WO2020187135A1 - 生成波束的方法和装置 - Google Patents

生成波束的方法和装置 Download PDF

Info

Publication number
WO2020187135A1
WO2020187135A1 PCT/CN2020/079106 CN2020079106W WO2020187135A1 WO 2020187135 A1 WO2020187135 A1 WO 2020187135A1 CN 2020079106 W CN2020079106 W CN 2020079106W WO 2020187135 A1 WO2020187135 A1 WO 2020187135A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
terminal device
spatial orientation
network device
spatial
Prior art date
Application number
PCT/CN2020/079106
Other languages
English (en)
French (fr)
Inventor
竺旭东
秦博雅
朱有团
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20773368.4A priority Critical patent/EP3917026A4/en
Publication of WO2020187135A1 publication Critical patent/WO2020187135A1/zh
Priority to US17/474,724 priority patent/US20210409970A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for generating beams.
  • the above-6GHz millimeter wave (millimeter wave, mmWave) frequency band is introduced, and commonly used frequency points are 28GHz, 39GHz, 60GHz, etc.
  • the mmWave frequency band is used in wireless mobile communications. Due to the short wavelength, the signal attenuates quickly when propagating in space.
  • the base station (BS) side often uses an antenna array to form beamforming (BF), so that the signal forms an energy convergence in space. Accurately point to the direction of the user equipment (UE) to improve the signal to noise ratio (SNR) received by the UE.
  • BS base station
  • BF beamforming
  • BS will continue to expand the array size and increase the number of antennas.
  • the coverage area of the formed beam in the horizontal and vertical directions will become smaller and smaller.
  • one sector usually needs to cover an area of 120° horizontally and 30° vertically.
  • the cell-level broadcast channel is covered by a small number of wide beams, and the user-level data channel is covered by more narrow beams.
  • the BS polls the broadcast channel with different wide beams, and the UE selects the optimal wide beam through the broadcast channel and feeds back the ID to the BS.
  • the BS scans the UE with N narrow beams corresponding to the optimal wide beam (the coverage of the N narrow beams includes the coverage of the optimal wide beam).
  • the UE measures the RSRP of the narrow beam and reports the measurement result to the network device, so that the network device generates a corresponding beam to align the spatial direction of the UE. If the UE is in the middle of two narrow beams, the RSRP value of the narrow beam measured by the UE may be easily affected by factors such as measurement error, noise, interference, etc., so that the network equipment may not accurately estimate the spatial orientation of the terminal equipment. Therefore, the accuracy of this method in the prior art is not accurate enough to accurately estimate the direction of the UE.
  • the present application provides a method and device for generating a beam. By judging whether the beam has converged to the spatial direction of the terminal device, and generating the beam under the condition of convergence, it helps to improve the accuracy of estimating the spatial direction of the terminal device.
  • a method for generating beams including: a network device determines whether the spatial directions of the N beams converge to the spatial directions of a terminal device, where N is an integer greater than or equal to 3; In the case where the spatial orientation of the N beams converges to the spatial orientation of the terminal device, a digital transmission beam is generated, which can be aimed at the center of the coverage area of the N beams, wherein the spatial orientation of the N beams converges
  • the spatial direction to the terminal device means that the measurement results of the N beams meet a preset condition.
  • the spatial orientation of the N beams converging to the spatial orientation of the terminal device may be understood as the measurement result of the N beams on the terminal device side meeting a preset condition.
  • the network device may receive the measurement results of the N beams from the terminal device.
  • the method further includes: adjusting the N beams when the spatial directions of the N beams do not converge to the spatial directions of the terminal device.
  • the network device may adjust the N beams until convergence.
  • the preset condition refers to: the reference signal received power RSRP value of each of the N beams is equal.
  • the network device may determine whether the spatial orientation of the N beams converges to the spatial orientation of the terminal device through the RSRP value of the beam. If the RSRP values of the N beams are equal, it is considered that the spatial directions of the N beams converge to the spatial directions of the terminal device.
  • the measurement result further includes a reference signal received power RSRP value of each beam in the N beams, and/or identification information of each beam in the N beams.
  • adjusting the N beams by the network device includes: adjusting the spatial orientation and/or beam range of the N beams by the network device.
  • the network device may adjust the spatial orientation and/or beam range of the N beams to increase the beam gain and align the spatial orientation of the terminal device.
  • the method further includes: the network device acquires N narrow beams capable of covering the coverage of the first wide beam based on a preset time.
  • the network device acquires N narrow beams capable of covering the coverage of the first wide beam based on a preset time.
  • the optimal wide beam of the terminal device will not change, but the spatial orientation of the terminal device may also suddenly jump out of the coverage of the current N beams, for example, the terminal device is caught by a pedestrian , Vehicles, buildings and other obstructions.
  • a preset time (or called the algorithm restart time) can be set. After the preset time is reached, the network device reacquires N beams, and the obtained N beams cover the optimal wide beam again (ie The first wide beam) coverage.
  • the method further includes: the network device obtains N updated beams, where the wide beams where the N updated beams are located are different from the wide beams where the N beams are located .
  • the network device needs to reacquire N updated beams, and the N updated beams cover the optimal wide beam after the change of the terminal device.
  • a method for generating beams including: a terminal device measures N beams, where N is an integer greater than or equal to 3; the terminal device sends the measurement of the N beams to a network device
  • the measurement result includes a parameter for estimating the spatial orientation of the terminal device, wherein the measurement result is used by the network device to determine whether the spatial orientation of the N beams converges to the spatial orientation of the terminal device
  • the convergence of the spatial orientation of the N beams to the spatial orientation of the terminal device means that the beam quality of the N beams meets a preset condition. Therefore, the terminal device reports the measurement results of the N beams to the network device to help the network device determine whether the spatial orientation of the N beams converges to the spatial orientation of the terminal device.
  • the preset condition refers to: the reference signal received power RSRP value of each of the N beams is equal.
  • the measurement result further includes a reference signal received power RSRP value of each beam in the N beams, and/or identification information of each beam in the N beams.
  • the method further includes: the terminal device determines N updated beams, and the wide beams where the N updated beams are located are different from the wide beams where the N beams are located ; The terminal device sends the N updated beams to the network device.
  • the terminal device can determine N updated beams and send N updated beams to the network device, so that the network device can use the N updated beams Track the spatial orientation of the terminal device.
  • a communication device in a third aspect, includes a module for executing the method in the first aspect or any possible implementation of the first aspect, or for executing the second aspect or the second aspect. Any possible implementation of the method module.
  • a communication device in a fourth aspect, may be a network device designed in the above method, or a chip set in the network device.
  • the communication device includes a processor, which is coupled to a memory, and can be used to execute instructions in the memory to implement the method executed by the network device in the first aspect and any one of its possible implementation manners.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device may be the terminal device in the above method design, or may be a chip set in the terminal device.
  • the communication device includes a processor, coupled with a memory, and can be used to execute instructions in the memory to implement the method executed by the terminal device in the second aspect and any one of its possible implementation manners.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a program is provided, when the program is executed by a processor, it is used to execute any method in the first aspect or the second aspect and possible implementation manners thereof.
  • a program product includes: program code, when the program code is executed by a communication unit, a processing unit or a transceiver, or a processor of a communication device (for example, a network device),
  • the communication device executes any method in the foregoing first aspect and its possible implementation manners.
  • a program product includes: program code, when the program code is executed by a communication unit, a processing unit or a transceiver, or a processor of a communication device (for example, a terminal device),
  • the communication device executes any method in the foregoing second aspect and its possible implementation manners.
  • a computer-readable storage medium stores a program, and the program causes a communication device (for example, a network device) to execute the above-mentioned first aspect and possible implementations thereof Any method.
  • a computer-readable storage medium stores a program, and the program enables a communication device (for example, a terminal device) to execute the above-mentioned second aspect and possible implementations thereof Any method.
  • Figure 1 is a schematic diagram of a wide beam and a narrow beam
  • Fig. 2 is a schematic flowchart of a method for generating a beam according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a specific example of applying the method for generating a beam according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of another specific example of applying the method for generating a beam according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of a situation where the spatial orientation of a terminal device jumps
  • FIG. 6 is a schematic diagram of a situation where the wide beam of the terminal device hops
  • Figure 7 is a diagram of simulation results under different scenarios when the speed of the terminal device is 20kmph;
  • Figure 8 is the simulation results of different scenarios when the speed of the terminal device is 30kmph;
  • Figure 9 is the simulation results of different scenarios when the speed of the terminal device is 40kmph.
  • Figure 10 is the simulation results of different scenarios when the speed of the terminal device is 60kmph;
  • FIG. 11 is a schematic block diagram of an apparatus for generating a beam according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an apparatus for generating a beam according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of an apparatus for generating a beam according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an apparatus for generating a beam according to another embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the network device in the embodiment of the application may be a device used to communicate with a terminal device.
  • the network device may be a global system for mobile communications (GSM) system or code division multiple access (CDMA)
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • the base transceiver station (BTS) in the LTE system can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station (evolved) in the LTE system.
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • evolved evolved base station
  • NodeB eNB or eNodeB
  • it can also be a wireless controller in a cloud radio access network (CRAN) scenario
  • the network device can be a relay station, access point, vehicle-mounted device, wearable device, and future
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • a beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam can include one or more antenna ports for transmitting data channels, control channels, and sounding signals.
  • a transmit beam can refer to the distribution of signal strength formed in different directions in space after a signal is transmitted by an antenna.
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space. It is understandable that one or more antenna ports forming a beam can also be regarded as an antenna port set. The embodiment of the beam in the agreement can still be a spatial filter.
  • Beam quality can be based on reference signal received power (reference signal received power, RSRP), block error rate (block error rate, BLER), reference signal received quality (reference signal received quality, RSRQ), reference signal received strength indicator (received) Signal strength indicator, RSSI), signal to interference and noise ratio (SINR), signal quality indicator (channel quality indicator, CQI), correlation and other metrics. It should be understood that the measurement index of beam quality is not limited in the embodiment of the present application.
  • Figure 1 is a schematic diagram of a wide beam and a narrow beam.
  • one sector can be covered by the 6 wide beams (Wide beam 0-Wide beam 5) in Figure 1. This sector needs to cover an area of 120° horizontally and 30° vertically.
  • the broadcast channel of the network device is carried by a wide beam, which performs periodic scanning.
  • the terminal device can select the optimal wide beam from the broadcast channel, for example, wide beam 1.
  • the numbers of the 9 narrow beams are ⁇ 3,4,5,12,13,14,21,22,23 ⁇ , and the joint coverage of the 9 narrow beams includes the coverage of the optimal wide beam .
  • the terminal device can compare the reference signal received power RSRP corresponding to the M narrow beams to determine the optimal narrow beam, and feed back the ID to the network device.
  • an embodiment of the present application proposes a method for generating beams, by judging whether the spatial orientation of the N beams converges to the spatial orientation of the terminal device, and then the spatial orientation of the N beams When the spatial pointing converges to the spatial pointing of the terminal device, generating a digital transmission beam helps to improve the accuracy of estimating the spatial pointing of the terminal device.
  • the method for generating a beam in an embodiment of the present application will be described in detail below in conjunction with FIG. 2 to FIG. 10.
  • FIG. 2 shows a schematic flowchart of a method 200 for generating a beam according to an embodiment of the present application. As shown in FIG. 2, the method 200 includes:
  • the network device determines whether the spatial directions of the N beams converge to the spatial directions of the terminal device, where N is an integer greater than or equal to 3.
  • the N beams are N narrow beams, and the area covered by the N narrow beams includes the range of the optimal wide beam selected by the terminal device.
  • the terminal device measures the beam quality of each of the N beams (beam quality can refer to the foregoing description), for example, measures the RSRP of each beam to obtain the measurement results of the N beams.
  • the terminal device can report the measurement results of the N beams to the network device.
  • the measurement results of the N beams may include: the measurement results of each of the N beams (or called scan results).
  • the measurement result may include a parameter for estimating the spatial orientation of the terminal device.
  • the parameters used to estimate the spatial orientation of the terminal device may include: departure angle (angle of departure, AOD), angle of arrival (angle of arrival, AOA), launch angle, horizontal angle, vertical angle and other parameters.
  • the measurement result further includes the RSRP value of each beam and/or identification information (ID) of each beam.
  • the network device may determine whether the spatial directions of the N beams converge to the spatial directions of the terminal device based on the measurement results of the N beams reported by the terminal device.
  • the digital transmission beam can be aimed at the center of the coverage area of the N beams, wherein
  • the spatial orientation of the N beams converging to the spatial orientation of the terminal device means that the measurement results of the N beams satisfy a preset condition.
  • the spatial orientation of the N beams converging to the spatial orientation of the terminal device may be understood as the measurement result of the N beams on the terminal device side meeting a preset condition.
  • the preset condition may include: the RSRP value of each beam in the N beams is equal.
  • the network device may determine whether the N beams converge to the spatial orientation of the terminal device according to the RSRP values of the N beams. If the RSRP values of the N beams are all equal, it is considered that the N beams converge to the spatial orientation of the terminal device; if the RSRP values of at least two beams among the RSRP values of the N beams are not equal, the N beams are considered The beam does not converge to the spatial direction of the terminal device. Here, if the RSRP values of the N beams are all equal.
  • the same RSRP value of each beam in the N beams means that the RSRP value of each beam is equal under a certain measurement accuracy.
  • the measurement accuracy can be based on actual conditions. Select.
  • the quantization accuracy of RSRP is 1 decibel (dB)
  • dB decibel
  • the RSRP values of N beams are the same under this accuracy, it is considered that the N beams converge to the spatial direction of the terminal device. If the N beams converge to the spatial orientation of the terminal device, the center of the coverage area corresponding to the digital transmission beam generated by the network device based on the N beams coincides with the center of the spatial orientation of the terminal device.
  • the RSRP value of each beam is equal can also be measured by the RSRP difference between the beams. If the RSRP difference between the beams tends to infinitely small, the RSRP of the beams can also be considered equal.
  • the preset condition may include: the RSRP difference between every two beams in the N beams satisfies a preset difference, and the preset difference may be determined based on actual conditions. Specifically, the preset difference may be sufficiently small. If the RSRP difference between every two beams is less than or equal to the preset difference, it can be considered that the preset condition is met.
  • the method 200 further includes: adjusting the N beams when the spatial orientation of the N beams does not converge to the spatial orientation of the terminal device.
  • the network device determines that the spatial directions of the N beams have not converged to the spatial directions of the terminal device, the network device needs to adjust the N beams so that the adjusted N beams The spatial orientation can eventually converge to the spatial orientation of the terminal device. It should be noted that if the network device determines based on the measurement result that the spatial orientation of the N beams does not converge to the spatial orientation of the terminal device, the network device can always perform the above process, that is, reacquire the measurement results of the N beams, The adjustment is continued until the spatial directions of the N beams converge to the spatial directions of the terminal device. Therefore, in the embodiment of the present application, the network device can use a fixed number of dynamic beams to perform user-level beam precise alignment and movement tracking.
  • adjusting the N beams by the network device includes: adjusting the spatial orientation and/or beam range of the N beams by the network device.
  • the network equipment adjusts the spatial orientation of the N beams (which can be understood as an angle in a two-dimensional space, such as departure angle, arrival angle, etc.) to align the estimated spatial orientation of the terminal device, and/or, Reduce the beam range (or width) of the N beams to increase the beam gain. Narrowing the beam range can be understood as making the energy of the beam more concentrated at one angle.
  • the network device adjusts the spatial direction and/or beam width of the beam by using the scanning result fed back by the terminal device, and can narrow the beam range to the narrowest beam (corresponding to the highest gain) of the network device.
  • the network device can estimate the spatial orientation of the terminal device through an interpolation algorithm.
  • the interpolation algorithm can be a "sum and difference beam angle measurement" algorithm in the radar field. It should be understood that those skilled in the art can use an interpolation algorithm to estimate the spatial orientation of the terminal device, or use other suitable algorithms to estimate the spatial orientation of the terminal device, which is not limited in this embodiment of the application.
  • the interpolation algorithm is an existing classic algorithm for simplicity. The embodiment of the application does not specifically introduce the interpolation algorithm.
  • the joint coverage of the four narrow beams includes the coverage of the wide beam 1.
  • Figure 3 shows an example of 4 narrow beams in different time periods.
  • the network device uses 4 narrow beams to cover the optimal wide beam 1, and generates 4 narrow beam digital transmission beams.
  • the digital transmission beams are aligned at the center of the coverage area of the 4 narrow beams.
  • the center of the digital beam has not yet coincided with the black circle.
  • the black circle in Figure 3 is the spatial orientation of the terminal device estimated by the network device.
  • the RSRP of beam 3 fed back by the terminal device > the RSRP of beam 1 (or the RSRP of beam 4)> the RSRP of beam 2 .
  • FIG. 3 and FIG. 4 are only to facilitate those skilled in the art to understand the embodiments of the present application, and are not intended to limit the embodiments of the present application to the specific scenarios illustrated. Those skilled in the art can obviously make various equivalent modifications or changes based on the examples of FIGS. 3 and 4, and such modifications or changes also fall within the scope of the embodiments of the present application.
  • the optimal wide beam of the terminal device will not change, but the spatial orientation of the terminal device may suddenly jump out of the coverage of the current N beams.
  • the terminal device is blocked by pedestrians and vehicles. , Buildings and other obstructions.
  • a preset time (or called algorithm restart time) can be set.
  • the network device reacquires N beams, and the obtained N beams cover the coverage of the optimal wide beam again range.
  • the network device reacquires the N beams, it can continue to perform the method described above to adjust the N beams so that the spatial directions of the N beams converge to the spatial directions of the terminal device, which will not be repeated here.
  • the method 200 further includes: the network device acquires N beams capable of covering the first wide beam based on a preset time. Among them, the first wide beam represents the optimal wide beam of the terminal device.
  • the preset time can be an absolute time (for example, realized by a timer) or a relative time, which is not limited.
  • the preset time may be determined by the network device according to system parameters such as frame structure and beam scanning time. When the preset time is reached, the network device reacquires N beams.
  • Figure 5 shows a situation where the spatial orientation of the terminal device jumps.
  • the network device can reacquire 4 beams in the 10th second to cover the coverage of the optimal wide beam.
  • the optimal wide beam of the terminal device changes.
  • the direct path of the terminal device is suddenly blocked by obstacles such as pedestrians, vehicles, and buildings, and it switches to another reflection path.
  • the terminal device jumps from wide beam 0 to wide beam 5.
  • the network device needs to reacquire N updated beams.
  • the network device obtains the N updated beams, it can continue to perform the method described above, so that the spatial directions of the N updated beams converge to the spatial directions of the terminal device, which will not be repeated here.
  • the method 200 further includes: the network device obtains N updated beams, and the coverage of the N updated beams is different from the coverage of the N beams.
  • the network device needs to enlarge the beam width and reacquire N updated beams.
  • the N updated beams can cover the coverage area of the updated wide beam of the terminal device.
  • the network device re-tracks or adjusts based on the N updated beams to obtain a spatially directed beam that can reconverge to the terminal device. Therefore, even if the terminal device hops and the wide beam changes, the beam generation method in the embodiment of the present application is still applicable.
  • the terminal device moves horizontally 30 meters (m) directly in front of the network device, and the speed of the terminal device is ⁇ 20,30,40,60 ⁇ kilometers per hour (kmph); the period of the network device's narrow beam scanning is 40 milliseconds (ms); the channel is line of sight (LOS); the abscissa X of the simulation result is the ratio of symbol energy to noise rower spectral density (EsN0), and the range is [-30,10] decibels (dB); the ordinate Y of the simulation results is the average throughput rate of the terminal equipment in the motion track, in megabits per second (Mbps).
  • Mbps megabits per second
  • Figure 7 is the simulation results of different scenarios when the speed of the terminal device (which can be recorded as UeV) is 20kmph.
  • Figure 8 is the simulation results of different scenarios when the speed of the terminal device is 30kmph.
  • Figure 9 shows the simulation results of different scenarios when the speed of the terminal device is 40kmph.
  • Figure 10 shows the simulation results of different scenarios when the speed of the terminal device is 60kmph.
  • the method of generating beams according to the embodiment of the present application is better than the method of using the prior art (including prior art 1 and prior art 2).
  • the speed of the terminal device is 60kmph
  • the average throughput rate corresponding to the solution in the prior art 1 The throughput rate is 15.83 Mbps
  • the average throughput rate corresponding to the solution of the prior art 2 is 17.47 Mpbs.
  • the average throughput rate of the solution using the embodiment of the present application is increased by about 30% compared with the solution of the prior art 1 and about 18% compared with the solution of the prior art 2. It can be seen that the method for generating beams in the embodiments of the present application uses reduced beams from 9 to 5, which achieves faster and more accurate beam alignment and movement tracking, enhances user experience in mobile scenes, and improves system performance. Overall throughput rate.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • FIG. 11 shows a schematic block diagram of an apparatus 1100 for generating a beam according to an embodiment of the present application.
  • the device 1100 is used to execute the method executed by the network device in the foregoing method embodiment.
  • the specific form of the apparatus 1100 may be a network device or a chip in a network device.
  • the embodiments of this application do not limit this.
  • the device 1100 includes:
  • the processing module 1110 is configured to determine whether the spatial orientation of the N beams converges to the spatial orientation of the terminal device, and N is an integer greater than or equal to 3;
  • the processing module 1110 is further configured to generate a digital transmission beam when the spatial orientation of the N beams converges to the spatial orientation of the terminal device, and the digital transmission beam can be aligned with the coverage of the N beams
  • the center of the area, where the spatial orientation of the N beams converges to the spatial orientation of the terminal device means that the measurement results of the N beams meet a preset condition.
  • the processing module 1110 may call the transceiver module 1120 to receive the measurement results of the N beams from the terminal device.
  • the processing module 1110 is further configured to adjust the N beams when the spatial directions of the N beams do not converge to the spatial directions of the terminal device.
  • the preset condition refers to that the reference signal received power RSRP value of each of the N beams is equal.
  • the processing module 1110 is configured to adjust the N beams, which specifically includes: adjusting the spatial direction and/or beam range of the N beams.
  • the processing module 1110 is further configured to: based on a preset time, obtain N narrow beams that can cover the coverage of the first wide beam.
  • the processing module 1110 may call the transceiver module 1120 to obtain the IDs of the N narrow beams.
  • the processing module 1110 is further configured to: obtain N updated beams, and the wide beams where the N updated beams are located are different from the wide beams where the N beams are located.
  • the processing module 1110 may call the transceiver module 1120 to obtain the IDs of the N updated beams.
  • the apparatus 1100 for generating a beam may correspond to the method of the network device in the foregoing method embodiment, for example, the method in FIG. 2, and the above-mentioned and other management operations and/or the various modules in the apparatus 1100
  • the or functions are to implement the corresponding steps of the method of the network device in the foregoing method embodiment, and therefore, the beneficial effects in the foregoing method embodiment can also be achieved. For brevity, details are not described here.
  • each module in the device 1100 may be implemented in the form of software and/or hardware, which is not specifically limited.
  • the device 1100 is presented in the form of functional modules.
  • the "module” here may refer to application-specific integrated circuits ASIC, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the apparatus 1100 may adopt the form shown in FIG. 12.
  • the processing module 1110 may be implemented by the processor 1201 shown in FIG. 12.
  • the transceiver module 1120 may be implemented by the transceiver 1203 shown in FIG. 12.
  • the processor is implemented by executing a computer program stored in the memory.
  • the function and/or implementation process of the transceiver module 1110 may also be implemented by pins or circuits.
  • the memory is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the computer device, such as the memory shown in FIG. 12 1202.
  • FIG. 12 shows a schematic structural diagram of an apparatus 1200 for generating a beam according to an embodiment of the present application.
  • the apparatus 1200 includes a processor 1201.
  • the processor 1201 is configured to determine whether the spatial orientation of the N beams converges to the spatial orientation of the terminal device, where N is an integer greater than or equal to 3; In the case where the spatial orientation of the N beams converges to the spatial orientation of the terminal device, a digital transmission beam is generated, which can be aimed at the center of the coverage area of the N beams, wherein the spatial orientation of the N beams converges
  • the spatial direction to the terminal device means that the measurement results of the N beams satisfy a preset condition.
  • the processor 1201 is configured to call an interface to perform the following actions: receive measurement results of the N beams from the terminal device.
  • the processor 1201 may call an interface to perform the above-mentioned transceiving action, where the called interface may be a logical interface or a physical interface, which is not limited.
  • the physical interface can be implemented by a transceiver.
  • the device 1200 further includes a transceiver 1203.
  • the device 1200 further includes a memory 1202, and the memory 1202 can store the program code in the foregoing method embodiment, so that the processor 1201 can call it.
  • the device 1200 includes the processor 1201, the memory 1202, and the transceiver 1203, the processor 1201, the memory 1202, and the transceiver 1203 communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the processor 1201, the memory 1202, and the transceiver 1203 may be implemented by chips.
  • the processor 1201, the memory 1202, and the transceiver 1203 may be implemented on the same chip or may be implemented on different chips. Or any combination of two functions can be implemented in one chip.
  • the memory 1202 may store program codes, and the processor 1201 calls the program codes stored in the memory 1202 to implement corresponding functions of the device 1200.
  • apparatus 1200 may also be used to perform other steps and/or operations on the network device side in the foregoing embodiment, and for the sake of brevity, details are not described here.
  • FIG. 13 shows a schematic block diagram of an apparatus 1300 for generating a beam according to an embodiment of the present application.
  • the device 1300 is configured to execute the method executed by the terminal device in the foregoing method embodiment.
  • the specific form of the apparatus 1300 may be a terminal device or a chip in a terminal device.
  • the embodiments of this application do not limit this.
  • the device 1300 includes:
  • the processing module 1310 is configured to measure N beams, where N is an integer greater than or equal to 3;
  • the transceiver module 1320 is configured to send the measurement results of the N beams to a network device, the measurement results include parameters for estimating the spatial orientation of the terminal device, and the measurement results are used by the network device to determine Whether the spatial directions of the N beams converge to the spatial directions of the terminal device, and whether the spatial directions of the N beams converge to the spatial directions of the terminal device means that the measurement results of the N beams meet a preset condition.
  • the preset condition refers to that the reference signal received power RSRP value of each of the N beams is equal.
  • the measurement result further includes the reference signal received power RSRP value of each beam in the N beams, and/or, the identification information of each beam in the N beams .
  • processing module 1310 is further configured to:
  • the transceiver module 1320 is configured to send the N updated beams to the network device.
  • the apparatus 1300 for generating a beam may correspond to the method of the terminal device in the foregoing method embodiment, and the foregoing and other management operations and/or functions of each module in the apparatus 1300 are used to implement the foregoing method.
  • the corresponding steps of the method of the terminal device in the example can also achieve the beneficial effects in the foregoing method embodiments. For brevity, details are not described here.
  • each module in the device 1300 may be implemented in the form of software and/or hardware, which is not specifically limited.
  • the apparatus 1300 is presented in the form of functional modules.
  • the "module” here may refer to application-specific integrated circuits ASIC, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the apparatus 1300 may adopt the form shown in FIG. 14.
  • the processing module 1310 may be implemented by the processor 1401 shown in FIG. 14.
  • the transceiver module 1320 may be implemented by the transceiver 1403 shown in FIG. 14.
  • the processor is implemented by executing a computer program stored in the memory.
  • the function and/or implementation process of the transceiver module 1320 may also be implemented through pins or circuits.
  • the memory is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the computer device, such as the memory shown in FIG. 1402.
  • FIG. 14 shows a schematic structural diagram of an apparatus 1400 for generating a beam according to an embodiment of the present application.
  • the device 1400 includes a processor 1401.
  • the processor 1401 is configured to measure N beams, where N is an integer greater than or equal to 3; the processor 1401 is configured to call an interface to perform the following actions: Send the measurement results of the N beams, where the measurement results include parameters for estimating the spatial orientation of the terminal device, where the measurement results are used by the network device to determine whether the spatial orientations of the N beams converge The spatial orientation to the terminal device, the spatial orientation of the N beams converging to the spatial orientation of the terminal device means that the measurement results of the N beams satisfy a preset condition.
  • the processor 1401 may call an interface to perform the above-mentioned transceiving actions, where the called interface may be a logical interface or a physical interface, which is not limited.
  • the physical interface can be implemented by a transceiver.
  • the device 1400 further includes a transceiver 1403.
  • the device 1400 further includes a memory 1402, and the memory 1402 can store the program codes in the foregoing method embodiments, so that the processor 1401 can call them.
  • the device 1400 includes the processor 1401, the memory 1402, and the transceiver 1403, the processor 1401, the memory 1402, and the transceiver 1403 communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the processor 1401, the memory 1402, and the transceiver 1403 may be implemented by chips.
  • the processor 1401, the memory 1402, and the transceiver 1403 may be implemented on the same chip or may be implemented on different chips. Or any combination of two functions can be implemented in one chip.
  • the memory 1402 may store program codes, and the processor 1401 calls the program codes stored in the memory 1402 to implement corresponding functions of the device 1400.
  • apparatus 1400 may also be used to perform other steps and/or operations on the terminal device side in the foregoing embodiments, and for the sake of brevity, details are not described here.
  • the methods disclosed in the above embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components can also be system on chip (SoC), central processor unit (CPU), or network processor (network processor).
  • SoC system on chip
  • CPU central processor unit
  • network processor network processor
  • processor can also be a digital signal processing circuit (digital signal processor, DSP), can also be a microcontroller (microcontroller unit, MCU), can also be a programmable controller (programmable logic device, PLD) or other Integrated chip.
  • DSP digital signal processor
  • MCU microcontroller unit
  • PLD programmable controller
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory ROM, random access memory RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种生成波束的方法和装置,有助于提高估计终端设备空间指向的精度。该方法包括:网络设备确定所述N个波束的空间指向是否收敛到终端设备的空间指向,N是大于或等于3的整数;在所述N个波束的空间指向收敛到所述终端设备的空间指向情况下,生成数传波束,所述数传波束能够对准所述N个波束的覆盖区域的中心,其中,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的测量结果满足预设条件。

Description

生成波束的方法和装置
本申请要求于2019年3月15日提交中国国家知识产权局、申请号为201910199007.3、申请名称为“生成波束的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种生成波束的方法和装置。
背景技术
在新空口(new radio,NR)中,引入了above-6GHz的毫米波(millimeter wave,mmWave)频段,常用的频点有28GHz、39GHz、60GHz等。目前将mmWave频段应用于无线移动通信中,由于波长短,信号在空间中传播时衰减快。同时,为发挥mmWave天线尺寸小的优势(天线尺寸与波长成正比),基站(base station,BS)侧常采用天线阵列来形成波束赋形(beamforming,BF),使信号在空间形成能量汇聚,精确指向用户设备(user equipment,UE)所在方向,以提升UE接收信噪比(signal to noise ratio,SNR)。BS为提升mmWave频段的覆盖和容量,会不断扩大阵列尺寸、增加天线数量。相应的,形成的波束在水平、垂直方向上的覆盖范围也会越来越小。在典型的3扇区覆盖中,1个扇区通常需要覆盖水平120°、垂直30°的区域。小区级广播信道由少量宽波束进行覆盖,用户级数据信道由更多的窄波束进行覆盖。
BS用不同宽波束来轮询广播信道,UE通过广播信道选择最优宽波束,并反馈ID给BS。BS将最优宽波束对应的N个窄波束(N个窄波束的覆盖范围包含最优宽波束的覆盖范围)对UE进行扫描。UE通过对窄波束的RSRP进行测量,并将测量结果上报给网络设备,使得网络设备生成相应的波束对准UE的空间指向。如果UE处于2个窄波束中间,UE测得的窄波束的RSRP值可能容易被测量误差、噪声、干扰等因素影响,从而使得网络设备对终端设备空间指向的估计不准确。因此,现有技术这种方式精度不够准确,无法精准估计UE的指向。
发明内容
本申请提供一种生成波束的方法和装置,通过判断波束是否收敛到终端设备的空间指向,并在收敛的情况下生成波束,有助于提高估计终端设备空间指向的精度。
第一方面,提供了一种生成波束的方法,包括:网络设备确定所述N个波束的空间指向是否收敛到终端设备的空间指向,N是大于或等于3的整数;在所述N个波束的空间指向收敛到所述终端设备的空间指向情况下,生成数传波束,所述数传波束能够对准所述N个波束的覆盖区域的中心,其中,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的测量结果满足预设条件。
可选地,所述N个波束的空间指向收敛到所述终端设备的空间指向可以理解为N个波束在终端设备侧的测量结果满足预设条件。
可选地,所述网络设备可以接收来自所述终端设备的所述N个波束的测量结果。
在一种可能的实现方式中,所述方法还包括:在所述N个波束的空间指向未收敛到所述终端设备的空间指向情况下,调整所述N个波束。这里,如果网络设备判断所述N个波束的空间指向未收敛到所述终端设备的空间指向,那么网络设备可以对N个波束进行调整,直到收敛为止。
可选地,所述预设条件是指:所述N个波束中每个波束的参考信号接收功率RSRP值相等。这里,网络设备可以通过波束的RSRP值判断N个波束的空间指向是否收敛到所述终端设备的空间指向。如果N个波束的RSRP值相等,则认为N个波束的空间指向收敛到所述终端设备的空间指向。
可选地,所述测量结果中还包括所述N个波束中每个波束的参考信号接收功率RSRP值,和/或,所述N个波束中每个波束的标识信息。
在一种可能的实现方式中,所述网络设备对所述N个波束进行调整,包括:所述网络设备对所述N个波束的空间指向和/或波束范围进行调整。这里,网络设备可以对N个波束的空间指向和/或波束范围进行调整,以提高波束增益,对准终端设备的空间指向。
在一种可能的实现方式中,所述方法还包括:所述网络设备基于预设时间,获取能够覆盖第一宽波束的覆盖范围的N个窄波束。这里,在实际中会存在一种可能的情形,终端设备的最优宽波束不会发生变化,但是终端设备的空间指向也可能会突然跳出当前N个波束的覆盖范围,比如,终端设备被行人、车辆、建筑物等障碍遮挡的情形。为了应对此情形,可以设置一个预设时间(或称作算法重启时间),在到达该预设时间后,网络设备重新获取N个波束,得到的N个波束重新覆盖了最优宽波束(即第一宽波束)的覆盖范围。
在一种可能的实现方式中,所述方法还包括:所述网络设备获取N个更新后的波束,所述N个更新后的波束所在的宽波束与所述N个波束所在的宽波束不同。这里,如果终端设备的最优宽波束发生变化,网络设备需要重新获取N个更新后的波束,该N个更新后的波束覆盖了终端设备变化后的最优宽波束。
第二方面,提供了一种生成波束的方法,包括:终端设备对N个波束进行测量,其中,N是大于或等于3的整数;所述终端设备向网络设备发送所述N个波束的测量结果,所述测量结果中包括用于估计终端设备的空间指向的参数,其中,所述测量结果用于所述网络设备确定所述N个波束的空间指向是否收敛到所述终端设备的空间指向,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的波束质量满足预设条件。因此,终端设备通过向网络设备上报N个波束的测量结果,有助于网络设备判断该N个波束的空间指向是否收敛到所述终端设备的空间指向。
可选地,所述预设条件是指:所述N个波束中每个波束的参考信号接收功率RSRP值相等。
可选地,所述测量结果中还包括所述N个波束中每个波束的参考信号接收功率RSRP值,和/或,所述N个波束中每个波束的标识信息。
在一种可能的实现方式中,所述方法还包括:所述终端设备确定N个更新后的波束,所述N个更新后的波束所在的宽波束与所述N个波束所在的宽波束不同;所述终端设备 向所述网络设备发送所述N个更新后的波束。这里,如果终端设备的最优宽波束发生了变化,那么终端设备可以确定出N个更新后的波束,并向网络设备发送N个更新后的波束,以便于网络设备使用N个更新后的波束追踪终端设备的空间指向。
第三方面,提供了一种通信装置,该通信装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块,或者用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块。
第四方面,提供一种通信装置,该通信装置可以为上述方法设计中的网络设备,或者,为设置在网络设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面及其任意一种可能的实现方式中网络设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为设置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第五方面,提供一种通信装置,该通信装置可以为上述方法设计中的终端设备,或者,为设置在终端设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面及其任意一种可能的实现方式中终端设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为设置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供了一种程序,该程序在被处理器执行时,用于执行第一方面或第二方面及其可能的实施方式中的任一方法。
第七方面,提供了一种程序产品,所述程序产品包括:程序代码,当所述程序代码被通信装置(例如,网络设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一方面及其可能的实施方式中的任一方法。
第八方面,提供了一种程序产品,所述程序产品包括:程序代码,当所述程序代码被通信装置(例如,终端设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第二方面及其可能的实施方式中的任一方法。
第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得通信装置(例如,网络设备)执行上述第一方面及其可能的实施方式中的任一方法。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得通信装置(例如,终端设备)执行上述第二方面及其可能的实施方式中的任一方法。
附图说明
图1是宽波束与窄波束的示意图;
图2是根据本申请实施例的生成波束的方法的示意性流程图;
图3是应用本申请实施例的生成波束的方法的一个具体实例的示意图;
图4是应用本申请实施例的生成波束的方法的另一个具体实例的示意图;
图5是终端设备的空间指向发生跳变的情形的示意图;
图6是终端设备的宽波束发生跳变的情形的示意图;
图7是终端设备的速度为20kmph时不同方案下的仿真结果图;
图8是终端设备的速度为30kmph时不同方案下的仿真结果;
图9是终端设备的速度为40kmph时不同方案下的仿真结果;
图10是终端设备的速度为60kmph时不同方案下的仿真结果;
图11是根据本申请实施例的生成波束的装置的示意性框图;
图12是根据本申请实施例的生成波束的装置的示意性结构图;
图13是根据本申请另一实施例的生成波束的装置的示意性框图;
图14是根据本申请另一实施例的生成波束的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演 进的PLMN网络中的网络设备等,本申请实施例并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为了便于理解,下面对本申请实施例可能涉及到的术语或概念进行简单介绍。
波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束在协议中的体现还是可以空域滤波器(spatial filter)。
波束质量:可以通过参考信号接收功率(reference signal received power,RSRP),块误码率(block error rate,BLER),参考信号接收质量(reference signal received quality,RSRQ),参考信号接收强度指示(received signal strength indicator,RSSI),信号干扰噪声比(signal to interference and noise ratio,SINR),信号质量指示(channel quality indicator,CQI),相关性等度量指标度量。应理解,本申请实施例中对波束质量的度量指标不作限定。
图1是宽波束与窄波束的示意图。如图1所示,一个扇区可以被图1中的6个宽波束(宽波束0-宽波束5)覆盖。该扇区需要覆盖水平120°、垂直30°的区域。网络设备的广播信道由宽波束承载,进行周期性的扫描。终端设备可以从广播信道中选定最优宽波束, 比如,宽波束1。网络设备针对终端设备选定的最优宽波束,分配M个窄波束,比如,M=9。如图1所示,9个窄波束编号分别为{3,4,5,12,13,14,21,22,23},该9个窄波束的联合覆盖范围包括最优宽波束的覆盖范围。终端设备可以比较M个窄波束对应的参考信号接收功率RSRP来确定最优窄波束,并反馈ID给网络设备。
为了精确估计终端设备的空间指向,实现波束的最高增益,本申请实施例提出一种生成波束的方法,通过判断N个波束的空间指向是否收敛到终端设备的空间指向,然后在N个波束的空间指向收敛到终端设备的空间指向的情况下,生成数传波束,有助于提高估计终端设备空间指向的精度。下面将结合图2至图10详细描述本申请实施例的生成波束的方法。
图2示出了根据本申请实施例的生成波束的方法200的示意性流程图。如图2所示,所述方法200包括:
S210,网络设备确定N个波束的空间指向是否收敛到所述终端设备的空间指向,N是大于或等于3的整数。
这里,N个波束为N个窄波束,该N个窄波束覆盖的区域包括终端设备选择的最优宽波束的范围。具体而言,终端设备通过对N个波束中每个波束的波束质量(波束质量可以参考前文的描述)进行测量,比如,测量每个波束的RSRP,得到N个波束的测量结果。终端设备可以将N个波束的测量结果上报给网络设备。这里,N个波束的测量结果可以包括:N个波束中每个波束的测量结果(或称作扫描结果)。可选地,所述测量结果中可以包括用于估计终端设备的空间指向的参数。可选地,用于估计终端设备的空间指向的参数可以包括:离去角(angle of departure,AOD)、到达角(angle of arrival,AOA)、发射角、水平角、垂直角等参数。
可选地,所述测量结果还包括每个波束的RSRP值和/或每个波束的标识信息(ID)。网络设备可以基于终端设备上报的N个波束的测量结果,判断N个波束的空间指向是否收敛到所述终端设备的空间指向。
S220,在所述N个波束的空间指向收敛到所述终端设备的空间指向情况下,生成数传波束,所述数传波束能够对准所述N个波束的覆盖区域的中心,其中,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的测量结果满足预设条件。
这里,所述N个波束的空间指向收敛到所述终端设备的空间指向可以理解为N个波束在终端设备侧的测量结果满足预设条件。
可选地,所述预设条件可以包括:所述N个波束中每个波束的RSRP值相等。具体地,网络设备可以根据N个波束的RSRP值判断所述N个波束是否收敛到终端设备的空间指向。如果N个波束的RSRP值均相等,则认为所述N个波束收敛到终端设备的空间指向;如果N个波束的RSRP值中存在至少两个波束的RSRP值不相等,则认为所述N个波束未收敛到终端设备的空间指向。这里,如果N个波束的RSRP值均相等。
这里作统一说明,本领域技术人员可以理解:所述N个波束中每个波束的RSRP值相等是指在一定的度量精度下每个波束的RSRP值相等的,当然,度量精度可以根据实际情况选取。比如,RSRP的量化精度是1分贝(dB),在该精度下N个波束的RSRP取值相同,则认为N个波束收敛到终端设备的空间指向。如果N个波束收敛到终端设备的空间指向,网络设备基于所述N个波束生成的数传波束对应的覆盖区域的中心,与终端设备的 空间指向的中心是重合的。或者,每个波束的RSRP值相等也可以通过波束之间的RSRP差值度量,如果波束之间的RSRP差值趋于无限小,则也可以认为波束的RSRP相等。
可选地,所述预设条件可以包括:所述N个波束中每两个波束之间的RSRP差值满足预设差值,该预设差值可以基于实际情况而定。具体地,该预设差值可以足够小。如果每两个波束之间的RSRP差值小于或等于预设差值,可以认为满足预设条件。
如果未收敛到终端设备的空间指向,则需要对N个波束进行调整。可选地,所述方法200还包括:在所述N个波束的空间指向未收敛到所述终端设备的空间指向情况下,调整所述N个波束。
具体而言,如果网络设备判断所述N个波束的空间指向没有收敛到所述终端设备的空间指向,那么网络设备需要对所述N个波束进行调整,以使得经过调整后的N个波束的空间指向最终能够收敛到终端设备的空间指向。需要说明的是,如果网络设备基于测量结果判断所述N个波束的空间指向没有收敛到所述终端设备的空间指向,那么网络设备可以一直执行上述过程,即重新获取N个波束的测量结果,不断进行调整,直到所述N个波束的空间指向收敛到所述终端设备的空间指向为止。因此,在本申请实施例中,网络设备可以使用固定个数的动态波束进行用户级波束精准对准和移动追踪。
可选地,所述网络设备对所述N个波束进行调整,包括:所述网络设备对所述N个波束的空间指向和/或波束范围进行调整。网络设备通过调整N个波束的空间指向(可以理解为二维空间中的一个角度,例如,离去角、到达角等等),以对准估计得到的终端设备的空间指向,和/或,缩小N个波束的波束范围(或宽度)来提高波束增益。缩小波束的范围可以理解为让波束的能量更加集中在一个角度。这里,网络设备通过利用终端设备反馈的扫描结果,来调整波束的空间指向和/或波束宽度,可以将波束范围缩小到网络设备的最窄波束(对应最高增益)。
网络设备可以通过插值算法估计终端设备的空间指向,例如,插值算法可以是雷达领域的“和差波束测角”的算法等等。应理解,本领域技术人员可以使用插值算法估计终端设备的空间指向,也可以使用其他合适的算法估计终端设备的空间指向,本申请实施例对此不作限定。另外,插值算法是现有经典算法,为了简洁。本申请实施例对插值算法不作具体介绍。
为了便于本领域技术人员理解本申请实施例的生成波束的方法,下面结合图3中的具体实例进行描述。
以N=4为例,假设终端设备的最优宽波束是1,如图3所示,4个窄波束的联合覆盖范围包括宽波束1的覆盖范围。图3中示出了不同时间段下4个窄波束的示例。
当t=0时,网络设备用于4个窄波束对最优宽波束1进行覆盖,生成4个窄波束的数传波束,数传波束对准4个窄波束覆盖区域的中心,此时,数传波束的中心还未与黑色圆圈重合。其中,图3中的黑色圆圈是网络设备估计的终端设备的空间指向。
当t=T时,终端设备向网络设备反馈t=0时刻4个波束的扫描结果,例如,终端设备反馈的波束3的RSRP>波束1的RSRP(或波束4的RSRP)>波束2的RSRP。网络设备可以根据t=0时刻4个波束的扫描结果估计终端设备的空间指向。网络设备可以根据终端设备的空间指向,将4个波束的空间指向往左下角偏移,同时缩小波束范围(即增加波束增益)。从图3可以看到,当t=T时,数传波束的中心已经比t=0时更靠近黑色圆圈。
当t=2T时,终端设备向网络设备反馈t=T时刻4个波束的扫描结果。网络设备可以根据t=T时刻4个波束的扫描结果估计终端设备的空间指向,然后根据终端设备的空间指向继续调整4个波束的空间指向。
当t=3T时,终端设备向网络设备反馈t=2T时刻4个波束的扫描结果,例如,终端设备反馈的波束1-波束4的RSRP相等,数传波束的RSRP最高。从图3可以看到,当t=3T时,数传波束的中心已经与黑色圆圈中心重合,表明4个波束的空间指向已经收敛到终端设备的空间指向。
应理解,上述只是以4个窄波束为例进行描述,并不对本申请实施例构成限定。实际中,其他数量的窄波束也可以采用本申请实施例的确定波束的方法进行调整,例如,图4中给出了3个窄波束的情形,可以看到,图3中的4个窄波束最终也收敛到终端设备的空间指向。应理解,图4中的3个窄波束的调整流程可以与图3中的调整过程类似,为了简洁,这里不作赘述。
还应理解,上述示例只是以时间段t=0到t=3T为例进行描述,但并对本申请实施例构成限定,事实上,如果N个波束未收敛到终端设备的空间指向,那么网络设备可以一直进行调整,直到收敛为止。
还应理解,图3和图4中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图3和图4的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
在实际中会存在一种可能的情形,终端设备的最优宽波束不会发生变化,但是终端设备的空间指向也可能会突然跳出当前N个波束的覆盖范围,比如,终端设备被行人、车辆、建筑物等障碍遮挡的情形。为了应对此情形,可以设置一个预设时间(或称作算法重启时间),在到达该预设时间后,网络设备重新获取N个波束,得到的N个波束重新覆盖了最优宽波束的覆盖范围。这里,网络设备重新获取N个波束后,可以继续执行上文描述的方法,对N个波束进行调整,使得N个波束的空间指向收敛到终端设备的空间指向,这里不再赘述。可选地,所述方法200还包括:所述网络设备基于预设时间,获取能够覆盖所述第一宽波束的N个波束。其中,第一宽波束表示终端设备的最优宽波束。
这里,该预设时间可以是绝对时间(比如通过定时器方式实现),也可以是相对时间,对此不作限定。可选地,该预设时间可以是网络设备根据帧结构、波束扫描时间等系统参数确定的。在到达该预设时间时,网络设备就重新获取N个波束。
图5示出了终端设备的空间指向发生跳变的情形。如图5所示,当t=0时,4个波束的空间指向已收敛到终端设备的空间指向。当t=T时,终端设备的空间指向突然跳出了当前4个波束的覆盖范围,此时4个波束已经无法收敛到终端设备的空间指向。在设置了预设时间后,比如第10秒,网络设备可以在第10秒重新获取4个波束,以覆盖最优宽波束的覆盖范围。网络设备可以从第10秒开始,对该4个波束进行调整。比如,在t=mT时,4个波束重新收敛到终端设备的空间指向。
在实际中还会存在另一种可能的情形,终端设备的最优宽波束发生变化,比如,终端设备的直射径突然被行人、车辆、建筑物等障碍遮挡,切换到另一条反射径上。例如,如图6所示,终端设备从宽波束0跳变到宽波束5。为了应对此情形,网络设备需要重新获取N个更新后的波束。这里,网络设备获取N个更新后的波束后,可以继续执行上文描 述的方法,使得N个更新后的波束的空间指向收敛到终端设备的空间指向,这里不再赘述。可选地,所述方法200还包括:所述网络设备获取N个更新后的波束,所述N个更新后的波束的覆盖范围与所述N个波束的覆盖范围不同。
也就是说,在N个波束的空间指向已经收敛到终端设备的空间指向的情形下,如果终端设备的最优宽波束发生变化,网络设备需要放大波束宽度,重新获取N个更新后的波束,N个更新后的波束能够覆盖终端设备更新后的宽波束的覆盖范围。网络设备基于N个更新后的波束重新进行追踪或调整,以获取能够重新收敛到终端设备的空间指向的波束。因此,即使终端设备发生了跳变,宽波束发生变化,本申请实施例的生成波束的方法依然适用。
为了便于本领域技术人员理解本申请实施例的生成波束的方法,下面结合图7至图10中的具体仿真实例描述本申请实施例。仿真条件如下:终端设备在网络设备正前方30米(m)处水平移动,终端设备的速度{20,30,40,60}千米每小时(kmph);网络设备进行窄波束扫描的周期为40毫秒(ms);信道为视线传输(line of sight,LOS);仿真结果的横坐标X为符号能量与噪声功率谱密度的比值(ratio of symbol energy to noise rower spectral density,EsN0),范围为[-30,10]分贝(dB);仿真结果的纵坐标Y为终端设备在运动轨迹中的平均吞吐率,单位兆比特每秒(Mbps)。
在图7至图10中:(1)现有技术1对应的仿真结果,即用户级扫描窄波束,用N=9个静态窄波束做用户级扫描;(2)现有技术2对应的仿真结果,用N=9个静态波束做扫描,终端设备反馈扫描结果,网络设备插值计算终端设备的空间指向并生成动态波束,然后加入到下一次用户级扫描波束集合中;(3)本申请实施例对应的仿真结果,取N=4,用4个窄波束及数传波束进行扫描。图7是终端设备的速度(可以记作UeV)为20kmph时不同方案下的仿真结果。图8是终端设备的速度为30kmph时不同方案下的仿真结果。图9是终端设备的速度为40kmph时不同方案下的仿真结果。图10是终端设备的速度为60kmph时不同方案下的仿真结果。
本领域技术人员从图7至图10的仿真结果可以看到,采用本申请实施例的生成波束的方法,均优于采用现有技术(包括现有技术1和现有技术2)的方法。以图10中的结果为例,终端设备的速度为60kmph,对于横坐标EsN0=-10dB:采用本申请实施例的方案对应的平均吞吐率为20.55Mbps,采用现有技术1的方案对应的平均吞吐率15.83Mbps,采用现有技术2的方案对应的平均吞吐率17.47Mpbs。即采用本申请实施例的方案的平均吞吐率相比于现有技术1的方案提升了约30%,相比于现有技术2的方案提升了约18%。由此可见,本申请实施例的生成波束的方法使用的波束从9个减少到5个,实现了更快更准确的波束对准和移动追踪,增强了移动场景的用户体验,提升了系统的整体吞吐率。
应理解,上述仿真实例只是示例性地描述,并不对本申请实施例的保护范围构成限定,实际上,本领域技术人员可以对上述仿真实例中的参数进行变换,得到其他仿真结果。
还应理解,本申请各个实施例可以独立实施,也可以进行合理的组合,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文结合图1至图10详细描述了根据本申请实施例的生成波束的方法。下面将结合 图11至图14描述根据本申请实施例的生成波束的装置。应理解,方法实施例所描述的技术特征同样适用于以下装置实施例。
图11示出了根据本申请实施例的生成波束的装置1100的示意性框图。所述装置1100用于执行前文方法实施例中网络设备执行的方法。可选地,所述装置1100的具体形态可以是网络设备或网络设备中的芯片。本申请实施例对此不作限定。所述装置1100包括:
处理模块1110,用于确定N个波束的空间指向是否收敛到终端设备的空间指向,N是大于或等于3的整数;
所述处理模块1110还用于,在所述N个波束的空间指向收敛到所述终端设备的空间指向情况下,生成数传波束,所述数传波束能够对准所述N个波束的覆盖区域的中心,其中,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的测量结果满足预设条件。
可选地,所述处理模块1110可以调用收发模块1120接收来自终端设备的所述N个波束的测量结果。
在一种可选的实现方式中,所述处理模块1110还用于:在所述N个波束的空间指向未收敛到所述终端设备的空间指向情况下,调整所述N个波束。
在一种可选的实现方式中,所述预设条件是指:所述N个波束中每个波束的参考信号接收功率RSRP值相等。
在一种可选的实现方式中,所述处理模块1110用于对所述N个波束进行调整,具体包括:对所述N个波束的空间指向和/或波束范围进行调整。
在一种可选的实现方式中,所述处理模块1110还用于:基于预设时间,获取能够覆盖第一宽波束的覆盖范围的N个窄波束。可选地,所述处理模块1110可以调用收发模块1120获取该N个窄波束的ID。
在一种可选的实现方式中,所述处理模块1110还用于:获取N个更新后的波束,所述N个更新后的波束所在的宽波束与所述N个波束所在的宽波束不同。可选地,所述处理模块1110可以调用收发模块1120获取该N个更新后的波束的ID。
应理解,根据本申请实施例的生成波束的装置1100可对应于前述方法实施例中网络设备的方法,比如,图2中的方法,并且装置1100中的各个模块的上述和其它管理操作和/或功能分别为了实现前述方法实施例中网络设备的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,装置1100中的各个模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,装置1100是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人员可以想到装置1100可以采用图12所示的形式。处理模块1110可以通过图12所示的处理器1201实现。收发模块1120可以通过图12所示的收发器1203来实现。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置1100是芯片时,那么收发模块1110的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是所述计算机设备内的位于所述芯片外部的存储单元,如图12所的存储器1202。
图12示出了根据本申请实施例的生成波束的装置1200的示意性结构图。如图12所示,所述装置1200包括:处理器1201。
在一种可能的实现方式中,所述处理器1201用于:用于确定N个波束的空间指向是否收敛到终端设备的空间指向,N是大于或等于3的整数;在所述N个波束的空间指向收敛到所述终端设备的空间指向情况下,生成数传波束,所述数传波束能够对准所述N个波束的覆盖区域的中心,其中,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的测量结果满足预设条件。可选地,所述处理器1201用于调用接口执行以下动作:接收来自所述终端设备的所述N个波束的测量结果。
应理解,所述处理器1201可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置1200还包括收发器1203。
可选地,所述装置1200还包括存储器1202,存储器1202中可以存储上述方法实施例中的程序代码,以便于处理器1201调用。
具体地,若所述装置1200包括处理器1201、存储器1202和收发器1203,则处理器1201、存储器1202和收发器1203之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器1201、存储器1202和收发器1203可以通过芯片实现,处理器1201、存储器1202和收发器1203可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器1202可以存储程序代码,处理器1201调用存储器1202存储的程序代码,以实现装置1200的相应功能。
应理解,所述装置1200还可用于执行前文实施例中网络设备侧的其他步骤和/或操作,为了简洁,这里不作赘述。
图13示出了根据本申请实施例的生成波束的装置1300的示意性框图。所述装置1300用于执行前文方法实施例中终端设备执行的方法。可选地,所述装置1300的具体形态可以是终端设备或终端设备中的芯片。本申请实施例对此不作限定。所述装置1300包括:
处理模块1310,用于对N个波束进行测量,其中,N是大于或等于3的整数;
收发模块1320,用于向网络设备发送所述N个波束的测量结果,所述测量结果中包括用于估计终端设备的空间指向的参数,其中,所述测量结果用于所述网络设备确定所述N个波束的空间指向是否收敛到所述终端设备的空间指向,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的测量结果满足预设条件。
在一种可选的实现方式中,所述预设条件是指:所述N个波束中每个波束的参考信号接收功率RSRP值相等。
在一种可选的实现方式中,所述测量结果中还包括所述N个波束中每个波束的参考信号接收功率RSRP值,和/或,所述N个波束中每个波束的标识信息。
在一种可选的实现方式中,所述处理模块1310还用于:
确定N个更新后的波束,所述N个更新后的波束所在的宽波束与所述N个波束所在的宽波束不同;
相应的,所述收发模块1320用于向所述网络设备发送所述N个更新后的波束。
应理解,根据本申请实施例的生成波束的装置1300可对应于前述方法实施例中终端 设备的方法,并且装置1300中的各个模块的上述和其它管理操作和/或功能分别为了实现前述方法实施例中终端设备的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,装置1300中的各个模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,装置1300是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人员可以想到装置1300可以采用图14所示的形式。处理模块1310可以通过图14所示的处理器1401实现。收发模块1320可以通过图14所示的收发器1403来实现。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置1300是芯片时,那么收发模块1320的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是所述计算机设备内的位于所述芯片外部的存储单元,如图14所的存储器1402。
图14示出了根据本申请实施例的生成波束的装置1400的示意性结构图。如图14所示,所述装置1400包括:处理器1401。
在一种可能的实现方式中,所述处理器1401用于对N个波束进行测量,其中,N是大于或等于3的整数;所述处理器1401用于调用接口执行以下动作:向网络设备发送所述N个波束的测量结果,所述测量结果中包括用于估计终端设备的空间指向的参数,其中,所述测量结果用于所述网络设备确定所述N个波束的空间指向是否收敛到所述终端设备的空间指向,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的测量结果满足预设条件。
应理解,所述处理器1401可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置1400还包括收发器1403。
可选地,所述装置1400还包括存储器1402,存储器1402中可以存储上述方法实施例中的程序代码,以便于处理器1401调用。
具体地,若所述装置1400包括处理器1401、存储器1402和收发器1403,则处理器1401、存储器1402和收发器1403之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器1401、存储器1402和收发器1403可以通过芯片实现,处理器1401、存储器1402和收发器1403可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器1402可以存储程序代码,处理器1401调用存储器1402存储的程序代码,以实现装置1400的相应功能。
应理解,所述装置1400还可用于执行前文实施例中终端设备侧的其他步骤和/或操作,为了简洁,这里不作赘述。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application  specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间 接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种生成波束的方法,其特征在于,包括:
    网络设备确定N个波束的空间指向是否收敛到终端设备的空间指向,N是大于或等于3的整数;
    在所述N个波束的空间指向收敛到所述终端设备的空间指向情况下,生成数传波束,所述数传波束能够对准所述N个波束的覆盖区域的中心,其中,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的测量结果满足预设条件。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述N个波束的空间指向未收敛到所述终端设备的空间指向情况下,调整所述N个波束。
  3. 根据权利要求1或2所述的方法,其特征在于,所述预设条件是指:所述N个波束中每个波束的参考信号接收功率RSRP值相等。
  4. 根据权利要求2或3所述的方法,其特征在于,所述网络设备对所述N个波束进行调整,包括:
    所述网络设备对所述N个波束的空间指向和/或波束范围进行调整。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备基于预设时间,获取能够覆盖第一宽波束的覆盖范围的N个窄波束。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备获取N个更新后的波束,所述N个更新后的波束所在的宽波束与所述N个波束所在的宽波束不同。
  7. 一种生成波束的方法,其特征在于,包括:
    终端设备对N个波束进行测量,其中,N是大于或等于3的整数;
    所述终端设备向网络设备发送所述N个波束的测量结果,所述测量结果中包括用于估计终端设备的空间指向的参数,其中,所述测量结果用于所述网络设备确定所述N个波束的空间指向是否收敛到所述终端设备的空间指向,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的测量结果满足预设条件。
  8. 根据权利要求7所述的方法,其特征在于,所述预设条件是指:所述N个波束中每个波束的参考信号接收功率RSRP值相等。
  9. 根据权利要求7或8所述的方法,其特征在于,所述测量结果中还包括所述N个波束中每个波束的参考信号接收功率RSRP值,和/或,所述N个波束中每个波束的标识信息。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定N个更新后的波束,所述N个更新后的波束所在的宽波束与所述N个波束所在的宽波束不同;
    所述终端设备向所述网络设备发送所述N个更新后的波束。
  11. 一种网络设备,其特征在于,包括:
    处理模块,用于确定N个波束的空间指向是否收敛到终端设备的空间指向,N是大于 或等于3的整数;
    所述处理模块还用于,在所述N个波束的空间指向收敛到所述终端设备的空间指向情况下,生成数传波束,所述数传波束能够对准所述N个波束的覆盖区域的中心,其中,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的测量结果满足预设条件。
  12. 根据权利要求11所述的网络设备,其特征在于,所述处理模块还用于:
    在所述N个波束的空间指向未收敛到所述终端设备的空间指向情况下,调整所述N个波束。
  13. 根据权利要求11或12所述的网络设备,其特征在于,所述预设条件是指:所述N个波束中每个波束的参考信号接收功率RSRP值相等。
  14. 根据权利要求12或13所述的网络设备,其特征在于,所述处理模块用于对所述N个波束进行调整,具体包括:
    对所述N个波束的空间指向和/或波束范围进行调整。
  15. 根据权利要求11至14中任一项所述的网络设备,其特征在于,所述处理模块还用于:基于预设时间,获取能够覆盖第一宽波束的覆盖范围的N个窄波束。
  16. 根据权利要求11至15中任一项所述的网络设备,其特征在于,所述处理模块还用于:获取N个更新后的波束,所述N个更新后的波束所在的宽波束与所述N个波束所在的宽波束不同。
  17. 一种终端设备,其特征在于,包括:
    处理模块,用于对N个波束进行测量,其中,N是大于或等于3的整数;
    收发模块,用于向网络设备发送所述N个波束的测量结果,所述测量结果中包括用于估计终端设备的空间指向的参数,其中,所述测量结果用于所述网络设备确定所述N个波束的空间指向是否收敛到所述终端设备的空间指向,所述N个波束的空间指向收敛到所述终端设备的空间指向是指所述N个波束的测量结果满足预设条件。
  18. 根据权利要求17所述的终端设备,其特征在于,所述预设条件是指:所述N个波束中每个波束的参考信号接收功率RSRP值相等。
  19. 根据权利要求17或18所述的终端设备,其特征在于,所述测量结果中还包括所述N个波束中每个波束的参考信号接收功率RSRP值,和/或,所述N个波束中每个波束的标识信息。
  20. 根据权利要求17至19中任一项所述的终端设备,其特征在于,所述处理模块还用于:
    确定N个更新后的波束,所述N个更新后的波束所在的宽波束与所述N个波束所在的宽波束不同;
    相应的,所述收发模块用于向所述网络设备发送所述N个更新后的波束。
  21. 一种通信装置,其特征在于,所述装置包括:存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述装置执行权利要求1-6中任一项所述的生成波束的方法,或者执行权利要求7-10中任一项所述的生成波束的方法。
  22. 一种计算机可读存储介质,其上存储有指令,其特征在于,该指令被执行时执行 如权利要求1-6中任一项所述的生成波束的方法,或者执行权利要求7-10中任一项所述的生成波束的方法。
  23. 一种计算机程序产品,其特征在于,包括:指令,当所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1-6中任一项所述的生成波束的方法,或者执行权利要求7-10中任一项所述的生成波束的方法。
PCT/CN2020/079106 2019-03-15 2020-03-13 生成波束的方法和装置 WO2020187135A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20773368.4A EP3917026A4 (en) 2019-03-15 2020-03-13 METHOD AND DEVICE FOR GENERATION OF A BRUSH OF WAVES
US17/474,724 US20210409970A1 (en) 2019-03-15 2021-09-14 Beam Generation Method And Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910199007.3 2019-03-15
CN201910199007.3A CN111698008B (zh) 2019-03-15 2019-03-15 生成波束的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/474,724 Continuation US20210409970A1 (en) 2019-03-15 2021-09-14 Beam Generation Method And Apparatus

