WO2020188659A1 - Industrial robot - Google Patents

Industrial robot Download PDF

Info

Publication number
WO2020188659A1
WO2020188659A1 PCT/JP2019/010974 JP2019010974W WO2020188659A1 WO 2020188659 A1 WO2020188659 A1 WO 2020188659A1 JP 2019010974 W JP2019010974 W JP 2019010974W WO 2020188659 A1 WO2020188659 A1 WO 2020188659A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
flight
bush
industrial robot
robot
Prior art date
Application number
PCT/JP2019/010974
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 津田
遊野 塚本
圭祐 松村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020564967A priority Critical patent/JP6843317B2/en
Priority to CN201980093855.4A priority patent/CN113557109A/en
Priority to PCT/JP2019/010974 priority patent/WO2020188659A1/en
Publication of WO2020188659A1 publication Critical patent/WO2020188659A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the present invention relates to an industrial robot equipped with an arm.
  • Industrial robots have joints and are equipped with bendable and stretchable arms. The arm is covered with a cover.
  • industrial robots with a waterproof and dustproof structure that can operate even in an oil mist environment where cutting oil is scattered are used.
  • members requiring protection such as a substrate and a connector are scattered inside the robot, so that the entire robot needs to have a waterproof and dustproof structure.
  • Patent Document 1 a housing having a waterproof and dustproof function is attached to a connector base portion, a cable connection connector and a lead wire peeling portion are housed in the housing, and a power supply cable connection connector and a cable passing through the inside of the robot are housed in the housing.
  • An industrial robot having a connector and having a waterproof treatment in the gap with the outside is disclosed.
  • the industrial robot disclosed in Patent Document 1 since the in-flight cable is routed into the housing through the connection union, the in-flight cable greatly overhangs inside the machine at the portion where the in-flight cable penetrates the housing. Therefore, the industrial robot disclosed in Patent Document 1 can increase the productivity, but it is difficult to reduce the size.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an industrial robot having high productivity, waterproof and dustproof functions, and capable of miniaturization.
  • the present invention has a base portion provided with a protective box for accommodating a control board, and a wrist portion having joints extending from the base portion and to which an end effector is mounted.
  • Is provided at the tip of the arm which is installed inside the arm to drive the joints to bend and extend the arm and change the posture of the wrist part, and is pulled out from the protective box.
  • It is provided with an in-flight cable that is routed inside the arm and connected to the motor, and a cable bush that is press-fitted into the in-flight cable hole that pulls out the in-flight cable from the protection box.
  • the cable bush is made of an elastic material and has a cable hole in which an in-flight cable is arranged. The cable hole is smaller than the outer diameter of the in-flight cable when the in-flight cable is not arranged.
  • the industrial robot according to the present invention has the effects of high productivity, waterproof and dustproof functions, and miniaturization.
  • Cross-sectional view of the robot according to the first embodiment Enlarged view of the robot protection box according to the first embodiment
  • FIG. 1 is a perspective view showing a configuration of a robot according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the robot according to the first embodiment.
  • the robot 100 which is an industrial robot, has a base portion 1 and an arm 2 extending from the base portion 1.
  • the base portion 1 includes a motor accommodating portion 19 accommodating a motor 41 that swivels the entire arm 2 and a protection box 11.
  • the arm 2 has a joint 21 and can be bent and stretched.
  • a wrist portion 3 to which an end effector such as a hand for loading and unloading the work is mounted is provided.
  • the end effector attached to the wrist portion 3 is not limited to the hand, but is a rotary tool that rotates the blade to perform processing such as deburring, and sprays paint or the like on the work to form a coating film on the surface of the work. It may be a spray gun or a dispenser that applies a sealant or the like to the work.
  • the end effector attached to the wrist portion 3 may be other than those illustrated.
  • the arm 2 is provided with a motor 42 that drives the joint 21 to bend and stretch the arm 2 and a motor 43 that drives the joint 21 to change the posture of the wrist unit 3.
  • FIG. 2 shows only a part of a plurality of motors included in the robot 100.
  • the protection box 11 contains a control board 7 on which a control circuit for controlling the motors 41, 42, 43 is formed.
  • the motors 41, 42, 43 and the control board 7 are connected by an in-machine cable 5.
  • the in-flight cable 5 is a multi-cable including a signal line 51 and a power supply line 52.
  • the in-flight cable 5 is not provided with a relay connector between the motors 41, 42, 43 and the control board 7.
  • the base portion 1 is connected to the robot controller 9 through an inter-device cable 6.
  • FIG. 3 is an enlarged view of the robot protection box according to the first embodiment.
  • the control board 7 is mounted with an external connector 76 to which the signal line 61 of the inter-device cable 6 is connected and an internal connector 75 to which the signal line 51 of the in-flight cable 5 is connected.
  • the device-to-device cable 6 is a multi-cable including a signal line 61 and a power supply line 62.
  • the signal line 61 of the inter-device cable 6 and the signal line 51 of the in-flight cable 5 are connected via a control circuit formed on the control board 7.
  • a relay connector 8 for connecting the power supply line 62 of the inter-device cable 6 and the power supply line 52 of the in-flight cable 5 is housed.
  • the protection box 11 is composed of a main body 12 having an opening 121 formed therein and a lid 13 for closing the opening 121.
  • a packing 14 is installed between the edge of the opening 121 and the lid 13, so that the opening 121 is waterproof and dustproof.
  • the lid 13 is formed with an inter-device cable hole 131 through which the inter-device cable 6 is passed.
  • a connection union 132 is installed in the inter-device cable hole 131.
  • a tubular packing 133 is installed inside the connection union 132, and the packing 133 is in close contact with the inter-device cable 6. Therefore, the waterproof and dustproof property in the cable hole 131 between devices is ensured.
  • the protection box 11 is formed with an in-flight cable hole 111 through which the in-flight cable 5 is passed in the motor accommodating portion 19.
  • a cable bush 112 is installed in the in-flight cable hole 111.
  • FIG. 4 is a diagram showing a configuration of a cable bush of the robot according to the first embodiment.
  • the cable bush 112 has a disk shape made of an elastic material such as an elastomer, and has a plurality of cable holes 113 through which the in-flight cable 5 is passed.
  • the cable hole 113 is smaller than the outer diameter of the in-flight cable 5 when the in-flight cable 5 is not arranged.
  • the side wall of the cable hole 113 is in close contact with the in-flight cable 5, and the waterproof and dustproof property of the cable hole 113 is ensured.
  • the cable bush 112 has a structure in which a cable hole 113 is formed in a plate-shaped elastomer, the thickness dimension is smaller than that of the connecting union. Therefore, the size of the in-flight cable 5 protruding into the protection box 11 or the motor accommodating portion 19 can be reduced in the portion through which the in-machine cable hole 111 is passed. Therefore, in the robot 100 according to the first embodiment, the protection box 11 and the motor accommodating portion 19 can be made smaller, and the size can be reduced. Further, since the cable bush 112 has a structure in which a cable hole 113 is formed in a plate-shaped elastomer, high-precision processing is not required.
  • both the part where the signal line 51 of the in-flight cable 5 is pulled out from the protection box 11 and the part where the power line 52 is pulled out from the protection box 11 can be made waterproof and dustproof by one cable bush 112, it is assembled. The increase in man-hours can be suppressed. Therefore, the robot 100 according to the first embodiment has high productivity. Further, there is a gap between the part where the signal line 51 of the in-flight cable 5 is pulled out from the protection box 11 to have waterproof and dustproof properties and the part where the power line 52 is pulled out from the protection box 11 to have waterproof and dustproof properties. Since it is not necessary, the opening area of the in-flight cable hole 111 can be reduced.
  • the relay connector 8 that connects the power supply line 62 of the inter-device cable 6 and the power supply line 52 of the in-flight cable 5 is housed in the protection box 11. Therefore, waterproof and dustproof properties are ensured at the connection portion between the power supply line 62 of the inter-device cable 6 and the power supply line 52 of the in-flight cable 5. Further, since there is no relay connector between the motors 41, 42, 43 and the control board 7, it is not necessary to provide a waterproof and dustproof structure at the joint 21 portion.
  • FIG. 5 is a diagram showing a configuration of a cable bush of the robot according to the second embodiment of the present invention.
  • the cable bush 112 of the robot 100 according to the second embodiment is formed with slits 114 connected to each cable hole 113 from the outer edge portion.
  • the cable bush 112 of the robot 100 can arrange the in-flight cable 5 in the cable hole 113 after connecting the end of the in-flight cable 5 to the connector, the operation of connecting the connector in the protection box 11 It is possible to improve the workability of maintenance such as the property and replacement of the cable bush 112.
  • Embodiment 3 The structure of the robot 100 according to the third embodiment of the present invention is the same as that of the robot 100 according to the first embodiment, but the structure of the cable bush 112 is different.
  • FIG. 6 is a diagram showing a configuration of a cable bush of the robot according to the third embodiment of the present invention.
  • the cable bush 112 of the robot 100 according to the third embodiment has a rectangular plate shape with rounded corners and chamfers, and cable holes 113 are arranged in series along the long sides.
  • each part along the longitudinal direction is compressed and deformed in the lateral direction as a whole, so that the cable is deformed.
  • a gap is unlikely to occur between the bush 112 and the main body 12 of the protective box 11, and waterproof and dustproof properties can be improved.
  • Embodiment 4 The structure of the robot 100 according to the fourth embodiment of the present invention is the same as that of the robot 100 according to the first embodiment, but the structure of the cable bush 112 is different.
  • FIG. 7 is a diagram showing a configuration of a cable bush of the robot according to the fourth embodiment of the present invention.
  • the cable bush 112 of the robot 100 according to the fourth embodiment has a rectangular plate shape with rounded corners and chamfers, and cable holes 113 are arranged in series along the long sides.
  • the cable bush 112 of the robot 100 according to the fourth embodiment is formed with slits 114 connected to each cable hole 113 from the edge portion.
  • the cable bush 112 of the robot 100 can arrange the in-flight cable 5 in the cable hole 113 after connecting the end of the in-flight cable 5 to the connector, the work of connecting the connector in the protection box 11 It is possible to improve the workability of maintenance such as the property and replacement of the cable bush 112.
  • Embodiment 5 The structure of the robot 100 according to the fifth embodiment of the present invention is the same as that of the robot 100 according to the first embodiment, but the structure of the cable bush 112 is different.
  • FIG. 8 is a diagram showing a configuration of a cable bush of the robot according to the fifth embodiment of the present invention.
  • the cable bush 112 of the robot 100 according to the fifth embodiment has a rectangular plate shape with rounded four corners and chamfered, and cable holes 113 are arranged in series along a long side.
  • the cable bush 112 of the robot 100 according to the fifth embodiment is formed with a slit 114 for connecting the cable holes 113 to each other.
  • the cable bush 112 of the robot 100 according to the fifth embodiment When the cable bush 112 of the robot 100 according to the fifth embodiment is fitted to the main body 12 of the protective box 11, the cable bush 112 is deformed so as to close the slit 114, so that the waterproof and dustproof property can be improved. .. Further, since the cable bush 112 can be made into a state in which a large-diameter opening is formed by widening a plurality of cable holes 113 connected by the slit 114, the connector is attached to the end of the in-flight cable 5. Even if there is, the in-flight cable 5 can be arranged in the cable hole 113.
  • Embodiment 6 The structure of the robot 100 according to the sixth embodiment of the present invention is the same as that of the robot 100 according to the first embodiment, but the structure of the cable bush 112 is different.
  • FIG. 9 is a diagram showing a configuration of a cable bush of the robot according to the sixth embodiment of the present invention.
  • the cable bush 112 of the robot 100 according to the sixth embodiment has a tapered surface on a side surface, and is narrower toward the insertion side of the protective box 11 into the main body 12. That is, the cable bush 112 of the robot 100 according to the sixth embodiment has a tapered shape in which the area on the tip side in the insertion direction into the in-machine cable hole 111 is small.
  • the cable hole 113 may be a straight hole or a tapered hole having the same inclination as the side surface of the cable bush 112.
  • the cable bush 112 of the robot 100 according to the sixth embodiment can easily set the crushing allowance of the elastomer when it is inserted into the main body 12 of the protective box 11. Further, the work of inserting the cable bush 112 into the in-machine cable hole 111 is easy.
  • Embodiment 7 The structure of the robot 100 according to the seventh embodiment of the present invention is the same as that of the robot 100 according to the first embodiment, but the structure of the cable bush 112 is different.
  • FIG. 10 is a diagram showing a configuration of a cable bush of a robot according to a seventh embodiment of the present invention.
  • the cable hole 113 has an elliptical shape.
  • the major axis direction of the cable hole 113 is the lateral direction of the cable bush 112, and the minor axis direction of the cable hole 113 is the longitudinal direction of the cable bush 112.
  • the robot 100 according to the seventh embodiment can improve the waterproof and dustproof property of the protective box 11.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

