WO2020187031A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2020187031A1
WO2020187031A1 PCT/CN2020/077830 CN2020077830W WO2020187031A1 WO 2020187031 A1 WO2020187031 A1 WO 2020187031A1 CN 2020077830 W CN2020077830 W CN 2020077830W WO 2020187031 A1 WO2020187031 A1 WO 2020187031A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
preemption
ppdu
mpdu
indication information
Prior art date
Application number
PCT/CN2020/077830
Other languages
English (en)
French (fr)
Inventor
于健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20773782.6A priority Critical patent/EP3937408A4/en
Publication of WO2020187031A1 publication Critical patent/WO2020187031A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0273Traffic management, e.g. flow control or congestion control adapting protocols for flow control or congestion control to wireless environment, e.g. adapting transmission control protocol [TCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and device.
  • Each network device in the wireless transmission system obtains transmission opportunities through competition.
  • network devices in a wireless local area network compete for a channel through a fallback mechanism, and after competing for the channel, transmit a physical layer protocol data unit (PPDU) on the channel.
  • the PPDU includes a preamble (preamble) and a data field (data field).
  • the data field is used to carry the media access control (MAC) protocol data unit (MAC Protocol Data Unit, MPDU) (also called MAC frame).
  • MPDU media access control protocol data unit
  • the MAC frame contains data, control signaling or management signaling, etc.
  • the network equipment cannot transmit the PPDU with the higher service priority during the process of transmitting the PPDU with the lower service priority on the channel, resulting in a longer transmission delay of the PPDU with the higher service priority and the data Transmission flexibility is low.
  • This application provides a data transmission method and device, which can solve the problems of long transmission delay and low data transmission flexibility of PPDUs with higher service priority in related technologies.
  • the technical solution is as follows:
  • a data transmission method for the sending end, and the method includes:
  • Generate preemption indication information where the preemption indication information is used to indicate whether the preemption mechanism occurs; send a physical layer protocol data unit PPDU, the PPDU includes a preamble and a data field, and the data field carries the preemption indication information.
  • the data transmission method provided by this application carries preemption indication information used to indicate whether the preemption mechanism occurs in the data field of the PPDU.
  • the sending end can be notified to stop the transmission of the current PPDU through the preemption indication information.
  • the sender needs to transmit a data frame with a higher service priority in the process of transmitting a certain PPDU, it can suspend the current PPDU transmission and transmit the data frame with a higher service priority in time, so the service priority can be reduced The transmission delay of the higher data frame.
  • a data transmission method for the receiving end, and the method includes:
  • the data field carries preemption indication information, the preemption indication information is used to indicate whether a preemption mechanism occurs; based on the preemption indication information, the PPDU is parsed.
  • the parsing the PPDU based on the preemption indication information includes: determining the preemption indication information based on the preemption indication information The position of the preemptive end symbol in the PPDU, where the preemptive end symbol is used to indicate the end position of the transmission of the PPDU.
  • the receiving end After determining the position of the preemptive end symbol in the PPDU, the receiving end can determine the transmission end position of the PPDU according to the position of the preemptive end symbol and the number of padding characters indicated by the high throughput control field, so that the receiving end can quickly generate the confirmation information of the PPDU .
  • the preemptive end symbol is the last OFDM symbol that contains the target A-MPDU subframe or contains the target A-MPDU subframe.
  • the last OFDM symbol of the code block where the frame is located, and the target A-MPDU subframe is the last A-MPDU subframe in the PPDU.
  • the preamble includes the traditional signaling L-SIG field. If the preemption mechanism occurs, the actual transmission duration of the PPDU is less than that of the L-SIG field. The original transmission duration indicated. In other words, when the preemption mechanism occurs, the actual transmission duration of the PPDU is less than the original transmission duration indicated by the L-SIG field.
  • the occurrence of the preemption mechanism means that the sender suspends the sending of the current frame.
  • the actual transmission duration of the PPDU is less than the original transmission duration indicated by the L-SIG field.
  • the number of A-MPDU subframes in the actually transmitted PPDU is less than the number of A-MPDU subframes in the originally scheduled transmission. The number of frames.
  • the data field includes at least one A-MPDU subframe, and each A-MPDU subframe in the at least one A-MPDU subframe carries The preemption instruction information.
  • the preemption mechanism if the preemption mechanism occurs, the last of the at least one A-MPDU subframe
  • the preemption indication information carried in one A-MPDU subframe indicates that the preemption mechanism occurs.
  • the A-MPDU subframe includes MPDU separation
  • the MPDU delimiter includes at least one of an end frame field, a reserved bit field, an MPDU length field, a cyclic redundancy code field, and a delimiter signature field
  • the MPDU includes a frame header, a frame body, and a frame calibration. At least one field in the verification sequence,
  • the preemption indication information is located in the end frame field, the reserved bit field, the MPDU length field, the cyclic redundancy code field, the delimiter signature field, the high throughput control field of the frame header, and At least one field in the frame check sequence.
  • the preemption indication information is located in the reserved bit field, and if the reserved bit The field is set to a first value, indicating that the preemption mechanism has occurred; if the reserved bit field is set to a second value, it indicates that the preemption mechanism has not occurred, and the second value is different from the first value.
  • the preemption indication information is located in the cyclic redundancy code field, if the The cyclic redundancy code field includes the first type of cyclic redundancy code, indicating that the preemption mechanism has occurred; if the cyclic redundancy code field includes the second type of cyclic redundancy code, it indicates that the preemption mechanism has not occurred, and the second type of The cyclic redundancy code is different from the first type of cyclic redundancy code.
  • the cyclic redundancy code of the first type is for the second type
  • the cyclic redundancy code is obtained by performing at least one of an exclusive OR operation and a flip operation.
  • the preemption indication information is located in the separator signature field, if the separator The delimiter signature field includes the first type of delimiter signature symbol, indicating that the preemption mechanism has occurred; if the delimiter signature field includes the second type of delimiter signature symbol, indicating that the preemption mechanism has not occurred, the second type of delimiter signature The symbol is different from the first type of separator signature symbol.
  • the preemption indication information is located in the end frame field and the MPDU length field If the end frame field is set to 1 and the MPDU length field is set to 0, it indicates that the preemption mechanism has occurred.
  • the preemption indication information is located in the frame check sequence, if the frame The check sequence includes the first type sequence, which indicates that the preemption mechanism has occurred; if the frame check sequence includes the second type sequence, it indicates that the preemption mechanism has not occurred, and the second type sequence is different from the first type sequence.
  • the sequence of the first type may be obtained by performing at least one of an exclusive OR operation and a flip operation on the sequence of the second type.
  • the preemption indication information includes at least one of the high throughput control fields
  • One piece of indication information includes at least one of a control identifier, a preemption type, a number of filling symbols, a time for resuming transmission, and whether a reply confirmation message is required.
  • the PPDU It also includes at least one of a padding symbol and a data packet extension field located after the at least one A-MPDU subframe. Filling symbols and data packet expansion are both used to help the receiving end increase processing time.
  • the preamble carries preemptive warning information, and the preemptive warning information is used to indicate whether a preemptive mechanism may occur.
  • the preamble in the PPDU is transmitted before the data field, by carrying preemption warning information in the preamble, it can indicate whether the receiving end may have a preemption mechanism during the transmission of the PPDU. If the preemption warning information indicates that the preemption mechanism may occur, the receiving end is ready to stop receiving the currently transmitted PPDU; if the preemption warning information indicates that the preemption mechanism is impossible, the receiving end receives the currently transmitted PPDU according to the existing WLAN protocol.
  • the preemption warning information is located in the EHT-SIG field of the preamble .
  • the PPDU further includes the at least one A -The preemption indication frame after the MPDU subframe.
  • the preemption indication frame can be used by the receiving end to determine the end position of the PPDU transmission.
  • the PPDU further includes the at least one A -A preemption field after the MPDU subframe, the preemption field includes at least one special OFDM symbol.
  • at least one special OFDM symbol may be used for the receiving end to determine the end position of the PPDU transmission.
  • a data transmission method for the sending end, and the method includes:
  • Generate preemption indication information where the preemption indication information is used to indicate that the preemption mechanism occurs; send a PPDU, the PPDU includes a preamble and a data field, and the data field carries the preemption indication information.
  • the data field of the PPDU carries preemption indication information used to indicate the occurrence of the preemption mechanism.
  • the sending end can be notified through the preemption indication information.
  • PPDU suspends transmission, which improves the flexibility of data transmission.
  • the sender needs to transmit a data frame with a higher service priority in the process of transmitting a certain PPDU, it can suspend the current PPDU transmission and transmit the data frame with a higher service priority in time, so the service priority can be reduced The transmission delay of the higher data frame.
  • a data transmission method for the receiving end, and the method includes:
  • the PPDU including a preamble and a data field
  • the data field carries preemption indication information
  • the preemption indication information is used to indicate that a preemption mechanism occurs; based on the preemption indication information, the PPDU is parsed.
  • the preamble includes a traditional signaling L-SIG field, and the actual transmission duration of the PPDU is less than the original transmission indicated by the L-SIG field duration.
  • the occurrence of the preemption mechanism means that the sender suspends the sending of the current frame.
  • the actual transmission duration of the PPDU is less than the original transmission duration indicated by the L-SIG field.
  • the number of A-MPDU subframes in the actually transmitted PPDU is less than the number of A-MPDU subframes in the originally scheduled transmission. The number of frames.
  • the data field includes at least one A-MPDU subframe and a preemption indication frame located after the at least one A-MPDU subframe, and the preemption indication
  • the frame carries the preemption indication information.
  • the preemption indication frame can be used to indicate that the preemption mechanism occurs, and can also be used for the receiver to determine the end position of the PPDU transmission.
  • the data field includes at least one A-MPDU subframe and a preemption field located after the at least one A-MPDU subframe
  • the preemption field includes At least one special OFDM symbol
  • the preemption indication information is located in the preemption field.
  • At least one special OFDM symbol can be used to indicate the occurrence of the preemption mechanism, and can also be used for the receiving end to determine the end position of the PPDU transmission.
  • the special OFDM symbols include: OFDM symbols in which only even-numbered subcarriers have energy , An OFDM symbol with energy on only odd-numbered subcarriers, an OFDM symbol with a predetermined pattern known by the receiving end, an OFDM symbol the same as the previous OFDM symbol, or an OFDM symbol with multiple repeated waveforms.
  • the preamble carries preemptive warning information, and the preemptive warning information is used to indicate whether a preemptive mechanism may occur.
  • the preamble in the PPDU is transmitted before the data field, by carrying preemption warning information in the preamble, it can indicate whether the receiving end may have a preemption mechanism during the transmission of the PPDU. If the preemption warning information indicates that the preemption mechanism may occur, the receiving end is ready to stop receiving the currently transmitted PPDU; if the preemption warning information indicates that the preemption mechanism is impossible, the receiving end receives the currently transmitted PPDU according to the existing WLAN protocol.
  • the preemptive warning information is located in the EHT-SIG field of the preamble.
  • a data transmission device for a sending end, and the data transmission device has the function of realizing the behavior of the data transmission method in the first aspect.
  • the data transmission device includes at least one module, and the at least one module is used to implement the data transmission method provided in the first aspect or the third aspect.
  • a data transmission device for the receiving end, and the data transmission device has the function of realizing the behavior of the data transmission method in the second aspect.
  • the data transmission device includes at least one module, and the at least one module is used to implement the data transmission method provided in the second or fourth aspect.
  • a data transmission device for a sending end, including: a memory and a processor, the memory is coupled to the processor, the memory is used for storing a computer program, the computer program includes program instructions; the processor is used for Call the program instructions to implement the data transmission method according to any one of the first aspect or the third aspect.
  • a data transmission device for a receiving end including: a memory and a processor, the memory is coupled to the processor, the memory is used to store a computer program, the computer program including program instructions
  • the processor is used to call the program instructions to implement the data transmission method according to any one of the second aspect or the fourth aspect.
  • a computer-readable storage medium stores a computer program.
  • the computer program contains at least one piece of code.
  • the at least one piece of code can be executed by a computer to control the computer to execute Aspect to the data transmission method of any one of the fourth aspect.
  • a tenth aspect provides a computer program, when the computer program is executed by a computer, it is used to execute the data transmission method according to any one of the first to fourth aspects.
  • the computer program may be stored in whole or in part on a storage medium that is packaged with the processor, or may be stored in part or in a memory that is not packaged with the processor.
  • a processor includes:
  • At least one circuit for generating preemption indication information or parsing PPDU At least one circuit for generating preemption indication information or parsing PPDU
  • At least one circuit for sending and receiving PPDUs At least one circuit for sending and receiving PPDUs.
  • the foregoing processor may be a chip.
  • a chip including a processor, configured to call and execute instructions stored in the memory from a memory, so that a communication device installed with the chip executes the methods in the foregoing aspects.
  • the embodiments of the present application also provide another chip, which may be part of the receiving end or the transmitting end.
  • the chip includes: an input interface, an output interface, and a circuit.
  • the circuits are connected by internal connection paths, and the circuits are used to implement the methods in the above examples.
  • another chip including: an input interface, an output interface, a processor, and optionally, a memory.
  • the input interface, the output interface, the processor, and the memory pass internally
  • the connection path is connected, the processor is configured to execute the code in the memory, and when the code is executed, the processor is configured to execute the methods in the foregoing aspects.
  • a device is provided to implement the methods of the above aspects.
  • a data transmission system including: a sending end and at least one receiving end, the sending end includes the data transmission device according to the fifth aspect, and the receiving end includes the data transmission device according to the sixth aspect Data transmission device.
  • the sending end when the sending end needs to stop transmitting the current PPDU, the receiving end can be notified to stop the transmission of the current PPDU through the preemption indication information, which improves the flexibility of data transmission. For example, when the sender needs to transmit a data frame with a higher service priority in the process of transmitting a certain PPDU, it can suspend the current PPDU transmission and transmit the data frame with a higher service priority in time, so the service can be reduced.
  • the transmission delay of the higher priority data frame further improves the reliability of the data transmission system and the throughput rate of the data transmission system.
  • FIG. 1 is a schematic structural diagram of a data transmission system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a frame structure of an MPDU provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an A-MPDU provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an MPDU delimiter provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a PPDU provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of data transmission in a preemptive transmission mode provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of data transmission in another preemptive transmission mode provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another PPDU provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another PPDU provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another PPDU structure provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another PPDU structure provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of a data transmission device provided by another embodiment of the present application.
  • 16 is a schematic structural diagram of another data transmission device provided by another embodiment of the present application.
  • FIG. 17 is a block diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 18 is a block diagram of another data transmission device provided by an embodiment of the present application.
  • Fig. 1 is a schematic structural diagram of a data transmission system provided by an embodiment of the present application.
  • the data transmission system includes at least one sending end 101 and at least one receiving end 102, and the sending end 101 and the receiving end 102 can communicate with each other through a wireless network.
  • the embodiment of the present application takes the data transmission system including one sending end 101 and two receiving ends 102 as an example for description.
  • the data transmission system provided in the embodiment of the present application may be a wireless communication system, for example, a wireless local area network (wireless LAN, WLAN).
  • the wireless communication system can support multiple WLAN communication protocols, such as the Institute of Electrical and Electronics Engineers (IEEE) 802.11ax protocol, and the next-generation protocol of the IEEE 802.11ax protocol or a next-generation protocol.
  • IEEE Institute of Electrical and Electronics Engineers
  • WLAN can include multiple basic service sets (Basic Service Set, BSS).
  • the nodes of the basic service set include access point (access point, AP) and non-access point station (None access point station, Non).
  • An access point-type station is usually abbreviated as an access point, namely AP
  • a non-access point-type station is usually abbreviated as a station, namely STA.
  • Each basic service set can include one AP and multiple STAs associated with the AP.
  • An access point is a device with a wireless transceiver function that can provide services to the site.