Publications (1)

Publication Number Publication Date
WO2020187135A1 true WO2020187135A1 (zh) 2020-09-24

Family

ID=72475427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079106 WO2020187135A1 (zh) 2019-03-15 2020-03-13 生成波束的方法和装置

Country Status (4)

Country Link
US (1) US20210409970A1 (zh)
EP (1) EP3917026A4 (zh)
CN (1) CN111698008B (zh)
WO (1) WO2020187135A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114766081A (zh) * 2020-11-13 2022-07-19 北京小米移动软件有限公司 Aod获取方法、装置和通信设备
CN115980298B (zh) * 2023-03-20 2023-07-21 山东思睿环境设备科技有限公司 一种基于多参数适应性水质检测分析方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130039345A1 (en) * 2011-08-12 2013-02-14 Samsung Electronics Co. Ltd. Apparatus and method for adaptive beam-forming in wireless communication system
WO2016061535A1 (en) * 2014-10-16 2016-04-21 Ubiqomm Llc Unmanned aerial vehicle (uav) beam forming and pointing toward ground coverage area cells for broadband access
CN107466043A (zh) * 2016-06-03 2017-12-12 中国移动通信集团河北有限公司 一种确定基站天线的方位角的方法和设备
WO2018196599A1 (zh) * 2017-04-25 2018-11-01 华为技术有限公司 一种数据传输方法和设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002497A (zh) * 2011-09-08 2013-03-27 华为技术有限公司 基于aas的信息交互方法、系统、ue及基站
EP3182610B1 (en) * 2014-10-17 2019-09-11 Huawei Technologies Co., Ltd. Wireless communication method and system
CN107211451B (zh) * 2014-11-26 2022-08-26 Idac控股公司 高频无线系统中的初始接入
JP2017200004A (ja) * 2016-04-26 2017-11-02 富士通株式会社 無線通信装置及びビーム探索方法
EP3520227A1 (en) * 2016-09-28 2019-08-07 IDAC Holdings, Inc. Systems and methods for beam management
US10693551B2 (en) * 2017-03-17 2020-06-23 Sony Corporation Communication device and method using virtual sector forming
US10512056B2 (en) * 2017-05-05 2019-12-17 Futurewei Technologies, Inc. System and method for network positioning of devices in a beamformed communications system
CN108169710A (zh) * 2017-11-16 2018-06-15 捷开通讯(深圳)有限公司 基于可重构天线的定位方法及定位系统
JP7177085B2 (ja) * 2017-12-21 2022-11-22 ソニーグループ株式会社 無線通信装置、制御装置、及び制御方法
CN108777842B (zh) * 2018-06-01 2020-04-24 东南大学 基于波束训练的移动终端定位方法、装置及系统
CN110958038A (zh) * 2018-09-27 2020-04-03 索尼公司 电子设备、通信方法和存储介质
EP3637634B1 (en) * 2018-10-08 2022-03-30 INTEL Corporation Opportunistic beam reacquisition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130039345A1 (en) * 2011-08-12 2013-02-14 Samsung Electronics Co. Ltd. Apparatus and method for adaptive beam-forming in wireless communication system
WO2016061535A1 (en) * 2014-10-16 2016-04-21 Ubiqomm Llc Unmanned aerial vehicle (uav) beam forming and pointing toward ground coverage area cells for broadband access
CN107466043A (zh) * 2016-06-03 2017-12-12 中国移动通信集团河北有限公司 一种确定基站天线的方位角的方法和设备
WO2018196599A1 (zh) * 2017-04-25 2018-11-01 华为技术有限公司 一种数据传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Enhancements on Multi-Beam Operation", 3GPP TSG RAN WG1 MEETING #96 R1-1901568, 1 March 2019 (2019-03-01), XP051599265, DOI: 20200519175329A *

Also Published As

Publication number Publication date
US20210409970A1 (en) 2021-12-30
EP3917026A1 (en) 2021-12-01
EP3917026A4 (en) 2022-04-20
CN111698008A (zh) 2020-09-22
CN111698008B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
WO2021022952A1 (zh) 信号传输的方法与装置
US11658753B2 (en) Signal measurement method and communication apparatus
CN108282807B (zh) 信道质量信息的测量、选择和上报方法及装置
WO2022001241A1 (zh) 一种波束管理方法及装置
WO2020187135A1 (zh) 生成波束的方法和装置
WO2020187166A1 (zh) 用于获取波束权值的方法和装置
WO2020029160A1 (zh) 信号上报的方法、终端设备和网络设备
WO2021012166A1 (zh) 无线通信的方法和设备
US20240031973A1 (en) Positioning method and apparatus, and terminal and device
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
WO2021208742A1 (zh) 一种波束对准方法及装置
CN114466376B (zh) 数据传输方法、装置、设备及存储介质
WO2020238922A1 (zh) 通信方法及装置
CN109391997A (zh) 小区间干扰协调和测量上报的方法、设备及系统
CN110891281B (zh) 测量方法及相关装置
CN114697980B (zh) 信号发送方法、目标感知方法、设备和存储介质
EP4301024A1 (en) Measurement parameter determination method, electronic device and storage medium
WO2023273869A1 (zh) 信道状态信息报告的优先级确定方法与装置、相关设备
WO2024027642A1 (zh) 一种信息传输方法、装置及设备
KR102655077B1 (ko) 측정량 리포팅의 방법, 측정량을 결정하는 방법과 장치
WO2023098346A1 (zh) 用于传输信息的方法和通信装置
US20220337306A1 (en) Method for beam selection, terminal device, and network device
WO2023232074A1 (zh) 定位方法、装置及存储介质
WO2024032396A1 (zh) 通信方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020773368

Country of ref document: EP

Effective date: 20210825

NENP Non-entry into the national phase

Ref country code: DE