An industrial robot includes a base part provided with a protection box (11) housing a control board (7); a bendable and extendable arm including a joint, extending from the base part, and provided with a wrist part equipped with an end effector on an end of the arm; a plurality of motors installed inside the arm that drive the joint and perform bending and extending of the arm and changing of an orientation of the wrist part; an internal cable (5) that extends out from inside the protection box (11), is routed inside the arm, and is connected to the motors; and a cable bushing (112) press fitted in an internal cable hole (111) through which the internal cable (5) extends out from the protection box (11), wherein the cable bushing (112) is formed of an elastic material and is formed with a cable hole (113) in which the internal cable (5) is disposed, and the cable hole (113) is smaller than an outer diameter of the internal cable (5) in a state when the internal cable (5) is not disposed.

Description

産業用ロボットIndustrial robot
 本発明は、アームを備えた産業用ロボットに関する。 The present invention relates to an industrial robot equipped with an arm.
 産業用ロボットは、関節を有し曲げ伸ばし可能なアームを備えている。アームは、カバーで覆われる。工作機械へのワークのロード及びアンロードといった用途には、切削油が飛散するオイルミスト環境下でも動作可能な防水防塵構造の産業用ロボットが使用されている。産業用ロボットは、基板及びコネクタといった保護を必要とする部材がロボット内部に点在していたため、ロボット全体を防水防塵構造とする必要があった。 Industrial robots have joints and are equipped with bendable and stretchable arms. The arm is covered with a cover. For applications such as loading and unloading workpieces on machine tools, industrial robots with a waterproof and dustproof structure that can operate even in an oil mist environment where cutting oil is scattered are used. In an industrial robot, members requiring protection such as a substrate and a connector are scattered inside the robot, so that the entire robot needs to have a waterproof and dustproof structure.
 ロボット全体を防水防塵構造とするためには、全ての関節部にオイルシール又はVシールが必要であり、かつ全てのカバー部にOリング又はガスケットが必要になる。したがって、ロボット全体を防水防塵構造にすると、部品点数が増えてしまう。また、ロボット筐体のオイルシール又はOリングの取り付け部は、高硬度の材料に高い寸法精度及び細かい面粗度の加工を施す必要があり、生産性が低下してしまう。 In order to make the entire robot waterproof and dustproof, oil seals or V seals are required for all joints, and O-rings or gaskets are required for all covers. Therefore, if the entire robot has a waterproof and dustproof structure, the number of parts will increase. In addition, the oil seal or O-ring attachment portion of the robot housing needs to be processed with high dimensional accuracy and fine surface roughness on a high-hardness material, which reduces productivity.
 特許文献1には、コネクタベース部に防水防塵機能付きの筐体を取り付け、筐体内にケーブル接続コネクタ及びリード線皮むき部を収容し、筐体に給電ケーブル接続コネクタ及びロボット内部へ通るケーブルのコネクタを持たせ、外部との隙間に防水処理を施した産業用ロボットが開示されている。 In Patent Document 1, a housing having a waterproof and dustproof function is attached to a connector base portion, a cable connection connector and a lead wire peeling portion are housed in the housing, and a power supply cable connection connector and a cable passing through the inside of the robot are housed in the housing. An industrial robot having a connector and having a waterproof treatment in the gap with the outside is disclosed.
特開2007-044767号公報JP-A-2007-044767
 しかしながら、特許文献1に開示される産業用ロボットは、接続ユニオンを通じて機内ケーブルを筐体内に引き回しているため、機内ケーブルが筐体を貫通する部分において機内ケーブルが機内側に大きく張り出してしまう。したがって、特許文献1に開示される産業用ロボットは、生産性を高めることはできるが小型化が困難であった。 However, in the industrial robot disclosed in Patent Document 1, since the in-flight cable is routed into the housing through the connection union, the in-flight cable greatly overhangs inside the machine at the portion where the in-flight cable penetrates the housing. Therefore, the industrial robot disclosed in Patent Document 1 can increase the productivity, but it is difficult to reduce the size.
 本発明は、上記に鑑みてなされたものであって、生産性が高く、防水防塵機能を備え、小型化が可能な産業用ロボットを得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain an industrial robot having high productivity, waterproof and dustproof functions, and capable of miniaturization.
 上述した課題を解決し、目的を達成するために、本発明は、制御基板を収容する保護ボックスを備えたベース部と、関節を有し、ベース部から延び、エンドエフェクタが装着されるリスト部が先端に設けられた曲げ伸ばし可能なアームと、アームの内部に設置されて関節を駆動してアームの曲げ伸ばしとリスト部の姿勢の変更とを行う複数のモータと、保護ボックス内から引き出され、アームの内部を引き回してモータに接続された機内ケーブルと、保護ボックスのうち機内ケーブルを引き出す機内ケーブル穴に圧入されるケーブルブッシュとを備える。ケーブルブッシュは、弾性材料で形成され、機内ケーブルが配置されるケーブル穴が形成されている。ケーブル穴は、機内ケーブルが配置されていない状態では、機内ケーブルの外径よりも小さい。 In order to solve the above-mentioned problems and achieve the object, the present invention has a base portion provided with a protective box for accommodating a control board, and a wrist portion having joints extending from the base portion and to which an end effector is mounted. Is provided at the tip of the arm, which is installed inside the arm to drive the joints to bend and extend the arm and change the posture of the wrist part, and is pulled out from the protective box. It is provided with an in-flight cable that is routed inside the arm and connected to the motor, and a cable bush that is press-fitted into the in-flight cable hole that pulls out the in-flight cable from the protection box. The cable bush is made of an elastic material and has a cable hole in which an in-flight cable is arranged. The cable hole is smaller than the outer diameter of the in-flight cable when the in-flight cable is not arranged.
 本発明に係る産業用ロボットは、生産性が高く、防水防塵機能を備え、小型化が可能であるという効果を奏する。 The industrial robot according to the present invention has the effects of high productivity, waterproof and dustproof functions, and miniaturization.
本発明の実施の形態1に係るロボットの構成を示す斜視図A perspective view showing the configuration of the robot according to the first embodiment of the present invention. 実施の形態1に係るロボットの断面図Cross-sectional view of the robot according to the first embodiment 実施の形態1に係るロボットの保護ボックスの拡大図Enlarged view of the robot protection box according to the first embodiment 実施の形態1に係るロボットのケーブルブッシュの構成を示す図The figure which shows the structure of the cable bush of the robot which concerns on Embodiment 1. 本発明の実施の形態2に係るロボットのケーブルブッシュの構成を示す図The figure which shows the structure of the cable bush of the robot which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るロボットのケーブルブッシュの構成を示す図The figure which shows the structure of the cable bush of the robot which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係るロボットのケーブルブッシュの構成を示す図The figure which shows the structure of the cable bush of the robot which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係るロボットのケーブルブッシュの構成を示す図The figure which shows the structure of the cable bush of the robot which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係るロボットのケーブルブッシュの構成を示す図The figure which shows the structure of the cable bush of the robot which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係るロボットのケーブルブッシュの構成を示す図The figure which shows the structure of the cable bush of the robot which concerns on Embodiment 7 of this invention.
 以下に、本発明の実施の形態に係る産業用ロボットを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The industrial robot according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1に係るロボットの構成を示す斜視図である。図2は、実施の形態1に係るロボットの断面図である。産業用ロボットであるロボット100は、ベース部1と、ベース部1から延びるアーム2とを有する。
Embodiment 1.
FIG. 1 is a perspective view showing a configuration of a robot according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of the robot according to the first embodiment. The robot 100, which is an industrial robot, has a base portion 1 and an arm 2 extending from the base portion 1.
 ベース部1は、アーム2全体を旋回させるモータ41を収容するモータ収容部19と保護ボックス11とを備えている。アーム2は、関節21を有しており、曲げ伸ばし可能である。アーム2の先端には、ワークをロード及びアンロードするハンドといったエンドエフェクタが装着されるリスト部3が設けられている。リスト部3に装着されるエンドエフェクタは、ハンドに限定されることはなく、刃物を回転させてばり取りといった加工を行う回転工具、ワークに塗料などを吹き付けてワークの表面に塗膜を形成するスプレーガン、又はワークにシール剤などを塗布するディスペンサであってもよい。リスト部3に装着されるエンドエフェクタは、例示したもの以外であってもよい。アーム2には、関節21を駆動してアーム2の曲げ伸ばしを行うモータ42及び関節21を駆動してリスト部3の姿勢の変更を行うモータ43が設置されている。なお、図面が煩雑になることを避けるために、図2には、ロボット100が有する複数のモータの一部のみを図示している。 The base portion 1 includes a motor accommodating portion 19 accommodating a motor 41 that swivels the entire arm 2 and a protection box 11. The arm 2 has a joint 21 and can be bent and stretched. At the tip of the arm 2, a wrist portion 3 to which an end effector such as a hand for loading and unloading the work is mounted is provided. The end effector attached to the wrist portion 3 is not limited to the hand, but is a rotary tool that rotates the blade to perform processing such as deburring, and sprays paint or the like on the work to form a coating film on the surface of the work. It may be a spray gun or a dispenser that applies a sealant or the like to the work. The end effector attached to the wrist portion 3 may be other than those illustrated. The arm 2 is provided with a motor 42 that drives the joint 21 to bend and stretch the arm 2 and a motor 43 that drives the joint 21 to change the posture of the wrist unit 3. In order to avoid complicating the drawings, FIG. 2 shows only a part of a plurality of motors included in the robot 100.
 保護ボックス11には、モータ41,42,43を制御する制御回路が形成された制御基板7が収容されている。モータ41,42,43と制御基板7とは、機内ケーブル5で接続されている。機内ケーブル5は、信号線51と電源線52とを含むマルチケーブルである。機内ケーブル5は、モータ41,42,43と制御基板7との間には中継コネクタが設けられていない。ベース部1は、機器間ケーブル6を通じてロボットコントローラ9と接続されている。 The protection box 11 contains a control board 7 on which a control circuit for controlling the motors 41, 42, 43 is formed. The motors 41, 42, 43 and the control board 7 are connected by an in-machine cable 5. The in-flight cable 5 is a multi-cable including a signal line 51 and a power supply line 52. The in-flight cable 5 is not provided with a relay connector between the motors 41, 42, 43 and the control board 7. The base portion 1 is connected to the robot controller 9 through an inter-device cable 6.
 図3は、実施の形態1に係るロボットの保護ボックスの拡大図である。制御基板7には、機器間ケーブル6の信号線61が接続される外部接続コネクタ76と、機内ケーブル5の信号線51が接続される内部接続コネクタ75とが実装されている。機器間ケーブル6は、信号線61と電源線62とを含むマルチケーブルである。機器間ケーブル6の信号線61と機内ケーブル5の信号線51とは、制御基板7に形成されている制御回路を介して接続されている。また、保護ボックス11内には、機器間ケーブル6の電源線62と、機内ケーブル5の電源線52とを接続する中継コネクタ8が収容されている。 FIG. 3 is an enlarged view of the robot protection box according to the first embodiment. The control board 7 is mounted with an external connector 76 to which the signal line 61 of the inter-device cable 6 is connected and an internal connector 75 to which the signal line 51 of the in-flight cable 5 is connected. The device-to-device cable 6 is a multi-cable including a signal line 61 and a power supply line 62. The signal line 61 of the inter-device cable 6 and the signal line 51 of the in-flight cable 5 are connected via a control circuit formed on the control board 7. Further, in the protection box 11, a relay connector 8 for connecting the power supply line 62 of the inter-device cable 6 and the power supply line 52 of the in-flight cable 5 is housed.
 保護ボックス11は、開口部121が形成された本体12と、開口部121を塞ぐ蓋13とで構成されている。開口部121の縁と蓋13との間にはパッキン14が設置されており、開口部121における防水防塵性が確保されている。蓋13を開けることにより保護ボックス11内への制御基板7の設置作業及び保護ボックス11内でのコネクタの接続作業を行うことができる。 The protection box 11 is composed of a main body 12 having an opening 121 formed therein and a lid 13 for closing the opening 121. A packing 14 is installed between the edge of the opening 121 and the lid 13, so that the opening 121 is waterproof and dustproof. By opening the lid 13, the control board 7 can be installed in the protective box 11 and the connector can be connected in the protective box 11.
 蓋13には、機器間ケーブル6を通す機器間ケーブル穴131が形成されている。機器間ケーブル穴131には、接続ユニオン132が設置されている。接続ユニオン132の内側には筒状のパッキン133が設置されており、機器間ケーブル6にパッキン133が密着している。このため、機器間ケーブル穴131における防水防塵性が確保されている。 The lid 13 is formed with an inter-device cable hole 131 through which the inter-device cable 6 is passed. A connection union 132 is installed in the inter-device cable hole 131. A tubular packing 133 is installed inside the connection union 132, and the packing 133 is in close contact with the inter-device cable 6. Therefore, the waterproof and dustproof property in the cable hole 131 between devices is ensured.
 保護ボックス11は、モータ収容部19に機内ケーブル5を通す機内ケーブル穴111が形成されている。機内ケーブル穴111には、ケーブルブッシュ112が設置されている。図4は、実施の形態1に係るロボットのケーブルブッシュの構成を示す図である。ケーブルブッシュ112は、エラストマーといった弾性材料で形成された円板状であり、機内ケーブル5を通すケーブル穴113が複数開けられている。ケーブル穴113は、機内ケーブル5が配置されていない状態では、機内ケーブル5の外径よりも小さい。ケーブル穴113の側壁は機内ケーブル5に密着しており、ケーブル穴113における防水防塵性が確保されている。 The protection box 11 is formed with an in-flight cable hole 111 through which the in-flight cable 5 is passed in the motor accommodating portion 19. A cable bush 112 is installed in the in-flight cable hole 111. FIG. 4 is a diagram showing a configuration of a cable bush of the robot according to the first embodiment. The cable bush 112 has a disk shape made of an elastic material such as an elastomer, and has a plurality of cable holes 113 through which the in-flight cable 5 is passed. The cable hole 113 is smaller than the outer diameter of the in-flight cable 5 when the in-flight cable 5 is not arranged. The side wall of the cable hole 113 is in close contact with the in-flight cable 5, and the waterproof and dustproof property of the cable hole 113 is ensured.
 ケーブルブッシュ112は、板状のエラストマーにケーブル穴113を開けた構造であるため、接続ユニオンと比べると厚さ寸法が小さい。このため、機内ケーブル穴111を通過させる部分において、保護ボックス11内又はモータ収容部19内に張り出す機内ケーブル5の寸法を小さくできる。したがって、実施の形態1に係るロボット100は、保護ボックス11及びモータ収容部19を小さくすることができ、小型化が可能である。また、ケーブルブッシュ112は、板状のエラストマーにケーブル穴113を開けた構造であるため、高精度の加工は必要とされない。さらに、機内ケーブル5の信号線51を保護ボックス11から引き出す部分と電源線52を保護ボックス11から引き出す部分との両方に、一つのケーブルブッシュ112で防水防塵性を持たせることができるため、組み立て工数の増加を抑えられる。したがって、実施の形態1に係るロボット100は、生産性が高い。また、機内ケーブル5の信号線51を保護ボックス11から引き出す部分に防水防塵性を持たせる部品と電源線52を保護ボックス11から引き出す部分に防水防塵性を持たせる部品との間に隙間を空ける必要が無いため、機内ケーブル穴111の開口面積を小さくすることができる。また、機器間ケーブル6の電源線62と機内ケーブル5の電源線52とを接続する中継コネクタ8は保護ボックス11内に収まっている。したがって、機器間ケーブル6の電源線62と機内ケーブル5の電源線52との接続部分での防水防塵性が確保されている。また、モータ41,42,43と制御基板7との間に中継コネクタが存在しないため、関節21の部分に防水防塵構造を設ける必要がない。 Since the cable bush 112 has a structure in which a cable hole 113 is formed in a plate-shaped elastomer, the thickness dimension is smaller than that of the connecting union. Therefore, the size of the in-flight cable 5 protruding into the protection box 11 or the motor accommodating portion 19 can be reduced in the portion through which the in-machine cable hole 111 is passed. Therefore, in the robot 100 according to the first embodiment, the protection box 11 and the motor accommodating portion 19 can be made smaller, and the size can be reduced. Further, since the cable bush 112 has a structure in which a cable hole 113 is formed in a plate-shaped elastomer, high-precision processing is not required. Further, since both the part where the signal line 51 of the in-flight cable 5 is pulled out from the protection box 11 and the part where the power line 52 is pulled out from the protection box 11 can be made waterproof and dustproof by one cable bush 112, it is assembled. The increase in man-hours can be suppressed. Therefore, the robot 100 according to the first embodiment has high productivity. Further, there is a gap between the part where the signal line 51 of the in-flight cable 5 is pulled out from the protection box 11 to have waterproof and dustproof properties and the part where the power line 52 is pulled out from the protection box 11 to have waterproof and dustproof properties. Since it is not necessary, the opening area of the in-flight cable hole 111 can be reduced. Further, the relay connector 8 that connects the power supply line 62 of the inter-device cable 6 and the power supply line 52 of the in-flight cable 5 is housed in the protection box 11. Therefore, waterproof and dustproof properties are ensured at the connection portion between the power supply line 62 of the inter-device cable 6 and the power supply line 52 of the in-flight cable 5. Further, since there is no relay connector between the motors 41, 42, 43 and the control board 7, it is not necessary to provide a waterproof and dustproof structure at the joint 21 portion.
実施の形態2.
 本発明の実施の形態2に係るロボット100の構造は、実施の形態1に係るロボット100と同様であるが、ケーブルブッシュ112の構造が異なっている。図5は、本発明の実施の形態2に係るロボットのケーブルブッシュの構成を示す図である。実施の形態2に係るロボット100のケーブルブッシュ112は、外縁部から各ケーブル穴113につながるスリット114が形成されている。
Embodiment 2.
The structure of the robot 100 according to the second embodiment of the present invention is the same as that of the robot 100 according to the first embodiment, but the structure of the cable bush 112 is different. FIG. 5 is a diagram showing a configuration of a cable bush of the robot according to the second embodiment of the present invention. The cable bush 112 of the robot 100 according to the second embodiment is formed with slits 114 connected to each cable hole 113 from the outer edge portion.
 実施の形態2に係るロボット100のケーブルブッシュ112は、機内ケーブル5の端部をコネクタに接続した後でケーブル穴113に機内ケーブル5を配置できるため、保護ボックス11内でのコネクタ接続作業の作業性及びケーブルブッシュ112の交換といったメンテナンスの作業性を高めることができる。 Since the cable bush 112 of the robot 100 according to the second embodiment can arrange the in-flight cable 5 in the cable hole 113 after connecting the end of the in-flight cable 5 to the connector, the operation of connecting the connector in the protection box 11 It is possible to improve the workability of maintenance such as the property and replacement of the cable bush 112.
実施の形態3.
 本発明の実施の形態3に係るロボット100の構造は、実施の形態1に係るロボット100と同様であるが、ケーブルブッシュ112の構造が異なっている。図6は、本発明の実施の形態3に係るロボットのケーブルブッシュの構成を示す図である。実施の形態3に係るロボット100のケーブルブッシュ112は、四隅が丸め面取りされた長方形の板状であり、長辺に沿ってケーブル穴113が直列に配列されている。
Embodiment 3.
The structure of the robot 100 according to the third embodiment of the present invention is the same as that of the robot 100 according to the first embodiment, but the structure of the cable bush 112 is different. FIG. 6 is a diagram showing a configuration of a cable bush of the robot according to the third embodiment of the present invention. The cable bush 112 of the robot 100 according to the third embodiment has a rectangular plate shape with rounded corners and chamfers, and cable holes 113 are arranged in series along the long sides.
 実施の形態3に係るロボット100のケーブルブッシュ112は、保護ボックス11の本体12に嵌合させた際に、長手方向に沿った各部が全体的に短手方向に圧縮されて変形するため、ケーブルブッシュ112と保護ボックス11の本体12との間に隙間が生じにくく、防水防塵性を高めることができる。 When the cable bush 112 of the robot 100 according to the third embodiment is fitted to the main body 12 of the protective box 11, each part along the longitudinal direction is compressed and deformed in the lateral direction as a whole, so that the cable is deformed. A gap is unlikely to occur between the bush 112 and the main body 12 of the protective box 11, and waterproof and dustproof properties can be improved.
実施の形態4.
 本発明の実施の形態4に係るロボット100の構造は、実施の形態1に係るロボット100と同様であるが、ケーブルブッシュ112の構造が異なっている。図7は、本発明の実施の形態4に係るロボットのケーブルブッシュの構成を示す図である。実施の形態4に係るロボット100のケーブルブッシュ112は、四隅が丸め面取りされた長方形の板状であり、長辺に沿ってケーブル穴113が直列に配列されている。実施の形態4に係るロボット100のケーブルブッシュ112は、縁部から各ケーブル穴113につながるスリット114が形成されている。
Embodiment 4.
The structure of the robot 100 according to the fourth embodiment of the present invention is the same as that of the robot 100 according to the first embodiment, but the structure of the cable bush 112 is different. FIG. 7 is a diagram showing a configuration of a cable bush of the robot according to the fourth embodiment of the present invention. The cable bush 112 of the robot 100 according to the fourth embodiment has a rectangular plate shape with rounded corners and chamfers, and cable holes 113 are arranged in series along the long sides. The cable bush 112 of the robot 100 according to the fourth embodiment is formed with slits 114 connected to each cable hole 113 from the edge portion.
 実施の形態4に係るロボット100のケーブルブッシュ112は、機内ケーブル5の端部をコネクタに接続した後でケーブル穴113に機内ケーブル5を配置できるため、保護ボックス11内でのコネクタ接続作業の作業性及びケーブルブッシュ112の交換といったメンテナンスの作業性が高めることができる。 Since the cable bush 112 of the robot 100 according to the fourth embodiment can arrange the in-flight cable 5 in the cable hole 113 after connecting the end of the in-flight cable 5 to the connector, the work of connecting the connector in the protection box 11 It is possible to improve the workability of maintenance such as the property and replacement of the cable bush 112.
実施の形態5.
 本発明の実施の形態5に係るロボット100の構造は、実施の形態1に係るロボット100と同様であるが、ケーブルブッシュ112の構造が異なっている。図8は、本発明の実施の形態5に係るロボットのケーブルブッシュの構成を示す図である。実施の形態5に係るロボット100のケーブルブッシュ112は、四隅が丸め面取りされた長方形の板状であり、長辺に沿ってケーブル穴113が直列に配列されている。実施の形態5に係るロボット100のケーブルブッシュ112は、ケーブル穴113同士を接続するスリット114が形成されている。
Embodiment 5.
The structure of the robot 100 according to the fifth embodiment of the present invention is the same as that of the robot 100 according to the first embodiment, but the structure of the cable bush 112 is different. FIG. 8 is a diagram showing a configuration of a cable bush of the robot according to the fifth embodiment of the present invention. The cable bush 112 of the robot 100 according to the fifth embodiment has a rectangular plate shape with rounded four corners and chamfered, and cable holes 113 are arranged in series along a long side. The cable bush 112 of the robot 100 according to the fifth embodiment is formed with a slit 114 for connecting the cable holes 113 to each other.
 実施の形態5に係るロボット100のケーブルブッシュ112は、保護ボックス11の本体12に嵌合させた際に、スリット114が塞がるようにケーブルブッシュ112が変形するため、防水防塵性を高めることができる。また、スリット114で繋がった複数のケーブル穴113を広げることでケーブルブッシュ112を大径の開口が形成された状態にすることができるため、機内ケーブル5の端部にコネクタが装着された状態であっても、ケーブル穴113に機内ケーブル5を配置することができる。 When the cable bush 112 of the robot 100 according to the fifth embodiment is fitted to the main body 12 of the protective box 11, the cable bush 112 is deformed so as to close the slit 114, so that the waterproof and dustproof property can be improved. .. Further, since the cable bush 112 can be made into a state in which a large-diameter opening is formed by widening a plurality of cable holes 113 connected by the slit 114, the connector is attached to the end of the in-flight cable 5. Even if there is, the in-flight cable 5 can be arranged in the cable hole 113.
実施の形態6.
 本発明の実施の形態6に係るロボット100の構造は、実施の形態1に係るロボット100と同様であるが、ケーブルブッシュ112の構造が異なっている。図9は、本発明の実施の形態6に係るロボットのケーブルブッシュの構成を示す図である。実施の形態6に係るロボット100のケーブルブッシュ112は、側面がテーパ面であり、保護ボックス11の本体12への挿入側ほど幅狭になっている。すなわち、実施の形態6に係るロボット100のケーブルブッシュ112は、機内ケーブル穴111への挿入方向の先端側の面積が小さいテーパ形状である。
Embodiment 6.
The structure of the robot 100 according to the sixth embodiment of the present invention is the same as that of the robot 100 according to the first embodiment, but the structure of the cable bush 112 is different. FIG. 9 is a diagram showing a configuration of a cable bush of the robot according to the sixth embodiment of the present invention. The cable bush 112 of the robot 100 according to the sixth embodiment has a tapered surface on a side surface, and is narrower toward the insertion side of the protective box 11 into the main body 12. That is, the cable bush 112 of the robot 100 according to the sixth embodiment has a tapered shape in which the area on the tip side in the insertion direction into the in-machine cable hole 111 is small.
 ケーブル穴113は、ストレート穴であってもよいし、ケーブルブッシュ112の側面と同じ傾きのテーパ穴であってもよい。 The cable hole 113 may be a straight hole or a tapered hole having the same inclination as the side surface of the cable bush 112.
 実施の形態6に係るロボット100のケーブルブッシュ112は、保護ボックス11の本体12に挿入した際のエラストマーのつぶれ代の設定が容易である。また、ケーブルブッシュ112の機内ケーブル穴111への挿入作業が容易である。 The cable bush 112 of the robot 100 according to the sixth embodiment can easily set the crushing allowance of the elastomer when it is inserted into the main body 12 of the protective box 11. Further, the work of inserting the cable bush 112 into the in-machine cable hole 111 is easy.
実施の形態7.
 本発明の実施の形態7に係るロボット100の構造は、実施の形態1に係るロボット100と同様であるが、ケーブルブッシュ112の構造が異なっている。図10は、本発明の実施の形態7に係るロボットのケーブルブッシュの構成を示す図である。実施の形態7に係るロボット100のケーブルブッシュ112は、ケーブル穴113が楕円形となっている。ケーブル穴113の長軸方向はケーブルブッシュ112の短手方向であり、ケーブル穴113の短軸方向は、ケーブルブッシュ112の長手方向である。
Embodiment 7.
The structure of the robot 100 according to the seventh embodiment of the present invention is the same as that of the robot 100 according to the first embodiment, but the structure of the cable bush 112 is different. FIG. 10 is a diagram showing a configuration of a cable bush of a robot according to a seventh embodiment of the present invention. In the cable bush 112 of the robot 100 according to the seventh embodiment, the cable hole 113 has an elliptical shape. The major axis direction of the cable hole 113 is the lateral direction of the cable bush 112, and the minor axis direction of the cable hole 113 is the longitudinal direction of the cable bush 112.
 実施の形態7に係るロボット100のケーブルブッシュ112は、機内ケーブル穴111に挿入して変形した状態において、ケーブル穴113が円形になるため、機内ケーブル5との間に隙間が生じにくくなる。したがって、実施の形態7に係るロボット100は、保護ボックス11の防水防塵性を高めることができる。 When the cable bush 112 of the robot 100 according to the seventh embodiment is inserted into the in-flight cable hole 111 and deformed, the cable hole 113 becomes circular, so that a gap is less likely to occur between the cable bush 112 and the in-flight cable 5. Therefore, the robot 100 according to the seventh embodiment can improve the waterproof and dustproof property of the protective box 11.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 ベース部、2 アーム、3 リスト部、5 機内ケーブル、6 機器間ケーブル、7 制御基板、8 中継コネクタ、9 ロボットコントローラ、11 保護ボックス、12 本体、13 蓋、14,133 パッキン、19 モータ収容部、21 関節、41,42,43 モータ、51,61 信号線、52,62 電源線、75 内部接続コネクタ、76 外部接続コネクタ、100 ロボット、111 機内ケーブル穴、112 ケーブルブッシュ、113 ケーブル穴、114 スリット、121 開口部、131 機器間ケーブル穴、132 接続ユニオン。 1 base part, 2 arms, 3 wrist parts, 5 in-flight cables, 6 inter-device cables, 7 control boards, 8 relay connectors, 9 robot controllers, 11 protection boxes, 12 main bodies, 13 lids, 14, 133 packings, 19 motor accommodations Parts, 21 joints, 41, 42, 43 motors, 51, 61 signal lines, 52, 62 power lines, 75 internal connection connectors, 76 external connection connectors, 100 robots, 111 in-flight cable holes, 112 cable bushes, 113 cable holes, 114 slits, 121 openings, 131 inter-device cable holes, 132 connection unions.

Claims (11)

  1.  制御基板を収容する保護ボックスを備えたベース部と、
     関節を有し、前記ベース部から延び、エンドエフェクタが装着されるリスト部が先端に設けられた曲げ伸ばし可能なアームと、
     前記アームの内部に設置され、前記関節を駆動して前記アームの曲げ伸ばしと前記リスト部の姿勢の変更とを行う複数のモータと、
     前記保護ボックス内から引き出され、前記アームの内部を引き回して前記モータに接続された機内ケーブルと、
     前記保護ボックスのうち前記機内ケーブルを引き出す機内ケーブル穴に圧入されるケーブルブッシュとを備え、
     前記ケーブルブッシュは、弾性材料で形成され、前記機内ケーブルが配置されるケーブル穴が形成されており、
     前記ケーブル穴は、前記機内ケーブルが配置されていない状態では、前記機内ケーブルの外径よりも小さいことを特徴とする産業用ロボット。
    A base with a protective box to house the control board,
    A bendable arm that has joints, extends from the base portion, and has a wrist portion at the tip to which an end effector is attached.
    A plurality of motors installed inside the arm to drive the joint to bend and stretch the arm and change the posture of the wrist portion.
    An in-flight cable pulled out from the protective box and routed inside the arm to be connected to the motor.
    A cable bush that is press-fitted into the in-flight cable hole from which the in-flight cable is pulled out of the protective box
    The cable bush is made of an elastic material and has a cable hole in which the in-flight cable is arranged.
    An industrial robot characterized in that the cable hole is smaller than the outer diameter of the in-flight cable when the in-flight cable is not arranged.
  2.  前記ケーブルブッシュは、前記ケーブル穴を複数有し、
     前記機内ケーブルは、電源線及び信号線を含むマルチケーブルであり、
     前記電源線及び前記信号線が、複数の前記ケーブル穴にそれぞれ配置されたことを特徴とする請求項1に記載の産業用ロボット。
    The cable bush has a plurality of the cable holes.
    The in-flight cable is a multi-cable including a power line and a signal line.
    The industrial robot according to claim 1, wherein the power line and the signal line are respectively arranged in the plurality of cable holes.
  3.  前記制御基板は、前記機内ケーブルの信号線が接続される機内ケーブルコネクタが実装されていることを特徴とする請求項2に記載の産業用ロボット。 The industrial robot according to claim 2, wherein the control board is mounted with an in-flight cable connector to which a signal line of the in-flight cable is connected.
  4.  前記制御基板は、前記保護ボックスから引き出されて他の機器に接続される機器間ケーブルの信号線が接続される機器間ケーブルコネクタが実装されていることを特徴とする請求項3に記載の産業用ロボット。 The industry according to claim 3, wherein the control board is mounted with an inter-device cable connector to which a signal line of an inter-device cable drawn out from the protection box and connected to another device is connected. Robot for.
  5.  前記保護ボックスのうち、前記機器間ケーブルが引き出される部分には、内部に筒状のパッキンが配置された接続ユニオンが設置されており、
     前記筒状のパッキンの内径は、前記機器間ケーブルの外径以下であることを特徴とする請求項4に記載の産業用ロボット。
    A connection union in which a tubular packing is arranged is installed in a portion of the protective box from which the inter-device cable is pulled out.
    The industrial robot according to claim 4, wherein the inner diameter of the tubular packing is equal to or less than the outer diameter of the inter-device cable.
  6.  前記機器間ケーブルは、電源線及び信号線を含むマルチケーブルであり、
     前記保護ボックスの内部には、前記機器間ケーブルの電源線と、前記機内ケーブルの電源線とを接続する中継コネクタが収容されていることを特徴とする請求項4又は5に記載の産業用ロボット。
    The device-to-device cable is a multi-cable including a power line and a signal line.
    The industrial robot according to claim 4 or 5, wherein a relay connector for connecting the power line of the inter-device cable and the power line of the in-flight cable is housed inside the protection box. ..
  7.  前記ケーブルブッシュは、外縁部から前記ケーブル穴の各々につながる複数のスリットが形成されていることを特徴とする請求項2から6のいずれか1項に記載の産業用ロボット。 The industrial robot according to any one of claims 2 to 6, wherein the cable bush is formed with a plurality of slits connected to each of the cable holes from an outer edge portion.
  8.  前記ケーブルブッシュは、隣接する前記ケーブル穴同士を接続するスリットが形成されていることを特徴とする請求項2から6のいずれか1項に記載の産業用ロボット。 The industrial robot according to any one of claims 2 to 6, wherein the cable bush is formed with a slit for connecting adjacent cable holes.
  9.  前記ケーブルブッシュは、四隅が丸め面取りされた長方形の板状であり、長辺に沿う方向に複数の前記ケーブル穴が配列されていることを特徴とする請求項2から8のいずれか1項に記載の産業用ロボット。 The cable bush has a rectangular plate shape with rounded four corners and chamfered, and a plurality of the cable holes are arranged in a direction along a long side, according to any one of claims 2 to 8. Described industrial robot.
  10.  前記ケーブル穴は、楕円形であり、
     前記ケーブル穴の長軸方向は、前記ケーブルブッシュの短手方向であり、
     前記ケーブル穴の短軸方向は、前記ケーブルブッシュの長手方向であることを特徴とする請求項9に記載の産業用ロボット。
    The cable hole is oval and
    The major axis direction of the cable hole is the lateral direction of the cable bush.
    The industrial robot according to claim 9, wherein the short axis direction of the cable hole is the longitudinal direction of the cable bush.
  11.  前記ケーブルブッシュは、前記機内ケーブル穴への挿入方向の先端側の面積が小さいテーパ形状であることを特徴とする請求項1から10のいずれか1項に記載の産業用ロボット。 The industrial robot according to any one of claims 1 to 10, wherein the cable bush has a tapered shape having a small area on the tip side in the insertion direction into the in-flight cable hole.
PCT/JP2019/010974 2019-03-15 2019-03-15 Industrial robot WO2020188659A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020564967A JP6843317B2 (en) 2019-03-15 2019-03-15 Industrial robot
CN201980093855.4A CN113557109A (en) 2019-03-15 2019-03-15 Industrial robot
PCT/JP2019/010974 WO2020188659A1 (en) 2019-03-15 2019-03-15 Industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010974 WO2020188659A1 (en) 2019-03-15 2019-03-15 Industrial robot