  • the station is a device with wireless transceiver function, which can access the wireless local area network based on the access point.
  • the AP can also be called a wireless access point or hotspot.
  • AP is the access point for mobile users to enter the wired network. It is mainly deployed in homes, buildings and campuses. The typical coverage radius is from tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired and wireless networks, and its main function is to connect each STA together, and then connect the wireless network to the wired network.
  • the AP may be a terminal device or a network device with a wireless fidelity (Wi-Fi) chip.
  • Wi-Fi wireless fidelity
  • the AP may be a communication server, router, switch, or bridge.
  • the STA may be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • STA can be a mobile phone that supports Wi-Fi communication function, a tablet computer that supports Wi-Fi communication function, a set-top box that supports Wi-Fi communication function, a smart TV that supports Wi-Fi communication function, and Wi-Fi communication function is supported.
  • the sending end 101 may be an AP, and the receiving end 102 may be an STA.
  • the sending end 101 may be an AP, and the receiving end 102 may also be an AP.
  • the sending end 101 may be an STA, and the receiving end 102 may also be an STA.
  • the sending end 101 is an AP and the receiving end 102 is an STA as an example for description.
  • MPDUs are used to transfer data, control signaling, or management signaling between AP and STA.
  • the MPDU usually includes a frame header, a frame body (Frame Body), and a frame check sequence (Frame Check Sequence, FCS).
  • the frame body is used to carry the data, management information or control information passed down by the upper layer.
  • the frame body may not exist, such as confirmation frames.
  • FCS is used to verify whether the MPDU is transmitted correctly.
  • the frame header can include a frame control (Frame Control) field, a duration or identification (Duration/ID) field, an address information field, a sequence control (Sequence Control) field, a quality of service control (Quality of Service Control, QoS Control) field, and high throughput At least one field in the rate control (High Throughput Control, HT Control) field.
  • the explanation of each field may refer to the IEEE 802.11 protocol, which is not repeated in the embodiment of the present application.
  • FIG. 2 is a schematic diagram of a frame structure of an MPDU provided by an embodiment of the present application. As shown in FIG. 2, the frame header includes a frame control field, a duration/identification (duration or identification) field, and an address information field (for example, address 1).
  • FIG. 2 is only used as an example to illustrate the frame structure of the MPDU, and the embodiment of the present application does not limit the content contained in the frame header of the MPDU and the sequence of each field.
  • FIG. 3 is a schematic diagram of the structure of the A-MPDU in the IEEE 802.11 standard. As shown in Fig. 3, the A-MPDU includes n A-MPDU subframes, and n is an integer greater than 1. Optionally, referring to FIG. 3, the A-MPDU may also include an end of frame (EOF) pad field located after the n A-MPDU subframes.
  • EEF end of frame
  • each A-MPDU subframe includes an MPDU delimiter (delimiter) and MPDU.
  • the A-MPDU subframe may also include a padding field.
  • the MPDU separator is used to separate multiple aggregated MPDUs.
  • the MPDU delimiter includes at least one of the EOF field, the reserved bit (reserved) field, the MPDU length (MPDU length) field, the Cyclic Redundancy Code (CRC) field, and the delimiter signature (delimiter signature) field.
  • EOF is usually used to indicate whether the MPDU is the last MPDU in the A-MPDU.
  • the MPDU length is used to indicate the number of bytes of the MPDU immediately following the current MPDU delimiter, that is, the MPDU length is used to indicate the number of bytes of the MPDU in the current A-MPDU subframe.
  • the delimiter signature is a characteristic sequence (its ASCII value is'N'), which is used by the receiver to search for the delimiter. Even if the receiver decodes a delimiter or MPDU, it can still find the next one by searching for the next delimiter signature MPDU to prevent error propagation.
  • CRC similar to FCS, is used at the receiving end to check whether an error occurs in the separator. It can also determine a sliding window according to the length of the MPDU separator. After verifying whether the CRC is passed, the sliding window is used to find the next MPDU separator. Among them, the length of the MPDU separator is 4 bytes.
  • FIG. 4 is a schematic structural diagram of an MPDU delimiter provided by an embodiment of the present application.
  • the MPDU delimiter includes an EOF field, a reserved bit field, an MPDU length field, a CRC field, and a delimiter signature field.
  • FIG. 2 is only used as an example to illustrate the structure of the MPDU separator, and the embodiment of the present application does not limit the content contained in the MPDU separator and the sequence of each field.
  • the A-MPDU is carried in the data field of the PPDU for transmission.
  • the sender needs to transmit a PPDU with a higher service priority during the process of sending a PPDU, it can only send the PPDU with a higher service priority after the transmission of the currently sent PPDU is completed.
  • the transmission delay of the PPDU with higher service priority is longer, so the current data transmission flexibility is lower.
  • This application introduces the preemption mechanism in the IEEE802.11 standard.
  • the sender can suspend the transmission of A-MPDUs and transmit PPDUs with higher service priority to reduce the higher
  • the transmission delay of business priority improves the flexibility of data transmission.
  • the occurrence of preemption mechanism refers to the fact that the sender is suspended from transmitting the PPDU during the transmission of a certain PPDU, and the actual transmission time of the PPDU is less than the original transmission time indicated by the legacy signal (L-SIG) field of the PPDU .
  • L-SIG legacy signal
  • the fact that the preemption mechanism does not occur means that the sender transmits PPDU normally.
  • the preemptive mechanism may also be referred to as the suspended transmission mechanism. Whether the preemption mechanism occurs is used to indicate whether the sender should suspend the current PPDU transmission.
  • the trigger condition for the occurrence of the preemption mechanism includes that a data frame with a higher service priority preempts the transmission channel of a data frame with a lower service priority, or the sender is required to stop the transmission of the current frame, etc.
  • the trigger condition of the mechanism is not limited.
  • a data frame with a higher service priority preempts a transmission channel of a data frame with a lower service priority as an example for triggering the occurrence of the preemption mechanism.
  • both the sending end and the receiving end may include preemptible queues and fast queues, and there is a communication interface between the preemptible queues and fast queues to communicate with each other.
  • the preemptable queue is used to store preemptable frames
  • the fast queue is used to store express frames.
  • a fast frame is a frame with a higher service priority
  • a frame that can be preempted is a frame with a lower service priority. Since the delay requirements of frames with higher service priority are generally higher than those of frames with lower service priority, fast frames have higher requirements on delay than frames that can be preempted.
  • the sender will receive an internally sent instruction to stop the transmission of the current PPDU when it needs to send a fast frame to trigger the preemption mechanism to occur, and the current PPDU It carries corresponding signaling information, indicating that the PPDU at the receiving end will suspend transmission.
  • the sender uses the length subfield and the rate subfield in the L-SIG field.
  • the rate subfield is fixedly set to 6 Megabits per second (Mbps). Since the rate subfield is set to a fixed value, that is, the original transmission duration of the PPDU is indirectly indicated through the length subfield.
  • the length calculation formula of the length subfield is as follows:
  • Signal Extension is a parameter related to the transmission frequency band. When working at 2.4GHz, this parameter is 6 ⁇ s (microseconds), and when working at 5GHz, this parameter is 0 ⁇ s.
  • TXTIME is the original transmission duration of the entire PPDU. The value of m can be 0, 1, or 2, depending on the specific PPDU type, which will not be repeated in the embodiment of the present application.
  • the receiving end will calculate the receiving time through the length subfield in the L-SIG field:
  • the actual transmission duration of the PPDU received by the receiving end is less than the duration of RXTIME calculated by Length (that is, the original transmission duration). It should be pointed out that the RXTIME and TXTIME calculated through the Length field may be slightly different due to the actual length of the symbol.
  • the PPDU when the preemption mechanism occurs, the actual transmission duration of the PPDU is less than the original transmission duration indicated by the L-SIG field. It can also be understood that the PPDU was originally intended to transmit n A-MPDU subframes. If a preemption mechanism occurs during the transmission process, the PPDU actually transmits m A-MPDU subframes. Both n and m are positive integers, and m ⁇ n.
  • FIG. 5 is a schematic structural diagram of a PPDU provided in an embodiment of the present application.
  • the PPDU includes a preamble and a data field, and the preamble is used to assist the reception of the data field.
  • the data field includes a data subfield A and a data subfield B.
  • the data subfield A includes m A-MPDU subframes
  • the data subfield B includes (n-m) A-MPDU subframes.
  • the data field further includes a packet extension (PE) field located after the n A-MPDU subframes. If the preemption mechanism occurs, the PPDU actually transmits m A-MPDU subframes in the data subfield A, while the (n-m) A-MPDU subframes and the PE field in the data subfield B are not actually transmitted.
  • PE packet extension
  • A-MPDU subframes are used as the minimum transmission unit, that is, after the preemption mechanism occurs, m A-MPDU subframes out of the n A-MPDU subframes originally scheduled to be transmitted by the PPDU have been transmitted. (nm) A-MPDU subframes are not sent.
  • IEEE802.11 standard stipulates that each MPDU has a clear sequence number index, there is no need for additional fragmentation information indication for (nm) A-MPDUs that are not sent , There is no need to correspond to the transmitted m A-MPDU subframes, and only need to continue transmission after being carried by the new PPDU.
  • the MAC method may be used to indicate the occurrence of the receiving end preemption mechanism, that is, the occurrence of the receiving end preemption mechanism is indicated in the MAC frame structure; and/or the occurrence of the receiving end preemption mechanism may be instructed through a physical method, that is It is in the physical layer structure to instruct the receiving end to take precedence.
  • the following embodiments of the present application describe in detail the manner in which the preemption mechanism is indicated through three PPDUs with different structures. Among them, the PPDU shown in FIG. 9 and FIG. 10 all correspond to the MAC method, and the PPDU shown in FIG. 11 corresponds to the physical method.
  • the related signaling information used to indicate the occurrence of the preemption mechanism is collectively referred to as preemption indication information in the embodiments of the present application.
  • Fig. 6 is a flowchart of a data transmission method provided by an embodiment of the present application, which can be applied to the data transmission system shown in Fig. 1. As shown in Figure 6, the method includes:
  • Step 601 The sending end generates preemption indication information.
  • the preemption indication information is used to indicate whether the preemption mechanism occurs.
  • the preemption indication information is used to indicate that the preemption mechanism occurs.
  • Step 602 The sender sends a PPDU containing a frame that can be preempted.
  • the PPDU includes a preamble and a data field, and the data field carries the preemption indication information.
  • Step 603 After receiving the PPDU, the first receiving end parses the PPDU based on the preemption indication information.
  • the first receiving end may generate confirmation information after analyzing the received A-MPDU subframes in the PPDU, and reply the confirmation information to the transmitting end. Further, if the preemption mechanism occurs, the above data transmission method also includes the following process:
  • Step 604 The sender sends a PPDU containing a fast frame.
  • the sender sends a PPDU containing a fast frame.
  • Step 605 After receiving the PPDU containing the fast frame, the second receiving end parses the PPDU containing the fast frame.
  • the second receiving end may generate confirmation information of the PPDU containing the fast frame, and reply to the sending end the confirmation information of the PPDU containing the fast frame.
  • Step 606 The sender sends a PPDU containing the untransmitted A-MPDU subframes in the preempted frame.
  • Step 607 After receiving the PPDU containing the untransmitted A-MPDU subframes in the preempted frame, the first receiving end parses the PPDU containing the untransmitted A-MPDU subframes in the preempted frame.
  • the first receiving end after the first receiving end has parsed the PPDU containing the untransmitted A-MPDU subframes that can be preempted, it can generate confirmation information containing the PPDUs that can be preempted the untransmitted A-MPDU subframes, And replies to the sender the acknowledgement information of the PPDU containing the unsent A-MPDU subframes in the preempted frame.
  • first receiving end and the second receiving end may be the same receiving end or different receiving ends, which is not limited in the embodiment of the present application.
  • the embodiment of the present application provides two preemptive transmission modes:
  • step 604 and step 606 are executed simultaneously.
  • the sender uses orthogonal frequency division multiple access (OFDMA) or multiple user-multiple input multiple output (MU-MIMO) to simultaneously send PPDUs and PPDUs containing fast frames. Contains the PPDU of the untransmitted A-MPDU subframe that can be preempted.
  • OFDMA orthogonal frequency division multiple access
  • MU-MIMO multiple user-multiple input multiple output
  • the use of the first preemptive transmission mode can reduce the delay impact of the preemption mechanism on the preemptible frames, and can prevent the occurrence of starvation.
  • step 604 and step 606 are performed sequentially.
  • the sender sends a PPDU containing fast frames.
  • TXOP current transmission opportunity
  • the sender continues to send the PPDU containing the unsent A-MPDU subframes that can be preempted; otherwise , After the sender re-competes for the channel, it sends the PPDU containing the unsent A-MPDU subframes that can be preempted.
  • the preemption mechanism occurs after the sender finishes sending the first fragment of the preemptable frame.
  • the first fragment, the second fragment and the third fragment all include at least one A-MPDU subframe.
  • the first fragment includes m A-MPDU subframes in the data subfield A
  • the union of the A-MPDU subframes included in the second fragment and the third fragment is (nm) A-MPDU subframes in the data subfield B.
  • FIG. 7 is a schematic diagram of data transmission in the first preemptive transmission mode provided by an embodiment of the present application. As shown in FIG.
  • the transmitting end adopts OFDMA or MU-MIMO (abbreviation: OFDMA/MU-MIMO) simultaneous transmission
  • OFDMA/MU-MIMO abbreviation: OFDMA/MU-MIMO
  • the frame aggregation method may also be used to aggregate the second fragment that can be preempted and the third fragment that can be preempted into one A-MPDU and send it.
  • Fig. 8 is a schematic diagram of data transmission in the second preemptive transmission mode provided by an embodiment of the present application. As shown in Fig. 8, the sender first transmits the fast frame in the fast queue, and then transmits the fast frame in the preemptible queue. The second slice of the frame and the third slice of the frame that can be preempted.
  • the sending end when the sending end needs to stop transmitting the current PPDU, the receiving end can be notified to stop the transmission of the current PPDU through the preemption indication information, which improves the flexibility of data transmission.
  • the sender When the sender needs to transmit a data frame with a higher service priority in the process of transmitting a certain PPDU, it can suspend the current PPDU transmission and transmit the data frame with a higher service priority in time, so the service priority can be reduced The transmission delay of the higher data frame.
  • the preemption indication information is used to indicate whether the preemption mechanism occurs. Then in the PPDU shown in FIG. 5, each A-MPDU subframe of the data field carries preemption indication information.
  • FIG. 9 is a schematic structural diagram of another PPDU provided in an embodiment of the present application.
  • the data field originally scheduled to be transmitted in the PPDU includes n A-MPDU subframes and n A-MPDU subframes. PE field after the frame.
  • the first m A-MPDU subframes among the n A-MPDU subframes are located in the data subfield A, and the remaining (n-m) A-MPDU subframes are located in the data subfield B.
  • the m A-MPDU subframes in the data subfield A are the actual A-MPDU subframes transmitted in the PPDU, and the (nm) A-MPDU subframes in the data subfield B and located after the n A-MPDU subframes The PE field is not actually transmitted.
  • each A-MPDU subframe can refer to Figures 3 and 4.
  • the preemption indication information is located in the EOF field, the reserved bit field, the MPDU length field, the CRC field, the delimiter signature field, and the high throughput rate of the frame header. At least one of the control field and FCS.
  • the preemption indication information is located in the reserved bit field. If the reserved bit field is the first value, it indicates that the preemption mechanism has occurred; if the reserved bit field is the second value, it indicates that the preemption mechanism has not occurred, and the second value is different from the first value. For example, when the reserved bit field is 1, it means that the preemption mechanism has occurred; when the reserved bit field is 0, it means that the preemption mechanism has not occurred.
  • the value of the reserved bit field indicates whether the preemption mechanism occurs, without adding a new field, and the compatibility of data transmission can be guaranteed.
  • the preemption indication information is located in the CRC field. If the CRC field includes the first type of CRC, it indicates that the preemption mechanism occurs; if the CRC field includes the second type of CRC, it indicates that the preemption mechanism has not occurred, and the second type of CRC is different from the first type of CRC.
  • the first type of CRC is obtained by performing at least one of an exclusive OR operation and a flip operation on the second type of CRC, or the type of the first type of CRC is different from the type of the second type of CRC.
  • the CRC is generated according to the existing IEEE802.11-2016 standard using the polynomial x 8 + x 2 + x 1 +1 for modulo 2 operation, it means that the preemption mechanism has not occurred; when the CRC is performed additional XOR operation, such as XOR operation of 8bit CRC with 00001111 to generate xCRC, or use a different polynomial to generate xCRC, indicating that the preemption mechanism has occurred.
  • the receiving end can determine whether the preemption mechanism has occurred by analyzing the content of the CRC field, without adding new calculations, ensuring the compatibility of data transmission At the same time, the data transmission efficiency is guaranteed.
  • the preemption indication information is located in the separator signature field. If the separator signature field includes the first type of separator signature symbol, it indicates that the preemption mechanism has occurred; if the separator signature field includes the second type of separator signature symbol, it indicates that the preemption mechanism has not occurred, and the second type of separator signature symbol is the same as The first type of separator has a different signature symbol. For example, when the delimiter signature field includes the ASCII code ‘N’, it means that the preemption mechanism has not occurred; when the delimiter signature field includes another ASCII code, such as the ASCII code ‘Y’, it indicates that the preemption mechanism has occurred.
  • the receiving end can determine whether the preemption mechanism has occurred by parsing the content of the delimiter signature field without adding a new amount of calculations, ensuring data
  • the compatibility of transmission also ensures the efficiency of data transmission.
  • the preemption indication information is located in the EOF field and the MPDU length field. If the EOF field is set to 1 and the MPDU length field is set to 0, it indicates that EOF filling occurs, indicating that the preemptive mechanism has occurred.
  • the preemption indication information is located in the FCS. If the FCS includes the first type sequence, the characterization preemption mechanism occurs; if the FCS includes the second type sequence, the characterization preemption mechanism has not occurred, and the second type sequence is different from the first type sequence.
  • the first type sequence is obtained by performing at least one of an exclusive OR operation and a flip operation on the second type sequence, or the type of the first type sequence and the second type sequence are different.
  • FCS Different types are used to indicate whether the preemption mechanism occurs without adding new fields.
  • the receiving end can determine whether the preemption mechanism occurs by parsing FCS without adding new calculations. While ensuring the compatibility of data transmission, the data is guaranteed Transmission efficiency.
  • the preemption indication information includes at least one indication information in the high throughput control field, and the at least one indication information includes a control identifier, preemption type, number of stuffing symbols, resumption transmission time, and whether a reply is required At least one of the confirmation messages.
  • the control identifier is used to indicate the type of subsequent control information.
  • the length of the control identifier is 4 bits, and currently 0-6 have been used to indicate other types of control information.
  • the control identifier can be one of 7-15, which is used to indicate that the type of subsequent control information is preemption indication information.
  • the preemption type can be defined for the preemptive transmission mode in the IEEE 802.11 standard. For example, according to the above two preemptive transmission modes, two preemptive types can be defined.
  • the number of filler symbols is used to indicate the number of filler symbols located after the A-MPDU subframe, and the filler symbols are used to help the receiving end increase processing time.
  • the resuming transmission time is used to indicate when the receiving end can resume transmission of the preempted frame.
  • the receiving end can sleep before resuming transmission of the preempted frame according to the resuming transmission time, thereby achieving the effect of energy saving.
  • the need to reply confirmation message is used to indicate whether the receiving end needs to reply the confirmation message when the preemption mechanism occurs.
  • one or more of the instruction information in the high throughput control field can also be agreed in advance by the sender and the receiver, and the instructions can be re-indicated when the agreed instruction information changes, without having to instruct each other. It is carried in A-MPDU subframes.
  • the indication information in the high throughput control field may be carried in each A-MPDU subframe, which is not limited in the embodiment of the present application.
  • the preemption indication information carried in the last A-MPDU subframe in the at least one A-MPDU subframe indicates that the preemption mechanism occurs.
  • the preemption indication information carried in the A-MPDU subframes transmitted before the last A-MPDU subframe all indicate that the preemption mechanism has not occurred.
  • the PPDU may also include at least one of a padding symbol and a PE field located after the m A-MPDU subframes.
  • filling symbols and data packet expansion are used to help the receiving end increase processing time. That is, after transmitting m A-MPDU subframes to the receiving end, the transmitting end may continue to transmit the padding symbols and/or the content of the PE field to the receiving end to increase the processing time of the receiving end.
  • the implementation process of the foregoing step 603 includes: the receiving end determines the position of the preemptive end symbol in the PPDU based on the preemption indication information, and the preemptive end symbol is used to indicate the end position of the PPDU transmission.
  • the preemptive end symbol is the last orthogonal frequency division multiplexing (OFDM) symbol containing the target A-MPDU subframe or the last OFDM symbol containing the code block of the target A-MPDU subframe
  • the target The A-MPDU subframe is the last A-MPDU subframe in the PPDU.
  • OFDM orthogonal frequency division multiplexing
  • the receiving end can determine the transmission end position of the PPDU according to the position of the preemptive end symbol and the number of padding characters indicated by the high throughput control field, so that the receiving end can quickly generate Confirmation information of this PPDU.
  • the receiving end may calculate the position of the preemptive end symbol based on information such as the rate, MPDU length, and code block length.
  • the preemptive end symbol is the last OFDM symbol containing the current A-MPDU subframe (ie, the target A-MPDU subframe).
  • the information bits that an OFDM symbol can carry is the number of data bits per symbol (N DBPS ), and the information carried in the OFDM symbol where the start bit of the MPDU delimiter of the A-MPDU subframe is located
  • the bit order is the B1th bit.
  • the MPDU length field in the MPDU delimiter of the A-MPDU subframe indicates that the length of the A-MPDU subframe is L bytes.
  • the preemptive end symbol is the C1 symbol after the first symbol carrying the A-MPDU subframe, and the calculation formula for C1 is as follows:
  • the first symbol of the A-MPDU subframe is the 10th symbol of the data field of the PPDU
  • the preemptive end symbol is the code block containing the current A-MPDU subframe (ie, the target A-MPDU subframe) The last OFDM symbol.
  • the information bits that can be carried by the OFDM symbol are N DBPS , and the start bit of the MPDU delimiter of the A-MPDU subframe is carried in the OFDM symbol in the order of the B1th bit of information.
  • the MPDU length field in the MPDU delimiter of the A-MPDU subframe indicates that the length of the A-MPDU subframe is L bytes.
  • the length of the LDPC code block is LLDPC bits, and the code rate is R.
  • the bit at the end of the A-MPDU subframe is the B2 bit of the OFDM symbol where it is, and is the B3 bit of the LDPC code block where the A-MPDU subframe is located, and the preemptive end symbol is the C2 bit after the first symbol of the A-MPDU subframe.
  • the calculation formula of C2 is as follows:
  • the sending end may also explicitly indicate the receiving end to occupy the position of the end symbol first.
  • the sending end may indicate to the receiving end that there are several OFDM symbols between the end symbol and the OFDM symbol currently being transmitted.
  • the preemption indication information carried in the currently transmitted A-MPDU subframe indicates that the preemption mechanism occurs.
  • the currently transmitted A-MPDU subframe is also the last A-MPDU subframe transmitted by the PPDU, and the receiving end After receiving the currently transmitted A-MPDU subframe, it can be determined that the preemption mechanism occurs.
  • the receiving end receives the currently transmitted A-MPDU subframe, it can also calculate the position of the preemptive end symbol to determine the end position of the current PPDU transmission, which improves data transmission flexibility compared with related technologies.
  • the sender When the sender needs to transmit a data frame with a higher service priority in the process of transmitting a certain PPDU, it can suspend the current PPDU transmission and transmit the data frame with a higher service priority in time, so the service priority can be reduced The transmission delay of the higher data frame.
  • the preemption indication information is used to indicate that the preemption mechanism occurs. Then in the PPDU shown in Figure 5, the field after the data subfield A carries preemption indication information, that is, after the sender transmits the A-MPDU subframe in the data subfield A to the receiver, Continue to transmit the field carrying preemption indication information to the receiving end.
  • FIG. 10 is a schematic structural diagram of another PPDU provided by an embodiment of the present application.
  • the data field includes at least one A-MPDU subframe and a preemption indication frame located after the at least one A-MPDU subframe .
  • the preemption indication frame carries preemption indication information. That is, after transmitting the at least one A-MPDU subframe to the receiving end, the transmitting end continues to transmit the preemption indication frame to the receiving end.
  • the data field originally scheduled for transmission in the PPDU includes n A-MPDU subframes and a PE field located after the n A-MPDU subframes.
  • the first m A-MPDU subframes among the n A-MPDU subframes are located in the data subfield A
  • the remaining (n-m) A-MPDU subframes are located in the data subfield B.
  • the m A-MPDU subframes in the data subfield A are the actual A-MPDU subframes transmitted in the PPDU
  • the PE field is not actually transmitted.
  • the transmitting end After transmitting the m A-MPDU subframes in the data subfield A to the receiving end, the transmitting end needs to continue to transmit preemption indication frames to the receiving end. That is, the PPDU actually transmitted by the sender includes m A-MPDU subframes in the data subfield A and preemption indication frames.
  • the PPDU may further include at least one of a padding symbol and a PE field located after the preemption indication frame.
  • filling symbols and data packet expansion are used to help the receiving end increase processing time. That is, after transmitting the preemption indication frame to the receiving end, the sending end may continue to transmit the filling symbols and/or the content of the PE field to the receiving end to increase the processing time of the receiving end.
  • the MAC frame type of the preemption indication frame is different from the MAC frame type of any A-MPDU subframe in at least one A-MPDU subframe in the data field, and the MAC frame type of the preemption indication frame may be IEEE802.11 Any reserved MAC frame type in the standard.
  • the type value of the preemption indication frame is set to 0, and the subtype value is set to 7 or 15; another example, the type value of the preemption indication frame is set to 1, and the subtype value is set to 0-2 or 15; another example, the preemption indication
  • the type value of the frame is set to 2, and the subtype value is set to 1, 2, 3, 5, 6, 7 or 13; the type value of the preemptive indication frame is set to 3, and the subtype value is set to 2-15.
  • the embodiment of the present application does not limit the MAC frame type of the preemption indication frame.
  • FIG. 11 is a schematic diagram of another PPDU structure provided by an embodiment of the present application.
  • the data field includes at least one A-MPDU subframe and a preemption field located after the at least one A-MPDU subframe.
  • the preemption field includes at least one special OFDM symbol, and the preemption indication information is located in the preemption field, that is, at least one special OFDM symbol located in the preemption field may be used as the preemption indication information.
  • the data field originally scheduled to be transmitted in the PPDU includes n A-MPDU subframes and the PE field located after the n A-MPDU subframes.
  • the first m A-MPDU subframes among the n A-MPDU subframes are located in the data subfield A
  • the remaining (n-m) A-MPDU subframes are located in the data subfield B.
  • the m A-MPDU subframes in the data subfield A are the actual A-MPDU subframes transmitted in the PPDU
  • the PE field is not actually transmitted.
  • the transmitting end After transmitting the m A-MPDU subframes in the data subfield A to the receiving end, the transmitting end needs to continue to transmit at least one special OFDM symbol in the preemptive field after the data subfield A to the receiving end. That is, the PPDU actually transmitted by the sender includes m A-MPDU subframes in the data subfield A and at least one special OFDM symbol in the preemption field.
  • the PPDU may further include at least one of a filler symbol located after the preemption field and the PE field.
  • filling symbols and data packet expansion are used to help the receiving end increase processing time. That is, after transmitting the preemption indication frame to the receiving end, the sending end may continue to transmit the filling symbols and/or the content of the PE field to the receiving end to increase the processing time of the receiving end.
  • the above-mentioned special OFDM symbols include: OFDM symbols with energy only on even-numbered subcarriers, OFDM symbols with energy on only odd-numbered subcarriers, OFDM symbols with predetermined patterns known by the receiving end, and OFDM symbols with the same OFDM symbol as the previous OFDM symbol. Symbol or OFDM symbol with multiple repetitive waveforms.
  • the receiving end can determine whether the preemption mechanism occurs by identifying the energy of each subcarrier.
  • the receiving end can determine whether the preemption mechanism occurs by identifying whether the OFDM symbol of the predetermined pattern appears.
  • the receiving end can determine whether the preemption mechanism occurs by identifying whether the current OFDM symbol is a duplicate symbol of the previous OFDM symbol.
  • At least one special OFDM symbol includes an OFDM symbol with multiple repetitive waveforms, for example, an HT-STF symbol, the symbol length is 8 microseconds and contains five repetition periods of 1.6 microseconds, the receiving end can identify whether there is Multiple OFDM symbols with repeated waveforms to determine whether the preemption mechanism occurs.
  • the at least one special OFDM symbol in the preemption field includes one or more combinations of the foregoing OFDM symbols, and may also include multiple repetitive certain OFDM symbols. This is not the case in this embodiment of the present application. Make a limit.
  • the preemption indication frame and the special OFDM symbol can also be used for the receiving end to determine the transmission end position of the PPDU, so that the receiving end can quickly generate the confirmation information of the PPDU .
  • the preemption indication frame or the special OFDM symbol is transmitted after the currently transmitted A-MPDU subframe. After the receiving end receives the preemption indication frame or the special OFDM symbol, it can It is determined that the preemption mechanism occurs, and at the same time the end position of the current PPDU transmission can be determined, which improves the flexibility of data transmission compared with related technologies.
  • the sender When the sender needs to transmit a data frame with a higher service priority in the process of transmitting a certain PPDU, it can suspend the current PPDU transmission and transmit the data frame with a higher service priority in time, so the service priority can be reduced The transmission delay of the higher data frame.
  • the PPDU provided by the embodiment of the present application may carry preemption indication information used to indicate whether the preemption mechanism occurs in each A-MPDU subframe.
  • the preemption indication information carried in the currently transmitted A-MPDU subframe The indication preemption mechanism occurs, and at the same time, the preemption indication frame and/or special OFDM symbols are transmitted after the currently transmitted A-MPDU subframe.
  • the preemption indication frame and/or special OFDM symbols can be used by the receiving end to determine the end of the PPDU transmission Position, so that the receiving end does not need to calculate the position of the first end symbol, which reduces the amount of calculation on the receiving end and reduces the calculation load on the receiving end.
  • the preamble may carry preemptive warning information, which is used to indicate whether a preemptive mechanism may occur, that is, the preemptive warning information is used To indicate whether the currently transmitted PPDU contains a frame that can be preempted.
  • the preemptive warning information is also used to indicate whether the receiver needs to recognize the preemption indication frame; in the PPDU shown in Figure 11, the preemptive warning information is also used to indicate whether the receiver needs to recognize special OFDM symbol.
  • the preamble in the PPDU is transmitted before the data field, by carrying preemption warning information in the preamble, it can indicate whether the receiving end may have a preemption mechanism during the transmission of the PPDU.
  • the preemption warning information indicates that the preemption mechanism may occur, the receiving end is ready to stop receiving the currently transmitted PPDU; when the preemption warning information indicates that the preemption mechanism cannot occur, the receiving end receives the currently transmitted PPDU according to the existing WLAN protocol.
  • FIG. 12 is a schematic diagram of the structure of another PPDU provided by an embodiment of the present application.
  • the preamble of the PPDU includes a traditional short training field (L-STF) and a traditional long training field.
  • Field legacy longtraining field, L-LTF
  • L-SIG field symbol for auto-detection
  • extremely high throughput signalling extreme high throughput, EHT-SIG
  • extremely short throughput rate Training field extreme high throughput short training field, EHT-STF
  • extremely high throughput long training field extremeely high throughput long training field
  • EHT-LTF extremely high throughput long training field
  • the preemptive warning information may be located in the EHT-SIG field of the preamble.
  • the transmitting end when the transmitting end needs to stop transmitting the current PPDU, the receiving end can be notified to stop the transmission of the current PPDU through the preemption indication information, which improves the flexibility of data transmission.
  • the sender needs to transmit a data frame with a higher service priority in the process of transmitting a certain PPDU, it can suspend the current PPDU transmission and transmit the data frame with a higher service priority in time, so the service priority can be reduced
  • the higher the transmission delay of the data frame improves the reliability of the data transmission system and the throughput rate of the data transmission system.
  • the preemption indication information carried in the currently transmitted A-MPDU subframe indicates that the preemption mechanism occurs.
  • the currently transmitted A-MPDU subframe is also the last A-MPDU subframe transmitted by the PPDU, and the receiving end After receiving the currently transmitted A-MPDU subframe, it can be determined that the preemption mechanism has occurred; in addition, when the receiving end receives the currently transmitted A-MPDU subframe, it can also calculate the position of the preemptive end symbol to determine the current PPDU transmission End position.
  • the preemption mechanism when the preemption mechanism occurs, by transmitting the preemption indicator frame or special OFDM symbol after the currently transmitted A-MPDU subframe, after the receiving end receives the preemption indicator frame or special OFDM symbol, It can be determined that the preemption mechanism occurs, and at the same time the end position of the current PPDU transmission can be determined.
  • the sender when the sender needs to transmit a data frame with a higher service priority during the process of transmitting a certain PPDU, the current PPDU transmission can be suspended, and the data with higher service priority can be transmitted in time. Therefore, the transmission delay of data frames with higher service priority can be reduced.
  • FIG. 13 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • the data transmission device may be used at the sending end in FIG. 1, and the data transmission device 130 includes:
  • the generating module 1301 is configured to generate preemption indication information, where the preemption indication information is used to indicate whether the preemption mechanism occurs;
  • the sending module 1302 is configured to send a PPDU.
  • the PPDU includes a preamble and a data field, and the data field carries the preemption indication information.
  • Fig. 14 is a schematic structural diagram of another data transmission device provided by an embodiment of the present application.
  • the data transmission device can be used at the receiving end in Fig. 1, and the data transmission device 140 includes:
  • the receiving module 1401 is configured to receive a PPDU, the PPDU includes a preamble and a data field, the data field carries preemption indication information, and the preemption indication information is used to indicate whether the preemption mechanism occurs;
  • the parsing module 1402 is used for parsing the PPDU based on the preemption indication information.
  • the data transmission device shown in FIG. 13 is taken as an example to describe each module in the data transmission device used at the sending end
  • the data transmission device shown in FIG. 14 is taken as an example to describe the data transmission device used at the receiving end.
  • Each module in the transmission device is explained. It should be understood that the data transmission device used for the transmitting end in the embodiment of the present application has any function of the transmitting end in the data transmission method shown in FIG. 6, and the data transmission device used for the receiving end has any function of the receiving end in the data transmission method shown in FIG. Features.
  • FIG. 15 is a schematic structural diagram of a data transmission device provided by another embodiment of the present application.
  • the data transmission device may be used at the sending end in FIG. 1, and the data transmission device 150 includes:
  • the generating module 1501 is configured to generate preemption indication information, where the preemption indication information is used to indicate that the preemption mechanism occurs;
  • the sending module 1502 is configured to send a PPDU.
  • the PPDU includes a preamble and a data field, and the data field carries the preemption indication information.
  • FIG. 16 is a schematic structural diagram of another data transmission device according to another embodiment of the present application.
  • the data transmission device may be used at the receiving end in FIG. 1, and the data transmission device 160 includes:
  • the receiving module 1601 is configured to receive a PPDU, the PPDU includes a preamble and a data field, the data field carries preemption indication information, and the preemption indication information is used to indicate that the preemption mechanism occurs;
  • the parsing module 1602 is used for parsing the PPDU based on the preemption indication information.
  • the data transmission device shown in FIG. 15 is taken as an example to describe each module in the data transmission device used at the sending end
  • the data transmission device shown in FIG. 16 is taken as an example to describe the data transmission device used at the receiving end.
  • Each module in the transmission device is explained. It should be understood that the data transmission device used for the transmitting end in the embodiment of the present application has any function of the transmitting end in the data transmission method shown in FIG. 6, and the data transmission device used for the receiving end has any function of the receiving end in the data transmission method shown in FIG. Features.
  • the data transmission device (used at the sending end or the receiving end) provided in the embodiments of the application can be implemented in a variety of product forms.
  • the data transmission device can be configured as a general processing system; for example, the data transmission device can be implemented by a general bus.
  • the system structure is implemented; for example, the data transmission device can be implemented by an application specific integrated circuit (ASIC) and so on.
  • ASIC application specific integrated circuit
  • the data transmission device 170 may be a device for transmitting data (for example, a base station, UE, or AP). As shown in FIG. 17, the data transmission device 170 may include a processor 1701 and a transceiver 1702; optionally, the data transmission device may further include a memory 1703. Among them, the processor 1701, the transceiver 1702 and the memory 1703 communicate with each other through internal connections. For example, the data transmission device 170 may further include a bus 1704, and the processor 1701, the transceiver 1702, and the memory 1703 communicate with each other through the bus 1704. The processor 1701 is configured to execute the processing steps in the method executed by the data transmission device in the method shown in FIG. 6.
  • the processing step may be step 601 in FIG. 6; when the data transmission device is used at the receiving end, the processing step may be step 603 and step 605 in FIG. 4 And step 607.
  • the transceiver 1702 receives the control of the processor 1701, and is configured to perform the PPDU receiving and sending steps in the method executed by the data transmission device in the method shown in FIG. 6.
  • the transceiving steps can be steps 602, 604, and step 606 in FIG. PPDU steps.
  • the memory 1703 is used to store instructions, which are called by the processor 1701 to execute the processing steps in the method executed by the data transmission device in the method shown in FIG. 6.
  • the data transmission device is also implemented by a general-purpose processor, which is commonly known as a chip.
  • the data transmission device may include: a processing circuit 1801, an input interface 1802, and an output interface 1803.
  • the processing circuit 1801, an input interface 1802, and an output interface 1803 communicate with each other through internal connections; wherein, the input interface 1802 is used to obtain
  • the processing circuit 1801 is used to process the information to be processed by the processing circuit 1801, the processing circuit 1801 is used to execute the processing steps performed by the sending end in FIG.
  • step 601 to process the information to be processed
  • the output interface 1803 is used to output the information processed by the processing circuit 1801
  • the input interface 1802 is used to obtain information to be processed by the processing circuit 1801 (the PPDU received by the receiving end in the embodiment shown in FIG. 6), and the processing circuit 1801 is used to execute the processing steps performed by the receiving end in FIG. 6 (for example, step 603 , Step 605 and Step 607) Process the information to be processed, and the output interface 1803 is used to output the information processed by the processing circuit.
  • the data transmission device may further include a transceiver (not shown in FIG. 18).
  • a transceiver (not shown in FIG. 18).
  • the processing circuit 1801 when the processing circuit 1801 is used to execute the processing steps performed by the sending end in FIG. 6 to process the information to be processed, the output interface 1803 is used to output the information processed by the processing circuit 1801 to the transceiver, and the transceiver is used to send the processing circuit 1801 The processed information.
  • the transceiver is used to receive the information to be processed by the processing circuit 1801 and send the information to be processed by the processing circuit 1801 to the input interface 1802 .
  • the data transmission device can also be implemented using the following: Field-Programmable Gate Array (FPGA), Programmable Logic Device (PLD), Controller, State machines, gate logic, discrete hardware components, etc., any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA Field-Programmable Gate Array
  • PLD Programmable Logic Device
  • Controller State machines
  • gate logic discrete hardware components, etc., any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请公开了一种数据传输方法及装置,属于通信技术领域。所述方法包括:发送端生成占先指示信息,所述占先指示信息用于指示占先机制是否发生;发送端发送PPDU,所述PPDU包括前导码和数据字段,所述数据字段携带有所述占先指示信息。本申请通过在PPDU的数据字段携带用于指示占先机制是否发生的占先指示信息,接收端可以根据该占先指示信息确定占先机制是否发生,能够实现中止传输PPDU,提高了数据传输灵活性。

Description

数据传输方法及装置
本申请要求于2019年03月15日提交的申请号为201910198301.2、发明名称为“数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种数据传输方法及装置。
背景技术
无线传输系统中的各个网络设备通过竞争的方式获取传输机会。例如,无线局域网(wireless local area network,WLAN)中的网络设备通过回退机制竞争信道,并在竞争到信道后,在信道上传输物理层协议数据单元(Physical Layer Protocol Data Unit,PPDU)。其中,PPDU包括前导码(preamble)和数据字段(data field),数据字段用于承载媒体介入控制(medium access control,MAC)协议数据单元(MAC Protocol Data Unit,MPDU)(也可称为MAC帧),MAC帧中包含数据、控制信令或管理信令等。
按照现有的WLAN协议,网络设备在信道上传输业务优先级较低的PPDU的过程中,无法传输业务优先级较高的PPDU,导致业务优先级较高的PPDU的传输时延较长,数据传输灵活性较低。
发明内容
本申请提供了一种数据传输方法及装置,可以解决相关技术中业务优先级较高的PPDU的传输时延较长,数据传输灵活性较低的问题。所述技术方案如下:
第一方面,提供了一种数据传输方法,用于发送端,所述方法包括:
生成占先指示信息,所述占先指示信息用于指示占先机制是否发生;发送物理层协议数据单元PPDU,所述PPDU包括前导码和数据字段,所述数据字段携带有所述占先指示信息。
本申请提供的数据传输方法,通过在PPDU的数据字段携带用于指示占先机制是否发生的占先指示信息,当发送端需要停止传输当前PPDU时,可以通过占先指示信息通知接收端当前PPDU中止传输,提高了数据传输灵活性。当发送端在传输某个PPDU的过程中,需要传输业务优先级较高的数据帧时,可以中止当前PPDU的传输,及时传输该可以业务优先级较高的数据帧,因此可以降低业务优先级较高的数据帧的传输时延。
第二方面,提供了一种数据传输方法,用于接收端,所述方法包括:
接收PPDU,所述PPDU包括前导码和数据字段,所述数据字段携带有占先指示信息,所述占先指示信息用于指示占先机制是否发生;基于所述占先指示信息,解析所述PPDU。
在第二方面的第一种可能实现方式中,若所述占先指示信息指示占先机制发生,所述基于所述占先指示信息,解析所述PPDU,包括:基于所述占先指示信息,确定所述PPDU中占先结束符号的位置,所述占先结束符号用于指示所述PPDU的传输结束位置。
接收端在确定PPDU中占先结束符号的位置之后,可以根据占先结束符号的位置以及高 吞吐率控制字段所指示的填充字符数确定PPDU的传输结束位置,以便于接收端快速生成该PPDU的确认信息。
结合第二方面的第一种可能实现方式,在第二方面的第二种可能实现方式中,所述占先结束符号为包含目标A-MPDU子帧的最后一个OFDM符号或包含目标A-MPDU子帧所在码块的最后一个OFDM符号,所述目标A-MPDU子帧为所述PPDU中的最后一个A-MPDU子帧。
在第一方面和第二方面的第一种可能实现方式中,所述前导码包括传统信令L-SIG字段,若占先机制发生,所述PPDU的实际传输时长小于所述L-SIG字段所指示的原定传输时长。换一句话说,在占先机制发生的情况下,PPDU的实际传输时长小于L-SIG字段所指示的原定传输时长。
其中,占先机制发生指发送端中止当前帧的发送。PPDU的实际传输时长小于L-SIG字段所指示的原定传输时长,换一句来说,实际传输的PPDU中的A-MPDU子帧的个数少于原定传输的PPDU中的A-MPDU子帧的个数。
在第一方面和第二方面的第二种可能实现方式中,所述数据字段包括至少一个A-MPDU子帧,至少一个A-MPDU子帧中的每个A-MPDU子帧均携带有所述占先指示信息。
结合第一方面和第二方面的第二种可能实现方式,在第一方面和第二方面的第三种可能实现方式中,若占先机制发生,所述至少一个A-MPDU子帧中的最后一个A-MPDU子帧所携带的占先指示信息,指示占先机制发生。
结合第一方面和第二方面的第二种可能实现方式或第三种可能实现方式,在第一方面和第二方面的第四种可能实现方式中,所述A-MPDU子帧包括MPDU分隔符和MPDU,所述MPDU分隔符包括结束帧字段、保留位字段、MPDU长度字段、循环冗余码字段和分隔符签名字段中的至少一个字段,所述MPDU包括帧头、帧体和帧校验序列中的至少一个字段,
所述占先指示信息位于所述结束帧字段、所述保留位字段、所述MPDU长度字段、所述循环冗余码字段、所述分隔符签名字段、所述帧头的高吞吐率控制字段和所述帧校验序列中的至少一个字段。
结合第一方面和第二方面的第四种可能实现方式,在第一方面和第二方面的第五种可能实现方式中,所述占先指示信息位于所述保留位字段,若所述保留位字段置为第一数值,表征占先机制发生;若所述保留位字段置为第二数值,表征占先机制未发生,所述第二数值与所述第一数值不同。
结合第一方面和第二方面的第四种可能实现方式,在第一方面和第二方面的第六种可能实现方式中,所述占先指示信息位于所述循环冗余码字段,若所述循环冗余码字段包括第一类型的循环冗余码,表征占先机制发生;若所述循环冗余码字段包括第二类型的循环冗余码,表征占先机制未发生,所述第二类型的循环冗余码与所述第一类型的循环冗余码不同。
结合第一方面和第二方面的第六种可能实现方式,在第一方面和第二方面的第七种可能实现方式中,所述第一类型的循环冗余码为对所述第二类型的循环冗余码执行异或操作和翻转操作中的至少一种操作得到。
结合第一方面和第二方面的第四种可能实现方式,在第一方面和第二方面的第八种可能实现方式中,所述占先指示信息位于所述分隔符签名字段,若所述分隔符签名字段包括第一类型的分隔符签名符号,表征占先机制发生;若所述分隔符签名字段包括第二类型的分隔符 签名符号,表征占先机制未发生,所述第二类型的分隔符签名符号与所述第一类型的分隔符签名符号不同。
结合第一方面和第二方面的第四种可能实现方式,在第一方面和第二方面的第九种可能实现方式中,所述占先指示信息位于所述结束帧字段和所述MPDU长度字段,若所述结束帧字段置为1且所述MPDU长度字段置为0,表征占先机制发生。
结合第一方面和第二方面的第四种可能实现方式,在第一方面和第二方面的第十种可能实现方式中,所述占先指示信息位于所述帧校验序列,若所述帧校验序列包括第一类型序列,表征占先机制发生;若所述帧校验序列包括第二类型序列,表征占先机制未发生,所述第二类型序列与所述第一类型序列不同。其中,所述第一类型序列可以为对所述第二类型序列执行异或操作和翻转操作中的至少一种操作得到。
结合第一方面和第二方面的第四种可能实现方式,在第一方面和第二方面的第十一种可能实现方式中,所述占先指示信息包括所述高吞吐率控制字段中的至少一个指示信息,所述至少一个指示信息包括控制标识符、占先类型、填充符号数、恢复传输时间以及是否需要回复确认信息中的至少一个。
结合第一方面和第二方面的第二种至第十一种中任一可能实现方式,在第一方面和第二方面的第十二种可能实现方式中,若占先机制发生,所述PPDU还包括位于所述至少一个A-MPDU子帧之后的填充符号和数据分组扩展字段中的至少一个。填充符号和数据分组扩展均用于帮助接收端增加处理时间。
在第一方面和第二方面的第十三种可能实现方式中,所述前导码携带有占先预警信息,所述占先预警信息用于指示是否可能发生占先机制。
由于PPDU中的前导码在数据字段之前传输,通过在前导码中携带占先预警信息,可以指示接收端在该PPDU的传输过程中是否可能发生占先机制。若占先预警信息指示可能发生占先机制时,接收端随时准备停止接收当前传输的PPDU;若占先预警信息指示不可能发生占先机制时,接收端按照已有的WLAN协议接收当前传输的PPDU。
结合第一方面和第二方面的第十三种可能实现方式,在第一方面和第二方面的第十四种可能实现方式中,所述占先预警信息位于所述前导码的EHT-SIG字段。
结合第一方面和第二方面的第二种可能实现方式,在第一方面和第二方面的第十五种可能实现方式中,若占先机制发生,所述PPDU还包括位于所述至少一个A-MPDU子帧之后的占先指示帧。占先指示帧可以用于接收端确定PPDU的传输结束位置。
结合第一方面和第二方面的第二种可能实现方式,在第一方面和第二方面的第十六种可能实现方式中,若占先机制发生,所述PPDU还包括位于所述至少一个A-MPDU子帧之后的占先字段,所述占先字段包括至少一个特殊的OFDM符号。可选的,至少一个特殊的OFDM符号可以用于接收端确定PPDU的传输结束位置。
第三方面,提供了一种数据传输方法,用于发送端,所述方法包括:
生成占先指示信息,所述占先指示信息用于指示占先机制发生;发送PPDU,所述PPDU包括前导码和数据字段,所述数据字段携带有所述占先指示信息。
本申请提供的数据传输方法,占先机制发生时,通过在PPDU的数据字段携带用于指示占先机制发生的占先指示信息,当发送端需要停止传输当前PPDU时,可以通过占先指示信 息通知接收端当前PPDU中止传输,提高了数据传输灵活性。当发送端在传输某个PPDU的过程中,需要传输业务优先级较高的数据帧时,可以中止当前PPDU的传输,及时传输该可以业务优先级较高的数据帧,因此可以降低业务优先级较高的数据帧的传输时延。
第四方面,提供了一种数据传输方法,用于接收端,所述方法包括:
接收PPDU,所述PPDU包括前导码和数据字段,所述数据字段携带有占先指示信息,所述占先指示信息用于指示占先机制发生;基于所述占先指示信息,解析所述PPDU。
在第三方面和第四方面的第一种可实现方式中,所述前导码包括传统信令L-SIG字段,所述PPDU的实际传输时长小于所述L-SIG字段所指示的原定传输时长。
其中,占先机制发生指发送端中止当前帧的发送。PPDU的实际传输时长小于L-SIG字段所指示的原定传输时长,换一句来说,实际传输的PPDU中的A-MPDU子帧的个数少于原定传输的PPDU中的A-MPDU子帧的个数。
在第三方面和第四方面的第二种可实现方式中,所述数据字段包括至少一个A-MPDU子帧和位于所述至少一个A-MPDU子帧之后的占先指示帧,所述占先指示帧携带有所述占先指示信息。占先指示帧可以用于指示占先机制发生,还可以用于接收端确定PPDU的传输结束位置。
在第三方面和第四方面的第二种可实现方式中,所述数据字段包括至少一个A-MPDU子帧和位于所述至少一个A-MPDU子帧之后的占先字段,所述占先字段包括至少一个特殊的OFDM符号,所述占先指示信息位于所述占先字段。至少一个特殊的OFDM符号可以用于指示占先机制发生,还可以用于接收端确定PPDU的传输结束位置。
结合第三方面和第四方面的第二种可实现方式,在第三方面和第四方面的第三种可实现方式中,所述特殊的OFDM符号包括:仅偶数子载波具有能量的OFDM符号、仅奇数子载波具有能量的OFDM符号、所述接收端已知的预定模式的OFDM符号、与前一个OFDM符号相同的OFDM符号或具有多个重复波形的OFDM符号。
在第三方面和第四方面的第四种可实现方式中,所述前导码携带有占先预警信息,所述占先预警信息用于指示是否可能发生占先机制。
由于PPDU中的前导码在数据字段之前传输,通过在前导码中携带占先预警信息,可以指示接收端在该PPDU的传输过程中是否可能发生占先机制。若占先预警信息指示可能发生占先机制时,接收端随时准备停止接收当前传输的PPDU;若占先预警信息指示不可能发生占先机制时,接收端按照已有的WLAN协议接收当前传输的PPDU。
结合第三方面和第四方面的第四种可实现方式,在第三方面和第四方面的第五种可实现方式中,所述占先预警信息位于所述前导码的EHT-SIG字段。
第五方面,提供了一种数据传输装置,用于发送端,所述数据传输装置具有实现上述第一方面中数据传输方法行为的功能。所述数据传输装置包括至少一个模块,该至少一个模块用于实现上述第一方面或第三方面所提供的数据传输方法。
第六方面,提供了一种数据传输装置,用于接收端,所述数据传输装置具有实现上述第二方面中数据传输方法行为的功能。所述数据传输装置包括至少一个模块,该至少一个模块用于实现上述第二方面或第四方面所提供的数据传输方法。
第七方面,提供了一种数据传输装置,用于发送端,包括:存储器和处理器,所述存储器和所述处理器耦合,存储器用于存储计算机程序,计算机程序包括程序指令;处理器用于 调用所述程序指令,实现如第一方面或第三方面任一所述的数据传输方法。
第八方面,提供了一种数据传输装置,用于接收端,包括:存储器和处理器,所述存储器和所述处理器耦合,所述存储器用于存储计算机程序,所述计算机程序包括程序指令;所述处理器用于调用所述程序指令,实现如第二方面或第四方面任一所述的数据传输方法。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序包含至少一段代码,该至少一段代码可由计算机执行,以控制所述计算机执行如第一方面至第四方面任一所述的数据传输方法。
第十方面,提供了一种计算机程序,当所述计算机程序被计算机执行时,用于执行如第一方面至第四方面任一所述的数据传输方法。
可选地,所述计算机程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
第十一方面,提供了一种处理器,所述处理器包括:
至少一个电路,用于生成占先指示信息或解析PPDU;
至少一个电路,用于收发PPDU。
可选地,上述处理器可以为芯片。
第十二方面,提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各方面中的方法。
第十三方面,本申请实施例还提供另一种芯片,该芯片可以为接收端或发送端的一部分,该芯片包括:输入接口、输出接口和电路,所述输入接口、所述输出接口与所述电路之间通过内部连接通路相连,所述电路用于执行上述各示例中的方法。
第十四面,提供另一种芯片,包括:输入接口、输出接口、处理器,可选的,还包括存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各方面中的方法。
第十五方面,提供一种装置,用于实现上述各方面的方法。
第十六方面,提供了一种数据传输系统,包括:发送端和至少一个接收端,所述发送端包括如第五方面所述的数据传输装置,所述接收端包括如第六方面所述的数据传输装置。
本申请提供的技术方案,当发送端需要停止传输当前PPDU时,可以通过占先指示信息通知接收端当前PPDU中止传输,提高了数据传输灵活性。例如,当发送端在传输某个PPDU的过程中,需要传输业务优先级较高的数据帧时,可以中止当前PPDU的传输,及时传输该可以业务优先级较高的数据帧,因此可以降低业务优先级较高的数据帧的传输时延,进而提高数据传输系统的可靠性,提升数据传输系统的吞吐率。
附图说明
图1是本申请实施例提供的一种数据传输系统的结构示意图;
图2是本申请实施例提供的一种MPDU的帧结构示意图;
图3是本申请实施例提供的一种A-MPDU的结构示意图;
图4是本申请实施例提供的一种MPDU分隔符的结构示意图;
图5是本申请实施例提供的一种PPDU的结构示意图;
图6是本申请实施例提供的一种数据传输方法的流程图;
图7是本申请实施例提供的一种占先传输方式下的数据传输示意图;
图8是本申请实施例提供的另一种占先传输方式下的数据传输示意图;
图9是本申请实施例提供的另一种PPDU的结构示意图;
图10是本申请实施例提供的又一种PPDU的结构示意图;
图11是本申请实施例提供的再一种PPDU的结构示意图;
图12是本申请实施例提供的还一种PPDU的结构示意图;
图13是本申请实施例提供的一种数据传输装置的结构示意图;
图14是本申请实施例提供的另一种数据传输装置的结构示意图;
图15是本申请另一实施例提供的一种数据传输装置的结构示意图;
图16是本申请另一实施例提供的另一种数据传输装置的结构示意图;
图17是本申请实施例提供的一种数据传输装置的框图;
图18是本申请实施例提供的另一种数据传输装置的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1是本申请实施例提供的一种数据传输系统的结构示意图。如图1所示,该数据传输系统包括至少一个发送端101和至少一个接收端102,发送端101和接收端102之间可以通过无线网络进行通信。参见图1,本申请实施例以数据传输系统包括一个发送端101和两个接收端102为例进行说明。
可选地,本申请实施例提供的数据传输系统可以为无线通信系统,例如为无线局域网(wireless LAN,WLAN)。该无线通信系统可以支持多种WLAN通信协议,例如电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11ax协议,以及IEEE802.11ax协议的下一代协议或更下一代的协议。为描述方便,本申请实施例以WLAN为例进行说明。WLAN中可以包括多个基本服务集(Basic Service Set,BSS),基本服务集的节点包括接入点类的站点(access point,AP)和非接入点类的站点(None access point station,Non-AP STA),其中,接入点类的站点通常简称为接入点,即AP,非接入点类的站点通常简称为站点,即STA。每个基本服务集可以包含一个AP和关联于该AP的多个STA。接入点为具有无线收发功能的装置,可以为站点提供服务。站点为具有无线收发功能的装置,可以基于接入点接入无线局域网。
其中,AP也可称为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网络和无线网络的桥梁,其主要作用是将各个STA连接到一起,然后将无线网络接入有线网络。可选地,AP可以是带有无线保真(wireless fidelity,Wi-Fi)芯片的终端设备或者网络设备,例如,AP可以是通信服务器、路由器、交换机或网桥等。
可选地,STA可以是无线通信芯片、无线传感器或无线通信终端。例如,STA可以是支持Wi-Fi通信功能的移动电话、支持Wi-Fi通信功能的平板电脑、支持Wi-Fi通信功能的机顶 盒、支持Wi-Fi通信功能的智能电视、支持Wi-Fi通信功能的智能可穿戴设备、支持Wi-Fi通信功能的车载通信设备或支持Wi-Fi通信功能的计算机等。
可选地,本申请实施例中,发送端101可以是AP,接收端102可以是STA。或者,发送端101可以是AP,接收端102也可以是AP。又或者,发送端101可以是STA,接收端102也可以是STA。本申请实施例以发送端101为AP,接收端102均为STA为例进行说明。
在WLAN中,AP和STA之间通过MPDU来传递数据、控制信令或管理信令等。MPDU通常包括帧头、帧体(Frame Body)和帧校验序列(Frame Check Sequence,FCS)。其中,帧体用于承载上层传递下来的数据、管理信息或控制信息。对于一些特定类型的MPDU,其帧体可能不存在,如确认帧。FCS用于校验该MPDU是否传输正确。帧头可以包括帧控制(Frame Control)字段、时长或标识(Duration/ID)字段、地址信息字段、序列控制(Sequence Control)字段、服务质量控制(Quality of Service Control,QoS Control)字段和高吞吐率控制(High Throughput Control,HT Control)字段中的至少一个字段。其中各个字段的解释可参考IEEE802.11协议,本申请实施例在此不做赘述。示例地,图2是本申请实施例提供的一种MPDU的帧结构示意图,如图2所示,帧头包括帧控制字段、时长/标识(时长或标识)字段、地址信息字段(例如地址1、地址2、地址3和地址4)、序列控制字段、服务质量控制字段和高吞吐率控制字段。需要说明的是,图2仅用作示例性说明MPDU的帧结构,本申请实施例对MPDU的帧头包含的内容以及各个字段的排列顺序均不做限定。
为了提高WLAN性能,目前在MAC层采用帧聚合技术将多个MPDU聚合成一个聚合MPDU(Aggregated MPDU,A-MPDU)。由于同一A-MPDU中的所有MPDU采用一个PPDU传输,可以减小PPDU前导码和竞争信道的开销,进而提高传输效率。图3是IEEE802.11标准中A-MPDU的结构示意图,如图3所示,A-MPDU包括n个A-MPDU子帧,n为大于1的整数。可选地,参见图3,A-MPDU还可以包括位于n个A-MPDU子帧之后的结束帧(end of frame,EOF)填充(pad)字段。请继续参见图3,每个A-MPDU子帧包括MPDU分隔符(delimiter)和MPDU。可选地,A-MPDU子帧还可以包括填充字段。其中,MPDU分隔符用于对多个聚合的MPDU进行分隔。
可选地,MPDU分隔符包括EOF字段、保留位(reserved)字段、MPDU长度(MPDU length)字段、循环冗余码(Cyclic Redundancy Code,CRC)字段和分隔符签名(delimiter signature)字段中的至少一个字段。其中,EOF通常用于指示该MPDU是否为A-MPDU中的最后一个MPDU。MPDU长度用于指示紧跟当前MPDU分隔符的MPDU的字节数,即MPDU长度用于指示当前A-MPDU子帧中的MPDU的字节数。分隔符签名为一特征序列(其ASCII值为‘N’),用于接收端搜索分隔符,即使接收端解错了一个分隔符或者MPDU,仍然可以通过搜索下一个分隔符签名来找到下一个MPDU,以防止发生错误扩散的现象。CRC,类似FCS,用于接收端校验分隔符是否发生错误,还可以按照MPDU分隔符的长度确定一个滑动窗口,在校验CRC是否通过后,通过滑动窗口寻找下一个MPDU分隔符。其中,MPDU分隔符的长度为4字节。示例地,图4是本申请实施例提供的一种MPDU分隔符的结构示意图,如图4所示,该MPDU分隔符包括EOF字段、保留位字段、MPDU长度字段、CRC字段和分隔符签名字段。需要说明的是,图2仅用作示例性说明MPDU分隔符的结构,本申请实施例对MPDU分隔符所包含的内容以及各个字段的排列顺序均不做限定。
需要说明的是,A-MPDU承载在PPDU的数据字段进行传输。按照现有的WLAN协议, 发送端在发送PPDU的过程中,若需传输业务优先级较高的PPDU,只能待当前发送的PPDU发送结束后,才能发送该业务优先级较高的PPDU,导致业务优先级较高的PPDU的传输时延较长,因此目前的数据传输灵活性较低。
本申请通过在IEEE802.11标准中引入占先机制,当在传输某个PPDU的过程中占先机制发生,则发送端可以中止传输A-MPDU,并传输业务优先级较高的PPDU,以降低较高业务优先级的传输时延,提高数据传输灵活性。占先机制发生指:发送端在传输某个PPDU的过程中,被中止传输该PPDU,该PPDU的实际传输时长小于该PPDU的传统信令(legacy signal,L-SIG)字段指示的原定传输时长。占先机制未发生指:发送端正常传输PPDU。在本申请实施例中,占先机制也可称为中止传输机制。占先机制是否发生,用于指示发送端是否中止当前PPDU的传输。
可选地,占先机制发生的触发条件包括业务优先级较高的数据帧抢占业务优先级较低的数据帧的传输信道,或者发送端被要求停止当前帧的传输等,本申请实施例对占先机制发生的触发条件不做限定。本申请以下实施例中,均以业务优先级较高的数据帧抢占业务优先级较低的数据帧的传输信道作为占先机制发生的触发条件为例进行说明。
示例地,本申请实施例提供的发送端和接收端均可以包含可以被占先的队列和快速队列,且可以被占先的队列与快速队列之间存在通信接口,以进行互相通信。其中,可以被占先的队列用于存储可以被占先帧(preemptable frame),快速队列用于存储快速帧(express frame)。快速帧为业务优先级较高的帧,可以被占先帧为业务优先级较低的帧。由于业务优先级较高的帧的时延要求一般高于业务优先级较低的帧的时延要求,因此快速帧相对于可以被占先帧,其对时延要求比较高。可选地,发送端在发送包含可以被占先帧的过程中,当需要发送快速帧时,会接收到发送端内部发送的停止当前PPDU的传输的指示,以触发占先机制发生,并在当前PPDU中携带相应的信令信息,指示接收端该PPDU将中止传输。
需要说明的是,PPDU的前导码中存在数据分组的长度指示。例如在前导码的传统信令(legacy signal,L-SIG)字段中,存在长度(length)子字段和速率(rate)子字段,发送端通过L-SIG字段中的长度子字段和速率子字段间接指示PPDU的原定传输时长。其中,速率子字段固定设置成6兆比特每秒(Megabits per second,Mbps),由于速率子字段设置为固定值,也即是通过长度子字段间接指示PPDU的原定传输时长。长度子字段的Length计算公式如下:
Figure PCTCN2020077830-appb-000001
其中,SignalExtension(信号扩展)是一个与传输频带有关的参数,当工作在2.4GHz时,该参数为6μs(微秒),当工作在5GHz时,该参数为0μs。TXTIME为整个PPDU的原定传输时长。m的取值可以是0、1或2,取决于具体的PPDU类型,本申请实施例在此不做赘述。
当占先机制发生时,PPDU的实际传输时长小于L-SIG字段中Length所对应的TXTIME的时长(即原定传输时长)。相应的,接收端会通过L-SIG字段中的长度子字段,计算接收时长:
Figure PCTCN2020077830-appb-000002
同样,当占先机制发生时,接收端接收到的PPDU的实际传输时长小于通过Length计算得到的RXTIME的时长(即原定传输时长)。需要指出的是,通过Length字段计算出的RXTIME和TXTIME因为符号实际长度等可能会有稍许不同。
从上述内容可知,当占先机制发生时,PPDU的实际传输时长小于L-SIG字段所指示的原定传输时长。也可以理解为,PPDU原定用于传输n个A-MPDU子帧,若在传输过程中发生占先机制,则PPDU实际传输m个A-MPDU子帧,n和m均为正整数,且m<n。
示例地,图5是本申请实施例提供的一种PPDU的结构示意图。如图5所示,该PPDU包括前导码和数据字段,前导码用于辅助数据字段的接收。数据字段包括数据子字段A和数据子字段B,数据子字段A中包含m个A-MPDU子帧,数据子字段B中包含(n-m)个A-MPDU子帧。可选地,数据字段还包括位于n个A-MPDU子帧之后的数据分组扩展(packetextension,PE)字段。若占先机制发生,该PPDU实际传输的是数据子字段A中的m个A-MPDU子帧,而数据子字段B中的(n-m)个A-MPDU子帧以及PE字段实际未传输。
需要说明的是,本申请实施例以A-MPDU子帧作为最小传输单元,即发生占先机制后,PPDU原定传输的n个A-MPDU子帧中的m个A-MPDU子帧已发送,(n-m)个A-MPDU子帧未发送,由于IEEE802.11标准中规定,每个MPDU均有明确的序号索引,因此对于未发送的(n-m)个A-MPDU,无需额外进行分片信息指示,也无需与已发送的m个A-MPDU子帧对应起来,只需以新的PPDU承载后继续传输即可。
在本申请实施例中,可以通过MAC方法指示接收端占先机制发生,也即是在MAC帧结构中指示接收端占先机制发生;和/或,可以通过物理方法指示接收端占先机制发生,也即是在物理层结构中指示接收端占先机制发生。本申请以下实施例通过三种不同结构的PPDU对指示占先机制发生的方式进行详细说明。其中,如图9和图10所示的PPDU均对应MAC方法,如图11所示的PPDU对应物理方法。为了便于说明,本申请实施例中将用于指示占先机制发生的相关信令信息统称为占先指示信息。
图6是本申请实施例提供的一种数据传输方法的流程图,可以应用于如图1所示的数据传输系统。如图6所示,该方法包括:
步骤601、发送端生成占先指示信息。
在本申请的一个可选实施例中,该占先指示信息用于指示占先机制是否发生。
在本申请的另一个可选实施例中,该占先指示信息用于指示占先机制发生。
步骤602、发送端发送包含可以被占先帧的PPDU。
其中,该PPDU包括前导码和数据字段,数据字段携带有该占先指示信息。
步骤603、第一接收端接收到该PPDU后,基于占先指示信息解析该PPDU。
可选地,若占先指示信息指示占先机制发生,第一接收端在解析完PPDU中已接收到的A-MPDU子帧后,可以生成确认信息,并向发送端回复该确认信息。进一步的,若占先机制发生,上述数据传输方法还包括以下过程:
步骤604、发送端发送包含快速帧的PPDU。
若占先指示信息指示占先机制发生,发送端发送包含快速帧的PPDU。
步骤605、第二接收端接收到包含快速帧的PPDU后,解析该包含快速帧的PPDU。
可选地,第二接收端解析完包含快速帧的PPDU后,可以生成包含快速帧的PPDU的确 认信息,并向发送端回复该包含快速帧的PPDU的确认信息。
步骤606、发送端发送包含可以被占先帧中未发送的A-MPDU子帧的PPDU。
步骤607、第一接收端接收到包含可以被占先帧中未发送的A-MPDU子帧的PPDU后,解析该包含可以被占先帧中未发送的A-MPDU子帧的PPDU。
可选地,第一接收端解析完包含可以被占先帧中未发送的A-MPDU子帧的PPDU后,可以生成包含可以被占先帧中未发送的A-MPDU子帧的PPDU的确认信息,并向发送端回复该包含可以被占先帧中未发送的A-MPDU子帧的PPDU的确认信息。
需要说明的是,上述第一接收端和第二接收端可以是同一接收端,也可以是不同接收端,本申请实施例对此不做限定。
可选地,本申请实施例提供了两种占先传输方式:
在第一种占先传输方式中,步骤604和步骤606同时执行。发送端采用正交频分多址(orthogonal frequency division multiple access,OFDMA)的方式或多用户多输入多输出(multiple user-multiple input multiple output,MU-MIMO)的方式同时发送包含快速帧的PPDU和包含可以被占先帧中未发送的A-MPDU子帧的PPDU。
需要说明的是,采用第一种占先传输方式可以减少占先机制对可以被占先帧造成的时延影响,可以防止饥饿现象的发生。
在第二种占先传输方式中,步骤604和步骤606先后执行。发送端发送包含快速帧的PPDU。在当前传输机会(transmit opportunity,TXOP)或者被占先的PPDU的原定传输时长内,若快速帧传完,发送端继续发送包含可以被占先帧中未发送的A-MPDU子帧的PPDU;否则,发送端重新竞争信道后,再发送包含可以被占先帧中未发送的A-MPDU子帧的PPDU。
示例地,假设可以被占先帧包括第一分片、第二分片和第三分片,发送端在发送完可以被占先帧的第一分片后占先机制发生。其中,第一分片、第二分片和第三分片均包含至少一个A-MPDU子帧,例如参见图5,第一分片包含数据子字段A中的m个A-MPDU子帧,第二分片和第三分片包含的A-MPDU子帧的并集为数据子字段B中的(n-m)个A-MPDU子帧。图7是本申请实施例提供的第一种占先传输方式下的数据传输示意图,如图7所示,发送端采用OFDMA的方式或MU-MIMO的方式(简称:OFDMA/MU-MIMO)同时传输快速队列中的快速帧以及可以被占先的队列中的可以被占先帧的第二分片和可以被占先帧的第三分片。此外,也可以采用帧聚合的方式将可以被占先帧的第二分片和可以被占先帧的第三分片聚合成一个A-MPDU后发送。图8是本申请实施例提供的第二种占先传输方式下的数据传输示意图,如图8所示,发送端先传输快速队列中的快速帧,再传输可以被占先的队列中的可以被占先帧的第二分片和可以被占先帧的第三分片。
需要说明的是,本申请实施例提供的数据传输方法的步骤先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减。任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
本申请实施例提供的数据传输方法,当发送端需要停止传输当前PPDU时,可以通过占先指示信息通知接收端当前PPDU中止传输,提高了数据传输灵活性。当发送端在传输某个PPDU的过程中,需要传输业务优先级较高的数据帧时,可以中止当前PPDU的传输,及时传输该可以业务优先级较高的数据帧,因此可以降低业务优先级较高的数据帧的传输时延。
在本申请的一个可选实施例中,占先指示信息用于指示占先机制是否发生。则在如图5所示的PPDU中,数据字段的每个A-MPDU子帧均携带有占先指示信息。
示例地,图9是本申请实施例提供的另一种PPDU的结构示意图,如图9所示,PPDU中原定传输的数据字段包括n个A-MPDU子帧以及位于n个A-MPDU子帧之后的PE字段。其中,n个A-MPDU子帧中的前m个A-MPDU子帧位于数据子字段A中,剩余的(n-m)个A-MPDU子帧位于数据子字段B中。数据子字段A中的m个A-MPDU子帧为PPDU中实际传输的A-MPDU子帧,数据子字段B中的(n-m)个A-MPDU子帧以及位于n个A-MPDU子帧之后的PE字段实际未传输。
可选地,每个A-MPDU子帧的结构可参考图3和图4,占先指示信息位于EOF字段、保留位字段、MPDU长度字段、CRC字段、分隔符签名字段、帧头的高吞吐率控制字段和FCS中的至少一个字段。
在第一种可能的实现方式中,占先指示信息位于保留位字段。若保留位字段为第一数值,表征占先机制发生;若保留位字段为第二数值,表征占先机制未发生,第二数值与第一数值不同。示例地,当保留位字段为1,表示占先机制发生;当保留位字段为0,表示占先机制未发生。
通过保留位字段的值指示占先机制是否发生,无需增加新的字段,可以保证数据传输的兼容性。
在第二种可能的实现方式中,占先指示信息位于CRC字段。若CRC字段包括第一类型的CRC,表征占先机制发生;若CRC字段包括第二类型的CRC,表征占先机制未发生,第二类型的CRC与第一类型的CRC不同。
可选地,第一类型的CRC为对第二类型的CRC执行异或操作和翻转操作中的至少一种操作得到,或者第一类型的CRC与第二类型的CRC的类型不同。示例地,当CRC为根据现有IEEE802.11-2016标准中利用多项式x 8+x 2+x 1+1进行模2操作的方式生成,表示占先机制未发生;当对该CRC再进行额外的异或操作,例如将8bit的CRC同00001111进行异或操作生成xCRC,或者,利用一个不同的多项式生成xCRC,表示占先机制发生。
通过在CRC字段中携带不同内容指示占先机制是否发生,无需增加新的字段,接收端通过解析CRC字段的内容即可确定占先机制是否发生,无需增加新的运算量,在保证数据传输的兼容性的同时,保证了数据传输效率。
在第三种可能的实现方式中,占先指示信息位于分隔符签名字段。若分隔符签名字段包括第一类型的分隔符签名符号,表征占先机制发生;若分隔符签名字段包括第二类型的分隔符签名符号,表征占先机制未发生,第二类型的分隔符签名符号与第一类型的分隔符签名符号不同。示例地,当分隔符签名字段包括ASCII码‘N’时,表示占先机制未发生;当分隔符签名字段包括另一种ASCII码,例如ASCII码‘Y’时,表示占先机制发生。
通过在分隔符签名字段中携带不同内容指示占先机制是否发生,无需增加新的字段,接收端通过解析分隔符签名字段的内容即可确定占先机制是否发生,无需增加新的运算量,在保证数据传输的兼容性的同时,保证了数据传输效率。
在第四种可能的实现方式中,占先指示信息位于EOF字段和MPDU长度字段。若EOF字段置为1且MPDU长度字段置为0,即指示出现EOF填充,表征占先机制发生。
在第五种可能的实现方式中,占先指示信息位于FCS。若FCS包括第一类型序列,表征 占先机制发生;若FCS包括第二类型序列,表征占先机制未发生,第二类型序列与第一类型序列不同。可选地,第一类型序列为对第二类型序列执行异或操作和翻转操作中的至少一种操作得到,或者第一类型序列与第二类型序列的类型不同。
通过FCS的不同类型指示占先机制是否发生,无需增加新的字段,接收端通过解析FCS即可确定占先机制是否发生,无需增加新的运算量,在保证数据传输的兼容性的同时,保证了数据传输效率。
在第六种可能的实现方式中,占先指示信息包括高吞吐率控制字段中的至少一个指示信息,该至少一个指示信息包括控制标识符、占先类型、填充符号数、恢复传输时间以及是否需要回复确认信息中的至少一个。
其中,控制标识符用于指示后续控制信息的类型。控制标识符的长度为4bit,目前0-6已经被用于指示其他类型的控制信息。若占先指示信息以控制信息的形式承载,则控制标识符可以为7-15中的一种,用于指示后续的控制信息的类型为占先指示信息。占先类型可以针对IEEE802.11标准中的占先传输方式进行定义,例如,根据上述两种占先传输方式,可以定义两种占先类型。填充符号数用于指示位于A-MPDU子帧之后的填充符号的个数,该填充符号用于帮助接收端增加处理时间。恢复传输时间用于指示接收端可以被占先帧何时能够继续传输,接收端可以根据该恢复传输时间,在可以被占先帧恢复传输之前进行睡眠,从而达到节能的效果。是否需要回复确认信息用于指示接收端在占先机制发生的情况下,是否需要回复确认信息。
需要说明的是,上述高吞吐率控制字段中的指示信息中的一个或多个也可以由发送端和接收端提前约定,当约定的指示信息发生变化后再重新进行指示,而无需在每个A-MPDU子帧中携带。或者,上述高吞吐率控制字段中的指示信息可以携带在每个A-MPDU子帧中,本申请实施例对此不做限定。
可选地,若占先机制发生,该至少一个A-MPDU子帧中的最后一个A-MPDU子帧所携带的占先指示信息,指示占先机制发生。且在最后一个A-MPDU子帧之前传输的A-MPDU子帧所携带的占先指示信息,均指示占先机制未发生。
可选地,若占先机制发生,如图9所示,PPDU还可以包括位于m个A-MPDU子帧之后的填充符号和PE字段中的至少一个。其中,填充符号和数据分组扩展均用于帮助接收端增加处理时间。也即是,发送端在向接收端传输m个A-MPDU子帧后,还可以向接收端继续传输填充符号和/或PE字段内容,以增加接收端的处理时间。
可选地,上述步骤603的实现过程包括:接收端基于占先指示信息,确定PPDU中占先结束符号的位置,占先结束符号用于指示PPDU的传输结束位置。其中,占先结束符号为包含目标A-MPDU子帧的最后一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号或包含目标A-MPDU子帧所在码块的最后一个OFDM符号,该目标A-MPDU子帧为PPDU中的最后一个A-MPDU子帧。
需要说明的是,接收端在确定PPDU中占先结束符号的位置之后,可以根据占先结束符号的位置以及高吞吐率控制字段所指示的填充字符数确定PPDU的传输结束位置,以便于接收端快速生成该PPDU的确认信息。
可选地,接收端可以基于速率、MPDU长度和码块长度等信息计算得到占先结束符号的位置。
示例地,当PPDU的数据字段采用二进制卷积编码(binary convolutional coding,BBC)调制,则占先结束符号为包含当前A-MPDU子帧(即目标A-MPDU子帧)的最后一个OFDM符号。OFDM符号所可以承载的信息比特为每个符号的数据比特数(number of data bits per symbol,N DBPS),该A-MPDU子帧的MPDU分隔符的起始比特在所在OFDM符号中承载的信息比特顺序为第B1比特。该A-MPDU子帧的MPDU分隔符中MPDU长度字段指示该A-MPDU子帧的长度为L字节。则占先结束符号为承载该A-MPDU子帧的第一个符号以后的第C1个符号,C1的计算公式如下:
Figure PCTCN2020077830-appb-000003
例如,当N DBPS为117,该A-MPDU子帧所位于的第一个符号是该PPDU的数据字段的第10个符号,该A-MPDU子帧从第20比特开始(前19比特承载之前的信息),即B1=20,L指示为200字节,则C1=14。即占先结束符号所在位置为该PPDU数据字段的第24个符号。
又示例地,当PPDU的数据字段采用低密度奇偶校验码(lowdensity parity check,LDPC)调制,则占先结束符号为包含当前A-MPDU子帧(即目标A-MPDU子帧)所在码块的最后一个OFDM符号。OFDM符号所可以承载的信息比特为N DBPS,该A-MPDU子帧的MPDU分隔符的起始比特在所在OFDM符号中承载的信息比特顺序为第B1比特。该A-MPDU子帧的MPDU分隔符中MPDU长度字段指示该A-MPDU子帧的长度为L字节。LDPC码块的长度为LLDPC比特,码率为R。该A-MPDU子帧结束所在比特为所在OFDM符号的第B2比特,为所在LDPC码块的第B3比特,则占先结束符号为承载该A-MPDU子帧的第一个符号以后的第C2个符号,C2的计算公式如下:
Figure PCTCN2020077830-appb-000004
可选地,发送端也可以明确指示接收端占先结束符号的位置。例如,发送端可以指示接收端占先结束符号离当前传输的OFDM符号之间还有几个OFDM符号。
本申请实施例提供的PPDU,通过在每个A-MPDU子帧中携带用于指示占先机制是否发生的占先指示信息,可以明确指示接收端占先机制是否发生。当占先机制发生时,当前传输的A-MPDU子帧携带的占先指示信息指示占先机制发生,该当前传输的A-MPDU子帧也即是该PPDU传输的最后一个A-MPDU子帧,接收端接收到该当前传输的A-MPDU子帧后,可以确定占先机制发生。另外,接收端接收到该当前传输的A-MPDU子帧,还可以计算占先结束符号的位置,以确定当前PPDU的传输结束位置,与相关技术相比,提高了数据传输灵活性。
当发送端在传输某个PPDU的过程中,需要传输业务优先级较高的数据帧时,可以中止当前PPDU的传输,及时传输该可以业务优先级较高的数据帧,因此可以降低业务优先级较高的数据帧的传输时延。
在本申请的另一个可选实施例中,占先指示信息用于指示占先机制发生。则在如图5所示的PPDU中,位于数据子字段A之后的字段中携带有占先指示信息,也即是,发送端在向接收端传输数据子字段A中的A-MPDU子帧之后,继续向接收端传输携带有占先指示信息的字段。
示例地,图10是本申请实施例提供的又一种PPDU的结构示意图,如图10所示,数据字段包括至少一个A-MPDU子帧和位于至少一个A-MPDU子帧之后的占先指示帧,占先指示帧携带有占先指示信息。也即是,发送端在向接收端传输该至少一个A-MPDU子帧后,继续向接收端传输占先指示帧。
请继续参见图10,PPDU中原定传输的数据字段包括n个A-MPDU子帧以及位于n个A-MPDU子帧之后的PE字段。其中,n个A-MPDU子帧中的前m个A-MPDU子帧位于数据子字段A中,剩余的(n-m)个A-MPDU子帧位于数据子字段B中。数据子字段A中的m个A-MPDU子帧为PPDU中实际传输的A-MPDU子帧,数据子字段B中的(n-m)个A-MPDU子帧以及位于n个A-MPDU子帧之后的PE字段实际未传输。发送端在向接收端传输数据子字段A中的m个A-MPDU子帧后,需要继续向接收端传输占先指示帧。也即是,发送端实际传输的PPDU包括数据子字段A中的m个A-MPDU子帧以及占先指示帧。
可选地,如图10所示,PPDU还可以包括位于占先指示帧之后的填充符号和PE字段中的至少一个。其中,填充符号和数据分组扩展均用于帮助接收端增加处理时间。也即是,发送端在向接收端传输占先指示帧后,还可以向接收端继续传输填充符号和/或PE字段内容,以增加接收端的处理时间。
可选地,占先指示帧的MAC帧类型与数据字段中的至少一个A-MPDU子帧中的任一A-MPDU子帧的MAC帧类型不同,占先指示帧的MAC帧类型可以是IEEE802.11标准中任一预留的MAC帧类型。例如,占先指示帧的类型值置为0,子类型值置为7或15;又例如,占先指示帧的类型值置为1,子类型值置为0-2或15;又例如,占先指示帧的类型值置为2,子类型值置为1、2、3、5、6、7或13;占先指示帧的类型值置为3,子类型值置为2-15。本申请实施例对占先指示帧的MAC帧类型不做限定。
又示例地,图11是本申请实施例提供的再一种PPDU的结构示意图,如图11所示,数据字段包括至少一个A-MPDU子帧和位于至少一个A-MPDU子帧之后的占先字段,该占先字段包括至少一个特殊的OFDM符号,占先指示信息位于占先字段,也即是,可以将位于占先字段的至少一个特殊的OFDM符号作为占先指示信息。
请继续参见图11,PPDU中原定传输的数据字段包括n个A-MPDU子帧以及位于n个A-MPDU子帧之后的PE字段。其中,n个A-MPDU子帧中的前m个A-MPDU子帧位于数据子字段A中,剩余的(n-m)个A-MPDU子帧位于数据子字段B中。数据子字段A中的m个A-MPDU子帧为PPDU中实际传输的A-MPDU子帧,数据子字段B中的(n-m)个A-MPDU子帧以及位于n个A-MPDU子帧之后的PE字段实际未传输。发送端在向接收端传输数据子字段A中的m个A-MPDU子帧后,需要继续向接收端传输位于数据子字段A之后的占先字 段中的至少一个特殊的OFDM符号。也即是,发送端实际传输的PPDU包括数据子字段A中的m个A-MPDU子帧以及占先字段中的至少一个特殊的OFDM符号。
可选地,如图11所示,PPDU还可以包括位于占先字段之后的填充符号和PE字段中的至少一个。其中,填充符号和数据分组扩展均用于帮助接收端增加处理时间。也即是,发送端在向接收端传输占先指示帧后,还可以向接收端继续传输填充符号和/或PE字段内容,以增加接收端的处理时间。
可选地,上述特殊的OFDM符号包括:仅偶数子载波具有能量的OFDM符号、仅奇数子载波具有能量的OFDM符号、接收端已知的预定模式的OFDM符号、与前一个OFDM符号相同的OFDM符号或具有多个重复波形的OFDM符号。
示例地,当至少一个特殊的OFDM符号包括仅偶数子载波具有能量的OFDM符号或仅奇数子载波具有能量的OFDM符号,接收端可以通过识别每个子载波的能量的方式,确定占先机制是否发生。当至少一个特殊的OFDM符号包括接收端已知的预定模式的OFDM符号,例如可以是EHT-LTF符号,接收端可以通过识别是否出现该预定模式的OFDM符号的方式,确定占先机制是否发生。当至少一个特殊的OFDM符号包括与前一个OFDM符号相同的OFDM符号,接收端可以通过识别当前OFDM符号是否为前一个OFDM符号的复制符号,确定占先机制是否发生。当至少一个特殊的OFDM符号包括具有多个重复波形的OFDM符号,例如可以是HT-STF符号,符号长度为8微秒,包含5个1.6微秒的重复周期,接收端可以通过识别是否出现具有多个重复波形的OFDM符号,确定占先机制是否发生。
在本申请实施例中,位于占先字段的至少一个特殊的OFDM符号包括上述OFDM符号中一种或多种的组合,也可以包括多个重复的上述某种OFDM符号,本申请实施例对此不做限定。
可选地,在如图10和如图11所示的PPDU中,占先指示帧和特殊的OFDM符号还可以用于接收端确定PPDU的传输结束位置,以便于接收端快速生成该PPDU的确认信息。
本申请实施例提供的PPDU,当占先机制发生时,通过在当前传输的A-MPDU子帧之后传输占先指示帧或特殊的OFDM符号,接收端接收到占先指示帧或特殊的OFDM符号后,可以确定占先机制发生,同时可以确定当前PPDU的传输结束位置,与相关技术相比,提高了数据传输灵活性。
当发送端在传输某个PPDU的过程中,需要传输业务优先级较高的数据帧时,可以中止当前PPDU的传输,及时传输该可以业务优先级较高的数据帧,因此可以降低业务优先级较高的数据帧的传输时延。
本申请实施例提供的PPDU,可以在每个A-MPDU子帧中携带用于指示占先机制是否发生的占先指示信息,当占先机制发生时,当前传输的A-MPDU子帧携带的占先指示信息指示占先机制发生,同时,在当前传输的A-MPDU子帧之后传输占先指示帧和/或特殊的OFDM符号,该占先指示帧和/或特殊的OFDM符号可以用于接收端确定PPDU的传输结束位置,使得接收端无需计算占先结束符号的位置,减少了接收端的运算量,降低接收端的运算负载。
可选地,在如图9至图11任一所示的PPDU中,前导码可以携带有占先预警信息,该占先预警信息用于指示是否可能发生占先机制,也即是,该占先预警信息用于指示当前传输的 PPDU是否包含可以被占先帧。在如图10所示的PPDU中,占先预警信息还用于指示接收端是否需要同步识别占先指示帧;在如图11所示的PPDU中,占先预警信息还用于指示接收端是否需要识别特殊的OFDM符号。
由于PPDU中的前导码在数据字段之前传输,通过在前导码中携带占先预警信息,可以指示接收端在该PPDU的传输过程中是否可能发生占先机制。当占先预警信息指示可能发生占先机制时,接收端随时准备停止接收当前传输的PPDU;当占先预警信息指示不可能发生占先机制时,接收端按照已有的WLAN协议接收当前传输的PPDU。
示例地,图12是本申请实施例提供的还一种PPDU的结构示意图,如图12所示,该PPDU的前导码包括传统短训练字段(legacy short training field,L-STF)、传统长训练字段(legacy longtraining field,L-LTF)、L-SIG字段、用于自动检测的符号(symbol for auto-detection)、极高吞吐率信令(extremelyhighthroughput,EHT-SIG)字段、极高吞吐率短训练字段(extremelyhighthroughput short training field,EHT-STF)和极高吞吐率长训练字段(extremelyhighthroughput longtraining field,EHT-LTF)。该PPDU的数据字段的内容可参考图5和图9至图11任一所示的PPDU,本申请实施例在此不做赘述。可选地,占先预警信息可以位于前导码的EHT-SIG字段。
综上所述,本申请实施例提供的数据传输方法,当发送端需要停止传输当前PPDU时,可以通过占先指示信息通知接收端当前PPDU中止传输,提高了数据传输灵活性。当发送端在传输某个PPDU的过程中,需要传输业务优先级较高的数据帧时,可以中止当前PPDU的传输,及时传输该可以业务优先级较高的数据帧,因此可以降低业务优先级较高的数据帧的传输时延,进而提高数据传输系统的可靠性,提升数据传输系统的吞吐率。
在一种可能实现方式中,通过在每个A-MPDU子帧中携带用于指示占先机制是否发生的占先指示信息,可以明确指示接收端占先机制是否发生。当占先机制发生时,当前传输的A-MPDU子帧携带的占先指示信息指示占先机制发生,该当前传输的A-MPDU子帧也即是该PPDU传输的最后一个A-MPDU子帧,接收端接收到该当前传输的A-MPDU子帧后,可以确定占先机制发生;另外,接收端接收到该当前传输的A-MPDU子帧,还可以计算占先结束符号的位置,以确定当前PPDU的传输结束位置。
在另一种可能实现方式中,当占先机制发生时,通过在当前传输的A-MPDU子帧之后传输占先指示帧或特殊的OFDM符号,接收端接收到占先指示帧或特殊的OFDM符号后,可以确定占先机制发生,同时还可以确定当前PPDU的传输结束位置。
因此在本申请实施例中,当发送端在传输某个PPDU的过程中,需要传输业务优先级较高的数据帧时,可以中止当前PPDU的传输,及时传输该可以业务优先级较高的数据帧,因此可以降低业务优先级较高的数据帧的传输时延。
图13是本申请实施例提供的一种数据传输装置的结构示意图,该数据传输装置可以用于图1中的发送端,该数据传输装置130包括:
生成模块1301,用于生成占先指示信息,该占先指示信息用于指示占先机制是否发生;
发送模块1302,用于发送PPDU,该PPDU包括前导码和数据字段,数据字段携带有该占先指示信息。
图14是本申请实施例提供的另一种数据传输装置的结构示意图,该数据传输装置可以用 于图1中的接收端,该数据传输装置140包括:
接收模块1401,用于接收PPDU,该PPDU包括前导码和数据字段,数据字段携带有占先指示信息,占先指示信息用于指示占先机制是否发生;
解析模块1402,用于基于该占先指示信息,解析PPDU。
本申请实施例以图13所示的数据传输装置为例,对用于发送端的数据传输装置中的各个模块进行说明,以及以图14所示的数据传输装置为例,对用于接收端的数据传输装置中的各个模块进行说明。应理解,本申请实施例中用于发送端的数据传输装置具有图6所示的数据传输方法中发送端的任意功能,用于接收端的数据传输装置具有图6所示的数据传输方法中接收端的任意功能。
图15是本申请另一实施例提供的一种数据传输装置的结构示意图,该数据传输装置可以用于图1中的发送端,该数据传输装置150包括:
生成模块1501,用于生成占先指示信息,该占先指示信息用于指示占先机制发生;
发送模块1502,用于发送PPDU,该PPDU包括前导码和数据字段,数据字段携带有该占先指示信息。
图16是本申请另一实施例提供的另一种数据传输装置的结构示意图,该数据传输装置可以用于图1中的接收端,该数据传输装置160包括:
接收模块1601,用于接收PPDU,该PPDU包括前导码和数据字段,数据字段携带有占先指示信息,占先指示信息用于指示占先机制发生;
解析模块1602,用于基于该占先指示信息,解析PPDU。
本申请实施例以图15所示的数据传输装置为例,对用于发送端的数据传输装置中的各个模块进行说明,以及以图16所示的数据传输装置为例,对用于接收端的数据传输装置中的各个模块进行说明。应理解,本申请实施例中用于发送端的数据传输装置具有图6所示的数据传输方法中发送端的任意功能,用于接收端的数据传输装置具有图6所示的数据传输方法中接收端的任意功能。
本申请实施例提供的数据传输装置(用于发送端或接收端)可以有多种产品形态来实现,例如,数据传输装置可配置成通用处理系统;例如,数据传输装置可以由一般性的总线体系结构来实现;例如,数据传输装置可以由专用集成电路(application specific integrated circuit,ASIC)来实现等等。以下提供本申请实施例中数据传输装置可能的几种产品形态,应当理解的是,以下仅为举例,不限制本申请实施例可能的产品形态仅限于此。
作为一种可能的产品形态,数据传输装置170可以为用于传输数据的设备(例如基站、UE或AP等)。如图17所示,数据传输装置170可以包括处理器1701和收发器1702;可选地,数据传输装置还可以包括存储器1703。其中,处理器1701和收发器1702、存储器1703通过内部连接互相通信。示例地,该数据传输装置170还可以包括总线1704,处理器1701、收发器1702和存储器1703通过总线1704互相通信。处理器1701,用于执行图6所示的方法中该数据传输装置执行的方法中的处理步骤。例如,当该数据传输装置用于发送端时,该处理步骤可以为图6中的步骤601;当该数据传输装置用于接收端时,该处理步骤可以为图4中的步骤603、步骤605和步骤607。收发器1702,接收处理器1701的控制,用于执行图6 所示的方法中数据传输装置执行的方法中的PPDU的收发步骤。例如,当该数据传输装置用于发送端时,该收发步骤可以为图6中的步骤602、步骤604和步骤606;当该数据传输装置用于接收端时,该收发步骤可以为接收端接收PPDU的步骤。存储器1703,用于存储指令,该指令被处理器1701调用,以执行图6所示的方法中该数据传输装置所执行的方法中的处理步骤。
作为另一种可能的产品形态,数据传输装置也由通用处理器来实现,即俗称的芯片来实现。如图18所示,该数据传输装置可以包括:处理电路1801、输入接口1802和输出接口1803,处理电路1801、输入接口1802、输出接口1803通过内部连接互相通信;其中,输入接口1802用于获取处理电路1801待处理的信息,处理电路1801用于执行图6中发送端执行的处理步骤(例如步骤601)对待处理的信息进行处理,输出接口1803用于输出处理电路1801处理后的信息;或者,输入接口1802用于获取处理电路1801待处理的信息(如图6所示实施例中接收端接收到的PPDU),处理电路1801用于执行图6中接收端执行的处理步骤(例如步骤603、步骤605和步骤607)对待处理的信息进行处理,输出接口1803用于输出处理电路处理后的信息。
