CN117197757B (en) Method, system and electronic equipment for monitoring intrusion of forbidden zone of transformer substation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP