WO2020188130A1 - Sistema de concentración solar - Google Patents

Sistema de concentración solar Download PDF

Info

Publication number
WO2020188130A1
WO2020188130A1 PCT/ES2020/070130 ES2020070130W WO2020188130A1 WO 2020188130 A1 WO2020188130 A1 WO 2020188130A1 ES 2020070130 W ES2020070130 W ES 2020070130W WO 2020188130 A1 WO2020188130 A1 WO 2020188130A1
Authority
WO
WIPO (PCT)
Prior art keywords
substructure
solar
sliding
supporting
self
Prior art date
Application number
PCT/ES2020/070130
Other languages
English (en)
French (fr)
Inventor
Carlos GALDÓN CABRERA
Enrique José LORENTE MARTÍN
Original Assignee
Galdon Cabrera Carlos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galdon Cabrera Carlos filed Critical Galdon Cabrera Carlos
Priority to EP20713941.1A priority Critical patent/EP3940312A1/en
Publication of WO2020188130A1 publication Critical patent/WO2020188130A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/062Parabolic point or dish concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/068Devices for producing mechanical power from solar energy with solar energy concentrating means having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/14Movement guiding means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention refers to a solar concentration system belonging to the field of very high temperature thermosolar technology, operating above 580oC, of special application in Stirling disc solar concentration systems.
  • a Stirling disk solar concentrating system is made up of a highly reflective solar concentrator that follows the sun, usually parabolic or spherical, which reflects the solar radiation that falls on its reflecting surface with high energy density towards a focus, a solar receiver and a Stirling engine that is coupled to a generator.
  • a working fluid normally gaseous, located in the receiver is heated to a suitable temperature so that the energy absorbed by the fluid can be used for the generation of mechanical energy by the Stirling engine.
  • An electric generator coupled to the output shaft of the motor transforms the mechanical energy of the output shaft into electrical energy.
  • This optical precision can be reduced by a poor design that implies the appearance of important deformations when the system is in operation, by the effect of the mechanical loads of the disk when rotating in elevation or azimuth, as occurs in the designs that exist in the state of the art.
  • DE 8415444 U1 describes a reflector, in particular for antennas, solar energy concentrators and the like, with a concave and curved reflecting surface of fixed and adjustable glass facets and a pressure- and shear-resistant rod net dome, covered with glass facets, the reflector being mounted on a rotating support.
  • the rigid pressure and shear dome is coupled to another rear dome by a common ring, whereby the rigid pressure and shear dome, which is only rigid under pressure and shear, obtains deformation stability.
  • Document WO 2014/037599 A1 refers to a structure for a parabolic point solar concentrating system, and to a concentrating system that incorporates said structure, which is lighter and easier to assemble. It comprises a) a substructure for anchoring to the ground; b) a tracking substructure, mounted on the anchoring substructure and rotatable with respect to it about an azimuth axis; c) a drive substructure comprising two coaxial rings formed by a plurality of assembled stamped segments, said rings being joined by tie rods; the trailing substructure being zenithal rotating with respect to the tracking substructure; d) a supporting substructure, in the shape of a cradle, designed to support a reflective surface; and e) a modular connecting substructure, made with stamped elements, on which the supporting substructure is mounted, and fixed inside the drag substructure.
  • the object of the present invention is therefore to provide a solar concentrating system that solves the deficiencies mentioned in the disk-type solar concentrating systems of the prior art.
  • the invention provides a solar concentrating system, comprising an anchoring substructure, azimuth drive means, a tracking substructure with rolling elements, which rotates about a vertical axis by the azimuth drive means and is located on the substructure of anchoring, lifting actuation means, a sliding substructure for dragging, comprising at least one open ring and a reinforcing substructure, and arranged so that it can slide on the rolling elements of the tracking substructure by effect of the lifting drive means, a self-supporting substructure, a reflective surface supported directly on the self-supporting substructure, a supporting substructure, and a solar receiver supported by the supporting substructure, in the that the self-supporting substructure is mounted on the trailing sliding substructure and the support substructure for the receiver is attached to the trailing sliding substructure in one of its extreme zones.
  • the configuration of the solar concentrating system of the invention prevents the reflecting surface from suffering deformations caused both by mechanical stresses due to the continuous rolling in elevation of the system and by the loads due to the solar receiver and the elements connected to it. This is achieved thanks to two design features.
  • the advantage provided by this mechanical configuration is that the effect on the optics of mechanical loads on the disc when rotating in elevation or azimuth is completely minimized.
  • the forces derived from the elements located in the focus (receiver, Stirling engine, etc.) are transmitted directly to the sliding substructure -carrlles-, considerably more robust and independent, thus ensuring that the reflecting surface is not affected by deformations other than its own weight.
  • the design of the sliding trailing substructure is such that no component of it can be exposed to the high thermal concentration delivered by the reflecting surface, both in normal operation and in case of power failure or operation.
  • This design configuration provides the installation with added security as it safeguards its integrity. A deviation of the thermal concentration towards the structure would cause it to overheat above the limit of the materials, causing deformations and / or irreversible damage to the system with the risk of collapse due to high energy densities above 1000Kw / m2.
  • the efficiency of the assembly is increased, since the energy delivered to the receiver is maximized for the same reflecting surface area, as there are no interferences that suppose thermal losses.
  • the reflective surface rests directly by the self-supporting substructure on the main structure, unlike in other designs of the state of the art, which require two independent structures. This implies that the reflective surface is better supported, with a lower cost, and also reduces the optical errors that may occur due to the accumulation of structural errors when several structures are added.
  • the proposed configuration does not present maximum limitations to the size of the disc, as in the case of the configurations with lattices and closed circumference rings. With no limitations, the design can be easily scaled to suit the optical requirements of higher or lower thermal power motors.
  • the system In emergency situations, in case of very high wind speed, it is essential that the system consists of a safety position in which there is no risk to people or to the Installation.
  • the safety position in which the sliding trailing substructure is oriented such that the self-supporting substructure rests horizontally, allows an optimal load distribution by which the effect of wind loads on the Installation is reduced.
  • the reflective surface is located at a short distance from the ground, swinging in a controlled way on the anchoring structure. This makes it a highly robust design, thanks to which movements are controlled and precise.
  • Figure 1 shows a side view of the solar concentrating system of the invention.
  • Figure 2 shows a perspective view of the solar concentrating system of the invention.
  • Figure 3 shows another perspective view and in another position of the solar concentrating system of the invention.
  • FIG. 4 shows a perspective view of the solar concentrating system of the invention, without some elements. Detailed description of the invention
  • FIGs 1, 2 and 3 are various views of the solar concentrating system of the invention, in which a reflective surface 1 (which can take the form of a parabola, as represented in Figures 2 and 3) and a receiver can be observed solar 2.
  • a reflective surface 1 which can take the form of a parabola, as represented in Figures 2 and 3
  • a receiver can be observed solar 2.
  • the solar radiation that falls on the reflecting surface 1 is reflected in it and reaches the solar receiver 2.
  • the solar concentrating system also comprises a structure, which in turn is composed of several substructures, as can be seen in Figures 1 to 3: an anchoring substructure 3, to fix the system to the ground.
  • the sliding sliding substructure 5 comprises at least one open ring 10 and a reinforcing substructure 6 (see figure 4), the function of which is to provide it with rigidity.
  • Said reinforcing substructure 6 can be an articulated structure (as in the figures), a solid element or an element with perforations.
  • the support substructure 8 for the solar receiver 2 is attached to the sliding sliding substructure 5 in one of the extreme zones of the latter, said end zones being those located in the vicinity of the ends of the trailing sliding substructure where the ends of the open rings 10 also meet.
  • the solar receiver 2 can be connected to a system that operates at a temperature higher than 580oC and with an energy density higher than 1000kW / m2, such as, for example, a Stirling engine, a micro-turbine, a hydrogen engine or a hydrogen production system.
  • a system that operates at a temperature higher than 580oC and with an energy density higher than 1000kW / m2, such as, for example, a Stirling engine, a micro-turbine, a hydrogen engine or a hydrogen production system.
  • the solar receiver 2 is located on a mobile element 12 (for example, a cart) provided with relative movement with respect to the support substructure 8.
  • a mobile element 12 for example, a cart
  • the mobile element 12 can move on the support substructure 8.
  • the solar receiver 2 could be located in a position displaced with respect to the focus, since, along of the operation of the system, it is not always interesting to locate it exactly in the focus, depending on the level of power delivered by the concentrator.
  • the relative position of the solar receiver could be adjusted when, for any reason, deformations have occurred in the reflecting surface 1 causing a shift of the focal point.
  • the displacement of the solar receiver on the support substructure 8 makes it possible to regulate its relative position with respect to the point of maximum concentration of solar energy reflected by the reflecting surface 1. This allows to easily and quickly regulate the amount of power incident on the solar receiver, this being very useful both to guarantee the safety of the installation and to optimize the operation of the solar concentrator as it is an application of high energy density above 1000kW / m2.
  • the solar receiver 2 is located at the end of the support substructure 8 that is farthest from the sliding sliding substructure 5.
  • said end is the free end of the supporting substructure 8, that is to say, the end opposite the junction between the supporting substructure 8 and the sliding sliding substructure 5.
  • the sliding sliding substructure 5 comprises in one of its end zones a connecting substructure 15 on which the support substructure 8 is mounted.
  • the reflective surface 1 is preferably a parabolic or spherical shaped surface.
  • the solar concentrating system additionally comprises an intermediate coupling structure (not shown) located between the sliding sliding substructure 5 and the self-supporting substructure 7.
  • This intermediate coupling structure can be formed by shock absorbers, silentblocks, layers of structure metallic or foam type foam.
  • the reinforcing substructure 6 can be an articulated structure, a solid element or an element with perforations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Sistema de concentración solar, que comprende: - una subestructura de anclaje (3), - unos medios de accionamiento azimutal (14), - una subestructura de seguimiento (4) con elementos de rodadura (9), que rota sobre un eje vertical mediante los medios de accionamiento azimutal (14) y se encuentra sobre la subestructura de anclaje (3), - unos medios de accionamiento en elevación (11), - una subestructura deslizante de arrastre (5), que comprende al menos un aro abierto (10) y una subestructura de refuerzo (6), y dispuesta de modo que puede deslizar sobre los elementos de rodadura (9) de la subestructura de seguimiento (4) por efecto de los medios de accionamiento en elevación (11), - una subestructura autoportante (7), - una superficie reflectora (1) soportada directamente sobre la subestructura autoportante (7), - una subestructura de soporte (8), y - un receptor solar (2) soportado por la subestructura de soporte (8) en el que la subestructura autoportante (7) está montada sobre la subestructura deslizante de arrastre (5) y la subestructura de soporte (8) para el receptor (2) se encuentra unida a la subestructura deslizante de arrastre (5) en una de las zonas extremas de ésta.

Description

DESCRIPCIÓN
Sistema de concentración solar
Campo de la invención
La presente invención se refiere a un sistema de concentración solar perteneciente al campo de la tecnología termosolar de muy alta temperatura, en operación por encima de los 580ºC, de especial aplicación en sistemas de concentración solar de discos Stirling.
Antecedentes de la invención
Un sistema de concentración solar de disco Stirling está formado por un concentrador solar de alta reflectividad que sigue al sol, normalmente parabólico o esférico, que refleja con alta densidad energética hacia un foco la radiación solar que incide sobre su superficie reflectora, un receptor solar y un motor Stirling que se acopla a un generador. En estos sistemas se produce el calentamiento de un fluido de trabajo, normalmente gaseoso, localizado en el receptor, hasta una temperatura adecuada para que la energía absorbida por el fluido pueda ser empleada para la generación de energía mecánica por el motor Stirling. Un generador eléctrico acoplado al eje de salida del motor transforma la energía mecánica del eje de salida en energía eléctrica.
En la tecnología de disco Stirling, una adecuada precisión óptica es crucial para garantizar el funcionamiento del equipo y la integridad de los materiales debido a la alta densidad energética registrada, por encima de los 1000kW/m2. Al contrario que en el caso de la tecnología de colector cilindro parabólica o de torre, el punto de enfoque está localizado en una superficie muy reducida. Por ello, un error en el apunte significa la pérdida de la totalidad o de un gran porcentaje de la potencia incidente o bien la creación de un“punto caliente” que dañe el sistema. Concentrar la energía solar en un punto en el cual no se encuentra el receptor, o simplemente redistribuir esa energía de una forma no deseada por la superficie del receptor repercute directamente en la eficiencia del disco Stirling y por tanto en la rentabilidad de la tecnología. En algunos diseños en los que además parte de la estructura se encuentra cercana al foco, una mala distribución de la potencia debido a una baja calidad del apunte puede Incluso significar el colapso del disco entero por calentamiento excesivo de partes estructurales.
Esta precisión óptica puede verse reducida por un diseño deficiente que Implique la aparición de deformaciones Importantes cuando el sistema se encuentra en operación, por el efecto de las cargas mecánicas del disco al girar en elevación o en azimut, como ocurre en los diseños que existen en el estado de la técnica.
Se conocen numerosos sistemas de concentración solar de tipo disco.
El documento DE 8415444 U1 describe un reflector, en particular para antenas, concentradores de energía solar y similares, con una superficie reflectora cóncava y curvada de facetas de vidrio fijas y ajustables y una cúpula de red de varillas resistente a la presión y al cizallamiento, recubierta de las facetas de vidrio, estando el reflector montado sobre un soporte giratorio. La cúpula rígida a presión y cizallamiento está acoplada a otra cúpula trasera mediante un anillo común, mediante el cual la cúpula rígida a presión y cizallamiento, que sólo es rígida a presión y cizallamiento, obtiene una estabilidad a la deformación.
El documento WO 2014/037599 A1 se refiere a una estructura para sistema de concentración solar puntual parabólico, y a un sistema de concentración que incorpora dicha estructura, que presenta mayor ligereza y permite una mayor facilidad de montaje. Comprende a) una subestructura de anclaje al suelo; b) una subestructura de seguimiento, montada sobre la subestructura de anclaje y giratoria respecto de ella en torno a un eje acimutal; c) una subestructura de arrastre que comprende dos aros coaxiales formados por una pluralidad de segmentos estampados ensamblados, estando dichos aros unidos por tirantes; siendo la subestructura de arrastre cenitalmente giratoria respecto de la subestructura de seguimiento; d) una subestructura portadora, en forma de cuna, destinada a soportar una superficie reflectora; y e) una subestructura de conexión, modular, fabricada con elementos estampados, sobre la que está montada la subestructura portadora, y fijada en el interior de la subestructura de arrastre. En este sistema, gran parte de la subestructura de seguimiento está expuesta a posibles desviaciones de la potencia reflejada, al tratarse de una configuración en anillo completo. Esta característica del diseño pone en riesgo la integridad del equipo y no permite colocar el foco en la posición más adecuada para optimizar la eficiencia del motor térmico.
Estos sistemas aportan diferentes propuestas que reflejan hacia un foco la radiación que incide sobre la superficie reflectora. No obstante, en estos sistemas, los esfuerzos debidos a las cargas actuantes en las estructuras situadas en el foco, así como los propios de la estructura principal se transmiten directamente a la óptica de la instalación, deformándose la estructura óptica excesivamente y de diferentes maneras según la elevación del motor ubicado en el foco, lo cual disminuye su precisión. Puesto que la precisión óptica es el aspecto fundamental de esta tecnología, una disminución de la precisión y especialmente en la estabilidad óptica puede hacer que un sistema no resulte eficaz.
Sumario de la invención El objeto de la presente invención es, por tanto, proporcionar un sistema de concentración solar que resuelva las deficiencias mencionadas en los sistemas de concentración solar de tipo disco de la técnica anterior.
La invención proporciona un sistema de concentración solar, que comprende una subestructura de anclaje, unos medios de accionamiento azimutal, una subestructura de seguimiento con elementos de rodadura, que rota sobre un eje vertical mediante los medios de accionamiento azimutal y se encuentra sobre la subestructura de anclaje, unos medios de accionamiento en elevación, una subestructura deslizante de arrastre, que comprende al menos un aro abierto y una subestructura de refuerzo, y dispuesta de modo que puede deslizar sobre los elementos de rodadura de la subestructura de seguimiento por efecto de los medios de accionamiento en elevación, una subestructura autoportante, una superficie reflectora soportada directamente sobre la subestructura autoportante, una subestructura de soporte, y un receptor solar soportado por la subestructura de soporte, en el que la subestructura autoportante está montada sobre la subestructura deslizante de arrastre y la subestructura de soporte para el receptor se encuentra unida a la subestructura deslizante de arrastre en una de las zonas extremas de ésta.
La configuración del sistema de concentración solar de la Invención evita que la superficie reflectora sufra deformaciones originadas tanto por los esfuerzos mecánicos debidos al balanceo continuo en elevación del sistema como por las cargas debidas al receptor solar y a los elementos conectados a él. Esto se consigue gracias a dos características del diseño.
En primer lugar, gracias a la configuración autoportante de la subestructura que soporta la superficie reflectora. Esta subestructura autoportante reposa sobre la subestructura deslizante de arrastre repartiendo todo su peso uniformemente sobre ella, de manera que no perciben solicitaciones estructurales más allá de las de su propio peso: el sistema es accionado pero el movimiento no repercute en la calidad de la óptica. El conjunto de las solicitaciones estructurales adicionales (ya sea por cargas en el foco o por el sistema de accionamientos del disco) es asumido por la subestructura deslizante de arrastre. A efectos de esfuerzos mecánicos sobre la óptica, el sistema es equivalente a apoyar esta última directamente sobre una estructura que no se deforma o que lo hace de forma despreciable para la aplicación que nos ocupa. Por tanto, la ventaja proporcionada por esta configuración mecánica es que se minimiza completamente el efecto sobre la óptica de las cargas mecánicas del disco al girar en elevación o en azimut. En segundo lugar, gracias a la configuración de la subestructura de soporte para el receptor solar, los esfuerzos derivados de los elementos ubicados en el foco (receptor, motor Stirling, etc.) se transmiten directamente a la subestructura deslizante de arrastre -carrlles- , considerablemente más robusta e independiente, logrando por tanto que la superficie reflectora no se vea afectada por deformaciones diferentes de las de su propio peso.
Esto permite dotar a la óptica del sistema de una mayor robustez con un aumento considerable del rendimiento del concentrador solar. Esto es así incluso en los puntos de operación de mayor elevación del disco, así como en los casos en los que haya que emplear cargas elevadas en la ubicación del receptor solar (por ejemplo, motores pesados, depósitos, etc.). Por tanto, el presente sistema resuelve el problema crucial de la estabilidad óptica.
La invención también presenta una serie de ventajas con respecto a la técnica anterior:
El diseño de la subestructura deslizante de arrastre es tal que ningún componente de la misma puede verse expuesto a la alta concentración térmica entregada por la superficie reflectora, tanto en operación normal como en caso de fallo de alimentación o de operación. Esta configuración del diseño dota a la instalación de una seguridad añadida ya que salvaguarda la integridad de la misma. Una desviación de la concentración térmica hacia la estructura provocaría un sobrecalentamiento de esta por encima del límite de los materiales, provocando deformaciones y/o daños irreversibles al sistema con riesgo de colapso debido a las altas densidades energéticas por encima de los 1000Kw/m2.
Al no interponerse partes estructurales entre la superficie reflectora y el receptor solar se aumenta la eficiencia del conjunto, ya que se maximiza la energía entregada al receptor para una misma área de superficie reflectora, al no haber interferencias que supongan pérdidas térmicas.