Publications (1)

Publication Number Publication Date
WO2020188659A1 true WO2020188659A1 (en) 2020-09-24

Family

ID=72520632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010974 WO2020188659A1 (en) 2019-03-15 2019-03-15 Industrial robot

Country Status (3)

Country Link
JP (1) JP6843317B2 (en)
CN (1) CN113557109A (en)
WO (1) WO2020188659A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113997323A (en) * 2021-12-08 2022-02-01 珠海格力电器股份有限公司 Cable assembly and horizontal multi-joint industrial robot

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182793A (en) * 1985-02-09 1986-08-15 フアナツク株式会社 Cable leading-in device for robot
JPH09317951A (en) * 1996-05-27 1997-12-12 Rinnai Corp Seal structure, cable holding member, and equipment using seal structure
JP2002247743A (en) * 2001-02-19 2002-08-30 Mitsubishi Cable Ind Ltd Method and bushing for support cable
JP2005014159A (en) * 2003-06-26 2005-01-20 Fanuc Ltd Robot
JP2007044767A (en) * 2005-08-05 2007-02-22 Yaskawa Electric Corp Industrial robot
JP2014097573A (en) * 2014-02-28 2014-05-29 Daihen Corp Articulated robot
JP2016068207A (en) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 Robot, control device, and robot system
JP2016142309A (en) * 2015-01-30 2016-08-08 ファナック株式会社 Tool for drawing out cable from housing of electronic apparatus, and electronic apparatus
JP2018051708A (en) * 2016-09-30 2018-04-05 セイコーエプソン株式会社 Horizontal multijoint type robot
JP2019005820A (en) * 2017-06-21 2019-01-17 セイコーエプソン株式会社 Robot and robot system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200810265A (en) * 2006-05-31 2008-02-16 Roxtec Ab A plug unit for a cable entry
CN104889974B (en) * 2015-05-14 2017-12-08 湖北骐通智能科技股份有限公司 The cable of robot constructs and used its robot
CN108582163A (en) * 2018-06-26 2018-09-28 埃夫特智能装备股份有限公司 A kind of robot turning-stand structure for electric based on dust-proof moisture-proof sealing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182793A (en) * 1985-02-09 1986-08-15 フアナツク株式会社 Cable leading-in device for robot
JPH09317951A (en) * 1996-05-27 1997-12-12 Rinnai Corp Seal structure, cable holding member, and equipment using seal structure
JP2002247743A (en) * 2001-02-19 2002-08-30 Mitsubishi Cable Ind Ltd Method and bushing for support cable
JP2005014159A (en) * 2003-06-26 2005-01-20 Fanuc Ltd Robot
JP2007044767A (en) * 2005-08-05 2007-02-22 Yaskawa Electric Corp Industrial robot
JP2014097573A (en) * 2014-02-28 2014-05-29 Daihen Corp Articulated robot
JP2016068207A (en) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 Robot, control device, and robot system
JP2016142309A (en) * 2015-01-30 2016-08-08 ファナック株式会社 Tool for drawing out cable from housing of electronic apparatus, and electronic apparatus
JP2018051708A (en) * 2016-09-30 2018-04-05 セイコーエプソン株式会社 Horizontal multijoint type robot
JP2019005820A (en) * 2017-06-21 2019-01-17 セイコーエプソン株式会社 Robot and robot system

Also Published As

Publication number Publication date
JP6843317B2 (en) 2021-03-17
CN113557109A (en) 2021-10-26
JPWO2020188659A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
US9806457B2 (en) Articulated robot with connection member for connecting wire body arranged on arm
US20190337165A1 (en) Sealed joint module and arm using same
JP7027774B2 (en) robot
US11027421B2 (en) Robot and robot system
WO2018195670A1 (en) Two joint module and arm using same
US9481095B2 (en) Robot
CN102410342B (en) Multi-shaft gear box structure
US8544359B2 (en) Robot arm assembly
US20130260606A1 (en) Robot system and robot
US9815210B2 (en) Robot
US10525586B2 (en) Robot
TW201321150A (en) Manipulator arm assembly
JP7176330B2 (en) robot
JP7130933B2 (en) robot
JP7027775B2 (en) robot
JPWO2008044348A1 (en) Industrial robot
EP2977152A2 (en) Robot
JP2007044767A (en) Industrial robot
US20160023359A1 (en) Robot joint mechanism and robot
JP6843317B2 (en) Industrial robot
JP2019084607A (en) Robot and robot system
JP2022044794A (en) Robot device
US20160023358A1 (en) Robot
JP6911564B2 (en) Robots and robot systems
WO2021144969A1 (en) Biaxial integrated module and multijoint robot arm device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020564967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920122

Country of ref document: EP

Kind code of ref document: A1