可选地,该数据传输装置还可以包括收发器(图18中未示出)。其中,在处理电路1801用于执行图6中发送端执行的处理步骤对待处理的信息进行处理时,输出接口1803用于向收发器输出处理电路1801处理后的信息,收发器用于发送处理电路1801处理后的信息。在处理电路1801用于执行图6中接收端执行的处理步骤对待处理的信息进行处理时,收发器用于接收处理电路1801待处理的信息,并将处理电路1801待处理的信息发送至输入接口1802。
作为又一种可能的产品形态,数据传输装置也可以使用下述来实现:现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑器件(Programmable Logic Device,PLD)、控制器、状态机、门逻辑、分立硬件部件等、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤或数字用户线)或无线(例如红外、无线或微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (31)

  1. 一种数据传输方法,其特征在于,用于发送端,所述方法包括:
    生成占先指示信息,所述占先指示信息用于指示占先机制是否发生;
    发送物理层协议数据单元PPDU,所述PPDU包括前导码和数据字段,所述数据字段携带有所述占先指示信息。
  2. 一种数据传输方法,其特征在于,用于接收端,所述方法包括:
    接收PPDU,所述PPDU包括前导码和数据字段,所述数据字段携带有占先指示信息,所述占先指示信息用于指示占先机制是否发生;
    基于所述占先指示信息,解析所述PPDU。
  3. 根据权利要求2所述的方法,其特征在于,若所述占先指示信息指示占先机制发生,所述基于所述占先指示信息,解析所述PPDU,包括:
    基于所述占先指示信息,确定所述PPDU中占先结束符号的位置,所述占先结束符号用于指示所述PPDU的传输结束位置。
  4. 根据权利要求3所述的方法,其特征在于,所述占先结束符号为包含目标A-MPDU子帧的最后一个正交频分复用OFDM符号或包含目标A-MPDU子帧所在码块的最后一个OFDM符号,所述目标A-MPDU子帧为所述PPDU中的最后一个A-MPDU子帧。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述前导码包括传统信令L-SIG字段,
    若占先机制发生,所述PPDU的实际传输时长小于所述L-SIG字段所指示的原定传输时长。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述数据字段包括至少一个聚合媒体介入控制协议数据单元A-MPDU子帧,至少一个A-MPDU子帧中的每个A-MPDU子帧均携带有所述占先指示信息。
  7. 根据权利要求6所述的方法,其特征在于,若占先机制发生,所述至少一个A-MPDU子帧中的最后一个A-MPDU子帧所携带的占先指示信息,指示占先机制发生。
  8. 根据权利要求6或7所述的方法,其特征在于,所述A-MPDU子帧包括MPDU分隔符和MPDU,所述MPDU分隔符包括结束帧字段、保留位字段、MPDU长度字段、循环冗余码字段和分隔符签名字段中的至少一个字段,所述MPDU包括帧头、帧体和帧校验序列中的至少一个字段,
    所述占先指示信息位于所述结束帧字段、所述保留位字段、所述MPDU长度字段、所述 循环冗余码字段、所述分隔符签名字段、所述帧头的高吞吐率控制字段和所述帧校验序列中的至少一个字段。
  9. 根据权利要求8所述的方法,其特征在于,所述占先指示信息位于所述保留位字段,
    若所述保留位字段为第一数值,表征占先机制发生;
    若所述保留位字段为第二数值,表征占先机制未发生,所述第二数值与所述第一数值不同。
  10. 根据权利要求8所述的方法,其特征在于,所述占先指示信息位于所述帧校验序列,
    若所述帧校验序列包括第一类型序列,表征占先机制发生;
    若所述帧校验序列包括第二类型序列,表征占先机制未发生,所述第二类型序列与所述第一类型序列不同。
  11. 根据权利要求10所述的方法,其特征在于,所述第一类型序列为对所述第二类型序列执行异或操作和翻转操作中的至少一种操作得到。
  12. 根据权利要求8所述的方法,其特征在于,所述占先指示信息位于所述分隔符签名字段,
    若所述分隔符签名字段包括第一类型的分隔符签名符号,表征占先机制发生;
    若所述分隔符签名字段包括第二类型的分隔符签名符号,表征占先机制未发生,所述第二类型的分隔符签名符号与所述第一类型的分隔符签名符号不同。
  13. 根据权利要求1至12任一所述的方法,其特征在于,所述前导码携带有占先预警信息,所述占先预警信息用于指示是否可能发生占先机制。
  14. 根据权利要求13所述的方法,其特征在于,所述占先预警信息位于所述前导码的极高吞吐率信令EHT-SIG字段。
  15. 一种数据传输装置,其特征在于,用于发送端,所述装置包括:
    生成模块,用于生成占先指示信息,所述占先指示信息用于指示占先机制是否发生;
    发送模块,用于发送物理层协议数据单元PPDU,所述PPDU包括前导码和数据字段,所述数据字段携带有所述占先指示信息。
  16. 一种数据传输装置,其特征在于,用于接收端,所述装置包括:
    接收模块,用于接收PPDU,所述PPDU包括前导码和数据字段,所述数据字段携带有占先指示信息,所述占先指示信息用于指示占先机制是否发生;
    解析模块,用于基于所述占先指示信息,解析所述PPDU。
  17. 根据权利要求16所述的装置,其特征在于,若所述占先指示信息指示占先机制发生, 所述解析模块,用于:
    基于所述占先指示信息,确定所述PPDU中占先结束符号的位置,所述占先结束符号用于指示所述PPDU的传输结束位置。
  18. 根据权利要求17所述的装置,其特征在于,所述占先结束符号为包含目标A-MPDU子帧的最后一个正交频分复用OFDM符号或包含目标A-MPDU子帧所在码块的最后一个OFDM符号,所述目标A-MPDU子帧为所述PPDU中的最后一个A-MPDU子帧。
  19. 根据权利要求15至18任一所述的装置,其特征在于,所述前导码包括传统信令L-SIG字段,
    若占先机制发生,所述PPDU的实际传输时长小于所述L-SIG字段所指示的原定传输时长。
  20. 根据权利要求15至19任一所述的装置,其特征在于,所述数据字段包括至少一个聚合媒体介入控制协议数据单元A-MPDU子帧,至少一个A-MPDU子帧中的每个A-MPDU子帧均携带有所述占先指示信息。
  21. 根据权利要求20所述的装置,其特征在于,若占先机制发生,所述至少一个A-MPDU子帧中的最后一个A-MPDU子帧所携带的占先指示信息,指示占先机制发生。
  22. 根据权利要求20或21所述的装置,其特征在于,所述A-MPDU子帧包括MPDU分隔符和MPDU,所述MPDU分隔符包括结束帧字段、保留位字段、MPDU长度字段、循环冗余码字段和分隔符签名字段中的至少一个字段,所述MPDU包括帧头、帧体和帧校验序列中的至少一个字段,
    所述占先指示信息位于所述结束帧字段、所述保留位字段、所述MPDU长度字段、所述循环冗余码字段、所述分隔符签名字段、所述帧头的高吞吐率控制字段和所述帧校验序列中的至少一个字段。
  23. 根据权利要求22所述的装置,其特征在于,所述占先指示信息位于所述保留位字段,
    若所述保留位字段为第一数值,表征占先机制发生;
    若所述保留位字段为第二数值,表征占先机制未发生,所述第二数值与所述第一数值不同。
  24. 根据权利要求22所述的装置,其特征在于,所述占先指示信息位于所述帧校验序列,
    若所述帧校验序列包括第一类型序列,表征占先机制发生;
    若所述帧校验序列包括第二类型序列,表征占先机制未发生,所述第二类型序列与所述第一类型序列不同。
  25. 根据权利要求24所述的装置,其特征在于,所述第一类型序列为对所述第二类型序 列执行异或操作和翻转操作中的至少一种操作得到。
  26. 根据权利要求22所述的装置,其特征在于,所述占先指示信息位于所述分隔符签名字段,
    若所述分隔符签名字段包括第一类型的分隔符签名符号,表征占先机制发生;
    若所述分隔符签名字段包括第二类型的分隔符签名符号,表征占先机制未发生,所述第二类型的分隔符签名符号与所述第一类型的分隔符签名符号不同。
  27. 根据权利要求15至26任一所述的装置,其特征在于,所述前导码携带有占先预警信息,所述占先预警信息用于指示是否可能发生占先机制。
  28. 根据权利要求27所述的装置,其特征在于,所述占先预警信息位于所述前导码的极高吞吐率信令EHT-SIG字段。
  29. 一种数据传输装置,包括:存储器和处理器,所述存储器和所述处理器耦合,所述存储器用于存储程序指令;所述处理器用于调用所述程序指令,使得所述装置实现权利要求1至14中任一项所述的方法。
  30. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机包括实现权利要求1至14中任一项所述的方法的指令。
  31. 一种装置,用于实现权利要求1至14中任一项所述的方法。
PCT/CN2020/077830 2019-03-15 2020-03-04 数据传输方法及装置 WO2020187031A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20773782.6A EP3937408A4 (en) 2019-03-15 2020-03-04 DATA TRANSMISSION METHOD AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910198301.2A CN111698067B (zh) 2019-03-15 2019-03-15 数据传输方法及装置
CN201910198301.2 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020187031A1 true WO2020187031A1 (zh) 2020-09-24

Family

ID=72475341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077830 WO2020187031A1 (zh) 2019-03-15 2020-03-04 数据传输方法及装置

Country Status (3)

Country Link
EP (1) EP3937408A4 (zh)
CN (2) CN111698067B (zh)
WO (1) WO2020187031A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023072584A1 (en) * 2021-10-29 2023-05-04 Sony Group Corporation Communication devices and methods for txop truncation
EP4203575A1 (en) * 2021-12-24 2023-06-28 Intel Corporation Method and apparatus for frame preemption in downlink communications for next generation wi-fi
EP4266793A4 (en) * 2021-01-13 2024-05-22 Huawei Tech Co Ltd COMMUNICATION METHOD AND APPARATUS

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114760012A (zh) * 2021-01-08 2022-07-15 华为技术有限公司 组播反馈方法、装置及系统
CN114513283B (zh) * 2022-01-11 2023-10-17 深圳市联平半导体有限公司 基于空间复用的数据传输方法、装置、设备及存储介质
EP4340308A1 (en) * 2022-09-19 2024-03-20 Intel Corporation Early termination of physical layer convergence protocol data unit transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110222490A1 (en) * 2010-03-09 2011-09-15 Broadcom Corporation Bandwidth mechanisms and successive channel reservation access within multiple user, multiple access, and/or MIMO wireless communications
CN102948101A (zh) * 2010-06-15 2013-02-27 高通股份有限公司 用于发送甚高吞吐量wlan确认帧的方法和装置
CN107889257A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种数据传输方法及相关设备
CN110381601A (zh) * 2019-07-12 2019-10-25 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015304131B2 (en) * 2014-08-21 2018-08-02 Lg Electronics Inc. Method for uplink transmission in wireless communication system and apparatus therefor
JP6616429B2 (ja) * 2015-05-05 2019-12-04 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 物理層プロトコルデータユニットの送信方法、受信方法、送信装置、および受信装置
CN108123775B (zh) * 2016-11-29 2020-09-29 华为技术有限公司 传输数据包的方法和设备
CN108289065B (zh) * 2017-01-10 2022-01-14 华为技术有限公司 数据处理方法、装置和系统
JP7036196B2 (ja) * 2017-08-29 2022-03-15 日本電気株式会社 第1のユーザ機器、基地局、第1のユーザ機器による方法、および基地局による方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110222490A1 (en) * 2010-03-09 2011-09-15 Broadcom Corporation Bandwidth mechanisms and successive channel reservation access within multiple user, multiple access, and/or MIMO wireless communications
CN102948101A (zh) * 2010-06-15 2013-02-27 高通股份有限公司 用于发送甚高吞吐量wlan确认帧的方法和装置
CN107889257A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种数据传输方法及相关设备
CN110381601A (zh) * 2019-07-12 2019-10-25 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4266793A4 (en) * 2021-01-13 2024-05-22 Huawei Tech Co Ltd COMMUNICATION METHOD AND APPARATUS
WO2023072584A1 (en) * 2021-10-29 2023-05-04 Sony Group Corporation Communication devices and methods for txop truncation
EP4203575A1 (en) * 2021-12-24 2023-06-28 Intel Corporation Method and apparatus for frame preemption in downlink communications for next generation wi-fi

Also Published As

Publication number Publication date
CN116232555A (zh) 2023-06-06
CN111698067A (zh) 2020-09-22
EP3937408A1 (en) 2022-01-12
CN111698067B (zh) 2023-03-10
EP3937408A4 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
WO2020187031A1 (zh) 数据传输方法及装置
US9853794B2 (en) Acknowledgement (ACK) type indication and deferral time determination
US9929847B2 (en) Shortened block acknowledgement with fragmentation acknowledgement signaling
JP4195716B2 (ja) 無線通信ネットワークでのパケット集約のための方法及び装置
CN107078858B (zh) 在无线lan系统中发送和接收多用户块确认帧的方法及其设备
EP2612462B1 (en) Aggregated mpdu (a-mpdu) numerology and mpdu grouping
KR101890758B1 (ko) 무선 통신들에서 ndp cf_end 제어 프레임을 생성 및 송신하기 위한 방법 및 디바이스
JP6321174B2 (ja) 送信の機会(txop)をシェアすること
US10708892B1 (en) Resource request for uplink transmission
WO2021036648A1 (zh) 数据传输方法及装置
KR20140059237A (ko) 장거리 wlan 데이터 유닛 포맷
KR20180059858A (ko) 무선 네트워크에서의 가변 길이 블록 확인응답 필드들을 시그널링하고 생성하기 위한 시스템들 및 방법들
KR20190089936A (ko) 집합 mpdu 및 이에 대한 응답 프레임의 전송 방법 및 이를 이용한 무선 통신 단말
US20160043946A1 (en) Systems and methods for aggregating multi-user media access control protocol data unit frames in a wireless network
US9596614B2 (en) Method and apparatus for transmitting acknowledgement frame in wireless local area network
JP2024075270A (ja) 通信装置、制御方法、及び、プログラム
WO2024097106A1 (en) Latency sensitive traffic transmission
KR20220111151A (ko) 축약 ba 구성 및 시그널링 기법
TW201438430A (zh) 確認(ack)類型指示和推遲時間決定(一)
TW201438431A (zh) 確認(ack)類型指示和推遲時間決定(二)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773782

Country of ref document: EP

Effective date: 20211004