La superficie reflectora reposa directamente mediante la subestructura autoportante sobre la estructura principal, al contrario que en otros diseños del estado de la técnica, que requieren de dos estructuras independientes. Esto implica que la superficie reflectora está mejor soportada, con un coste inferior, y además reduce los errores ópticos que se puedan dar por acumulación de errores estructurales al adicionarse varias estructuras.
Todo el peso del conjunto formado por la subestructura autoportante y la superficie reflectora está repartido a través de los ejes deslizantes. Esto permite que para obtener la misma precisión óptica que en otras configuraciones del estado de la técnica, sea necesario emplear una cantidad considerablemente más reducida de material (por ejemplo, acero), reduciendo así los costes y obteniendo un diseño más competitivo con el resto de tecnologías.
La configuración propuesta no presenta limitaciones máximas al tamaño del disco, como ocurre en el caso de las configuraciones con celosías y aros de circunferencia cerrada. Al no presentar limitaciones, el diseño puede escalarse fácilmente para adaptarse a los requerimientos ópticos de motores de mayor o menor potencia térmica.
La configuración propuesta a modo de sistema con una subestructura autoportante y una subestructura deslizante dota al sistema de una robustez excepcional que permite la operación de la Instalación Incluso bajo los efectos de fuertes cargas de viento, ya que el peso de la superficie autoportante está soportado de forma distribuida sobre la subestructura deslizante de arrastre.
En situaciones de emergencia, en caso de muy alta velocidad de viento, es Imprescindible que el sistema conste de una posición de seguridad en la cual no exista riesgo para las personas ni para la Instalación. En el diseño propuesto, la posición de seguridad, en la cual la subestructura deslizante de arrastre está orientada tal que la subestructura autoportante reposa horizontalmente, permite una distribución de cargas óptimas mediante la cual se reduce el efecto de las cargas de viento sobre la Instalación.
La superficie reflectora se encuentra a una reducida distancia del suelo, basculando de forma controlada sobre la estructura de anclaje. Esto lo convierte en un diseño altamente robusto, gracias al cual se consigue que los movimientos sean controlados y de precisión. La configuración del concentrador solar en forma de sistema con una subestructura autoportante y una subestructura deslizante, deslizando la subestructura de arrastre por la subestructura de seguimiento mediante unos elementos de rodadura, dota al conjunto de una robustez superior a los diseños con configuración de pilar. Esta robustez permite una calidad y precisión ópticas superiores dado que se reducen las deformaciones propias al peso de los elementos que conforman el conjunto formado por la subestructura autoportante y la superficie reflectora. La ausencia de estas deformaciones permite un mayor aprovechamiento de la potencia reflejada, y por tanto un aumento considerable del rendimiento del disco Stirling.
Otras realizaciones ventajosas de la invención se exponen en las reivindicaciones dependientes.
Breve descripción de las figuras
A continuación, se describirá una realización ilustrativa, y en ningún sentido limitativa, del objeto de la presente invención, haciendo referencia a los dibujos que se acompañan, en los cuales:
La figura 1 muestra una vista lateral del sistema de concentración solar de la invención.
La figura 2 muestra una vista en perspectiva del sistema de concentración solar de la invención.
La figura 3 muestra otra vista en perspectiva y en otra posición del sistema de concentración solar de la invención.
La figura 4 muestra una vista en perspectiva del sistema de concentración solar de la invención, sin algunos elementos. Descripción detallada de la invención
Las figuras 1 , 2 y 3 son diversas vistas del sistema de concentración solar de la invención, en el que se puede observar una superficie reflectora 1 (que puede adoptar forma de parábola, como se representa en las figuras 2 y 3) y un receptor solar 2. Cuando se encuentra en funcionamiento, la radiación solar que incide sobre la superficie reflectora 1 se refleja en ella y llega al receptor solar 2.
El sistema de concentración solar también comprende una estructura, que a su vez está compuesta de varias subestructuras, como puede comprobarse en las figuras 1 a 3: una subestructura de anclaje 3, para fijar el sistema al suelo. una subestructura de seguimiento 4 con elementos de rodadura 9, que rota sobre un eje vertical mediante unos medios de accionamiento azimutal 14 y se encuentra sobre la subestructura de anclaje 3, una subestructura deslizante de arrastre 5, que comprende al menos un aro abierto 10 y una subestructura de refuerzo 6, y dispuesta de modo que puede deslizar sobre los elementos de rodadura 9 de la subestructura de seguimiento 4 por efecto de unos medios de accionamiento 1 1 , una subestructura autoportante 7 que soporta la superficie reflectora 1 directamente, y una subestructura de soporte 8 para el receptor solar 2.
La subestructura deslizante de arrastre 5 comprende al menos un aro abierto 10 y una subestructura de refuerzo 6 (véase la figura 4), cuya función es proporcionarle rigidez. Dicha subestructura de refuerzo 6 puede ser una estructura articulada (como en las figuras), un elemento sólido o un elemento con perforaciones.
Como se puede observar en las figuras 1 a 3, la subestructura de soporte 8 para el receptor solar 2 se encuentra unida a la subestructura deslizante de arrastre 5 en una de las zonas extremas de ésta, siendo dichas zonas extremas las situadas en las proximidades de los extremos de la subestructura deslizante de arrastre donde también se encuentran los extremos de los aros abiertos 10.
De este modo las posibles deformaciones tendrían lugar en una de las zonas extremas de la subestructura deslizante de arrastre 5, lo que tampoco afectaría a la óptica del sistema ni a la rodadura de la subestructura deslizante de arrastre 5 sobre los elementos de rodadura 9 de la subestructura de seguimiento 4.
Para realizar el montaje del sistema de concentración solar se lleva a cabo la Instalación de las diferentes subestructuras mencionadas anteriormente. Al tratarse de una estructura modular, formada por varias subestructuras, su montaje resulta más rápido, ya que gran parte del trabajo de ensamblaje puede venir hecho y no es necesario realizarlo ¡n situ, lo que optimiza la calidad estructural, y por tanto óptica, del sistema.
El receptor solar 2 puede estar conectado con un sistema que opera a temperatura superior a 580ºC y con densidad energética superior a 1000kW/m2, como, por ejemplo, un motor Stirling, una mlcroturblna, un motor de hidrógeno o un sistema de producción de hidrógeno por disociación de agua, todas aplicaciones solares que precisan de una densidad energética uniforme lo que se consigue con una óptica suficientemente estable en todas las posiciones de elevación y azimut lo que se consigue con la presente Invención.
Según una realización de la Invención, el receptor solar 2 se encuentra sobre un elemento móvil 12 (por ejemplo, un carro) dotado de movimiento relativo con respecto a la subestructura de soporte 8.
El elemento móvil 12 puede desplazarse sobre la subestructura de soporte 8. De este modo, en el caso de tener una superficie reflectora 1 parabólica, el receptor solar 2 podría estar ubicado en una posición desplazada con respecto al foco, ya que, a lo largo de la operación del sistema, no siempre Interesa ubicarlo exactamente en el foco, en función del nivel de potencia entregado por el concentrador. Asimismo, la posición relativa del receptor solar podría ajustarse cuando por cualquier motivo se hubieran producido deformaciones en la superficie reflectora 1 que provocasen un desplazamiento del punto focal.
El desplazamiento del receptor solar sobre la subestructura de soporte 8 permite regular su posición relativa con respecto al punto de máxima concentración de la energía solar reflejada por la superficie reflectora 1. Esto permite regular fácil y rápidamente la cantidad de potencia incidente sobre el receptor solar, siendo esto de gran utilidad tanto para garantizar la seguridad de la instalación como para optimizar la operación del concentrador solar al tratarse de una aplicación de alta densidad energética por encima de los 1000kW/m2.
Según otra realización de la invención el receptor solar 2 se encuentra en el extremo de la subestructura de soporte 8 que está más alejado de la subestructura deslizante de arrastre 5. En la realización mostrada en la figura 1 , dicho extremo es el extremo libre de la subestructura de soporte 8, es decir, el extremo opuesto a la unión entre la subestructura de soporte 8 y la subestructura deslizante de arrastre 5.
Según otra realización, la subestructura deslizante de arrastre 5 comprende en una de sus zonas extremas una subestructura de conexión 15 sobre la que se monta la subestructura de soporte 8.
La superficie reflectora 1 es preferentemente una superficie de forma parabólica o esférica. Según otra realización, el sistema de concentración solar comprende adicionalmente una estructura intermedia de acoplamiento (no representada) situada entre la subestructura deslizante de arrastre 5 y la subestructura autoportante 7. Esta estructura intermedia de acoplamiento puede estar formada por amortiguadores, silentblocks, capas de estructura metálica o espuma tipo foam.
Según otras realizaciones, la subestructura de refuerzo 6 puede ser una estructura articulada, un elemento sólido o un elemento con perforaciones.
Aunque se han descrito y representado unas realizaciones del invento, es evidente que pueden introducirse en ellas modificaciones comprendidas dentro del alcance del mismo, no debiendo considerarse limitado éste a dichas realizaciones, sino únicamente al contenido de las reivindicaciones siguientes.

Claims

REIVINDICACIONES
1 Sistema de concentración solar, que comprende:
una subestructura de anclaje (3), unos medios de accionamiento azimutal (14), una subestructura de seguimiento (4) con elementos de rodadura (9), que rota sobre un eje vertical mediante los medios de accionamiento azimutal (14) y se encuentra sobre la subestructura de anclaje (3), unos medios de accionamiento en elevación (11 ), una subestructura deslizante de arrastre (5), que comprende al menos un aro abierto (10) y una subestructura de refuerzo (6), y dispuesta de modo que puede deslizar sobre los elementos de rodadura (9) de la subestructura de seguimiento (4) por efecto de los medios de accionamiento en elevación (11 ), una subestructura autoportante (7), una superficie reflectora (1 ) soportada directamente sobre la subestructura autoportante (7), una subestructura de soporte (8), y un receptor solar (2) soportado por la subestructura de soporte (8) caracterizado por que la subestructura autoportante (7) está montada sobre la subestructura deslizante de arrastre (5) y por que la subestructura de soporte (8) para el receptor (2) se encuentra unida a la subestructura deslizante de arrastre (5) en una de las zonas extremas de ésta.
2.- Sistema de concentración solar según la reivindicación 1 , en el que el receptor solar (2) está conectado con un sistema que opera a temperatura superior a 580ºC y con densidad energética superior a 1000kW/m2.
3.- Sistema de concentración solar según la reivindicación 2, en el que el sistema que opera a temperatura superior a 580ºC y con densidad energética superior a 1000kW/m2 es un motor Stirling.
4.- Sistema de concentración solar según la reivindicación 2, en el que el sistema que opera a temperatura superior a 580ºC y con densidad energética superior a 1000kW/m2 es una microturbina, un motor de hidrógeno o un sistema de producción de hidrógeno por disociación de agua.
5.- Sistema de concentración solar según cualquiera de las reivindicaciones anteriores, en el que el receptor solar (2) se encuentra sobre un elemento móvil (12) con movimiento relativo con respecto a la subestructura de soporte (8).
6.- Sistema de concentración solar según la reivindicación 5, en el que el elemento móvil (12) es un carro que puede desplazarse sobre unos raíles (13) situados en la subestructura de soporte (8).
7.- Sistema de concentración solar según cualquiera de las reivindicaciones anteriores, en el que el receptor solar (2) se encuentra en el extremo de la subestructura de soporte (8) que está más alejado de la subestructura deslizante de arrastre (5).
8.- Sistema de concentración solar según cualquiera de las reivindicaciones anteriores, en el que la superficie reflectora (1) es una superficie de forma parabólica.
9.- Sistema de concentración solar según cualquiera de las reivindicaciones anteriores, que comprende adicionalmente una estructura intermedia de acoplamiento situada entre la subestructura deslizante de arrastre (5) y la subestructura autoportante (7).
10.- Sistema de concentración solar según la reivindicación 8, en el que la estructura intermedia de acoplamiento está formada por amortiguadores, silentblocks, capas de estructura metálica o espuma tipo foam.
11.- Sistema de concentración solar según cualquiera de las reivindicaciones anteriores, que comprende adicionalmente una estructura intermedia de acoplamiento (15) situada entre la subestructura deslizante de arrastre (5) y la subestructura de soporte (8).
12.- Sistema de concentración solar según cualquiera de las reivindicaciones anteriores, en el que la subestructura de refuerzo (6) es una estructura articulada, un elemento sólido o un elemento con perforaciones.
PCT/ES2020/070130 2019-03-15 2020-02-21 Sistema de concentración solar WO2020188130A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20713941.1A EP3940312A1 (en) 2019-03-15 2020-02-21 Solar concentration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201930244 2019-03-15
ES201930244A ES2783725B2 (es) 2019-03-15 2019-03-15 Sistema de concentración solar

Publications (1)

Publication Number Publication Date
WO2020188130A1 true WO2020188130A1 (es) 2020-09-24

Family

ID=69960662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070130 WO2020188130A1 (es) 2019-03-15 2020-02-21 Sistema de concentración solar

Country Status (3)

Country Link
EP (1) EP3940312A1 (es)
ES (1) ES2783725B2 (es)
WO (1) WO2020188130A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111184A (en) * 1977-04-06 1978-09-05 Nasa Sun tracking solar energy collector
DE8415444U1 (de) 1984-05-21 1989-12-14 Mayr, Günter, Dipl.-Ing. (FH), 8000 München Reflektor
US20100147284A1 (en) * 2008-12-17 2010-06-17 Polk Sr Dale E Parabolic solar energy collector apparatus
US20110162692A1 (en) * 2008-07-11 2011-07-07 Michele Luca Giacalone Solar apparatus for concurrent heating and power generation duty
WO2014037599A1 (es) 2012-09-07 2014-03-13 Abengoa Solar New Technologies, S.A. Estructura para sistema de concentración solar puntual de tipo disco, y sistema de concentración que incorpora dicha estructura
US20180041038A1 (en) * 2016-08-04 2018-02-08 Hong Deng Hybrid power generation station

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3372832A1 (en) * 2017-03-09 2018-09-12 Ripasso Energy AB Hybrid solar powered stirling engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111184A (en) * 1977-04-06 1978-09-05 Nasa Sun tracking solar energy collector
DE8415444U1 (de) 1984-05-21 1989-12-14 Mayr, Günter, Dipl.-Ing. (FH), 8000 München Reflektor
US20110162692A1 (en) * 2008-07-11 2011-07-07 Michele Luca Giacalone Solar apparatus for concurrent heating and power generation duty
US20100147284A1 (en) * 2008-12-17 2010-06-17 Polk Sr Dale E Parabolic solar energy collector apparatus
WO2014037599A1 (es) 2012-09-07 2014-03-13 Abengoa Solar New Technologies, S.A. Estructura para sistema de concentración solar puntual de tipo disco, y sistema de concentración que incorpora dicha estructura
US20180041038A1 (en) * 2016-08-04 2018-02-08 Hong Deng Hybrid power generation station

Also Published As

Publication number Publication date
EP3940312A1 (en) 2022-01-19
ES2783725A1 (es) 2020-09-17
ES2783725B2 (es) 2021-02-25

Similar Documents

Publication Publication Date Title
ES2344311T3 (es) Sistemas de colector solar parabolico con medios de seguimiento giratorio.
ES2232232B1 (es) Faceta de reflector solar controlada termicamente con recuperacion de calor.
US9476612B2 (en) Beam-forming concentrating solar thermal array power systems
ES2375389B1 (es) Planta de concentración solar tipo fresnel con reconcentrador secundario optimizado.
ES2758188T3 (es) Seguidor solar con dispositivo reductor de espacio libre
EP2016344B1 (en) Hyperbolic solar trough field system
WO2006120260A1 (es) Central termoeléctrica solar
US20140001766A1 (en) Electromagnetic Radiation Collector
EP0769121B1 (en) Improved solar collector
ES2783725B2 (es) Sistema de concentración solar
ES2803101B2 (es) Colector cilindro-parabolico bifuncional e instalacion que comprende dicho colector
ES2453716A1 (es) Estructura para sistema de concentración solar puntual de tipo disco, y sistema de concentración que incorpora dicha estructura
KR20100094471A (ko) 태양에너지 집적기
WO2011080365A1 (es) Colector solar cilindro paramétrico con reconcentrador secundario optimizado y su procedimiento de diseño
ES2368238A1 (es) Disco solar paramétrico con estructura modular y método de montaje.
KR102639830B1 (ko) 태양열과 풍력에너지를 이용한 에너지 융합형 발전시스템
EP3335246B1 (en) Dual-use solar energy conversion system
KR102618303B1 (ko) 오목형 반사경을 이용한 태양광 축열장치
ES2849598T3 (es) Helióstato de simetría central y central solar con un receptor y una pluralidad de helióstatos
WO2011076963A1 (es) Disco colector concentrador de radiación solar de doble reflexión y foco fijo
ES2328771B1 (es) Sistema de captacion de energia solar termica.
KR20240143024A (ko) 태양 위치 추적식 태양열 집열 시스템
ES1270324U (es) Colector solar cilindro-parabólico de receptor fijo.
ES2575743A1 (es) Equipo captador solar
ES1061392U (es) Posicionador tipo hexapodo para seguimiento solar de reflectores solares.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20713941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020713941

Country of ref document: EP